
BEHAVIOR-DRIVEN AI DEVELOPMENT

Ángel Alexander Cabrera

CMU-HCII-24-101
April 2024

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213

Thesis Committee:
Dr. Adam Perer, Co-Chair, CMU HCII

Dr. Jason I. Hong, Co-Chair, CMU HCII
Dr. Kenneth Holstein, CMU HCII
Dr. Ameet Talwalkar, CMU MLD

Dr. Aditya Parameswaran, UC Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

The research reported here was supported, in whole or in part, by an Amazon award, a
Mozilla Technology Fund grant, a National Science Foundation grant under No.

IIS-2040942, and the National Science Foundation Graduate Research Fellowship
Program under grant No. DGE-1745016. All views expressed in this document are those

of the author and do not necessarily reflect the views of the sponsoring agencies.

Copyright © Ángel Alexander Cabrera 2024

i

KEYWORDS

Machine learning evaluation, AI evaluation, failure analysis, behavioral analysis, sense-
making, human-AI collaboration, visualization, crowdsourcing, machine learning, artificial
intelligence.

ii

ABSTRACT

AI systems are being deployed in many real-world applications, from self-driving cars
to customer service chatbots. When a person interacts with an AI system, they develop a
complex mental model of how the system behaves that they use to inform their interaction
with the AI. Should I override the AI prediction? Should I collect more training data?
Traditionally, aggregate metrics such as accuracy are calculated on a hold-out test set to
measure a model’s overall performance. This singular metric is often insufficient to de-
velop mental models that capture important AI behaviors, such as potential biases or safety
concerns.

This thesis proposes behavior-driven AI development (BDAI), a philosophy that cen-
ters AI development on identifying, quantifying, and communicating the numerous behav-

iors a model can show. By focusing on a model’s behaviors instead of aggregate metrics,
developers can focus on creating responsible AI systems that best fulfill end-user needs.
BDAI is central to creating AI systems, informing how a model should be updated, and
deploying AI, informing how people should interact with a model. In this thesis, I describe
empirical and system-building work that formally defines BDAI and shows how it can be
applied to improve real-world AI systems.

In the first half of the thesis, I present a series of interviews, a theoretical framework,
and a user study that describe the core principles of BDAI. First, I summarize a qualitative
interview study with 27 practitioners investigating how they understand and improve be-
haviors of complex AI systems. Next, I describe a theoretical framework that defines this
process as a form of sensemaking and show how the framework can be used to create AI
evaluation tools. I further show how insights into model behavior can improve human-AI
collaboration by calibrating end-users’ reliance on model outputs.

In the second half of the thesis, I implement two systems that, combined, fulfill the
requirements of the full sensemaking process and BDAI workflow. I first introduce Zeno,
an interactive platform that lets practitioners discover and validate behaviors across any AI
system. I then describe Zeno Reports, a no-code tool built on Zeno for authoring interac-
tive evaluation reports. Through case studies and real-world deployment with more than
500 users, I show how AI analysis tools covering the sensemaking process can empower
practitioners to develop more performant and equitable AI systems.

iii

iv

ACKNOWLEDGEMENTS

This dissertation was only possible because of the advisors, mentors, friends, and family
members who were there for me during the past five years, pushing me to excel during the
peaks and picking me up from the troughs. A PhD is, more than anything, a journey of
self-discovery. It forces you into an introspective deep dive, developing research taste and
the ability to ask and answer the right questions while refining your values, goals, and the
type of impact you wish to have. The people you surround yourself with define what this
process looks like, and I will be forever grateful to those who helped me through it.

My advisors Adam Perer and Jason Hong were the cornerstone of my academic journey.
Whether it was consoling me through the first few paper rejections or reining in my wild
goose chases, they are the central reason I was able to cross the finish line. I will forever
quote Jason’s pithy sayings and stories and channel Adam’s creativity and levelheadedness.

In addition to my advisors, I had three fantastic mentors on my committee. Since
the first weeks of my PhD, I had the pleasure of meeting often with Ken Holstein. A
uniquely deep and multidisciplinary thinker, I always came away from our conversations
with a new framing for my work. I also had the fantastic opportunity to work with Ameet
Talwalkar since the first year of my PhD, which kept me grounded in the world of machine
learning and provided me with enlightening conversations. Lastly, I am deeply grateful
to Aditya Parameswaran for being the essential external member of my committee and
bringing unique questions and insights that helped shape the final form of this dissertation.

Beyond Carnegie Mellon, I had the opportunity to intern twice during my PhD with
some incredible people. At Microsoft Research, Steven Drucker and Marco Tulio Ribeiro
guided me through a seminal part of my thesis, starting with the simple question “How do
you compare two models?”. At Apple, I had the opportunity to work with Alex Bäuerle,
Dominik Moritz, and Fred Hohman, three people that I am grateful to have had as col-
leagues and mentors beyond Apple. Fred was my mentor during undergrad, Dominik was
part of the DIG lab at CMU, and Alex was my closest collaborator over the past few years.

I also grew substantially by mentoring other students. During my PhD I was fortunate
enough to mentor over a dozen students, including Abraham Druck, Emily Guo, Kan Sun,
Donny Bertucci, Tianqi Wu, Steven Huang, Erica Fu, Josh Zhou.

Inevitably, you develop deep bonds with your colleagues in a five-year journey. My
labmates in the DIG lab, Will Epperson, Venkat Siviraman, Katelyn Morrison, and Frank
Elavsky, provided constant feedback, laughter, and camaraderie. Beyond our lab, I also
formed some of my deepest friendships, including Daniel Deroux, Mateo Dulce, Karan
Ahuja, Rushil Khurana, Wesley Deng, and countless others.

v

Lastly, my family was the anchor that kept me grounded for the past five years. My
parents, Elizabeth and Ángel, originally inspired me to pursue research and consider a
PhD, and provided me with valuable perspective throughout the journey. My sister, Emilia,
doubled as my roommate for an amazing year in Pittsburgh and always helps me take things
a little less seriously. And Kristen, the love of my life - we rekindled our love, got engaged,
and moved across the country during the PhD.

vi

vii

TABLE OF CONTENTS

Keywords . ii

Abstract . iii

Acknowledgements . v

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction . 1
1.1 Overview . 2
1.2 Thesis Statements . 3
1.3 Research Contributions . 4
1.4 Prior Publications and Authorship . 4

Chapter 2: Background & Related Work . 6
2.1 What is AI development? . 6
2.2 Sensemaking . 7
2.3 Human-AI Collaboration . 8
2.4 Tools for AI Evaluation . 9
2.5 AI Documentation and Reporting . 10
2.6 Narrative Visualization . 10

Chapter 3: How do Practitioners Evaluate AI Systems? 12
3.1 Introduction . 12
3.2 Methodology . 13

3.2.1 Interviews on AI Evaluation . 13
3.2.2 Interviews on AI Interfaces . 14

3.3 Results . 14
3.3.1 Aggregate Metrics Do Not Reflect Model Performance in Deployment 14
3.3.2 Challenges in Tracking Continuous Model and Data Updates 15
3.3.3 Limited Collaboration in Cross-Functional Teams 16
3.3.4 Use Cases and Limitations of Development Tools 17

3.4 Conclusion . 18

Chapter 4: A Sensemaking Framework for Behavioral Evaluation 20

viii

4.1 Introduction . 20
4.2 Methodology . 23
4.3 Sensemaking Framework . 23

4.3.1 Instances and Outputs . 25
4.3.2 Schemas . 28
4.3.3 Hypotheses . 30
4.3.4 Assessment . 31

4.4 AIFinnity System . 33
4.4.1 Instances, Outputs, and Initial Schemas 34
4.4.2 Schemas With Similar Search and Filtering 35
4.4.3 Hypotheses and Assessment . 37

4.5 User Study . 39
4.5.1 Study Procedure and Analysis . 39
4.5.2 Results . 40

4.6 Discussion and Future Work . 44
4.6.1 Applications and Extensions of AIFINNITY 44
4.6.2 Gaps in Current Tooling . 45
4.6.3 Designing and Evaluating Tools With the Framework 45
4.6.4 Limitations . 46

4.7 Conclusion . 47

Chapter 5: Improving Human-AI Collaboration with Behavior Descriptions . . 48
5.1 Introduction . 48
5.2 Behavior Descriptions . 50

5.2.1 Principles for Effective Behavior Descriptions 51
5.2.2 Why Not Just Fix AI Failures? . 52

5.3 Experimental Design . 52
5.3.1 Experimental Setup . 53
5.3.2 Hypotheses . 57

5.4 Results . 58
5.4.1 Overall Accuracy . 58
5.4.2 Accuracy by Behavior Description Group 59
5.4.3 Qualitative Results . 61
5.4.4 Additional Findings . 61

5.5 Discussion . 63
5.5.1 Effectiveness of Behavior Descriptions 63
5.5.2 Learning and Behavior Descriptions 64
5.5.3 Authoring Behavior Descriptions 64
5.5.4 Understanding and Improving Mental Models of AI 65

5.6 Limitations and Future Work . 65
5.7 Conclusion . 66

Chapter 6: Zeno: A General-purpose Tool for AI Evaluation 67
6.1 Introduction . 67
6.2 Design Goals . 69

ix

6.3 Zeno: An Interactive Evaluation Framework 70
6.3.1 Python API: Extensible Model Analysis 71
6.3.2 Exploration UI: Create and Track Slices 74
6.3.3 Analysis UI: Track and Test Slices Across Models 75

6.4 Case Studies . 77
6.4.1 Case 1: UI Classification . 77
6.4.2 Case 2: Breast Cancer Detection 79
6.4.3 Case 3: Voice Commands . 80
6.4.4 Case 4: Text-to-Image Generation 82

6.5 Discussion . 83
6.6 Limitations and Future Work . 84
6.7 Conclusion . 85

Chapter 7: Zeno Reports: Authoring Interactive and Reproducible AI Evalua-
tions . 86

7.1 Introduction . 86
7.2 Design Goals . 88
7.3 Zeno Reports . 90

7.3.1 Data Rendering . 92
7.3.2 Charts . 93
7.3.3 Markdown . 94

7.4 Evaluation . 94
7.4.1 Public Deployment . 95
7.4.2 Gemini Benchmarking . 95

7.5 Results . 95
7.5.1 Quantitative Patterns of Report Authoring 95
7.5.2 Qualitative Insights on Using Zeno Reports 97

7.6 Discussion . 98
7.7 Limitations and Future Work . 99
7.8 Conclusion . 100

Chapter 8: Conclusions . 101
8.1 Discussion . 101

8.1.1 Practitioners spend most of their time discovering behaviors 101
8.1.2 Collecting or generating instances is becoming a challenging sense-

making step . 101
8.1.3 Limited need for formally verifying behaviors 102
8.1.4 Impact of incentives on tool use and adoption 103

8.2 Conclusion . 103

References . 123

x

LIST OF TABLES

3.1 The practitioners in the semi-structured AI evaluation interviews (Section 3.2.1
. 19

4.1 How existing AI analysis systems fit in the sensemaking framework. Some
tools focus on specific behaviors, like biases, or domains, like self-driving
cars, but they all help data scientists better understand the behaviors of their
AI systems at different points in the sensemaking process. 24

xi

LIST OF FIGURES

4.1 The sensemaking framework describing how data scientists understand model
behavior. We derived the framework from [29]’s sensemaking process and
empirical studies of data scientist. The process is iterative and ongoing,
with data scientists continuously reevaluating as they update and deploy
their models. 22

4.2 The least structured stage of the sensemaking process consists of instances
and outputs, model inputs from a variety of sources along with their asso-
ciated model predictions. Instances can include both real-world user inputs
and synthetic data. 26

4.3 Creating schemas is the second major sensemaking stage. Schemas are
organizations of instances into meaningful layouts or groupings. Common
schemas for AI outputs include confusion matrices, subgroups of data, and
clusters. 28

4.4 Creating hypotheses is the third sensemaking stage. Hypotheses are de-
scriptions of model behavior with supporting evidence. Hypotheses can
come from schemas or existing domain knowledge, like checklists and unit
tests. 30

4.5 An assessment of the model’s behavior is the final stage. The assessment
provides an actionable summary of a model that can be used for tasks such
as improving the model or choosing between different AI services. 31

xii

4.6 The AIFINNITY system is a Jupyter Widget that consists of three primary
panels, shown here for the image captioning task used in the user study.
The (A) Image Explorer shows a sample of images, sorted by the images
with the most different labels. The (B) Image Preview shows the currently
selected image. It lets users see the image’s extracted metadata, use tools
find similar images, and create counterfactuals. Lastly, the (C) Affinity
Diagram is where users can organize instances into schemas and hypothe-
ses. The colored borders represent the quality judgements from users on
whether they believe either or both of the outputs are adequate or not. Data
scientists can load AIFINNITY with any AI system and image dataset they
are using in a Jupyter Notebook. 34

4.7 An overview of the typical sensemaking process used by participants in the
user study with AIFINNITY. Participants often started by finding interest-
ing instance in the Image Explorer. They then used the schema tools to find
similar behaviors, and dragged them into the Affinity Diagram. Lastly, they
created formal hypotheses from the schemas to find more evidence and or-
ganized their final assessment. The figure is shown for the optical character
recognition task described in Section 4.4 37

5.1 Don Norman’s mental model framework [8] describes how designers use
their mental models to implement systems. End-users then interact with
the systems and develop their own mental models of how they believe the
systems work. While this process is similar for AI models, a key differ-
ence is that an AI is not a direct representation of a developer’s intent, but
a stochastic model learned from data. This means that (1) AI developers
themselves have to make sense of what an AI system has learned through
testing and iteration. Subsequently, they can encode these insights as (2)
behavior descriptions, details of how an AI performs on subgroups of in-
stances, that can be shown to end-users to improve human-AI collaboration. 49

5.2 Experimental setup. Each participant was randomly assigned to a condi-
tion and dataset (3x3 between-subjects study, 25 participants per condition,
225 participants total). For each dataset, participants saw 30 instances, 20
instances from the whole dataset with an AI accuracy of 95%, and 5 in-
stances each from two subsets of the dataset with an AI accuracy of 40%
and 20% respectively (simulating subgroups behavior descriptions would
be useful for). In the AI + Behavior Description condition, participants
were shown behavior descriptions for instances in group 1 and 2. While the
instances shown to participants were randomly chosen from a larger subset
of data, each participant saw the same number of AI errors to ensure they
observed the same AI accuracies. 54

xiii

5.3 UI screenshots for the fake reviews (left) and satellite image classification
(right) tasks. Each participant labeled 30 instances, distributed according to
the instance groups described in Figure 5.2 and Section 5.3.1. Both screen-
shots are shown on a labeling step for the AI + Behavior Description (BD)
condition and on instances that are part of a behavior description group. In
the AI condition participants are not shown the additional text for instances
in a BD group, and in the No AI condition participants are not shown the
AI output. The bird classification task used the same format as the satellite
classification task shown. 55

5.4 Average participant accuracy by task and condition. The vertical orange
bar indicates the AI accuracy, what would be the participant’s accuracy if
they picked the AI response every time. The blue shaded area indicates
complementarity, the region where the human+AI accuracy is higher than
either the human or AI alone. We find that behavior descriptions led to
higher accuracy in the reviews and birds tasks, with complementarity in the
birds task (red point in rightmost chart). The error bars represent standard
error. 58

5.5 Average team accuracy by task, condition and instance group. We fur-
ther break down accuracy by instance type (see section 5.3.1): the main
group (20 instances), and two behavior description groups (5 instances
each). The average human-AI accuracy across the three groups of instances
gives us an idea of how behavior descriptions improve the performance of
human-AI teams. We find that participants relied more on the AI when
shown BDs in every task. Participant performance on the different behavior
description groups was mixed, from no effect to significant improvement in
group 2 birds (bottom right). These results highlight the two effects of be-
havior descriptions, increasing human reliance on a more accurate AI and
overriding systematic AI errors. The error bars represent standard error. . . 59

5.6 Likert-scale responses on perception of AI. The diverging stacked bar
chart centered around the neutral response shows that participants across
all conditions and subjective measures overwhelmingly viewed the AI fa-
vorably. There were no significant differences in user’s perception of the
AI when they were give behavior descriptions. 61

5.7 Learning curves by task and condition. We fit linear models of accu-
racy on round number to measure learning effects. We found that the two
conditions in which BDs significantly improved performance also had sig-
nificant learning effects, the AI + BD conditions in the reviews and birds
tasks (denoted by *). 62

xiv

6.1 ZENO is a framework for behavioral evaluation of machine learning (ML)
models. It has two components, a Python API and an interactive UI. The
API is used to generate information such as model outputs and metrics.
Users then interact with the UI to see metrics, create slices, and write unit
tests. In this toy example, a user is evaluating a cat and dog classifier. They
see that the model has lower accuracy for dogs with pointy ears, and create
a test expecting the slice accuracy to be higher than 70%. 68

6.2 ZENO’s architecture overview. The ZENO program and inputs (outlined in
purple boxes) can either be hosted locally or run on a remote machine.
ZENO takes a configuration file with information such as paths to data
folders, test files, and metadata and creates a parallelized data processing
pipeline to run the decorated Python functions. The resulting UI is avail-
able through an endpoint that can be accessed locally or hosted on a server.
. 69

6.3 The ZENO Python API has four decorator functions: @model, @metric,
@distill, and @transform. The functions all take the same inputs, a
DataFrame and a ZenoOptions object with information such as data paths
and column names. @model functions return a function for getting run-
ning model inference. In the example above, the @model function loads
a speech-to-text model and returns a function that transcribes audio data.
@metric functions calculate aggregate metrics on subsets of data. Above,
the @metric function computes the average word error rate (avg wer) for
transcribed audio. @distill functions derive new metadata columns.
Above, the @distill function calculates the amplitude value from audio.
@transform functions produce new data inputs. Above, the @transform
function lowers the amplitude of audio samples. 72

6.4 The Exploration UI allows users to see data instances and model outputs
and investigate model performance. In the figure, ZENO is shown for the
audio transcription example described in Section 6.3. The interface has two
components, the Metadata Panel (A & B) and the Samples View (C). The
Metadata Panel shows the metadata distributions of the dataset (B) and the
slices and folders a user has created (A). The metadata widgets are cross-
filtered, with the purple bars showing the filtered table distribution. The
Samples View (C) shows the filtered data instances and outputs, currently
those with 0.04 ¡ amplitude ¡ 0.12, along with the selected metric, in this
case, accuracy. 73

xv

6.5 The instance view of the Exploration UI (Figure 6.4, C) is a modular Python
package that can be swapped out for different models and data types. New
views can be implemented with a single JavaScript file. ZENO currently
has six implemented views, shown here with the following datasets: im-
age classification (CIFAR-10 [162]), audio transcription (Free Spoken Digit
Dataset [163]), image segmentation (Kvasir-SEG [164]), text classification
(Amazon reviews [165]), timeseries classification (MotionSense [166]), and
object detection (MS-COCO [167]) . 74

6.6 The Analysis UI helps users visualize trends of model performance across
slices, and allows them to create behavioral unit tests of expected slice met-
rics. In the figure, ZENO is shown for the CIFAR-10 image classification
task comparing models trained for different epochs. The Slice Drawer (F)
shows the performance of slices across models, including a sparkline with
the metric trend over time. Users can create new reports in the Report Panel
(D) and add slices from the Slice Drawer. Lastly, in the Report View (E),
users can create behavioral unit tests of expected model performance. . . . 76

6.7 A screenshot of the Exploration UI from the UI classification case study
(Section 6.4.1). The participant selected underrepresented ground-truth
classes and confirmed that the model performance is significantly worse
for them. 79

7.1 We introduce an authoring tool for Zeno Reports, visualization-driven anal-
yses of AI system behavior. Zeno Reports are notebook-style reports com-
posed of three core building blocks: Data, charts, and markdown. Data
cells are specified using a domain-specific language to render any input data
and model output, from audio to images and text. Chart cells are interactive
visualizations created using a visual editor. Markdown cells contain text for
structuring and adding narrative to reports. Zeno Reports can be authored
collaboratively and shared directly through the platform. The reports can
also be automatically updated with results for new models, improving the
reproducibility of analyses. 87

7.2 The Zeno Reports authoring interface. Authors can use the UI-based editor
to create, customize, and manage the components that make up a Zeno
Report, including data slices and charts. Different cell types supported are
detailed in Section section 7.3, including text, images, data visualizations,
and interactive elements. 91

7.3 An example of Zeno Report’s domain-specific language (DSL) for render-
ing AI data. In this example, a user has created a specification for render-
ing retrieved documents and a summarized answer. They combined vertical
stack and list layouts to render different text fields. 93

xvi

7.4 Interactive chart editor interface. (A) Select from six default chart types,
from basic bar charts to advanced beeswarm and radar charts. (B) Define
mappings from evaluation variables (slices, models, and metrics) to chart
axes, facilitating customized data representation. (C) Live data previews
on the right-hand side allow users to immediately see the impact of their
configurations on the chart’s appearance. 94

7.5 Quantitative results from the public deployment and expert usage of Zeno
Reports. In charts 3-5, the left bar is for reports from the public while
the right bar is for reports from the Gemini evaluation team. (1 & 2) His-
tograms showing the distribution of the number of report elements per re-
port. (3) Distribution of report element types in reports. (4) Distribution
of chart types in reports. (5) Distribution of view types in reports (string
identifier vs. custom view with DSL). 96

xvii

CHAPTER 1
INTRODUCTION

Artificial intelligence (AI) systems have seen a surge of real-world usage in the past decade,
with applications ranging from self-driving cars [1] and code-writing assistants [2] to can-
cer detection models [3]. The increase in usage can be attributed to two distinct waves of
progress in AI research. First, in the mid-2010s, we had what is often dubbed the “deep
learning revolution,” the rise of neural network-based models such as convolutional and
recurrent neural networks trained on labeled datasets. Researchers found that with a large
enough model and sufficient labeled data, models could reach or surpass human-level per-
formance in tasks previously thought impossible for machines.

So far in the early 2020s, we have seen an acceleration of the scaling trend in both
the size of models and the training datasets. New hardware and model architectures al-
lowed models to go from millions of parameters (ResNet [4] - 50 million, AlexNet [5] -
60 million) to billions (GPT-3 [6] - 175 billion). Self-supervision, training models on data
without human labels, made it possible to train these new models on much larger datasets.
Importantly, these models are not trained to learn specific tasks, such as image classifica-
tion, but to learn general patterns in complex, unstructured data like language and vision.
This makes it possible to use natural language prompts to create sophisticated AIs, greatly
lowering the barrier to creating AI products and massively increasing their real-world de-
ployment.

The growth in real-world use of AI has inevitably led to more people interacting with
AI systems. This includes developers creating the AI products and end-users collaborating
with the AI in their day-to-day lives. When a person interacts with an AI system, they de-
velop a mental model of how the AI system works [7], as they do when interacting with any
complex artifact [8]. The person uses their mental model to modulate their interaction with
the AI system. For example, a developer may use insights into common model limitations
to collect more data or update their text prompt. Or, a radiologist may use their mental
model to decide to override the AI’s prediction on certain X-ray images the AI tends to
misidentify.

Unfortunately, forming accurate and robust mental models of AI systems is challeng-
ing, especially for modern AI systems outputting unstructured data like text or images.
Although people develop mental models informally while interacting with an AI system,
the traditional way to quantify the general performance of a model is to calculate an ag-

1

gregate metric such as accuracy on a hold-out test set. This overview of AI performance
is often insufficient, as it does not capture specific behaviors important for AI development
and use, such as systematic failures, biases, safety issues, etc. People who work with AI
need mental models that describe the specific behaviors of the AI, or what it tends to output
for certain types of inputs.

In this thesis, I define a new AI development and deployment philosophy called behavior-
driven AI development (BDAI) that places behaviors at the center of the process. BDAI
makes behaviors the central unit of analysis for AI development and focuses on defining,
quantifying, and communicating AI behaviors to improve model performance and deploy-
ment. In the BDAI framework, models are updated to change specific behaviors, and tech-
niques to improve human-AI collaboration are aimed at improving people’s mental models
of AI behavior. Making behaviors central to AI development can lead to more performant
and responsible AI systems better aligned with how we want AI to behave in practice.

The work presented in this thesis develops the BDAI philosophy with empirical studies
and related frameworks and culminates in a general-purpose tool for behavioral analysis.
First, I describe interview studies exploring how AI developers evaluate and iterate on their
models in practice, finding that behaviors are the unifying abstraction across tasks and data
types. Next, I formally define model behaviors and use a sensemaking lens to describe how
developers understand and update AI systems. I further show that insights into behavior
can improve human-AI collaboration by calibrating end-users’ reliance. Lastly, I introduce
two platforms, Zeno and Zeno Reports, that, together, fulfill each step of the sensemaking
process for any AI system.

BDAI is an overarching philosophy that was introduced but not exhaustively explored
in this thesis. In particular, the work described in this thesis focuses on how developers
understand and validate behaviors and does not introduce specific tools to define or directly
fix behaviors automatically. By defining the core abstractions and initial interfaces for
BDAI, this thesis aims to inspire a growing body of work that continues to improve the
development of responsible AI systems.

1.1 Overview

This dissertation is organized as follows:
In Chapter 2, I detail relevant background and related work. The first section briefly

reviews the development of AI and how it relates to behavioral evaluation. I then pro-
vide background on sensemaking and how it has been a useful framework in related fields
such as data science. Next, I touch on techniques for improving human-AI collaboration

2

and show how sensemaking is important for nondevelopers. Finally, I survey a sample of
important tools for different stages of AI development, such as error discovery, documen-
tation, and reporting, and cover literature on narrative visualization.

Chapter 3 describes two interview studies conducted with AI practitioners. The first
interview study, with 18 AI developers in 18 unique institutions, explores the challenges
of AI development and the limitations of existing tools. The second study, with nine par-
ticipants at Apple, dives deeper into practitioners’ use of interfaces for AI development.
We found that AI development is complex and multidimensional and that many traditional
evaluation tools are insufficient for describing modern AI systems’ behaviors.

Chapter 4 details a framework based on sensemaking that describes how developers
make sense of AI behavior and formalizes the findings from the interview studies. It in-
cludes a survey of interviews with practitioners and AI tools used to adapt sensemaking
specifically to AI development. I then describe the resulting framework and the AIFinnity
system we developed to validate the framework.

In Chapter 5, I introduce behavior descriptions, details of model performance on sub-
groups of data. We show that behavior descriptions can improve human-AI collaboration
in three distinct tasks. This study highlights how the abstraction of behaviors can be useful
for non-developers interacting with AI systems.

Chapter 6 describes the Zeno system, an interactive platform for behavior-driven AI
built using the sensemaking framework from Chapter 4. Zeno is a general-purpose evalua-
tion tool that enables practitioners to perform fine-grained evaluation of any AI system. It
consists of an extensible Python API for defining evaluation building blocks and an inter-
active user interface that practitioners use to discover and validate model behaviors interac-
tively. We show how practitioners discovered significant model issues using Zeno in four
case studies of tasks with different data and models.

Lastly, in Chapter 7, I introduce Zeno Reports. Building on the Zeno platform, Zeno
Reports allows users to create more complex charts and instance visualizations and com-
bine them into interactive and shareable reports. We publicly deployed Zeno and Zeno
reports to over 500 users and explored how novice and expert users could use Zeno Re-
ports to communicate complex findings.

1.2 Thesis Statements

Behavior-driven AI development is predicated on some core hypotheses defined and tested
in this thesis.

First, I hypothesize that AI behaviors, metrics calculated on subgroups of data, are a

3

useful abstraction to describe and update mental models of any AI system, regardless of
the type of data or task. A robust mental model of AI behaviors is essential for building or
working with an AI system.

Next, I hypothesize that developing mental models of AI behaviors is an iterative sense-

making process. Sensemaking is a useful high-level framework that has guided tool devel-
opment in related fields such as data analysis, and I hypothesize that it can similarly help
formalize AI analysis.

Lastly, I hypothesize that an AI-specific sensemaking framework can be used to create
powerful analysis tools to discover and quantify AI behaviors. Using the specific stages
and requirements from the sensemaking framework can lead to more thorough AI tools
that cover all aspects of behavioral analysis.

1.3 Research Contributions

The work in this thesis presents several novel studies and systems. The initial interview
studies make up the first empirical study directly exploring how AI developers evaluate
complex AI systems and identifying gaps in tooling for effective AI development. The
subsequent sensemaking framework is a novel formalization of how developers define and
test AI capabilities. Behavior descriptions are a novel intervention for human-AI collabora-
tion that improves end-users’ calibration on AI outputs. Lastly, the Zeno system and Zeno
Reports are the first general-purpose platforms for behavioral analysis that work across any
AI task or data type.

1.4 Prior Publications and Authorship

This thesis results from work in collaboration with my advisors, Adam Perer and Jason I.
Hong, and collaborators at Carnegie Mellon, Microsoft Research, and Apple AI/ML. The
research which has been previously published is the following:

Ángel Alexander Cabrera, Erica Fu, Donald Bertucci, Kenneth Holstein, Ameet
Talwalkar, Jason I. Hong, and Adam Perer. 2023. “Zeno: An Interactive
Framework for Behavioral Evaluation of Machine Learning.” In Proceedings

of the 2023 CHI Conference on Human Factors in Computing Systems (CHI

’23). Association for Computing Machinery, New York, NY, USA, Article 419,

1–14.

Alex Bäuerle1, Ángel Alexander Cabrera1, Fred Hohman, Megan Maher, David
1Denotes equal contribution.

4

Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022. “Symphony:
Composing Interactive Interfaces for Machine Learning.” In Proceedings of

the 2022 CHI Conference on Human Factors in Computing Systems (CHI ’22).

Association for Computing Machinery, New York, NY, USA, Article 210, 1–14.

Ángel Alexander Cabrera, Marco Tulio Ribeiro, Bongshin Lee, Robert Deline,
Adam Perer, and Steven M. Drucker. 2023. “What Did My AI Learn? How
Data Scientists Make Sense of Model Behavior.” ACM Trans. Comput.-Hum.

Interact. 30, 1, Article 1 (February 2023), 27 pages.

Ángel Alexander Cabrera, Adam Perer, and Jason I. Hong. 2023. “Improv-
ing Human-AI Collaboration With Descriptions of AI Behavior”. Proc. ACM

Hum.-Comput. Interact. 7, CSCW1, Article 136 (April 2023), 21 pages.

5

CHAPTER 2
BACKGROUND & RELATED WORK

To contextualize BDAI, I provide an overview of related work in AI development, sense-
making, human-AI collaboration, and reporting.

2.1 What is AI development?

AI development is designing and implementing learned software that can perform complex
tasks that typically require human expertise. The methods used to implement AI have
changed dramatically over time, from rule-based expert systems to deep learning models
[9, 10] and the recent wave of large foundation models [11]. Modern AI development
has converged on data-driven models that can learn complex patterns from training data.
Developers define the requirements of an AI system, collect representative data on the task
or domain, and train stochastic models with the data [12].

The requirements of AI systems have historically been limited to high-level task defi-
nitions, such as classification or regression, measured with aggregate metrics on held-out
validation and test datasets. Despite the proliferation of this approach, a large body of work
over the past decade has found that this overly simplistic definition can lead to inadequate
and potentially harmful systems. For example, an evaluation of facial recognition systems,
Gender Shades, found that services deployed by major enterprises performed significantly
worse for people with darker skin than those with lighter skin [13]. Since the Gender
Shades work, numerous studies and examples of biases and safety issues in AI systems
have emerged, from disparities in medical screening models to self-driving cars.

To detect and mitigate these important issues, the ML community has focused on the
specific behaviors of AI systems [14, 15] beyond aggregate metrics. Inspired by require-
ments engineering in software engineering, behavioral evaluation focuses on defining and
testing the capabilities of an ML system and its expected behavior in a specification of re-
quirements [16, 17]. For example, a practitioner creating a sentiment classification model
might check that the model works for double negatives, is invariant to gender, and is ac-
curate for short text. In addition to aggregate metrics, they would check how their model
performs in these specific scenarios.

A central challenge in behavioral evaluation is to decide which capabilities a model
should have. There can be practically an infinite number of requirements in complex do-

6

mains that would be impossible to list and test. Instead, ML engineers work with domain
experts and designers to define the capabilities of a model as they iterate on and deploy
their ML systems [18]. As end users interact with the model in products and services, they
also provide feedback on the limitations or expected behaviors used to update the model
[19].

In this thesis, I conduct a series of interviews with AI developers that confirm that
behaviors are a core abstraction that can be used to define and improve model performance.
These interviews add to the literature on empirical studies of AI developers by exploring
in detail how developers discover, define, validate, and fix AI behaviors. Future work can
explore how developers’ processes change or what new challenges arise when they use
tools built specifically for BDAI.

2.2 Sensemaking

If model development is about understanding and improving model behavior, what are be-
haviors, and what does it mean to understand them? In Section 4 we frame behavioral
analysis as a sensemaking process. Sensemaking was initially formalized by Karl Weick,
a social psychologist, in 1995 to describe how members of organizations come to a col-
lective understanding of their surroundings [20]. At its most abstract, it can be defined
as “structuring the unknown,” or the “process through which individuals work to under-
stand new, unexpected or confusing events” [21, 22]. It is an ongoing and iterative process
by which people develop mental models of the world to make decisions and take actions.
Weick’s formalization of sensemaking spurred numerous empirical and theoretical studies,
ranging from how organizations work through crises [23] to how entrepreneurs deal with
failure [24] and even how we should design explainable AI [25].

Sensemaking has since expanded beyond social psychology and has been applied to
domains such as ecology [26] and medicine [27]. Most relevant to this work are the appli-
cations of sensemaking to human-computer interaction (HCI), where computer and infor-
mation scientists framed data analysis as sensemaking, constructing a mental model from
extensive unstructured data. One of the first formalizations came from Russell et al. [28],
who defined a “learning-loop complex” in which analysts cycle between creating represen-
tations of a system and fitting data to those representations. Russell’s framework was later
expanded by Pirolli and Card [29] to describe the specific steps and representations they
observed data analysts use in practice.

Pirolli and Card [29]’s framework has become a frequent reference for data analysis and
visualization research. One application of the framework has been structuring empirical

7

studies of analysts, such as Grigoreanu et al. [30]’s study of programmers’ processes and
challenges when debugging software. It has also been used to design data analysis tools,
including visualizations for large graph networks [31] or tracking patterns in microblogs
such as Twitter [32]. Researchers and developers have been able to create tools that fit
people’s processes better by using Pirolli and Card [29]’s sensemaking framework.

In this thesis, I continue the rich history of sensemaking by adapting it to AI devel-
opment using abductive analysis. Behaviors are the central unit of BDAI, and I use a
sensemaking lens to formally define what AI behavior is and how developers understand
and validate them in section 4.3.

2.3 Human-AI Collaboration

Developers are not the only ones who need to make sense of AI systems. Anyone who
interacts with an AI system develops a mental model of how it behaves, when it performs
well, when it fails, or when it has unusual results [33]. Mental models let people effectively
work with AIs by helping them decide whether to rely on, modify, or override an AI’s
output. Therefore, it is important for people who collaborate with AI systems to have
adequate mental models of AI to appropriately rely on the output of an AI [34]. There
are various methods to encourage appropriate reliance of AI systems, often called trust

calibration [35] techniques.
Studies have explored what factors influence people’s mental models of AI systems.

Kulesza et al. [36] found that people with more complete mental models could collaborate
more effectively with a recommendation system. Bansal et al. [7] focused on the attributes
of AI systems and found that systems with parsimonious (simple) and non-stochastic (pre-
dictable) error boundaries were the easiest for humans to work with. Other factors such as
stated and perceived accuracy [37], confidence values [38], and model personas [39] can
also influence people’s mental models and their reliance on AI.

Recent methods have explored improving people’s mental models, including tutorials
explaining a task [40], tuning a model to better match human expectations [41], or adaptive
trust calibration [42]. Some methods for improving mental models, such as adaptive trust
calibration, use model details such as calibrated confidence scores to improve reliance. An-
other related method is Mozannar et al. [43]’s exemplar-based teaching of model behavior
learns the nearest neighborhood regions around model failures to help validate people’s
mental models.

Existing methods attempt to tune end-users mental models of AI systems using proxy
methods such as tutorials or forcing functions. Inspired by the idea of behaviors being

8

the core unit of model performance, this thesis shows that telling end-users directly how
a model behaves for subsets of data can calibrate human reliance on AI aids. Given the
initial promise of these behavior descriptions, future work can explore what are the most
effective methods of creating and showing these insights.

2.4 Tools for AI Evaluation

AI behavior is often complex and multidimensional, and human-centered tools can help de-
velopers discover, validate, and track model behaviors. The most direct tools for behavioral
evaluation directly define and measure behaviors. One such example is Checklist, a system
that uses a mix of evaluation methods such as minimum functionality and metamorphic
tests to uncover fundamental limitations of language models [44].

Model behaviors are numerous and often unknown a priori. Interactive tools can enable
users to use their domain knowledge and expertise to discover and validate errors. Mod-
elTracker [45] was one of the first interactive systems that helped developers go beyond
aggregate accuracy and better understand the specific behaviors of classification models
using a unit visualization. Since then, many tools have been developed for specific models
and behaviors. Errudite [46] is a system for interactively debugging language models using
templating filters and rewriting rules. FairVis is another example of an interactive system
specific to intersectional fairness issues [47].

There are also many algorithmic methods to discover model limitations automatically.
If a dataset has generous amounts of tabular data, SliceFinder [48] is an efficient method
for discovering intersectional subgroups of data. For more complex data types without
clear tabular data, blindspot discovery methods find rough subgroups of data with high
error, such as Domino [49]. With the growing use of prompt-based models that do not
require labeled data, researchers are exploring methods for generating specific evaluation
data. AdaTest is a system that uses a larger language model to generate evaluation instances
to test smaller, task-specific models [50].

Zeno, the system for BDAI introduced in section 6.3, empowers users to find significant
model failures across tasks and data types. It takes inspiration from existing methods for
behavioral evaluation, like Checklist, but provides a more general interface for defining
errors that are not formally pre-defined. Intelligent features such as SliceFinder or Domino
can be added to Zeno to make it easier to discover errors that can still be represented and
tracked using the core behavioral abstractions.

9

2.5 AI Documentation and Reporting

Various documentation methods help practitioners track and communicate details about
their models. Model Cards [51] and FactSheets [52] include important information and
details about machine learning models. These model reports include information ranging
from the model type and hyperparameters to aggregate metrics and ethical considerations.

Most ML models are developed by cross-functional teams with stakeholders in techni-
cal and non-technical roles. While collaboration is essential to decide how a model should
behave and identify potential failures, there is often limited communication between stake-
holders [53]. This can lead to unrealistic expectations of model performance or results that
do not match designers’ expectations. Multiple methods have been proposed to improve
organizations’ shared understanding of model behavior.

Interactive systems have shown promise in bridging model knowledge between en-
gineering and other roles. An example framework, Symphony [54], which I worked on
at Apple, introduces modular data and model analysis components that can be used in
computational notebooks and standalone dashboards to allow more stakeholders to explore
model behavior. Marcelle [55] uses modular components that allow users to modify an ML
pipeline without writing code.

Complex models also require robust reporting methods to ensure that information about
data and models is recorded and preserved. Datasheets for Datasets [56], FactSheets [52],
Nutritional Labels [57], and Model Cards [51] codified the first principles for document-
ing ML details for future use and reproducibility. Extensions to these reporting methods,
namely Interactive Model Cards [58], have aimed to improve their usability by making
them more expressive and interactive.

Zeno Reports, presented in this thesis, combines the approaches of the opinionated
reporting specifications, like Model Cards, with the live data approach in more complex
systems such as Symphony. Zeno reports are directly tied to the underlying data, but are
limited to core visualizations highlighting behavior.

2.6 Narrative Visualization

To design Zeno Reports, we drew inspiration from the concept of narrative visualization,
a term popularized by Segel and Heer [59]. Narrative visualization combines storytelling
techniques with (often interactive) visualizations, enriching the narrative with data-driven
insights. This approach is characterized by its ability to communicate complex data in
an engaging and easily digestible manner, its emphasis on guiding the audience through a

10

data-driven story, and its interactive elements that invite audience participation.
Notable systems developed for this type of storytelling include Idyll [60] and Idyll Stu-

dio [61]. Idyll facilitates the creation of interactive articles that combine narrative text with
data-driven content, while Idyll Studio extends this functionality with a more intuitive,
user-friendly interface. In addition to academic systems, many commercial visualization
systems, such as Tableau and Quarto, support creating linear narrative stories around visu-
alizations using their native interfaces.

These systems are designed to support the broad spectrum of visual storytelling and
thus are complex or rely heavily on coding skills or specific markup languages. In contrast,
Zeno Reports offers a simpler, no-code interface focusing exclusively on AI evaluation.
This specialization allows us to streamline the user experience, making it more accessible
to users who may not have advanced programming skills yet are still powerful enough to
convey the complexities of AI model performance effectively.

11

CHAPTER 3
HOW DO PRACTITIONERS EVALUATE AI SYSTEMS?

This first section of the thesis describes two interview studies conducted as need finding
studies for two implemented systems, Symphony [54] and Zeno [62]. It explores the core
practices and challenges in modern AI development, specifically evaluation workflows and
analysis interfaces, and sets the stage for developing a behavior-based view of AI develop-
ment.

This chapter was adapted from the following published papers:

Ángel Alexander Cabrera, Erica Fu, Donald Bertucci, Kenneth Holstein, Ameet Talwalkar,
Jason I. Hong, and Adam Perer. 2023. “Zeno: An Interactive Framework for Behavioral
Evaluation of Machine Learning.” In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI ’23). Association for Computing Machinery, New York,
NY, USA, Article 419, 1–14.

Alex Bäuerle1, Ángel Alexander Cabrera1, Fred Hohman, Megan Maher, David Koski, Xavier
Suau, Titus Barik, and Dominik Moritz. 2022. “Symphony: Composing Interactive Interfaces
for Machine Learning.” In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (CHI ’22). Association for Computing Machinery, New York, NY, USA,
Article 210, 1–14.

3.1 Introduction

As the architectures and algorithms for training AI systems have evolved, so have the pro-
cesses and tools for creating AI products. This includes everything from data labeling and
training workflows to evaluation and debugging methods. We wanted to understand AI
developers’ challenges when creating and improving their AI systems, especially practi-
tioners working on more complex models, such as deep learning models on non-tabular
data. We also wanted to dig deeper into what tools they currently use and what gaps exist
in the tooling landscape.

1Denotes equal contribution.

12

This section describes two interview studies we conducted to answer these questions.
The first set of interviews was with practitioners in small and medium-sized companies
focused on their challenges around the evaluation and iteration of AI systems. The second
is a series of interviews conducted at Apple with nine practitioners in seven teams working
on AI products. These interviews focused specifically on the tooling these teams used or
wished for in AI development.

The concrete research questions that we aimed to answer in these interviews were the
following:

RQ1. How do AI developers evaluate and fix their models over time?

RQ2. What tools and approaches are developers using to evaluate and fix their models?

RQ3. What are the limitations of existing tools?

Both studies found similar trends and patterns in the processes and tools of AI devel-
opers. Overall, we found that current AI evaluation and iteration tools are insufficient for
the complexity of modern AI systems. Specifically, they do not support the disaggregated
analyses required to identify important behaviors and create robust, deployable systems.

3.2 Methodology

3.2.1 Interviews on AI Evaluation

We conducted semi-structured interviews with machine learning practitioners to explore
our first research question: What are the common challenges for ML evaluation in prac-
tice? In particular, our objective was to understand the specific challenges that practitioners
face and the tools they use when evaluating ML models. The 18 participants, listed in ta-
ble 3.1, hold various roles related to machine learning development and deployment, from
data scientists to CTOs and CEOs of small companies. The initial participants were re-
cruited through posts on social media networks, e.g., Reddit, LinkedIn, and Discord, as
well as direct contacts at technology companies. Additional participants were then re-
cruited through snowball sampling. Each interview was conducted via video call and was,
at most, an hour long. The study was approved by our Institutional Review Board (IRB)
and the participants were compensated with $20.

Two researchers analyzed the interviews using inductive iterative thematic analysis and
affinity diagramming. The researchers extracted common themes around model evalua-
tion, debugging, and iteration from the first few interviews, grouping similar findings in an

13

affinity diagram. After each subsequent interview, the researchers iterated and refined the
themes as needed. The recruitment of new participants was stopped when no new themes
were produced from the last few interviews.

3.2.2 Interviews on AI Interfaces

To understand how ML interfaces are used in practice, we conducted seven semi-structured
interviews with 9 participants at Apple. We recruited participants through internal emails
and messaging boards. We selected participants in various roles, including engineers, de-
signers, researchers, and testing roles that work in teams to build and deploy ML systems.
Each interview was conducted through a video call and lasted about an hour. First, we
asked participants how they create and use different ML interfaces such as documentation,
visualization dashboards, and widgets. We then asked them about the main limitations and
pain points in current tools and what types of improvements they would find helpful.

3.3 Results

3.3.1 Aggregate Metrics Do Not Reflect Model Performance in Deployment

All practitioners (18/18) focus on improving aggregate metrics when developing new ML
models, but, as P9 admitted, you “can perform very well on a training dataset, but when

you go to ship the product, it doesn’t work nearly as well.” To ensure that models perform
as expected when deployed, all practitioners also evaluate their models in real-world use
cases. For example, P16 evaluates their text analysis model on a per-client basis since they
had found that their model underperformed for certain types of data, e.g., healthcare notes,
that it was not trained on. This type of behavioral analysis is often also called qualitative

analysis, looking at specific instances and model outputs to confirm hypotheses of model
behavior.

There are various methods practitioners described for discovering model limitations
and failures, from end-user reports (see Section 3.3.3) to automated clustering algorithms.
A common technique 11 of the 18 participants mentioned was creating data inputs to probe
a model and find potential failures, often called “dogfooding” in software development.
For example, when selecting an audio transcription service P3 “has some data collected

we recorded ourselves, and then we pass it to different services and explore the structure of

the output” to decide which service provides the qualitatively “best” output for their task.
Two participants are exploring automated error discovery methods such as finding clusters
with high error or using foundational models [11, 50] to generate new instances, but still

14

rely mainly on human-generated feedback.
After generating hypotheses of systemic failures, many practitioners craft test sets to

validate how prevalent behaviors are (10/18). The participants had different terms for
these instances, including “golden test sets”, “dynamic benchmarks”, “regression tests”,
and “benchmark integration tests”. Despite the varied terminology, these tests have the
same structure: Expectations of model outputs on different subgroups of instances. For
example, P4 has multiple text inputs with common human typos and valid outputs that they
check before models are released.

None of the participants who conduct this type of behavioral evaluation use standard-
ized frameworks. This is primarily because existing behavioral evaluation tools do not
work for their data or model types, so they develop their own tools, such as scripts or web
interfaces, to monitor model performance. All the participants who do not perform behav-
ioral analyses (8/18) wish to conduct more detailed testing, for example, P1 wants “to do

some other testing, but we don’t do anything because there’s not a really easy to set up

system to do that”. In general, larger companies can dedicate more time to a detailed eval-
uation and the building of customized tools that smaller companies cannot afford despite
their need for more comprehensive evaluation [63].

While all participants detailed clear use cases for ML interfaces, they also mentioned
limitations preventing them from using existing tools or sharing insights. One participant
bluntly stated “right now, we basically have no tools” for analyzing ML systems. Instead,
participants rely on ad-hoc, hand-crafted visualizations for their specific analyses. For
example, one of our participants said that their process to look at instances is to “manually

examine icons in a file explorer.” Another participant “looks at handcrafted summaries of

select data subsets” to do model analysis. Larger teams with more resources may have
customized tools, such as a participant that “use[s] a team-internal tool to analyze data”.
Overall, inadequate tooling leads developers to use one-off, manual tools or ML teams
investing in custom visualization systems.

3.3.2 Challenges in Tracking Continuous Model and Data Updates

All practitioners (18/18) we interviewed update their models as they design better archi-
tectures, gather more data and discover real-world use cases and failures. Participants de-
scribed this process with different terms, such as “rapid prototyping” or “agile” methods,
in which they quickly act on user feedback and deploy updated models. P4 and P13 even
started with “wizard-of-oz” models with a human emulating an AI or non-ML models to
gather data and model requirements before developing more complex models.

Although updating a model can improve the overall performance of an ML system, it

15

can also lead to new failures. This is especially true for stochastic models, such as deep
learning, which cannot be deterministically updated. As P5 lamented, “our test set would

become so large that if we had to fail for less than 5 [tests] it became super hard to make

progress”. Model updates are even more complicated for teams that rely on external AI ser-
vices, as practitioners do not control when or how services are updated [64]. For example,
P3’s team had to switch their voice-to-text service from Google to Amazon because Google
stopped detecting filler words such as ‘um’ after a model update, which was necessary for
their product.

Due to these frequent updates, comparing models across important behaviors becomes
important. However, since many model evaluations are run inconsistently and across dif-
ferent tools, the history of past performance is often fragmented or lost, making it difficult
to find regressions or new failures.

3.3.3 Limited Collaboration in Cross-Functional Teams

Modern machine learning development in practice is a collaborative effort that spans differ-
ent teams and roles. Each team member needs a robust mental model of how an ML system
behaves to resolve customer complaints, make management decisions, validate failures,
and more.

A common collaboration challenge is making sense of failure reports [19] from end-
users. 12 of the 18 participants’ teams have customer service representatives who parse
tickets or complaints from end users and pass them to the engineering teams. These par-
ticipants found it challenging to reproduce the reports from the end users, which were
primarily made up of one-off instances and broad descriptions. P4’s team tackles this chal-
lenge with an “internal website where anybody can put potential inputs and expected model

outputs” which new models are tested.
Another collaboration challenge described by 14 participants is communicating the

model performance with managers and other stakeholders. For example, P16’s manage-
ment team often makes decisions based solely on a high F1 score, while it is often the
case that different clients require different trade-offs between precision and recall. Many
decisions about whether or not to deploy an updated model require shared knowledge and
conversations between engineers, managers, and customers on whether a new model is
holistically better than the existing model.

Since engineers often run analyses in ad-hoc scripts or notebooks, knowledge of model
behavior can be isolated. Other stakeholders do not know how a model tends to behave,
and can neither make informed decisions on model usage nor provide information about
model errors to engineers for debugging.

16

Due to limited, isolated interfaces, participants described various challenges in commu-
nicating and sharing insights. Since different stakeholders prefer different environments,
such as code-based notebooks or standalone dashboards, it can be challenging to share
insights with others. In addition to sharable interfaces, participants also wanted cross-
platform support for themselves. As one participant put it, “I would like both an environ-

ment for experimentation and always there reliable visualizations.”

It can also be difficult to transfer visualizations and findings between platforms that
different stakeholders work with. One participant lamented that “I am often not invited

to the table until things go wrong,” and in some teams “designers often times don’t have

access to data and model results.” In turn, decisions about ML systems are made without
all team members having a shared understanding of the current state and limitations of the
project. Despite these current limitations, the participants thought that “fostering a culture

of sharing insights would be great.”

3.3.4 Use Cases and Limitations of Development Tools

All participants agreed that creating and sharing ML interfaces can help them build more
robust and capable ML products. Participants described use cases of ML interfaces in
myriad tasks, such as “flagging failures for review,” “detecting systematic failures,” and
“fairness and bias education.” Participants also mentioned stages throughout the entire
ML process in which ML interfaces can be useful, from “dataset curation and sharing”

to analysis “after an ML model has been trained,” or “in all stages”. Consequently, since
different stakeholders involved in an ML product need specific views of the data and mod-
els, ML interfaces must be flexible enough to support analysis across numerous tasks and
domains.

Participants detailed a variety of technical roadblocks and time-consuming processes
that prevented them from using existing ML interfaces. Many tools require users to wrangle
and export their data into a specific format before loading them into a custom system or
dashboard. However, as a participant stated, “we do not have a lot of time for creating

such visualizations:” developers simply do not have the bandwidth to perform the setup
and data wrangling work necessary to use separate systems. developers’ main priority is
working on data and models, and “if it takes longer than 5-10 minutes, I am not going to

[use an ML interface] immediately”.
Five participants explicitly mentioned that they do not use ML interfaces because they

are not available in the environments where they work and that “people would want to use

easier tools.” For example, “many data scientists want to explore their data in notebooks”

without having to open a separate system. Additionally, since data and models update fre-

17

quently, one participant wanted to “start a job with checkboxes and buttons” and produce
a self-updating web UI that they would not have to manually author.

Lastly, the teams we talked to work with myriad data types, such as video, 3D point
cloud, tabular, image, and audio data, and desired bespoke visualizations supporting their
analysis needs. One participant mentioned running and visualizing specific data analyses
and “would want to specify algorithms because our problems are very specialized.” How-
ever, current data science tools often only provide visualizations for a limited set of data
types and models.

3.4 Conclusion

Across these interviews, we found that developers of AI systems focus their efforts on
identifying and improving specific model behaviors that users see in production. We found
that existing tools for evaluating and iterating on models mainly focus on academic bench-
marks and traditional domains such as classification, which do not reflect the complexity
of commonly deployed models and user inputs. Tools that can track behaviors across data
and model updates and that can be used by diverse stakeholders could better support the
development of responsible AI systems.

18

Table 3.1: The practitioners in the semi-structured AI evaluation interviews (Section 3.2.1

ID Role Area

P1 AI Software Engineer AI Consulting
P2 Data Scientist Clothing Retail
P3 CTO Speech Training
P4 CTO Voice Assistant
P5 Senior ML Engineer Chatbot
P6 Data Scientist AI Non-profit
P7 Data Scientist Finance
P8 MS Student Educational Technology
P9 ML Engineer Chatbot
P10 VP of Data Science Business Intelligence
P11 ML Engineer AI Explainability
P12 Data Scientist, ML Ridesharing
P13 Data Engineer Educational Technology
P14 CTO Health Technology
P15 CEO Sensing
P16 Data Scientist Search and Recommendation
P17 ML Research Scientist Epidemiology
P18 Data Scientist Video Streaming

19

CHAPTER 4
A SENSEMAKING FRAMEWORK FOR BEHAVIORAL

EVALUATION

This chapter formalizes insights from the interview studies into a sensemaking-based frame-
work describing how developers analyze AI behavior. It includes an extended review of
existing empirical studies of developers, a prototype system that implements each step of
the sensemaking process, and a think-aloud study. This framework is the backbone of the
BDAI philosophy, as it explicitly defines AI behaviors and the canonical steps to discover,
validate, and fix them.

This chapter was adapted from my published paper:

Ángel Alexander Cabrera, Marco Tulio Ribeiro, Bongshin Lee, Robert Deline, Adam Perer,
and Steven M. Drucker. 2023. “What Did My AI Learn? How Data Scientists Make Sense of
Model Behavior.” ACM Trans. Comput.-Hum. Interact. 30, 1, Article 1 (February 2023), 27
pages.

4.1 Introduction

Designers make sense of feedback to inform their designs [65], doctors make sense of
health records to guide their diagnoses [66], and programmers make sense of code to debug
their software [30]. Similarly, data scientists make sense of their machine learning (ML)
or artificial intelligence (AI) models to improve their performance, decide when to use
them, and analyze their real-world impacts. Having a thorough understanding of how an AI
behaves is especially important to detect and mitigate serious concerns such as fairness [67]
and safety [68] issues.

What does it mean to make sense of AI behavior? Let us explore the example of a
data scientist who wants to make a website more accessible by including text descriptions
(alt-text) for images. They find multiple AI services for captioning images and have to
pick the option that works best for their data. The data scientist compares the options by
generating alt text with each AI for a sample of images and develops a mental model of how

20

each AI behaves: which AI can describe certain activities, is better in low light, or is more
grammatically accurate. With a deeper understanding of how each AI service behaves,
the data scientist can decide which one to use for their data. This is just one example use
case for understanding AI behavior, which is essential for tasks ranging from training new
models to detecting dataset shift and mitigating real-world failures.

While important, behavioral analysis requires significant human attention to ideate,
structure, and test hypotheses of AI behavior. Data scientists instead often resort to lim-
ited and ad hoc methods, such as manually testing edge cases or waiting for end-users to
report failures of deployed models [67, 63, 12, 69]. A number of AI analysis tools aim to
improve this process, including crowdsourcing methods for discovering failures [70, 19],
algorithms for finding slices of data with high loss [48], and checklists of expected model
behavior [44]. Although useful for specific tasks, these tools tend to only address portions
of the analysis process and are hampered by challenges at other stages of the process. For
example, methods for creating subgroups of data [48, 71, 47] do not tell the user which

subgroups are the most important, while model checklists do not have mechanisms for
discovering new behaviors.

This article introduces a sensemaking framework describing how data scientists de-
velop mental models of AI behavior. By framing AI analysis as sensemaking, we aim to
provide a language for describing AI analysis, help developers identify gaps in existing
tooling, and encourage analysis tools supporting the full sensemaking process. Sensemak-
ing is a well-established paradigm that describes how people structure the unknown by
iteratively creating mental models from data [20]. To accurately describe AI analysis as
sensemaking, we used abductive analysis to adapt Pirolli and Card [29]’s framework for
data analysis to fit the steps specific to AI development gathered from empirical studies
of practitioners. Our resulting framework (Figure 4.1) describes how people create mental
models of AI behaviors by organizing instances into meaningful schemas and hypotheses.
The mental models data scientists derive are their internal representations of the behaviors
of a complex, often black-box, AI model.

We evaluated our framework across the three powers of interaction frameworks de-
fined by Beaudouin-Lafon [72]: descriptive, evaluative, and generative power. To test the
framework’s descriptive and evaluative power, how it can detail and compare a range of
existing interfaces, we reviewed AI analysis tools and showed how they fit into the stages
of our framework. We found that most tools only address half of the sensemaking process,
either discovery tools for finding and organizing instances or evaluation tools for testing
known behaviors. Systems that combine discovery and evaluation could help data scien-
tists effectively validate newly discovered behaviors. Next, to directly test our framework’s

21

Instances

& Outputs

organize instances

reevaluategather evidencediscover instances

describe behaviors

Schemas

model use sensemaking model updates

Hypotheses Assessment

Sensemaking Framework of Model Behavior

summarize findings

Understanding
 is an iterative and

ongoing process

model
behavior

Figure 4.1: The sensemaking framework describing how data scientists understand model behavior.
We derived the framework from [29]’s sensemaking process and empirical studies of data scientist.
The process is iterative and ongoing, with data scientists continuously reevaluating as they update
and deploy their models.

generative power, the ability to inform new designs, we used it to create an AI analysis
tool, AIFINNITY, for exploring image-and-text models like visual question answering and
image captioning. Image-and-text models have many complex behaviors, from stereotypes
to grammar issues, that make them a challenging domain for AI analysis.

For our final evaluation of the framework, we explored how data scientists use a full
sensemaking system. We conducted exploratory think-aloud studies with 10 professional
data scientists tasked with using AIFINNITY to choose between two image captioning AIs.
Participants found that AIFINNITY matched their mental process for understanding AI be-
havior, with some even independently describing their processes in sensemaking terms.
Additionally, the complementary features helped participants find numerous significant be-
haviors and actively think about confirmation bias.

In summary, the main contributions of this work are the following.

• A sensemaking framework describing how people develop mental models of AI
behavior.

• An AI analysis tool called AIFINNITY designed using the framework.

• An exploratory think-aloud study with 10 professional data scientists to understand
how people work with an AI analysis tool for the full sensemaking process.

22

4.2 Methodology

To create a framework that describes AI practitioners’ process we used abductive analy-

sis [73] to iteratively adapt Pirolli and Card [29]’s sensemaking framework to empirical
studies of AI/ML practitioners. In contrast to inductive methods such as grounded theory
[74], which develop a framework from empirical evidence, and deductive approaches that
directly apply existing theories, abduction extends or develops theory to explain new evi-
dence. We decided that an abductive approach would be the most appropriate for this work
since we adapt theory from a related domain, data analysis, to describe a new process, how
practitioners understand AI behavior.

We primarily built from Pirolli and Card [29]’s sensemaking framework which de-
scribes how intelligence analysts make sense of large amounts of unstructured data. In
their framing, analysts first go through an information foraging loop, where they filter data

sources into a shoebox of relevant information. Snippets from documents in the shoe-
box make up the evidence file. Next is the core sensemaking loop, where analysts create
schemas, structured organizations of the data, from the evidence file which are used to cre-
ate and support hypotheses. Lastly, these hypotheses are used to create a final presentation.
One can imagine a detective in front of a corkboard, cutting out and organizing newspaper
clippings to pin them up and connect them with red thread.

To adapt Pirolli and Card [29]’s framework to AI analysis, we reviewed empirical stud-
ies of how practitioners work with AI systems in the real world. Since there are no survey
papers, to date, directly covering this area, we relied primarily on academic search engines
and citation graphs. Our review focused on studies with first-hand interviews and surveys
to get the most direct look at data scientists’ processes (Table 3.1). For our analysis, we
coded the empirical studies and used an affinity diagram to recursively fit the codes to the
[29] sensemaking stages. During the abductive analysis, we also updated the stages to bet-
ter describe AI practitioners’ processes. In the following section, we describe the resulting
framework in detail and describe the key ways in which it differs from existing frameworks.

4.3 Sensemaking Framework

The resulting sensemaking framework for understanding AI behavior is shown in Fig-
ure 4.1. The least structured stage is gathering (1) instances and model outputs from
a variety of sources such as real-world users or synthetic methods. Data scientists then
begin to organize the instances into general (2) schemas of semantically similar instances
and behaviors. Schemas can be either rough groupings or strict slices of data. Data scien-

23

Table 4.1: How existing AI analysis systems fit in the sensemaking framework. Some tools focus
on specific behaviors, like biases, or domains, like self-driving cars, but they all help data scientists
better understand the behaviors of their AI systems at different points in the sensemaking process.

Venue Paper Instances Schemas Hypotheses Assessment

AAAI Beat the Machine [70]

arXiv Dynabench [75]

ICLR [76]

CVPR StyleGAN [77]

JBD Data Augmentation [78]

VIS CAVA [79]

VLDB Snorkel [80]

WWW Patterned BTM [81]

VIS What-if Tool [82]

HCOMP Pandora [83]

AAAI Lakkaraju et al. [84]

arXiv Spotlight [85]

CVPR Barlow [86]

ICDE Slice Finder [48]

VIS FairVis [47]

CHI ModelTracker [45]

VIS Squares [87]

N/A Facets [88]

IUI AnchorVis [89]

HILDA MLCube [71]

CSCW Deblinder [19]

ACL Errudite [46]

ICLR Domino [49]

VIS HypoML [90]

ASE DeepRoad [91]

ICSE DeepTest [92]

ICSE Invariant Testing [93]

FAccT Interactive Model Cards [58]

CHI Symphony [54]

arXiv Robustness Gym [94]

ACL Checklist [44]

FAccT Model Cards [51]

IBM JRD FactSheets [52]
24

tists then define formal (3) hypotheses of AI behaviors and gather additional evidence to
validate their hypotheses. Lastly, data scientists derive a final (4) assessment of their dis-
coveries, organizing hypotheses to be useful in subsequent tasks like choosing between AI
services or updating a model’s architecture. The sensemaking process does not have to start
from the initial stage of instances and outputs. Practitioners may have existing hypotheses,
or may use tools that slice and organize instances into pre-defined schemas.

This adapted framework differs in a few key ways from the Pirolli and Card [29] for-
malization. Primarily, it is missing the initial foraging loop with the shoebox and evidence

file stages. Unlike analysts who sort through data sources, such as newspapers, to extract
snippets of evidence, AI analysis starts with instances, model inputs, that are directly rel-
evant to a model’s behavior. While AI practitioners actively search for new instances to
discover hypotheses, they do not have to further sort and modify instances in their sense-
making process. Next, the instances and outputs in AI analysis are lower level than the data
sources, like research articles, used by analysts. Thus, the schemas for AI analysis tend to
be groupings of instances rather than connections between high-level patterns or findings.
This also means that hypotheses are directly verified using supporting instances and out-
puts, and need sufficient, diverse evidence to be accurately evaluated. Overall, the focus
of AI analysis is on creating appropriate schemas and ensuring the validity of hypotheses
rather than foraging for relevant evidence.

The context in which AI analysis occurs also differs significantly from sensemaking in
domains such as data analysis. Sensemaking for AI systems is an iterative and ongoing pro-
cess, as AI systems are constantly being updated and applied to new domains. In traditional
data analysis, new reports or research may update existing hypotheses over time but often
do not lead to brand new patterns. Updates to black-box AI systems, on the other hand, can
completely change the behavior of an AI system and require reevaluating all hypotheses.
Additionally, new instances are constantly being received from end users, informing new
schemas and hypotheses. The volatility and quick iteration of AI systems have implications
for tools that support the sensemaking process.

In the following sections, we describe in detail the four stages of the sensemaking
process for AI analysis. In each section, we first describe how data scientists currently ap-
proach the sensemaking process and then describe existing tooling available at each stage.

4.3.1 Instances and Outputs

At the core of the sensemaking process are data instances and their associated model predic-
tions, the outputs of the model for the given instances (Figure 4.2). The most convenient
source of instances are datasets collected to train an AI system, often split into training,

25

Instances & Outputs

Diverse sources of model inputs,
real or synthetic, with their
associated model outputs Data augmentation Synthetic instancesUser inputs

Figure 4.2: The least structured stage of the sensemaking process consists of instances and out-
puts, model inputs from a variety of sources along with their associated model predictions. In-
stances can include both real-world user inputs and synthetic data.

validation, and testing sets on which aggregate metrics are calculated. While convenient,
initial training datasets are limited and can lead to misleading performance measures and
missed behaviors. For example, one participant in Wan et al. [95]’s study found significant
overlap between their training and testing sets that produced an inflated model accuracy,
while two participants interviewed by Hopkins and Booth [63] lamented that they needed
a much greater diversity of instances than they had to accurately evaluate the performance
of their model.

To better understand the behavior of their models, data scientists constantly collect
new real-world instances to both update their models and discover new behaviors. This
is especially important due to data drift, with 55% of the data scientists interviewed by
Sambasivan et al. [96] describing factors such as new environmental factors and human
patterns leading to model failures or unexpected outputs. The data scientists interviewed
described monitoring the performance of the model over time on newly collected instances
to identify performance drops or new regressions.

Despite the utility of real-world data, it is often expensive and slow to gather and label
real instances, limiting developer access to data. Instead, data scientists “dogfood” their
models, creating instances they think might be particularly difficult for an AI or show
interesting behaviors [69]. Data scientists interviewed by Hopkins and Booth [63] found
that this type of “prodding and probing” of models helped them better understand and work
with black-box systems. Dogfood testing can be especially important for rare or sensitive
behaviors which could have serious consequences in the real world [12].

Finally, it is not just the quantity and diversity of instances that is important for AI
analysis, but what features are available for each instance. For example, to detect whether
a model treats people of a certain demographic group inequitably, the data instances have
to have a feature for that demographic information. Sensitive information, such as demo-
graphic details, is often not collected or present in a dataset and was one of the primary
challenges for data scientists in discovering biases found by [67]. In sum, both the num-
ber of instances and number of features of a dataset are important for discovering relevant

26

behaviors.

Data collection and labeling methods

Tools at the instance and output stage often focus on scaffolding data collection, artificially
generating instances, and adding features to a dataset.

Instead of waiting to gather real-world data from users, some techniques proactively
use crowdworkers to gather instances. Beat the Machine (BTM) [70] and DynaBench
[75] directly ask end-users to explicitly find instances for which a model fails, collecting
instances that may surface interesting behaviors. Subsequent methods such as Deblinder
Cabrera et al. [19] and Patterned Beat the Machine [81] build on this process by asking
users to provide more context for a failure and find instances relevant for later schemas and
hypotheses.

Data is often expensive to collect, so synthetic, artificially generated instances can pro-
vide a useful alternative to real-world instances. A common method for creating synthetic
data is data augmentation, creating new instances by modifying existing ones, e.g., rotat-
ing or cropping images [78]. To create new instances that are not in a dataset, techniques
like generative adversarial networks (GANs) can be used to generate novel examples [76].
StyleGAN is one such technique that generates new images from high-level semantic de-
scriptions [77]. Synthetic instances are a low-cost way to augment a dataset, but it is not
possible to generate any arbitrary instance, and synthetic instances are often less diverse
than examples found in the real world.

There are also methods for adding new features to a dataset, providing details for each
instance that can surface new behaviors. A separate AI model or heuristic functions are a
common way to extract new features from an instance, such as the noisy labeling functions
in Snorkel [80]. A related system is CAVA, which uses a knowledge graph to extract
new attributes for an instance, such as populations from country names [79]. Additional
features, or metadata, are essential for the subsequent stage of grouping and organizing
instances into schemas.

Gathering diverse instances remains a challenging problem, as traditional methods re-
main expensive and synthetic techniques are noisy and limited to certain data types. In the
context of the full sensemaking process, tools at the instance and output stage are often
not informed by findings from later stages, such as interesting schemas or new hypotheses.
For example, validating hypotheses requires collecting specific instances, which is often
not well supported by current data collection methods. Data collection or generation tech-
niques that are more closely informed by the needs of schemas and hypotheses could better
support data scientists’ AI analysis process.

27

4.3.2 Schemas

Semantically
meaningful groupings
of instances

Schemas

Confusion matrix [75] Data slicing [21] Clustering

1
2
3

Figure 4.3: Creating schemas is the second major sensemaking stage. Schemas are organizations of
instances into meaningful layouts or groupings. Common schemas for AI outputs include confusion
matrices, subgroups of data, and clusters.

The second sensemaking stage is organizing instances into semantically meaningful
groups, called schemas [29, 97]. Schemas let practitioners hypothesize new model behav-
iors or collect evidence for existing hypotheses (Figure 4.3). There is significant flexibility
in how schemas are created, from formal slices of a dataset to rough groupings of semanti-
cally similar instances.

Some of the most common schemas are classic methods for evaluating AI systems,
such as the confusion matrix for classification problems [98, 99] and residual plots for re-
gressions. Yang et al. [100] described the use of these visualizations as core knowledge
required by the data scientists they spoke with. Splitting a model’s output by predicted and
ground truth output lets data scientists identify numerous metrics related to the model’s
behaviors; does the AI have a higher recall than precision? Is the false positive rate ac-
ceptable? These questions of model behavior are often central for data scientists, such as
data scientists in Wan et al. [95]’s study making tradeoffs between metrics like precision
and recall. Residual plots give a similar idea of how well a regression model behaves, as
nonrandom errors can suggest a model is not adequately describing the data.

While these output-based visualizations may be helpful, they are limited to detecting
behaviors described by output groups. Many important behaviors are found in groups de-
fined by a model’s input features; for example, fairness issues are defined by demographic
information that is rarely the output of a model. Often called ‘subgroup analysis,’ or ‘data
slicing,’ splitting and comparing instances by input features can detect such behaviors. Data
scientists often look at model performance across these subgroups to track issues such as
biases [67, 63].

For less structured data types such as images it can be challenging to create groups of
similar instances in the first place, such as all images with a specific object in them. Without
additional metadata collected or generated in the instances stage, it is not possible to create
clear schemas for those semantic features. To address this, a data scientist in Holstein et al.

28

[67]’s study wished for an oracle that would automatically find a hundred other examples
of a failure they had found.

Creating schemas

There are myriad tools for creating and visualizing schemas of instances, from faceted
layouts [88] to crowd-powered methods for finding areas of high error [83].

Better encodings of classic visualizations such as the confusion matrix can speed up
and improve model analysis. For example, unit visualizations showing individual failures
allow data scientists to dive deeper into the cause of low performance metrics [45, 87].
Confusion matrices can also be extended beyond binary classification, such as analyzing
hierarchical models [101] or comparing multiple models [102].

Novel visualizations can be especially helpful for subgroup analysis. The most direct
method is to look at groups of all combinations of features using, for example, data cube
analysis [71]. Since this can create a countless number of subgroups, other visual systems
allow users to create subgroups from specific features and values [47, 82, 88]. While useful
if a data scientist knows what subgroups they want to create, these systems do not lead
users towards interesting groupings. Automatic slicing algorithms such as Slice Finder can
create a more reasonable number of subgroups with characteristics such as high loss [48].
By slicing data using input features, these visualizations and algorithms create schemas of
subgroups highlighting important AI behaviors.

Beyond explicit data slicing, there are also tools for creating schemas of unstructured
data. For example, clustering instances can surface semantically similar groups that may
have interesting characteristics [84, 103]. Visualizations can also help semantically group
data [46]; for example, AnchorVis [89] lets users define “anchors” that spread the data over
different semantic dimensions.

Unfortunately, Holstein et al. [67] and Wan et al. [95] found that knowing what groups
of instances to create and how to group instances are still major challenges for many data
scientists. Current schema methods are mostly focused on highlighting known patterns
in well-structured domains like tabular data. Additionally, few schema methods help data
scientists move on to the hypothesis stage by formally defining hypotheses and gathering
diverse supporting evidence. Schema methods that are better informed by hypotheses and
can more meaningfully organize large, unstructured datasets could better support data sci-
entists.

29

Test cases [79]

Formal descriptions of
model behaviors with
supporting evidence

Hypotheses

Checklists [68]

Figure 4.4: Creating hypotheses is the third sensemaking stage. Hypotheses are descriptions of
model behavior with supporting evidence. Hypotheses can come from schemas or existing domain
knowledge, like checklists and unit tests.

4.3.3 Hypotheses

The third stage of the framework are hypotheses, formal descriptions of model behaviors
(Figure 4.4). A hypothesis is a high-level description of a behavior (e.g., the AI fails in

low light, or the AI works best for long sentences) along with supporting evidence. Data
scientists test the validity of their hypotheses by gathering enough diverse data to determine
how prevalent a behavior is. While hypotheses can come directly from schemas, they can
also originate from a data scientist’s own domain knowledge or existing behaviors, such as
a data scientist experienced with image models checking how a model performs in low-light
settings.

Hypotheses in deployed settings are often described as unit or regression tests, well-
defined tests of behavior hypotheses [69, 67, 104]. In some cases data scientists even use
a test-driven ML approach in which they first define the behaviors that a model should
have before training and evaluating the model [100]. For example, participants surveyed
by Zhang et al. [104] often derive initial behaviors their models should have from specifi-
cations of the AI product they are developing. When updating their models, data scientists
can check these hypotheses to ensure they are not regressing on important behaviors and
monitor any improvements.

Varied external sources can provide hypotheses of model behavior, such as real-world
users or customer service personnel. Looking through customer bug reports, customer-
facing team members often go through the sensemaking process themselves, finding enough
examples of an AI’s behavior to describe and report a hypothesis. Hong et al. [105] termed
the people who find and test these hypotheses “model breakers”, roles who interact with
customers and may have more direct knowledge of the ways in which a model may be-
have. From these initial hypotheses, data scientists or testing engineers can go back to
the schema and instances stages to collect more evidence and validate the prevalence of
reported hypotheses.

30

Defining hypotheses

Hypothesis tools help data scientists understand and test model behaviors, especially when
tracking multiple hypotheses and assessing supporting evidence.

Visualization systems have shown promise for helping data scientists convert schemas
into formal hypotheses. Errudite is a system for NLP models that lets data scientists slice
their data into schemas and formally define hypotheses of model behavior [46]. Robust-
ness Gym extends this capacity for NLP models by letting data scientists test a variety of
hypotheses, from adversarial attacks to data augmentation [94]. There are also systems
for statistical hypothesis testing, for example, HypoML is a visual system that lets data
scientists statistically test how models perform across specific concepts [90].

Formal testing methods can help scaffold and evaluate hypotheses of model behavior.
Even simple checklists of expected behaviors can give data scientists an idea of how well
their AI performs in common scenarios [44, 106]. These checklists can be either general
descriptions of behaviors or more specific hypotheses with supporting evidence that can
validate if an AI shows a behavior. Similar to testing in software engineering, data scientists
can also test more low-level behaviors of AI systems [107]. Metamorphic testing, checking
if a permutation of an input has an expected impact on the output, can be used to test
behaviors such as the impact of weather conditions on a self-driving car [91].

Current tools for creating and testing hypotheses tend to focus on specific, predefined
behaviors. They often do not enable data scientists to go back to the schema and instances
stages to discover new behaviors and hypotheses. There is also a more limited set of tools
for this stage of the process compared to the schema stage. Robust hypothesis creation and
evaluation tools could help data scientists more accurately describe and test what real-world
behavior their models have.

4.3.4 Assessment

Summary of hypotheses
and evidence for further
analysis and iteration

Assessment

Reporting [27] Model comparison

model A

behavior 1 432

model B

Figure 4.5: An assessment of the model’s behavior is the final stage. The assessment provides an
actionable summary of a model that can be used for tasks such as improving the model or choosing
between different AI services.

Lastly, data scientists combine and organize hypotheses into a cohesive assessment

31

of the behaviors of a model that can be used to make informed decisions (Figure 4.5).
For example, when choosing between AI services, a data scientist needs a summary of
the models’ behaviors to decide which AI provides the best overall performance. Or, in
AI development, ML practitioners need to know the most significant failures or areas in
which their model can improve the most. Additionally, Yang et al. [100] found that ML
consultants often report direct data insights and model iterations, assessments, to customers
to increase their trust and reliance on a model.

As the most structured stage of the sensemaking process, assessments often act as the
starting point for the other AI development processes. For example, a full assessment can
be used to decide which AI service is the best for a certain dataset. It can also guide future
data collection and model updates to target the areas for which the model performs the
worst. Data scientists can then go back to the assessment to see how their updates have
changed model behaviors.

AI teams often attempt to track model behaviors to check for serious issues and un-
derstand how their AI systems evolve over time. Many data science teams often deal with
issues on a case-by-case basis, fixing problems as they are detected in the real world [67].
This introduces its own challenges of ensuring that model updates do not inadvertently
regress on certain behaviors while improving others [95]. By having a combined central
assessment of model behaviors, data scientists can quickly see their model’s overall perfor-
mance and make informed decisions [44, 94].

Assessment mediums

Recent work has explored how structured reporting about datasets and models can im-
prove future iterations. For example, Datasheets for Datasets [51] tracks the metadata of a
dataset, such as provenance and demographic distribution, to inform future model builders,
while Model Cards [108] describe AI models to inform their use and potential downsides.
Checklists of important steps and processes that data scientists should take can also lead
data scientists to more proactively audit the behaviors of their models [109].

Most current assessment tools focus on aggregate metrics and characteristics of a model,
whereas AI teams often end up tracking behaviors in an ad-hoc manner. Systems, espe-
cially visualizations, that can effectively summarize and track changes in behavior over
time could provide a useful and actionable assessment for data scientists. This information
can augment documentation methods, for example, with interactive model cards [58], and
provide a holistic view of how an AI system is working. While assessment is the final
sensemaking stage, it is not the end of the process. Understanding model behavior is an
iterative and ongoing process that data scientists continue going through as they update

32

their AI and see new behaviors in the real world.

4.4 AIFinnity System

To assess our framework’s generative power, we used it to create a system for analyzing
image-and-text models called AIFINNITY. AIFINNITY can be used to understand the be-
havior of a single model using ground-truth labels or compare two models against each
other. In the review of existing tools for AI analysis we found that there were a lack of sys-
tems that covered the full sensemaking process and helped data scientists move between
sensemaking stages. Therefore, our aim was to design a system that met these two goals,
using both new and existing AI analysis techniques.

We focused on image-and-text models since they are growing in use for tasks like im-
age captioning, visual question answering, and optical character recognition. Although
there are many tools for understanding the behavior of tabular and text models, as de-
scribed in Section 4.3, there are few tools specifically for image models. Image data is
often unstructured, making it difficult to explore instances and create meaningful schemas
and hypotheses.

AIFINNITY is a Jupyter widget written in Python and Typescript. Jupyter notebooks are
one of the most common data science platforms for data analysis and model training [110].
By making AIFINNITY a widget, we allow data scientists to directly load instances and
model outputs from a computational notebook into the tool. AIFINNITY is also model-
agnostic, working with common AI platforms such as PyTorch, TensorFlow, and online
services.

Running example: optical character recognition
AIFINNITY supports various image-and-text models, but we focus on two primary exam-
ples for this work, optical character recognition (OCR) for the system walkthrough and
image captioning for the user study in Section 4.5. As a running example of AIFINNITY’s
workflow, we walk through the example of an AI developer exploring whether their OCR
system works for a new dataset of storefront signs [111]. This task is common in real-world
scenarios such as Google Maps identifying the names of businesses from streetview data.
As we describe AIFINNITY, we use block quotes to describe how a data scientist could
use each component in this running example (see Figure 4.7 for an overview):

Emma is an ML developer at a startup that provides an OCR service. Her
company has a new client who wants to use the system to read street signs.
Emma is unsure whether their model works for the client’s data, so she loads

33

A Image Explorer B Image Preview

C Affinity Diagram

Figure 4.6: The AIFINNITY system is a Jupyter Widget that consists of three primary panels, shown
here for the image captioning task used in the user study. The (A) Image Explorer shows a sample
of images, sorted by the images with the most different labels. The (B) Image Preview shows the
currently selected image. It lets users see the image’s extracted metadata, use tools find similar
images, and create counterfactuals. Lastly, the (C) Affinity Diagram is where users can organize
instances into schemas and hypotheses. The colored borders represent the quality judgements from
users on whether they believe either or both of the outputs are adequate or not. Data scientists can
load AIFINNITY with any AI system and image dataset they are using in a Jupyter Notebook.

AIFINNITY with a sample of the client’s storefront images, ground-truth la-
bels, and the AI’s outputs. Her goal is to explore how well the AI works for
this new dataset to decide whether she needs to collect new data and retrain the
model.

4.4.1 Instances, Outputs, and Initial Schemas

AIFINNITY is implemented as a Jupyter widget primarily to enable data scientists to use
it with diverse, updating data, directly supporting the instances and outputs stage of the
sensemaking process. Users pass to the widget a list or two of model outputs and image
paths, which can be dynamically updated from the Jupyter notebook. AIFINNITY explicitly
supports two outputs for each instance for a couple of reasons. When analyzing a single
model, one output can be the output of the AI model, while the other can be ground-truth
labels. AIFINNITY can also be used for model comparison, loading the outputs of both
models. In both cases, comparing the two outputs provides a useful metadata feature for

34

creating schemas and hypotheses.
The loaded images are displayed in AIFINNITY’s image explorer (Figure 4.6A), which

shows them in a paginated list. When data scientists hover on a thumbnail or click to
select an image, they see the full size version in the image preview (Figure 4.6B) on the
right, along with the model output. AIFINNITY initially sorts the instance exploration
panel to show instances for which the two outputs are the most different. This creates an
initial schema or grouping of the data that provides a sensible default for finding interesting
hypotheses. When two outputs are significantly different, there is likely some interesting
difference between the two. This technique is inspired by common loss functions for NLP
models, namely the BLEU score for measuring sentence similarity [112], which we use to
calculate how similar two labels are.

As data scientists discover interesting instances, they can drag them to the affinity di-
agram at the bottom of the interface (Figure 4.6C). Affinity diagrams are a common data
analysis tool used in industry and research to organize and track data insights, especially
in sensemaking processes [113]. Since images are two-dimensional and humans are espe-
cially good at 2D spatial cognition [114, 115], the affinity diagram is a compelling format
for spatial organization of images. The affinity diagram serves two primary purposes in the
AIFINNITY system, allowing users to create rough schemas separate from the image list
and to create and track hypotheses of behaviors.

As Emma explores the street sign images in the initial list, she finds that
her model does not detect the text in a couple of round signs with text written
in a circle. She drags these example images into the same area of the affinity
diagram to keep track of them, creating an initial schema.

4.4.2 Schemas With Similar Search and Filtering

Beyond the initial sorted image list, AIFINNITY provides a set of sorting and filtering
tools to create new user-defined schemas. Since there is no direct technique to explore a
dataset of images, unlike queries for tabular data, we provide two complementary features
for creating new schemas, similar search and filtering.

AIFINNITY’s similar image search enables data scientists to discover instances that
may have similar model behaviors. For a selected image in the image preview panel, a
data scientist can click on the magnifying glass icon to find the most semantically sim-
ilar images. Since pixels do not necessarily encode the semantic similarity of two im-
ages, AIFINNITY instead uses the outputs of a pre-trained deep learning model to mea-
sure similarity. Specifically, AIFINNITY runs each image through the ResNet-18 convolu-

35

tional neural network (CNN) [116] trained on ImageNet and gets the second-to-last output
layer, a 512-dimensional embedding vector representing the semantic content of the image.
AIFINNITY then calculates the cosine similarity between the selected image’s embedding
vector and all other images’ vectors in the dataset and sorts the image exploration panel
by the most similar images. The data scientist can then drag any interesting images into
the affinity diagram. Similar image search acts as a schema of instances that are the most
semantically similar to a reference image.

Emma wants to find more examples of round signs with text written in a
circle. She selects the first image she found of a round sign and clicks the
magnifying glass, which sorts the image explorer to show the most similar
images. She finds various images of round signs that her model also fails to
detect, so she drags them into the affinity diagram close to the original instance.

While similar image search is a useful heuristic for organizing instances, it is an approx-
imate method that can be biased and miss related instances. AIFINNITY lets data scientists
filter images by various semantic features as a more formal way of schematizing the data.
When the images are first loaded, AIFINNITY runs two pre-trained deep learning models to
extract metadata from the images. First, AIFINNITY gets the ImageNet class of an image
using the same pre-trained ResNet-18 model used for the similar image search. AIFINNITY

also runs an object detection model (FasterR-CNN ResNet-50 FPN [87]) trained on the
MS-COCO dataset to extract common objects from the images. Data scientists can see the
extracted metadata for a selected image by hovering over the information button to the right
of the image in the image preview. In addition to the extracted metadata, they can also filter
images by the labels of either source. For even more control, data scientists can also create
custom tags for images that describe any feature of the image.

To filter images by any of these features, data scientists can use the filter bar at the top
of the interface. Data scientists can use the filter bar to logically combine filters and isolate
certain types of instances - for example, a data scientist could filter for images that have
a certain object in them but do not have a keyword in the output. As data scientists add
filters to the filter bar, the image exploration panel is updated to show only the matching
images. Filtering is a schema that splits the dataset by explicit semantic features in contrast
to similar search’s rough grouping.

Emma hovers over the information button for a round sign with circular
text and finds that it is incorrectly classified as an “analog clock”. While the
class is incorrect, she thinks other round signs may have also been misclassified

36

filter

export

round signs

mandarin script

Explore

 in initial list

instances and

outputs

Create in the affinity diagram

using similar search and filtering

schemas Define formal

for

hypotheses

assessment

Figure 4.7: An overview of the typical sensemaking process used by participants in the user study
with AIFINNITY. Participants often started by finding interesting instance in the Image Explorer.
They then used the schema tools to find similar behaviors, and dragged them into the Affinity
Diagram. Lastly, they created formal hypotheses from the schemas to find more evidence and
organized their final assessment. The figure is shown for the optical character recognition task
described in Section 4.4

and decides to filter the images by the class “analog clock.” As expected, she
finds various other round signs classified the same way, which she drags into
the affinity diagram.

These image search and filtering techniques give data scientists multiple ways to schema-
tize and mentally organize their data. From this general organization of images, they can
then formulate and validate concrete hypotheses of AI behaviors.

4.4.3 Hypotheses and Assessment

In addition to being a medium for creating schemas of images, the affinity diagram also al-
lows data scientists to create formal hypotheses of model behaviors. To create a hypothesis
from the schemas, a data scientist can either select multiple images and click the “create
hypothesis” button or drag the images into an existing hypothesis. Hypotheses are named
rectangles in the affinity diagram data scientists can create for specific behaviors.

The initial evidence used to create a hypothesis is often not sufficient to fully support the
prevalence of a behavior. To find more supporting evidence for a hypothesis, AIFINNITY

has a modified version of similar image search for hypotheses. When the magnifying glass
on a hypothesis is clicked, AIFINNITY calculates the average embedding vector of the
images in the hypothesis and sorts the image exploration panel by the most similar images
not already in the hypothesis. This allows data scientists to go back to the schema stage to
find more supporting evidence.

To help data scientists get a more quantitative idea of how prevalent each behavior is,
AIFINNITY provides quality judgements that can be used to track whether an output is

37

adequate for an instance. For each output on a given instance, a data scientist can indicate
whether the output is correct by giving a thumbs up or thumbs down. Each hypothesis then
shows the overall percentage of instances for which the data scientist indicated the labels
are correct. This gives data scientists a quick quantitative view of how well their AI(s)
perform for each hypothesis.

Emma has dragged various images of round signs into the affinity diagram
and decides to create a formal hypothesis. She selects the images, clicks on
the create hypothesis button, and names the resulting rectangle. To find more
evidence, she uses the group similar image search by clicking the magnifying
glass on the group. She finds a few more round signs and drags them into the
hypothesis. She provides quality judgments for each image in the hypothesis
and finds that her AI fails for more than 50% of the signs with circular text.

Since the original dataset may not have enough instances to adequately validate a hy-
pothesis, AIFINNITY also provides a counterfactual feature to allow the creation of more
evidence and the refinement of hypotheses. Data scientists can click and drag to draw a
black rectangle over an image in the image preview, occluding regions of the image to
create a new instance. AIFINNITY then runs the model on the newly modified image and
shows the changed text output below the original output. The counterfactual tool allows
data scientists to go back to the instances stage and create specific synthetic instances to
test their hypotheses.

Most of the round signs with circular text that Emma found have logos in
the center of the circle. Emma is worried that the AI system might actually
be failing due to the logo, so she uses the counterfactual tool to create more
evidence. She draws a black box in the center of a few of the images to remove
the logos and adds the new images as evidence to her hypothesis. She finds that
her AI is still not able to detect the text in the new images, further validating
her hypothesis.

Lastly, data scientists can organize the affinity diagram with their evidenced conclusions
into a final assessment of their model behavior, depending on the end goal of the analysis.
These insights can then be saved and exported to share with other stakeholders and make
actionable decisions.

Emma organizes the affinity diagram with the main hypotheses she has
found, grouping them by the type and prevalence of each behavior. She exports
the findings to save the results and uses them to improve her AI’s performance
for street signs by gathering more data and iterating on the AI’s architecture.

38

4.5 User Study

As a final evaluation of our framework, we conducted an exploratory think-aloud study
with 10 professional data scientists tasked with using AIFINNITY to choose between two
image captioning models. This study aimed to understand how people use a complete
sensemaking system, including how the different stages interact and how data scientists
approach the process. We believe that these initial empirical insights can highlight the
primary benefits and key features of AI analysis systems grounded in the sensemaking
framework.

To recruit participants, we sent an email to 200 data scientists at Microsoft. We con-
tinued to invite participants in order of their responses until the qualitative themes in our
iterative analysis converged at 10 participants (8 male, 2 female, mean age 32). The par-
ticipants had an average of 6.8 years of data science experience and worked with various
domains and models, including recommendation systems, search, captioning, and cyber-
security. The study lasted between 40 and 60 minutes, for which we compensated the
participants with a $25 Amazon gift card.

4.5.1 Study Procedure and Analysis

We started the study with a few background questions about the data scientist’s experience
with AI and behavioral analysis. The researcher then spent 10 to 20 minutes walking
participants through AIFINNITY, specifically for a task comparing two optical character
recognition models used to read street signs, the same as the example in Section 4.4. The
researcher explained the primary features and components of AIFINNITY, and had the
participant create at least one schema and hypothesis. We used a different domain and task
for the introduction to not bias the behaviors that the participants looked for in the last part
of the study.

In the final and main part of the study, which lasted 30 to 40 minutes, participants were
tasked with using AIFINNITY to choose between two image captioning models on a dataset
of outdoor activities. This task was motivated by a common use case for image captioning,
making photos accessible to people who are visually impaired or blind, for example, on so-
cial networks [117]. The task focused on model comparison to give participants a concrete
goal, but since comparison requires participants to understand each model’s behavior, our
discoveries encompass understanding the behavior of one model. The first model, model
A, was Microsoft’s Cognitive Services image captioning system1, and the second model,

1https://azure.microsoft.com/en-us/services/cognitive-services/
computer-vision/

39

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

model B, was a pre-trained, off-the-shelf captioning model2. Participants analyzed the be-
havior of the models on the UIUC Sports Event dataset [118], a collection of images from
various indoor and outdoor sports. We chose this dataset as it has a wide variety of condi-
tions, scenarios, and actions, while being a limited enough domain to explore in 30 to 40
minutes. To not limit or cherry pick the types of behaviors participants searched for, we
gave them the general task of understanding the two models well enough to describe to a
client, with supporting evidence, which model they should use for the given sports dataset.

As we conducted the studies, we transcribed the recordings and did iterative open cod-
ing of the results [119]. We also summarized the schemas and hypotheses of the partic-
ipants as additional data on how the participants analyzed the two AI systems. With 10
participants, we found that the themes of how data scientists use a complete sensemaking
system converged with significantly overlapping interaction patterns and hypotheses. Af-
ter completing all the interviews, we conducted selective coding of the transcripts focused
on the main themes identified in the open coding. We separate the findings into broader
insights that are likely to generalize to other sensemaking systems and findings specific to
the AIFINNITY system.

4.5.2 Results

Making sense of model behavior
The challenges and goals described by the participants for AI analysis matched those iden-
tified in the empirical studies reviewed in Section 4.3. When describing their AI analysis
workflow, all 10 participants talked about taking steps to better understand their AI sys-
tems beyond aggregate metrics. One participant (P8), a manager of an AI team, actually
described their primary role as “metric development”: conducting behavioral analyzes on a
deployed AI system and converting those insights into metrics to track and improve the sys-
tem. Another participant (P5) described behavioral analysis as necessary because metrics
like “precision and recall can lie”, but found that this deeper analysis is “a very challeng-

ing problem.”

Many of the strategies that participants use for AI analysis also reflect those described
in the sensemaking framework. Five participants use human judges to label or gather in-
stances, while two participants mostly rely on ad hoc spot checking like dogfooding to
check if the AI is behaving as expected. Some data scientists have developed their sys-
tems for unit testing and validating model behaviors, with four participants using a form
of “regression sets” that track specific model behaviors, or hypotheses. They use these

2https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-
advanced/image_captioning

40

https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning
https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning

sets to ensure that updates to their AI do not cause it to regress on important behaviors
or subgroups of instances. Even the participants with bespoke tooling found behavioral
analysis to be an open challenge, as one participant (P1) stated, “we don’t really have a

way of checking for patterns to see if a problem is a one-off or something more systematic.”

Like data scientists in the empirical studies, our participants tended to perform behavioral
analysis in an ad hoc and post hoc manner, reacting to discovered failures.

Process and strategy
When the participants used the AIFINNITY system, we noticed differences in how partic-
ipants approached the sensemaking process. The first pattern we found was that partic-
ipants started the AI analysis process from different stages. Since AIFINNITY does not
provide preexisting hypotheses, most of the participants (8) began their analysis by look-
ing at the initial schema of instances with the largest output differences. The other two
participants, who train image models in their work, started the analysis with their own pre-
existing hypotheses. They created these hypotheses from their experience and knowledge
of how image models are most likely to fail. For example, a participant (P2) specifically
created hypotheses for “high contrast lighting” and “low light” before looking at any of
the instances. Despite starting at different stages, all participants eventually took an itera-
tive process, going back to the image explorer to find new instances and using the affinity
diagram to create schemas and hypotheses.

Another significant difference in participants’ processes was whether they took a breadth-
first or depth-first approach. About half of the participants (4) took a breadth-first strat-
egy by exploring multiple instances in the original schema before creating more specific
schemas and hypotheses. The other six participants used a depth-first approach, immedi-
ately creating schemas and hypotheses for the first interesting instance they found. These
different techniques led to a trade-off between the number of hypotheses and the amount
of evidence participants found; participants using the breadth-first technique tended to find
more hypotheses with less supporting evidence, while depth-first participants found fewer
hypotheses with more evidence.

Complementary tools
One of the most salient benefits of having an integrated sensemaking system was the com-
plementarity of tools across stages. As participants progressed through the sensemaking
process, they had tools available to help them at each stage. For example, when partici-
pants wanted to validate an initial idea of a behavior from a schema, they could create a
hypothesis and find evidence using AIFINNITY’s similar image search feature. Participants

41

found the progressions between tools and stages to be natural as they created schemas and
validated hypotheses.

An unexpected benefit of AIFINNITY was the complementarity of the features within

each sensemaking stage. This complementarity was most apparent in the schema stage
with similar search and filtering tools. The benefit of having both tools was highlighted by
one participant (P9), who in validating the hypothesis that models could not describe large
groups of people found that “using the tool together is useful, because otherwise, I was

trying to look at [images with] groups of people but [similar image search] didn’t give me

that, but the object detection model is more specific.” Similar search is a less structured
but quicker schema tool, while filtering can create more specific and structured schemas.
Participants generally started with the similar search tool to get an initial group of instances
for a schema but were concerned about missing evidence with the “black box” search and
so moved on to use the filtering approach. Having a quick heuristic tool combined with a
more deliberate schema method was an essential feature of AIFINNITY.

Dealing with confirmation bias
Confirmation bias is a significant challenge when creating and validating any hypothesis;
How does a data scientist know that they have enough diverse instances to support their
hypothesis? We found that having a combined sensemaking system helped data scien-
tists combat confirmation bias. This was especially true when participants went from the
hypothesis stage back to the schema stage to find more evidence, as they had various tech-
niques at their disposal to discover or create more evidence. Six of the 10 participants
found that at least one of their hypotheses did not hold after finding additional evidence.
For example, a participant (P8) thought model A typically confused racquets for video
game controllers, but quickly disproved their hypothesis by using the similar image search
to find more images of people with racquets that were correctly described. Three partici-
pants also actively reflected on their potential confirmation bias and took steps to counteract
it by proactively looking for disconfirming evidence.

Actionable, evidenced hypotheses
Overall, the participants found various hypotheses with significant supporting evidence.
Participants created 4.1 hypotheses on average, which ranged from specific failures to high-
level patterns. The most specific hypotheses included “model cannot describe images with

cliff backgrounds,” and “model fails to describe large groups of people on boats.” Some of
the most general hypotheses included “model doesn’t describe the central activity,” “the

model is often too vague,” and “bad lighting leads to inaccurate captions.” There was

42

significant overlap in the hypotheses and behaviors the participants discovered despite the
wide range of described behaviors. Five of the 10 participants found that Model B con-
fused climbing images with snow, skiing or snowboarding. Four participants found that
both models described most of the racquet sports as tennis and did not have badminton in
their language. Lastly, the most common groupings eight participants created were for a
specific activity, for example climbing, boats, or tennis.

At the end of the study, most participants had developed nuanced conclusions about
which model they would choose for a given task. The most common conclusion, which
seven of the participants came to, was that model A is more conservative, less detailed, but
often correct, while model B provides more detailed captions, but is often wrong. Given
these findings, they decided to make different recommendations for which model should
be used depending on the risk profile and domain of the client.

Beyond describing the differences between the two models, some participants also
asked questions about the underlying model and data and came up with potential fixes
for the issues they saw. Three participants attributed the patterns they found to biases in
the training data or labels. Two of these participants hypothesized that there might be
an “alpine” or “snow” bias in the data, causing model B to describe people climbing as
snowboarding or skiing, and they wanted to look at the training data to verify their hy-
potheses. Two other participants hypothesized that the models themselves may be causing
the problem by not having certain words in their vocabulary, specifically “badminton” and
“croquet”, which were often described as “tennis” and “baseball.”

Using the AIFINNITY system
We also found insights specific to the AIFINNITY system and analysis of image and text
models. Participants generally found the affinity diagram to be intuitive and usable, with
five participants specifically stating that it was their favorite part of the interface and one
participant (P3) stating that it “makes total sense, especially for images.” One participant
(P8) especially liked the split between the top and bottom areas of AIFINNITY, seeing
them as two different representations of the data, or schemas: “Switching between text and

visual representations is very interesting - I can have a hypothesis and go back and forth.”

Affinity diagramming is a prolific sensemaking tool in other domains [113], which lends
another piece of support to taking a sensemaking lens to AI analysis.

A feature that received mixed feedback in AIFINNITY was the thumbs up or down
quality judgement. Two participants (P1, P9) used it as the primary way of tracking which
model was performing better, and a third participant (P2) liked that “having them [images]

colored gives you a quantitative feel for how strong your hypothesis is or not.” While more

43

than half of the participants (6) liked to have a quantitative view of their findings, four
participants found that the judgement was too coarse to be very useful. Both captions were
often wrong, but one was slightly better, or a caption being ‘good’ would depend on the
situation. The participants would have liked more detailed descriptions to capture these
nuances, such as scale or text descriptions.

Participants thought the counterfactual feature was useful but found that AIFINNITY’s
implementation of drawing black boxes was too simple. The participants wanted more im-
age manipulation tools, such as adding new objects or changing image properties. Coun-
terfactuals are a powerful tool for generating more evidence, and participants wanted these
improved interactions to test more nuanced and complex behaviors.

4.6 Discussion and Future Work

Through our review of existing studies and tools, the design of AIFINNITY, and the ex-
ploratory user study, we found that the sensemaking lens adequately describes how data
scientists analyze AI systems. By describing AI analysis using a formal framework, we
hope to give researchers and tool creators the language to better understand the context
of their systems and studies in data scientists’ overall process. Future work can aim to
fill tooling gaps for AI analysis or better understand the challenges and trade-offs in the
different sensemaking stages.

4.6.1 Applications and Extensions of AIFINNITY

The think-aloud study focused on one application of AIFINNITY, comparing AI services,
but AIFINNITY can be used in various real-world AI analysis scenarios. When working
with one model, data scientists can use AIFINNITY to supplement traditional evaluation
methods, such as aggregate metrics, by discovering, formalizing, and testing specific model
behaviors on a labeled dataset. An example of this process is described in Section 4.4, in
which a data scientist tests their model on a new dataset. When using AIFINNITY for
model comparison, data scientists can use it on their models, comparing iterations of an AI
system using a new architectures or training set.

Participants found the initial set of schemas and hypothesis testing tools to be useful,
but additional tools would have to be added to AIFINNITY to make it widely applicable to
real-world models. Specifically, there were various behaviors that participants were unable
to validate with the current tool set. This was especially the case for issues regarding
bias and fairness, which participants wanted to test for but AIFINNITY does not explicitly
support. For example, creating schemas across demographic information can help identify

44

potential biases, but the existing metadata did not have those features.
AIFINNITY is primarily an exploratory analysis tool for image models and relatively

small datasets that may not generalize to other use cases and domains. The affinity diagramming-
based interface can work for other visual data such as videos but may not be adequate for
encoding other data types such as text or audio. AIFINNITY also requires users to manually
select, explore, and organize instances, which cannot be manually done on a scale of thou-
sands or millions of instances. For formal hypothesis testing on large datasets, especially
when comparing models over time, a different system or extensions to AIFINNITY would
be required.

4.6.2 Gaps in Current Tooling

In reviewing the current landscape of AI analysis systems, we found a few significant gaps
in current tooling. The first limitation is the lack of connection between the “discovery”
half (instances ↔ schemas) and the “evaluation” half (hypotheses ↔ assessment) of the
sensemaking process. There are many systems focused on the discovery half of the process
that help data scientists slice and explore their data, and many systems for the evaluation
half, like checklists and unit tests, that let data scientists validate known behaviors. There
are comparatively few tools that let data scientists move between these two processes -
turning rough groupings into formal hypotheses or discovering new hypotheses to validate.

There is also a lack of tools for certain types of data domains. Most schema and hy-
potheses tools are designed for tabular, timeseries, or text data that can be easily sliced and
grouped. Unstructured data, such as images and videos, are harder to organize and there
exist few usable tools for those domains in most stages of the sensemaking process. With
the growing use of image and video recognition in the real world, behavioral analysis tools
will be important in detecting and describing their behavior, especially for potential safety
or fairness concerns.

4.6.3 Designing and Evaluating Tools With the Framework

The initial patterns found in the user study have some implications for future system de-
sign and empirical studies. For example, we found that there is a trade-off between using
a breadth vs. depth-first approach when analyzing AI behaviors. A breadth-first approach
tends to generate more hypotheses with less evidence, while a depth-first approach leads
to fewer hypotheses with more supporting instances. Further experiments or studies could
explore whether this leads to disparate insights and whether or not analysis systems should
guide data scientists toward balancing these strategies. Other differences in approaches,

45

like starting from certain sensemaking stages, could also be studied to improve data scien-
tist processes.

The process of AI analysis also interacts significantly with other AI tools and processes.
For example, explainable AI can be a useful tool at different points in the sensemaking
process to both discover and evaluate hypotheses. Model updates and iteration also directly
interplay with sensemaking, as people have to make sense of an updated model’s new or
changed behaviors. These are both complex fields and topics which we did not explore
in depth but which interact significantly with understanding AI behavior. Further studies
of data scientists and deeper explorations of these interactions could identify areas where
tools could bridge or better connect processes, for example, quick feedback loops between
model updates and behavioral analysis.

Sensemaking has been applied to domains ranging from organizational psychology to
data analysis. Each of these fields has developed unique techniques and tools to improve
sensemaking processes that could be used as inspiration for improving AI analysis. For
example, there is a growing body of work on distributed or crowd sensemaking [120, 121],
aggregating and reusing schemas and hypotheses from multiple people. Future work could
explore how these concepts could be applied to improve AI analysis, for example, reusing
common schemas and hypotheses between datasets and models.

4.6.4 Limitations

It is challenging to validate the usefulness of a theoretical framework, and our initial eval-
uation inherently has some limitations. First, when reviewing existing studies and systems,
we likely missed some work that covers stages of our framework or fits the sensemaking
process. While we do not claim that we conducted an exhaustive review of the literature, we
believe that we covered the major works and subfields of AI analysis rigorously enough to
support our framework. Second, to test the generative power of our framework, we imple-
mented only one system for the specific domain of image and text models. Although it was
not feasible to create multiple sensemaking systems, we believe that the reviewed systems
provide a strong foundation for the framework, while the implementation of AIFINNITY

serves as a case study of how a complete sensemaking tool can be created. Lastly, our
think-aloud study was conducted with participants at one company. While some of their
procedures and the insights we derived may have been specific to that company’s processes,
we chose participants from different teams and suborganizations that act independently in
order to increase the generalizability of our results.

46

4.7 Conclusion

This work introduces a sensemaking framework that describes how practitioners develop
mental models of AI behavior. We derived the framework using a sensemaking lens and
empirical studies of AI/ML practitioners. We then designed and implemented AIFINNITY,
an interactive tool for analyzing image-and-text models, and explored the dynamics of the
sensemaking process in an exploratory think-aloud study with 10 professional data scien-
tists. Researchers, designers, and tool creators can use the framework to better understand
how people analyze AI systems and develop systems that are grounded in data scientists’
analysis process.

47

CHAPTER 5
IMPROVING HUMAN-AI COLLABORATION WITH BEHAVIOR

DESCRIPTIONS

Developers are not the only ones who make sense of AI systems; anyone who interacts
with an AI system, such as radiologists who use AI suggestions, develops a mental model
of how it behaves. This chapter explores how the resulting information about model be-
haviors in BDAI can be used to improve human-AI collaboration. We do this by explicitly
showing end-users details of model performance on subgroups of data for which the model
underperforms. In studies in three domains, we find that these behavior descriptions can
significantly improve human-AI collaboration. These results emphasize the central impor-
tance of model behaviors in understanding and improving deployed AI systems.

This chapter was adapted from my published paper:

Ángel Alexander Cabrera, Adam Perer, and Jason I. Hong. 2023. “Improving Human-AI
Collaboration With Descriptions of AI Behavior”. Proc. ACM Hum.-Comput. Interact. 7,
CSCW1, Article 136 (April 2023), 21 pages.

5.1 Introduction

Human-AI collaboration is finding real-world use in tasks ranging from diagnosing prostate
cancer [122] to screening calls to child welfare hotlines [123, 124]. To effectively work
with AI aids, people need to know when to either accept or override an AI’s output. People
decide when to rely on an AI by using their mental models [33, 7], or internal representa-
tions, of how the AI tends to behave: when it is most accurate, when it is most likely to
fail, etc. A detailed and accurate mental model allows a person to effectively complement
an AI system by appropriately relying [34] on its output, while an overly simple or wrong
mental model can lead to blind spots and systematic failures [7, 125]. At worst, people can
perform worse than they would have unassisted, such as clinicians who made more errors
than average when shown incorrect AI predictions [126, 127].

48

Figure 5.1: Don Norman’s mental model framework [8] describes how designers use their mental
models to implement systems. End-users then interact with the systems and develop their own
mental models of how they believe the systems work. While this process is similar for AI models,
a key difference is that an AI is not a direct representation of a developer’s intent, but a stochastic
model learned from data. This means that (1) AI developers themselves have to make sense of what
an AI system has learned through testing and iteration. Subsequently, they can encode these insights
as (2) behavior descriptions, details of how an AI performs on subgroups of instances, that can be
shown to end-users to improve human-AI collaboration.

Mental models are an inherently incomplete representation of any system, but numer-
ous factors make it especially challenging to develop adequate mental models of AI sys-
tems. First, modern AI systems are often black-box models for which humans cannot see
how or why the model made a prediction [128]. Second, black-box models are also often
stochastic and can provide different outputs for slightly different inputs without human-
understandable reasons [129]. Lastly, people often expect AI models to behave as humans
do, which often does not match their actual behavior [130] and makes people unaware of
how an AI may fail [131, 132]. These factors make it challenging for people to develop
appropriate mental models of AI systems and effectively rely on them to improve their
decision making.

To help people collaborate more effectively with AI systems, we propose directly show-
ing end-users insights of AI behavior (fig. 5.1). We term these insights behavior descrip-
tions, details of an AI’s performance (metrics, common patterns, potential failures, etc.)
on subgroups of instances (subsets of a dataset defined by different features, e.g. “images
with low exposure”). Behavior descriptions can take many forms, but should help end-
users appropriately rely [34] on an AI, using its output when it is most likely correct and
overriding it when it is most likely incorrect. The goal of behavior descriptions is simi-
lar to that of explainable AI (xAI), but differs in what type of information is provided to
end-users. Explainable AI attempts to describe why an AI system produced a certain out-
put, while behavior descriptions describe what patterns of output a model tends to produce.
Thus, xAI and behavior descriptions can be used together to support effective human-AI
collaboration.

We hypothesize that behavior descriptions will help people better detect systematic
AI failures and improve AI-assisted decision making. Additionally, we hypothesize that

49

people will both trust an AI aid more and find it more helpful when shown behavior de-
scriptions. To test these hypotheses, we conducted human-subject experiments in three
distinct domains: fake review detection, satellite image classification, and bird classifica-
tion. These three domains cover a range of data types, classification tasks, and human and
AI accuracies to isolate the effect of behavior descriptions from domain-specific effects.

We found that behavior descriptions can significantly improve the overall accuracy of
human-AI teams through two distinct mechanisms. First, for instances with a behavior
description, users can directly correct AI failures. Second, people tend to rely more on
the AI system for instances without behavior descriptions when behavior descriptions are
shown for other underperforming subgroups. We additionally found that showing behavior
descriptions had no significant impact on people’s qualitative judgements, such as trust and
helpfulness, of the AI. Despite the potential benefits of behavior descriptions, their effects
are not universal and depend both on how obvious AI failures are to a person and on a
person’s ability to correct the output once they know the AI is wrong.

In summary, this work introduces behavior descriptions, details shown to people
working with AI systems of how an AI performs (metrics, common patterns, potential
failures, etc.) for specific subgroups of instances. We show how behavior descriptions can
improve the performance of human-AI collaboration in three human-subject experiments.
These results indicate that knowing the mental models of end-users in human-AI collabora-
tion is essential to understand how a human-AI team will perform and which interventions
and decision aids will be most successful.

5.2 Behavior Descriptions

We define behavior descriptions as details of how an AI performs (metrics, common pat-
terns, potential failures, etc.) for a subgroup of instances. Behavior descriptions should
be semantically meaningful and human-understandable but can vary significantly between
datasets and tasks. For domains like binary classification, e.g. spam detection, they can be
simple statements of accuracy like our system incorrectly flags marketing emails as spam

53% of the time. In more complex domains like image captioning, they can describe spe-
cific behaviors like our system often describes mountain climbing as skiing or our system

can produce run-on sentences. The goal of behavior descriptions is to help end-users de-
velop better mental models of an AI and thus appropriately rely on the model — using the
AI output when it is more accurate and overriding the AI when it is more likely to fail.

In addition to what behavior descriptions contain, how they are presented to end-users
can vary and impact their effectiveness. For example, when behavior descriptions are

50

shown can vary, from only showing them for extreme edge cases to every instance. Simi-
larly, behavior descriptions may only be shown during training or for the first few uses of
an AI aid. Due to the broad diversity of potential behavior descriptions, we do not attempt
to enumerate all possible forms, and focus instead on testing some core assumptions of
their efficacy.

5.2.1 Principles for Effective Behavior Descriptions

To design the behavior descriptions used in this work, we drew from existing studies of
human-AI collaboration. From these studies, we derived three properties behavior descrip-
tions should have to maximize their effectiveness. These are not the only principles, but an
initial set used to design the behavior descriptions used in this study.

The first property comes directly from the goal of behavior descriptions, to help users
appropriately rely on AI output. Therefore, behavior descriptions should provide informa-
tion that helps end-users decide both whether they should rely on an AI and, if the AI is
wrong, how they should override it. We summarize this principle as actionable behavior
descriptions that provide end users with concrete information they can act on when using
an AI aid.

The second principle comes from studies of AI error boundaries and explainable AI.
Bansal et al. [7]’s study of people’s mental models of AI systems found that models with
errors that were parsimonious (e.g. simple to define) led to more effective mental models.
Separately, Poursabzi-Sangdeh et al. [133] found that showing end-users more details about
an AI reduced their ability to detect AI errors due to information overload. Thus, behavior
descriptions should aim to be simple, short, and easy to interpret and remember.

The third and final principle comes from findings on alert fatigue and cognitive load.
When alerts or messages are shown continuously, people can suffer from alert fatigue

and begin to ignore the messages [134]. Additionally, showing people more information
increases their cognitive load, which can lead to decreased learning and performance [135,
136]. To avoid these pitfalls, behavior descriptions should be limited and focus on the
subgroups of instances with the highest impact. Thus, the third principle is to aim for
significant behavior descriptions, either common behaviors or those with the most serious
consequences.

In summary, the three design principles that we followed to create the behavior descrip-
tions in this work are the following:

1. Actionable, suggesting both whether and how a person should override an AI output.

2. Simple, aiming to be as parsimonious and easy to remember as possible.

51

3. Significant, limited to behaviors that are common and/or have serious consequences.

5.2.2 Why Not Just Fix AI Failures?

A key question surrounding the utility of behavior descriptions is why developers would not
directly fix the systematic model failures or behaviors they discover. Modern AI systems
are often stochastic, black-box models like neural networks that cannot be deterministically
“fixed” or “updated”. ML practitioners interviewed by Holstein et al. [67] would often try
to fix one problem that would cause the model to start failing in other unrelated ways. In
another empirical study, Hopkins and Booth [63] found that practitioners would avoid or
limit model updates due to concerns about breaking their models and introducing more fail-
ures. Challenges to fixing known model failures are also present in research. This is most
apparent with natural language processing models, which are approaching human aptitude
in many domains such as question answering and programming [6]. Despite the growing
capability of NLP models, many state-of-the-art systems still encode serious biases and
harms [137] and fail basic logical tests [44] that developers have been aware of for years,
but have not been able to fix.

Fixing model failures can also require significant amounts of new training data, which
tends to be expensive and time consuming. Additionally, the specific instances needed to
improve certain model failures can be difficult to get, such as globally diverse images or
accents [138]. Behavior descriptions can be an important intermediate solution for model
issues; end-users can effectively work with an imperfect AI that developers are working to
improve and fix.

Lastly, behavior descriptions can be helpful when models are updated. Model updates
can be incompatible with end-users’ existing mental models and violate their expectations
of how an AI behaves, leading to new failures [139]. Updated behavior descriptions can
be deployed with a new model to directly update end-user’s mental models and avoid de-
creased performance.

5.3 Experimental Design

To directly test how behavior descriptions impact human-AI collaboration, we conducted
a set of human-subject experiments across three different tasks. The tasks range across
dimensions such as human accuracy, AI accuracy, and data type to reduce the chance that
our results are confounded by domain-specific differences.

52

5.3.1 Experimental Setup

To test the effect of behavior descriptions, we conducted experiments across three different
classification tasks. All three tasks shared the same core setup and only varied in the type
of classification task (binary or multiclass) and what participants were asked to label. For
each task, we tested three between-subjects conditions to isolate the effect of behavior
descriptions:

• No AI: Participants were asked to classify instances without any assistance.

• AI: Participants were asked to classify instances with the help of an AI they were
told was 90% accurate.

• AI + Behavior Descriptions (BD): Participants were asked to classify instances with
the help of an AI they were told was 90% accurate. Additionally, for instances that
were part of a behavior description group (10/30 instances), participants were shown
a behavior description stating the AI accuracy for that type of instance (see sec-
tion 5.3.1 for details about behavior description groups).

Participants in every condition and task were first shown a consent form, introduced to
the task, and shown example instances and labels. Those in the condition with the AI were
also shown a screen before labeling that introduced the AI and stated its overall accuracy of
90%. The participants were then shown and asked to label 30 instances (see fig. 5.3 for an
example UI), 20 instances from the overall dataset, and 5 instances each from two subsets
of the data, behavior description groups, where the AI performance was significantly worse
than for the overall model (see section 5.3.1 for details). After labeling the 30 instances,
participants completed a short questionnaire with Likert scale questions, open-ended text
responses, and an attention check question.

The experiments were conducted on Amazon Mechanical Turk (AMT) with partici-
pants from the United States. We selected participants who had completed more than 1,000
tasks and had an approval rating of more than 98% to ensure high-quality responses. Par-
ticipants that failed the attention check, a question asking which step they were currently
on, were still paid, but were excluded from the results and analysis. Although we consid-
ered providing bonuses as an incentive for accurate responses, we found that the incentive
to have the task approved was sufficient to get good results without a bonus. We confirmed
this by finding similar average accuracy on the control condition for the reviews task, 56%,
to that reported by Lai and Tan [140] on the same task using a bonus, 51%.

The study was approved by an Institutional Review Board (IRB) process. We had a total
of 225 participants, 25 per task/condition pair. The number of participants per condition

53

Figure 5.2: Experimental setup. Each participant was randomly assigned to a condition and
dataset (3x3 between-subjects study, 25 participants per condition, 225 participants total). For each
dataset, participants saw 30 instances, 20 instances from the whole dataset with an AI accuracy of
95%, and 5 instances each from two subsets of the dataset with an AI accuracy of 40% and 20%
respectively (simulating subgroups behavior descriptions would be useful for). In the AI + Behavior
Description condition, participants were shown behavior descriptions for instances in group 1 and
2. While the instances shown to participants were randomly chosen from a larger subset of data,
each participant saw the same number of AI errors to ensure they observed the same AI accuracies.

was chosen using a power analysis on the mean and standard error of the accuracy in
the initial usability studies for the interface. Of the 225 participants, we removed 13 for
failing the attention check. Additionally, we removed three other participants, across two
conditions, who had an accuracy of less than 10% (the next highest accuracy being 35%),
the same as guessing randomly. We paid participants $2 for the task, which lasted 15
minutes for an hourly compensation of $8 an hour.

Behavior descriptions and wizard-of-oz AI

For this work, we used behavior descriptions stating the model accuracy for subgroups of
the data for which the model performs significantly worse than average [47, 83, 48, 44,
141]. Depending on whether the task was binary or multiclass classification, the behavior
descriptions resembled text sentences such as ”the model is 20% accurate for this type
of instance” or ”the model confuses these two classes 80% of the time”. These types of
behavior descriptions are straightforward to create, calculating accuracy on a subset of
data, and are actionable for end-users, informing them of how likely it is that they need to
override the AI.

In order to control the distribution of instances and AI accuracy each participant saw,
we used a wizard-of-oz AI system, mock AI outputs, with a fixed observed accuracy. Of the
30 instances each participant labeled, 20 were randomly chosen from the overall dataset,
and the final 10 split into two groups of 5 instances randomly selected from two subsets of
the dataset which we term behavior description groups. The AI accuracy for instances in
the behavior descriptions groups was significantly lower than the overall model to simulate

54

Figure 5.3: UI screenshots for the fake reviews (left) and satellite image classification (right) tasks.
Each participant labeled 30 instances, distributed according to the instance groups described in
Figure 5.2 and Section 5.3.1. Both screenshots are shown on a labeling step for the AI + Behavior
Description (BD) condition and on instances that are part of a behavior description group. In the AI
condition participants are not shown the additional text for instances in a BD group, and in the No
AI condition participants are not shown the AI output. The bird classification task used the same
format as the satellite classification task shown.

the types of subgroups behavior descriptions would be used for. Lastly, while we fixed
the distribution of correct/incorrect model outputs per behavior description group, the in-
stances each participant saw were randomized, both sampled from a larger set of images
and randomly ordered.

The accuracy breakdown for the subgroups was the following: 95% accuracy (1/20
misclassified) for the main group of 20 instances, 40% accuracy (3/5 misclassified) for
the first behavior description group, group 1 and 20% accuracy (4/5 misclassified) for the
second group, group 2. The behavior description groups for each task are detailed in fig. 5.2
and section 5.3.1. The purpose of the behavior description groups is to have two concrete
subsets representing the type of instances for which a behavior description would be used -
these are the instances for which we show behavior descriptions in the AI + BD condition.

The accuracy breakdown above gives an actual AI accuracy of 73.33%, not the 90%
accuracy stated to the participants, since the task would have been too long to have both an
actual 90% overall accuracy and significantly low accuracies for the two behavior descrip-
tion groups. We wanted to simulate a situation where an AI is reasonably accurate, e.g. ¿
90%, so that a human would want to work with it. Existing work has explored the impact of
stated versus observed accuracy and found that there is a small decrease in agreement with
the AI the lower the observed accuracy [142]. Since each condition had the same stated vs.
observed accuracy discrepancy (90% vs. 73.33% respectively), it should not impact our
relative findings on the efficacy of behavior descriptions.

55

Classification tasks

We chose three distinct tasks for the study to ensure that our findings are not tied to a
specific dataset or task. The three tasks vary by data type (text/image), task type (binary/-
multiclass classification), and human accuracy (human better/worse than AI). For each task
description below, we also detail what types of instances make up group 1 and group 2, the
subsets of instances (behavior description groups) for which the AI is less accurate and for
which behavior descriptions are shown in the BD condition (see fig. 5.2). The tasks are the
following:

Fake Review Detection. The dataset of deceptive reviews from Ott et al. [143, 144] has
800 truthful reviews and 800 deceptive reviews for hotels in Chicago. The truthful reviews
were collected from online sites such as TripAdvisor, while false reviews were collected
from Amazon Mechanical Turk workers. The objective of the task is to determine whether
the review is “truthful”, written by someone who actually stayed at the hotel, or “decep-
tive”, written by someone who has not. We chose this task since it has been used in previous
studies of human-AI collaboration to test the effect of explanations [140] and tutorials [40].
BD groups were chosen from research on common failures in language models:
Group 1 - Reviews with less than 50 words [44].
Group 2 - Reviews with more than 3 exclamation marks [145].

Satellite Image Classification. The satellite images come from the NWPU-RESISC45
dataset [146], which has 31,500 satellite images across 45 classes. The task for the dataset
is multiclass classification, labeling each square satellite image with a semantic class. We
selected a subset of 10 classes for the task in order to show participants at least a couple
instances per class. This task was inspired by real-world human-AI systems for labeling
and segmenting satellite images [147]. The BD groups were chosen from areas of high
error in the confusion matrices from the original paper [146]:
Group 1 - Cloud and glacier images
Group 2 - Meadow and golf course images

Bird Classification. The bird images came from the Caltech-UCSD Birds 200 dataset
[148], made up of 6,033 images of 200 bird species. As in the satellite image task, we
chose a subset of 10 classes from the dataset for multiclass classification. The task was
inspired by numerous apps and products for classifying bird species [149]. The BD groups
were chosen from birds in the same family, classes that are the most similar and difficult to
distinguish:
Group 1 - Cactus Wrens and House Wrens

56

Group 2 - Red Bellied Woodpeckers and Red Headed Woodpeckers

5.3.2 Hypotheses

From the primary goal of behavior descriptions, helping end-users appropriately rely on
an AI, we formulated the following hypotheses of how we expect behavior descriptions to
affect human-AI collaboration. The hypotheses focus both on quantitative measures of per-
formance and qualitative opinions from participants. Our first hypothesis is that behavior
descriptions will improve the overall accuracy of human-AI teams. We hypothesize that
behavior descriptions will help end-users more appropriately rely on the AI [34], leading
to improved performance.

H1. Showing participants behavior descriptions (BD) results in higher overall accuracy
than just showing the AI prediction or no AI.

We hypothesize that this improved performance will primarily come from participants over-
riding the systematic failures identified by behavior descriptions. By providing actionable
descriptions of when the model is most likely to be wrong, for instances in BD groups,
we hypothesize that the participants will be able to better identify and correct errors when
shown behavior descriptions.

H2. The higher accuracy from showing BDs is due to a higher accuracy on instances that
are part of BD groups.

Lastly, we have a set of hypotheses on how we expect people’s perception of the AI to
change when they are shown behavior descriptions. We hypothesize that participants will
find the AI to be more helpful, will be more likely to want to use the AI, and will trust the

AI more when they are shown behavior descriptions. These hypotheses come from Yin et

al. [142]’s study on accuracy and trust in AI systems, which found that observed accuracy
significantly affected trust and reliance on AI systems.

H3a. Participants shown BDs trust the AI more than when just shown the AI output.

H3b. Participants shown BDs find the AI more helpful than when just shown the AI output.

H3c. Participants shown BDs are more likely to want to use the AI in the future than when
just shown the AI output.

57

Figure 5.4: Average participant accuracy by task and condition. The vertical orange bar indi-
cates the AI accuracy, what would be the participant’s accuracy if they picked the AI response every
time. The blue shaded area indicates complementarity, the region where the human+AI accuracy is
higher than either the human or AI alone. We find that behavior descriptions led to higher accuracy
in the reviews and birds tasks, with complementarity in the birds task (red point in rightmost chart).
The error bars represent standard error.

5.4 Results

To assess the significance of different conditions on participant accuracy, we used ANOVA
tests with Tukey post-hoc tests to correct for multiple comparisons. For the Likert scale
questions, we used Mann-Whitney U tests with Bonferroni corrections. Lastly, we used
linear models to test for learning effects, also using a Bonferroni correction for multiple
comparisons. We used a p value of 0.05 as the cutoff for significance.

5.4.1 Overall Accuracy

To test H1 we can compare the average human-AI team accuracy for each task across
the three conditions. Overall, we found that the AI and AI + behavior descriptions (BD)

interventions have a different effect on team performance in each task (fig. 5.4).
For the reviews task, there was a significant difference in accuracy across the three con-

ditions (F2,64 = 9.18, p < 0.001). The only significant pairwise difference was between
the No AI and AI + BD conditions (p < 0.001, 95% C.I. = [0.06, 0.22]). While the AI by
itself did not significantly improve the accuracy of the participants, AI supplemented with
behavior descriptions led to significantly higher team accuracy, supporting H1. Despite the
increased performance, there was no human-AI complementarity – higher accuracy than
either the human or AI alone – as participant accuracy at every condition was lower than
the baseline AI accuracy.

In the satellite classification task there was no significant difference between conditions
(F2,67 = 0.63, p = 0.534). The baseline human accuracy without AI support was the
highest across tasks, around 90%, so there was a smaller margin to improve the accuracy
of the participants using an AI with a significantly worse accuracy.

Lastly, in the birds classification task, there was a significant difference in participant
accuracy (F2,65 = 3.98, p = 0.023). As in the reviews task, the only pairwise difference

58

Figure 5.5: Average team accuracy by task, condition and instance group. We further break
down accuracy by instance type (see section 5.3.1): the main group (20 instances), and two behavior
description groups (5 instances each). The average human-AI accuracy across the three groups of
instances gives us an idea of how behavior descriptions improve the performance of human-AI
teams. We find that participants relied more on the AI when shown BDs in every task. Participant
performance on the different behavior description groups was mixed, from no effect to significant
improvement in group 2 birds (bottom right). These results highlight the two effects of behavior
descriptions, increasing human reliance on a more accurate AI and overriding systematic AI errors.
The error bars represent standard error.

was between the No AI and AI + BD conditions (p = 0.048, 95% C.I. = [0.00, 0.16]),
showing how behavior descriptions can lead to significant increases in participant accuracy
using an AI and supporting H1. This increased performance also led to complementary
human-AI accuracy, higher than that of both the AI or human alone.

In sum, these results partially support H1, with behavior descriptions leading to sig-
nificantly higher accuracy in two of the three tasks. This suggests that while behavior
descriptions will not universally improve the accuracy of human-AI teams, they can lead
to significant improvements in certain tasks and domains.

5.4.2 Accuracy by Behavior Description Group

To better understand the ways in which behavior descriptions impact performance, we can
look at participant accuracy across both conditions and instances in the three different be-
havior description groups described in section 5.3.1 (fig. 5.5). This allows us to directly test
H2 by seeing if participants in the AI + BD condition perform significantly better on the
two subsets of instances that have behavior descriptions. The results can be seen in fig. 5.5.
We found that this is partially true, as the increased accuracy of the AI + BD condition was
due both to higher accuracy on the behavior description groups and instances in the main
group.

In the reviews task, there was only a significant difference between conditions for in-

59

stances in the normal group (F2,64 = 11.82, p < 0.001), with no differences between
conditions for either of the behavior description groups. The AI (p = 0.007, 95% C.I. =

[0.03, 0.24]) and AI + BD (p < 0.001, 95% C.I. = [0.10, 0.31]) conditions were signif-
icantly more accurate than the No AI condition for instances in the main group. These
results do not support H2, as the higher overall accuracy of the AI + BD condition was pri-
marily due to greater reliance on the AI for instances in the main group, not higher accuracy
on instances with behavior descriptions.

Despite there being no difference in overall accuracy between conditions for the satellite
task, there were differences when looking at the behavior description groups. As with the
reviews task, there was a significant difference between conditions for instances in the main
group (F2,67 = 5.34, p = 0.007). Participants in both the AI (p = 0.026, 95% C.I. =

[0.00, 0.09] and AI + BD (p = 0.007, 95% C.I. = [0.01, 0.10] conditions had a higher
accuracy than participants in the No AI condition for instances in the main group. This
is the same result we found in the reviews task, where there were significant accuracy
differences for instances in the main group. Despite this difference, the increased accuracy
did not translate to a higher overall accuracy for the AI and AI + BD conditions. Since we
did not find any difference between conditions for the two BD groups, these findings do
not support H2.

Lastly, we found significant differences between conditions for multiple behavior de-
scription groups in the bird classification task. As with the other two tasks, there is a sig-
nificant difference in accuracy between conditions for instances in the main group (F2,65 =

12.22, p < 0.001). Both AI and AI + BD have a significantly higher accuracy than No AI,
but there is no significance between AI and AI + BD. Although there is no significance for
instances in group 1, we do see a difference between conditions for instances in group 2
(F2,65 = 6.81, p = 0.002). Both the No AI and AI + BD conditions both have a higher
accuracy than just AI. This shows that while participants were able to distinguish between
the two types of woodpeckers in group 2 without the AI or when informed about the AI
failures, participants trusted the AI and performed significantly worse when just shown the
AI prediction. These results support H2, as the increased accuracy on group 2 led to higher
accuracy in the AI + BD condition.

In summary, these results partially support H2. Depending on the task, the higher
accuracy in the AI + BD condition was due to a higher accuracy on instances that were part
of BD groups and and a greater reliance on the AI for instances in the main group.

60

Figure 5.6: Likert-scale responses on perception of AI. The diverging stacked bar chart centered
around the neutral response shows that participants across all conditions and subjective measures
overwhelmingly viewed the AI favorably. There were no significant differences in user’s perception
of the AI when they were give behavior descriptions.

5.4.3 Qualitative Results

After labeling the 30 instances, participants were shown a questionnaire page asking about
their opinions and feelings of the AI aid using Likert scale questions (fig. 5.6). Since these
questions were directly related to the AI output, they were only shown to participants in
the AI and AI + BD conditions. The questions were the following: (1) How helpful was
the AI for this task? (2) How likely are you to use this AI again in a future task? (3) How
much do you trust the AI? We did not find significant differences between the AI and AI +

BD conditions for any of the Likert scale questions across tasks. These results reject H3a,
H3b, H3c, and indicate that behavior descriptions do not significantly impact participant
perceptions of AI despite differences in how participants use AI predictions.

5.4.4 Additional Findings

In addition to the accuracy metrics and Likert scale responses, we collected and analyzed
additional measurements and qualitative responses to further unpack the dynamics of be-
havior descriptions. Although these are post hoc, exploratory results for which we did not
have hypotheses, they can serve as inspiration for further, more formal studies.

One such factor was the time it took participants to label each instance, which can
potentially surface interesting insights when compared between conditions and behavior
description groups. Unfortunately, the time per instance had high variance and was incon-
sistent, with numerous outliers. This is likely due to the way AMT workers complete tasks,
as they often take breaks or search for new HITs while working on a task [150]. Future
studies could incentivize quick responses to gather more accurate time data and measure
the speed of participant responses across conditions.

We also tracked in which round each instance was labeled, (n/30), to detect any learn-
ing effects (fig. 5.7). To measure learning effects, we fit a linear model of average par-

61

Figure 5.7: Learning curves by task and condition. We fit linear models of accuracy on round
number to measure learning effects. We found that the two conditions in which BDs significantly
improved performance also had significant learning effects, the AI + BD conditions in the reviews
and birds tasks (denoted by *).

ticipant accuracy for each condition and each step. We found that for the two domains
in which behavior descriptions were effective, reviews and birds, there was also a signifi-
cant learning effect for the AI + BD condition (reviews/AI + BD: β = 0.0062, p = 0.020;
birds/AI + BD: β = 0.0031, p = 0.035).

The endpoints of the learning curves also show some interesting patterns. For the re-
views task, participants in the AI and AI + BD conditions started at similar accuracies and
only over time did participants in the AI + BD condition learn to effectively work with the
AI and make use of the behavior descriptions. In contrast, in the birds classification task,
participants in the AI + BD condition were consistently better than the AI condition and
improved at a similar rate over time. Interestingly, for the satellite domain, the AI + BD

condition learning curve ends at a point similar to the No AI condition but starts signifi-
cantly higher. This suggests that, while over time participants learned the correct satellite
labels or when the AI tended to fail, the behavior descriptions helped bootstrap the learning
process.

Lastly, we collected qualitative free response answers from participants about patterns
of AI behavior they noticed and general comments they had about the task. As expected,
participants in both the AI and AI + BD noticed that the AI failed in the behavior description
groups. While more participants described failures in the AI + BD condition than the AI

condition, the comments were inconsistent and did not show many significant differences
between conditions. We found an interesting pattern from comments in the birds task,
where participants in the AI condition described more general but correct patterns of AI
failure. Specifically, a participant found that “the AI is good at predicting the main class of

birds, but might get the sub class incorrect,” which was the common failure reason between
the two BD groups.

62

5.5 Discussion

These results show that directly informing people about AI behaviors can significantly
improve human-AI collaboration. We hope these initial insights spark future work on un-
derstanding people’s mental models and developing new types of behavior-based decision
aids.

5.5.1 Effectiveness of Behavior Descriptions

Overall, the results generally supported our primary hypothesis that behavior descriptions
can significantly improve the accuracy of participants working with AI aids. Surprisingly,
however, we found that the improved accuracy came from two complementary effects:
people overriding systematic AI failures and relying more often on the AI for instances
without behavior descriptions.

The first effect, helping participants fix systematic AI failures, was the initial goal of
behavior descriptions, but we found that it was inconsistent and varied significantly be-
tween conditions and behavior description groups. For example, in the reviews task, there
was no significant accuracy difference for instances in either behavior description group.
This is likely due to the behavior descriptions in the reviews domain not being sufficiently
actionable and the participants not knowing whether or not to override the AI when they
knew it was likely wrong. On the contrary, there was a significant difference in accuracy
for instances in group 2 of the bird classification task, where participants in the BD condi-
tion were able to fix AI failures that most participants with just the AI did not notice. Thus,
while we did find some support for this effect, participants fixing AI failures in BD groups
was often not the main driver of increased overall accuracy.

In contrast, the more consistent effect was participants in the AI + BD condition relying
on the AI more often for instances not in the BD groups (main group) compared to the AI

condition. This increased reliance on the AI when it was more accurate, on instances in the
main group, contributed to the higher overall accuracy in the AI + BD conditions for the
reviews and birds tasks. This was an unexpected effect which was a factor in the higher
overall accuracy for participants in the AI + BD condition. Although unexpected, the effect
is corroborated by studies on trust in AI systems that found that low reliability, AI output
that violates people’s expectations over time, decreases trust and reliance in an AI [151].
By isolating common AI errors into well-defined, predictable subgroups, the AI appears
more reliable to people and can increase their trust and reliance.

Although two of the three domains showed an overall increase in accuracy with behav-
ior descriptions, there was no significant increase in the satellite classification task. We

63

believe that this is due to the high baseline accuracy of humans performing the task, with
approximately 90% accuracy, which left little room for improvement with a significantly
less accurate AI. The high accuracy of the participants also allowed them to detect and
fix the AI errors in the BD groups without any prompting in the AI condition. In sum-
mary, while behavior descriptions can improve performance, they are not the panacea to
human-AI collaboration — AI aids must still provide value and complementarity to human
decision makers.

5.5.2 Learning and Behavior Descriptions

We found that participants improved more quickly when using behavior descriptions, learn-
ing to effectively complement the AI. The primary pattern we noticed was the significant
learning rate in the AI + BD condition for the reviews and birds task, as participants quickly
learned when they should override the AI. This could be an important property for AI sys-
tems that are updated often, as new behavior descriptions could be used to directly update
end-users mental models and avoid failures from incompatible updates [139].

A secondary effect we found was a higher initial accuracy in the AI + BD condition
for the satellite and birds task. While it took time for participants in the AI condition to
notice how a model tended to fail, the participants with behavior descriptions were aware
of the failures right from the start. Even if people’s accuracy converges over time, as in
the reviews task, behavior descriptions can speed up end-user onboarding and improve
early-stage performance.

5.5.3 Authoring Behavior Descriptions

Tools designed specifically for creating BDs could provide important benefits. For ex-
ample, behavior descriptions do not have to be AI failures, but could highlight consistent
output patterns or areas where the model performs much better than humans. Bespoke
tools could also optimize for creating behavior descriptions with effective properties such
as those described in Section 5.2.1. Tools customized to create behavior descriptions could
optimize for these different properties.

The types of people who create behavior descriptions can also be much broader than
AI/ML developers. With the right tools, stakeholders ranging from quality assurance en-
gineers to domain-specific teams could discover and deploy their own behavior descrip-
tions. In the future, techniques from crowdsourcing could be used to harness end-user’s
own insights for generating behavior descriptions. This could be, for example, prompting
end-users to report consistent failures and patterns that could then be aggregated and voted

64

on [19]. The insights could be processed to automatically generate up-to-date behavior
descriptions.

5.5.4 Understanding and Improving Mental Models of AI

These experiments also implicitly tested the more general effect of human mental models
on how they collaborate with AIs. We found that when humans have more detailed mental
models of how an AI performs, they are more likely to rely on the AI in general. This result
is interesting regardless of the use of behavior descriptions, as more experienced end-users
will likely develop better mental models of AI aids and gradually change how they rely on
the AI.

Developing better techniques for quantifying end-user’s mental models of AI systems
can help researchers design effective decision aids such as behavior descriptions. This work
could take inspiration from studies in HCI and psychology on cognitive modeling, mathe-
matical models of human cognition [152]. Cognitive models have been used in education
by simulating how people learn math to dynamically teach students [153]. For human-AI
collaboration, cognitive models of how people learn AI behavior could inform the design
of decision aids such as behavior descriptions.

Our results can also guide the design of machine learning models that can more directly
provide behavior descriptions. For example, sparse decision trees could be used to directly
generate behavior descriptions to show to end-users. New algorithmic methods that are
more amenable to finding clusters of high error could lead to better human-AI collaborative
systems.

5.6 Limitations and Future Work

The participants in our study were Amazon Mechanical Turk workers with limited domain
expertise in the tasks they completed. Domain experts and professionals, e.g., doctors or
lawyers, have deeper expertise in their fields and may develop different mental models of
AI systems they work with. For example, they may notice AI failures more often or be
less influenced by the information provided by behavior descriptions. Future studies can
explore the dynamics of using BDs with domain experts.

Although we selected domains that reflect potential real-world examples of human-AI
collaboration, our experiment was a controlled study in a simulated setting. The impact
of behavior descriptions may vary when applied to real-world situations with consequen-
tial outcomes [38], such as a radiologist classifying tumors. When classification errors

65

have a much higher cost, people may update their mental models differently or act more
conservatively when shown BDs.

Our study used one specific type of behavior description, subgroup accuracy. There are
countless variations of BDs that can be explored further, such as highlighting subgroups
with high accuracy, describing what features of an instance are correlated with failure, or
suggesting alternative labels. Future experiments could test these variations to disentan-
gle which features of behavior descriptions are the most effective in improving people’s
performance.

Lastly, our study focused on the relatively simple domain of classification. Modern
AI systems are used in much more complex tasks such as image captioning, human pose
estimation, and even image generation. The behavior descriptions for these domains will
likely look significantly different from those tested in this work. For example, BDs for
a captioning model might focus on grammatical issues and object references rather than
statistical metrics. The impact of behavior descriptions will likely vary significantly in
these domains, and specific studies could explore both their effect and optimal designs.

5.7 Conclusion

We introduce behavior descriptions, details shown to people in human-AI teams of how a
model performs for subgroups of instances. In a series of user studies with 225 participants
in 3 distinct domains, we find that behavior descriptions can significantly improve human-
AI team performance by helping people both correct AI failures and rely on the AI when
it is more accurate. These results highlight the importance of people’s mental models of
AI systems and show that methods directly improving mental models can improve people’s
performance when using AI aids. This work opens the door to designing behavior-based AI
aids and better understanding how humans represent, develop, and update mental models
of AI systems.

66

CHAPTER 6
ZENO: A GENERAL-PURPOSE TOOL FOR AI EVALUATION

To successfully implement BDAI, developers need powerful tools to discover, define, and
test behaviors as they iterate on their deployed models. In this section, we introduce Zeno,
an interactive tool for discovering and quantifying behaviors for any AI system. Zeno
addresses two central sensemaking steps, schemas, and hypotheses, and is an example tool
supporting BDAI.

This chapter was adapted from my published paper:

Ángel Alexander Cabrera, Erica Fu, Donald Bertucci, Kenneth Holstein, Ameet Talwalkar,
Jason I. Hong, and Adam Perer. 2023. “Zeno: An Interactive Framework for Behavioral
Evaluation of Machine Learning.” In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI ’23). Association for Computing Machinery, New York,
NY, USA, Article 419, 1–14.

6.1 Introduction

Machine learning (ML) systems deployed in the real world can encode problems such as
societal biases [154] and safety concerns [155]. Practitioners and researchers continue to
discover significant limitations and failures in state-of-the-art models, from systematic mis-
classification of certain medical images [68] to racial biases in pedestrian detection models
[156]. In one classic example, Buolamwini and Gebru [13] compared the performance of
facial classification models across different demographic groups and found that the models
performed significantly worse for darker-skinned women compared to lighter-skinned men.

Discovering and validating model limitations is often termed behavioral evaluation or
testing [14]. It requires going beyond measuring aggregate metrics, such as accuracy or
F1 score, and understanding patterns of model output for subgroups, or slices, of input
data. Enumerating what behaviors a model should have or what types of errors it could
produce requires collaboration between stakeholders such as ML engineers, designers, and
domain experts [53, 18]. Behavioral evaluation is also a continuous, iterative process, as

67

Figure 6.1: ZENO is a framework for behavioral evaluation of machine learning (ML) models. It
has two components, a Python API and an interactive UI. The API is used to generate information
such as model outputs and metrics. Users then interact with the UI to see metrics, create slices, and
write unit tests. In this toy example, a user is evaluating a cat and dog classifier. They see that the
model has lower accuracy for dogs with pointy ears, and create a test expecting the slice accuracy
to be higher than 70%.

practitioners update their models to fix limitations or add features while ensuring that new
failures are not introduced [15].

Despite a growing focus on the importance of behavioral evaluation, it remains a chal-
lenging task in practice. Models are often developed without practitioners having clear
model requirements or a deep understanding of the products or services in which the model
will be deployed [53]. Furthermore, many behavioral evaluation tools, such as fairness
toolkits, often do not support the types of models, data, and behaviors that practitioners
work with in the real world [157]. Practitioners end up manually testing hand-picked ex-
amples from users and stakeholders, making it challenging to effectively compare models
and pick the best version to deploy [63].

Given the current state of behavioral evaluation for machine learning, this paper asks
two guiding research questions: (1) What are the specific real-world challenges for ML
evaluation which are shared across different models, data types, and organizations, and (2)
Can an evaluation system addressing these challenges help practitioners discover, evalu-
ate, and track behaviors across diverse ML systems. To this end, we make the following
contributions:

• Formative study on ML evaluation practices. Through semi-structured interviews with
18 practitioners, we identify common challenges for behavioral evaluation of ML sys-
tems and opportunities for future tools.

• ZENO, a general-purpose framework for behavioral evaluation of ML systems. We
design and implement a framework for evaluating machine learning models across data

68

Figure 6.2: ZENO’s architecture overview. The ZENO program and inputs (outlined in purple boxes)
can either be hosted locally or run on a remote machine. ZENO takes a configuration file with
information such as paths to data folders, test files, and metadata and creates a parallelized data
processing pipeline to run the decorated Python functions. The resulting UI is available through an
endpoint that can be accessed locally or hosted on a server.

types, tasks, and behaviors. ZENO (Figure 6.1) combines a Python API and interactive
UI for creating data slices, exportable reports, and test suites.

• Case studies applying ZENO on diverse models. We present four case studies of prac-
titioners using ZENO to evaluate their ML systems. Using ZENO, practitioners were able
to reproduce existing analyses without code, generate hypotheses of model failures, dis-
cover and validate new model behaviors, and come up with actionable next steps for
fixing model issues.

6.2 Design Goals

From these interviews and the reviewed studies on ML evaluation, we distilled a set of
design goals that a behavioral evaluation system should have. The goals focus on gen-
eral evaluation challenges identified in the formative study, such as defining behaviors and
comparing models. With a system for behavioral evaluation, a user should be able to:

D1. Evaluate models with different architectures, tasks, and data types. Machine learn-
ing is a broad field with diverse models and tasks ranging from audio transcription to
human pose estimation. To reduce the learning curve and encourage the reuse of anal-
yses, users should be able to use one framework to perform behavioral evaluations on
most ML tasks.

D2. Define and measure diverse model behaviors. Model behaviors are varied and com-
plex, from demographic biases to grammatical failures. Users should be able to encode
most of the behaviors across which they wish to evaluate their models.

D3. Track model performance over time. Practitioners are continually deploying updated
models with new architectures trained on improved data. Users should be able to track
performance across models and find potential regressions.

69

D4. Evaluate model performance without programming. Modern machine learning sys-
tems are built by large cross-functional teams with nontechnical users. Users should be
able to perform behavioral analyses of models without having to write code.

6.3 Zeno: An Interactive Evaluation Framework

We used these goals to design and implement ZENO, a general-purpose framework for eval-
uating ML systems across diverse behaviors. ZENO is made up of two linked components,
a Python API and an interactive user interface (UI). The Python API is used to write func-
tions providing the core building blocks of behavioral evaluation such as model outputs,
metrics, metadata, and transformed instances. Outputs from the API are used to scaffold
the interactive UI, which is the primary interface for doing behavioral evaluation and test-
ing. The ZENO frontend has two primary views: an Exploration UI for discovering and
creating slices of data and an Analysis UI for writing tests, authoring reports, and tracking
performance over time (D3).

Originally, we explored implementing ZENO as either a plugin for computational note-
books or a standalone user interface. We decided on a combined programmatic API and
interactive UI as we found it could make ZENO both extensible and accessible. The general
Python API allows ZENO to be applied to diverse models, data types, and behaviors (D1,
D2), while the interactive UI allows nontechnical users to run evaluation (D4).

ZENO is distributed as a Python program. The Python package includes the compiled
frontend which is written in Svelte and uses Vega-Lite [158] for visualizations and Ar-
quero [159] for data manipulation. To run ZENO, users specify settings such as test files,
data paths, and column names in a TOML configuration file and launch the processing and
UI from the command line (Figure 6.2). Since ZENO hosts the UI as a URL endpoint, it can
either be run locally or run remotely on a server with more compute and still be accessed
by users on local machines. This architecture can scale to large deployed settings and was
tested with datasets with millions of instances (e.g. DiffusionDB [160], 2 million images
(Section 6.4.4)).

Running example

To explain ZENO’s concepts, we walk through an example use case of a data scientist
working at a company deploying a new model. In the following sections, we use block
quotes to show how ZENO’s features would be used in the example.

Emma is a data scientist at a startup developing a voice assistant. Her company is using

70

a simple audio transcription model and she has been tasked with understanding how
well the model works for their data and what updates they need to make.

6.3.1 Python API: Extensible Model Analysis

A core component of ZENO is an extensible Python API for running model inference and
data processing. The ML landscape is fragmented across many frameworks and libraries,
especially for different data and model types. Despite this fragmentation, most ML libraries
are based on Python, so we designed the backend API for ZENO as a set of Python decorator
functions that can support most current ML models (D1).

The ZENO Python API (Figure 6.3) consists of four decorator functions: @model,
@metric, @distill, and @transform. We found that these four functions support
the building blocks of behavioral evaluation. All four functions take the same input, a
Pandas DataFrame [161] with metadata and a ZenoOptions object. We chose Pandas
as the API for the metadata table due to its popularity, which lowers the learning curve
for writing ZENO functions for many data scientists. The ZenoOptions object passes
relevant information such as column names and static file paths to the decorated API func-
tions. Since ZENO calls API functions dynamically for different models and transformed
inputs, ZenoOptions is necessary for a function to access the correct columns of the
DataFrame.

The two core functions that a user must implement to use ZENO are the @model and
@metric functions. Functions decorated with @model return a new function that returns
the outputs for a given model. Since this function is model-agnostic, any ML framework or
AI service can be evaluated using ZENO (D1). The @metric decorated functions return
a summary number given a subset of data. @metric functions can return classic metrics
such as accuracy or F1 score, but can also be used for specific tests such as calculating the
percentage of changed outputs after data transformations (D2).

Emma writes a @model function which calls her transcription model and returns the
transcribed text. She then uses a Python library to implement various @metric func-
tions for common transcription metrics such as word error rate (WER).

The two other ZENO decorator functions provide additional functionalities that support
behavioral evaluation. Datasets often do not have sufficient metadata for users to create the
specific slices across which they wish to evaluate their models. For example, a user may
want to create a slice for images with low exposure, but most image datasets do not have
the exposure level of an image in the metadata. @distill decorated functions return a
new DataFrame column for a dataset, extracting additional metadata from instances, and

71

Figure 6.3: The ZENO Python API has four decorator functions: @model, @metric, @distill,
and @transform. The functions all take the same inputs, a DataFrame and a ZenoOptions object
with information such as data paths and column names. @model functions return a function for
getting running model inference. In the example above, the @model function loads a speech-to-text
model and returns a function that transcribes audio data. @metric functions calculate aggregate
metrics on subsets of data. Above, the @metric function computes the average word error rate
(avg wer) for transcribed audio. @distill functions derive new metadata columns. Above, the
@distill function calculates the amplitude value from audio. @transform functions produce
new data inputs. Above, the @transform function lowers the amplitude of audio samples.

72

Figure 6.4: The Exploration UI allows users to see data instances and model outputs and investigate
model performance. In the figure, ZENO is shown for the audio transcription example described in
Section 6.3. The interface has two components, the Metadata Panel (A & B) and the Samples
View (C). The Metadata Panel shows the metadata distributions of the dataset (B) and the slices and
folders a user has created (A). The metadata widgets are cross-filtered, with the purple bars showing
the filtered table distribution. The Samples View (C) shows the filtered data instances and outputs,
currently those with 0.04 ¡ amplitude ¡ 0.12, along with the selected metric, in this case, accuracy.

allowing users to define more specific slices (D2). Users may also want to check the output
of their model on modified instances, especially for robustness analyses or metamorphic
tests. The @transform function returns a new set of modified instances from a subset
of instances. For the image exposure example above, a user could write a transformation
function that darkens images to check how a model performs for different exposures.

Emma knows her users have a range of microphones across which she wants her au-
dio transcription model to work well. To test these types of scenarios, she writes a
@distill function that calculates the amplitude of the sound inputs and a @transform
function that adds different types of noise.

The ZENO backend builds a data processing pipeline to run the decorated functions
and calculate the outputs for the frontend. For example, ZENO parses the code of each
@distill function to decide whether it depends on model outputs and must be run for
each model. Additionally, ZENO runs the processing and inference functions in parallel,
which is especially helpful for transform functions, since each @distill and @model

73

Figure 6.5: The instance view of the Exploration UI (Figure 6.4, C) is a modular Python package
that can be swapped out for different models and data types. New views can be implemented
with a single JavaScript file. ZENO currently has six implemented views, shown here with the
following datasets: image classification (CIFAR-10 [162]), audio transcription (Free Spoken Digit
Dataset [163]), image segmentation (Kvasir-SEG [164]), text classification (Amazon reviews [165]),
timeseries classification (MotionSense [166]), and object detection (MS-COCO [167])

function needs to be run on each transformed instance. Lastly, all ZENO function outputs
are cached so any runs after the initial processing are instant.

6.3.2 Exploration UI: Create and Track Slices

To empower nontechnical stakeholders to perform behavioral analyses, the main interface
of ZENO is an interactive UI (D4). Although the initial @model and @metric functions
are required to initially set up ZENO, the core behavioral evaluation steps can all be done in
the frontend UI by nontechnical users.

The primary tasks in behavioral evaluation are creating subsets of data and calculating
relevant metrics. The Exploration page is the initial interface for ZENO and allows users to
explore, filter, and create slices of data. It is divided into two sections, the instance view
and the metadata panel.

The instance view (Figure 6.4, C) is a grid display of data instances, ground truth labels,
and model outputs. Users can select which model output they wish to see, which metric is
calculated, and which transformation is applied to the data using the drop-down menus at
the top of the UI. A key feature of the instance view is that it is a modular Python package
that supports any model and data type (D1). Each view is a separate Python package that
implements a JavaScript function to render a subset of data. While views are JavaScript
functions, they are packaged as Python libraries so users can install the views they need
the same way they install the ZENO package. There are currently 6 views implemented
(Figure 6.5), and additional views can be created using a cookiecutter template.

The metadata panel (Figure 6.4, A & B) provides summary visualizations of the meta-

74

data columns and previews of user-generated data slices. Each metadata column is shown
as a row in the metadata panel, displayed with a different widget depending on what type
of metadata it is. ZENO supports 5 main metadata types: continuous, nominal, boolean,
datetime, and string. Each metadata widget is interactive and can be filtered to reactively
update the instance view and other metadata widgets. When a metadata column is filtered,
the filter is shown above the instance view and the selected metric is calculated for the
current subset.

When a user finds an interesting or significant subset of data, they can save the current
filters as a formal slice. Slices can also be created in the slicing panel, which allows users
to visually define and join filter predicates on metadata columns. These slices are displayed
at the top of the metadata panel with their size and the selected metric, providing a quick
look at the performance for each slice. Users can also create folders to organize their slices.

Emma runs ZENO to analyze her transcription model in the Exploration UI. First, she
filters the amplitude metadata widget and finds that the model is significantly worse at
transcribing quiet audio. To track this subset, she creates a slice and puts it in the audio

properties folder (Figure 6.4, A). She then selects the white noise transformation and
sees that the error rate increases significantly. She notes that they may want to augment
their training data with noisy instances.

6.3.3 Analysis UI: Track and Test Slices Across Models

Once users have created the slices they wish to track using the Exploration UI, they are
faced with the challenge of comparing models and slices. The Analysis UI (Figure 6.6)
provides visualizations, reporting tools, and testing features to help users better understand
and compare the performance of multiple models (D3).

At the bottom of the Analysis page (Figure 6.6, F) is a table showing the slices created
in the Exploration page. To help users navigate the slices, folders are shown as tabs above
the table and can be used to filter which slices are shown. Users can also select which
metric and transform is applied to each slice, and the resulting metric is shown as a column
for each model. To make it easier to detect trends in slice performance over time, ZENO

shows a sparkline of the selected metric across models for each slice (D3).
A common phenomenon for models deployed in the real world is domain shift, where

the real-world data distribution changes over time and model performance degrades [168].
To alert users of potential regressions in model performance, ZENO detects slices with
performance that decreases between models. For each slice, ZENO fits a simple linear re-
gression of the selected metric across models, and users are alerted of slices with significant

75

Figure 6.6: The Analysis UI helps users visualize trends of model performance across slices, and
allows them to create behavioral unit tests of expected slice metrics. In the figure, ZENO is shown
for the CIFAR-10 image classification task comparing models trained for different epochs. The
Slice Drawer (F) shows the performance of slices across models, including a sparkline with the
metric trend over time. Users can create new reports in the Report Panel (D) and add slices from
the Slice Drawer. Lastly, in the Report View (E), users can create behavioral unit tests of expected
model performance.

negative slope by a downward arrow next to the sparkline (D3). ZENO also highlights slices
with high variance, indicating potential unexpected behavior, with a red up-and-down ar-
row next to the sparkline.

Since domain shift and model updates can lead to unexpected changes in model perfor-
mance, users may want to set tests for expected slice metrics. We term these behavioral

unit tests, functions that determine whether a metric for a slice is in an expected range,
such as accuracy > 70%. To create tests, users first create a new report (Figure 6.6, D), a
collection of slices, and add to it the slices they wish to test. They can then set an expecta-
tion for a certain metric on each slice using boolean predicates on the metric value. Models
for which the test fails are highlighted in red in the report table, with the overall number
of tests that failed for the most recent model shown next to each report in the report panel.
Reports can be exported as PDFs to be shared externally from Zeno (D4).

Emma uses the insights from the Exploration UI to train a few new models with new and
augmented data. In the Analysis UI she sees that her new models are performing better
for noisy input audio, but there is a decreasing trend for instances with lower amplitude.

76

To ensure that this trend does not continue, she creates a new report and adds slices for
different levels of amplitude. She then creates behavioral unit tests expecting each slice
to have an accuracy of over 65%.

6.4 Case Studies

We collaborated with four ML practitioners to set up ZENO on models they developed or
audited in their work. The goal of these case studies was to answer our second research
question, whether ZENO can help practitioners working on diverse ML tasks effectively
evaluate their models and discover important behaviors. We chose these case studies as they
represented a wide range of tasks (binary classification, multi-class classification, image
generation) and data types (text, images, audio), testing how well ZENO generalizes.

Before each study, we met with the case study participant to understand the types of
ML systems they use and decide which model(s) they wished to evaluate using ZENO. We
then worked with them asynchronously to set up an instance of ZENO, with their model,
which they could access on their computer. Finally, we conducted a one-hour study with an
interview and think-aloud session (two in-person, two virtual). During the study’s first 15-
30 minutes, we asked participants about their existing approaches to model evaluation and
the challenges they face. For the remainder of the study, participants shared their screen
and used ZENO to evaluate the ML model, describing their thought process and findings
while mentioning limitations and desired features. Our Institutional Review Board (IRB)
approved this as a separate study from the formative interviews. In each of the following
sections, we introduce the problem, describe the participant’s existing evaluation approach,
and detail their findings from using ZENO.

6.4.1 Case 1: UI Classification

For the first case study, we worked with a researcher developing a model to classify smart-
phone screenshots using a CNN-based deep learning model, which they were evaluating
on 10,000 images. The model aims to make UIs more accessible to people with visual
impairments by informing them of the type of interface they are looking at. The participant
was looking to expand their system to screenshots from other devices, e.g., tablets, and
wanted to understand their model’s current performance and generalizability. Uniquely for
this case study, the participant ran ZENO on a cloud server that hosted their data and models
and they accessed the ZENO UI remotely on their laptop.

77

Existing evaluation approach.

The first participant primarily uses computational notebooks for both qualitative and quan-

titative evaluation of their models. For qualitative analyses, they select “some test cases

that I hypothesized are hard and easy for the model”, instances for which they check the
model’s output to understand how it is behaving. For example, for this model they check a
specific screenshot of a login screen with a list structure that they expect the model to mis-
classify as a list view. For every new domain in which they train a model, the participant
spends significant time creating dedicated Python notebooks to display data instances and
model outputs for this type of qualitative analysis.

The participant also uses quantitative metrics for evaluation, especially for more com-
plex domains such as object detection where they use a combination of metrics such as
mean Average Precision (mAP) at different scales. As with the qualitative analyses, the
participant authors specific Python notebooks to calculate these metrics. They also make
an effort to write evaluation code that is distinct from the training code to ensure that they
avoid any bugs such as data leakage in the training process.

Findings with ZENO.

The participant found ZENO’s interactive instance view and metadata distributions ex-
tremely useful for discovering new failures, systematically validating qualitative analyses,
and sharing results with others. Just from the initial Exploration UI, the participant found
the ability to quickly browse dozens of instances much more valuable than the static note-
books they used previously. Within a few seconds, they found new model failures they
noted to validate later and add as new qualitative test examples. The participant wished
to filter the instance view to only see failures or have the system suggest slices to make it
easier to quickly find model errors.

With the metadata distributions in the Exploration UI the participant was also able to
validate some of their existing qualitative hypotheses more systematically. For example,
they confirmed their hypothesis that the model would perform worse for underrepresented
classes in the dataset by filtering for the most underrepresented classes using the class
histogram (see Figure 6.7). They found the ability to save such slices of data to share with
others to be a powerful feature and wished to “take a very well known dataset such as

ImageNet, find slices that are questionable and share them” to help others test their own
model for such issues.

Lastly, the participant found that the code for the ZENO API was similar to what they
used in notebooks and that they “could totally get used to the ZENO API”. While they

78

Figure 6.7: A screenshot of the Exploration UI from the UI classification case study (Section 6.4.1).
The participant selected underrepresented ground-truth classes and confirmed that the model per-
formance is significantly worse for them.

were able to copy and paste their existing code into ZENO, they wished for a more stream-
lined setup process, for example, with automatically generated ZENO configuration files for
common data types and ML libraries.

6.4.2 Case 2: Breast Cancer Detection

In the second case study, we worked with a researcher who was auditing a breast cancer
classification model on a dataset of 6,635 images. The model, also a CNN-based deep
learning model, divides mammogram images into small patches and detects whether there
is a lesion present in each patch. The model was trained on a dataset provided by a col-
laboration with clinical researchers at an academic hospital system in the United States.
Although the model had a reasonably high accuracy of 80%, the developers had difficulty
understanding the failure modes of the model, especially since the dataset was de-identified
and had minimal metadata. The participant in our case study wanted to discover meaningful
dimensions across which the model failed in order to guide model updates.

79

Existing evaluation approach

Unlike the first case study participant, the participant in the second study had only used
quantitative aggregate metrics when evaluating models. They “had not used any platform

or framework to understand how a model performed on specific features of the metadata”,
and fully relied on aggregate metrics as a measure for model quality. This involved creating
Python scripts to load a model and data and calculate metrics such as AUC and F1 score.
Attempting to improve the breast cancer classification model led to their first foray into
behavioral evaluation.

Findings with ZENO

The participant found that the combination of the extensible @distill functions and
metadata distributions was essential for finding slices with significant areas of error. Since
the participant was not a domain expert, they consulted with medical imaging researchers
that recommended a Python library, pyradiomics [169], to extract physiologically relevant
characteristics from medical images. The participant implemented dozens of @distill
functions using pyradiomics functions that encoded important regional information, such as
grey-level values, that was not captured by their original features. They also wrote a couple
more @distill functions to encode the position of each image patch, a hypothesis they
had from looking at model failures in the instance view. The participant only had to add a
couple of lines of Python to use all of these functions in ZENO.

Since the dataset had minimal existing metadata, interactively filtering the @distilled
distributions was the primary way the participant found patterns of failure. By interactively
cross-filtering the @distilled metadata histograms, they found that the model performed
significantly worse for images with higher tissue density, a phenomenon that also occurs
with human radiologists [170]. They also found that the model was trained on many back-
ground patches of image that did not include part of the breast, which also impacted the
aggregate metrics. The participant noted that they may want to clean the data and upsam-
ple instances relevant to the classification task. Due to the quantity and complexity of these
analyses, the participant wished for more expressive slice comparisons, such as comparing
multiple slices at a time in the Exploration UI. Otherwise, using ZENO the participant found
significant failures which they had not been able to find using Python scripts.

6.4.3 Case 3: Voice Commands

The third case study was with a participant who was developing a decision-tree model to
detect the direction in which a person is speaking using an array of microphones, which

80

they were evaluating on 11,520 recordings. The goal of the model is to predict to which
microphone, often a smart speaker, a person is talking in order to respond from the right
speaker. The participant had collected data from diverse setups to understand the perfor-
mance of their model in the different scenarios.

Existing evaluation approach

Most of the models the participant works on are sensor-based systems highly impacted
by the physical nature of the data signals, for example, echoes and noise in sound data.
Thus, in addition to calculating classic aggregate metrics, the participant generates and
tests inputs with diverse physical properties. For example, in the model described above,
the participant collected audio from speakers next to a wall and in the middle of the room
to since they thought the rebounding sound from the wall might confuse the model.

To evaluate such scenarios, the participant collects data in dozens of configurations, and
so often has extensive metadata for behavioral analysis. Like the other participants, they
use computational notebooks to manually split the data across different metadata features
and print out multiple metrics. Due to their high quantity of metadata, the participant only
looks at simple slices of data, and does not often explore intersectional slices of multiple
features.

Findings with ZENO

Using ZENO, the participant was both able to validate all of their hypotheses significantly
faster and discovered potential causes for systematic model failures. For example, they
confirmed a finding from previous analyses where a “model worked very well at 1, 2, and

3 meters, but there was a sharp dropoff at 5 meters” by simply looking at the metadata
distributions. They also used the spectrogram visualization of instances in each slice to
look for potential reasons for the steep dropoff in performance, for example, signals with
lower amplitude. Additionally, they found the cross-filtering between metadata histograms
to be useful to find potential interactions between physical features, such as audio both
at a distance and a speaker against a wall. Cross-filtering combined with expressive in-
stance visualizations of the audio data was essential for both confirming their hypothesis
and ideating potential causes for model failures.

Much of the participant’s work is focused on collecting new data, so they suggested
data-related improvements for ZENO. Since the participant often tests their model with
their own inputs, they wished for a direct way to add new instances to ZENO. They also
mentioned having more interactive transformations, for example, having a slider to gradu-

81

ally apply a transformation such as reducing the amplitude of an audio file.

6.4.4 Case 4: Text-to-Image Generation

For our last case study, we worked with a non-technical researcher who explores biases in
deployed ML systems, in this case, the text-to-image generation model Stable Diffusion
[171]. To audit this model they used ZENO with the DiffusionDB Dataset [160], which
consists of 2 million prompt-image pairs generated using the Stable Diffusion model. The
participant wanted to explore potential systematic biases in the images generated by Stable
Diffusion.

Existing evaluation approach

The participant’s work is primarily focused on auditing public-facing algorithmic systems
such as search engine results and social media ads. They exclusively conduct manual,
ad-hoc audits, testing a range of specific inputs such as search queries and individually
checking the model’s outputs. The inputs they test are often guided by existing knowl-
edge of model biases, for example, the participant has “used some lingustic discrimination

knowledge [...] such as knowing that certain words tend to be gendered” to test inputs with
likely biased results.

The participant also works with end users of algorithmic systems to understand how
they audit models and what biases they are able to find. They found that “people often

found issues in searches that none of the researchers, including me, had even thought of”.
Having diverse users test models is essential for finding issues, and the participant works
with end-users to surface new limitations.

Findings with ZENO

When auditing the DiffusionDB dataset with ZENO, the participant took a similar approach
to their previous audits but was able to come up with more systematic and validated con-
clusions of model biases. Their primary interaction with ZENO was using the string search
metadata cell to look for certain prompt inputs. Similar to how they approached debug-
ging search engines, they used prior knowledge of likely biased prompts but were able to
see dozens of examples instead of one prompt at a time. For example, when searching for
prompts with the “scientist” in them, every generated image was male, encoding a typical
gender bias. By seeing dozens of prompts the participant was able to gather more evidence
that the model produced this pattern systematically and was not due to a one-off prompt.

82

The DiffusionDB dataset also includes a measure of toxicity, or “NSFW” level, for
both the input prompts and generated images. These numbers were represented as his-
togram distributions in ZENO, and the participant found it invaluable to filter by and find
potential biases. One interesting experiment the participant tried was to see if the aver-
age distribution of the NSFW tag would go up for certain terms. For example, they saw
small increases in the distribution when searching for certain gendered terms, including
the word “girl”, which reflected that the images generated of women were more sexualized
than those of men. They could only see this dataset-level pattern using the combination of
ZENO’s metadata distribution and instance view.

Lastly, the participant reflected on how usable ZENO would be for everyday users of
algorithmic systems. They mentioned that technical terms such as “metadata” may be too
niche for everyday users and could be renamed. Otherwise, they found the system intuitive
and usable if set up for use by diverse end users.

6.5 Discussion

Our case studies showed that ZENO’s complementary API and UI empowered practitioners
to find significant model issues across datasets and tasks. More generally, we found that a
framework for behavioral evaluation can be effective across diverse data and model types
(D1). This generalizability can be seen by comparing two of the case studies, the malignant
tumor detection (Section 6.4.2) and audio classification (Section 6.4.3) cases. The two
cases differed significantly in their data type (image vs. audio), task (binary vs. multi-
class classification), model (CNN vs. decision tree), and end goal (model development
vs. auditing). Despite these differences, both participants could effectively discover and
encode model behaviors they wished to test and found limitations ranging from robustness
to domain shift (D2).

ZENO’s different affordances made the behavioral evaluation process easier, quicker,
and more effective, depending on the user’s goals and the challenges of each particular
task. For example, in Case 2, the participant found the extensible API essential for creating
metadata to analyze their model across (D2), while in case 3, the participant found the
interactive visualizations more useful given the extensive metadata already present in their
dataset. ZENO also supports users’ particular strengths and skillsets - without using the
API, our non-technical case study participant (Case 4) was still able to find significant
model biases by using their domain knowledge to interact with the UI (D4).

Participants in the case studies found that ZENO was easily integrated into their work-
flows, requiring minimal effort to adapt their code to work with the ZENO API (D1). For

83

example, the participant in case study 1 only modified a few lines of their inference code to
work with ZENO, and the participant in the second case study was able to use a radiomics
library in ZENO with minimal setup. The participants also suggested ways in which ZENO

could be made even easier to use, such as automatically generating ZENO API functions
and configuration files for common ML libraries.

While we validated that most of the design goals were met by ZENO, our case stud-
ies did not thoroughly explore how ZENO could be used over longer periods (D3). All
four participants worked with early-stage models and only used ZENO for a limited time.
Longer-term, in-situ studies would provide more nuanced feedback for the utility of ZENO’s
model comparison features. A benefit of ZENO’s ease of use, both with the API and UI, is
that users can immediately start using ZENO’s model tracking and comparison features as
models move from research to deployment.

6.6 Limitations and Future Work

ZENO provides a general and extensible framework for the behavioral evaluation of ML,
but leaves significant room to better address the challenges in the evaluation process.

Slice discovery. A central challenge for behavioral evaluation is knowing which behav-
iors are important to end users and encoded by a model. To directly encourage the reuse
of model functions to scaffold discovery, we are currently designing ZenoHub, a collab-
orative repository where people can share their ZENO functions and find relevant analysis
components more easily. Including slice discovery methods directly in ZENO could also
help users find important behaviors. ZENO provides the common medium of representing
metadata and slices that practitioners can use to interact with and use the results of these
discovery methods.

Improved visualizations. Defining and testing metrics on data slices is the core of ZENO, but
it only provides a few simple visualizations of data and slices in a grid and table view. There
are many more powerful visualization types that could improve the usability of ZENO.
Instance views that encode semantic similarity, such as DendroMap [172], Facets [88], or
AnchorViz [89], could improve users’ ability to find patterns and new behaviors in their
data. ZENO can also adapt existing visualizations of ML performance, such as ML Cube
[71], Neo [101], or ConfusionFlow [102], to better visualize model behaviors. For example,
grid views showing the intersections of slices could highlight important subsets of data.

Scaling. ZENO has a few optimizations for scaling to large datasets, including parallel

84

computation and caching, but machine learning datasets are continuously growing and ad-
ditional optimizations could speed up processing considerably. A potential update would
be to support processing in distributed computing clusters using a library such as Ray [173].
Another bottleneck is the cross-filtering of dozens of histograms on tables with millions of
rows. ZENO could implement an optimization strategy like Falcon [174] to support live
cross-filtering on large datasets.

Model improvement. ZENO is focused exclusively on evaluation and does not include meth-
ods to update models and fix discovered failures. Future work can explore how to directly
use the insights from ZENO to improve model performance. For example, there are promis-
ing results in using data slices to improve model performance, such as slice-based learning
[175] and group distributionally robust optimization (GDRO) [176, 177].

Further evaluation. The case studies evaluated ZENO on real-world ML systems, but fur-
ther evaluations could better elucidate the affordances and limitations of ZENO. Future
evaluations could explore how usable ZENO is for additional non-technical users and how
well it works for continually updated deployed systems.

6.7 Conclusion

Behavioral evaluation of machine learning is essential to detect and fix model behaviors
such as biases and safety issues. In this work, we explored the challenges of ML evaluation
and designed a general-purpose tool for evaluating models across behaviors.

To identify specific challenges for ML evaluation, we conducted formative interviews
with 18 ML practitioners. From the interview results we derived four main design goals
for an evaluation system, including supporting comparison over time and no-code analysis.
We used these goals to design and implement ZENO, a general-purpose framework for
defining and tracking diverse model behaviors across different ML tasks, models, and data
types. ZENO combines a Python decorator API for defining core building blocks with an
interactive UI for creating slices and reports.

We showed how ZENO can be applied to diverse domains through four case studies
with practitioners evaluating real-world models. Participants in the case studies confirmed
existing findings, hypothesized new failures, and validated and discovered behaviors using
ZENO. As a general framework for behavioral evaluation, ZENO can incorporate future
features, such as error discovery methods and visualizations, to support the growing com-
plexity of models and encourage the deployment of responsible ML systems.

85

CHAPTER 7
ZENO REPORTS: AUTHORING INTERACTIVE AND

REPRODUCIBLE AI EVALUATIONS

The Zeno platform is a powerful tool for discovering and quantifying the behaviors of AI
systems. Despite this, Zeno does not cover every step of the sensemaking process - for the
last step of assessment, users have to leave Zeno and create summary reports manually. In
the last chapter of the thesis, I introduce an authoring tool for Zeno Reports, which allows
practitioners to create interactive, shareable, and reproducible evaluation reports directly
from their Zeno analyses.

7.1 Introduction

General-purpose AI models like GPT-4 [178] are making it easier for anyone to create com-
plex AI applications such as programming assistants [2] and augmented writing platforms
[179]. Understanding the capabilities and limitations of a model is essential to iteratively
create, improve, and debug these systems. This process is especially important for soci-
etally impactful behaviors such as biases and safety concerns. Numerous techniques and
tools have been proposed for this type of AI analysis, ranging from algorithmic error dis-
covery methods [49, 48, 84, 85] to visual analytics tools [47, 46, 54]. Zeno, described in
the previous chapter, is a tool that generalizes this AI analysis process into one platform
that works across data and model types.

Despite this progress, there remains a significant gap between the analysis tools and the
tools to communicate their results [180, 181]. Engineers building models, auditors con-
ducting due diligence, and other stakeholders involved in model development must com-
municate their results to other stakeholders and downstream users to facilitate a model’s
development and appropriate use. The results tend to be summarized and shared through
media that is disjoint from the tools used to perform the analysis [51]. Transferring the
results into common mediums like PDFs requires re-doing a significant amount of work,
and the results quickly become outdated when the model is updated. Practitioners inter-
viewed by Deng et al. [182] found that creating accessible analyses, visualizations, and
documentation was “extremely time consuming” and often not recognized by colleagues.
Additionally, these static reports are often hard to reproduce in new models and lack im-
portant communication features such as interactive visualizations.

86

Figure 7.1: We introduce an authoring tool for Zeno Reports, visualization-driven analyses of AI
system behavior. Zeno Reports are notebook-style reports composed of three core building blocks:
Data, charts, and markdown. Data cells are specified using a domain-specific language to render
any input data and model output, from audio to images and text. Chart cells are interactive vi-
sualizations created using a visual editor. Markdown cells contain text for structuring and adding
narrative to reports. Zeno Reports can be authored collaboratively and shared directly through the
platform. The reports can also be automatically updated with results for new models, improving the
reproducibility of analyses.

To improve the authoring experience and delivery of AI analysis reports, we take inspi-
ration from the area of narrative visualization. Narrative visualizations are textual stories
supplemented by interactive visualization to tell data-driven narratives. There is a rich lit-
erature on authoring tools for creating these visualizations, but they generally require sig-
nificant programming skills, visualization design knowledge, or learning a domain-specific
language. These requirements are a barrier to entry for many potential authors of AI analy-
sis reports, as they are often created collaboratively with authors with varying programming
and visualization proficiency. Furthermore, these authors typically cannot invest the time
required to learn a new language for report authoring as this is typically only a part of their
day-to-day responsibilities.

In contrast to the full design space of any data visualization, AI evaluations can almost
always be distilled into the narrower design space of metrics on specific data slices, which
is the insight we used to build Zeno. A slice as a subset of a dataset defined by some
metadata (e.g. age > 10 & birthplace == spain) and a metric as a number calculated
on an instance and averaged over a slice (e.g., accuracy). We use this insight to design
and implement a visual authoring tool for creating Zeno Reports, interactive, reproducible
evaluations of AI models. Zeno Reports can be authored in a fully visual GUI and are
collaborative, interactive, and shareable. They are made up of three core components.

87

Data components can render any input and output data type, from audio to images. Chart

components are created in a full visual editor and support six common visualizations for
AI evaluation. Lastly, markdown cells provide commentary around the data and charts,
supporting the full set of markdown features, such as images, videos, and code.

To evaluate the effectiveness and utility of Zeno Reports for various users, we explore
its efficacy in two domains. First, we deployed Zeno Reports to the general public and had
over 500 users create over 200 reports for diverse tasks and data types. We also worked
with a group of AI experts to conduct an in-depth evaluation and comparison of state-of-
the-art language models [183]. We found that novices and experts could craft compelling
and insightful narratives of AI behavior in various AI tasks using Zeno Reports. While we
found some interesting differences in how the two groups authored reports, such as experts
who rely on charts more than text to show their findings, all users primarily relied on
simple bar and line charts supported by text to communicate their findings. These insights
can guide the development of future AI reporting tools, which would benefit from focusing
on discovering high-impact AI behaviors rather than the visual encoding of the insights.

In summary, our technical contributions are as follows.

1. A no-code platform for authoring Zeno Reports, interactive AI evaluations. Users
can combine markdown, data, and chart building blocks to create interactive analyses
describing the nuanced behaviors of AI systems.

2. A domain-specific language (DSL) to define how AI inputs and outputs are ren-
dered. The DSL defines data rendering elements (e.g., images, audio, 3D, etc.) and
display types (list, map, etc.) to support displaying complex and/or multimodal data.

3. A visual chart editor for creating visualizations specific to AI evaluation and analy-
sis. The chart authoring experience is tailored to the core analysis dimensions of the
slices, metrics, and models.

7.2 Design Goals

We used insights from three diverse areas to establish the design goals for an authoring tool
for AI reports - both for the content reports should support and the authoring process. First,
we examined the specifications of existing AI reports to identify the essential information
that reports should support. Second, we used the design guidelines of a study on report-
ing needs in business intelligence applications [184] to understand what features a report
authoring tool should have. Third, we explored how narrative visualization techniques can
enhance reader comprehension.

88

We define an “AI report” as an artifact detailing any aspects of an AI system, such as its
technical implementation, training process, evaluation, behaviors, etc. Myriad specifica-
tions have been proposed for specific types of reports. For example, Model Cards [51] is a
widely adopted specification defining common information that should be reported when a
model is released. FactSheets is a similar specification inspired by supplier’s declarations

of conformity (SDoCs) in other industries. Although these specifications are for formal
reports created by developers for external publication, there are other forms of reports for
internal development, auditing, and due diligence. Checklist by Ribeiro et al. [44] runs
logical tests on language models and produces a capabilities report of behaviors used by
developers to fix model errors. Developers also create one-off internal analyses to share
with other internal teams with insights such as potential biases [182]. Despite their var-
ied audiences and purposes, all reports share common text, charts, and instance building
blocks.

Empirical studies of how AI teams collaborate have discovered common limitations
in how reports are authored and shared. Importantly, most of the reporting literature de-
scribes specifications of what reports should have, but does not help users implement re-
ports. Crisan et al. [58] and Deng et al. [182] found that the creation of reports is laborious
and that the resulting reports often missed important details and information such as “un-
intended uses or disaggregated model performance” [58]. Additionally, the resulting static
report cannot be used for further analysis, so those who want to reproduce or extend the re-
sults must recreate their analyses. Lastly, reports are disjoint from the underlying analysis
code and have to be manually updated or augmented with new results.

Existing specifications tell us what information a report should have but don’t tell us
what the authoring experience should be like. To define the features that an authoring plat-
form should have, we used insights from a study by Zhang et al. [184], which interviewed
15 business analysts about their report authoring needs. The authors summarized their
findings in a set of design guidelines that we integrate into our design goals: GUI-based
authoring, interactivity in charts and visualizations, and the inclusion of supporting text
narratives. Although business intelligence is a different task than AI analysis, we found
when developing the sensemaking framework in section 4.3 that there are significant paral-
lels between the two processes, supporting the applicability of these guidelines for model
report authoring.

Lastly, we use design concepts from the field of narrative visualization to determine the
output design of a reporting platform [59]. Reports should primarily be author-driven to
cover the core model details and behaviors described by specifications such as model cards.
They should still be interactive and support a martini glass narrative structure [59] that

89

begins with a primarily author-driven narrative and then opens up to user interaction. This
ensures that core insights delineated by frameworks like Model Cards can be incorporated
while allowing readers to explore the data and conduct their analyses.

Using these insights from the existing literature, we derived the following design guide-
lines for an AI report authoring tool.

D1. Report building blocks supporting core analyses. Model analyses require text de-
scribing important details, charts quantifying performance, and visualizations of input
and output data. A report-authoring platform should support both creating and rendering
these elements.

D2. Live results from underlying data. Report authors should be able to convert their
model analyses directly into final reports. Direct linking analysis with reporting signif-
icantly reduces the effort required to write reports while ensuring that details are not
missing or misreported. Reports should support a “static” mode showing a specific
snapshot of data and a “live” mode that is updated with the underlying data.

D3. Interactive elements to support extending and reproducing analyses. Report ele-
ments should be interactive and explorable. Readers should be able to select, filter, and
visualize quantitative and qualitative insights to validate the report’s written results and
conduct post-hoc analyses. This requires both interactive charts and data rendering for
media data types, such as audio and video.

D4. No-code authoring experience. Model analysis is often done by multi-disciplinary
teams with varying degrees of technical ability [54, 182]. Users should be able to write
reports without deep technical expertise and without learning new and complex tooling.

D5. Collaboration and publishing. Reports are rarely authored by individuals and are often
done by large teams. Multiple users should be able to collaborate on reports. Interactive
reports should also be publishable and shareable directly from the authoring platform.

7.3 Zeno Reports

To fulfill these design requirements, we built a visual authoring tool for creating Zeno

Reports, interactive AI evaluation reports. The authoring tool is a no-code platform that
allows users to drag and drop different components into a notebook-style linear document
(fig. 7.2). We considered whether reports should be in a dashboard- or notebook-style
format but decided on a vertical notebook since that is the status quo for reports. The

90

Figure 7.2: The Zeno Reports authoring interface. Authors can use the UI-based editor to create,
customize, and manage the components that make up a Zeno Report, including data slices and
charts. Different cell types supported are detailed in Section section 7.3, including text, images,
data visualizations, and interactive elements.

notebook structure also provides an author-driven linear narrative, following a martini glass
narrative structure [59] that encourages the reader to read the report first and then explore.

Zeno Reports is built directly on the Zeno platform, which enables users to go directly
from discovering and quantifying model behaviors to creating reports. The original Zeno
platform had minimal reporting functionality, so users had to export their insights into other
formats, such as PDF reports. The data and chart blocks in Zeno Reports are built directly
from the insights and slices created using Zeno (D2).

Three building block elements are available in Zeno Reports, detailed in the following
sections. The first is data rendering blocks, which display specific inputs and the corre-
sponding outputs for a model. The next are chart blocks, which quantify the model’s be-
havior in interactive visualizations. Lastly, there are markdown blocks, which allow users
to add narratives around the data and visualizations. Users can create and organize these
blocks into a report using a visual drag-and-drop GUI (D1, D3, D4).

Zeno Reports are deployed as a fully hosted platform with user accounts and organi-
zations. All reports are collaborative so multiple users can add, edit, or remove content.
Reports can also be published with a single click and shared publicly (D5). The main re-
porting interface was built using Svelte and SvelteKit. The backend API was implemented
using FastAPI to use Python-based AI libraries, with PostgreSQL as the database. Vega
and VegaLite [185] were used to create the visualizations.

91

7.3.1 Data Rendering

The first report element available for Zeno Reports is data rendering blocks for displaying
AI inputs and outputs. When discussing model behavior, it is important to show examples
of the model’s output for specific input types. Looking at individual instances can inspire
the reader to explore new analyses (D3). It is also important to verify quantitative results
empirically by seeing if the aggregate numbers match model outputs. In the subsequent
results section, we will discuss an example of this happening in practice.

What makes data rendering challenging is the vast array of data that AI systems can
input and/or output, from audio to images and video. While Zeno supports modular visual-
izations for different data, each visualization has to be implemented in React code and is not
extensible to new data and output types. Additionally, Zeno does not support multimodal
data inputs and/or outputs, which are becoming increasingly common.

For Zeno Reports, we designed a domain-specific language (DSL) that can specify how
model inputs, labels, and outputs should be rendered. We considered a visual editor for
specifying the data layout, but found that there were too many potential configurations and
types of model inputs and outputs. A DSL is a middle ground that keeps the instance view
extensible to diverse model types but reduces the technical knowledge and effort required
to implement new views compared to Zeno’s code-based renderer. The DSL has two types
of elements: display elements that specify how to render raw data and layout components
that specify how the display components should be organized. Zeno Reports currently sup-
port eight different display types (text, image, audio, code, markdown, message, separated
values) and three layout types (list, vertical stack, table). To write a specification, a user
defines the layout and display of a model’s three data fields: the input, the ground truth
label, and the model output.

An example specification can be seen in fig. 7.3. In this case, a user wants to render
a list of output documents retrieved by a model and a textual answer derived from the
documents. To visualize these data, they specified a set of nested vertical stacks and lists
to obtain the output answer and a list of formatted documents.

The data rendering DSL is designed to be as expressive as possible, but is not easy
to learn and use, as required by D4). Zeno Reports support passing in string identifiers
for common DSL configurations, such as text generation or image classification. In de-
ployment, we found that these views worked for most use cases or that one technical team
member implemented the view so that other nontechnical users could use it.

92

Figure 7.3: An example of Zeno Report’s domain-specific language (DSL) for rendering AI data. In
this example, a user has created a specification for rendering retrieved documents and a summarized
answer. They combined vertical stack and list layouts to render different text fields.

7.3.2 Charts

In addition to showing direct data instances, reports should show quantitative summaries

of model behavior (D1). There is a rich history of GUI-based interfaces for creating charts,
including research systems such as Voyager [186, 187] and Charticulator [188] and com-
mercial systems such as Tableau [189]. We took inspiration from these systems to build a
GUI-based chart builder for Zeno Reports.

Using Zeno’s key insight that most AI evaluations can be reduced to a metric, slice, and
model, we built a more focused chart-building interface with a limited set of encodings and
chart types. Charts in Zeno Reports are limited to three data encodings (slices, metrics, and
models), which can be assigned to three channels in the charts. These building blocks are
tied directly to the corresponding primitives in Zeno, so updates to the underlying slices or
metrics are reflected directly in the report charts (D2).

The chart editing interface, seen in fig. 7.4, has a settings panel on the left-hand side
and a chart preview on the right. In the settings panel, users can choose from six preset
chart types (7.4A) and set the encoding for each chart axis (7.4B). Zeno Reports currently
supports six types of charts: bar charts, line charts, tables, beeswarm charts, radar charts,
and heatmaps. We chose this subset by looking at report specifications such as model cards
and the types of charts used in published evaluations. Users can select the visualization
type they wish to display and then select what variable to encode across which axis. In the
example shown in fig. 7.4, the user chose to show the performance of different models on
slices of different languages for the translation task.

The charts are rendered using Vega and VegaLite [158]. This allows us to make the

93

Figure 7.4: Interactive chart editor interface. (A) Select from six default chart types, from basic
bar charts to advanced beeswarm and radar charts. (B) Define mappings from evaluation variables
(slices, models, and metrics) to chart axes, facilitating customized data representation. (C) Live data
previews on the right-hand side allow users to immediately see the impact of their configurations on
the chart’s appearance.

visualization interactive (D3) with tooltips and filtering. Additionally, new visualizations
can be added with just a Vega specification, making it easy to add new visualizations for
people who have experience with Vega.

7.3.3 Markdown

The last block type in Zeno Reports is the simple but important text markdown block. Users
can write any standard markdown syntax, including images, code rendering, etc., rendered
into formatted text. We specifically use GitHub’s markdown syntax. The text block is
essential for providing narrative around the data, a key aspect of narrative visualization.

7.4 Evaluation

We took two approaches to evaluate Zeno Reports. First, we released the hosted platform
and core Zeno features to the general public. We also did a study with experts using Zeno
Reports to analyze Google Gemini models, the first series of LLMs to claim parity with
GPT 3.5 and 4 [190]. These evaluation approaches combined gave us enough data to do
quantitative analysis on report creation patterns and qualitative insights into expert usage
of the system.

94

7.4.1 Public Deployment

In September 2023, we deployed the hosted Zeno platform, including the core Zeno fea-
tures and Zeno Reports, to the general public. Anyone could create an account, upload
data and system outputs, and create reports. To encourage platform usage, we created
integrations for common AI benchmarking tools such as the Eleuther Test Harness [191],
HuggingFace OpenLLM Leaderboard [192], and RAGAS evaluation tool [193]. For the re-
sults of this study, we cut off data collection on February 20, 2024, giving us approximately
five months’ worth of data. We used anonymized statistical results to conduct quantitative
analyses of the reports and understand the overall usage patterns of Zeno and Zeno Reports.

7.4.2 Gemini Benchmarking

For the second part of the evaluation, we wanted to understand how experts use Zeno Re-

ports and obtain qualitative information about their reporting experience. To this end,
we collaborated with a group of researchers conducting a deep evaluation of Google’s
transformer-based Gemini models [190]. The Gemini models were the first to claim parity
with OpenAI’s GPT 3.5 and GPT 4 models. The research group’s study aimed to com-
pare the Gemini Pro model, the publicly released model at the time, with GPT 3.5 and 4
across various capabilities. The team consisted of 9 researchers, including PhD students
and professors, and lasted approximately two weeks.

To achieve this, the researchers ran each model on common benchmarks that measure
capabilities such as common sense reasoning, mathematical logic, and translation ability.
Each researcher in the project ran a subset of the benchmarks and generated output data
for all models. These results were then uploaded to the hosted Zeno Reports platform,
where the user performed an in-depth analysis, created charts, and wrote a final report. The
reports were published with and linked to the final PDF analysis paper [183]. We collected
their feedback through asynchronous Slack conversations and synchronous video calls.

7.5 Results

7.5.1 Quantitative Patterns of Report Authoring

During the five months in which the hosted version of Zeno and Zeno Reports were de-
ployed, the platform had over 500 users sign up. Users created over 220 reports using over
2,000 slices and 1,700 report components. These reports evaluated over 15,000 AI models,
and were read over 12,000 times. These numbers include the 11 reports created by the
Gemini benchmarking team.

95

Figure 7.5: Quantitative results from the public deployment and expert usage of Zeno Reports. In
charts 3-5, the left bar is for reports from the public while the right bar is for reports from the Gemini
evaluation team. (1 & 2) Histograms showing the distribution of the number of report elements per
report. (3) Distribution of report element types in reports. (4) Distribution of chart types in reports.
(5) Distribution of view types in reports (string identifier vs. custom view with DSL).

96

We can first explore what the average Zeno Report looks like. Reports had an average
of 11.75 cells and a median of 3 cells. We found that many reports only had one or two
charts with a text cell, hence the large difference between the mean and median (fig. 7.5 1).
On average, the reports were made up primarily of chart and markdown cells, with a much
smaller proportion of slice cells and almost no tag cells (fig. 7.5 3). The Gemini analysis
reports had a similar average of 11.36 cells and a median of 11 cells (fig. 7.5 2) - the higher
median cell count is likely due to the lack of short test reports. Interestingly, the Gemini
reports had a higher ratio of chart elements to text elements, with more than half of the
elements being charts.

We can also explore the types of charts users put in their reports. Far and away, bar
charts dominated reports, with over 80% of charts in public reports being bar charts (fig. 7.5
4). The Gemini researchers used significantly more line charts than the public, but neither
population extensively used any of the more esoteric charts. We found that the line charts
used by the Gemini team were often for fine-grained ablations of specific features, such as
slicing data by the input length, which were less common in general reports.

Lastly, we can look at what data types models in reports used. About 80% of the
public users used string-based view identifiers (e.g. text-classification) versus 20% who
used custom DSL-based views. On the other hand, all of the Gemini reports used custom
views. This was likely due to the specific format of their benchmarks, for example, custom
string delimiters and setups. The Zeno Reports team also actively helped the Gemini team
create new views for their tasks, lowering the barrier to entry.

7.5.2 Qualitative Insights on Using Zeno Reports

While working with the Gemini team, we gathered information about the reporting process
of expert evaluators and the categorical advantages and limitations of Zeno Reports.

Using a combination of the base Zeno features and Zeno Reports, the auditors found
significant limitations in the APIs of the audited models and the existing benchmarks. An
example was the GSM-8K math reasoning task, a benchmark of grade-school math word
problems [194]. The original benchmark implementation used a specific regular expression
string to find the correct answer, but only counted it as correct if it was the last thing it said.
The evaluator found by looking at instances that the output, in particular for advanced
models, was often mid-way through the last sentence. Using this insight, they changed
their regex to find the last number in the output and recalculated the scores. They found
that “using [the original] regex I get 67% accuracy and taking the last occurrence gets

around 75%”. They reported these findings in a report with the rest of the team using bar
charts and slice cells. In another case, multiple auditors corroborated a common trend of

97

the Gemini API to refuse to answer many types of questions. This impacted translation
in particular, where Gemini refused to answer some questions if they were in a different
language. The evaluator created multiple bar charts quantifying this pattern, which was
shared with other team members who could reproduce the problem in their tasks.

We found that the tight coupling between the Zeno analysis platform and the reporting
interface of Zeno Reports led to significant benefits. Toward the end of the evaluation
process, the group decided to include the results for an additional model, Mixtral 8x7B
[195]. To update their reports, users just had to push the results of the new model to Zeno,
and all the charts and reports were dynamically updated with the new results. This saved
significant work that would have been done to recreate and export the charts.

Despite what the evaluators were able to accomplish with Zeno Reports, a few feature
limitations led them to supplement their analyses with other tools. Nearly all analyses the
evaluators wanted to show, they were able to complete in Zeno. There were two exceptions,
both of which were bar charts showing the ratio of different slices to each other. For exam-
ple, in one task, a user wanted to show a stacked bar chart with the ratio of questions the
model answered correctly, incorrectly, or refused to answer. This type of ratio-based visu-
alization is not currently possible in the chart-building UI due to the GUI not implementing
ratios as a possible encoding.

Another limitation was the amount of customization in the charts. Although the evalu-
ators almost exclusively used bar and line charts, they wanted much more control over how
they were rendered. For example, one user asked if “There is any way to rescale the axis.

For some tasks, the lines are clustered on the top of the line graph”, while another wanted
to “show the entire x-axis label” that had been truncated. Zeno Reports does not expose
the controls for many fine-grained ways in which charts can be edited.

Lastly, the evaluators faced limitations with the interface between Zeno and existing
reporting methods. The reporting team wanted to export the charts to use them in a
LaTex-based PDF. Although Zeno Reports supports exporting charts, they require addi-
tional tweaking to render correctly in the PDF medium. One user mentioned that “The

current figure/font ratio makes the fonts too small when inserted in our paper” and wanted
additional controls to modify the rendering of the chart.

7.6 Discussion

Overall, we confirmed our finding in the Zeno case studies that the primitives of slices,
metrics, and models were sufficient to represent almost every analysis users wanted to
conduct. This included both the public users and expert evaluators conducting more fine-

98

grained evaluations. The only exception we saw during deployment was for ratio-based
charts, such as a stacked bar chart showing what slices make up what percentage of a
dataset.

A surprising pattern we saw across users was the relative simplicity of building blocks
used in reports. Almost all reports consisted primarily of text and chart elements, with one
or two slice visualizations often shown at the start of a report as context for the task and
dataset. Simplicity was also present in the types of charts users chose. While the expert
evaluators used more line charts than the public, over 90% of the charts in both cohorts
were just bar or line charts. Instead, we saw lots of nuance in how charts and reports were
rendered, such as requests for tweaking chart rendering settings like font sizes and axes
ranges.

We also repeatedly saw how sticky existing media is for sharing results. This was most
apparent with the Gemini group, who needed to export the charts to embed into a PDF
document. Many publication venues and administrative processes require standardized
media such as PDF reports, which a system such as Zeno Reports needs to support.

Lastly, we confirmed the importance of tightly coupling the analysis and reporting

phases of evaluating AI systems. Evaluators often went back and forth between their reports
and analyses as they received feedback on their reports from collaborators and updated
or augmented their analyses. One such example was when the Gemini evaluators added
Mixtral 8x7B to their analyses and were able to update their reports quickly.

The overall trend in these results is that the complexity of AI evaluation is in the analysis

stages, whereas the results should be summarized in a simple and easily digestible format.
Finding and quantifying interesting model behaviors is complex, but the most poignant and
relevant findings can almost always be summarized in a bar or line chart. Reports should
do their best to ”get out of the way“ and let users share and update their analyses in the
lowest-friction way possible.

7.7 Limitations and Future Work

Our evaluation was fully observational and did not directly measure the benefits of Zeno

Reports over existing reporting methods such as Interactive Model Cards. In the future, a
controlled laboratory study could measure how effective Zeno Reports is at some of our
design goals, such as the speed at which reports can be updated and the extent to which
readers can perform post-hoc analyses.

Despite our stated goal to remove the need to learn any new language or complex inter-
face, many users had to interact with the domain-specific language to specify their instance

99

views. The need for custom views, especially by the Gemini evaluation team, was much
greater than we expected. Even within text-to-text tasks, many benchmarks had specific
formatting requirements that needed a custom view. Novel abstractions may be needed to
support the large space of potential data renderers with a relatively simple specification.

The charts and instances views in Zeno Reports are interactive but only support basic
interactions. In some cases, empowering the user with more powerful interactions like
cross-filtering charts or filtering for specific instances could be useful. In the framing of
narrative visualization, this would make reports more reader-driven rather than fully author-
driven. Future work could explore more powerful interactions with report elements.

7.8 Conclusion

Understanding and reporting the behavior of AI systems is growing in importance as they
become more powerful and exhibit more complex behaviors. AI analysis is a time-intensive,
multi-stage process that includes everything from discovering and quantifying behaviors to
creating visualizations. In this work, we introduced Zeno Reports, a platform that makes
creating interactive, reproducible reports of AI behavior easier. We hope this work inspires
the development of analysis tools that push us toward a future of performant and equitable
AI systems.

100

CHAPTER 8
CONCLUSIONS

8.1 Discussion

This thesis encompasses five years of work on helping people understand the behaviors of
AI systems. In general, my hypothesis that behaviors are a core abstraction for understand-
ing and developing AI was validated. Using the behavior-based sensemaking framework,
I built systems that helped users, from AI developers to end users, accomplish tasks in-
cluding debugging, auditing, and human-AI collaboration. I also built a general-purpose
analysis and reporting tool, Zeno, used by over 500 users in myriad domains.

8.1.1 Practitioners spend most of their time discovering behaviors

While I found that a sensemaking framework adequately represented the AI analysis pro-
cess, I also found that the relative importance of the steps is quite unbalanced. If we split
the analysis steps into two phases, “discovery” (instances and schemas) and “evaluation”

(hypotheses and reports), practitioners primarily find the “discovery” phase to be the most
critical and challenging. I found that practitioners focused on finding evidence of a poten-
tial behavior and often did not need to rigorously validate or formalize their findings in a
report.

Discovery is even more critical for modern AI systems built on large foundation mod-
els. With classic supervised learning models, developers require a large dataset and labels
to train a model. In contrast, with foundation models, a user can specify an entire AI system
with complex behavior using a single paragraph of text. For these models, AI developers
don’t have any instances or labels to do analysis. Thus, they focus on the first stage of col-
lecting and labeling data that can surface interesting behaviors rather than creating schemas
and formal hypotheses around existing data.

8.1.2 Collecting or generating instances is becoming a challenging sensemaking step

The importance of collecting or generating input instances was a critical insight that I did
not address directly in my thesis work and is becoming more central with the proliferation
of data-free LLM-based models. Some of my earlier work that did not make it into this the-
sis explored the instance gathering problem with “failure reports”, crowdsourced descrip-

101

tions of AI errors [19]. However, the Zeno and Zeno Reports platforms were built assuming
that users have an existing labeled dataset to analyze. This design decision reflected the pre-
foundation model era, where most AI systems were supervised learning models trained on
existing datasets. When we publicly deployed Zeno in the post-foundation model era, we
spoke with numerous users who wanted to use Zeno for in-depth analysis but did not have
any data to ingest into the system.

This limitation is a massive opportunity for future AI analysis tools. There is already a
growing body of work on generating synthetic data to discover model limitations, such as
the AdaTest [50] tool, which uses human guidance to generate challenging new test cases.
While prompt-based models are less likely to have evaluation data, foundation models also
enable the generation of realistic synthetic data that can be used to identify interesting
behaviors.

8.1.3 Limited need for formally verifying behaviors

In the other half of the sensemaking process, I was surprised by the relative lack of im-
portance many practitioners place on formally quantifying behaviors. The early work in
this thesis was inspired by studies quantifying disparities in classification models, such as
the now-famous Gender Shades study that found significant disparities in gender classi-
fication models [13]. These studies focused on tasks with relatively simple outputs and
well-defined behaviors with clear societal impact. Newer models are applied to domains
beyond classification and regression with more complex and nuanced behaviors. A 10%
disparity in loan approval rates between demographic groups has a clear and significant
real-world impact. An image captioning model may have the interesting behavior that it
cannot accurately count the number of people in an image, but it is not clear that formally
calculating how often this happens is necessary. It is also often the case that seeing a few
example failures is enough to inform a model update or deployment decision without know-
ing statistically how often it happens. This was something that was quite different between
academic and industry practitioners - academic researchers placed a much higher value on
formal, quantified analyses.

I was also surprised by the relatively lackluster demand and use of formal reporting
methods. We built Zeno Reports informed by the increasing usage of reports in practice
and empirical studies on the challenges in the authoring and updating of reports. In prac-
tice, we found that the type of reporting practitioners do has a bimodal distribution. On one
side, formal reporting methods like model cards are often integrated into existing platforms
for hosting and sharing models. There is no incentive for users to use a separate reporting
platform to author their reports when they have to re-write them in a specific format and

102

template for a specific platform. On the other side of the spectrum are AI development
teams who share quick insights between themselves as they build an AI system. For this
type of “reporting”, simply taking a screenshot of a chart or an example failure and sending
it with some context in an email or message was generally sufficient. Zeno Reports were
most valuable for a blend of these reporting needs - they have more structure and informa-
tion than single charts but are not directly tied to downstream requirements or platforms.
Future work on reporting may benefit from a deep understanding of existing reporting path-
ways, such as policy requirements, and the development of tools specifically for those types
of reports.

8.1.4 Impact of incentives on tool use and adoption

Lastly, we found that incentive alignment, cultural dynamics, and policy played an essen-
tial role in the use and adoption of analysis tools, as found by existing empirical work cited
in this thesis [53, 182]. One prototypical example is the goals and skillsets of engineering
versus product and management roles. Engineers are incentivized to build better perform-
ing systems that match the specifications and requirements given to them. They have the
technical breadth to run deep analyses and identify limitations that can help them improve
an AI system. Product and management roles might be required to submit reports to reg-
ulators or mitigate potential PR crises from specific model behaviors. Unlike engineering
teams, they often do not have the skill set or familiarity with the underlying AI system to
run the required analyses and must convince engineering to collaborate with them. The
culture of organizations that build AI-powered products will likely need to change to en-
courage the use of specific analysis tools. For example, engineering teams may have to be
incentivized to use analysis tools like Zeno that non-technical stakeholders can extend for
post-hoc analyses.

8.2 Conclusion

The rise of models that can be guided with text prompts or small datasets has empowered
millions to create complex AI systems, from chatbots to creative writing partners. As the
tasks AI systems tackle increase in complexity, it becomes more challenging to understand
and improve model behavior in line with how a practitioner expects a model to perform.
Instead of centering AI development on the underlying technology enabling it, such as the
training data and model architecture, centering model iteration on the expected behaviors
can lead to more fair, safe, and performant models.

This thesis introduced Behavior-Driven AI Development (BDAI), a new philosophy

103

that centers the development of models on their behavior across diverse inputs. The thesis
first sets the foundation for BDAI by interviewing dozens of AI practitioners to understand
how they approach understanding and iterating on their models. It then formally defines
AI behavior and how practitioners make sense of behavior. Additionally, I show how these
insights can be re-used to improve the accuracy of domain experts collaborating with AI
assistants by calibrating their reliance. I then designed and implemented Zeno and Zeno
Reports, a general-purpose platform for defining and tracking AI behaviors that acts as the
hub for BDAI.

The BDAI philosophy focuses AI development centrally on what practitioners and users
care about - the direct output of a model. By formally defining a development paradigm and
accompanying tools, I hope to encourage future work that explores how AI development is
done and future tools for creating responsible AI systems.

104

REFERENCES

[1] M. Bojarski et al., “End to End Learning for Self-Driving Cars,” pp. 1–9, 2016.

[2] B. Zhang, P. Liang, X. Zhou, A. Ahmad, and M. Waseem, “Practices and Chal-
lenges of Using GitHub Copilot: An Empirical Study,” arXiv:2303.08733 [cs], Jul.
2023, pp. 124–129.

[3] W. Bulten et al., “Artificial intelligence assistance significantly improves Gleason
grading of prostate biopsies by pathologists,” Modern Pathology, vol. 34, no. 3,
pp. 660–671, Mar. 2021.

[4] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recogni-
tion, arXiv:1512.03385 [cs], Dec. 2015.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–
90, May 2017.

[6] T. B. Brown et al., “Language Models are Few-Shot Learners,” in Advances in Neu-
ral Information Processing Systems, ISSN: 10495258, vol. 33, Curran Associates,
Inc., 2020, pp. 1877–1901.

[7] G. Bansal, B. Nushi, E. Kamar, W. S. Lasecki, D. S. Weld, and E. Horvitz, “Beyond
Accuracy: The Role of Mental Models in Human-AI Team Performance,” Proceed-
ings of the AAAI Conference on Human Computation and Crowdsourcing, vol. 7,
no. 1, p. 19, 2019.

[8] D. A. Norman, “Some Observations on Mental Models,” in Mental Models, D.
Gentner and A. L. Stevens, Eds., 0th ed., Psychology Press, Jan. 2014, pp. 15–22,
ISBN: 978-1-315-80272-5.

[9] M. Haenlein and A. Kaplan, “A brief history of artificial intelligence: On the past,
present, and future of artificial intelligence,” California management review, vol. 61,
no. 4, pp. 5–14, 2019.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[11] R. Bommasani et al., On the Opportunities and Risks of Foundation Models, arXiv:2108.07258
[cs], Jul. 2022.

105

[12] S. Amershi et al., “Software Engineering for Machine Learning: A Case Study,” in
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada: IEEE, May 2019,
pp. 291–300, ISBN: 978-1-72811-760-7.

[13] J. Buolamwini and T. Gebru, “Gender Shades: Intersectional Accuracy Disparities
in Commercial Gender Classification,” in Proceedings of the 1st Conference on
Fairness, Accountability and Transparency, S. A. Friedler and C. Wilson, Eds.,
ser. Proceedings of Machine Learning Research, Buolamwini2018, vol. 81, PMLR,
Feb. 2018, pp. 77–91.

[14] I. Rahwan et al., “Machine Behaviour,” Nature, vol. 568, no. 7753, pp. 477–486,
Apr. 2019.

[15] A. Cabrera, M. Tulio Ribeiro, B. Lee, R. Deline, A. Perer, and S. M. Drucker,
“What Did My AI Learn? How Data Scientists Make Sense of Model Behavior,”
ACM Trans. Comput.-Hum. Interact., vol. 30, no. 1, Mar. 2023, Place: New York,
NY, USA Publisher: Association for Computing Machinery.

[16] C. Yang, R. Brower-Sinning, G. A. Lewis, C. Kästner, and T. Wu, Capabilities for
Better ML Engineering, arXiv:2211.06409 [cs], Nov. 2022.

[17] Z. Pei, L. Liu, C. Wang, and J. Wang, “Requirements Engineering for Machine
Learning: A Review and Reflection,” in 2022 IEEE 30th International Require-
ments Engineering Conference Workshops (REW), Melbourne, Australia: IEEE,
Aug. 2022, pp. 166–175, ISBN: 978-1-66546-000-2.

[18] H. Subramonyam, C. Seifert, and E. Adar, “Towards A Process Model for Co-
Creating AI Experiences,” in DIS 2021 - Proceedings of the 2021 ACM Designing
Interactive Systems Conference: Nowhere and Everywhere, Association for Com-
puting Machinery, Inc, Jun. 2021, pp. 1529–1543, ISBN: 978-1-4503-8476-6.

[19] A. Cabrera, A. J. Druck, J. I. Hong, and A. Perer, “Discovering and Validating AI
Errors With Crowdsourced Failure Reports,” Proceedings of the ACM on Human-
Computer Interaction, vol. 5, no. CSCW2, pp. 1–22, Oct. 2021.

[20] K. E. Weick, Sensemaking in Organizations (Foundations for organizational sci-
ence). Thousand Oaks: Sage Publications, 1995, ISBN: 978-0-8039-7176-9 978-0-
8039-7177-6.

[21] K. E. Weick, K. M. Sutcliffe, and D. Obstfeld, “Organizing and the Process of
Sensemaking,” Organization Science, vol. 16, no. 4, pp. 409–421, Aug. 2005.

106

[22] S. Maitlis and M. Christianson, “Sensemaking in Organizations: Taking Stock and
Moving Forward,” Academy of Management Annals, vol. 8, no. 1, pp. 57–125, Jan.
2014.

[23] D. Ancona, “Sensemaking: Framing and Acting in the Unknown,” The Handbook
for Teaching Leadership: Knowing, doing, and being, vol. 10, no. 3, pp. 3–19, 2012.

[24] D. Ucbasaran, D. A. Shepherd, A. Lockett, and S. J. Lyon, “Life After Business
Failure: The Process and Consequences of Business Failure for Entrepreneurs,”
Journal of Management, vol. 39, no. 1, pp. 163–202, Jan. 2013.

[25] H. Kaur, E. Adar, E. Gilbert, and C. Lampe, “Sensible AI: Re-imagining Inter-
pretability and Explainability using Sensemaking Theory,” arXiv:2205.05057 [cs],
May 2022, arXiv: 2205.05057.

[26] G. Whiteman and W. H. Cooper, “Ecological Sensemaking,” Academy of Manage-
ment Journal, vol. 54, no. 5, pp. 889–911, Oct. 2011.

[27] J. C. Chang, N. Hahn, and A. Kittur, “Mesh: Scaffolding Comparison Tables for
Online Decision Making,” in Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology, Virtual Event USA: ACM, Oct. 2020,
pp. 391–405, ISBN: 978-1-4503-7514-6.

[28] D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card, “The cost structure of sense-
making,” in Proceedings of the SIGCHI conference on Human factors in computing
systems - CHI ’93, Amsterdam, The Netherlands: ACM Press, 1993, pp. 269–276,
ISBN: 978-0-89791-575-5.

[29] P. Pirolli and S. Card, “The Sensemaking Process and Leverage Points for Ana-
lyst Technology as Identified Through Cognitive Task Analysis,” Proceedings of
International Conference on Intelligence Analysis, vol. 2005, no. January, pp. 2–4,
2005.

[30] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and I. Kwan, “End-
user Debugging Strategies: A Sensemaking Perspective,” ACM Transactions on
Computer-Human Interaction, vol. 19, no. 1, pp. 1–28, Mar. 2012.

[31] D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos, “Apolo: Making Sense of
Large Network Data by Combining Rich User Interaction and Machine Learning,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, Vancouver BC Canada: ACM, May 2011, pp. 167–176, ISBN: 978-1-4503-
0228-9.

107

[32] H. Bosch et al., “ScatterBlogs2: Real-Time Monitoring of Microblog Messages
through User-Guided Filtering,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 12, pp. 2022–2031, Dec. 2013.

[33] T. Kulesza, S. Stumpf, M. Burnett, and I. Kwan, “Tell me more?: The effects of
mental model soundness on personalizing an intelligent agent,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, Austin Texas
USA: ACM, May 2012, pp. 1–10, ISBN: 978-1-4503-1015-4.

[34] J. D. Lee and K. A. See, “Trust in Automation: Designing for Appropriate Re-
liance,” Human Factors: The Journal of the Human Factors and Ergonomics Soci-
ety, vol. 46, no. 1, pp. 50–80, Jan. 2004.

[35] R. Tomsett et al., “Rapid Trust Calibration through Interpretable and Uncertainty-
Aware AI,” Patterns, vol. 1, no. 4, p. 100 049, 2020, Publisher: Elsevier Inc.

[36] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W. K. Wong, “Too Much,
Too Little, or Just Right? Ways Explanations Impact End Users’ Mental Models,”
Proceedings of IEEE Symposium on Visual Languages and Human-Centric Com-
puting, VL/HCC, pp. 3–10, 2013.

[37] R. Kocielnik, S. Amershi, and P. N. Bennett, “Will You Accept an Imperfect AI?:
Exploring Designs for Adjusting End-user Expectations of AI Systems,” in Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
Glasgow Scotland Uk: ACM, May 2019, pp. 1–14, ISBN: 978-1-4503-5970-2.

[38] Y. Zhang, Q. V. Liao, and R. K. E. Bellamy, “Effect of confidence and explanation
on accuracy and trust calibration in AI-assisted decision making,” in Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona
Spain: ACM, Jan. 2020, pp. 295–305, ISBN: 978-1-4503-6936-7.

[39] P. Khadpe, R. Krishna, L. Fei-Fei, J. T. Hancock, and M. S. Bernstein, “Conceptual
Metaphors Impact Perceptions of Human-AI Collaboration,” Proceedings of the
ACM on Human-Computer Interaction, vol. 4, no. CSCW2, 2020.

[40] V. Lai, H. Liu, and C. Tan, “”Why is ’Chicago’ Deceptive?” Towards Building
Model-Driven Tutorials for Humans,” in Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, New York, NY, USA: ACM, 2020, pp. 1–
13, ISBN: 978-1-4503-6708-0.

[41] J. Martinez, K. Gal, E. Kamar, and L. H. S. Lelis, “Personalization in Human-AI
Teams: Improving the Compatibility-Accuracy Tradeoff,” arXiv:2004.02289 [cs],
Aug. 2020.

108

[42] K. Okamura and S. Yamada, “Adaptive trust calibration for human-AI collabora-
tion,” PLoS ONE, vol. 15, no. 2, pp. 1–20, 2020.

[43] H. Mozannar, A. Satyanarayan, and D. Sontag, “Teaching Humans When To Defer
to a Classifier via Exemplars,” arXiv:2111.11297 [cs], Dec. 2021, arXiv: 2111.11297.

[44] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond Accuracy: Behavioral
Testing of {NLP} Models with {C}heck{L}ist,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association for
Computational Linguistics, Jul. 2020, pp. 4902–4912.

[45] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh, “Model-
Tracker: Redesigning Performance Analysis Tools for Machine Learning,” in Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, Seoul Republic of Korea: ACM, Apr. 2015, pp. 337–346, ISBN: 978-1-
4503-3145-6.

[46] T. Wu, M. T. Ribeiro, J. Heer, and D. Weld, “{E}rrudite: Scalable, Reproducible,
and Testable Error Analysis,” Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, pp. 747–763, 2019.

[47] A. Cabrera, W. Epperson, F. Hohman, M. Kahng, J. Morgenstern, and D. H. Chau,
“FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learn-
ing,” in 2019 IEEE Conference on Visual Analytics Science and Technology (VAST),
2019, pp. 46–56, ISBN: 978-1-72812-284-7.

[48] Y. Chung, T. Kraska, N. Polyzotis, K. H. Tae, and S. E. Whang, “Slice Finder: Au-
tomated Data Slicing for Model Validation,” in 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), Macao, Macao: IEEE, Apr. 2019, pp. 1550–
1553, ISBN: 978-1-5386-7474-1.

[49] S. Eyuboglu et al., “Domino: Discovering Systematic Errors with Cross-Modal
Embeddings,” arXiv:2203.14960 [cs], Apr. 2022, arXiv: 2203.14960.

[50] M. T. Ribeiro and S. Lundberg, “Adaptive Testing and Debugging of NLP Models,”
in Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Dublin, Ireland: Association for Computa-
tional Linguistics, 2022, pp. 3253–3267.

[51] M. Mitchell et al., “Model Cards for Model Reporting,” in Proceedings of the Con-
ference on Fairness, Accountability, and Transparency, Atlanta GA USA: ACM,
Jan. 2019, pp. 220–229, ISBN: 978-1-4503-6125-5.

109

[52] M. Arnold et al., “FactSheets: Increasing trust in AI services through supplier’s
declarations of conformity,” IBM Journal of Research and Development, vol. 63,
no. 4/5, 6:1–6:13, Jul. 2019.

[53] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration Challenges in Build-
ing ML-Enabled Systems: Communication, Documentation, Engineering, and Pro-
cess,” arXiv:2110.10234 [cs], Dec. 2021, arXiv: 2110.10234.

[54] A. Bäuerle et al., “Symphony: Composing Interactive Interfaces for Machine Learn-
ing,” in CHI Conference on Human Factors in Computing Systems, New Orleans
LA USA: ACM, Apr. 2022, pp. 1–14, ISBN: 978-1-4503-9157-3.

[55] J. Françoise, B. Caramiaux, and T. Sanchez, “Marcelle: Composing Interactive Ma-
chine Learning Workflows and Interfaces,” in The 34th Annual ACM Symposium
on User Interface Software and Technology, Virtual Event USA: ACM, Oct. 2021,
pp. 39–53, ISBN: 978-1-4503-8635-7.

[56] T. Gebru et al., “Datasheets for datasets,” Communications of the ACM, vol. 64,
no. 12, pp. 86–92, Dec. 2021.

[57] J. Stoyanovich and B. Howe, “Nutritional Labels for Data and Models,” IEEE Data
Eng. Bull., vol. 42, pp. 13–23, 2019.

[58] A. Crisan, M. Drouhard, J. Vig, and N. Rajani, “Interactive Model Cards: A Human-
Centered Approach to Model Documentation,” in 2022 ACM Conference on Fair-
ness, Accountability, and Transparency, Seoul Republic of Korea: ACM, Jun. 2022,
pp. 427–439, ISBN: 978-1-4503-9352-2.

[59] E Segel and J Heer, “Narrative Visualization: Telling Stories with Data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1139–
1148, Nov. 2010.

[60] M. Conlen and J. Heer, “Idyll: A Markup Language for Authoring and Publishing
Interactive Articles on the Web,” in Proceedings of the 31st Annual ACM Sym-
posium on User Interface Software and Technology, Berlin Germany: ACM, Oct.
2018, pp. 977–989, ISBN: 978-1-4503-5948-1.

[61] M. Conlen, M. Vo, A. Tan, and J. Heer, “Idyll Studio: A Structured Editor for Au-
thoring Interactive & Data-Driven Articles,” in The 34th Annual ACM Symposium
on User Interface Software and Technology, Virtual Event USA: ACM, Oct. 2021,
pp. 1–12, ISBN: 978-1-4503-8635-7.

[62] A. Cabrera et al., “Zeno: An Interactive Framework for Behavioral Evaluation of
Machine Learning,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’23, event-place: Hamburg, Germany, New York,

110

NY, USA: Association for Computing Machinery, 2023, ISBN: 978-1-4503-9421-
5.

[63] A. Hopkins and S. Booth, “Machine Learning Practices Outside Big Tech: How Re-
source Constraints Challenge Responsible Development,” in AIES 2021 - Proceed-
ings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, Association for
Computing Machinery, Inc, Jul. 2021, pp. 134–145, ISBN: 978-1-4503-8473-5.

[64] L. Chen, T. Cai, M. Zaharia, and J. Zou, “Did the Model Change? Efficiently
Assessing Machine Learning API Shifts,” arXiv:2107.14203 [cs, stat], Jul. 2021,
arXiv: 2107.14203.

[65] E. Foong, D. Gergle, and E. M. Gerber, “Novice and Expert Sensemaking of Crowd-
sourced Design Feedback,” Proceedings of the ACM on Human-Computer Interac-
tion, vol. 1, no. CSCW, pp. 1–18, Dec. 2017.

[66] T. D. Wang, K. Wongsuphasawat, C. Plaisant, and B. Shneiderman, “Extracting
Insights from Electronic Health Records: Case Studies, a Visual Analytics Process
Model, and Design Recommendations,” Journal of Medical Systems, vol. 35, no. 5,
pp. 1135–1152, Oct. 2011.

[67] K. Holstein, J. Wortman Vaughan, H. Daumé, M. Dudik, and H. Wallach, “Improv-
ing Fairness in Machine Learning Systems: What Do Industry Practitioners Need?”
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems, Glasgow Scotland Uk: ACM, May 2019, pp. 1–16, ISBN: 978-1-4503-5970-2.

[68] L. Oakden-Rayner, J. Dunnmon, G. Carneiro, and C. Re, “Hidden stratification
causes clinically meaningful failures in machine learning for medical imaging,” in
Proceedings of the ACM Conference on Health, Inference, and Learning, Toronto
Ontario Canada: ACM, Apr. 2020, pp. 151–159, ISBN: 978-1-4503-7046-2.

[69] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data Scientists in Software
Teams: State of the Art and Challenges,” IEEE Transactions on Software Engineer-
ing, vol. 44, no. 11, pp. 1024–1038, Nov. 2018.

[70] J. Attenberg, P. G. Ipeirotis, and F. Provost, “Beat the Machine: Challenging Work-
ers to Find the Unknown Unknowns,” 2011.

[71] M. Kahng, D. Fang, and D. H. P. Chau, “Visual Exploration of Machine Learning
Results Using Data Cube Analysis,” in Proceedings of the Workshop on Human-
In-the-Loop Data Analytics - HILDA ’16, San Francisco, California: ACM Press,
2016, pp. 1–6, ISBN: 978-1-4503-4207-0.

111

[72] M. Beaudouin-Lafon, “Designing Interaction, not Interfaces,” in Proceedings of the
working conference on Advanced visual interfaces - AVI ’04, Gallipoli, Italy: ACM
Press, 2004, p. 15, ISBN: 978-1-58113-867-2.

[73] S. Timmermans and I. Tavory, “Theory Construction in Qualitative Research: From
Grounded Theory to Abductive Analysis,” Sociological Theory, vol. 30, no. 3,
pp. 167–186, Sep. 2012.

[74] A. L. Strauss and J. M. Corbin, Eds., Grounded theory in practice. Thousand Oaks:
Sage Publications, 1997, ISBN: 978-0-7619-0747-3 978-0-7619-0748-0.

[75] D. Kiela et al., “Dynabench: Rethinking Benchmarking in NLP,” arXiv:2104.14337
[cs], Apr. 2021, arXiv: 2104.14337.

[76] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” 3rd International Conference on Learning Representations, ICLR 2015
- Conference Track Proceedings, pp. 1–11, 2015.

[77] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Gen-
erative Adversarial Networks,” in 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE, Jun. 2019,
pp. 4396–4405, ISBN: 978-1-72813-293-8.

[78] C. Shorten and T. M. Khoshgoftaar, “A Survey on Image Data Augmentation for
Deep Learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Dec. 2019.

[79] D. Cashman et al., “CAVA: A Visual Analytics System for Exploratory Columnar
Data Augmentation Using Knowledge Graphs,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 27, no. 2, pp. 1731–1741, Feb. 2021.

[80] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: Rapid
training data creation with weak supervision,” Proceedings of the VLDB Endow-
ment, vol. 11, no. 3, pp. 269–282, Nov. 2017.

[81] A. Liu, S. Guerra, I. Fung, G. Matute, E. Kamar, and W. Lasecki, “Towards Hybrid
Human-AI Workflows for Unknown Unknown Detection,” in Proceedings of The
Web Conference 2020, Taipei Taiwan: ACM, Apr. 2020, pp. 2432–2442, ISBN: 978-
1-4503-7023-3.

[82] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viegas, and J. Wilson,
“The What-If Tool: Interactive Probing of Machine Learning Models,” IEEE Trans-
actions on Visualization and Computer Graphics, pp. 1–1, 2019.

112

[83] B. Nushi, E. Kamar, and E. Horvitz, “Towards Accountable AI: Hybrid Human-
Machine Analyses for Characterizing System Failure,” in Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing, vol. 6, 2018, p. 10.

[84] H. Lakkaraju, E. Kamar, R. Caruana, and E. Horvitz, “Identifying Unknown Un-
knowns in the Open World: Representations and Policies for Guided Exploration,”
in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, ser. AAAI’17,
AAAI Press, 2017, pp. 2124–2132.

[85] G. d’Eon, J. d’Eon, J. R. Wright, and K. Leyton-Brown, “The Spotlight: A General
Method for Discovering Systematic Errors in Deep Learning Models,” arXiv:2107.00758
[cs, stat], Oct. 2021, arXiv: 2107.00758.

[86] S. Singla, B. Nushi, S. Shah, E. Kamar, and E. Horvitz, “Understanding Failures of
Deep Networks via Robust Feature Extraction,” arXiv:2012.01750 [cs], Jun. 2021,
arXiv: 2012.01750.

[87] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams, “Squares: Supporting In-
teractive Performance Analysis for Multiclass Classifiers,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 1, pp. 61–70, Jan. 2017.

[88] M. Pushkarna, J. Wexler, and J. Wilson, Facets: An Open Source Visualization Tool
for Machine Learning Training Data, 2017.

[89] N.-C. Chen, J. Suh, J. Verwey, G. Ramos, S. Drucker, and P. Simard, “AnchorViz:
Facilitating Classifier Error Discovery through Interactive Semantic Data Explo-
ration,” in 23rd International Conference on Intelligent User Interfaces, Tokyo
Japan: ACM, Mar. 2018, pp. 269–280, ISBN: 978-1-4503-4945-1.

[90] H. Wang, X. Wu, Z. Huang, and E. P. Xing, “High-Frequency Component Helps
Explain the Generalization of Convolutional Neural Networks,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA: IEEE, Jun. 2020, pp. 8681–8691, ISBN: 978-1-72817-168-5.

[91] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad: GAN-based
metamorphic testing and input validation framework for autonomous driving sys-
tems,” in Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, Montpellier France: ACM, Sep. 2018, pp. 132–142,
ISBN: 978-1-4503-5937-5.

[92] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated Testing of Deep-
Neural-Network-Driven Autonomous Cars,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering, Gothenburg Sweden: ACM, May 2018,
pp. 303–314, ISBN: 978-1-4503-5638-1.

113

[93] P. He, C. Meister, and Z. Su, “Structure-Invariant Testing for Machine Translation,”
in Proceedings of the ACM/IEEE 42nd International Conference on Software En-
gineering, Seoul South Korea: ACM, Jun. 2020, pp. 961–973, ISBN: 978-1-4503-
7121-6.

[94] K. Goel et al., “Robustness Gym: Unifying the NLP Evaluation Landscape,” pp. 1–
34, 2021.

[95] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does Machine Learning Change
Software Development Practices?” IEEE Transactions on Software Engineering,
pp. 1–1, 2020.

[96] N. Sambasivan, S. Kapania, H. Highfill, D. Akrong, P. Paritosh, and L. M. Aroyo,
““Everyone wants to do the model work, not the data work”: Data Cascades in
High-Stakes AI,” in Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, Yokohama Japan: ACM, May 2021, pp. 1–15, ISBN: 978-
1-4503-8096-6.

[97] S. G. Harris and S. G. Harris, “Organizational Culture and Individual Sensemaking
: A Schema-based Perspective,” INFORMS, vol. 5, no. 3, pp. 309–321, 1994.

[98] D. Piorkowski, S. Park, A. Y. Wang, D. Wang, M. Muller, and F. Portnoy, “How
AI Developers Overcome Communication Challenges in a Multidisciplinary Team:
A Case Study,” Proceedings of the ACM on Human-Computer Interaction, vol. 5,
no. CSCW1, pp. 1–25, Apr. 2021.

[99] H. Shen, H. Jin, A. Cabrera, A. Perer, H. Zhu, and J. I. Hong, “Designing Al-
ternative Representations of Confusion Matrices to Support Non-Expert Public
Understanding of Algorithm Performance,” Proceedings of the ACM on Human-
Computer Interaction, vol. 4, no. CSCW2, pp. 1–22, Oct. 2020.

[100] Q. Yang, J. Suh, N.-C. Chen, and G. Ramos, “Grounding Interactive Machine
Learning Tool Design in How Non-Experts Actually Build Models,” in Proceed-
ings of the 2018 Designing Interactive Systems Conference, Hong Kong China:
ACM, Jun. 2018, pp. 573–584, ISBN: 978-1-4503-5198-0.

[101] J. Görtler et al., “Neo: Generalizing Confusion Matrix Visualization to Hierarchical
and Multi-Output Labels,” in CHI Conference on Human Factors in Computing
Systems, New Orleans LA USA: ACM, Apr. 2022, pp. 1–13, ISBN: 978-1-4503-
9157-3.

[102] A. Hinterreiter et al., “ConfusionFlow: A model-agnostic visualization for temporal
analysis of classifier confusion,” IEEE Transactions on Visualization and Computer
Graphics, pp. 1–1, 2020.

114

[103] G. Bansal and D. S. Weld, “A Coverage-Based Utility Model for Identifying Un-
known Unknowns,” in 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,
2018, pp. 1463–1470.

[104] X. Zhang, Y. Yang, Y. Feng, and Z. Chen, “Software Engineering Practice in the
Development of Deep Learning Applications,” arXiv:1910.03156 [cs], Oct. 2019.

[105] S. R. Hong, J. Hullman, and E. Bertini, “Human Factors in Model Interpretability:
Industry Practices, Challenges, and Needs,” Proceedings of the ACM on Human-
Computer Interaction, vol. 4, no. CSCW1, pp. 1–26, May 2020.

[106] M. K. Hong, A. Fourney, D. DeBellis, and S. Amershi, “Planning for Natural Lan-
guage Failures with the AI Playbook,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, Yokohama Japan: ACM, May 2021,
pp. 1–11, ISBN: 978-1-4503-8096-6.

[107] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine Learning Testing: Survey,
Landscapes and Horizons,” IEEE Transactions on Software Engineering, pp. 1–1,
2020.

[108] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia, “Model assertions for monitoring
and improving ML models,” Proceedings of Machine Learning and Systems, vol. 2,
pp. 481–496, 2020.

[109] M. A. Madaio, L. Stark, J. Wortman Vaughan, and H. Wallach, “Co-Designing
Checklists to Understand Organizational Challenges and Opportunities around Fair-
ness in AI,” in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, Honolulu HI USA: ACM, Apr. 2020, pp. 1–14, ISBN: 978-1-
4503-6708-0.

[110] H. Shen, “Interactive notebooks: Sharing the code,” Nature, vol. 515, no. 7525,
pp. 151–152, Nov. 2014.

[111] C. K. Ch’ng and C. S. Chan, “Total-Text: A Comprehensive Dataset for Scene
Text Detection and Recognition,” in 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), Kyoto: IEEE, Nov. 2017, pp. 935–
942, ISBN: 978-1-5386-3586-5.

[112] C. Callison-Burch, M. Osborne, and P. Koehn, “Re-evaluating the Role of Bleu in
Machine Translation Research,” in 11th Conference of the European Chapter of the
Association for Computational Linguistics, Trento, Italy: Association for Compu-
tational Linguistics, Apr. 2006, pp. 249–256.

[113] G. Harboe and E. M. Huang, “Real-World Affinity Diagramming Practices: Bridg-
ing the Paper-Digital Gap,” in Proceedings of the 33rd Annual ACM Conference on

115

Human Factors in Computing Systems, Seoul Republic of Korea: ACM, Apr. 2015,
pp. 95–104, ISBN: 978-1-4503-3145-6.

[114] G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel, and M. van
Dantzich, “Data Mountain: Using Spatial Memory for Document Management,” in
Proceedings of the 11th annual ACM symposium on User interface software and
technology - UIST ’98, San Francisco, California, United States: ACM Press, 1998,
pp. 153–162, ISBN: 978-1-58113-034-8.

[115] F. Lekschas, X. Zhou, W. Chen, N. Gehlenborg, B. Bach, and H. Pfister, “A Generic
Framework and Library for Exploration of Small Multiples through Interactive Pil-
ing,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2,
pp. 358–368, Feb. 2021.

[116] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 770–778, ISBN: 978-1-4673-
8851-1.

[117] C. Low, E. McCamey, C. Gleason, P. Carrington, J. P. Bigham, and A. Pavel,
“Twitter A11y: A Browser Extension to Describe Images,” in The 21st Interna-
tional ACM SIGACCESS Conference on Computers and Accessibility, Pittsburgh
PA USA: ACM, Oct. 2019, pp. 551–553, ISBN: 978-1-4503-6676-2.

[118] T. Li, K. Luther, and C. North, “CrowdIA: Solving Mysteries with Crowdsourced
Sensemaking,” Proceedings of the ACM on Human-Computer Interaction, vol. 2,
no. CSCW, pp. 1–29, Nov. 2018.

[119] Y. Rogers, HCI Theory. 2012, ISBN: 978-1-60845-900-1.

[120] K. Fisher, S. Counts, and A. Kittur, “Distributed Sensemaking: Improving Sense-
making by Leveraging the Efforts of Previous Users,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Austin Texas USA: ACM,
May 2012, pp. 247–256, ISBN: 978-1-4503-1015-4.

[121] A. Kittur, A. M. Peters, A. Diriye, and M. Bove, “Standing on the schemas of gi-
ants: Socially augmented information foraging,” in Proceedings of the 17th ACM
conference on Computer supported cooperative work & social computing, Balti-
more Maryland USA: ACM, Feb. 2014, pp. 999–1010, ISBN: 978-1-4503-2540-0.

[122] C. J. Cai, S. Winter, D. Steiner, L. Wilcox, and M. Terry, “”Hello AI”: Uncover-
ing the Onboarding Needs of Medical Practitioners for Human-AI Collaborative
Decision-Making,” Proc. ACM Hum.-Comput. Interact., vol. 3, no. CSCW, Nov.
2019.

116

[123] M. De-Arteaga, R. Fogliato, and A. Chouldechova, “A Case for Humans-in-the-
Loop: Decisions in the Presence of Erroneous Algorithmic Scores,” in Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu
HI USA: ACM, Apr. 2020, pp. 1–12, ISBN: 978-1-4503-6708-0.

[124] A. Kawakami et al., “Improving Human-AI Partnerships in Child Welfare: Under-
standing Worker Practices, Challenges, and Desires for Algorithmic Decision Sup-
port,” in CHI Conference on Human Factors in Computing Systems, New Orleans
LA USA: ACM, Apr. 2022, pp. 1–18, ISBN: 978-1-4503-9157-3.

[125] Z. Buçinca, M. B. Malaya, and K. Z. Gajos, “To Trust or to Think: Cognitive Forc-
ing Functions Can Reduce Overreliance on AI in AI-assisted Decision-making,”
Proceedings of the ACM on Human-Computer Interaction, vol. 5, no. CSCW1,
pp. 1–21, Apr. 2021.

[126] M. Jacobs, M. F. Pradier, T. H. McCoy, R. H. Perlis, F. Doshi-Velez, and K. Z.
Gajos, “How machine-learning recommendations influence clinician treatment se-
lections: The example of antidepressant selection,” Translational Psychiatry, vol. 11,
no. 1, p. 108, Jun. 2021.

[127] A. Bussone, S. Stumpf, and D. O’Sullivan, “The role of explanations on trust and
reliance in clinical decision support systems,” Proceedings - 2015 IEEE Interna-
tional Conference on Healthcare Informatics, ICHI 2015, pp. 160–169, 2015, Pub-
lisher: IEEE ISBN: 9781467395489.

[128] C. Rudin, “Stop explaining black box machine learning models for high stakes de-
cisions and use interpretable models instead,” Nature Machine Intelligence, vol. 1,
no. 5, pp. 206–215, May 2019.

[129] N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep Learning in Com-
puter Vision: A Survey,” IEEE Access, vol. 6, pp. 14 410–14 430, 2018.

[130] E. Luger and A. Sellen, “”Like Having a Really Bad PA”: The Gulf between User
Expectation and Experience of Conversational Agents,” in Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, San Jose California
USA: ACM, May 2016, pp. 5286–5297, ISBN: 978-1-4503-3362-7.

[131] R. Kang, L. Dabbish, N. Fruchter, and S. Kiesler, “My Data Just Goes Everywhere:
User Mental Models of the Internet and Implications for Privacy and Security,”
in Eleventh Symposium On Usable Privacy and Security (SOUPS 2015), Ottawa:
USENIX Association, Jul. 2015, pp. 39–52, ISBN: 978-1-931971-24-9.

[132] R. Zhang, N. J. McNeese, G. Freeman, and G. Musick, “”An Ideal Human”: Ex-
pectations of AI Teammates in Human-AI Teaming,” Proceedings of the ACM on
Human-Computer Interaction, vol. 4, no. CSCW3, pp. 1–25, Jan. 2021.

117

[133] F. Poursabzi-Sangdeh, D. G. Goldstein, J. M. Hofman, J. W. Wortman Vaughan,
and H. Wallach, “Manipulating and Measuring Model Interpretability,” in Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems,
Yokohama Japan: ACM, May 2021, pp. 1–52, ISBN: 978-1-4503-8096-6.

[134] J. J. Cash, “Alert Fatigue,” American Journal of Health-System Pharmacy, vol. 66,
no. 23, pp. 2098–2101, Dec. 2009.

[135] T. Van Gog, L. Kester, and F. Paas, “Effects of concurrent monitoring on cognitive
load and performance as a function of task complexity,” Applied Cognitive Psy-
chology, vol. 25, no. 4, pp. 584–587, Jul. 2011.

[136] J. Sweller, “Element Interactivity and Intrinsic, Extraneous, and Germane Cogni-
tive Load,” Educational Psychology Review, vol. 22, no. 2, pp. 123–138, Jun. 2010.

[137] A. Caliskan, J. J. Bryson, and A. Narayanan, “Semantics Derived Automatically
from Language Corpora Contain Human-like Biases,” Science, vol. 356, no. 6334,
pp. 183–186, Apr. 2017.

[138] A. Kuznetsova et al., “The Open Images Dataset V4: Unified Image Classifica-
tion, Object Detection, and Visual Relationship Detection at Scale,” International
Journal of Computer Vision, vol. 128, no. 7, pp. 1956–1981, 2020.

[139] G. Bansal, B. Nushi, E. Kamar, D. S. Weld, W. S. Lasecki, and E. Horvitz, “Up-
dates in Human-AI Teams: Understanding and Addressing the Performance/Com-
patibility Tradeoff,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 2429–2437, Jul. 2019.

[140] V. Lai and C. Tan, “On Human Predictions with Explanations and Predictions of
Machine Learning Models: A Case Study on Deception Detection,” in Proceed-
ings of the Conference on Fairness, Accountability, and Transparency, Atlanta GA
USA: ACM, Jan. 2019, pp. 29–38, ISBN: 978-1-4503-6125-5.

[141] T. Wu, D. S. Weld, and J. Heer, “Local Decision Pitfalls in Interactive Machine
Learning: An Investigation into Feature Selection in Sentiment Analysis,” ACM
Transactions on Computer-Human Interaction, vol. 26, no. 4, pp. 1–27, Jul. 2019.

[142] M. Yin, J. Wortman Vaughan, and H. Wallach, “Understanding the Effect of Accu-
racy on Trust in Machine Learning Models,” in Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems, Glasgow Scotland Uk: ACM,
May 2019, pp. 1–12, ISBN: 978-1-4503-5970-2.

[143] M. Ott, Y. Choi, C. Cardie, and J. T. Hancock, “Finding Deceptive Opinion Spam
by Any Stretch of the Imagination,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies

118

- Volume 1, ser. HLT ’11, USA: Association for Computational Linguistics, 2011,
pp. 309–319, ISBN: 978-1-932432-87-9.

[144] M. Ott, C. Cardie, and J. T. Hancock, “Negative Deceptive Opinion Spam,” 2013,
pp. 9–14.

[145] P. L. Teh, P. Rayson, I. Pak, and S. Piao, “Sentiment Analysis Tools Should Take
Account of the Number of Exclamation Marks!!!” In Proceedings of the 17th In-
ternational Conference on Information Integration and Web-based Applications &
Services, Brussels Belgium: ACM, Dec. 2015, pp. 1–6, ISBN: 978-1-4503-3491-4.

[146] G. Cheng, J. Han, and X. Lu, “Remote Sensing Image Scene Classification: Bench-
mark and State of the Art,” Proceedings of the IEEE, vol. 105, no. 10, pp. 1865–
1883, Oct. 2017.

[147] T. Logar, J. Bullock, E. Nemni, L. Bromley, J. A. Quinn, and M. Luengo-Oroz,
“PulseSatellite: A tool using human-AI feedback loops for satellite image analysis
in humanitarian contexts,” arXiv:2001.10685 [cs, eess], Jan. 2020, arXiv: 2001.10685.

[148] P. Welinder et al., “Caltech-UCSD Birds 200,” California Institute of Technology,
Tech. Rep. CNS-TR-2010-001, 2010.

[149] G. Van Horn et al., “Building a bird recognition app and large scale dataset with
citizen scientists: The fine print in fine-grained dataset collection,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA: IEEE, Jun. 2015, pp. 595–604, ISBN: 978-1-4673-6964-0.

[150] L. Lascau, S. J. J. Gould, A. L. Cox, E. Karmannaya, and D. P. Brumby, “Mono-
tasking or Multitasking: Designing for Crowdworkers’ Preferences,” in Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems, Glas-
gow Scotland Uk: ACM, May 2019, pp. 1–14, ISBN: 978-1-4503-5970-2.

[151] E. Glikson and A. W. Woolley, “Human trust in artificial intelligence: Review of
empirical research,” Academy of Management Annals, vol. 14, no. 2, pp. 627–660,
2020.

[152] J. R. Anderson, M. Matessa, and C. Lebiere, “ACT-R: A Theory of Higher Level
Cognition and Its Relation to Visual Attention,” Human–Computer Interaction,
vol. 12, no. 4, pp. 439–462, Dec. 1997.

[153] S. Ritter, J. R. Anderson, K. R. Koedinger, and A. Corbett, “Cognitive Tutor: Ap-
plied research in mathematics education,” Psychonomic Bulletin & Review, vol. 14,
no. 2, pp. 249–255, Apr. 2007.

119

[154] S. Barocas and A. D. Selbst, “Big Data’s Disparate Impact,” SSRN Electronic Jour-
nal, vol. 671, pp. 671–732, 2018.

[155] National Transportation Safety Board, Collision Between Vehicle Controlled by De-
velopmental Automated Driving System and Pedestrian, Nov. 2019.

[156] B. Wilson, J. Hoffman, and J. Morgenstern, Predictive Inequity in Object Detection,
arXiv:1902.11097 [cs, stat], Feb. 2019.

[157] W. H. Deng et al., “Exploring How Machine Learning Practitioners (Try To) Use
Fairness Toolkits,” in 2022 ACM Conference on Fairness, Accountability, and Trans-
parency, Seoul Republic of Korea: ACM, Jun. 2022, pp. 473–484, ISBN: 978-1-
4503-9352-2.

[158] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-Lite: A Gram-
mar of Interactive Graphics,” IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 1, pp. 341–350, 2017.

[159] J. Heer, Arquero: Query processing and transformation of array-backed data ta-
bles, 2020.

[160] Z. J. Wang, E. Montoya, D. Munechika, H. Yang, B. Hoover, and D. H. Chau,
DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative
Models, arXiv:2210.14896 [cs], Nov. 2022.

[161] W. McKinney, “Data Structures for Statistical Computing in Python,” Austin, Texas,
2010, pp. 56–61.

[162] A. Krizhevsky, G. Hinton, and others, “Learning multiple layers of features from
tiny images,” 2009, Publisher: Citeseer.

[163] Z. Jackson, C. Souza, J. Flaks, Y. Pan, H. Nicolas, and A. Thite, Jakobovski/Free-
Spoken-Digit-Dataset: V1.0.8, Aug. 2018.

[164] D. Jha et al., “Kvasir-SEG: A Segmented Polyp Dataset,” in MultiMedia Modeling,
Y. M. Ro et al., Eds., vol. 11962, Series Title: Lecture Notes in Computer Science,
Cham: Springer International Publishing, 2020, pp. 451–462, ISBN: 978-3-030-
37733-5 978-3-030-37734-2.

[165] J. Ni, J. Li, and J. McAuley, “Justifying Recommendations using Distantly-Labeled
Reviews and Fine-Grained Aspects,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China:
Association for Computational Linguistics, 2019, pp. 188–197.

120

[166] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, “Mobile Sensor Data
Anonymization,” in Proceedings of the International Conference on Internet of
Things Design and Implementation, ser. IoTDI ’19, event-place: Montreal, Quebec,
Canada, New York, NY, USA: ACM, 2019, pp. 49–58, ISBN: 978-1-4503-6283-2.

[167] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” in Computer
Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.,
vol. 8693, Series Title: Lecture Notes in Computer Science, Cham: Springer In-
ternational Publishing, 2014, pp. 740–755, ISBN: 978-3-319-10601-4 978-3-319-
10602-1.

[168] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. V. Chawla, and F. Herrera,
“A unifying view on dataset shift in classification,” Pattern Recognition, vol. 45,
no. 1, pp. 521–530, 2012.

[169] J. J. van Griethuysen et al., “Computational Radiomics System to Decode the Ra-
diographic Phenotype,” Cancer Research, vol. 77, no. 21, e104–e107, Nov. 2017.

[170] T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the Performance of
Screening Mammography, Physical Examination, and Breast US and Evaluation of
Factors that Influence Them: An Analysis of 27,825 Patient Evaluations,” Radiol-
ogy, vol. 225, no. 1, pp. 165–175, Oct. 2002.

[171] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-Resolution
Image Synthesis with Latent Diffusion Models, arXiv:2112.10752 [cs], Apr. 2022.

[172] D. Bertucci et al., “DendroMap: Visual Exploration of Large-Scale Image Datasets
for Machine Learning with Treemaps,” IEEE Transactions on Visualization and
Computer Graphics (TVCG), 2022, Publisher: IEEE.

[173] P. Moritz et al., Ray: A Distributed Framework for Emerging AI Applications,
arXiv:1712.05889 [cs, stat], Sep. 2018.

[174] D. Moritz, B. Howe, and J. Heer, “Falcon: Balancing Interactive Latency and Res-
olution Sensitivity for Scalable Linked Visualizations,” in Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, Glasgow Scotland Uk:
ACM, May 2019, pp. 1–11, ISBN: 978-1-4503-5970-2.

[175] V. S. Chen, S. Wu, Z. Weng, A. Ratner, and C. Ré, “Slice-based Learning: A Pro-
gramming Model for Residual Learning in Critical Data Slices,” no. NeurIPS, 2019.

[176] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, Distributionally Robust Neu-
ral Networks for Group Shifts: On the Importance of Regularization for Worst-Case
Generalization, arXiv:1911.08731 [cs, stat], Apr. 2020.

121

[177] E. Z. Liu et al., “Just Train Twice: Improving Group Robustness without Training
Group Information,” arXiv:2107.09044 [cs, stat], Sep. 2021, arXiv: 2107.09044.

[178] OpenAI et al., GPT-4 Technical Report, arXiv:2303.08774 [cs], Dec. 2023.

[179] Z. J. Wang, A. Chakravarthy, D. Munechika, and D. H. Chau, “Wordflow: Social
Prompt Engineering for Large Language Models,” arXiv 2401.14447, 2024.

[180] A. Cabrera, M. Tulio Ribeiro, B. Lee, R. Deline, A. Perer, and S. M. Drucker,
“What Did My AI Learn? How Data Scientists Make Sense of Model Behavior,”
ACM Trans. Comput.-Hum. Interact., vol. 30, no. 1, Mar. 2023, Place: New York,
NY, USA Publisher: Association for Computing Machinery.

[181] B. Yu, Y. Yuan, L. Terveen, Z. S. Wu, J. Forlizzi, and H. Zhu, “Keeping designers
in the loop: Communicating inherent algorithmic trade-offs across multiple objec-
tives,” DIS 2020 - Proceedings of the 2020 ACM Designing Interactive Systems
Conference, pp. 1245–1257, 2020, ISBN: 9781450369749.

[182] W. H. Deng, N. Yildirim, M. Chang, M. Eslami, K. Holstein, and M. Madaio, “In-
vestigating Practices and Opportunities for Cross-functional Collaboration around
AI Fairness in Industry Practice,” in 2023 ACM Conference on Fairness, Account-
ability, and Transparency, Chicago IL USA: ACM, Jun. 2023, pp. 705–716, ISBN:
9798400701924.

[183] S. N. Akter et al., “An in-depth look at gemini’s language abilities,” arXiv preprint
arXiv:2312.11444, 2023.

[184] Z. Zhang et al., “Understanding Business Analysts’ Needs for Data Report Author-
ing,” 5 pages, 2022, Artwork Size: 5 pages Publisher: The Eurographics Associa-
tion.

[185] A. Satyanarayan et al., “Critical reflections on visualization authoring systems,”
IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 461–
471, 2020.

[186] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer,
“Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recom-
mendations,” IEEE Transactions on Visualization and Computer Graphics, vol. 22,
no. 1, pp. 649–658, 2016.

[187] K. Wongsuphasawat et al., “Voyager 2: Augmenting visual analysis with partial
view specifications,” Conference on Human Factors in Computing Systems - Pro-
ceedings, vol. 2017-May, pp. 2648–2659, 2017, ISBN: 9781450346559.

122

[188] D. Ren, B. Lee, and M. Brehmer, “Charticulator: Interactive Construction of Be-
spoke Chart Layouts,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 25, no. 1, pp. 789–799, 2019.

[189] C. Stolte and P. Hanrahan, “Polaris: A system for query, analysis and visualization
of multi-dimensional relational databases,” Proceedings of the IEEE Symposium on
Information Visualization, pp. 5–14, 2000.

[190] G. Team et al., Gemini: A Family of Highly Capable Multimodal Models, arXiv:2312.11805
[cs], Dec. 2023.

[191] L. Gao et al., A framework for few-shot language model evaluation, Version Num-
ber: v0.4.0, Dec. 2023.

[192] OpenLLM Leaderboard.

[193] RAGAS.

[194] K. Cobbe et al., Training Verifiers to Solve Math Word Problems, arXiv:2110.14168
[cs], Nov. 2021.

[195] A. Q. Jiang et al., Mixtral of Experts, arXiv:2401.04088 [cs], Jan. 2024.

123

	Title Page
	Keywords
	Abstract
	Acknowledgements
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Thesis Statements
	Research Contributions
	Prior Publications and Authorship

	Background & Related Work
	What is AI development?
	Sensemaking
	Human-AI Collaboration
	Tools for AI Evaluation
	AI Documentation and Reporting
	Narrative Visualization

	How do Practitioners Evaluate AI Systems?
	Introduction
	Methodology
	Interviews on AI Evaluation
	Interviews on AI Interfaces

	Results
	Aggregate Metrics Do Not Reflect Model Performance in Deployment
	Challenges in Tracking Continuous Model and Data Updates
	Limited Collaboration in Cross-Functional Teams
	Use Cases and Limitations of Development Tools

	Conclusion

	A Sensemaking Framework for Behavioral Evaluation
	Introduction
	Methodology
	Sensemaking Framework
	Instances and Outputs
	Schemas
	Hypotheses
	Assessment

	AIFinnity System
	Instances, Outputs, and Initial Schemas
	Schemas With Similar Search and Filtering
	Hypotheses and Assessment

	User Study
	Study Procedure and Analysis
	Results

	Discussion and Future Work
	Applications and Extensions of AIFinnity
	Gaps in Current Tooling
	Designing and Evaluating Tools With the Framework
	Limitations

	Conclusion

	Improving Human-AI Collaboration with Behavior Descriptions
	Introduction
	Behavior Descriptions
	Principles for Effective Behavior Descriptions
	Why Not Just Fix AI Failures?

	Experimental Design
	Experimental Setup
	Hypotheses

	Results
	Overall Accuracy
	Accuracy by Behavior Description Group
	Qualitative Results
	Additional Findings

	Discussion
	Effectiveness of Behavior Descriptions
	Learning and Behavior Descriptions
	Authoring Behavior Descriptions
	Understanding and Improving Mental Models of AI

	Limitations and Future Work
	Conclusion

	Zeno: A General-purpose Tool for AI Evaluation
	Introduction
	Design Goals
	Zeno: An Interactive Evaluation Framework
	Python API: Extensible Model Analysis
	Exploration UI: Create and Track Slices
	Analysis UI: Track and Test Slices Across Models

	Case Studies
	Case 1: UI Classification
	Case 2: Breast Cancer Detection
	Case 3: Voice Commands
	Case 4: Text-to-Image Generation

	Discussion
	Limitations and Future Work
	Conclusion

	Zeno Reports: Authoring Interactive and Reproducible AI Evaluations
	Introduction
	Design Goals
	Zeno Reports
	Data Rendering
	Charts
	Markdown

	Evaluation
	Public Deployment
	Gemini Benchmarking

	Results
	Quantitative Patterns of Report Authoring
	Qualitative Insights on Using Zeno Reports

	Discussion
	Limitations and Future Work
	Conclusion

	Conclusions
	Discussion
	Practitioners spend most of their time discovering behaviors
	Collecting or generating instances is becoming a challenging sensemaking step
	Limited need for formally verifying behaviors
	Impact of incentives on tool use and adoption

	Conclusion

	References

