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Abstract

Federated learning (FL) is a recent model training paradigm in which client de-
vices collaboratively train a model without ever aggregating their data. Crucially,
this scheme offers potential privacy and security benefits for users by only ever com-
municating updates to the model weights to a central server as opposed to traditional
machine learning (ML) training which directly communicates and aggregates data.
However, FL training suffers from statistical heterogeneity as clients may have dif-
fering distributions of local data. Large language models (LLMs) offer a potential
solution to this issue of heterogeneity given that they have consistently been shown
to be able to learn on vast amounts of noisy data. While LLMs are a promising devel-
opment for resolving the consistent issue of non-I.I.D. clients in federated settings,
they exacerbate two other bottlenecks in FL: limited local compute and expensive
communication. This thesis aims to develop efficient training methods for LLMs
in FL. To this end, we employ two critical techniques in enabling efficient train-
ing. First, we use low-rank adaptation (LoRA) to reduce the computational load
of local model training. Second, we communicate sparse updates throughout train-
ing to significantly cut down on communication costs. Taken together, our method
reduces communication costs by up to 10x over vanilla LoRA and up to 5x over
more complex sparse LoRA baselines while achieving greater utility. We emphasize
the importance of carefully applying sparsity and picking effective rank and sparsity
configurations for federated LLM training.
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Chapter 1

Introduction

The increased ubiquity of edge devices, such as 10T devices and smartphones, has made federated
learning (FL) paradigms a feasible way to train machine learning (ML) models [35]. In tradi-
tional ML applications, a central server would first aggregate the data from disparate sources. A
model would then be trained at the server level using this aggregated data. While FL applications
similarly involve a central server and disparate data sources, which we refer to as “clients”, FL.
offers an alternative to traditional training procedures. FL applications will instead first distribute
the model parameters from the central server to the clients (download phase). The clients then
independently train the model parameters they receive from the central server on their local data.
Once local training is complete, the clients send the model parameters back to the central server
(upload phase) where the central server aggregates the clients’ models into a new global model.
In total, the above steps constitute a single “communication round” for the training procedure.
This process is repeated for multiple communication rounds, with each round involving sampling
clients, training local models, and aggregating the models at the central server. In this training
scheme, data never leaves the clients’ devices and only the model parameters are communicated
between the central server and the clients. As a consequence, FL offers potential privacy bene-
fits over traditional ML [5]]. FL training offers other benefits include improved personalization
[45] and scalability [59]]. FL-based training schemes are particularly useful in large networks of
similar devices and have already been productionized at scale [6, 24]].

While FL continues to become more valuable in practice, practical concerns about its utility
remain. In particular, the use of Large Language Models (LLMs) has become standard for a
vast number of ML problems [47]. In many settings, the LLM being used may have billions
of trainable parameters. The scale of these LLMs presents serious compute and communication
bottlenecks for distributed training schemes. Since the advent of LLMs, a common strategy to
use LLMs has been the pretrain-then-fine-tune framework. In essence, LLMs like GPT [8] or
BERT [29]], which have already been pretrained on a large corpus of data, can be fine-tuned on
a downstream task. A consequence of this framework is that the updates to the pretrained model
weights take on low-rank structures, eliminating the need for full fine-tuning of all the model
weights. In recent years, adapter methods for LLMs have been developed to incorporate these
ideas by injecting a small set of trainable parameters into each transformer block and freezing
the remaining parameters of the model [21, 23]. Therefore, when a pretrained LLM is being
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fine-tuned on a downstream task, only a smaller portion of parameters must be trained.

Adapter methods offer a concrete way to reduce the compute and communication loads of LLM
training in a distributed or federated setting. However, since FL training can still require a large
number of communication rounds and clients, the communication costs of adapter methods in
FL can still be prohibitively high. While adapter methods reduce some of the communication
bottlenecks associated with distributed LLM training, in practice they can still lead to slow com-
munication while seeing more significant drops in model utility. They may additionally increase
storage and inference costs by increasing the number of total parameters included in the model
[51].

LLMs broadly have achieved state-of-the-art performance in multiple domains and in many ways
have become the standard approach for modeling with large amounts of data. Nonetheless, they
remain difficult to implement in FL. The fact that FL. applications involve communication over
a wireless network means that coordinating large model updates from a large array of clients
is specifically difficult and has been a primary concern in utilizing LLMs for FL. The goal of
this thesis is to introduce a method to perform communication-efficient LLLM training for
FL. To this end, we introduce Federated LoRA with Simple Sparsity (FLoSS). We specifically
employ sparsity to low-rank adaptation (LoRA) during only the download and upload phases of
FL training in order to retain the model’s utility while restricting communication. We addition-
ally suggest heuristics to accurately select a rank and download/upload sparsity ratio to perform
accurate model training given an arbitrary communication budget. We summarize our contribu-
tions as follows -

1. To the best of our knowledge, we are the first to apply unstructured sparsity to LoRA for
efficient federated fine-tuning. We focus on unstructured (weight-level) sparsity because it
has been shown to outperform structured (block-level) sparsity in centralized settings.

2. We propose FLoSS, a simple baseline that applies a constant top-k sparsity only to com-
munication. This method can reduce communication costs up to 10x while matching the
performance of dense LoRA on several FL image and text tasks.

3. We simulate an FL training procedure on a network with realistic download and upload
communication speeds. Given a communication budget, we recommend heuristics to accu-
rately select a LoORA rank and download/upload sparsity ratios that maximize the model’s
utility within that budget.

FLoSS aims to make LLM training more feasible in a federated setting. LLM training in
resource-constrained environments remains an open research problem and an important field
of study as LLLMs grow in size. We hope to contribute to this growing field of work by proposing
methods to improve efficiency while retaining utility in real-world settings.



Chapter 2

Background

2.1 Federated Learning Methods

2.1.1 Problem Statement

FL applications train an ML model across a distributed network of clients [35]. Generally, FL
applications involve a central server and a set of £ client devices. At each communication round,
a subset of the £ devices each download a copy of the global model weights, train the model on
a local objective, and upload the locally trained model weights back to the central server. The
communication round ends with the central server aggregating the weights into a new global
model. The process is depicted below in Figure The objective of an FL application is
traditionally described as follows where the model is parameterized by weights w -

k
min F'(w), where F'(w) := Zpl-Fi(w) (2.1)
i=1

w

F; describes the local objective for client 7. In our setup, we treat F; as the loss of the model
parameterized by w with respect to the local data on client device i -

1 X N
Fw) = —> LY,y w) 22)
v =1

j=

Each client has m; local examples and local loss function /;. Our global objective F'is weighted
by parameters p; where each p; > 0 and Zf:o p; = 1. While multiple weighting schemes for
clients exist, we define p; = % Vi € [1...k]. With this weighting, the global objective function
treats each client equally regardless of the distribution of local data. Therefore, an FL training
procedure aims to find parameters w that minimize the average of the loss across the £ clients.
We note that there exist certain FL settings that train multiple models (optimizing multiple w;’s)
[4] or have different tasks for different clients (using different /;’s) [15]. Our focus is single-
task, single-model FL where each client uses the same loss function and optimizes a single set of
parameters w. The next section described two common procedures used to achieve this objective,
namely FedAvg and FedAdam.



Figure 2.1: FL procedures involve 4 steps in each communication round. (1) Clients download
model weights from the central server. (2) Clients train the model on local data. (3) Clients
upload local model weights to the central server. (4) The central server aggregates client updates
into a new global model.

2.1.2 Optimization Techniques

We present two algorithms that aim to find model parameters w that minimize the objective
F'. These methods draw from historical works in distributed optimization. The first method is
Federated Averaging (FedAvg) [35]. Consider a total of k client devices. At communication
round ¢, n clients are sampled from the £ total clients. These n clients each download a copy of
the global model with parameters w; from the central server and train the model for e epochs on
local client data. This results in local models wgl), wf@, e ,w,gn). These models are uploaded
back to the central server. The central server then aggregates by averaging these models to define

the new global model. This update is formulated as follows -
1<~
W ¢ le w;” (2.3)

This process is repeated for a total 7' communication rounds. In this straightforward method,
successive averaging of client updates aims to make the final global model wy accurate for all
clients k despite sampling a fraction of the clients in each communication round. In settings with
large k, it is possible for n << k to still result in an accurate final model as has been shown
empirically in many studies. Federated Adam (FedAdam) [40] proceeds similarly to FedAvg
with a slight adjustment made to the aggregation mechanism. In FedAdam, once the clients
performing local training to calculate wlfl), wt@), cee w,gn), they each calculate Agi) = wt(i) — wy
and upload Agi) back to the central server. The central server calculates the averages of these

differences A; = % i Agi) and uses this A; as a “pseudo-gradient” for an Adam optimizer.
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Figure 2.2: LLM fine-tuning involves taking an open-source model trained on generic data and
adapting the weights on task-specific data.

In other words the update can be formulated as -

M1 < Bimg + (1= B1)A
Vi1 = Povy + (1 — Ba) A7 (2.4)
My
VUt €
FedAdam has been shown to outperform FedAvg in a variety of settings. For this reason, we
utilize the FedAdam optimization method for the remainder of our experiments. We aim to

benchmark FLoSS against the best possible baseline. Therefore, using FedAdam was the natural
choice to compare against for our communication-efficient method for federated training.

Wiy ¢ Wy + 7y

2.2 Large Language Model Fine-Tuning

LLMs have become a standard approach for a variety of ML problems due to their state-of-the-
art performance in a broad host of domains (e.g. language translation [39], question answering
[61]], next-word prediction [56], large-scale vision [13]], etc.). An important finding is that the
performance of LLMs scales well with respect to the number of parameters in the model [28]].
This runs contrary to other architectures like CNNs, RNNs, and LSTMs where performance on
a task reaches a saturation point despite an increase in the number of parameters. However, as
LLMs continue to grow in size, they become increasingly hard to train efficiently. Coupled with
the fact that LLMs require inordinate amounts of data in order to achieve their state-of-the-art
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Figure 2.3: LoRA inserts small trainable matrices into the model architecture and freezes the
remaining model weights.

accuracy, training LLMs presents serious logistical and computational challenges. To address
some of these challenges, recent literature has focused on a pretrain-then-fine-tune setup for
LLM training. The core idea is to use open-access LLMs that have been pretrained on a large
corpus of public data and then fine-tune the model weights on a domain-specific task [18]. Mod-
els like LLaMA [46], GPT [8], BERT [29], and ViT [13] have become standard open-source
models to use in this training paradigm for tasks including representation learning, chat, and
image classification. While this pretrain-then-fine-tune setup helps resolve some of the massive
data requirements for LLLM training, it still suffers from the computational, memory, and storage
requirements for training all the weights of an LLM.

Adapter methods improve the computational efficiency of LLM training by reparameterizing the
updates to the model [18]]. Instead of training all the weights of the LLLM, adapter methods inject
a small set of trainable weights into the model architecture and freeze the original model weights
at their pretrained value. These methods are inspired by the idea that the change in weights from
a pretrained model to a fine-tuned model exist in a low-rank space. The most frequently used
adapter is Low-Rank Adaptation (LoRA) [23]. LoRA reparameterizes weight updates as follows.
Consider an initial weight matrix W, € R%*¢, The update to W, which we call AW € R%*9 can
be defined as a product BA where B € R?" and A € R"*%. In this case r is a hyperparameter
and is generally defined in a way such that » << d. In order to make training using LoRA more
efficient, W, is frozen at its pretrained value and only B and A receive gradient updates. The
forward pass of the model with input = can simply be defined as follows -

Wz = (Wy+ BA)x = Wor + BAx (2.5)

B is initialized as the 0 matrix while A is initialized as N (0, c?) so at the initialization of the
LoRA parameters, Wx = (W, + 0A)z = Wyz. Ultimately, by training the LoRA parameters
instead of W) directly in this context, we train only 2dr parameters as opposed to d? parameters.
Choosing an adequately small r can greatly improve the efficiency of fine-tuning.

Inserting LoORA parameters into an LLM is straightforward. In each transformer block of an LLM
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(a) Structured Pruning (b) Unstructured Pruning

Figure 2.4: Structured pruning sets entire structures to 0 while unstructured pruning sets individ-
ual weights to 0.

there is a Multi-head Self-Attention (MSA) mechanism with weight matrices Wg, Wy, Wy, €
R?*4 where d is the embedding dimension [47]. With input X, we define Q = XWy, K =
XWpg,and V = XWy,. MSA is then calculated as -

KT

MSA(X) = softmax(Q\/C_i

In this calculation, Wq, Wi, and Wy, are all trainable parameters. With LoRA, we insert Bg, Ag,
Bk, Ak, and By, Ay and freeze Wy, Wi, and Wy, at their pretrained weights. We use LoRA
for our experiments for the following reasons -

W (2.6)

* LoRA parameters can be easily merged back into the model by calculating W = W+ BA
to reduce inference and storage costs.

* LoRA can be easily integrated with any transformer-based architecture as these architec-
tures all use some form of MSA and LoRA parameters can be defined for the weight
matrices used in MSA.

* Using LoRA significantly reduces VRAM consumption making local LLM training feasi-
ble for client devices in an FL setting.

2.3 Sparsity and Model Compression

Model compression techniques aim to reduce the size of an ML model by altering the weights or
structure of the model [60]. These methods have been used for various purposes including im-
proving the training efficiency, decreasing the storage requirements, and reducing the inference
latency of ML models [50]. While there exist multiple methods for model compression, we focus
on pruning/sparsity. Pruning methods set a large fraction of model weights to zero and compactly
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represent the model in a sparse matrix format [10]. These methods rank the model weights ac-
cording to a scoring function and prune a fraction of the weights with the lowest scores. While
there are numerous approaches to pruning and sparsification, we broadly divide current pruning
literature along the following axes: structured vs. unstructured and pruning at initialization vs.
iterative pruning. We describe these categories and their consequences. First, we compare struc-
tured and unstructured pruning -

* Structured pruning - In structured pruning, the scoring function ranks existing structures
within the model architecture (filters, channels, layers, etc.) [S52]. Structures are then
pruned in their entirety by setting every parameter that exists in that structure to 0. Struc-
tured pruning is useful in accelerating training because block level sparsity can speed up
matrix multiplication on GPUs. However, the downside to structured pruning is that there
is less flexibility in pruning patterns, often resulting in a model that is significantly less
accurate than its dense counterpart.

* Unstructured pruning - In unstructured pruning, the scoring function ranks individual
weights within the model architecture [S7]. Weights with the lowest scores are set to 0
independently of other weights in the model. While unstructured pruning offers more
flexibility in sparsity patterns and usually results in more accurate models, they offer few
benefits in terms of training efficiency and inference latency. This is because random spar-
sity patterns require custom hardware to see noticeable speedups for operations like matrix
multiplication. For general consumer hardware, there are few efficiency advantages to
applying unstructured pruning [49].

The next dimension on which pruning techniques differ is pruning at initialization and iterative
pruning -

* Pruning at initialization - In pruning at initialization, model weights or structures are
ranked according to the scoring function prior to any model training [14]. Weights or
structures with the lowest scores are immediately set to 0 and masked for the remainder
of model training. This method allows you to pre-define a sparsity ratio and retain that
sparsity ratio for the entire training procedure. However, the scores assigned to weights or
structures at initialization may be inaccurate and fail to reflect their actual importances as
a consequence of model training.

* Iterative pruning - In iterative pruning, at certain points during model training, the scoring
function ranks the current weights or structures in the model [37]. A smaller fraction of the
model’s weights are set to 0 and masked for the remainder of model training. In this way,
the model becomes progressively more sparse throughout the training procedure. Iterative
pruning tends to result in more accurate models because weights or structures are pruned
based on their current value during model training and fewer weights are pruned at once.
However, in initial rounds, the model is almost entirely dense resulting in little advantage
over dense training until the model becomes sparser later in training.

We choose to focus on sparsity because recent literature has demonstrated that models can be
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(a) Pruning at Initialization

H:

(b) Iterative Pruning

Figure 2.5: Pruning at initialization prunes once before the start of model training while iterative
pruning prunes repeatedly throughout the training procedure.

significantly compressed using these techniques while retaining performance close to the original
model. In contrast, techniques like quantization, which aim to represent weights in lower-bit
precision formats, seem to degrade in accuracy more significantly with fewer memory savings.
Even still, FLoSS must balance the utility-memory trade-offs described in the above definitions.
Without a careful consideration of system design, it remains difficult to train a model using high
levels of sparsity that is as accurate as its dense counterpart. We describe the procedure to achieve
considerable performance and efficiency in our methods section.
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Chapter 3

Related Works

3.1 Communication Efficiency in Federated Learning

A bottleneck in FL systems is the communication cost associated with training [35, 55]. In FL
applications, clients communicate wirelessly with the central server. Additionally, in large-scale
FL systems that utilize millions of clients, client devices can exist anywhere in the world. Taken
together, this means that communication for FL training can be significantly slower than dis-
tributed data center training where devices are connected and local. Slow communication can
make FL training impractical as long-lasting communication rounds could make it difficult for
the model to converge in a timely fashion. For this reason, many FL applications consider com-
munication efficiency an important principle when considering system design.

Modern approaches consider two different ways to tackle the issue of communication efficiency
in FL, namely either reducing the number of communication rounds or reducing the size of com-
municated messages. Some approaches that fall into these categories are described below -

* Reducing the number of communication rounds - Approaches that aim to reduce the num-
ber of communication rounds focus on systematically improving model convergence time.
For example, CMFL [48] does not upload outlier updates from clients to keep updates in
each round relevant to global model convergence. CA-FL [1] and FL+HC [7] use clus-
tering to determine the most representative update from a set of clients and only sends
that update to the central server. FedBoost [[17] uses an ensemble of models that converge
faster than a single larger model to reduce the number of updates required for each of the
ensemble models. The method described in [9] uses a probabilistic model to select devices
most likely to contribute to faster model convergence. Finally, methods like One-Shot FL.
[16] and k-Fed [11] propose performing all FL training in a single communication round
as opposed to iteratively updating the global model over multiple communication rounds.
While some of these methods have empirically demonstrated improvements over vanilla
FL, many have concrete failure modes that make it difficult to demonstrate their effective-
ness in a broad array of real-world settings. Additionally, many of these methods require
changes to the FL training procedure that are difficult to implement at scale.
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* Reducing the size of communicated messages - Methods that reduce the size of commu-
nicated messages focus on sending or receiving partial updates or compressing the size
of updates. LFL [2]] and FedPaq [41]] use quantization to represent model updates at a
lower bit precision. FedMP [27], PruneFL [26], and model pruning for HFL [34] all use
various types of pruning during the communication phases of FL. Finally, FedKD [33]]
and DS-FL [25] use knowledge distillation to compress the model parameters and improve
communication efficiency. We focus on these methods as they demonstrably reduce the
communication cost at each communication round in training. However, we note that a
significant drawback of these methods is that reducing the amount of information commu-
nicated at each round may degrade the model’s utility. We design FLoSS in a way that
balances communication efficiency and model performance across clients.

3.2 Fine-Tuning in Federated Learning

Training LLMs in FL is a difficult task due to computational constraints at the client-level
and communication constraints across the network. These constraints necessitate the use of
parameter-efficient fine-tuning (PEFT) methods like adapters [21} 23], prompt-tuning [31], Bit-
Fit [3]] etc. By using these PEFT methods for local computation, resource-constrained clients
can more effectively train models on local data. A few recent works have examined the idea
of fine-tuning open source LLMs in a federated setting. FedPETuning [38] uses methods like
the Houlsby adapter [21]] and prefix tuning to demonstrate efficiently fine-tuned LLLMs in FL are
robust to privacy attacks. The method described in [20] proposes fine-tuning all the weights of
model architectures like BERT and DistilBERT in FL using a fixed compute budget per client.
FedPEFT [43] benchmarks methods like bias-tuning and prompt-tuning in FL across a variety
of dataset/model pairings. Each of these methods look to reduce the computational load of local
client training. In our work, we consider dense PEFT as a naive baseline and study how to further
reduce its message size using sparsity.

3.3 Pruning Adapters

Some recent literature has used pruning to enhance the efficiency of adapters. Specifically,
SparseAdapter [[19] proposes pruning adapters once at initialization. The pruned weights are set
to O for the entire training procedure. Thus, sparsity is only applied once prior to the beginning
of training and the sparsity pattern never changes throughout the training process. AdapterLTH
(Lottery Ticket Hypothesis) [54] performs iterative pruning by alternating between pruning away
a small fraction of the lowest scoring weights and retraining the remaining weights of an adapter
module such as LoRA. While these works improve the storage efficiency of LoRA, they oth-
erwise have marginal practical benefits in centralized settings. First, LORA parameters can be
merged back into the model backbone to eliminate storage costs after training. Second, Un-
structured sparsity often requires specialized hardware and software to accelerate computation.
Otherwise, training and inference are no more efficient than that of a dense counterpart. We ar-
gue that combining unstructured sparsity with LoRA is particularly effective for handling issues
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of communication in FL. There are important design considerations when utilizing sparse LoRA
methods in FL. For example, depending on how sparsity is applied, communication rounds may
have varying levels of sparse communication. The result is that certain rounds may be slower
than others during the training process leading to lags and inefficient training. More impor-
tantly, sparsity, as a form of lossy model compression, can result in inaccurate models that fail
to perform at the level of their dense counterpart. Therefore, applying extreme levels of sparsity,
while helpful for efficient communication, may diminish the model’s utility. For these reasons,
there are critical design elements in a sparse LoRA implementation for FL that do not exist in
centralized settings.
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Chapter 4

Methods

This section details the combination of adapter methods and sparsity techniques we employ in
FLoSS. We additionally highlight the importance of each step in resolving real-world bottle-
necks, such as on-device computation and communication constraints, for FL training. Finally,
we describe a set of benchmarks we compare against to demonstrate the effectiveness of our
training procedure.

4.1 Federated LoRA

FLoSS utilizes the LoRA adapter in a federated setting. Federated LoRA training functions as
follows. The training procedure starts with a pretrained LLM that exists at the central server.
Each client then downloads a copy of the weights of the pretrained LLM. While this an ex-
pensive operation, we note that in this training procedure the full weights of the LLM are only
ever communicated once. Additionally, since the full LLM weights are only ever communicated
during a download phase, and download is typically much faster than upload, we can afford to
incur this one-time communication cost during this training procedure. The central server then
initializes LoRA parameters in each transformer block of the pretrained LLM. FL training pro-
ceeds similarly to the description provided in section 2.1 with one critical difference - only the
LoRA parameters are communicated between the central server and the client devices. At each
communication round, the sampled clients only download a copy of the global model’s LoRA
parameters. If the sampled clients do not have initialized LoRA parameters for their local model,
they initialize fresh LoRA parameters. Then all sampled clients replace the weights of their
LoRA parameters with the weights of the downloaded LoRA parameters. The sampled clients
train only the weights in the LoORA parameters, freezing the remaining LLM weights as described
in section 2.2. Once local training is complete, the sampled clients send only the LoRA parame-
ters back to the central server where they are aggregated into new global LoRA parameters.

Using LoRA for FL is particularly useful as it enables efficient on-device training. Training
the full LLM at the client level would be difficult given memory and computation constraints.
In cross-device FL settings, client devices tend to be especially resource-constrained. As such,
reducing the computational load of FL training is important in this setting.
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4.2 Sparsity for LoORA

While LoRA enables on-device training by significantly reducing VRAM usage, LoRA param-
eters can still be expensive to communicate. LoRA adapters are inserted for each weight matrix
in the MSA layer and for each transformer block in the model. Communicating all these pa-
rameters is difficult on a wireless network where communication, and specifically the upload
phase, is slow and time-consuming. There can also be a large number of clients and communi-
cation rounds, necessitating faster communication. Thus, it is important to retain the on-device
computational benefits of LoRA training while reducing communication latency for this train-
ing procedure. We reduce communication cost by applying top-k sparsity to LoRA during the
download and upload phase of FL training.

To perform top-k sparsification consider a weight matrix W € R%** with n nonzero entries.
We define a sparsity ratio o € [0, 1]. We apply the top-k function to |IV| where k = « - n
and retrieve the indices of these top-k values. We call this set of indices I = {(y;, x;) | y; €
[0,d — 1], 2; € [0,k — 1]}. We then define a binary mask M € R%** where M[y;, z;] = 1 if
(yi, z;) € I and M|y;, x;] = 1 otherwise. W is then updated as W' ® M. This functions to mask
the smallest weights in 1.

In our training scheme, top-k sparsity is applied to the LoRA adapters prior to download and
prior to upload. In this way, fewer weights are communicated in each phase, reducing com-
munication latency as a result. There are a few important design considerations in determining
how sparsity should be specifically applied to LoRA. First, the sparsity ratio can be different
for download and upload. This is because download bandwidth is typically much greater than
upload bandwidth (the download bandwidth for a wireless network can be 10x greater than the
upload bandwidth for a wireless network). Therefore, being able to configure separate sparsity
ratios is important as sparser downloads may be less helpful than sparser uploads. Second, un-
structured sparsity is more useful in our setup than structured sparsity. An important distinction
is that FLoSS does not retain sparsity during client local training. This is because sparsity would
be unhelpful in accelerating training on devices such as smartphones or IoT devices where the
hardware is not specifically designed to handle sparse computation. Therefore, dense training
would yield results just as quickly and much more accurately than sparse training at the client
level. Since unstructured sparsity has been shown to boost performance relative to structured
sparsity, and training acceleration is not a consideration, unstructured sparsity is the preferred
sparsity method for communication in FLoSS.

4.3 FLoSS Algorithm

FLoSS combines federated LoRA with sparsity to perform communication-efficient LLM train-
ing. At each communication round, the central server will sparsify the LoRA parameters of the
global model according to a download sparsity ratio dgow,. Sampled clients then download these
sparse adapters and train them locally without any sparsity applied. Before uploading the locally
trained adapters, clients sparsify the adapters according to an upload sparsity ratio d,,. The com-
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Figure 4.1: FLoSS procedure involves (1) sparsifying adapters prior to download (2) training
dense adapters (3) sparsifying adapters prior to upload (4) aggregating using FedAdam.

munication round ends with the central server aggregating these sparse adapters.

FLoSS offers a few key advantages for federated LLM training. First, FLoSS enables more
efficient on-device training for LLMs. It does so by training only LoRA adapter weights and
limiting local training to a single epoch in each communication round for all clients. Since cross-
device settings usually involve many clients where each client has limited data, we argue that this
training scheme is feasible at the client level. Second, FLoSS reduces communication latency
despite the large number of adapter weights being communicated in each round. By sparsify-
ing adapters prior to communication, fewer weights are communicated, and communication can
occur more quickly. Finally, FLoSS retains model performance by allowing dense fine-tuning
at the client level. We demonstrate the importance of this last feature in an ablation study that
identifies the consequence of various pruning methods on model performance [30]. Ultimately,
FLoSS achieves high communication efficiency without sacrificing model performance.

4.4 Benchmarks

We present experiments on three datasets: CIFAR10, 20NewsGroups, and Reddit. We resize the
CIFAR10 images to 224 x 224 to match ImageNet, the pretraining dataset for the ViT model
architecture we chose. We use the GPT2 tokenizer to preprocess the examples of 20Newsgroups
and Reddit into sequences with length 128 and 25 respectively. We partition CIFAR10 and
20NewsGroups across the client devices. As described in the Results section, we test both I.I.D.
clients as well as non-L.1.D. clients for partitioning both datasets. The Reddit comments are nat-
urally partitioned by user.
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In all experiments, we sample 5 clients at each round and perform one epoch of local train-
ing with a batch size of 16. We fine-tune all models for 200 rounds. For the pretrained models,
we used ViT-B-16 (85M params) and GPT2-Small (124M params). For all datasets, we report
the accuracy on the validation partition. More details on the task setups can be found in Table

Dataset Backbone Task #Clients #Examples #Classes
CIFAR10 ViT-B-16 Image Classification 500 S0K 10
20NewsGroups GPT2-Small Sequence Classification 350 20K 20
Reddit GPT2-Small  Next Token Prediction 40K 1.1IM 50257

Table 4.1: Statistics of the datasets used in the experiments.

We compare FLoSS against two other sparse LoRA methods, SparseAdapter and AdapterL.TH.
Both these methods are described in section 3.3. To use AdapterLTH in FL, we consider training
LoRA weights A and B using FedAdam. After each aggregation round, we apply increasingly
sparse masks to the LoRA weights. We use the efficient “fine-tuning” version of LTH which con-
tinues training from the pruned state rather than rewinding the weights after pruning. This allows
the model to recover from pruning within fewer rounds and is necessary to keep communication
costs competitive with the dense LoRA baseline. For both of these methods our choice of scor-
ing function is top-k applied to the magnitude of the weight. This allows for a direct comparison
to FLoSS which uses the same unstructured scoring function but only sparsifies communication
as opposed to sparsifying both communication and model training. For these pruning methods,
we perform an initial round of dense LoRA training, so the B adapter is non-zero and can be
effectively pruned using our score function.

Algorithm 1: PyTorch-like LoRA training with FedAdam and sparse communication

1 Require: dyown, dup (download and upload sparsity ratio)

2 P <« Initialize LoORA parameters

3 optim < torch.nn.optim.Adam(params=P)

4 forr=1,....Rdo

5 Mown <— mask of top dgown fraction entries of P by magnitude

Sample clients cq, ..., ¢, uniformly at random without replacement

fori =1,...,n in parallel do

P, = P ® Myown # sparse download

P! < update P, with 1 SGD epoch on dataof ¢;  # fine-tuning all entries of P
10 AP, + P,— P/

6
7
8
9

11 My, < mask of top d,, fraction entries of AP; by magnitude

12 AP, < AP, © My, # sparse upload

13 optim.grad % Yo AP, # set Adam pseudo-gradient
14 optim.step () (updates P) # take one step of Adam
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Chapter 5

Results

We describe our key findings when running FL training experiments with FLoSS. There are
key metrics by which we can measure the effectiveness of this training procedure. Concretely,
we determine improvements to model performance, communication efficiency, and privacy over
other efficient adapter methods for FL. The first section compares the performance of models
trained with FLoSS with both dense training as well as other pruning benchmarks. We highlight
that FLoSS achieves performance comparable to dense training, even at high levels of sparsity,
while outperforming other pruning benchmarks. The second section shows that we can retain
this high level of performance across multiple heterogeneous settings. The third section serves to
demonstrate the communication benefits of FLoSS by reducing communication time in realistic
wireless networks. Finally, we use an implementation of DP-FedAdam [36]] to show that FLoSS
achieves a desirable privacy-utility tradeoff.

5.1 Model Performance with Fixed Communication

We compare the performance of models trained with FLoSS to dense LoRA training and other
pruning methods in FL across our various configurations of datasets and model architectures.
While dense adapter training will necessarily communicate the entire adapter, in order to com-
pare model performance across communication-efficient pruning methods we fix a single rank
and download/upload sparsity configuration across methods. For FLoSS we fix both the down-
load and upload sparsity to be 0.25. Similarly, we have SparseAdapter prune to 0.25 sparsity at
initialization. AdapterL.TH is harder to fix in this same way as it iteratively prunes throughout
training. As we train for 200 communication rounds, we set AdapterLTH to use an incremental
sparsity ratio of 0.98. This way, on average across 200 communication rounds, AdapterLTH
i1s communicating approximately 0.25 of the weights. Comparing in this way allows us to test
model performance across the various training methods with fixed communication. For this rea-
son, we also include results for dense LoRA with rank that is i of the original rank as this is
equivalent to communicating 0.25 of the weights with our original LoRA rank. While these
numbers appear arbitrary, we note that the method is robust to multiple settings of these hyper-
parameters. Section 5.3 illustrates that FLoSS is effective even at more extreme rank and sparsity
configurations.
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Figure 5.1: Comparison of communication-efficient LoRA methods in FL.

The results in figure 5.1 demonstrate that FLoSS outperforms other efficient fine-tuning methods
in a federated setting. Specifically, FLoSS performs significantly better than the one-shot pruning
method specified in SparseAdapter and marginally better than AdapterL.TH and dense training of
a LoRA adapter with i rank. These findings are consistent in experiments in CIFAR10, 20News-
Groups, and Reddit, demonstrating that the method of sparsifying an adapter prior to download
and upload is an effective way to reduce communication costs for multiple tasks. Additionally,
this sparsification works even with smaller ranks (e.g. rank=4) meaning that we can get espe-
cially efficient communication by using a combination of LoRA where the rank is significantly
smaller than the embedding dimension in conjunction with sparse updates. While we note that
some of these performance benefits appear to be marginal at first, we show in later sections that
FLoSS offers significant communication benefits in comparison to the other methods described
as performance does not degrade with extreme levels of sparsity and different download/upload
sparsity ratios.

5.2 Robustness to Statistical Heterogeneity

While Reddit naturally has non-L.LL.D. clients as a consequence of being partitioned by user,
CIFAR10 and 20NewsGroups do not have metadata regarding the user that produced certain im-
ages. This means that if the datasets are partitioned across clients in a random fashion, the clients
will generally have L.LI.D. data. This may not be representative of real-world FL environments
where clients may have non-LI.1.D. data, and training can be affected by statistical heterogene-
ity. To incorporate statistical heterogeneity for CIFAR10 and 20NewsGroups we partition the
datasets across clients based on the ground-truth label for each image. We follow the procedure
described in using Dirichlet distributions with various o parameters to generate synthetic,
non-L.I.D. client data from CIFAR10 and 20NewsGroups. In this context « refers to a concen-
tration parameter that controls how identical sample distributions are across clients. A smaller «
results in higher levels of statistical heterogeneity whereas a larger o means clients largely have
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Figure 5.2: Comparison of communication-efficient LORA methods in FL with non-I.1.D clients.

identical data distributions.

Based on the results in figure 5.2, FLoSS performs well even in the presence of extreme statistical
heterogeneity. For example, even at « = 0.1 and o = 0.01 where clients are primarily sampling
examples from a single label, there is little degradation in the model’s utility in comparison to the
LLD. setting. Another important observation is that [22]] reports that statistical heterogeneity has
an adverse impact on a CNN architecture trained on CIFAR10 for FL. In comparison, we find
that fine-tuning a pretrained LLM on a similarly heterogeneous CIFAR10 partitioning for FL is
not hindered by the same performance losses. This suggests that LLMs may offer a potential
solution to the performance problems that arise as a result of statistical heterogeneity in FL.

5.3 Improvements to Communication Efficiency

While FLoSS marginally outperforms other efficient training methods on evaluation data, FLoSS
improves the communication-efficiency of training significantly in comparison to other methods.
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Figure 5.3: Performance of FLoSS on CIFAR10 with varying rank and sparsity configurations.

There are two critical reasons why FLoSS is able to reduce communication costs considerably.
First, the method is able to utilize extremely sparse communication (e.g. approximately 0.01
sparsity ratio) and retain performance. In comparison, SparseAdapter noticeably degrades in
performance even at sparsity ratios of 0.25 as demonstrated in section 5.1. AdapterLTH relies on
pruning very few additional parameters at every communication round. However, this iterative
pruning technique is not well-suited for extreme sparsity. In order for AdapterLTH to produce
an average sparsity ratio of 0.01 across 200 communication rounds, the method would have to
iteratively prune 50% of the weights at every communication round. In the last communication
round, only 1.24e-60 of the LoRA weights would remain, leading to a model that is no more
accurate than the pretrained model. Figure 5.3a demonstrates that across multiple ranks, FLoSS
can support extreme sparsity and result in a model significantly better than the pretrained model.

The second reason why FLoSS is able to significantly cut down on communication costs is
because the method is able to define separate download and upload sparsity ratios. In wireless
networks, upload is significantly more expensive than download (with upload sometimes being
up to 10x slower) [42]. In cases where upload speed is significantly reduced in comparison to
download speed, methods like AdapterLTH and Sparse Adapter are too rigid in that AdapterLTH
can only prune prior to download and SparseAdapter can only prune prior to model training.
Figure 5.3b demonstrates the model performance of FloSS trained with a fixed download spar-
sity of 0.25 and varying upload sparsity. In real-world settings where upload is much slower
than download, we can use stricter sparsification of uploaded parameters. This prevents lags and
delays during the upload phase of communication. Our results demonstrate that we can retain
model performance with uneven download and upload sparsity configurations making FLoSS
better suited for real-world FL configurations that have disparate download and upload speeds.

5.4 Privacy-Preserving Variations

A core goal of FL applications is to preserve the private information of clients. FL aims to
mitigate the privacy and security concerns that arise with data aggregation, such as widespread
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Figure 5.4: Performance of FLoSS with varying degrees of DP.

leaks of user data. For this reason, it is important to consider notions of privacy in our efficient
LLM training method for FL. We apply the definition of differential privacy (DP) used in [36]].
DP ensures user-level privacy, as opposed to example-level privacy, so that the parameters for
the model can be publicly released with the guarantee that an adversary has a limited ability to
learn about the data used to train the model. This is particularly important in FL as the model
parameters are communicated between clients and a central server. An adversarial client or an
adversary that has access to the server’s global model must be restricted in what they can learn
about other clients’ private data.

We implement the DP aggregation algorithm described in [38]]. This process includes two crit-
ical steps. First, when clients upload their local A;, A; is clipped by scaling each value by

W where C' is the clipping norm. Noise is then added to this clipped delta to obscure
max ’T’L

the original weights. This method ensures user-level DP with certain guarantees based on the
amount of noise added and the norm of the uploaded parameters. However, while smaller norms
and more noise enforce stricter privacy guarantees, they can diminish the model’s utility. We
analyze the performance of FLoSS using DP-FedAdam with varying levels of privacy guaran-
tees. We further compare the method to FFA [44] which aims to preserve privacy for federated
LoRA by freezing the LoORA A parameters at initialization. This method approximately halves
the communication cost of LoRA and reduces the norm of uploaded model updates.

Figure 5.4 demonstrates that FLoSS can effectively preserve privacy while retaining perfor-
mance with a variety of privacy budgets. Even though the method is not specifically designed for
privacy-preserving FL, the method can be easily integrated with DP-FedAdam to ensure user-
level privacy.
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Chapter 6

Discussion and Future Work

This thesis examines the problem of training LL.Ms in a federated environment. The scale of
LLMs presents a problem in FL settings due to the limited compute on client devices and limited
communication across the network. We present a few critical steps that can be taken to tackle
these bottlenecks and enable efficient training. First, we employ adapter methods, specifically
LoRA, to reduce the computational load of local model training. LoRA is especially useful in
FL as client devices do not have to train full model parameters for the LLM, and the adapters
can be merged back into the backbone of the model to eliminate additional storage and inference
costs after training. We augment the communication efficiency of LoRA using sparsity applied
only to communication. Crucially, we find that applying sparsity in this way is important to
retain performance. Alternative methods that prune adapters at initialization or iteratively prune
adapters throughout training do not perform as well with limited communication budgets or cases
where upload speed is slower than download speed. These limitations suggest that sparsity must
be carefully applied during the training process to ensure that communication efficiency does not
degrade model utility. A few crucial directions remain to be explored in the context of efficient
LLM training for FL.. We describe some of these future directions below.

Local Compute While LoRA certainly makes local computation easier for client devices,
methods to further enable LLM training in resource-constrained environments may improve the
functionality of this method. Some recent research has focused on the importance of efficient
on-device training [33]. A few methods are natural choices for improving the on-device effi-
ciency of FLoSS. For example, approaches like QLoRA [[12] and LoftQ [32] significantly reduce
memory usage in LoRA training by quantizing the model backbone. These methods could be
integrated into FLoSS to further augment the on-device efficiency of the method.

Rank and Sparsity Configurations Currently, FLoSS requires manual selection of the rank
and sparsity configurations used in testing. Methods to automatically configure the rank and
sparsity ratios for FLoSS are important in preventing expensive FL hyperparameter tuning. Our
experiments suggest that certain rank and sparsity configurations do not perform as well as others
within the same communication budget. For example, Figure 6.1 demonstrates that configura-
tions with similar performance can have vastly overall communication times. This is especially
true in our simulated procedure where upload speed is 10x slower than download speed (20
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Figure 6.1: Comparison of communication time vs. performance for FLoSS on CIFAR10

MBps vs. 200 MBps). Therefore, being able to automatically determine the optimal value for
these hyperparameters prior to training may be crucial in extracting the full value of LLMs in
this setting.

FL is an increasingly important paradigm in the context of privacy, personalization, and scal-
ability for ML models. As LLMs continue to outperform other methods in a variety of domains,
exploring ways LLMs can be effectively utilized in FL is important in handling issues of model
utility and statistical heterogeneity. This thesis suggests concrete first steps towards achieving
this goal. In the future, we aim to investigate such questions and design methods to make high-
quality models more accessible to low-resource users.
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