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Abstract

Industrial knitting machines are programmable systems that can fabricate complex soft objects. However,
this traditional manufacturing system has largely been overlooked as a technology for custom and rapid
fabrication. For machine knitting to be widely adopted for custom fabrication, end users must be allowed to
work in an intuitive design space instead of low-level machine operations.

In this thesis, I lay out foundational tools for machine knitting that allow users to think about what they
want to create in terms of 3D shapes instead of how the machine constructs by showing that programming for
machine knitting can be organized to decouple high-level design challenges from low-level machine input
decisions.

Such an organization allows exploration of various aspects of machine-knitting independently: pattern
design, layout planning, and machine-code generation. I classify the space of shapes that can be constructed
with industrial knitting machines. I present a new data-structure to represent 3D shapes as knitting pro-
grams. I describe geometric algorithms to create patterns from 3D models and an editing framework to
modify patterns in 3D. For fabrication, I describe a scheduling algorithm to translate patterns into low-level
machine code. Together, these tools and techniques allow designers and end-users to treat 3D machine knit-
ting as an accessible 3D-printing-like soft fabrication system.
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1
Introduction

(a) (b) (c) (d)

Figure 1.1: A few snapshots in the time-
line of industrial knitting advances: (a)
Socks created with nålebinding (a pre-
cursor to knitting) have been discovered
and dated from around 300 A.D. (b)
William Lee’s stocking frame launched
industrial machine-knitting in 1589 (c)
Shima Seiki introduced seamless ma-
chine knitting in 1995. A Shima Seiki
MACH 2X seamless machine shows a
fully shaped 3D sweater being knit. (d)
This thesis: A custom “3D Knit" Stanford
Bunny designed from a 3D mesh using
tools described in this thesis and fabri-
cated on an industrial knitting machine.

Industrial knitting machines – which produce the sweaters and up-
holstery we use everyday – are a general, programmable, soft-fabrication
system. These industrial manufacturing systems have a rich, long
history and are reliably used for mass production today (Figure 1.1).
However, they are often not thought of as candidates for custom fab-
rication. A key reason for this situation is that designing patterns for
such systems requires expertise in knitting as a fabrication technique
and knowledge of hardware-specific instructions. In this thesis, I de-
scribe how industrial machine knitting can be made more accessible
by viewing the machine as a programmable system and building lay-
ers of abstractions that separate high-level challenges (e.g., designing a
bunny with different textures) from low-level machine operations that
execute the pattern (e.g., add loops on needles 1 to 10).

Thesis: Programming for machine knitting can be organized
to decouple high-level design challenges from low-level machine
input decisions.

Today, industrial machine knitting caters to a wide range of ap-
plications including use in industrial composite reinforcements (Ra-
makrishna [1997], Rudd et al. [1990]); architecture (Popescu [2019]);
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medicine and health-care (Zhang and Ma [2018]); robotics (Maziz et al.
[2017]); and, of course, upholstery, accessories and garments (Tur-
ney [2009]). For most of these industries, custom one-off fabrication
and personalization would improve impact (Adidas [2019], Cross and
Podhajny [2017], Ministry of Supply, Unmade). Despite this, these
manufacturing systems have been largely overlooked as avenues for
rapid and custom fabrication and often rely on expert-designed mass-
produced solutions.

Figure 1.2: An effective ecosystem
for designing knit structures: beginning
from an idea, high-level design tools as-
sist designers at various levels of ex-
pertise to generate and edit a machine-
independent representation. Yarn sim-
ulation, material libraries and pattern
datasets are incorporated for design as-
sistance, visualizations and previews.
Finally, low-level representations are au-
tomatically compiled and optimized into
knitting code for one or more available
machines.

We observed the following at two US-based knitting manufactur-
ers: To (mass) produce a knit accessory like a glove or sock, first
an appropriate manufacturing machine is picked. Then, designs are
created using expert-guided templates which are usually machine-
specific. These patterns are tuned based on design and material pa-
rameters often requiring multiple iterations of fabrication. Finally once
the pattern specification matches all requirements, many thousands of
artifacts can be knit, amortizing the design cost.

An alternate manufacturing pipeline might look like Figure 1.2: the
end-user starts with a 3D model (acquired e.g.,by scanning, down-
loading from the internet, or having an expert generate a CAD design)
and picks a few high-level design parameter values (such as yarn type
and knitting gauge). Using this high-level input, a computational de-
sign tool generates a custom pattern that is compatible with machine-
knitting. Such a tool would also allow the designer to quickly edit and
visualize this pattern if necessary. The user then finds an appropriate
(potentially local) manufacturing unit to produce and ship the product
after fabrication (similar to what Shapeways1 has established for 3D 1 https://www.shapeways.com/

Printing)). Manufacturers can optimize and convert the user-specified
design representation to the appropriate hardware specification based
on machine availability.

One significant impediment to the existence of such an ecosystem
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is that the current design tools are tied closely to machine operations.
To design a complex 3D shape with current knitting CAD systems, the
designer must necessarily have a clear picture of how the machine will
execute the shape while designing. For example, Figure 1.3 shows a

Figure 1.3: Left: KnitPaint (A part of
the SDS design suite from Shima Seiki)
requires programming patterns using a
image-based language. For this glove
pattern (generated from a template),
each colored pixel encodes one or more
hardware operations. Right: Using 3D
shapes and a few high-level design hints
as input to directly generate glove pat-
terns from a mesh of a cartoon glove
(blue) and that of a scanned hand (red).

knitting pattern for a glove designed in KnitPaint (Shima Seiki [2019]).
The designer creates a flat, image-based program where each pixel
encodes one or more machine operations. Stitch creation and loop
movements are encoded by the color of the pixel and its location in
the 2D image. For standard designs, 3D views may be available to
visualize the pattern.

In contrast, we envision a system that allows designers to work
in the natural 3D space of the output shape instead of the working
space of the machine. This requires introducing appropriate layers of
abstractions that allow designers to interact with the knitting system
more intuitively.

Other fabrication systems further reinforce the benefits of build-
ing levels of abstractions when interacting with the system. At a
high level, 3D printers allow casual users to supply a 3D model as
an input. Intermediate computational tools can identify where sup-
port structures may be needed and automatically place them, gen-
erate in-fill structures and optimize the input in useful ways. Next,
appropriate slicing algorithms are used to generate machine compati-
ble G-Code (Cura [2018], Ranellucci [2013], Schmidt and Singh [2010]).
CNC-Milling softwares similarly allow end-users to load up a 3D CAD
model designed in a solid modeling software (AutoCAD, Fusion360,
SolidWorks) and pick a series of tools to machine the surface with.
Tool paths are automatically generated and simulations of the tool in
action are presented (MasterCam). Users with varying levels of ex-
pertise may edit the execution at various stages with the appropriate
tools.

More generally, even in other areas of computing, high-level and
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domain-specific programming languages coupled with effective com-
piler techniques that abstract low-level languages have been key in im-
proving productivity and creating complex systems (Hu et al. [2019],
Kjolstad et al. [2016], Nandi et al. [2017], Ragan-Kelley et al. [2012]).

For 3D knitting to be successful as a general soft-fabrication system,
end-users must be allowed to think in a rich and intuitive but feasible
design space i.e., what they want to make instead of how a machine
makes it; with effective CAD tools that navigate the gap between the
two.

1.1 Contributions and Organization

This thesis is broadly organized as follows. I first introduce machine
knitting as a programmable system (Chapter 2) and discuss related
work in the area (Chapter 3). I then describe the main contributions of
this thesis:

Ch. 4 What Can Be Machine Knit ? I model the constraints of Parts of this chapter is based on work
previously presented in Narayanan
et al. [2018]

the industrial knitting machine as a generalized multi layer knitting
system. From these scheduling constraints, I formalize the space of
shapes that can be machine knit in terms of its topology and discuss
discrete constraints that come into play for fabrication.

This classification identifies the high-level design space of machine-
knittable shapes. This is a key step in ensuring that design systems
can be constrained to create and support valid high-level designs
without needing to specify stitch-level details.

Ch. 5 Representing and Editing Machine Knitting Patterns Next, I Parts of this chapter has been presented
in Narayanan et al. [2018, 2019]describe a constrained but intuitive geometric data structure – the

Augmented Stitch Mesh – that allows end-users to design in the 3D
output space of the shape instead of the traditional machine space.

This data structure can support constrained editing for both shape
and texture. I introduce an interactive design system to support
creating and editing arbitrary knitting operations on surfaces.

Ch. 6 Constructing Machine Knitting Patterns from 3D meshes

For machine knitting to be accessible, constructing augmented stitch
meshes must be easy. I describe two styles of geometric algorithms
to translate oriented, manifold 3D surfaces into augmented stitch
meshes. The first focuses on surfaces with disk-like topology that
can be constructed with simple single-bed consumer machines i.e.,
without any transfer operations. The second produces general 3D
surfaces as a combination of tubes that can be fabricated with in-
dustrial two-bed knitting machines with transfer capabilities.
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Ch. 7 Turning Knitting Patterns into Machine Code For fabrication Parts of this chapter is based on Mc-
Cann et al. [2016], Narayanan et al.
[2018]

on the machine, the augmented stitch mesh needs to be scheduled:
stitches need to be assigned to machine needles and any operations
needed to move loops around need to be identified.

For patterns that are a combination of tube-like structures, I de-
scribe a scheduling algorithm that enumerates all possible cyclic
layouts for loop placement on a two-bed machine. Using these lay-
outs as input to the augmented stitch mesh representation, machine
level knitting code for stitch construction is generated. Loops may
need to be moved to match positions between layouts. This is per-
formed by a transfer-planning algorithm that introduces low-level
loop-movement code that is interleaved with the stitch generation
code for generating a complete machine program. For construct-
ing general patterns, I present a user-in-the-loop scheduling setup,
where user-generated annotations are used to guide scheduling and
transfer planning.

In chapter 8, I discuss a series of knit results fabricated using the tech-
niques presented, and, discuss directions to expand on these ideas in
chapter 9.





2
An Introduction to Machine Knitting

I now briefly introduce knitting as a fabrication technique, discuss how
to model a knitting machine, and express it as a programmable system
with a small instruction set.

Figure 2.1: In knitting, yarn is shaped
into loops to form stitches. Isolated
loops can be unraveled by tugging the
yarn.

Figure 2.2: Loops that have been pulled
through other loops form stable stitches.
Here, the yellow loops rest securely on
the blue loops that have been pulled
through them.

course

wale

Figure 2.3: Common knitting terms: A
row of loops that are made in sequence
is called a course and column of loop de-
pendencies forms a wale. One or more
loops with all their dependencies consti-
tute a stitch.

2.1 Knitting

Knitting involves forming (two-dimensional) fabric by manipulating
(one-dimensional) yarn. Yarn is turned into loops which are pulled
through other loops to create a stable 2D surface.

A single piece of yarn can be turned into a piece of fabric by creat-
ing courses (rows) of loops, each course stabilized by the ones before
and after it as shown in Figures 2 and 2. Wales (columns) arise from
following each loop’s dependencies. Figure 2 illustrate some of these
common knitting terms. Although the term stitch and loop are collo-
quially interchangeable, we use the term stitch to describe one or more
loops with their dependencies.

The “loop-through-loop" stabilizing structure is the basic building
block of a knit fabric. This structure can be created by hand (usually
using long needles or peg-looms to hold unstable loops), or by using
various mechanized systems.

2.2 Machine Knitting

Any (weft) knitting machine1 has to manipulate yarn and turn them 1 Warp knitting machines also create fab-
ric from interconnected loops. They use
a fixed number of wales (separate yarns)
and are used more commonly to pro-
duce cloth of a constant width. In this
thesis, I use the term machine knitting
to refer to weft knitting.

into stitches. Individual hook-shaped needles (illustrated in figure 2.4)
are used for creating and holding loops. Each needle can make a loop
by grabbing yarn that appears before it and tucking it on to its hook.
The needle can also pull the loop through all the other loops it holds
to produce a knit stitch.

Figure 2.4: Knitting machines use hook-
shaped needles to hold loops.
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These needles can be positioned in different ways to construct dif-
ferent types of knitting machines (Figure 2.5).

Figure 2.5: Different needle layouts for
different styles of machines. (Left) A sin-
gle linear layout for flat knitting, (Mid-
dle) Circular layout for seamless tubu-
lar knitting, (Right) Two bed layout for
whole garment knitting

In the simplest layout, needles are arranged linearly one after the
other (often called a bed). Such a machine is called a flat knitting ma-
chine since it can produce sheets of flat fabric.

Knitting on such a machine takes place like so (see Figure 2.6):

Figure 2.6: Fabricating a flat sheet on
a single bed knitting machine – the
yarn carrier moves across the needles,
that form and hold knit stitches. Some
columns can be lengthened more than
others by making shorter trips with the
yarn carrier as shown here with the red
yarn.

Yarn enters the machine from a cone, passing through a tensioning
device and a yarn carrier shown as a triangle in the figure above. Yarn
carriers move laterally across the needle bed(s), positioning new yarn
where it is needed. To actuate the needles, a carriage passes over the
needle bed with cam-plate mechanisms that can lower and raise the
needles.

In practice, knitting machines incorporate many other important
components such as sinkers and loop-pressers to secure and form
loops, fabric pressers to push down on the fabric being formed be-
tween the beds, various forms of take-down and tensioning devices
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and sensors that identify knots or slack in the yarn. Spencer [2001]
provides a detailed introduction to the various components of machine
knitting.

A single flat bed machine can make rectangular sheets of fabric by
knitting over a sequence of needles in one direction, then reversing
direction knitting over the same needles in reverse order (repeating
this to the desired length). Additionally, it can make complex 3D sur-
faces with a disk topology by creating short rows. A short row (also
called partial knitting or flechage) refers to knitting over a small portion
of the currently active needles holding loops while leaving the rest of
the loops on the needle-bed thereby lengthening a few columns more
than others and adding curvature (see the red yarn in Figure 2.6).

To produce single tubular structures, the needles can be arranged
in a circle. Such a machine is similar to a linear knitting machine, but
can now hold a seamless tubular structure. These are commonly used
for manufacturing socks, heels are created using short-rows.

Although both flat and circular machines are highly prevalent in
the industry, the state of the art industrial hardware uses two linear
beds arranged facing each other in an inverted-V shape and called V-
bed or two-bed knitting machines. The distance between needles and
between the front and back bed are nearly equal, such that length of
the yarn between loops placed directly across the bed and along two
adjacent needles on the same bed are approximately the same. Each
needle can not only add loops and create knit stitches, but can also
transfer (move) loops held on its hook to the needle across it on the
opposite bed. The back bed can also be translated or racked relative
to the front bed. Combining these two abilities, loops can be moved
around in a two-bed machine. By moving loops around, the width of
a fabric can be increased or decreased. To increase the fabric width, a
gap is introduced by moving a few loops one (or more) needles over
and a new loop is added to the empty location in the next row of
knitting. A swatch with an increase is shown in figure 2.7

Figure 2.7: Increasing the width of a fab-
ric by moving loops to create a gap

To decrease the fabric width, two (or more) loops are moved to the
same needle, the next knit operation through that needle pulls a loop
through all the overlapped loops. Figure 2.8 shows a three-stitch wide
fabric narrowed into a two-stitch wide fabric with decreases.

Figure 2.8: Decreasing the width of a
fabric by moving loops and overlapping
them

Multiple tubular structures can be created on these machines by
using both beds to hold loops – squishing a cyclic layout onto the two
beds. Because a 3D tubular piece is constructed without the need to
seam pieces of fabric together, these are also called seamless machines.

It might (correctly) seem that shaping a cycle when both the beds
have stitches is difficult without causing a tangling of yarn (see figure
2.9. This can be resolved by a four-bed (also called an X-bed) machine
which adds an extra pair of beds to deal with this situation – two
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parallel beds are used for knitting and two additional beds are used
for temporary storage.

Figure 2.9: A tube on a double bed ma-
chine. This tube cannot be shifted or
translated by one needle because trans-
fers will overlap loops that cannot be
later separated.

Figure 2.10: Using alternate needles for
holding loops and empty ones for tem-
porary storage during transfers.

In order to avoid this complexity in representation (and to mimic
this behavior on simpler form of the machine) we often resort to a
machine-knitting trick: half-gauge knitting. In such a setup, we assume
that the front bed consists of even-numbered knitting needles and the
back bed consists of odd-numbered knitting needles (colored dark in
the illustration 2.10). The odd-numbered front bed needles (aligned
with the back-bed knitting needles and vice-versa) act as temporary
holding positions (colored light in the illustration 2.10). Loops can be
moved from the knitting needle to the associated holding position on
the opposite bed.

This idea of using alternate needles can be further generalized to
turn any two bed machine into a general N-layer machine.

2.3 Emulating a multi-layer knitting machine

To emulate an N-layer machine on a two-bed knitting machine, needles
of both beds are partitioned into N interleaved sets – the ith needle
belongs to the ith layer. In Figure 2.11 these partitions are color-coded.

Figure 2.11: A three layer machine can
be emulated by interleaving three dif-
ferent needle sets. By maintaining the
relative ordering of the layers, a tube
and a sheet can be held at the same
time with enough degrees of freedom to
shape them.

With such a setup, two layers are required to hold a tubular cycle
and one layer can hold a sheet2. The needles on the back bed of a front 2 A fixed tube can be held on a sin-

gle layer since the layer includes needles
from both beds, but such a tube cannot
be moved and shaped.

layer and the needles on the front bed of a back layer act as temporary
storage. The half-gauge machine described above is an instance of
a two-layer knitting machine and can hold tubes that can be shaped
with increases and decreases. A three layer machine similarly can be
used to hold 1 tube and 1 sheet or 3 sheets in parallel as shown in the
illustration above.

An important constraint in this setup is that a front-to-back ordering
of layers must be maintained throughout the knitting process to avoid
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tangling where loops from one layer get captured between loops of
other layers irreversibly pinching layers together. Given an ordering
on the layers, a front-bed operation can be performed on the layer
only after all layers with a higher index are moved (using transfers)
to the back bed. A back-bed operation can be performed on a layer
only after all layers with lower index are moved to the front bed. This
flipping of layers ensures that the yarn-carrier is placed in a way that
does not cause it capture loops from a different layer while knitting
on a layer. In chapter 5 and 7, I will show that these constraints can
be systematically expressed within a data-structure for representing
knitting programs or patterns.

In order to talk about these knitting operations clearly and program
the machine, we first need a language that can describe all the opera-
tions a knitting machine can perform.

2.4 Knitout : An assembly language for machine knitting

I’ll now explicitly describe an “assembly language” called knitout to
operate a general industrial knitting machine. Knitout is a machine in-
dependent format for supporting machine knitting that we developed
at Disney Research Pittsburgh and the Carnegie Mellon Textiles Lab
(McCann [2017]).

We use the following convention to identify needles (on an un-
bounded needle-bed):

∀i ∈ Z :

{
bi: back bed needle
fi: front bed needle

Needles are indexed left-to-right along the bed, and are aligned
across the bed i.e., f−2 is aligned with b−2, which is to the left of b−1.
Needle f2 is considered adjacent to needles f1, f3 and b2 because they
have the same spacing between them.

We use this ordering of needles to describe the direction in which
the yarn (carriers) move – a positive (+) direction if the needle indices
increase and a negative (−) direction if the needle indices decrease.
Multiple yarn carriers may move in tandem and we refer to the active
yarn carriers at any instant as the yarn carrier set.

We now describe the basic needle and state operations on the ma-
chine.

Knitout SyntaxTuck. The tuck operation adds a new loop of yarn in front of

tuck D N CS
the loops already held on a needle. Mechanically, the needle reaches
forward, the yarn carrier moves to the right over the needle, and the
needle retracts, now holding a new loop:
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In the knitout specification, the tuck operation is defined by speci-
fying the direction D of yarn-carriers , needle-bed position N and yarn-
carrier set CS participating in the operation.

knit D N CSKnit. Knitting a needle pulls a new loop of yarn through the all of the
loops currently held by that needle. Mechanically, the needle reaches
forward, the yarn carrier moves over it, and the needle retracts, using
a secondary mechanical action to lift the loops that it was holding up
and over the new loop and off of its tip.

Transfer. The transfer operation moves all the loops on a needle to
xfer N1 N2the needle across from it. That is, it moves loops from the front bed to

the back bed or visa versa.

In the knitout specification, the transfer operation is defined by speci-
fying the needle-bed position N1 of the source loop(s) and the needle-
bed position N2 of the target loop(s).

This restriction of only moving between aligned needles may seem
severe, but machines can rack (laterally move) the beds to change
which needles are aligned. By convention, the racking amount is the
offset of the back bed with respect to the front.

Rack. The rack operation changes the machine state by translating
rack:amount ;the back bed by the specified amount changing the alignment between

needles. The maximum racking amount is limited and is usually at
least 2.

rack = 0 rack = −1
aligns b0 with f0 aligns b1 with f0

Split. The split operation combines knit and transfer into one
split D N1 N2 CSoperation. Split is useful because it allows the machine to knit through

a loop without losing the ability to access the loop in the future.
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In the knitout specification, the split operation includes necessary
details for both a knit and transfer – the direction D of yarn-carrier,
needle-bed position N1 of the source loops, needle-bed position N2 of
the split loop, and yarn-carrier set CS participating in the operation.

A few utility operations for finishing knitting and handling yarn
include:

Drop. The instruction drop causes a needle to drop the loops it is
drop Ncarrying. This is identical to knit with no yarn.

Miss. The instruction miss causes the specified yarn-carrier set

miss D N CSto move as if a loop is being added to the specified needle (without
actuating the needle and adding the loop).

In, Out. The instructions in and out add and remove active yarns.
in[hook] CS

out[hook] CS
When a yarn is removed, it is cut and the connection between it and
its last stitch is broken. Some machines may support an additional
yarn handling helper device that helps hold the yarn during insertion
and removal. This is explicitly supported in knitout using the inhook,
releasehook and outhook commands.

The following knitout snippet decreases the width of a 3-loop wide
sheet constructed on the front-bed using yarn A by moving the right-
most loop over to the left by one:

...

knit - f3 A

knit - f2 A

knit - f1 A

xfer f3 b3

xfer f2 b2

rack -1

xfer b3 f2

xfer b2 f1

knit + f1 A

knit + f2 A

...

f1 f2 f3

2.5 Miscellaneous

A hand knitter (or anyone who owns a knit sweater) would realize
that our discussion so far did not talk about colors or textures such as
those seen in fair-isle style sweaters, ribs using purl stitches seen on
sock cuffs, or other texture effects such as laces and cables.

Figure 2.12: Socks with fair-isle color
work and ribs on the cuffs

Knitting machines are set up to have multiple yarn carriers, each of
which can feed yarn of a different color or material. Using different
yarns in a pattern, various forms of colorwork can be introduced as
seen in figure 2.12. Apart from color, yarns of different materials ma-
terials (e.g., elastic, conductive, and heat-sensitive) can be embedded
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in the knit object. The beanie shown on the right in figure 2.13 has a
few courses of conductive yarn used to power LEDs.

Figure 2.13: Using conductive yarn for
LEDs

By transferring loops in a pattern, various texture effects can be
introduced. For example, by pairing decreases and increases carefully,
a lace fabric can be created. Cables can be created by transposing a
few loops in the pattern giving a characteristic textural effect as seen
in the hand-warmer example.

Figure 2.14: A handwarmer with cable
textures.

A sheet knit on the front bed has a distinct appearance on the front-
side and back-side. The front (out) side has a characteristic v shape
and the back (in) side has a - dashed shape (called a ‘purl’ stitch in
hand-knitting and a back knit in machine knitting). Knits and Purls
are commonly used in garments for not just texture but also structural
elements. Ribs – alternating columns of knits and purls – are more
elastic and usually found on cuffs and socks. This change in fabric
behaviour is because a knit loop does not lie flat. It curls one way
along its legs or sides and in the opposite way along its neck. This
saddle shape aggregates over the surface – for example, an all-knit
sheet curls strongly both in opposite directions along the course direc-
tion and wale direction just like a single knit stitch does. Because purl
stitches are essentially knit stitches facing the other way, they curl in
the opposite direction. A careful combination of knits and purls can
in fact balance out or exaggerate the aggregate curling behavior of the
fabric. Combining knits and purls along with shaping gives rise to a
rich space of knit textures. Figure 2.15 illustrates a number of ways to
shape and texture a knit tube.

Shape Textures Color (Materials)

Figure 2.15: Knit shapes can be edited in
various ways. Its shape can be changed
by increases (decreases) and short-rows.
Textures can be edited by using increases
and decreases to create lace work, cables
and knit-purl variations. Multiple mate-
rials can be introduced to edit the struc-
ture in various techniques like plating,
intarsia and fairisle style knitting



3
Background

Knitting and other forms of fabric craft have a rich and long history.
Postrel [2020] describes how fabrics have influenced human civiliza-
tion in every step of the way. Mechanized Jacquard looms and knit-
ting frames have played a key role in the industrial revolution, even
paving the way for modern computing. Among the far reaching im-
plications that the industrial revolution has had in almost every facet
of our modern lives, it has certainly changed the way clothing and
fabric is made. Providing a comprehensive background of this space
is almost impossible. I therefore attempt to center this chapter around
ideas that have influenced this thesis across fabrication, geometry pro-
cessing and graphics.

3.1 Knitting

The chart below visualizes the problem space around knitting along
two axes that the work in this thesis intends to make progress along:
completeness and customization.

Pattern representations can be measured based on how much of the
design space can be described using the representation. Low-level lan-
guages are likely to be complete – capable of representing any knitting
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pattern conceivable. However, they may not be directly amenable to
high-level interpretation and design, required for customization. A
goal of this thesis is to enable design systems that can represent a rich
subset of the design space while also support high-level interaction
and expressivity. Many of the sub-problems that arise in pursuing this
can often be cast as a problem of identifying useful representations and
data-structures, applying robust geometric algorithms, and, designing
optimization and interaction based solutions.

3.1.1 Low-Level Languages and Representations

The knitout language proposed by McCann [2017] and described in
the introduction as well as languages supported by industrial knit-
ting CAD systems such as KnitPaint by Shima Seiki [2011] and M1

Plus by Stoll [2011] can be classified as low-level languages. These
representations can be used to describe any machine-knittable pattern
but require specifying details at the stitch and machine needle level.
An expert knit programmer may hand author custom patterns at the
stitch level using these systems. To provide high-level control and
support common designs at scale, these systems also support para-
metric templates for garments such as sweaters and gloves. Libraries
of textures are also maintained and can be applied to patterns and fur-
ther edited (Shima Seiki [2019], Soft Byte Ltd. [1999]). Guidebooks of
advanced techniques do exist that can assist with this process (Under-
wood [2009]).

Modern knitting machines are constrained in the way they can ma-
nipulate yarn. Therefore, machine patterns constitute only a subset of
all knitting patterns. De Dillmont [1900] provides an excellent compi-
lation of all forms of needle-work (including knitting patterns) in their
encyclopedia. Human knitters are dexterous and able to form com-
plex stitches. Indeed, Belcastro [2009] showed that a 2D surface of any
topology can be hand knit. Although any surface can be hand knit,
understanding the structure of knitting is an interesting and challeng-
ing problem. Topologists have looked at formalizing knit structures
using knot theory. Grishanov et al. [2009a] studied textile structures
like knitting and weaving as knots and links on a torus to capture their
periodic nature. Markande and Matsumoto [2019] presented a topo-
logical framework to describe knit swatches, viewing knit stitches as
knots on a thickened torus with an algebra to join them and make a
fabric.

Hand-knitters also use low-level languages such as Knitspeak to
represent hand-knitting patterns. Battell [2016] presented a domain-
specific language called Purl, syntactically similar to knitspeak that
can verify hand-knitting programs. Hand knitting books often focus
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on textures, coming up with instructions for knitting complex shapes
can still be challenging.

3.1.2 3D Modeling and Pattern Generation

Knit patterns have a strong row and column structure formed by the
courses and wales. Describing a knit pattern on a surface can be
viewed as a parametrization problem over these orthogonal directions.
Singularities in the surface parametrization can be interpreted as knit
structures that introduce increases, decreases or short-rows. This setup
naturally lends its way to using directions as inputs when designing a
pattern, particularly for seamless machine knitting. Given a 3D shape
that needs to be represented as a knitting pattern, direction constraints
can be imposed to suggest courses (rows) or wales (columns). The con-
straints of machine knitting, however, require that these directions be
acyclic i.e. the underlying direction fields must be curl-free (i.e., gradi-
ent of a scalar field). Field-guided remeshing and vector field process-
ing have been successfully used to capture important shape properties
for fabrication in general, such as alignment to principal curvature di-
rections (Pottmann et al. [2008]), stress fields (Madan et al. [2020]), and
general directional preferences of the user (Jakob et al. [2015]).

Although yarn is continuous, machines manipulate the yarn in terms
of discrete and highly structured loops. Stitch patterns can therefore
be modeled as a charts (a discretization of the parametric surface),
graphs (treating stitches as nodes and their yarn connectivity as edges)
or polygon meshes (representing stitches as vertices or faces of the sur-
face). It is worth noting that a knit loop does not lie flat. The action of
pulling the loop through another loop turns each loop into a saddle-
like structure (Peirce [1937]). This can lead to interesting 3D surface
structures and can even be used to model auxetic meta-materials (Hu
et al. [2011]). Cirio et al. [2015] model knit structures as discrete hexag-
onal elements with hinge angles to simulate 3D knitting patterns very
effectively. Instead of using hinge angles, Wadekar et al. [2020] use a
helicoid structure to support the curved shape of knit loops. Kapllani
et al. [2021] use a graph structure to record the topology of machine
knitting patterns.

Yuksel et al. [2012] represent knitting patterns as a quad-dominant
"stitch" mesh with a focus on visualization and simulation. To auto-
matically come up with a stitch mesh from a 3D model, Wu et al. [2018]
proposed a quad-meshing approach using a 2-RoSy field for guidance.
Given that a general 2-RoSy field might not be a gradient field, to turn
these into (hand)knittable structures, seams are introduced with mis-
match faces.

Many field aligned quad-meshing algorithms conform to the sur-



26 foundations for 3d machine knitting

face shape well but individual quads can be differently sized with
errors smoothly distributed over all the faces. When the number of
stitch shapes that can be used to represent each face in the result is
limited, this can lead to discretization errors that accumulate poorly.
Pottmann et al. [2015] describe a similar challenge in paneling for ar-
chitecture with a limited tile set and propose to interleave a continu-
ous shape optimization step with a discrete panel optimization step
that encodes the relevant fabrication constraints. Modeling stitch se-
lection and meshing using such an interleaved setup would be an in-
teresting approach to texturing 3D knitting patterns. Liu and Jacobson
[2019] show that solving an as-rigid-as-possible energy minimization
problem with an l1-regularization term can be used to generate cubic
shapes. Using such a regularization term to optimizing meshing algo-
rithms might be an interesting way to deal with the error accumulation
problem in knitting.

A related quad-meshing approach, especially useful for fully-fashioned
machine knitting, is to enable control of seams in knit objects directly.
Hierarchical quad meshing ideas based on refining a base mesh –
where the base mesh can be driven by features (either automatically
detected as creases or by user input) may be interesting ways to sup-
port editing and patterning (Campen et al. [2012]). Hierarchical struc-
tures may also be useful in imposing additional constraints such as
symmetry. Igarashi et al. [2008a,b] presented a design assistant that
semi-automatically creates a knitting pattern from a 3D model by seg-
menting the shape into tube-like regions and covering the tubes with
a winding strip and finding areas where increases or decreases are
needed. The knit results could additionally be posed using wires.
The end-user directly controls the high-level segmentation whereas
the computational system identifies low-level stitch placement within
each segment.

Although representing knitting patterns in 3D and generating pat-
terns from 3D shapes is useful, the physical properties of yarn (espe-
cially when different textures are applied) is not uniform. This often
means that the geometry of the 3D shape cannot be directly turned into
a knitting pattern. Yuksel et al. [2012] used ideas from sub-division
and adaptive remeshing to deal with texture variations. Liu et al.
[2021] modify the underlying surface shape from which the pattern
is created directly to account for texture variations, similar to Skouras
et al. [2012]’s approach for balloon design.

Ideas from image manipulation in graphics have also been useful for
manipulating textures and patterns. Hofmann et al. [2019] have looked
at data-driven approaches for manipulating textures and introduced a
system to parse hand-knitting patterns and combine them with seam-
carving (Avidan and Shamir [2007]).
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For hand-knitting, generating instructions from high-level pattern
representations (such as a graph or mesh) is often simple. The con-
straints of machine knitting makes instruction generation more chal-
lenging and design systems for machine knitting need to account for
it.

3.1.3 Design Systems for Machine Knitting

Traditional design tools work in the construction space of the machine
– requiring users to figure out the construction location (at which nee-
dle must a stitch be created) and construction order of stitches (on
which pass must this be created) at the same time as they determine
stitch and connectivity. Further, it is the designer’s responsibility to en-
sure that stitches and transfer instructions are encoded appropriately
and efficiently.

Meißner and Eberhardt [1998] proposed one of the earliest approaches
for visualization of machine knitted structures. Beginning with ma-
chine knitting data (WKT format from Stoll knitting machines) – stitch
information and material information were recorded. A particle sim-
ulation approach was used to then simulate and visualize these pat-
terns. Over the past few years, there has been a renewed interest in fab-
ricating with machine knitting. Popescu et al. [2018] described a sys-
tem that automatically generates a knit representation for topologically-
disc-shaped patches, which are later connected manually. However,
many intermediate steps including patch segmentation and machine
layout remain manual in their system. Jones et al. [2020] introduce a
system to support patch-level pattern editing while maintaining low-
level knittability constraints Jones et al. [2020]. Recently, Nader et al.
[2021] presented a graph rewriting based approach for supporting 3D
knitting of meshes with textures. Kaspar et al. [2019b] present a sys-
tem that learns machine knitting instructions by curating a dataset of
KnitPaint programs and images of the associated fabricated results.
Kaspar et al. [2019a, 2021] presented an interactive design system in
the construction space coupled with techniques to compose textures
for surface patterning and force-layout based embedding. More re-
cently, they presented an approach to turn cut-and-sew patterns into
seamless machine knitting patterns. Albaugh et al. [2019, 2021] have
also looked at novel structures that can be manufactured with machine
knitting such as integrated tendons that can be used for actuating soft
objects and spacer fabrics. In addition to making feasible knitting pat-
terns, researchers are also looking at creating efficient patterns, validat-
ing patterns for correctness and characterizing efficiency for machine
knitting (Lin and McCann [2021], Lin et al. [2018]).

Machine manufactures continue to innovate hardware systems for
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knitting techniques, speed and robustness (ITMA [2019]). Addition-
ally, Kickstarter initiatives such as Kniterate are offering low-cost con-
sumer grade machines with many of shaping capabilities of industrial
machines (Rubio et al. [2017]). Finally, apparel designers and retailers
are keen on customized, on-demand knitwear and allow customers to
personalize certain aspects of expert-created patterns for design and
fit (Adidas [2019], Ministry of Supply, Unmade).

3.2 Clothing Design

In contrast to constructing fabric from the yarn-level, most clothing
design work in graphics has focused on the “cut-and-sew” paradigm,
where clothing is sewn together from multiple panels cut from flat
fabric; with many contributions in simulation (Carignan et al. [1992],
House and Breen [2000], Volino and Magnenat-Thalmann [2000], Volino
et al. [2009]) and interactive and intuitive interfaces (Decaudin et al.
[2006], Mori and Igarashi [2007]). Wu et al. [2021] have looked at
adding seams to automatic machine knitting techniques to ensure wear-
ability.

One of the difficulties in cut-and-sew clothing is fitting 3D mod-
els, which is done by placing specific shaping features like darts and
folds (Li et al. [2018], Turquin et al. [2007], Umetani et al. [2011], Wang
[2018]) or by combining and adjusting patterns in a physically mean-
ingful manner (Bartle et al. [2016]). Further, data-driven approaches
have been used for parsing sewing garments into 3D draped forms as
well as for exploring the multi-modal design space of body shapes,
textures, and 2D patterns (Berthouzoz et al. [2013], Wang et al. [2018]).

Beyond traditional clothing, knitting has also been an effective tool
for building responsive sensors and smart wearables (Farringdon et al.
[1999], Luo et al. [2021], Ou et al. [2019a,b]).

3.3 Other Soft Fabrication Systems

3D printing is often thought of as process to construct rigid structures.
However, by using the appropriate micro-structures, fabric-like drapes
can be achieved (Peleg [2018]). Cuts can be introduced into rigid metal
structures to shape complex curved structures (Konaković et al. [2016],
Malomo et al. [2018]). Apart from micro-structure based manipulation
of otherwise rigid structures, 3D printing has also been used to ma-
nipulate elastic fabric by overlaying rigid patterns over fabric laid out
under tension which generates a 3D form on release (Guseinov et al.
[2017], Pérez et al. [2017]).

Like knitting, weaving is another common fabric-making technique.
Recently, researchers introduced a sketching-based design system that
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let designers construct 3D woven structures by drawing weft yarns,
tiling these designs and using simulation to guide designs (Harvey
et al. [2019]). Akleman et al. [2009] showed how graph rotation sys-
tems can be used to turn polygon meshes into plain-weave structures.
Vekhter et al. [2019] introduced a computational approach based on
geodesic foliations on a surface to cover it with tri-axial weave struc-
tures that can be manually fabricated.

Felting is another classic soft fabrication technique where pieces of
wool are bonded together by piercing with a barbed needle that causes
fibers of different orientation to tangle and hold shape. Hudson [2014]
introduced a felt printer similar to a 3D printer but using felting yarn
as a filament and barbed needle to connect felted layers.

3.4 Simulation and Rendering

Researchers have been interested in understanding and modeling the
structure of knits across various communities – textiles and material
science (Leaf [1960], Leaf and Glaskin [1955], Peirce [1937]), geome-
try and topology(Grishanov et al. [2009b]), graphics and simulation
(Kaldor et al. [2008], Yuksel et al. [2012]). Yarn-level simulation meth-
ods can produce realistic deformations of knitted structures.

Recent works have focused on efficient methods to simulate yarn-
level details, including combining Lagrangian and Eulerian approaches (Sueda
et al. [2011]), applying reduced order methods (Cirio et al. [2017, 2014,
2015]), and modelling anisotropic deformations using the material point
method (Jiang et al. [2017]). Leaf et al. [2018] demonstrated interactive
yarn simulation for periodic pattern design using GPU computation.
Another area of active interest is characterizing the mechanical prop-
erties such as the elasticity or auxetic nature of knit fabric (Hu et al.
[2011], Knittel et al. [2015]).

Researchers have been working on photorealistic knit fabric render-
ing for over a decade (Groller et al. [1995], Gröller et al. [1996]). Ap-
proaches include representing the geometric complexity of knit struc-
tures with volumetric approximations (Chen et al. [2003], Xu et al.
[2001]), CT scan data (Zhao et al. [2011]), and procedural functions (Zhao
et al. [2016a]); and rendering the data with the radiative transfer frame-
work (Jakob et al. [2010]), the SGGX microflake distribution (Zhao et al.
[2016b]), and data-driven approaches (Aliaga et al. [2017], Khungurn
et al. [2015]). For interactive speeds and reduced memory, details can
be created on-the-fly (Lopez-Moreno et al. [2015], Luan et al. [2017],
Wu and Yuksel [2017a,b]).





4
What Can Be Machine Knit ?

Figure 4.1: A row of knit ducks of dif-
ferent sizes created directly from a 3D
mesh and a scaling factor. This pattern
was constructed seamlessly in one piece
by the knitting machine and stuffed in
post-process.

What can be made on a knitting machine? Now that we know the
machine operations in knitout, one answer is: any sequence of knitout
operations can be performed on the machine. In reality, an arbitrary
sequence of instructions is more likely to result in a tangled mess of
yarn than a meaningful result. What we really mean is – what sort of
shapes can be produced on the machine?

Understanding the class of surface shapes that can be machine knit
is key to our goal of separating the high-level design space from ma-
chine operations. Without such a classification, any separation will be
meaningless – letting us create designs that cannot be executed on the
machine. We have seen three styles of knitting machines – linear flat
bed machines, circular knitting machines and two-bed (and its multi-
layer variants) machines. It is clear that single bed knitting machines
can make topological discs (sheets with short-rows) and circular ma-
chines can additionally make a tube that can be bent with short-rows.
Here, we will focus on the design space of the general two-bed ma-
chine. Figure 4.1 shows a toroidal duck knit in one-piece on a two-bed
knitting machine with two layers. What sort of layer setup is needed
to construct an arbitrary surface if it can be constructed at all?

Given a knit object, we say that it represents a surface if the knit
loops uniformly and densely cover the surface shape and locally, the
loops are arranged like a sheet almost everywhere. The thickness of
this sheet and the thickness of the yarn forming the loops are negligi-
ble in relation to the size of the surface. An example of an everyday
object that falls in this category is a knit T-shirt. A knit T-shirt might be
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crumpled and laid out in a complicated way at any point in time, but
it can always be smoothed out to a surface. Not all knit objects need to
be a surface as described here. A multi-layered dish cloth for example,
might be constructed by layering sheets that may themselves be knit
surfaces and connect them with yarn by knitting, sewing, or gluing
them in various ways such that it fills a volume. In chapter 8 we dis-
cuss how ideas presented in this thesis might be expanded to handle
volumetric structures, but largely this work focuses on representing
and fabricating knitted surfaces.

Knitting a Surface Consider an arbitrary surface:

Figure 4.2: If an arbitrary surface can be
sliced such that each slice can be placed
on the multi-layer machine in a reason-
able way, the surface can be stacked
and knit.The surface is sliced along its
height, shown by contours colored blue
to red.

An iso-contour of the height function of this surface is a planar
curve and can be laid out on a continuous version of a multi-layer ma-
chine – with infinite needles and layers as shown in figure 4.2. The
curve can be constructed by knit loops connected by yarn on the nee-
dle plane. Discretizing the curve (and the machine) can be viewed as
placing loops (on needles) at a uniform separation, allowing the con-
tinuous yarn between loops to form the curve between two points on
the curve as shown in figure 4.3. Any part of the curve that is orthogo-
nal to the needles, can be perturbed or be followed by the stretchy yarn
between loops so that any line in the layer plane orthogonal to the nee-
dle direction intersects the surface in only finitely many loop locations.
Any two consecutive slices can be connected by knitting through loops
of the previous slice when constructing the next slice. Intuitively, if a
surface can be generated in one piece by stacking and connecting slices
(each of which can be held on the machine) – it is machine knittable.
More specifically, we would like to: Figure 4.3: Although more layers can be

used, a figure-8 like shape can be placed
on two layers. Here discrete loops are
shown by a circle and the dotted line be-
tween them indicates yarn. The dashed
lines show the layers.

Problem Statement 4.1:. Characterize the space of surfaces in R3 that
can be constructed with machine knitting.

4.1 Design Space of a (Multi-Layer) Machine

Figure 4.4: Assigning a time function f :
S→ R on a fabricated surface S.

Machine knitting is an additive fabrication technique, creating the shape
by adding one loop another, row after row. A scalar function can be
assigned to each point on the fabricated surface, based on the time at
which the surface was created. This implies that any machine knit sur-
face can be associated with a scalar time function whose contours (at
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unit time intervals) provide the rows of loops (courses) that forms the
knit surface.

On a (multi-layer) two-bed machine, these contours can appear as
closed cycles1 or open curves. Because the constituent loops can be 1 The construction of a tube proceeds in

a helical fashion which means the rows
are never strictly closed, but the surface
contours can nevertheless be viewed as
closed cycles

moved around by transfer and rack operations, the length of the
contours can vary. Because multiple cycles can be held on a two-bed
machines at any time, at any time (iso-value), multiple disjoint iso-
contours may exist.

Two or more contours produced at time ti may be merged at time
ti+1 into a single contour by knitting through loops of all those previ-
ous loops with a single new row (chain or cycle) or loops.

Figure 4.5: Merging and splitting cycles
A contour produced at time ti may split into multiple contours at

time ti+1 by using a new yarn that creates multiple new cycles through
the previous row.

Although a cycle can be rotated and translated on the machine, once
laid out, it cannot be reflected inside-out – the orientation of the sur-
face cannot be changed. If a closed manifold surface is constructed on
the machine, it must be oriented. Each contour must have been con-
structed on some layer(s) of the machine and over some needle(s) in
those layers. Each contour c can be associated with a list of layers l(c)
and needles n(c). Two disjoint iso-contours that appear at the same
iso-value cannot share needles from the same layers – since there is no
operation to separate loops that appear on the same needle location.

Further, two cycles that share a layer cannot pass across each other
– there aren’t enough needles to execute such an operation because in
practice, the amount by which the layers can translate is bounded by
the racking limit of the machine. Therefore, the relative ordering of
a sequence of cycles on the machine bed cannot be changed within a
layer but a cycle can be moved from one layer to another.

Figure 4.6: Although two cycles can be
held at the same time with two layers,
their positions cannot be swapped un-
less the racking limit of the machine is
greater than the width of the cycle. Here,
two cycles are shown side by side, af-
ter transferring to collapse the cycles and
racking them, there are no free needles
available to expand the cycle and repeat
this procedure.These constraints on the shapes and their transformations suggest

a way to classify any surface that can be fabricated on our multi-layer
machine model with some fixed number of layers L. For any surface
S ∈ R made with such a machine, it is true by construction that:

1. A scalar function can be defined on the surface of the knit structure
by recording for each stitch the time at which its row appeared on
the knitting machine i.e., the contours of this function are curves
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and describe the rows of the knit object. A similar function can be
defined on the surface for recording needle on which each stitch
was constructed and the layer on which it was constructed.

2. Each contour of the time function can be identified by contracting it
into a single point. This process generates a skeleton for the surface
(similar to the Reeb graph (Reeb [1946])). The evolution of these
contracted contours through time produce edges of this skeleton.
Critical points where contours merge or split appear as vertices of
this skeleton.

3. The graph appears in time order, so the drawing must be upward
(all the edges are oriented consistently with the time function) and
is directed-acyclic (no loops can be used from the future).

4. From the physical setup of the machine, there must exist two or-
thogonal directions ~l and ~n (for layers and needles). Any two con-
tours of a level set of the time function that share the same set of
layers must necessarily be held on different needles to avoid inter-
sections. Knit loops are held on needles, yarn between loops can
connect loops within the same layer or along different layers.

5. The embedding of the surface in the construction space of the ma-
chine defined by the time t : S → R, layer l : S → R and needle
n : S → R functions, f (x ∈ S) 7→ (n(x), t(x), l(x)) is topologically
equivalent (isotopic) to the surface S.

A projection of the surface P(x ∈ S) 7→ (n(x), t(x)) along the layers
has at most L points that coincide. For example, the figure on the
right requires 3 layers for construction.

In other words:

A two-bed (multi-layer) continuous knitting machine that
makes infinitesimally small stitches can construct a 2D surface
S iff there exists functions t, n, l : R3 → R, with an isotopy be-
tween S and f (x) 7→ (n(x), t(x), l(x)) for f : S → R3 and pro-
jection p : S → R2 where p(x) 7→ (n(x), t(x)) and ∀x ∈ p(S),
|{y|p(y) = x}| is finite.

Although knittability of a surface can be shown with many layers,
in practice layers are achieved at the cost of needle resolution. Further,
any contour can be held flattened on just two layers (assuming yarn
is stretchy). In practice, an embedding that minimizes the number of
layers when possible is desirable.
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Often, one is only interested in ‘nice’ manifold surfaces that locally
appear like a sheet with no T-junctions. Here we assume these mani-
fold surfaces form a single connected component (e.g., not a concentric
collection of 2-spheres). From Morse theory, there exist a height func-
tion for any manifold surface M that with minor perturbations only
has binary splits and merges (Edelsbrunner and Harer [2010]). This
height function can be viewed as the time function for ordering slices.
When viewed as a projection on a plane parallel to the time direction,
the the Reeb graph ofM can have the only following events:

Events of interest on a projection of the Reeb graph.

By perturbing the time function, one can ensure that any time ex-
actly one event occurs. Notice that all contours will appear as simple
cycles or simple curves and can be laid out without any intersection
adjacent to each other2. The Reeb graph is directed (edges are directed 2 The edges of this graph represent cylin-

drical components, that do not intersect
or pass through each other since that
would introduce a self-intersecting sur-
face

by time) and is acyclic. Merging and splitting events can occur on a
single layer for sheets or two layers for tubes. Crossing events require
an additional layer since at the crossing point, two tubes must be held
simultaneously and disjointly on the machine.

Although a single projection of this graph to a plane might enforce
an arbitrary left-to-right ordering of cycles on the machine at critical
points – cycles can always be rotated, either before the critical point
or after, ensuring that any left-right ordering of cycles can be achieved
using binary splits and merges.

For machines with exactly two layers (standard knitting setup) and
tube-like surfaces, no crossing events can appear. This setup is often
more robust because the fabric layers do not pass across each other
between the beds. For a machine with four layers, any crossing can be
executed by placing the cycles associated with the crossing edges on
two different sets of layers. At any instance in time, only one cross-
ing event appears, hence additional layers are not necessary. These
constraints can be formalized as: 3 3 Nested manifold surfaces can be con-

structed by using as many layers as the
nesting complexity

A continuous two-bed four-layer knitting machine that makes
infinitesimally small stitches can construct any oriented 2D man-
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ifold M. A two-layer knitting machine can construct an oriented
2D manifold M iff there exists a (Morse) function f whose Reeb
graph has an upward planar embedding.

Some examples of what can and cannot be fabricated in one piece on
a two-layer (i.e., standard industrial) machine4: 4 The trefoil knot has an upward draw-

ing with edges that pairwise intersect on
the layer plane and would require 4 lay-
ers to construct as each edge represents
a cyclic contour (tubular segment).

This characterization based on the topology of the surface is useful
in identifying if a surface is machine knittable at all with a fixed num-
ber of layers, irrespective of the discretization used to come up with
stitches and loops.

Geometric properties The discussion so far, focused mainly on the topol-
ogy of the surface being constructed. To meaningfully fabricate a sur-
face metric properties are also important. The distance between points
on the surface needs to match the distance between loops on the con-
structed surface for all points on the surface. Consider a time function
used to generate a slice of the object. The distance along the sur-
face between two points on consecutive slice (when moving along a
straight geodesic path from a point on the lower slice) might be differ-
ent. When being constructed by knit loops, only a loop-height worth
of distance can be covered by any contour. The slice can therefore be
further subdivided into regions that can be covered by a fixed height
along the surface. These sub-patches can be constructed using short-
rows on the machine. In chapter 6, I describe an incremental remesh-
ing algorithm that uses this idea to explicitly convert a 3D mesh into a
knitting pattern.

4.2 Physical Constraints

A goal of this thesis is to enable a pipeline that supports fabrication of
machine-knit objects. This involves translating idealized assumptions
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like zero-volume infinitely-stretchable yarn strands, unbounded cur-
vature changes, infinitely strong needles, and long needle-beds into
constraints that lead to robust and repeatable performance. Identify-
ing these physical constraints, in turn, involves calibration, tuning and
empirical analysis.

Maintaining Yarn Slack During knitting, loops may be moved around
for shaping or scheduling other loops. During these operations, if the
yarn breaks, the object being constructed is compromised because this
failure cascades over all dependent loops that are no longer stabilized.
The extent by which yarn can stretch depends on its physical char-
acteristics and may differ based on yarn type and stitch size settings
used on the machine.

Figure 4.7: The length of the yarn be-
tween two loops at the time of construc-
tion is referred to as the slack between
them. When loops are moved by dis-
tance greater than their slack, yarn can
break.

For two loops constructed in sequence i.e., yarn-wise adjacent, the
amount of yarn between them can be measured in terms of the needles
between them. We refer to this as the “slack” associated between those
two loops as illustrated in figure 4.7. Bringing these two loops closer
is safe, separating them by a distance much greater than their slack is
likely to cause yarn breakage.

Property 4.1: Slack. For yarn-wise connected loops i and j, constructed
at needles ni and nj,

d(i, j) ≤ k · d(ni, nj)

at all times, where k ≥ 1 may be experimentally determined and d is
the distance between them in needle spacing.

d(ni, nj) = |ni − nj| if i and j are on the same bed

= |ni − nj|+ 1 otherwise

In our system, we set k = 1 for any transfer planning in general
and allow k = 2 for increase shaping. The unit distance between two
adjacent loops need not be one, especially in the context of multi-layer
systems. In general, the distance between two loops is L for an L-layer
machine emulated on a two-bed machine. The factors introduced by
slack constraints are applied with respect to the unit distance account-
ing for layers5. 5 For a 3 layer machine, to introduce a

gap loops may have to move by 3 nee-
dles or 1 unit. Note that the length of
the yarn between adjacent loops is also 3

needles in this case.
There might be other ways to add
more slack by creating longer loops
https://alessandrina.com/category/machine-
knitting/long-stitches-and-loops/ , but
once created the slack between two
loops is fixed.

This slack constraint can have consequences for patterning algorithms
in multiple ways:

Limited increase Before the width of a row can be increased, a gap
needs to be introduced by moving a few loops. This means that loops
must be able to stretch at least by one unit (for multi-layer setups this
might be more than one needle) to effectively be able to create any
width variation 6. As suggested above, we limit this based on the yarn 6 Other than adding new loops to the

edge of the fabricslack to a factor of 2, allowing the fabric to increase by at most twice
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its width from the previous row. The physical stretch limits of the yarn
can therefore also influence the number of layers a pattern using the
yarn can have in general.

Balanced Layout For maintaining seamless appearance, limiting the
possible layouts of a cycle and avoiding special cases, we assume cycles
generally appear in a balanced fashion – the number of loops on the
front bed(or layer) and the number of loops on the back bed(or layer)
differ by at most 1 (to accommodate odd numbered loops).
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Figure 4.8: When cycles split or merge,
it must be possible to lay them out in a
balanced manner

During splitting and merging, it is important that this balance is
maintained.

Maintaining Needle Capacity The hook on each needle can hold a lim-
ited number of loops simultaneously reliably. This limit needs to be
determined based on the hook size (usually a function of the number
of needles per inch on the machine) and the diameter of the yarn. This
limit influences how sharply the width of a fabric can decrease since
decreasing involves overlapping loops to narrow the width. Based on
our machine (and convenient symmetry with the increase limits) we
set this to 2 for all our automatic patterning algorithms.

Layer Friction Although it is possible to emulate a multi-layer ma-
chine on a two-bed machine, this introduces two challenges. The
first is the loss in needle resolution when multiple layers need to be
maintained. The second is that the friction between multiple layers of
overlapping fabric can lead to non-robust fabrication performance (de-
pending on the yarn). It is therefore important that scheduling algo-
rithms minimize the number of layers when possible and use multiple
layers only when the underlying topology cannot be constructed with
a simpler layer setup.

With these design and physical constraints in mind, I will next dis-
cuss data-structures to represent discrete knitting patterns.



5
Representing and Editing Machine Knitting Patterns

Figure 5.1: Beginning with an identical
base pattern representation, quick edits
(in this case under fifteen minutes each)
can be performed to generate multiple
variations.

A 3D mesh can be tested for machine knittability by using guiding
scalar functions and verifying that an appropriate upward embedding
exists for its Reeb graph. However, in order to construct a knit version
of the shape, we need some way to turn a shape into loops and capture
their dependencies. Additionally, it must be easy to construct this
representation from 3D shapes, track machine-knitting constraints and
finally convert it into knitting code. In this chapter, I will describe
a new datastructure – an augmented stitch mesh – to represent knit
structures.

For a datastructure that represents a valid machine knittable pattern
to be useful it should satisfy a few desirable properties:

Property 5.1: Complete.

• Any machine knittable pattern must have a valid representation.
• It must be easy to verify that the pattern is consistent and machine-

knittable.
• The data structure must represent the knitting pattern completely

– it must encode all the yarn-wise and loop-wise dependencies of
the stitches, track the order between loops, and maintain their adja-
cency information.

Property 5.2: Editable.

• The representation must be easy to visualize (along with its 3D em-
bedding) and intuitive to edit with simple operations (i.e., opera-
tions over local stitch neighbourhoods).
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• These edit operations must be able to span the space of valid pat-
terns.

Property 5.3: Independent.

• The data structure should not encode or depend on physical assign-
ments such as needle location or yarn carrier assignments.

• The data structure is not tied to a particular hardware architecture.

The key structure for representing a knitting pattern involves the
loop-wise (columns or wales) and yarn-wise (rows or courses) con-
nectivity. The stitch mesh data structure, introduced by (Yuksel et al.
[2012]), represents knitting patterns using faces to encode stitches and
labelled edges that dictate connections between faces (either yarn-wise
or loop-wise). The knit graph structure introduced in Narayanan et al.
[2018] represents knitting patterns with nodes for loops and labelled,
directed edges for their dependencies. The dual of this knit-graph,
naturally leads to a stitch mesh style structure (although the directed
edge information in the graph is not represented in the stitch mesh) as
shown in figure 5.2

Figure 5.2: left: a snippet of a knit graph
showing a decrease structure, middle:
dual overlayed with colored edges, right:
stitch mesh version – red edges indicate
loop-wise connections and green edges
indicate yarnwise connections. The yel-
low face with two incoming loop-wise
connections can represent a ‘decrease’.

The stitch mesh structure lets us build complex knitting patterns
as a set of generalized Wang tiles (Wang [1961]). Faces can connect
as long as edge labels (red loop-wise connections, green yarn-wise
connections) match – which ensure that yarn-wise edges and loop-
wise edges connect in reasonable ways. However, even with these
constraints, one can produce structures that are not machine knittable
because directional dependencies are not encoded. Second, machine
instructions for constructing the stitch face need to be identified and
may not exist for complex hand-knitting operations.

5.1 The augmented stitch mesh

We augment the stitch mesh representation in two ways in order to
support the editing of machine knitting programs: first, we add di-
rected edge labels to track dependency information; second, we asso-
ciate with every face type a knitting machine program that can con-
struct the yarn-level topology on that face. Finally, we impose a con-
straint that the augmented stitch mesh must be directed-acyclic under
the edge directions introduced.
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Figure 5.3: Augmented stitch mesh
faces have, left, directed edges to prevent
locally un-knittable assembly; and, right,
associated knitting programs.

Figure 5.4: Basic face types and their as-
sociated knitting code fragments. Faces
with opposite yarn direction proceed
similarly. Dashed lines indicate divi-
sions between construction passes. Vari-
ants of these faces can be maintained for
specific behaviour. For example, the out-
put loop for decreaseL arrives on f NL,
and a variant decreaseR could have it ar-
rive on f NR.

Directed Edges The edge labels in the augmented stitch mesh cap-
ture dependencies between faces – loop in edges indicate that a loop is
needed, while loop out edges indicate that a loop is produced; yarn in
and yarn out give similar information about yarns. Any in edge may
only connect to an out edge of the same type, and visa-versa. As shown
in figure 5.3, these labels ensure that invalid closed links are not rep-
resented by the stitch mesh. A minor subtlety worth noting is that for
machine knitting, the loop edges are associated with needles holding
loops because two loops held on the same needle cannot be separated.
Also, yarns and loops across faces are connected by edges that share
the same label and have compatible directions, however there is no
constraint that edges share vertices over these connections. This al-
lows us to represent both manifold and non-manifold surfaces with
the augmented stitch mesh structure. These directed edges induce a
directed graph (like the knit graph) on the faces.

Face Programs Each face in our augmented stitch mesh data struc-
ture represents a fragment of a knitting program (specified in knitout)
and configuration information that operates on the yarns and loops
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provided by its in edges in order to produce the yarns and loops indi-
cated by its out edges (Figure 5.3) and the layer on which the face lies.
That is, the edge labels provide a type signature – input and output
loop and yarn counts – for a knitting program fragment to be executed
on some layer. The layer and the configuration information is used by
the scheduler to appropriately shuffle the loops held on the machine
so that the code fragment is correctly interpreted. The basic face types
provided by our system, along with pseudo-code for their knitting
program fragments, are shown in Figure 5.4. Importantly, our system
makes it easy to extend this list, since subsequent editing and layout
operations depend on face edge labels, not on the referenced program.
It is also easy to extend to polygon faces with an arbitrary number
of edges. The face programs provide a template of the machine code
that can be executed on any layer of the machine since each layer is
in turn associated with needles on both the beds of the machine. The
face program can include any operation in the knitout assembly lan-
guage described in chapter 2 but it is required to leave the machine at
a zero-racking state at the end of its execution.

Directed-Acyclic Constraints A stitch mesh with edge directions and
face programs is a valid augmented stitch mesh only if it is directed
acyclic under the directed edges. Physically, this avoids representing
cycles along loop-wise edges – no loop can be consumed before it was
created. Similarly there exists no cycles along yarn-wise edges – yarn
cannot be connected to form a closed cycle on the machine.

Augmented Stitch Mesh Definition Concretely, the augmented stitch
mesh is defined as ASM = (M, G, C, L) consisting of mesh M, ge-
ometry library G, code library C and the total number of layers L.

The mesh M = (F , C) consists of a list of faces F and connections
between faces C.

Each face f = ((v1, .., vn), c, g, l) ∈ F consists of a counter-clockwise
sequence of vertices (v1, ..., vn) where vi ∈ R3 that defines the face
polygon, an associated code face c ∈ C, geometry face g ∈ G and layer
number 0 ≤ l ≤ L. f x

a is used as a short hand to identify x
associated with face a e.g., geometry face
g associated with mesh face a : f g

a
A connection e = ( f i

a, f j
b) ∈ C represents an edge-to-edge connection

between face a and b. The edge in face a participating in the connection
is defined by (vi, vi+1) if i > 0 and (vi+1, vi) otherwise (the addition
operator + is modulo n).

For an oriented, manifold mesh, each edge connection ( f i
a, f j

b) has
sign(i) 6= sign(j) and each face edge participates in at most one con-
nection.

Each face in the code library c = (key, (e1, ..., en), instrs) consists of
a descriptive identifier key, a counter-clockwise list of edges (e1, ..., en)
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and a list of knitout instructions instrs.
Each edge in the code face describes the resource associated with

that edge as e = (dir, type, loc, yarns), where dir describes the direction
of the resource (incoming or outgoing), type describes the resource
type (loop or yarn), loc describes a local bed-needle location and yarn
describes the yarn identifier.

For f c
a , |(e1, ..)| = |(v1, ...)| and mesh edge f i

a is described by edge ei

in c.
The instruction list in each code face is checked so that only re-

sources on edges with incoming directions are consumed within each
face, and all the resource edges with outgoing directions are produced
with each face.

Similar to the code library, the geometry library describes yarn ge-
ometry within each face as spline paths and can be utilized for visual-
ization or extracted for yarn-level simulation.1 1 Our system does not explicitly check

that the code face and associated geom-
etry face are consistent i.e., the knitout
instructions in the code face produce the
same topology of yarns as in the geome-
try face. This would be a useful addition,
where the geometry face library is cre-
ated by the code face library directly, ap-
propriately clustering all geometry that
are identical (e.g., a rightwards going
front knit and a leftwards back knit).

The geometry face g ∈ G is described by (key, (ei, ...), (yi, ...)) where
key is a descriptive identifier, (ei, ..) a counter-clockwise list of geomet-
ric edges and (yi....) is a list of yarn splines.

Each geometry edge e = (v ∈ R2, dir, type) where v describes the
2D position of the source vertex in the edge, dir describes the resource
direction and type describes the resource type.

Each yarn entry y = (start, p1, ..., end) lists a sequence of spline con-
trol points where pi ∈ R3 and start and end lie on the edges.

For f c
a and f g

a , |(v1, ...)| = |(e1, ...)|, edge type and dir agree on the
geometry and code face.

To maintain uniform density over the entire shape, the number of
layers needed to represent a mesh is maintained as a part of the aug-
mented stitch mesh ASM. An example is shown in figure 5.5. The
edge directions from the template face types are used to verify that the
mesh represents a directed-acyclic structure along yarns and loops.

Figure 5.5: A small augmented stitch
mesh that consists of four faces and four
face-edge connections. Each face has an
associated code and geometry structure.

Next, I describe why the augmented stitch mesh satisfies the desir-
able properties as a data-structure for machine knitting patterns.
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A complete representation Each knitout operation can be associated
with an augmented stitch mesh face (and corresponding basic face
program) and edge labels specifying its dependencies. The stitch mesh
built by aggregating these stitch programs provides a representation
for a machine knittable pattern (with a potentially complicated em-
bedding) (Property 5.1). It is possible that two programs represent
the same pattern – for instance any number of back-and-forth trans-
fers would lead to the same yarn structure or complex faces can be
aggregated in multiple ways to provide equivalent but different stitch
meshes. Similarly, any pattern may be compressed into a single stitch
face as long as the face program accurately represents the complete
pattern.

It is possible to represent patterns without an upward embedding
that is intersection-free using the augmented stitch mesh. However
this check can be done on the topology of the shape (all edges must be
"upward") in some projection before construction and the mesh must
not be self intersecting.

Figure 5.6: A smobj with linked cylin-
ders as shown here does not have an
embedding that is both intersection free
and monotonic. Note that a surface with
this topology can be constructed with a
different stitch mesh.

A machine-independent representation The augmented stitch mesh tracks
loop and yarn dependencies and encodes knitout instructions for faces.
The only machine knitting constraints that are encoded in the defini-
tion is the requirement of maintaining the directed-acyclic property.
This is strictly a machine knitting constraint, since e.g., a hand knitter
can access any dropped loop, tie yarn ends together or carefully pull a
part of the surface through gaps between or within loops! Beyond this,
no machine specific information is encoded and the representation can
be used for circular, flat or multi-bed machines.

An easy-to-edit representation The geometry and code face libraries
make it easy to extend available library entries in a consistent man-
ner. The geometry face provides a way to visualize stitches as spline
paths, the same geometry face can be constructed by many different
code faces. The mesh itself is similar to a polygon-soup mesh repre-
sentation of the embedded 3D structure with explicit connections for
tracking dependencies. In the next section I describe an intuitive sys-
tem using a basic library of faces (illustrated in figure 5.4) that enables
editing the augmented stitch mesh in the output 3D space while main-
taining machine knittability.

5.2 Editing an Augmented Stitch Mesh

Any editing operation that takes as input a set of augmented stitch
mesh faces and produces a modified set of augmented faces (i.e., with
appropriate dependencies and face programs) without changing knit-
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Figure 5.7: (a)Yarn can be manipu-
lated with blue yarn-end face oper-
ations, turned with purple short-row
faces; (b)orange pentagons introduce in-
crease and decrease shaping; (c) Faces
can be of complex types such as the
green cable face; (d) Edge label direc-
tions can be reversed to change yarn di-
rection; (e) Face programs can be edited
to change type without changing edges.
Green and red arrows indicate yarn di-
rection and loop direction respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Applying Y2 in (a) and Y3 in
(b - d) to introduce a small piece of yarn
in a “zipper” like movement and align-
ing the shape pentagons, again using a
“zipper” like motion ( S5 in (e - g) and
S6 in (h)).

tability constraints is valid. For an intuitive user interface experience,
we specifically design a series of shape and data editing operations (Fig-
ure 5.7, 5.8). These editing operations are inspired by quad-mesh
editing approaches explored in graphics research (Peng and Wonka
[2013]). It is possible to construct a globally inconsistent structure with
local editing operations violating 5.2. However, it is easy to perform
a topological sort to detect such cases and restrict the system from
performing these operations thereby maintaining validity. Although
this might appear restrictive, the editing operations presented can ef-
fectively span the space of augmented stitch meshes within the same
topology class (as defined by the underlying Reeb graph).

Figure 5.9: A sampling of various edit-
ing techniques; created by editing a
cylindrical augmented stitch mesh.

The suite of editing operations provided allow users to navigate
the space of knittable augmented stitch meshes (Figure 5.7). These
operations all involve replacing some portion of an augmented stitch
mesh while maintaining compatible edge labels. Edits of this sort can
still introduce global dependency cycles as shown in figure 5.10, but
they can be identified and restricted.

Editing operations can be split into mesh editing and data edit-
ing operations. Mesh editing operations change the mesh structure
(face counts or connections) and include yarn operations that deal with
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yarn start/end faces, shape operations that modify pentagons (for in-
creasing or decreasing loops), and cable operations that add or remove
cable faces(for reordering loops after construction). Data editing op-
erations do not change the mesh structure, and include type operations
that change face type and yarn reversal that reverses yarn direction
along a row. Although the stitch mesh structure might be modified by
mesh editing, the genus of the input surface is not modified by any of
the editing operations.

Yarn Operations involve manipulation of single-yarn-edge triangles
(Figure 5.7a). Merging two yarn-start/end triangle faces over a loop
edge will either form a regular quad, Y0(Merge), or short-row face to
turn the yarn based on the types of remaining four edges, Y1(Turn).
On the other hand, one row can be broken into two rows by their re-
verse operations. Removing or adding pair of yarn-start/end triangles
can be used to add or remove a row, Y2(Contract/Extend). Yarn-
start/end triangles are allowed to move along the loop-wise direction
as well as along the yarn-wise direction (Y3 and Y4).

Shape Operations Shape operations allow the user to move pentagons
along the loop-wise and yarn-wise direction as illustrated in Figure 5.7b
(S1, S2, S5, and S6). Note that operations S0, S3, S4, and S7 can re-
move/add a vertex without causing problems because they do so at
the boundary of the mesh.

Transposing loops after knitting them create interesting cables. These
patterns can be supported by insertion and removal (Figure 5.7c) of
cable faces of any length between two rows of regular stitches. These
faces do not have yarn edges, so they cannot construct new loops, only
rearrange them.

Type Operations These simple editing operations change face program
associated with a face (as long as the two programs are compatible –
have the same edge labels on the face). For example, a “knit” face
program can be swapped for a “purl” face program. The system will
use the corresponding face program to generate machine code during
instruction generation.

Yarn Reversal In addition to these face modifications, our system also
includes an operation for reversing yarn direction by changing the face
types and internal edge labels of an entire row (Figure 5.7d). While not
strictly necessary, this operation is much more convenient than remov-
ing and re-inserting a yarn stitch-by-stitch to change its direction.

These edits work together to enable natural dragging-based edits,
where faces are moved across the mesh, locally altering topology. For
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example, Figure 5.8, users can “zipper” in and out partial rows of yarn
by moving yarn start or end faces, and do the same with columns of
loops by moving increase or decrease faces. This gives users access to
both “short-row” and “increase-decrease” shaping techniques in a very
intuitive way. This dragging-based interface is inspired by singularity
editing interfaces such as the one proposed by Peng and Wonka [2013],
but also preserve the machine knittability.

5.2.1 Preserving Machine Knittability

Though our local edits will never introduce locally conflicting edge la-
bels, they are not always legal to apply because they can potentially
introduce a dependency cycle as shown in in Figure 5.10. When edit-
ing, our interface checks the legality of each operation by attempting a
topological sort on the dependency graph induced by the edge labels;
if a directed cycle is found between a face and itself, then the DAG
property has been violated and the edit is not permitted.

Y0(Merge)

Y3(Expand)

Figure 5.10: Examples of edits (shown
with dashed edges) that the interface
would prevent because the resulting
mesh contains a cyclic dependency be-
tween faces. Arrows show yarnwise
dependencies, and loopwise dependen-
cies (not shown) point from bottom
to top. Yarn-end and yarn-start faces
(highlighted in red) form an unknittable
structure by introducing a cyclic depen-
dency.

Generality We refer to an editing operation that passes the global or-
dering check, and thus can be executed, as valid. Importantly, there
is always a sequence of valid editing operations that can be used to
transform one machine-knittable augmented stitch mesh into another
(of the same input topology).

Indeed, we can prove a restricted version of this statement:

Proof. As shown in Figure 5.11, by repeatedly applying operation S5( DSplit),
the decreasing face can be moved to the top boundary and the stitch
mesh remains valid (S5 does not introduce local cycles). If the pen-
tagon is trapped by a yarn-end face, the yarn-end can be moved (be-
cause the operations Y1 and Y2 do not introduce cycles), and the pen-
tagon can be moved to the boundary. Then, operation S4( DElim>)
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can be used to remove a decrease pentagon. Similarly, repeatedly ap-
plying operation S1(DSplit) and S3(DElim⊥) can be used to eliminate
increase pentagons.

(a) (b) (c)

(d) (e) (f)

Figure 5.11: Removing a pentagon
while preserving knittability: (a - b),
move the yarn-end face above the pen-
tagon; (c - e), move the pentagon to the
boundary; (f), remove the pentagon.

Theorem 5.1:. The editing operations supplied by our interface are suf-
ficient to connect the space of all machine-knittable augmented stitch
mesh tubes.

Proof. First, we show that any valid stitch mesh tube can be turned
into a trivial pattern. Any pentagon face can be edited out without
breaking validity by repeatedly applying operation S5 and moving the
face to the boundary. Operation Y1(Cut) can be used to remove any
yarn-turn triangles. Finally, all yarn-start triangles can be moved closer
to their yarn-end by repeatedly applying operation Y2(Contract) and
Y3(Collapse). The result is a stitch mesh consisting only of a ring of
edges and no faces.

Finally, these edges can be collapsed to a ring with just two edges
by applying Y2(Extend) and Y3(Expand) to fill the ring with a single
row of quads, followed by S4(DIntro⊥) and S0(DElim>) to reduce
the number of quads to one, followed by Y2(Contract) to remove the
yarn.

Let f1, f2, · · · , fn be the sequence of n operations to turn a stitch
mesh F into the trivial pattern. Let g1, g2, · · · , gm be the sequence of
m operations to turn a stitch mesh G into the trivial pattern. If A is
machine-knittiable, it passes the ordering check, since g−1(g(A)) = A,
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g−1 must be valid on g(A). Hence, g−1
1 ◦ g−1

2 ◦ · · · ◦ g−1
m is valid on the

trivial pattern, so g−1
1 ◦ · · · ◦ g−1

m ◦ fn ◦ · · · f1 is valid on F and results
in G.

A similar, more general, proof can be conducted for non-tubelike
meshes by using a variant of the same construction, but some care
must be taken to keep the “trivial configuration” compatible with the
underlying topology.

5.2.2 Topological Edits to the Augmented Stitch Mesh

The editing setup described above cannot change the topology of the
shape. Next, I describe local operations that can be used to change the
topology of the augmented stitch mesh:

1. Creation of new components. This is straightforward, by introduc-
ing the ability to create a yarn-in face, a knit face and a yarn-out
face a new component can be introduced. This component can then
be edited with the local edit operations described in 5.7.

Figure 5.12: (top) C:A new component
can be created (bottom left) G0: two yarn
edges can be identified or connected
(bottom right) G1: two loop edges can
be identified or connected).

2. Merging two components into one. We introduce a gluing oper-
ation that allows two loop edges to be connected to merge com-
ponents. Yarn operations described above can be performed after
merging to connect and minimize the number of yarns used in the
augmented stitch mesh.

3. Splitting a component into two components. Two separate compo-
nents can be glued together to incorporate splitting as well. After
gluing, yarn operations can be used to reduce the number of yarns
being used in the components.

4. Sheets and tubes. Operations G0 and G1 also allow users to connect
edges of a sheet into tube. The edit operation for changing the yarn
direction (Fig 5.7(d)) locally is useful to introduce the correct yarn
order expected in a sheet and a tube.

Similar to the previously described edit operations, any gluing that
violates DAG properties is not permitted. During merging and split-
ting, balance of the augmented stitch mesh may be violated. This is not
explicitly prevented or handled as there are multiple ways to deal with
balance including introducing appropriate face types to fix balance by
locally increasing slack or changing the number of loops produced or
consumed. A production system can highlight slack imbalance during
a merge or split operation to the user for immediate attention.

Additionally, since non-manifold structures can be supported, the
system needs to introduce the ability to produce:
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1. T-joins along the loop-direction.

Figure 5.13: Introducing T-junctions
along loop-directions with operations
T1.

Supporting T-joins along loops can be introduced by adding a non-
manifold variant of the decrease face and operation S4 – that takes
two loops from potentially two different layers and move them to
the same output location. Essentially, this allows for attaching a
sheet component onto two sheets or a tube loop-wise creating a
vertical join as illustrated by operation T1.

2. T-joins along the course direction.

Figure 5.14: Introducing T-junctions
along yarn-directions with operations
(above)T2 and (below)T3.

To support T-joins along the course direction, we introduce a simi-
lar variant of the turn face and operation Y1 that connects two yarn
edges of the same course using a two faces as illustrated by opera-
tion T2 and extended by operation T3.

The T-join operations can potentially connect edges on faces with op-
posing orientation. However, the overall embedding of the surface
apart from these isolated connections needs to be non-intersecting for
scheduling the mesh on the machine. The interface presented here
does not enforce such an embedding automatically, but allows the user
to edit the embedding of the augmented stitch mesh with selection and
transformation tools. Even without an embedding check, this provides
a useful starting point to visualize, simulate and render complex knit-
ting patterns.

Supporting these operations enable a modelling interface that al-
lows designers to construct knittable geometry from scratch in intu-
itive ways. Note that there may be multiple ways to achieve these sur-
face modifications since many different face programs can be viewed
as creating the same type of of surface. For maintaining the visual
appearance of the stitch mesh, during editing, vertex positions can
be updated. In our implementations, we use projective dynamics
(Bouaziz et al. [2014]) to update the mesh geometry. From the ShapeOp
library by Deuss et al. [2015], edge-strain constraints are used to en-
sure faces retain the approximately correct size and bending and plane
constraints are used to maintain the 3D shape.

The augmented stitch mesh and supported editing operations pro-
vide an effective way to represent machine knittable structures. Next,
I will describe how these augmented stitch meshes can be generated
from 3D models.





6
Constructing Machine Knitting Patterns from 3D meshes

The augmented stitch mesh provides a suitable discrete representation
for machine knitting patterns. With the editing operations expressed
in the previous chapter, these meshes can be created from scratch.
However, there are a large number of 3D models available in the wild
and an automatic pipeline to turn these models into augmented stitch
meshes without explicitly constructing them face by face, would be
useful.

A class of techniques well studied in graphics and computational
geometry involve cutting of polyhedra and parametrization of 3D sur-
faces. When constructing structures with flat materials such as flat
fabric or paper, such techniques are clearly relevant. The surface is
flattened by cutting, and flat materials can be glued together along
the appropriate cuts to create a curved surface. Unfolding based tech-
niques can be used for machine knitting as well. Because cutting and
flattening produces a flat pattern – such augmented stitch meshes can
be constructed with linear flat bed or circular machines. Apart from
being amenable to simpler machines these patterns are likely to be
faster and more robust than patterns with transfers.

Graphics research also abounds with techniques to remesh and con-
vert surfaces with triangle or other polygonal representations into quad-
dominant meshes (Bommes et al. [2013]). The ‘knit face’ in an aug-
mented stitch mesh is in fact a quad with some constraints on how
edges go together and with edge lengths prescribed by stitch dimen-
sions. Given that a large fraction of a knit object consists of knit (front
or back) faces, augmented stitch meshes are typically quad-dominant
meshes. Any anisotropic quad-dominant mesh can be viewed as an
augmented stitch mesh if it satisfies the following:

1. Edges can be labelled with directed labels such the mesh satisfies
directed acyclic constraints.

2. A local face program can be written for each unique face (defined
by its directed edge labels)
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3. Each face matches the dimensions of the stitches it represents.

4. The mesh matches the shape of the underlying shape (under some
suitable matching function).

In this chapter, I describe strategies for constructing augmented
stitch meshes from manifold triangle meshes built on ideas of quad
meshing and unfolding.

6.1 General Patterns

I present two strategies based on quad-meshing approaches to con-
struct an augmented stitch mesh structure. The first is an incremental
remeshing approach and the second is a faster hierarchical remeshing
approach.

Using a time field as a guide Once an augmented mesh is created, its
validity can be checked by assigning the time function implied by its
yarn and loop-order and testing its Reeb graph’s embedding based on
hardware requirements. However, to construct an augmented stitch
mesh it is often useful to guide the remeshing process with a time
function. The user can directly influence the time function by specify-
ing starting and ending cycles for knitting that are used as boundary
constraints and interpolated smoothly within the surface as shown in
figure 6.1.

Figure 6.1: A simple interface that allows
users to generate suitable time func-
tions for arbitrary meshes by specifying
a sparse set of constraints along mesh
edges. Laplacian interpolation is used to
extend these constraints to a time func-
tion over the mesh (represented by the
color map, -1 1, in the figures).

In the absence of a user preference, using the first eigen-function
of the cotan-weighted mesh laplacian, also called the fiedler vector,
usually provides a good order for the mesh faces (Levy [2006]).

Problem Statement 6.1: Augmented Stitch Mesh Generation. Given
a triangulated, oriented, manifold input meshM and a scalar function
f that defines a knitting time on the surface ofM, we wish to generate
an augmented stitch mesh representation.

6.1.1 Incremental Remeshing

The incremental approach produces an augmented stitch mesh that
approximates the input mesh in three main steps. First, remeshing
creates a specially-structured knitting graph on the surface. Second,
tracing connects the graph into a single continuous yarn path from
which directions for operations (stitch faces) can be identified. Finally,
the dual of the traced knit graph is constructed with appropriate basic
face types to generate an augmented stitch mesh.

Knit objects have an intrinsic row-column structure, where the rows
arise from yarn-wise connections, and the columns arise from loop-
wise connections. (See Figure 6.3).
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Figure 6.2: During remeshing, a graph
with row and column edges is con-
structed iteratively by: (1) finding a next
cycle (purple) one row-height away from
the current cycle (yellow), (2) adding
nodes to the next cycle and marking
nodes to keep (purple) or discard
(green) based on the time function, (3)
linking the nodes to the active cycle, (4)
discarding the marked nodes and trim-
ming the mesh, and (5-7) updating the
active cycle and repeating. The level set
of tactive is shown as a dotted white line.
If the next cycle occurs after tactive, it
is entirely accepted (2-3) otherwise seg-
ments that lie under the contour are ac-
cepted if longer than 2lr (5-6).

lc

lr

lc

3.66 mm

1.
73
 m
m

Figure 6.3: Knit objects have a row-
column structure. In our system, this
structure is captured by the knit graph,
whose nodes represent two stacked
stitches (i.e., each row represents two
physical courses or knit rows), and whose
edges are constrained to be close to mea-
sured stitch dimensions (lr , 2lc).

In the remeshing phase, the incremental remeshing method pro-
duces a directed graph to guide the row-column structure of the final
knit object. This graph needs to be suitable for tracing, follow the input
knitting time function, and approximate the input surface.

That is, remeshing creates a knit graph (N ,R, C):

N ≡ {n, . . .} nodes
R ≡ {(ni, nj), . . .} directed row [yarn] edges
C ≡ {(ni, nj), . . .} directed column [loop] edges

Each node of the remeshed graph represents two knit loops in the
fabricated pattern, which is useful during tracing.

There are a few useful properties that make a directed graph knit-
table. To be suitable for tracing, the graph should have consistent
orientation and be helix-free (Properties 6.1, 6.2). Further, to satisfy
slack constraints (Property 4.1) and limit the number of basic face
types,the graph must satisfy a limited node degree and it must allow a
valid balanced layout (Properties 6.3, 6.6). Finally, the graph needs to
follow the time function and approximate the input geometry (Prop-
erties 6.7, 6.8). Properties 6.4 and 6.5 simplify the graph structure at
short-rows and when cycles undergo a change in topology; although
our knit graphs satisfy Property 6.4 and 6.5 by construction, they are
not necessary conditions for knittability.

Property 6.1: Consistently Oriented. Adjacent rows should be consis-
tently oriented. That is, for all nodes a, b, c, d:

(a, b) ∈ R∧ (a, c) ∈ C ∧ (b, d) ∈ C =⇒ (d, c) 6∈ R

This reflects the fact that cycles on the machine bed cannot be reversed.
a b

d c

a b

d c

a b

d c

a b

d c

To maintain consistency with the orientation of a surface (that this
graph approximates), a stronger constraint of handedness must be
employed – edges around a node cycles through incoming column
edges, outgoing yarn edges, outgoing column edges and incoming
yarn edges1. However our tracing strategy (described in 6.1.2) of dou- 1 Thanks to Ben Jones for suggesting this

stronger property.bling nodes and row edges effectively treats all nodes as consistently
handed.
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Property 6.2: Helix-Free. The column edges should form a partial
order on the rows. That is, treating row edges as undirected, there
should be no paths from the end of a column edge to its start.

∀(a, b) ∈ C+ : (b, a) 6∈ (R∪ reverse(R) ∪ C)+

where + denotes transitive closure, i.e., paths in the graph.
Arbitrary helices break the row structure of knitting and cannot be

traced in general although the final pattern generated for knitting a
tube is, in fact, helical.

Property 6.3: Limited Node Degree. Each node n must correspond to
a constructable type of stitch.

That is, it should have at most two row edges (one in, one out) and
at most two in and two out column edges.

∀n, |{(x, n) ∈ R}| ≤ 1, |{(n, x) ∈ R}| ≤ 1,

|{(n, x) ∈ C}| ≤ 2, |{(x, n) ∈ C}| ≤ 2

The constraint on row (yarn) edges is tight – stitches are always formed
from one piece of yarn – while the constraint on column (loop) edges
reflects the capabilities of the machine being used. Particularly, han-
dling multiple incoming column edges requires the machine to stack
multiple loops on one needle, so is limited by the size of the needle’s
hook. Handling multiple outgoing column edges requires either split-
ting a loop, which can stress yarn, or casting-on additional stitches,
which can create a small gap in the fabric. In both cases, we have cho-
sen the conservative limit of two edges, though nothing in our pipeline
intrinsically depends on these limits.

Property 6.4: Simple Short-rows. Each terminal end of a short-row
must have a single in and out column edge.

∀n, |{(x, n) ∈ R}| = 0⇒ |{(x, n) ∈ C}| = 1∧ |{(n, x) ∈ C}| = 1

∀n, |{(n, x) ∈ R}| = 0⇒ |{(x, n) ∈ C}| = 1∧ |{(n, x) ∈ C}| = 1

Property 6.5: Simple splits and merges. At merges and splits, rows
are complete cycle and column edges incident on its nodes are linked
1-1.

∀(m, n), (m′, n′) ∈ C s.t. (m, m′) ∈ R+, (n, n′) /∈ R+ :

|{(x, n) ∈ C}| = |{(m, x) ∈ C}| = 1,

|{(m, x) ∈ R}| = |{x, m) ∈ R}| = 1,

|{(n, x) ∈ R}| = |{(x, n) ∈ R}| = 1

where, R+ indicates transitive closure, i.e., paths along row edges.
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This property ensures that each generalized cylinder starts and ends
in a cycle (and not a short-row) and these cycles line up without re-
quiring additional shaping operations. This property simplifies graph
generation for tracing.

Properties 6.4 and 6.5 simplify linking and tracing. The constraints
imposed by them additionally imply that increase and decrease shap-
ing only occur between row-wise connected nodes.

Property 6.6: Feasible splits and merges. At splits and merges, nodes
of both participating rows must have a feasible layout on the machine.
Otherwise, splits and merges can cause yarn stress – red dashed lines
show yarn stretching beyond stitch width, which cannot be laid out on
the machine as shown by the illustration on the right.
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Let C̄, R̄, N̄ be the column-edges, row-edges and nodes restricted
to these rows respectively. A layout function l over C̄, and its extension
ln over N̄ , must exist such that rows in R̄ are not stretched for all
participating cycles:

∃ l : C̄ → Z, ln : N̄ → Z s.t. :

∀(a, b), (a′, b′) ∈ C̄ : (a, b) 6= (a′, b′)⇒ l(a, b) 6= l(a′, b′)

ln(a) ≡ ln(b) ≡ l(a, b)

∀(a, b) ∈ R̄ : | |ln(a)| − |ln(b)| | ≤ 1

By Property 6.5, the function l can be consistently extended as ln from
C̄ to N̄ .

Given a function ln, a function l′n can be constructed such that
{l′n(p1)..., l′n(pn)} is monotonic for every participating cycle {p1, ..., pn}
from some starting node p1. Now, sgn(l′n(p)) can be viewed as a nee-
dle bed and |l′n(p)| as a needle location. If the row edges are between
adjacent needles (or across the bed), the yarn will not be stretched
beyond the width of the stitch.

Property 6.7: Time-Aligned. The graph should respect the time field.
That is, the column edges should increase in time and the row edges
should remain about the same time:

∀(a, b) ∈ C : time(a) < time(b)

∀(a, b) ∈ R : time(a) ≈ time(b)

Rows can be monotonically ordered with respect to the given time
function and when embedded on the mesh they follow the user de-
fined time function i.e., row edges approximate level sets of the time
function (Figure 6.4).

Property 6.8: Low Stretch. When the nodes are embedded in the sur-
face, row and column edges should have lengths close to their corre-
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sponding knit features (Figure 6.3):

∀(a, b) ∈ R : len(a, b) ≈ lr
∀(a, b) ∈ C : len(a, b) ≈ 2lc

where lr is the measured width of a stitch, lc is the measured height of
a stitch, and len() measures distance along the surface.

Recall in chapter 4, we described a slic-
ing time function that may not slice a
surface into an equal width band, the
slice and trim approach ensures that
equally spaced sub-slices are generated
which can be executed on the machine
with fixed size stitches and short-rows.

Construction In order to generate a graph with these properties, the
algorithm proceeds by iteratively slicing the surface at a uniform dis-
tance from the boundary. Nodes are sampled on the slice and linked
to previously generated rows. A portion of the linked region is then
trimmed off the mesh, based on the time constraints. This process is
repeated to generate a row-column graph over the entire mesh. An
illustration is provided in Figure 6.2.

Figure 6.4: The rows generated by our
remeshing algorithm (black) align well
with the contours of the time function
(white).

Initialization To start, all mesh boundaries that contain a local minima
of the time function are added to the active cycle set. Nodes are sam-
pled along these boundaries with even spacing, and adjacent nodes are
connected with row edges. The number of nodes is chosen to ensure
approximately lr units between adjacent nodes, and the normals of the
mesh are used to consistently orient the row edges with the surface to
the left.

Slicing Given a set of active cycles on the surface of the mesh, slic-
ing generates a set of next cycles. Our code computes an approxi-
mate geodesic distance function on the surface of the mesh using the
method proposed by Crane et al. [2013], starting at the active cycles,
and takes the 2lc level set of this function as the next cycles. The time
function is linearly interpolated to all the vertices on the level set.

The next cycles so generated may not follow the time function. In
order to guide the rows, our code trims the next cycles based on their
time values. Let tactive be the maximum time encountered along the
active cycle. If the next cycle entirely appears after tactive, then it is
accepted; otherwise, all portions of the next cycles with t > tactive

are marked for discard and the remainder (t ≤ tactive) are marked
for acceptance (see Figure 6.2, panels 5 and 6). If the next cycle is
not entirely accepted, the accepted segments form “short-rows” i.e.,
partial, non-cyclic rows. If the length of such a segment is less than
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twice the stitch width, 2lr, it is discarded, to avoid very small short-
rows. If the first pass marked everything for discard, everything is
re-marked for acceptance, i.e., if the entire cycle appears after tactive

or if all segments that could have been accepted do not satisfy the
minimum width 2lr.

Discarding segments based on time has the effect of keeping row
edges approximately in line with the time function (Property 6.7), as
demonstrated in Figure 6.4. Without this step, the generated patterns
have no short-rows and can diverge from the time function, introduc-
ing arbitrary bind-off rows or rows that change shape rapidly (Fig-
ure 6.5).

Figure 6.5: Using geodesic distances
only produces layouts of stitches with
no short-rows (left). The time function
guides the knitting by introducing short-
rows (right).

Of course, if a pattern without short-rows is desired, that can still
be achieved by setting the time function to the geodesic distance from
the starting boundaries.

When the level set intersects a boundary, the entire boundary cycle
is accepted as the next cycle. This guarantees that the next cycles are
indeed cyclic and not chains, reducing the number of special cases
required in our code. This can increase distortion of the shape close to
the boundaries. In a production system, boundaries could be handled
separately.

Linking Linking is performed in two phases. First, alignment pairs are
computed between active cycles and next cycles. The next cycles are
adaptively sampled to generate nodes. Second, column edges are gen-
erated between the active and next cycle segments for each alignment
pair.

Generating alignment pairs Every node on the active cycle is assigned
a target next cycle that is closest to it. Similarly, for every vertex (of
the mesh) on the next cycle, a target active cycle is assigned that is
closest to it. Segments of the active cycle and next cycle are paired for
alignment if their targets match mutually (Figure 6.6). If a next cycle
is not chosen by any active nodes or vice versa, the cycle is not consid-
ered for alignment in that iteration and is recomputed for subsequent
iterations.

Figure 6.6: Segments of the active cycle
and next cycle are paired for alignment
if their targets i.e., closest cycle, match
mutually

Sampling Alignment pairs allow adaptive sampling of the next cy-
cles. The number of nodes required on the next segment is computed
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according to the stitch width, then clamped to maintain degree con-
straints (Properties 6.3, 6.4, 6.5). Stitch width is varied for each align-
ment pair to generate a valid number of next nodes.

Handling topology change In some cases, an active cycle can link to
multiple next cycles (or vice versa). We refer to this as a split (or
merge). In this case, all nodes are marked accept to maintain Prop-
erty 6.4. Further, care must be taken during linking to ensure that
the final structure has a feasible layout on the knitting machine bed
(Property 6.6). If splits and merges are strictly binary, cycles can be
rotated on the bed to ensure balance during layout. In the case of
ternary or higher splits and merges, our code explicitly balances the
layout locally.

Linking nodes Row edges are introduced between nodes on the next
cycle. They are consistently oriented using surface normals. For each
alignment pair, contiguous segments of nodes from the active cycle
and the next cycle are linked to form column edges. As active and
next cycles were extracted 2lc distance apart from each other, our code
now generates column edges that maintain this distance as closely as
possible i.e., linking matches closest nodes by adding column edges
subject to ordering (Property 6.1) and degree constraints (Properties
6.3, 6.4, 6.5).

Nodes in alignment pairs are linked to minimize cost. The cost of
linking an active and next node is the squared distance between them
on the surface of the mesh. The cost of linking an alignment pair is the
sum of the costs of its constituent links. For each alignment pair with
nodes A in the active segment and nodes N the next segment with
links L between them:

cost(A,N ) ≡ ∑(a,n)∈L cost(a, n)

a ∈ A, n ∈ N : cost(a, n) ≡ len2(a, n)

Our code determines optimal links using a dynamic-time-warping-like
algorithm (Berndt and Clifford [1994]) that considers all valid combi-
nations of 1-1, 2-1, and 1-2 links.

Rule 3 Rule 2 Rule 3 Rule 4 Rule 3 Rule 5

Figure 6.7: Tracing a short row on a
small portion of a tube, according to the
tracing rules. The rule applied between
two steps is shown in the box below.
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Trimming After generating links between the active cycles and the
next cycles, the nodes on the next cycle marked for discard (along with
any incident edges between them) are discarded. The remaining nodes
and edges are added to the knit graph. Next, the portion of the mesh
lying between the current active cycles and the accepted portion of the
next cycles is removed. This trimming is accomplished by splitting
the mesh along embedded edges of the knit graph and removing the
faces bounded by row edges on the active and next cycle and column
edges between them. Finally, the active cycle set is updated by reading
off the nodes along the new mesh boundaries. Note that nodes on
the boundary with outbound column edges are not considered part of
the active cycles, as they have already been linked (panels 6 and 7 in
Figure 6.10).

6.1.2 Tracing the knit graph

Tracing builds knitting instructions from the knit graph. Specifically, it
traverses each node twice and makes two knit stitches at every node,
connects nodes with yarn along row edges, connects nodes with loops
along column edges, and traces the graph in the order defined by the
edges.

The location of the current yarn is shown with an arrow ( ) des-

ignating its direction. The beginning ( ) and the end ( ) of a yarn

are marked for clarity. Ends of short-rows are anchored by tucks ( )

where indicates any underlying node. In the figures below, column

edges ( ) run bottom-to-top and row edges ( ) run left-to-right.
Tracing generates a list of knitting operations by traversing the knit

graph using a set of local rules. These rules define an action based on
the local context of the last last knitting operation performed with the
current yarn. As it traverses, it will mark each node as knit once ( )

or knit twice ( ), and will query whether a node is ready ( ) or

not ready ( ). Nodes are ready ( ) if all column-wise predecessors

of nodes in their row have been knit twice i.e., . In the following
figures, the state of the knit graph before applying the tracing rule is
shown on the left for each figure, and after applying the rule is shown
on the right.

Tracing Rule 6.1:. Start yarn
If there is no current yarn, start a new yarn by knitting an arbitrary

ready or once knit node.

Tracing Rule 6.2:. Move to next row
If the previous stitch made with the current yarn was at a node with

a column edge to a ready node, then knit that ready node’s row-wise
neighbor (left). If this neighbor does not exist, tuck on the current
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stitch’s neighbor and knit the ready node in reverse (right).

Tracing Rule 6.3:. Continue
If there is no column edge from the current node to a ready stitch,

and the next stitch along the current row has not been knit twice, knit
it.

Tracing Rule 6.4:. Tuck and turn
Upon reaching the end of a short row, if the current node has not

been knit twice, tuck at the current node’s parent’s row-wise next
node, then knit the current node in the opposite direction.

Tracing Rule 6.5:. End short row
Upon reaching the end of a short row, if the current node has al-

ready been knit twice – knit the next stitch off the end of the short row
continuing in the same direction.

Tracing Rule 6.6:. End yarn
If the current yarn can not be extended (i.e., no row-wise or column-

wise adjacent ready node exists, and all adjacent nodes have been knit
twice already), end it.

Together, these local rules cause tracing to walk along every row of
the graph, knitting at every stitch, and tucking at the ends of short-
rows. Figure 6.7 shows an example that applies the tracing rules on a
small segment of a tube. Cases with row edges running right-to-left,
and cases with node in/out degree two are handled similarly, and are
not shown. Tracing will always succeed, by construction. The rows of
the graph are always singly-linked chains or cycles (Property 6.3) and
the graph is helix-free (Property 6.2). Hence, it must consist of cycle-
shaped rows, possibly with intermediate non-cyclic short-rows. When
a short-row becomes ready, by rule 6.2 tracing immediately proceeds
to knit it. By rules 6.2, 6.4, 6.5, short-rows are reversed and traced
twice, ending at the same stitch as it started and using the same yarn
(see Figure 6.8). Thus, short-rows can be knit along with the cycle that
precedes it – this cycle is unique because by Property 6.5, no short-rows
appear at a merge. Ignoring short-rows, each generalized cylinder is a
stack of cycles that can be traced by single yarn. When a cycle becomes
ready, the previous cycle must have been completed and the same yarn
is continued over using rule 6.2. For a cycle that lies at a split, it is
possible that one of the split next cycles becomes ready before the

Figure 6.8: Tracing of short-rows starts
and ends on the same stitch and can be
viewed a part of the preceding full cycle.
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previous cycle is finished. In this case, tracing proceeds to knit it and a
new yarn is brought in to finish the cycle and continue on each of the
remaining splits. When cycles merge, the yarn from the most recently
completed cycle is extended. Thus, tracing uses at most n + (k− 1)m
yarns to trace a knit graph with n starting cycles and m k-way splits
(Figure 6.9).

Figure 6.9: Tracing generates a yarn path
for each cylinder representing an arc of
the Reeb graph. For each initial active
cycle, a yarn is introduced (purple and
green). At the merge, the existing purple
yarn from the most recently completed
cycle is continued. At the split, the cur-
rent purple yarn continues along one of
the cycles and a new blue yarn is intro-
duced for the additional cycle.

6.1.3 Hierarchical Remeshing

In contrast to the incremental approach, another approach is to quickly
come up with a base mesh with approximately correct stitch heights
based on contours. Then in subsequent steps, regions with errors can
be updated and remeshed.

As a first step, the mesh is segmented into tubular regions using the
input time function. The user may also edit boundaries for better align-
ment (as in Igarashi et al. [2008a]). Then, boundaries are discretized
based on stitch width such that segments align one-to-one. Once the
starting and ending boundary counts are computed, each segment is
quad meshed based on the stitch dimensions lr and lc following Dong
et al. [2005].

To maintain boundary lengths while limiting the change in stitch
counts between rows for reliable fabrication, stitch counts are opti-
mized by relaxing integer constraints on the counts and rounding the
results:

s f =x

n

∑
i
(xi − si)

2

subject to:
2
3

xi−1 ≤ xi ≤
3
2

xi−1

x1 = s1, xn = sn

where s f is the vector of final stitch counts and si is the vector of initial
counts.

Figure 6.10: The input mesh is first seg-
mented into tubular segments using the
input time function. Each tube-like re-
gion is rapidly remeshed into knit graph
and aligned and connected along the
boundaries. The traced knit graph is fi-
nally converted into an augmented stitch
mesh.
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This quad mesh is interpreted as a knit graph similar to the one
generated by the incremental approach. Nodes are placed at intersec-
tions, edges along the gradient of the input field are column edges and
along the contours are row edges.

Refinement Column edges that are longer than 1.5lc and row edges
that are longer 1.5lr are subdivided and new nodes are placed. A
row edge is introduced between adjacent new nodes between column
edges. Similarly, column edges that are shorter than 0.75lc are removed
and row edges that are shorter than 0.76lr are merged. Any operation
that violates the degree property 6.3 are avoided. Once no additional
refinements can be introduced, the graph is traced as described in the
incremental approach.

6.1.4 Assigning stitch faces

To convert this traced graph representation into an augmented stitch
mesh, each traced node is converted into augmented stitch faces based
on the edges incident on it:

Start yarn A traced node with a starting yarn is turned into a yarn-in
triangle face and a knit face.

Regular node A traced with exactly with one incoming column edge
and one outgoing column edge is turned into a stacked pair of knit
quad faces.

Decrease node A traced with two incoming column edge and one
outgoing column edge is turned into a decrease pentagon face and a
stacked knit quad faces.

Increase node A traced with one incoming column edge and two
outgoing column edge is turned into a knit quad face and an increase
pentagon face stacked on it.

Turn node A tuck and turn node is turned into turn quad face stacked
over the previous node face.

End yarn A traced node with an ending yarn is turned into a knit
quad face and a stacked yarn-out triangle face.

In this dual representation, faces are connected along yarn-wise
edges if the nodes are connected by a row edge. Similarly, along loop-
wise edges when the nodes are connected by a column edge.

6.1.5 Meshing quality

To compare the stitch sizes of the resulting augmented stitch obtained
from the two remeshing strategies, we plot the relative error in the
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length of each edge from its expected length lr and lc. Our remesh-

Incremental Remeshing Hierarchical Remeshing

Figure 6.11: (Left) Most edges have less
than 10% length error introduced due
to fabrication constraints and discretiza-
tion. (Right) Most edges have less than
20% length error

ing step seeks to produce a low-stretch knit graph (Property 6.8). In
general, it succeeds, with the majority of edges within 10% of their tar-
get length (Figure 6.11) for the incremental approach and 20% of their
target length for the hierarchical approach.

As expected, the incremental approach is slower but has fewer er-
rors than the hierarchical approach. The bunny model takes 11 mins
to remesh using the incremental approach and under 30 seconds with
the hierarchical approach on a 2.7GHz Intel Core i5 Macbook Pro with
16GB RAM.

The geometric accuracy of the meshing is limited by the size of
the stitches used to knit them. This size, in turn, depends on the
gauge of the machine and is typically in the order of millimeters. Fea-
tures smaller than the stitch size cannot be represented. Knitting ma-
chines can change row lengths using shaping operations at a limited
rate (Property 6.3). This limits the amount by which the radius of a
generalized cylinder can be varied along its rows and thus affects the
approximation of the mesh by the knit graph.

lc/2lc

lc/2

2r

r

2r

4r

r

Figure 6.12: Decreasing the stitch
size uniformly increases the number of
stitches in each cycle and thus increases
the maximum width achievable by the
next cycle.

However, under refinement of stitch size, the accuracy of our remesh-
ing improves. To see why, consider a cycle of a cone at radius r with
n = 2πr

lr
stitches on its circumference. Due to property 6.3, the number

of stitches in the next cycle at a distance lc apart, is at most 2n and its
radius can be at most 2r. If the size of the stitch width and height is
reduced by a factor of 2, the number of stitches in a cycle of radius r
is now 2n allowing a wider radius of 4r at a distance lc on the surface
– in the limit, as the stitch size reduces, any surface feature can be
accurately represented.

For a reasonable scale and stitch size, the incremental remeshing ap-
proach accurately captures bending angles using short-rows as shown
by these tubes with progressively increasing bend angles in figure 6.13.
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Figure 6.13: A series of bent tubes fab-
ricated using the incremental remeshing
algorithm. Short-rows are automatically
produced by the procedure and accu-
rately generate the bending angle.

6.2 Transfer-Free Patterns

The approaches described so far slices a surface and interprets those
slices as rows of knitting, beginning from the boundary or some user-
specified region. Since each row can be of a different length, in general,
increases and decreases (or pentagon stitch faces) must appear in the
discretization. These row length changes are executed using the xfer

instruction that moves loops around and use both the beds of a two-
bed machine to do so. Single-bed consumer knitting machines and
even circular industrial machines cannot perform any transfers at all.
Further, since transfer operations execute in a different pass on current
machines, patterns that need transfers tend to take longer to fabricate.
Transfer-free or short-row-only patterns therefore form an interesting
subset of sheet-like patterns.

Figure 6.14: Short-rows can be inter-
preted as a flat pattern with cuts where
the angle bisector of the cut is orthogo-
nal to the construction direction.

A pattern that entirely consists of only short-rows can be imple-
mented without any transfer operations. Because short-rows knits over
some portions of the surface selectively, they can also be viewed as in-
troducing cuts in a pattern as well. The cuts are glued (by knitting) as
a part of the construction process. This idea can be formalized such
that short-row-only patterns can be viewed as a subset of flat cut-and-
sew-like patterns. Figure 6.14 illustrates this relationship using paper
craft. A sheet of paper is flat if for any point2 on it, the total angle

2 On a triangle mesh, the discrete (Gaus-
sian) curvature around any vertex, the
total angle θ can be measured by sum-
ming up the corner angles of each trian-
gle incident on the vertex. At every other
point, the mesh is flat.

around it is θ = 2π. The curvature K around a point can be mea-
sured as the angle deficit needed to make the point flat: K = 2π − θ.
To create positively curved cone shape (see figure 6.14 top), a wedge
of material can be removed and the edges can be glued together. To
create a negatively curved shape (figure 6.14 bottom), excess material
is glued into the cut. Note that to achieve a cone angle at a point,
the direction of the cut does not matter. Or alternately, to flatten the
shape at a cone angle, it can be cut along any seam terminating at that
point.3 However, to glue the cut by knitting, identified points should

3 In cut-and-sew patterns, darts can be
rotated for the same reason.

line up along the knitting direction. During fabrication, any point on
the surface is constructed as a part of some row. The distance between
any point on the surface and any path parallel to the construction di-
rection in the flattened pattern must be equal to the shortest distance
between them on the surface because the rows are orthogonal to the
knitting direction by definition. Also, since each row is orthogonal to
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the knitting direction, for the cut to align, its angle bisector must also
be orthogonal to the knitting direction.

In the illustration, the knitting direction is shown by the black ar-
row and the rows of the pattern are shown by orange strips. Given a
knitting direction, there are only two (symmetric) ways to place the cut
orthogonal to the knitting direction and the orientation of the surface
can be used to pick a canonical direction. For cuts around negatively
curved points, this argument might seem a little problematic because
the excess material creates an overlap. However, the flat pattern can
be entirely cut at the negatively curved saddle vertex and separated in
time. As long as the cut is appropriately aligned, the knitting process
continues to produce a connected surface.

Concretely, a flat pattern with cuts (identified for gluing) can be in-
terpreted as a short-row-only knitting pattern only if the angle bisector
of each cut orthogonal to the knitting direction. Equivalently, the dis-
tance between a path aligned to the construction direction and any
point must be the shortest path along the surface. Given an arbitrary
shape, if it can be flattened or unfolded in area-preserving manner
with cuts that are orthogonal to the knitting direction, it can be con-
structed with machine-knitting (without explicit gluing).4 4 Importantly, the flattened surface need

not be connected as long as the cuts
required to connect the surface are
aligned.

Problem Statement 6.2: Transer-Free Patterns. Given a triangulated,
disc-like manifold input mesh M and a knitting direction ~d, generate
an augmented stitch mesh representation that does not use any faces
with transfers.

One approach to come up with such a knitting pattern is to consider
a variant of the incremental slicing algorithm presented in section 6.1.
Instead of slicing rows, the same idea can be used to slice columns
on the surface using a geodesic function. Beginning with a chain of
edges (spine) as a source, a geodesic function can be computed along
the entire surface. The slicing procedure samples points on a chain at
unit distance from the active source. The linking procedure links these
points to form orthogonal rows. the trimming procedure removes the
processed regions. To account for curvature, short-rows naturally ap-
pear since the length of the columns can differ and loops are connected
1-1 yarn-wise. Depending on the initial conditions closed contours
may appear and need to be cut to interpret the curve as a column of
knit loops.

Figure 6.15: Slicing along columns, pro-
vides an incremental way to generate
patterns entirely comprised of short-
rows. The black edges show the dis-
cretized row edges and the light edges
show the orthogonal gradient direction.As the stitch size used to generate columns and rows decreases, in

the limiting case, each point on the surface is linked (along rows) fol-
lowing the shortest path on the surface to the spine. Short-rows begin
exactly at the set of points that have more than one unique shortest
path to the spine. The set of points that have more than one short-
est path to a source form the cut-locus or ridge-tree with respect to the
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source. These structures are very well-studied in the field of computa-
tional geometry especially for unfolding convex polyhedra (Demaine
and O’Rourke [2005]).

Unfolding Polyhedra The star unfolding cuts the polyhedron along
geodesics from a source point to lay it out in a star shape around the
source point (Agarwal et al. [1997]). In contrast, the source unfolding
also uses a source point but cuts the polyhedron along its ridge tree –
the locus of points that have more than one unique shortest paths to
the source point as shown by Kiazyk and Lubiw [2016]. For convex
shapes, it is known that both source and star unfolding generate an
overlap free unfolding (Demaine and O’Rourke [2007]). The sun un-
folding is a generalization of the source unfolding to geodesic curves
as source points (Demaine and Lubiw [2011]).

Figure 6.16: A sun unfolding of a convex
shape reproduced from Demaine and
Lubiw [2011] Figure 2

The key idea that sun unfolding borrows from the source unfolding
is the property that the shortest paths are radially monotone around the
source (for convex shapes and geodesic curves) – and therefore can be
laid out in a non-intersecting star-shaped fashion. This property is no
longer true for non-convex shapes (with saddle vertices that have a to-
tal angle greater than 2π). However, it continues to be true that treat-
ing the saddle vertex as a (psuedo) source point – all shortest paths
that reach it emanate in radially monotone manner or contain another
pseudo-vertex strictly further away from the spine source. These paths
can no longer be laid out without intersection but they can be ordered.

This sun-unfolding satisfies what is needed to view a flattening as a
knitting pattern where the knitting direction is specified by the source
path (spine) : points lie along the shortest path to the spine and all
shortest paths can be ordered along the spine.

So the task at hand is to compute the sun-unfolding with respect
to a spine on the triangulated input mesh and flatten the mesh. To
deal with shortest paths and distances on the mesh, we need to com-
pute geodesic distances with respect to the spine. A popular approach
to do this for triangle meshes, is by a continuous Djikstra-style algo-
rithm were "visibility windows" are tracked along the edges and prop-
agated forward (Bommes and Kobbelt [2007], Surazhsky et al. [2005]).
The windows make it efficient to track all paths that pass the same
(portion) of an edge towards the source point. This partioning of the
mesh into windows computes the ridge-tree with respect to the input
source.

Figure 6.17: Flattening a mesh by cutting
along its ridge tree computed from win-
dows tracked for exact geodesic distance
computation.

Since any vertex that is not already flat must appear on the ridge
tree, for a mesh with many vertices, computing such an explicit ridge-
tree can be numerically unstable with many tiny slivers (see figure 6.18

that shows an increasing number of cuts as the mesh approximation
of a hemisphere is improved). Further, resolving window propagation
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when the sources include edges and vertices of the mesh require re-
solving windows that are circular (from source points) and linear(from
source segments) as shown by Bommes and Kobbelt [2007]. To avoid
numerical instabilities, we implement a sampling based approach to
compute the flattened pattern. We estimate the unfolding as a den-
sity map by laying out paths instead of extracting windows or cutting
along the ridge tree. This density map needs to be computed only
once. It can then be discretized based on the fabrication setup and
reinterpreted as knit loops.

Figure 6.18: (Top) Explicit cutting can
include many tiny slivers as the num-
ber of (non-flat) vertices in the mesh
increases. (Bottom) Paths traced from
points sampled on the surface and laid
out in monotonic order.

Sampling-based approach

I now describe our approach to computing a sun unfolding for an
input surface (figure 6.19).

Input This pipeline takes as input a 3D triangulated manifold mesh
and an open, simple, connected path given as a sequence of edges – the
spine along which the mesh is to be unwrapped. The only constraint
on the inputs is that the mesh is simply connected to the spine.

Figure 6.19: a) Given an input triangle
mesh and a sequence of edges that de-
fine the spine (b) shortest paths are com-
puted to the spine for all sampled points
(c) samples are flattened as a density
map (d) discretized and (e) optimized
with a greedy strategy. (f) The resulting
pattern can be interpreted as a short-row
only knitting pattern and fabricated on a
single bed knitting machine.

Distance function to the spine To compute the shortest path to the
mesh, we follow the approach of Surazhsky et al. [2005] to find geodesic
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distance fields on triangle meshes. Any accurate geodesic distance
computation algorithm can be used in this system, as long as comput-
ing the shortest paths from points to the spine is not expensive. Each
path p is recorded as as a list of list of (psuedo) source vertices that it
passes through and distances between them:

p = ((v0, θ0, 0), (v1, θ1, l1), ...)
where v0 is a point on the spine, θ0 is the angle made with the spine,
vi is a saddle vertex, li, is the distance to the previous vertex and θi is

the angle made with respect to the previous segment.

Mesh triangles are sampled uniformly using barycentric co-ordinates
following Osada et al. [2002]. For uniform random variables r1 and
r2 between 0 and 1, a point is generated with barycentric wieghts
(1−

√
r1,
√

r1(1− r2),
√

r1r2). The number of samples generated for
each triangle is proportional to its area.

Ordering of paths The spine is an open simple edge-sequence which
can be laid out monotonically by laying out the edges one after the
other along an axis (say the y-axis).

For paths pi and pj

pi < pj =⇒ d(pi(v0), a) < d(pj(v0), a)

where a is an end point of the spine, d(., .)is distance on the surface

or

pi(v0) = pj(v0) ∧ pi(vk, θi) < pj(vk, θi) where vk is the last common saddle
(6.1)

Figure 6.20: Any two paths can be or-
dered based on their distance along the
spine from its boundary point (a < b).
If the two paths share a common sad-
dle, they are ordered by their angle at
the saddle vertex (b < c, d < e).

Notice that paths from any two points on the mesh can be sorted
with respect to the spine. Two paths are either non-intersecting and
meet at two distinct points on the spine – in which case they are or-
dered by their distance along the spine or they meet at some saddle
vertex. For two intersecting paths, they are ordered based on the angle
made at the common saddle vertex farthest from the spine with re-
spect to the path towards the spine.5 Figure 6.20 illustrates how paths 5 Two distinct paths may reach the spine

at the same point (from opposite sides) –
in which case the tie can again be broken
by the radial angle.

are ordered in the presence of saddle vertices. Equation 6.1 describes
the comparison function used to order paths.

Path unfolding Now that we have an ordering on the paths, layout
proceeds in a straightforward fashion:

For each sampled point s(ti, bj, p) from triangle ti at barycentric co-
ordinates bj and associated path p, the layout function maps it to the
location (x, y) with a weight α where x = sgn · ∑i p(li). The sign
of x is decided based on the orientation of the path with respect
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Figure 6.21: Samples can be ordered and
laid out in 2D based on distance and or-
der.

to the spine, clockwise paths are assigned sgn = −1, and 1 other-
wise. If s is on the boundary, α = ∅ to mark it specially otherwise
α = area(t)/|samples(t)| indicating presence of material weighted by
the triangle’s area. Although setting y = r rank in order provides a
layout, to avoid a very long layout, paths are grouped by their last
common saddle vertices into regions, monotonic order within regions
(rg) to order paths as y = d(p(v0), a) + rg + o where a is the end point
of the spine and o is an offset to avoid overlap with lower regions.

Discretization Given a 2D density map and the stitch size (lr, lc), the
discretization process rasterizes the density map. First the density
map is downsampled to W

2lr
and H

2lc
where W and H are the width

and height of the map respectively. In the downsampled density map,
a pixel may have full (one) density (indicating presence of material),
zero density (indicating a cut region around a convex vertex in the
flattening), a value between zero and one(indicating fractional amount
of material), or a boundary region6. 6 To avoid gluing boundary points dur-

ing fabrication, a secondary yarn can be
used as "support material" or the loops
can be dropped carefully and new loops
be cast on.

The rasterization strategy is to accumulate density over each col-
umn beginning from zero. Once the density accumulated reaches 1, it
assigns a pixel to the location, resetting the accumulator. The accumu-
lator is also reset when the pixel location has zero density (indicating
a cut region) or a boundary marker (indicating a boundary region).

This descritization can differ from the resampled input density by
at most 1 stitch per column, and move 1 stitch per cut to an adjacent
region.
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Algorithm 1: Psuedocode for discretiza-
tion. Given a density map of size rows×
columns and stitch size as W × H gener-
ate a binary stitch pattern.

1: procedure Discretize(density, rows, columns, H, W)
2: density← resample(density, rows

2H , columns
2W )

3: rows← rows
2H

4: columns← columns
2W

5: f ill = threshold(density > 0) . For tracking locations where
stitches can exist during optimization

6: for c in [0 : columns− 1]
7: accum← 0
8: for r in [0 : rows− 1]
9: if density(r, c) . not boundary or cut

10: accum← accum + density(r, c)
11: if accum > 1
12: density(r, c)← 1
13: accum← accum− 1
14: else
15: density(r, c)← 0

Figure 6.22: A greedy optimization is
used to improve the discretization so
that the average length of the rows is
improved. The dark row on the left
is moved to improve the overall edge
length in two iterations in this illustra-
tion.

The discretization procedure is described in pseudo-code listing 1.
However the output may include very short fragments along the rows
since the accumulation process proceeds over the columns. To rem-
edy this, our system greedily optimizes the average length of the frag-
ments (contiguous pixels along the rows). Pixels are re-assigned only
within regions of non-zero density to avoid moving pixels across a
cut region. In each iteration, the sub-fragment that best improves the
objective function (average row length) is selected and updated. The
width W of the pattern is fixed, therefore the maximum average length
is bounded. The optimization stops when no further updates can be
made. Pseudo-code 2 describes this algorithm. Figure 6.22 illustrates
the optimization procedure for a simple pattern.

This discretization approach can be further improved by consider-
ing both the rows and columns while accumulating densities using a
seam-carving like approach. We upsample along columns by doubling
the columns (avoiding failure-prone single stitch situations). This dis-
cretized graph can be viewed as knit-graph over pixel nodes, row-wise
and yarn-wise connections based on adjacency. The downsampling
along rows can be undone by the tracing procedure described in chap-
ter 6, since each row is visited exactly twice and creates a single con-
tinuous path along the nodes(stitches) and faces can be assigned to
construct the dual augmented stitch mesh.

The incremental remeshing based strategy and the sampling based
unfolding based strategy are fundamentally similar – differing in when
and how discretization is performed. However, the connection to un-
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Algorithm 2: Psuedocode for greedy
optimization. The greedy optimization
procedure considers all sub-intervals
that can be moved upward or down-
ward to strictly improve the average row
length. In each iteration, the best im-
provement is greedily picked and the
process is repeated until no more im-
provements can be made.

1: procedure GreedyOptimizeRowLength(density, fill, rows,
columns)

2: intervals← computeRowIntervals(density)
3: average← avgLen(intervals)
4: while true
5: move← ∅, best← average
6: for r in [0 : rows− 1]
7: for [i, j] in intervals[r]
8: for r′ in[r + 1 : rows− 1] . Move up
9: if density[r′, i : j] = 0∧ f ill[r′, i : j] > 0

10: l ← avgLen(intervals \ [r, i : j] ∪ [r′, i : j])
11: if l > best
12: best← l
13: move← [[r, i : j], [r′, i : j]]

14: else break

15: for r′ in[0 : r− 1] . Move down . Repeat 10-15

16: if average = best
17: return density

18: average← best
19: do(move)
20: intervals← computeRowIntervals(density)
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folding techniques and fabrication techniques with constrained ways
to glue cuts can lead to interesting patterning ideas. For example,
the orthogonal constraints of the weft and warp yarns in weaving in-
troduces the same constraints as the short-row-only knitting problem.
A flattened pattern can be reinterpreted as a weaving pattern by dis-
cretizing with the appropriate unit size. Crochet being a hand-crafting
technique has far fewer constraints than machine knitting or weav-
ing. However, the flattened results can be interpreted as a subset of
simple crochet patterns. Figure 6.23 shows a simple box pattern visu-
alized with knitting, weaving and even crochet. Apart from textiles,
even paper-craft and cut-and-sew patterns might benefit from explor-
ing constrained gluing directions as a way to automate the fabrication
process with a simpler setup. Fabricated results using the remeshing

Figure 6.23: A transfer-free augmented
stitch mesh generated using the sam-
pling approach interpreted as knitting,
plain weaving and crochet.

techniques proposed in this chapter are shown in chapter 8.



7
Turning Knitting Patterns into Machine Code

Figure 7.1: Scheduling assigns bed-
needle allocations for each stitch in an
augmented stitch mesh in order to exe-
cute its face program.

The augmented stitch mesh created from scratch or from a 3D model
represents a machine knitting pattern including the knitout code frag-
ments that describe how each face must be constructed locally. How-
ever, at this instance, this representation is unscheduled – information
on where these faces must be constructed on the machine and how
loops must be moved to these locations is unknown. This separation
was useful in supporting stitch mesh creation and editing operations
in a general 3D space instead of the machine space. However, to finally
execute the pattern on the machine, needle, time and layer information
for each stitch face needs to be assigned and passed on to the face pro-
grams. Edge connections indicate where a produced resource must
be moved for consumption. However, the mesh does not directly in-
clude instructions required to move resources around. Any necessary
loop transfer, yarn miss and machine rack operations need to be in-
terleaved in the instruction stream to ensure stitches are moved to the
correct location when edge resource assignments differ. In this chapter,
I present a user-in-the-loop scheduling system for general augmented
stitch meshes and an automatic scheduling system for manifold aug-
mented stitch meshes that uses two layers.

A complete construction plan for a knit object on a two-bed knitting
machine that encodes all its resource constraints can be represented by
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an embedded instruction graph. It consists of :

P ≡ {p1, ....} Positions(Bed Needle locations)

Y ≡ {∅, y1, ....} Yarns (Carriers)

L ≡ {∅, l1, ....} Loops

N ≡ {n1(t, op, in := {(yi, pa), .., (lj, pb), ...}, out := {(yi, p′a), ..., (lj, p′b)}), ...} Instruction Nodes

R ≡ {(ni, nj), ...} Directed resource edges

S ≡ {(li, lj, sij), ...} Slack edges

Instruction operation: An instruction node n(in = {(resource, position)}, out =
{(resource, position)}) ∈ N consumes zero or more loop and yarn
resources at specified positions in in and produces them at their out-
put positions in out at time t. Positions (∅, .) ∈ in must be empty
before the instruction operates and positions (∅, .) ∈ out are empty
after the instruction executes.

Resource Alignment: (ni, nj) ∈ R, (r, pi) ∈ nin
i , (r, pj) ∈ nout

j , r 6= ∅ =⇒
pi = pj and instruction ni happens before instruction nj i.e., nt

i <

nt
j.

1 1 nt
i is used to reference property time t

of node index i.

Slack maintenance: For (la, lb, sab) ∈ S and ni, nj ∈ N such that (la, pa) ∈
nin/out

i and (lb, pb) ∈ nin/out
j , |pa − pb| ≤ sab.

This graph relates to information from the augmented stitch mesh
as follows:

1. All loops l ∈ L are produced by face program instructions.

2. Each face program instruction has an associated instruction node
n ∈ N .

3. Each connection between faces is associated with zero or more in-
struction nodes to perform the connection by transfers.

4. The slack attribute for any pair of loops generated within a face
program is set equal to the maximum distance between its yarn-
wise connected positions in that face.

5. The slack attribute for yarn-wise connected loops between different
faces is set equal a uniform constant for the entire object i.e., the
embedded graph constructs the augmented stitch mesh object with
uniform density (unless specified otherwise by the face program).

6. Any total order of the embedded graph i.e., an ordered list of in-
struction nodes n1, n2, ..., such that nt

i ≤ nt
i+1 is topologically equiv-

alent to the augmented stitch mesh.
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This representation can be viewed as a
general and more fine-grained version of
the needle-bed scheduling system pro-
posed in McCann et al. [2016] and a aug-
mented version of the loop-view in SDS-
one systems with an explicit view of re-
source constraints.

Visualizing the embedded instruction graph The embedded visual graph
provides a time-line view of the construction process. We visualize
each instruction node as block that spans needle locations present in
the node. Needles are identified by the x-coordinate and node time
by the y-coordinate of the position. Incoming loops are identified as
and yarns as , outgoing loops and yarns are identified by and re-
spectively. Empty incoming locations for an instruction are visualized
as and similarly locations left empty after executing the instruction
are shown as . An empty circle is used to indicate that the operation
does not affect a particular location – the last resource placed in that
location continues to remain in that location.

An instruction node that creates a loop by knits2 or tucks3 is illus- 2 For example, n1 = {(t, op =
knit, in = ((l1, f 1), (y1, f 1l)), out =
((l2, f 1), (y1, f 1r))}
3 n2 = {(t, op = tuck, in =
((l1, f 1), (y1, f 1l)), out =
((l1, f 1), (l2, f 1), (y1, f 1r))} or
n3 = {(t, op = tuck, in =
((y1, f 1l)), out = ((l1, f 1), (y1, f 1r))}

trated below – explicitly highlighting the dual between a knit stitch
face (with a single instruction) and the graph.

The resource locations might hold stacked loops that can be explicitly
recorded. For instance, a tuck instruction that stacks a loop onto a
needle location requires the location as an input and output resource
whereas a tuck on an empty location explicitly requires the resource to
be empty. Loops cannot be separated from a needle location – so this
information can be dropped and viewed as one or more stacked loops
as shown on the right (figure 7.2). Figure 7.2: Loops are placed at resource

locations, which means stacked loops
appear at the same location and can be
annotated numerically.

Transfer instructions that move loops around at some rack value
encompass all the loops and yarns that exist within the racking span
of the source and target locations to visualize the local layering of the
loops – this can be viewed as a braid recorded between the source and
target resources.

Figure 7.3: A simple knit sheet laid out
as an instruction graph.

When transferring loop that is attached to the yarn carrier, the yarn
location also changes. For clarity, such operations can be split into a
transfer operations strictly over loop resources and a miss operation
over a yarn resource as shown below:

These node instructions can be placed in a 2D layout according to
their time (nt) and resource location values along a timeline. Resource
connections are explicitly seen by alignment along the timeline. Re-
source edges that are not strictly vertical in the visualization highlight
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an alignment failure. A set of blocks that do not overlap in time, can
be aggregated into a pass visually shown by the shaded set of blocks
in figure 7.3.

A sequence of transfer instructions can be aggregated into a single
move operation for abstraction. Such a move operation encodes within
it the braid word produced by the transfers over the loops and yarn
operations. The internal temporary loop locations used by the transfer
operations are also marked as required empty locations.

Figure 7.4: A move operation that en-
compasses some sequence of transfer
operations encoding a braid of its loops.

These move operations can be viewed as an instance of a planning
problem, they can be replaced by a different sequence of transfers as
long as the braid word produced is identical.

Constructing the embedded graph Given an augmented smobj that has
a monotonic order consistent with a co-ordinate axis, the two orthog-
onal axes are treated as a layer axis and a needle axis. Each face is
assigned a single layer value and is assigned a needle location for all
its boundary resources. The smobj is uniformly scaled up such that no
two faces occupy the same needle location.

A connection between two resource locations that do not occur at
the same location can be viewed then as moving the resource at the
source location of the connection to the target location. Because such
movements have to be introduced by transfer and rack instructions, this
edge is rasterized and is reinterpreted as a sequence of move opera-
tions between layers at the same location or between needles in the
same layer. Each move operation can be interpreted as one or more
transfer operations. The local layering information of the faces can be
used to ensure that loops from different layers are correctly separated
(described in section 7.1.3).

These instruction nodes serve the purpose of recording the topology
of the input surface.

The resource-planning problem The scaling operation employed to space
stitch faces implies that the distance between resources may not match
the distance implied by the input mesh. Second, the number of lay-
ers may be too high to effectively produce on any reasonable machine.
However, the intended metric value can be recorded for each connection
by assuming any two loops connected by a yarn-wise edge between
stitch faces have a unit slack value4. This embedded graph provides a 4 The number of layers is factored into

the unit value to account for the inter-
leaving placement of layers on the phys-
ical bed

schedule from which the correct topological object can be constructed
with (potentially) high geometric distortion and a sub-optimal num-
ber of layers. For a schedule that matches the geometric intent of the
smobj, the slack edges between resources and their location need to
maintain the recommended slack value.

The overall scheduling problem can therefore be expressed in two
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parts:

Problem Statement 7.1: Scheduling.

Embedding Given an augmented stitch mesh pattern, generate an em-
bedding – an assignment of needle, layer and time values for each
face instruction that describes where a loop must be produced – in
the form of an embedded graph that is topologically equivalent to
the stitch mesh.

Planning Given an embedded instruction graph, rewrite the graph (by
inserting transfer and miss operations) such that all slack edges
maintain the correct slack value while preserving the topology of
the input graph.

7.1 User-in-the-loop embedding for general structures

Given an embedded graph extracted from an stitch mesh, we will first
focus on the problem of eliminating excess slack. We do this by editing
the embedded instruction graph with three simple rules. The graph is
laid out with a background scheme shown on the right to represent
the interleaved front bed, back bed and yarn track.

1. Conjugate with transfers. (CR, CL, CO) Any instruction can be con-
jugated with paired 5 transfer operations to move the instruction

5 When conjugating a loop making in-
struction node such as knit, a trans-
fer to the opposite bed before construc-
tion would disrupt the loop-to-loop con-
nection (and more subtly would change
the topology of the yarn), to avoid this
transfers are always paired when conju-
gating i.e they introduce a pure transla-
tion. A group of transfer operations can
be abstracted as a single ‘move’ opera-
tion to reduce the number of operations
viewed.

the left(CL) or the right(CR) or across(CO) locally. We only consider
transfers at 0,1 and -1 racking for minimizing the number of primi-
tive operations. This can be generalized based on the racking value
of the machine. The paired transfers can have two forms based on
when racking occurs:
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Conjugation can also be executed across by moving the loop to the
opposite bed track, in this case, yarn positions are reversed to en-
sure that the correct loop topology is produced.

Applying CR on instruction node na of an embedded graph G(N )

produces G′(N ′) where6: 6 nin + 1 is used as a short-hand to incre-
ment position values of all resources by
1. Similarly opp(nin) refers to the oppo-
site bed for all resources in nin

N ′ ← N ∪ {n′a1−, n′a2−, n′a1+, n′a2+}
n′a1− ← {t := nt

a − 2, op := xfer, in := nin
a , out := opp(nin

a ) + 1}
n′a2+ ← {t := nt

a − 1, op := xfer, in := opp(nin
a ) + 1, out := nin

a + 1}
n′a1− ← {t := nt

a + 1, op := xfer, in := nin
a + 1, out := opp(nin

a ) + 1}
n′a2+ ← {t := nt

a + 2, op := xfer, in := opp(nin
a ) + 1, out := nout

a }
n′ain := n′a−out, n′aout := n′a+in

and,

∀n′ ∈ N ′ s.t n′t < nt
a, n′t := nt − 2

∀n′ ∈ N ′ s.t n′t > nt
a, n′t := nt + 2

The pre-condition on G(N ) needed to apply CR can be expressed
as: @l s.t (l, p) ∈ nout

1 , nt
1 < nt

a, (l, p) ∈ nin
2 , nt

2 > nt
a and (x 6= l, p) ∈ The operations introduced does not

place a resource in a location which over-
laps a different resource.

opp(nin
a ) + 1 for n1, n2 ∈ N .

2. Insert or Suppress inverse transfers (TI).

A pair of inverse transfer operations can be introduced at any time
t. Inversely, a sequence of transfer operations that do not change
the location of the loops and yarns can be eliminated.
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Applying TI(r) at rack r, after node nt
a to an embedded graph G(N )

produces G′(N ′) where:
N ′ ← N ∪ {n′a1+, n′a2+}
∀n′ ∈ N ′ s.t n′t > t, n′t := nt + 2 and
n′a1+ ← {t := t + 1, op := xfer, in := nout

a , out := opp(nout
a ) + r}

n′a2+ ← {t := t + 2, op := xfer, in := opp(nout
a ) + r, out = na(out)}

A similar pre-condition for TI(r), @l s.t (l, p) ∈ nout
1 , nt

1 < nt
a, (l, p) ∈

nin
2 , nt

2 > nt
a and (x 6= l, p) ∈ opp(nin

a ) + r for n1, n2 ∈ N .

Inversely, given a sequence of instruction nodes na, ...na+k such that
nop = xfer, nout

i = nin
i+1, and nin

a = nout
a+k, the nodes can be deleted

to produce a new graph G′(N ′) = N \ {n′a, ..., n′a+k} where:
∀n′ ∈ N ′ s.t n′t > nt

a+k, nt := nt − k

3. Reorder independent nodes RO(t).

Two time-adjacent instruction nodes that do not have overlapping
resource spans, can be reordered.

Applying RO(t) on G(N ) with independent instruction nodes na

and nb such that nt
a = t and nt

b = nt
a + 1 produces G′(N ) where

n′at := nt
b and n′b

t := nt
a
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Independent xfer and knit nodes at time
4 and 5 can be reordered as shown.
Nodes (miss and xfer) at time 5 and 6

cannot be reordered since their spans
overlap. The graph on the right shows
the result after applying RO(4) to the
graph on the left.

Each of these rules can be applied as long as the resource constraints
are maintained (i.e., a transfer operation introduced by the conjugation
can only be applied if the new locations were empty or already shared
the same resource. By definition, the rules not change the topology
of the underlying object, any loop movement is immediately followed
by undoing the operation. Therefore the time at which a slack change
occurs (increase or decrease) can be shifted. By combining conjugation,
paired transfers and inverse deletions, effectively slack can be reduced.
By repeatedly using these rules, we iteratively eliminate slack. This
process can be manipulated by an end user interactively by directly
applying these rules to improve the search process.

Composite operations for shifting A sheet made with two rows of two
loops each can be shifted by one to the right performing the following
operations (as shown in figure 7.1): Apply CR to each loop on the
right most column in time order. Apply TI to eliminate intermediate
transfers. Apply CR to each loop on the left most column in time order.
Apply RO to bring transfers together and TI to eliminate intermediate
transfers. Note that slack is violated at the end of step 2, however this
violation can be tracked and is fixed by the end of step 4.

Composite operations for rotation Similarly, to rotate the sheet instead
of moving loops to the right it is moved across by applying CO, in
time order and using TI to eliminate redundant transfers as illustrated
in figure 7.2. Notice that the yarn direction is correctly modified to
maintain the correct orientation. The left most column can be shifted
to maintain the yarn slack.

Grouping nodes As a convenience, any sequence of nodes can be grouped
and viewed abstractly as a single instruction node that produces all the
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(a. Initial) (b. Apply CR) (c. Apply TI)

(d. Apply CR) (e. Apply RO) (f. Apply TI)

Table 7.1: Translating the graph to the
right by applying a sequence of graph
transformation rules. Slack edge viola-
tions are visualized by thick red dashed
lines

(a.) (b. Apply CO) (c. Apply TI)

Table 7.2: A sheet is rotated by applying
a sequence of transformation rules.
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loops produced by the sequence and consumes all the loops consumed
by the operations. Rules can be applied to a node group just as they
are applied to single node. To check the condition on tracks being
empty (or have the appropriate resource), locations within the group
need to be tested. Because the group of nodes is moved together, no
slack changes are introduced between resources in the group within
that time when a rule is applied.

7.1.1 Slack handling

The embedded graph includes slack edges that annotate the desired
slack between two loops factoring in the number of layers. Construc-
tion slack (slack between a resource and any other resource at a time
when it first appears) must be exactly met whereas slack between loops
after their construction must not exceed the associated limit. While
modifying the embedded graph into one with slack constraints re-
spected, our system must ensure that no topological changes are intro-
duced. The rules described above when applicable, do not introduce a
topological conflict (although they can introduce more slack conflict).

User-in-the-loop Search Procedure The adhoc search procedure shown
for composite rotation and shifting illustrates that more slack viola-
tions can be introduced while attempting to fix slack elsewhere. To
simplify the number of operations needed to be searched, the user can
group instruction nodes temporarily and apply a single rule to the en-
tire set. To be able to systematically search the space, rules need to be
applied in an order such that additional violations can be contained.
Coming up with an automatic system to update the graph is an im-
portant future work that would be needed to schedule large objects.

There are a few situations where the rewriting the graph for slack
satisfaction can not resolve all slack issues. We have already encoun-
tered this situation when unbalanced rows appear in the knit graph and
stitch mesh (Property 6.6). In situations where the augmented stitch
mesh layout is unbalanced, the user can chose to manually resolve the
situation by a)relaxing the slack constraint by increasing the number of
layers b) by changing the face program to add more slack to the loops
or c) edit the augmented stitch mesh to generate a balanced structure.

7.1.2 Embedding the augmented stitch mesh

I now describe our setup to convert an input augmented smobj into
an embedded form. Embedding a general augmented stitch mesh
requires maintaining the topology of the shape being described, the
alignment of the loop and yarn edges as well as the layer depths. A
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single face program describes a way to construct a small sheet like por-
tion of the surface. Layers effectively segment the surface into sheet-
like patches. Each face is assigned to one layer in our augmented stitch
mesh definition. 7 7 To extend this framework for multi-

layer faces, each face may be assigned to
one or more consecutive layers using an
offset value.

The edges of each face can be associated with needle resource lo-
cations on the machine bed. Within the layer, the resources that these
face edges would occupy should agree with the template face program
associated with the face. The embedding must also maintain the or-
der implied by the edge directions on the stich mesh – yarn-wise and
loop-wise previous loops must be constructed before the loops that
consume them.

Instead of performing this in a fully automated way, here we allow
the user to annotate the augmented stitch mesh with hints that help
generate the embedding.

The scheduling system allows the user to annotate the mesh in the
following ways:

Layer annotation associates a layer number with a face index in the
augmented stitch mesh. All instructions in the face program are
interpreted using this index as the front-most layer.

Resource annotation associates a needle number with a face and edge
index in the augmented stitch mesh. The face program and layer in-
formation are combined to establish the physical bed-needle location
for the resource.

Order annotation associates a happens-before constraint between two
face instruction indices. This allows the user to influence the topo-
logical order on the DAG when multiple such orders exist.

These annotations are propagated to adjacent faces using edge-to-
edge connection using a simple propagation scheme when there is no
conflict introduced. In case of a conflict, the user is required to gen-
erate annotations to resolve conflicting cases. Given a fully annotated
mesh, resource annotations and layer annotations are interpreted as
a needle and layer function. A topological order of the underlying
DAG is computed by adding constraints from the order annotations,
to generate a time function. The rest of the pipeline maintains topo-
logical equivalence to this input augmented smobj specified with a
monotonic embedding in time or with order annotations to construct
the intended DAG.

Given an embedding, edge connections may not agree along yarn
edges and loop edges for two reasons: a) The embedding requires
loops to shift in order to match the global topology of the shape b)
The stitch mesh includes faces that involve transfer operations em Be-
fore a face instruction is executed, if the edge connections disagree on
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locations(resource or layers), transfer instructions need to be executed.
These operations need to ensure that slack – the distance between yarn-
wise adjacent loops – is maintained within the prescribed slack limits.
The edges are viewed as a linear connection between faces that are
rasterized when constructing the embedded graph. This rasterization
procedure may introduce more layers, that are eventually reduced dur-
ing resource planning.

7.1.3 Maintaining layers during construction

A multi-layer setup is realized by interleaving the layers physically on
the two beds of the machine. The scheduler ensures that this interleav-
ing of layers is maintained throughout the execution of the object.

Face programs associated with the augmented stitch mesh and trans-
fer instructions generated describe the operation in isolation within a
layer. When chaining face programs together in such a setup, these
layers can get tangled destroying the depth-ordered interleaving.

Tangling. Tangles can be introduced for two reasons:

Loop captures yarn Such a tangle can occur when loops on the back are
front knit while loops on a front layer are present in a back holding
positions or vice-versa.

Yarn captures yarn Such a tangle occurs when a frontwards yarn crosses
a backwards yarn during construction or vice-versa.

The scheduling system needs to ensure that these operations can be
executed without tangling.

To prevent captures by loops, layer ordering is explicitly maintained
before every operation that creates or moves loops. Every face pro-
gram instruction is re-interpreted in the context of the layer in which
it is running and the current state of the interleaved machine beds.

To prevent captures by yarns, yarns are first assigned in a way com-
patible with layer ordering. Then, yarns are temporarily moved to safe
locations before every operation to avoid any potential tangle. These
movements can be executed using the miss operation, that moves the
yarn to a specific needle location as if to construct a loop and parks
the yarn with respect to that location: If a back(front) yarn crosses a
front(back) yarn in the rightwards(leftwards) direction, the front(back)
yarn is moved further rightwards(leftwards) by inserting a miss in-
struction.

The effective interleaved needle position for each loop i is calculated
based on the total number of layers L and its layer li as i′ = L · i + li.

A face instruction op D N CS is effectively re-interpreted as follows:
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1. kick yarns Y not in CS using miss D fN′ Y if P(Y) < N′ and
P(CS) < P(Y) for D = + and vice-versa.

2. move loops i, li < lN to the front using xfer bi′ fi′ if i′ is on the back.
3. move loops i, li > lN to the back using xfer fi′ bi′ if i′ is on the front.
4. perform operation op D N′ CS

For the restricted case of a two-layer machine and tube-like surfaces,
given the strong constraint on the topology, a full embedded graph can
be constructed directly.

7.2 Explicit embedding of tubular layouts for two-layer ma-
chines

This restricted case of a two-layer machine allows us to use the follow-
ing constraints to simplify the scheduling problem:

1. Balanced Cycles Any tubular section must be laid out in a balanced

Figure 7.5: Valid balanced layouts for
small cycles.

way. Each tubular section must therefore use both the layers – layers
correspond to the front and the back of a tube as embedded on the
machine. At a splitting or merging event, these layouts must agree.

2. Upward Planarity

For a valid embedding, no two cycles can move past or switch rela-
tive ordering with respect to other cycles on the machine. No cross-
ing event (described in Figure 4.1) can occur in the skeleton or
graph of this embedding.

For a knitting program to form a desired set of stitches, it must
respect the yarn-wise and loop-wise dependencies of those stitches as
recorded by the augmented stitch mesh data-structure. We can restate
the resource alignment dependency properties in terms of machine
execution with:

Property 7.1: Order. All stitches must be constructed in the yarn-wise
order specified by the pattern. All loops that a stitch depends upon
must be constructed before it and must be available on a needle at the
time of constructing the stitch.

Property 7.2: Adjacency. All yarn-wise adjacent stitches must be con-
structed on adjacent needles. (Aligned needles across layers are also
considered adjacent.)
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Our scheduler turns each face into one more or face instructions –
low-level items that, together, produce and consume the same number
of loops as a face – and breaks the sequence into logical passes. These
face instructions serve as a placeholder for the faces, and allow our sys-
tem to decouple scheduling for storage locations from the operations
performed on those locations. The face instructions are maintained as
an instruction graph with logical directed edges between instruction de-
pendencies. Passes are constructed based on the following conditions:

• All face instructions in a pass have the same direction.

• A pass does not have more than a limited number of “increase” or
“decrease” shaping operations that change its width.

Pass a is said to depend on a pass b if pass a uses the loops produced
by pass b (i.e., it reads from storage locations last written to by pass
b). Each pass may be dependent on zero or more passes. If a pass
depends on exactly one previous pass and exactly one pass depends
on it, it is referred to as a regular pass and the rest are critical. These
critical cycles decompose the shape into tubular segments.

Once passes are constructed, the stitches need to be mapped to ma-
chine locations. An upward planar embedding is identified by enu-
merating all embeddings of the critical passes. Based on the shape of
these critical passes, intermediate passes are filled in by assigning a
shape that minimizes loop movement. Finally, needles and layers are
assigned to all loops using the computed shapes, and instructions can
be generated.

Exhaustive enumeration of critical cycles could become a prohibitive
space to explore. The key insight that makes our scheduling algorithm
possible is the observation that at connections between segments, loops
must obey a valid cyclic layout both for the segment that produced
them and the segment that will consume them (Fig 7.5). The restric-
tion to tube-like layouts makes the number of valid cycles to enumerate
feasible.

Therefore, the next step of scheduling is for our system to select a
layout for each connection between tubes. These connection layouts
are chosen to minimize a heuristic cost defined over the segments that
tries to reduce transfers, and so that they do not force any segments
to cross during knitting (Figure 7.6c). The number of connections be-
tween segments is small enough that a greedy enumeration of layouts
for these connections terminates quickly – either by exhausting all op-
tions or by finding a valid assignment. Once layouts for the connec-
tions between segments have been determined, a layout for each step
is computed using the same heuristic.

Starting from the instruction graph, our system first identifies se-
quences of consecutive stitches that take place on a generalized cylin-
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der. This segmentation is accomplished by tracking the connections
between loops currently held on the machine bed and performing
splits/merges when a loop-wise parent of a stitch does not appear
next to the yarn-wise previous stitch in the current cylinder.

At any point during the construction of one of these segments of
stitches (Figure 7.6b), loops from that segment must be held on the
machine bed in one of a small number of layouts (Figure 7.5). Specifi-
cally, for a cycle of N loops there are 5N (for N even) or 4N (for N odd)
possible layouts. In general, the winding direction of a cycle cannot be
changed through transfers, so our system only considers layouts in one
winding direction.. We show layouts using a dotted outline to indicate
the needles occupied by the cycle and a dotted circle to indicate the
location of a designated loop in the cycle. Conveniently, the transfer
planning algorithm of McCann et al. [2016] can move cycles between
any two layouts; including adding or removing loops for increases and
decreases.

The key insight that makes our scheduling algorithm possible is the
observation that at connections between segments, loops must obey a
valid layout both for the segment that produced them and the segment
that will consume them (Property 6.6).

Therefore, the next step of scheduling is for our system to select
a layout for each connection between tubes. In effect, our system is
determining an upward planar embedding of the Reeb graph of the
object, as discussed in chapter 4.

3
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(d) (e)

Figure 7.6: Given (a) input instruction
graph, our system (b) divides them into
tube-like segments, (c) determines lay-
outs for the connections between seg-
ments and their left-to-right ordering,
(d) determines layouts for each construc-
tion step within each segment, and (e)
combines the segments into a final knit-
ting program.
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Layouts are selected base on, in order of importance: whether the
shape has aligned front and back layers (only possible for even cy-
cles), how many loops must change layers between the beginning and
end of the segment, and how many loops must shift left or right be-
tween the beginning and end of the segment. In the two layer case,
the front layer is assumes even needles on the front bed and the back
layer assumes odd needles on the back bed hence layers and beds are
used interchangeably. Connection layouts are selected to minimize
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(lexicographically) the following tuple of per-segment costs:

∑ (u(Ls) + u(Le), r(Ls, Le), s(Ls, Le))

Where the terms are defined as follows:

• u(L) (alignment): 0 if the shape is aligned on the front and back bed
(only possible for even cycles) and 1 otherwise

• r(Ls, Le) (roll): the number of loops that must change beds between
the beginning (Ls) and end (Le) of the segment

• s(Ls, Le) (shift): the number of loops that must shift left or right
between the beginning and end of the segment.

The position of a loop at the beginning of a segment is considered
to be the position of its earliest column-wise ancestor in the same seg-
ment.

Our system optimizes connection layouts, which imply the starting
and ending layouts of connected segments, while this cost is defined
over the starting and ending layout of each individual segment.

Once layouts for the connections between segments have been de-
termined, our system finds an optimal layout for every construction
step in each segment, constrained by the already-assigned starting and
ending layouts (Figure 7.6d). Here, again, optimal means that layouts
should be aligned, loops should not switch beds, and loops should not
shift left or right.

At this point, the layout of every cycle of loops held on the knit-
ting machine bed during each construction step has been determined,
as well as their left-to-right order on the bed. However, our system
still needs to assign horizontal offsets to each cycle. To do this, our
system begins by arranging the cycles as compactly as possible, given
the left-to-right order determined by the directed acyclic graph enu-
meration step above. Starting from this configuration, our system then
makes a series of optimal adjustments – where each adjustment in-
volves adding or removing between zero and ten needles of space
between two adjacent layouts on every construction step. Once no
adjustment that lowers the summed absolute distance between loop
positions in subsequent steps is available, the scheduling is finished,
and needles are assigned (Figure 7.6e).

At the end of this stage, our system has explicitly computed an
embedding for the face instructions or fragments of the two-layer aug-
mented stitch mesh.

The next step, is to compute any necessary loop movement achieved
by transfer operations to execute the connections described by the em-
bedding. We use the transfer planning algorithm described in Mc-
Cann et al. [2016] to compute this. Transfer planning involves gener-
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R−→ C−→

S−→ E−→

E−→ ∗−→

Figure 7.7: A step-by-step transfer plan
where target positions of the colored
stitches are indicated by the correspond-
ing colored dot. The cycle repeatedly
undergoes (R)oll,(C)ollapse, (S)hift and
(E)xpand phases until the target state(*)
is reached. (Figure from McCann et al.
[2016] supplementary video)

ating the necessary transfer operations that moves stitches from one
configuration on the needle bed to another. Consider a simple de-
crease or increase: Since stitches cannot be moved from one needle to
another on the same bed, in general, at least some of them have to be
‘collapsed’ to the opposite bed. This is followed by optionally racking
the bed and then stitches are moved to their desired positions. The
basic idea of the transfer planning algorithm is to follow a sequence of
‘collapse and expand’ steps in a way that strictly makes progress to-
wards the target state. McCann et al. [2016] proposes a roll-goal penalty
function that is the sum of the distance between the current and target
position for each stitch along the cycle, and show that it can always
be reduced using repeated collapse-expand steps while not introduc-
ing any yarn tangles or moving stitches too far apart. Collapse steps
may additionally roll stitches to the correct bed when possible. A shift
phase may be interleaved to move the collapsed cycle from one bed
to another. (see Figure 7.7). Our system interleaves transfer planning
between steps to ensure that loops that a face depends on (i.e., inci-
dent on incoming edges) are moved to location expected by the face.
Face programs that include transfers within their programs are exe-
cuted independent of the transfer planning as these operations appear
as face instructionswithin the instruction graph. This transfer resource
planner, does not explicitly track yarn locations and can potentially
introduce unintended yarn tangling when a face uses multiple yarns.
A full resource planner should incorporate miss instructions to move
yarn carriers in a way that does not introduce these tangles. The proce-
dure described above might seem like a reasonable way to generalize
for non-planar constraints however this requires correctly establishing
and maintaining the topology of the input shape. This is why for the
general case, we first establish the topology of the graph by relaxing
the metric constraints of slack and then reintroduce them with conser-
vative local rules that do not alter the topology.
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7.3 Code Generation

The embedded instruction graph provides a straightforward way to
generate code, by reading instructions in time order and emitting the
appropriate knitout code fragment. The resource planning problem
described above is performed for slack maintenance, but the same idea
of re-ordering instructions can also be used for optimizing schedules.

7.3.1 Optimizing schedules

Figure 7.8: The order in which a trans-
fers and (back) knits are constructed
for executing a sequence of purl opera-
tions can influence the number of passes
needed on the machine.

On a single system machine like the one used to fabricate our ex-
amples, knit and transfer instructions must be performed in separate
carriage movements; this means that a row of N purl stitches – each
of which requires an xfer, knit, xfer instruction chain – takes 3N car-
riage movements to fabricate if all the instructions are in operated in
sequence but only 3 carriage movements when reordered.

Instead of invoking a single function, the face programs are divided
into a preamble, main execution and a postamble that share the same
signature:

function face_*(dirs, bns, carrier, layer)

These three functions allow for coarse instruction re-ordering which
becomes important when creating textures with purl faces or when
scheduling for multiple layers. The operation layer front and layer

back is used to move the loop to the appropriate bed location for the
given layer. Consider a purl face (i.e., a back knit) that constructs the
stitch on the opposite bed and would be defined as:

function purl_pre(dirs, bns, carrier, layer){

layer_front(bns[0])

xfer bns[0] opposite(bns[0])

}

function purl_main(dirs, bns, carrier, layer){

knit dirs[0] opposite(bns[0]) carrier

}

function purl_post(dirs, bns, carrier, layer) {
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xfer opposite(bns[0]) bns[0]

}

Thus, before generating the final knitout program, instructions are re-
ordered for optimization. A rib pattern is shown in figure 7.9, after
reordering instructions the number of passes is significantly reduced.

Figure 7.9: Re-ordering instructions to
minimize the number of passes in the
generated knitout code.

These code movement optimizations also suggest that compiler tech-
niques may be valuable in translating knitout programs (transfer plan-
ning sequences, in particular) between different hardware systems while
maintaining or improving efficiency – for example, a two-system ma-
chine that can knit and transfer in sequence will require a slightly
different reordering for an optimal number of passes. For transfers in-
troduced by the purl faces which are heavily used for texturing, such
a reordering generates an optimal number of passes. More generally,
such re-ordering may fail to identify optimal transfer plans but can
significantly lower the number of passes required.





8
Knit Results

I discussed the design space of machine-knittable surface shapes in
chapter 4 and the augmented stitch mesh representation to explicitly
describe such patterns over a 3D mesh in chapter 5. In chapter 6, I pre-
sented multiple techniques to automatically generate knitting patterns
from arbitrary 3D meshes. Finally, chapter 7 describes approaches to
schedule the augmented stitch mesh and generate code for fabrica-
tion. In this final chapter, I present a series of results produced on a
Shima Seiki SWGN2 whole-garment knitting machine. Unless other-
wise specified, all results have been generated with 2-ply Tamm yarn.
For calibrating stitch sizes, a small swatch was knit with the same yarn
(as all front-knits) and measured.

8.1 General two-bed patterns (Incremental approach)

Knit output is inherently stretchy. Identifying the quality of the result-
ing fit can be difficult. To understand the quality of the incremental
remeshing approach, a knit version of the Stanford bunny (a) is stuffed
with a foam version of the bunny (b). Concave regions have no reason
to adhere to the foam without adhesive but in other regions the output
matches the geometry of the input. Although this is fabricated on a
seamless knitting machine, a distinct seam is visible on the back of the
bunny. This is caused by the gap between the beds. To avoid such
a visual seam, each row can be slowly rotated such that bed gap is
distributed over the body instead of aligned.
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The time function used to guide the remeshing approach can influ-
ence the quality of the results. Here the same mesh has been remeshed
using three different time functions. In the first case, the extrema on
the horns ensure they are well captured in the result and the extrema
on the belly ensures all four legs are short-rowed in a similar (although
not symmetric) manner. In the central shape, the extrema is moved
from the belly to the hind legs, although this still captures the shape,
the difference in the front and hind limbs are prominent. Finally, in
the last version the extrema is moved from the horns to the face, the
horns do not protrude very well since the feature size is small.

Automatic remeshing allows for easy generation of patterns in mul-
tiple scales by simply scaling the input mesh. The resulting patterns
however are not constrained in any other way. For more textured pat-
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terns, scaling (and other transformations) in a way that retains impor-
tant characteristics of the pattern would be important.

Complex surfaces with non-zero genus can be automatically con-
structed in one piece. Except for the red fox, these plush objects were
all generated in one piece and stuffed after fabrication. Even though
our system ensures balanced placement of tubes, based on material and
number of transfers, splits and merges can fail as in the case of the fox.
This was handled by segmenting constructed pattern across a row and
sewing up the pieces as a post-process. Figure 8.2 shows how editing
can be used to avoid such scenarios instead.

Many commonly knit clothing and accessories can also be generated
using meshes as inputs instead of working with flat patterns. The red
glove has been constructed from a scanned hand whereas the blue one
from a cartoon hand mesh.
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Knit versions of a number of 3D meshes commonly seen in the
graphics literature are shown below. Notice that low frequency fea-
tures in the face of the kitten is smoothed out when knit and stuff. An
interesting extension would be to automatically generate pattern or
color variants that appropriately highlight these features. The teapot
mesh also shows that posing and stuffing (here with clusterfill pillow
stuffing) can influence the final shape. Optimizing the input shape to
exaggerate regions that would smooth out could lead to better quality
outputs.

8.2 General two-bed patterns (hierarchical approach with user
editing)

Using the same sweater mesh as input (generated here with hierar-
chical remeshing), multiple styles can be rapidly generated to quickly
customize and personalize results. Each of these editing sessions took
under 15 minutes. Garment patterns carefully constructed by expert
designers can be edited by casual users for customization.
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Editing can be used to align decreases and increases for the desired
aesthetic effect. The automatic remeshing often distributes increases
and decreases to accurately match the 3D geometry but aligned de-
creases can generate a more pleasing appearance for garments.

With custom fabrication, a standard pattern like a beanie can be
edited to support holes for the ears of a plush toy or create a custom
sweaters.
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Editing can also be used to avoid high stress by removing shaping
and transfers very close to splits and merges. Without editing these
operations, this sweater mesh shown above repeatedly failed at the
arm joins. Yarn-level simulation is usually used to predict and visu-
alize output shapes. Simulating the construction process itself will
be useful in analyzing areas of yarn stress without having to rely on
heuristics that limit loop movement.

Here, the same input mesh of the Stanford bunny has been edited
using augmented stitch mesh face types to generate a ribbed pattern.
To account for the stretching of the ribs, the stitch sizes were uniformly
edited to fit the bunny appropriately.
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Editing can also be driven by an image as input. Here a binary
image is used to change the plating style of a face program in the
augmented stitch mesh to quickly create a Paris skyline image on the
output.

By adding a few yarn breaks and changing the yarn type to a con-
ductive yarn, a regular beanie can be quickly modified to support
LEDs.
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Here a few columns and rows of purl faces have been added to the
top of the teapot to influence the final shape.

More examples of fabricated patterns created and edited using the
approaches described in this work.
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8.3 Transfer-free patterns

An elbow shape and a hemisphere constructed in 120D Twisted Rayon
yarn with only short-rows using the sampling based unfolding strat-
egy. Convex shapes are particularly well suited for this approach since
the discretization procedure does not need to deal with partial densi-
ties introduced around saddle vertices.

A model of two boxes connected by a narrow sheet unwrapped and
patterned without any transfers. The lack of symmetry is expected
because of the position of the spine is along one box.
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8.4 Multi-layer patterns with user editing

A four-layer setup has been used to create this trefoil knot topology.
The braiding between tubes is produced on the machine. Many-layer
setups require a careful choice of yarn – thinner yarns perform more
robustly during the transfers that pass layers around, thicker yarns
lessen the apparent loss in resolution. Here we use Yeoman 1-ply
supersheen yarn. On the right, a three-layer setup is used with the
front-most layer used to add a pocket to this garment.

Here, a four-layer setup is used to extrude a curve that is not bal-
anced. The first three layers used to add pleats to the front side of a
skirt, which has more material than the back. Layers provide a natural
way to setup such imbalanced curve profiles on the bed.
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9
Discussion

In this thesis, we looked at knitting machines as a general programmable
machine to produce soft knit objects. To use this machine as a soft
3D printer we looked at coming up with programming abstractions.
These abstractions allow high-level 3D shapes to be used as input and
programs to construct them can be manipulated in the output (3D)
space visually before scheduling them to generate low-level code for
fabrication.

This style of programming knitting machines can support a host
of novel applications from enabling made-to-measure garments to en-
gineering CAD outputs with carefully programmed materials. There
are many ways to improve the pipeline to enable robust production
systems.

Representations for Design and Fabrication An important step in digi-
tal design for fabrication is the ability to accurately predict designed
results (ideally at interactive rates, at least faster than fabrication run-
time). Measuring the quality of fabricated results can be challenging
since knits are stretchy and yarn can slide. Using techniques from com-
puter vision (and other sensing techniques) to measure output would
be important to guarantee quality especially for engineering applica-
tions.

Matching a 3D shape is only one of the many design goals an end
user or application might have. Ideally, a user might want to spec-
ify ideas of fit or comfort for clothing, responses to load or elastic
properties for engineering, etc. Design systems must identify ways to
represent these objectives and algorithms to optimize for them. Under-
standing the influence of different material parameters in the context
of shaping, behaviour, and, appearance is necessary to model complex,
functional objects.

Further, such complex, real-world objects are often made of mul-
tiple materials and fabrication techniques. For example, a knit fab-
ric reinforced structure may be cased in concrete or resin. Garments
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may combine patches of different materials, zippers, 3D printed parts,
etc. The augmented stitch mesh representation described in this thesis
is machine-agnostic but is restricted to representing a single textiles
technique. However, it is a boundary-based representation, encod-
ing connection constraints on the boundary and specialized fabrica-
tion routines in the interior. Extending such boundary representations
to encode compatibility between different fabrication techniques could
generalize this framework further.

DSL design and trade-offs The knitout assembly language used to ex-
press local face programs represents atomic operations that the ma-
chine can do by assigning an operation type to every cam plate that
executes the operation physically. On industrial knitting machines, a
sequence of operations may execute in one pass of the carriage and
can be viewed as parallel operations. Operations that can be run in
parallel would depend on the system – a single system machine can
run multiple operations of the same type (all knits or all transfers) in
parallel if they match the direction of the carriage.

One natural way to break down a knitting program (pattern) into
blocks that can be meaningfully rearranged is to consider pass-level
blocks. Basic pass-blocks can be viewed as a design language, build-
ing up larger patterns. Nader et al. [2021] propose a similar pass-level
setup. Scheduling such the pass-blocks is more natural since each log-
ical pass has only a translational degree of freedom on the machine.
Patterns with multiple textures are often not cleanly differentiated by
rows in the output, but patches that connect to adjacent ones like jig-
saw puzzles. However, these are still constructed row-wise, so each
block cannot be constructed entirely together. This makes the schedul-
ing of such blocks more involved, although each block can be subdi-
vided into local passes. The face-programs associated with the aug-
mented stitch mesh provide a domain-specific language that can be
viewed as re-entrant routines that execute knitout operations using re-
source inputs from function arguments. The face-programs described
in this chapter are restricted to remain in one layer. Therefore, they
cannot describe a volumetric structure easily. A DSL that utilizes the
layer-based setup with volumetric units will enable generating inter-
esting output structures like spacer fabrics. One way to generalize
face-programs into volumetric structures is to represent layers explic-
itly in the code and have a different face program for different possible
blocks. This is a natural extension of the face programs.

The approaches described above are all similar in how they describe
the pattern – explicitly with knitout (or a similar low-level assembly)
code. This makes code generation for the entire pattern straightfor-
ward. A much more high-level approach is to parametrize patches
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based on functional properties (for e.g, dimensions, stretchiness, soft-
ness, images, heightfields) and material properties (yarn diameter, stiff-
ness, bending, elasticity) and automatically generate code that matches
these specifications based on data and simulation.Vidimče et al. [2013]
and Chen et al. [2013] have explored such specifications for 3D print-
ing and supporting such a setup for knitting would enable exploring
the output space of knit structures in richer ways.

Optimizing fabrication programs Finally, similar to programming in gen-
eral, applying compiler optimization techniques to fabrication pro-
grams can enable targetting the same program for different fabrica-
tion hardware. In our code generation pipeline, code re-ordering is
used for optimizing program length. Apart from run-time efficiency,
fabrication problems also require run-time robustness especially for
one-off production. For example, reordering code such that loops are
not held for a long time on the machine improves reliability in gen-
eral. Often, reliability may be more important than optimizing the
overall run-time. It would be interesting to profile the machine behav-
ior (for different yarns, speed settings, etc.,) and optimize programs
independently to enable design systems to be agnostic to variations
in materials and machine settings. On-the-fly program correction by
sensing a run-time failure and reactively updating the pattern could
further guarantee robustness.

Apart from optimization for production, it is important to consider
material wastage and energy efficiency. Textiles contribute signifi-
cantly to the world’s carbon footprint currently and is estimated to
use a quarter of the global carbon budget by 2050 (Rana et al. [2015]).
While this estimate includes the cost of growing cotton to shipping
t-shirts from across the world, improving technology around fabrics –
from materials to manufacturing – can have significant impact in the
textiles industry.

With the advent of customized and one-off manufacturing services
(such as Shapeways, Fast Radius, Xometry, and many more), easy to
learn and use design tools (such as OnShape, Fusion360) and support
for online marketplaces (Etsy, Amazon, Ebay and so on) the way we
design, manufacture and consume is rapidly evolving. Manufacturing
techniques need to adapt to these changes and leverage these ecosys-
tems. The ideas put forward in this thesis is a step in the direction
of enabling on-demand machine knitting for both designers and man-
ufacturers to produce functional objects using computational design
systems.
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