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Execution Environments in
Programming Languages and Opersting Systems

- Robon W. Schwanke

Abstract

‘K\Mum-mk‘mg operating system design is 8 thorough test of a programming methodology.
Such systems contain large and complex data and control structures, manipuiste unssfe
hardware, require very efficient code, and must execute continuously for days at a time in
the presence of transient hardware errors. Furthermore, they must conform to real-time
constraints of hardware and users, and stili satisfy throughput requirements.

The module construct in most recent methodology~based languages specifies only the
source language structure of programs. However, the structure of the executable
representation of an opersting system program is very complex, and need not be
isomorphic to the source structure. The opersting system designer needs control over the
executable representation of the system, especially when programming bootstrapping
facilities, system generation and configuration programs, interfaces to hardware dependent
modules, and managers for such execution facilities as address transistion tables, process
state registers, interrupt vectors, dynamic storage, protection domains.

The goal of the thesis is to determine whether an explicit notatiorﬂmd methodology for
describing the executable representstion of a system of programs, can improve our ability
to design and construct operating systems. Wa investigate this question by extending a
specific methodology. incremental machine design, with notations snd techniques for
structuring executable representations. We exercise the extended methodology by applying
it to a set of realistic operating system design problems.

The thesis defines sn execution environment to be an explicit set of resources for
implementing programs. In each environment, the list of resources defines the interface
between the implementation language and the underlying operating system facilities. That is,
the transistor implements program units using the set of resources -supplied by the
operating system. ’

The methods proposed to carry out this theme include representing execution
environments as explicit modules in source-language programs; binding source language
program units to environments explicitly, in a way that allows both muiti—environment
modules and mulit—-module environments; inciuding host machine and boostrapping execution
environments in operating system descriptions; and combining all prograsm units into a singile
‘comprehensive system description, which takes the form of a program to creste an
operating system

Applying the system of methods to a set of operating system description problems
demonstrates that it clarifies many dependencies among operating components, provides a
sound place for system generation and bootstrapping code in the overall system structure,
and provides a basis for integrating operating system facilities directly into systems
implementation languages.
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CHAPTER 1
INTRODUCTION

Muilti-tasking operating system design is a thorough tast of a programming
methodology. These syitems contain large and compiex data and control structures,
manipuiste uisafe hardware, require very efficient code, and must executs
continuously for days at a time in the presence of transient hardware errors.
Furthermore, they must conform to real—time constraints of hardware and users, and
stil satisfy throughput requirements.

Much of the recent research in programming methodology and programming
languages has focused on the modu/e as a schema for structuring programs.
Conceptually, a module is a group of program components thst share information
about certsin design decisions, such as the format of a data base or the queusing
structure used by a process scheduler. Several recent languages have provided
explicit module constructs, which permit the system designer to isolate a sst of
reistad components such that changes to the shared design information affect only
the code within the module, and such that the interactions between the encapsulated
components and the rest of the system can be identified, characterized, and
controlled With such a tool, a system can be described, developed, and debugged,
module by module, resuiting in a cleaner design, and facilitating error detection and

design changes.

The module construct in most recent methodology-based languages specifies only
the source language structure of programs. In operating systems, however, the
structure of the executable representation of the program is also complex, and need
not be isomorphic to the source structure. The representation of a single source-—
language module may be spread across several execution environments. Programs
that invoke operations provided by a system's virtual memory manager, for example,
may affect the addressability of objects in ways that don't appear in the source
program. Current languages do not provide any tools for specifying the structure
of the executsble representation of a system of programs. The operating system
designer needs such tools for bootstrapping facilities, system generation and
configuration programs, interfaces to hardware dependent modules, and system
components which directly manipulate execution facilities, including address mapping
managers, process managers, exception hsndling mechanisms, and synchronization
facilities.
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The goal of the thesis is to determine whether an explicit notation and
methodology for describing the executable representation of a system of programs,
can improve our ability to design and construct operating systems. We investigate
this question by extending a specific methodology, incremental machine design

[Habermann 78], with notations and techniques for structuring executable
representations. We exercise tha extended methodology by applying it to a set of
realistic opersting system design problems. Then, we evaluate the notation and
methodology with respect to usefulness and generality, clerity and precision,
implementability, and robustness.

1.1. What's in a Representstion?

The representation of a program is often thought of as "whatever the compiler
produces™ when presented with the program. However, if we start from a more
formal definition of "representation”, we are led to include a more extensive set of
objects than those produced directly by the compiler. The dependencies among
these objects can be complex, and different from source program dependencies.

We can borrow the definition of representation from data abstraction methodology

[Hoare 72], in which the representation function of an abstract object spacifies a
mapping from the values of certain concrete varisbles to the value of the abstract
object A concrete variable may be involved in the representation of one or several
sbstract objects When the variables named in a representation function determine
the representation of that one abstract object only, we tend to think of them as
being the representation of that object When one concrete variable is involved in
the representation of several abstract objects, we often say that the variable is used
to represent those objects. For example, a List Element data type might be
implemented by a single vector of list elements, with a central type manager which
handed out pointers to individual siements as they were needad The central vector
wouid be used to represent the elements.

Many of the same ideas apply to the representation of programs. In conventional
compiled lsnguage systems (e.g Pascal), the representation of a procedure is a
specific body of machine—language instructions. The representation of a process (in,
say, Modulal, however, would involve a stack of activation records, the process's
state vector, the representations of all of the procedures it invokes, and portions of
the process scheduler. The procedure code is needed to give an interpretation to
the program counter and other state variables. The process scheduler data
structures are needed to embody scheduling properties, such as estimated
completion time. Thus the procedurss and the process scheduler would be used to
represemnt the active process.

Now, let us consider the nature of operating systems programs. An ordinary
sequential program has a waell~-defined beginning, middie, and end. Its execution can
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be understood quite indspendently from the process which carries out that
execution However, a great many commercial application programs, and most
operating systems components, are cyclic and non-terminating [Fion 77]. They
make use of dats structures which endure (theoretically) for years; there may be
one or several “daemon processes” continuously executing code of the program;
and, there may be portions of the operating system's data structures permanently
reserved for the needs of the application or component Therefore, taking the
word program in this large—scale sense, the represemation of a& program may
involve processes and their representations, lsrge data structures on sscondary
storage, portions of operating system scheduling tables, virtual memory mapping
tables, and other operating system data structures. Not every structure will
necessarily have components dedicsted to the individual program, but the
representation function of the program may include all of them in its domain

Many of the interactions between program components cannot be derived solely
from their source—language descriptions. This is primarily because the organization
of the executablie reprasentation of the program may be very different from the
source—langusge organizstion To discuss this differance, we will need to be a bit
more formal about programs and their components. | will continue to use the term
"program” in the broad, informal sense used above. To speak precisely about the
orgsnization of programs, | will need the term modu/e, as it is used in discussions
of dsta sbstraction A source /anguage module is a syntactic unit of the source
language, defining a naming region (scopel, an interface to other modules, and a set
of progran components, which may be variables, procedures, constants, macros,
inner modules, etc. [Schwanke 78]. A program, then, is simply a “main module”.

Parnas has pointed out [Parnas 71] that the runtime structure of a program can
{and usually should) be quite different from its source—language structure, because
the runtime structure is based on the phases of processing, whereas the design
structure should often be based on the structure of the data Consequently, there
need not (and should not) be a coherent machine—language object which is the
executable representation of a module. For example, some procedures defined in a
module may be "inline” procedures, whose machine code representation will appear
at each call site, rather than just in one place in the module's executable
representation. The converse also hoids true -— the module may invoke an inline
procedure, whose machine-lsnguage body properly beiongs to the representation of
another module. Furthermores, we have just seen that the data of one module (the
process scheduler) may be used to represent parts of several other modules
{programs declaring processes). Finally, modules can be composed into bigger
moduies and systems of modules (often called subsystemns), which might be spread
across a number of execution environments and multiple operating system layers.
Therefore, all of the mapping tables, resource managers, and protection mechanisms
which hoid the subsystem together, must be accounted for in its representation




Since thers is not a one—to-one mapping from source to executable modules. we
shall instead define the concept of an execution environment Then we can talk
about the grouping of machine—language objects into execution environments, and
the reistionships between source modules and those environments.

An execution environment is a coherent set of program execution facilities. It is a
receptacle for programs and data, such that a given machine—language instruction
sequence would have the same meaning in any procedure placed in the environment
An execution environment may be characterized by:

e The regions of memory which are addressab/e by procedures in the
environment.

e The memory which is available for contsining procedures and data
(Memory may be addressabl/e without being avai/able).

e The set of legal machine instructions.

e The “virtual machine instructions” {(e. g system functions, pr« ted
procedures, or ordinary procedures) which may be invok by
procedures residing in the environment

e The program support facilities (sometimes called run-time f: -~ )
availsble for synchronization, excegtion handling. message passing, oulk
storage, measuring time, general 1/O, et cetera.

Execution environments need not be disjoint For instance, two environments
might be identical except that not all of the memory addressable from one is
addressable from the other. This might be true of the environment containing the
implementation of a page fault mechsanism, which would forbid the use of any
addresses which might generate page fauits. Another example is two environments
which share a8 program support facility. Two user environments might rely on a
common virtual memory manager, whose data structures intermingle information
pertaining to the two environments.

A good example of muiltiple, overiapping environments is the VAX/VMS operating
system. The lowest level of that system is the interrupt handling code., which
coordinstes a varisty of device communication tasks via cooperating interrupt
handlers. This level provides an environment for subsequent system layers, in which
devices may be thought of as processes which send and receive messages. The
process scheduler resides on top of the interrupt lavel, providing an environment in
which system and user processes can cooperate through shared data, event flags,
and inter—process interrupts. Subsequent layers of the operating system refine and
constrain these facilities, and also add facilities for process—private memory, multiple
memory protection rings, and for swapping both system and user memory. Thus
we may view each layer of VMS as executing in a distinctly different execution
environment, and in turn providing enhancements to that environment for use by
subsequent layers.
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1.2. Motivation

My personal motivation for this thesis comes principally from my work on the
FAMOS system. Although the design of that system was methodologically elegant,
the implementation was an unending source of frustration It came at a time when
data abstraction lsnguages were just beginning to appear in the literatura. We
deveioped a paper language to use as a design notation, which we transiated into
Bliss—11 code. During the later phases of the project we increasingly found pieces
of the Bliss-11 code, pertaining to environments, which had no adequate
representation in the design language. yet which we believed were methodologically
sound. These pieces turned out to contain a disproportionste share of the bugs,
consuming vast amounts of time during system integration and test

Relationships among execution environments lie at the heart of an operating
system, permeating and often defining its structure. High level languages still do not
provide a notation for relating source language programs to execution environments,
nor for relating the executable representation objects coliected in an environment to
the programs which implement that environment This notational lack prevents a
system designer from writing a unified, formal description of the structure of the
system. Without such a description, claims about formal properties of the design
{e.g hierarchy) can neither be verified nor disproved The ad hoc notations (eg
linker command files) that fill the notational gap in real development efforts, violate
the principlas of information hiding and locality. They must be rechecked for
consistency with the source code after every non-trivial design change. For
instance, design changes to environment management facilities can affect not only
disparate portions of the operating system, but also the compiler, linker, and loaders.
Automatic programming aids, including type checkers an<! debuggers, camnot
adequately draw together information from different subsystems, leaving a significant
amount of consistency checking to be done haphazardly, at system startup, where
debugging tools (likewise limited by the notation) are at their most primitive.

Execution environment management has played an important role in operating
system design research. Muiti-tasking, virtual memory operating systems first
appesred in the early sixties. By the late sixties, muitiple processes and virtual
memory began to appear /nside operating systems. For example, the THE operating
system [Dijkstra 68] had at its lowest isvel a process manager; the rest of the
operating system was written as a collection of cooperating, sequential processes.
Multics [Janson 76], Hydra [Wulf 74a], and FAMOS [Habermann 76] all used
virtual memory mechanisms to isolate system components from one another. CAP

[Needham 77], MUSIC [Loehr 77], and DAS [Goullon 78] have all followed suit

Many of these research operating systems waere claimed to be hierarchical: some
reigtion between system components was found which formed a partial ordering.
Multics had a hierarchy of protection rings, THE had a hierarchy of work delegation,




Hydra eschewed hierarchy [Wulf 74b] for the kernel spproach, and FAMOS had a
functionsl hierarchy [Parnas 74]. On closer examinstion, however, the hoopla over
hierarchy never sesmed to pay off. One often sensed that the ordering reistion
was fine—tuned to fit the system, rather than the system being designed to fit a
methodologically sound relation. The FAMOS system, for example, was supposed to
be partislly ordered by the reiation, “X calils and depends on the results of calling
Y. However, we never found an adequats model for our loader or debugger within
that framework. We aiso found difficulties with this model for the upper leveis of
the hierarchy, when trying to organize modules managing memory, addressing and
processes. In order to make them form a hierarchy, we had to divide esch
manager into several layers, to be interieaved with layers from other managers,
forming a hierarchical dependency relstion. The price we psid for hierarchy was a
modular decomposition within each manager that was unnstural in other respects
The Muitics system suffered the same difficuity; Philippe Janson has proposed a
redesign of that system that solves some (but not all) of the problems [Janson 76].

Even though muitiple execution environments have become so common in operating
systems, dsta abstraction langusges have so far provided littie help in describing the
bindings between programs and execution environments. Iin conventional language
technology those bindings must be established instead by a linker. The compiler
transistes source programs into sets of control and data sections; a linker, guided
by s command file, groups sections into memory segments, sttaching various tags
and labels to each section; then, a loader files the segments into the environment
management tabiles.

Using a linker command file to represent parts of a system's structure has severe
drawbacks:
e The ragged interface between source language programs and linker

command files seriously interferes with the clarity of the system
description

e inconsistencies between the programs and the linker command files
cannot be detectsd automatically.

o None of the ogramming aids developed for the programming
language apply adoqmtoly to the program/linker interface.

One place where thess shortcomings are feit most acutely is in the environment
descriptors themseives. In FAMOS, for instance, each segment descriptor sppeared
in the source code as an element of the segment tab/e portion of an address space
descriptor. However, in order to know the pgrameters of an address space
descriptor, one had to have compiled all of the programs residing in that
environment, and hsve written the linker command file. The debugging option on the
compiler changed the size of code sections, as well as creating data sections
containing symbol table information. Consequently, throughout the debugging phase
we were rewriting linker command files and address space descriptor declarations




simost daily. incongistencies invarisbly srose between them, which were not
discovered until system startup. As with most development projects. a bug at that
point often necessitated several hours of delsy for recompilation and relinking.

Because environment managers must manipulste objects produced by the lsnguage
system, and because the language system is not inciuded in conventional system
descriptions, interactions betwes.) environment managers and the language system
cannot be documentsd properly, and can thus become quite ill-structured For
example, one of the procedure linkages in Hydra/Cmmp permitted inter-page
procedure calis where the target page was not addressable st the beginning of the
call. The calling sequence specified both a page identifier (an index) and the address
of the procedure within that page. Support for this linkage required cooperation
among the compiler, the linker, the lcaders, and the debugger, without any notations
or support tools for programming the interfaces.

Several recent attempts have been made to creste languages for systems
implementation that support muitiple environments, including Concurrent Pascal,
Modula, and Gypsy. [Brinch Hansen 75, Wirth 80, Ambler 77]. Each of these
ianguages define synchronization constructs and device communication facilities that
seversly constrain the class of operating systems for which the language is
appropriate [Loehr 77]. In fact the run—time support software for these languages
{particularly Concurrent Pascal) resembies the kernel of an operating system.

Some of the objects used to represent an execution environment are not only
used /mplicitly, by the instruction execution mechanism, but asre also named
explicitly, in source programs, as parameters to operating system function calls.
This can lead to inconsistency between the state of the execution environment as
assumed by the language system, and the state as it actually exists. For example,
languages that provide a formal synchronization mechanism do not ordinarily provide
a means by which one process can abort the execution of another, because there is
no obvious way of communicating news of the desth of one process to the other
processes with which it was cooperating A similar difficulty arises in memory
management mechanisms. in FAMOS we had a memorable bug invoiving
addresssbility. One of us came across a piece of code of the form,

if <logical variable> then
<statement 1>
eise begin
<statement 1>;
<statement 2>;
<statement 3>
end

Thinking himseif clever, he "optimized” it to say,

<statement 1>;

If not <logical variable> then
begin
<gtatement 2>;
<gtatement 3>
end




However, the resuiting program didn't work! It turned out that <statement 1>
invoked an operstion on the environment's address mapping table, which removed
the segment containing <logical variable> from the virtual address space.
Consequently, the “optimized” code gasve an addressing error.

Since so much of the static structure and actual code of operating systems
involves execution environment management, a methodology and notation for
constructing and manipulating environments would benefit operasting systsm design
and development greastly. Specifically, it would

e Permit a3 comprehensive system description to include environmental

interactions among components, thereby forming s broader basis for
formal analysis of system structure.

e Provide a framework for various programming aids, including
consistency checkers, system integration tools, and debuggers.

e Bring the benefits of dsta abstraction to the task of programming the
connections between source programs, their executable representations,
execution environments, and the managers of those environments.

1.3. Scope of the Thesis

This thesis develops and evalustes a system of methods for designing and
constructing conventional muiti~tasking opersting systems. It is an extension of an
existing methodology, incremental machine design [Habermann 78], and is also
based on the methods of data abstraction [Wulf 76].

I presume an implementation Ilanguage that supports strongly typed dsta
abstractions, checked during compilation  The ability to precisely control the
interaction of system components, and the ability to compose program units in a
well defined way into progressively more abstract entities, are essential to coherent
design and deveiopment of large operating systems. Furthermore, | expect the
compiler for the implementation langusge to produce machine code that is
acceptably efficient for system software.

This thesis addresses the description problems of large, compiex operating
systems, such as commercial multi-tasking systems for conventional virtusi memory
srchitectures. The techniques will of course apply to smaller systems, but | will not
be satisfied with toy solutions to toy problems.

In line with my intent to solve "real” problems, | presume a compilstion—based
program development system, rather than one which is interpreter—based
Furthermore, the methodology must apply to cross—compilation environments,
although it is not limited to them. ( mesn specifically to exclude systems like L»,
where one develops 8 system by "growing it" out of a simple interpreter. These
designs beg the question of how one designe and develops the interpreter and
sassures its correctness.)




One aspect of commercial systems | won't address is confidentisl source code.
This phenomenon of the marketplace unduly complicates the task of customized
configuration Nonetheiess, configuration methods that protect proprietary software
may eventupily come out of the present work.

[

1.4. Preview of Results

“Methodology” literally mesns, “a system of methods” A set of methods is a
system when the methods work together to carry out an organizing principle. A
methodology is valuable when the principle and methods combine to producs better

programs.

The organizing principle behind the proposed methodology is the following

An opersting system and its implementation language are integrai parts
of one another. The language system has no resources of its own
instead, it implements system components out of resources supplied by
the operating system itself. The language provides notations that both
facilitate and discipline use of the resources. Each execution
environment is a set of these resources, provided by some level of the

system to support subsequent levels.

The methods proposed to carry out this theme include the following
s Representing execution environments as explicit modules in source—

language programs.
o Using both compile~time and run—-time mechanisms to enforce the
boundsries of environments.

e Designing or seiecting an implementation lsngusge whose features
harmonize with the facilities of the particular system being designed.

e Binding source program units to environments explicitly, in a
way that allows muiti-environment modules and multi-module
environments.

e Inciuding host machine and boostrapping execution environments in
operating system descriptions.

e Combining all program units into a single comprehensive system
description, that is a program to creste an operating system.

Applying the system of methods to a set of operating system description
problems. we shall see that it produces the foliowing resuits:

e A better interrupt synchronization method than is available in current
languages.

e A strongly typed characterization of bootstrapping, that preserves the
modulsrity and hierarchy of the system design

e A demonstrably hierarchical source language specification of s real
operating system :

N




1.8. Goals

What constitutes a “good” methodology? Because this thesis does not contain any
theorems or software by which to demonstrate the success of the methodology.
the reader and the author must agree upon a set of criteria by which to judge it
The criteria | propose are:

o Utility

o Clarity

o Fithess
o Flexibility

e Implementability

1.8.1. Utility

Adopting 3 new methodology requires a substantial investment in software support
tools and programmer training Therefore, the methodology must be sufficiently
useful to justify the cost We shall consider the methodology useful if it makes
contributions to a varied collection of important operating system description
problems.

A description problem is the task of capturing a class of information about
operating systems directly in the text of the programs. For the information to be
considered adequstely captured, it must be checkable for consistency with other
parts of the system of programs, and must be subject to the same encapsulation
and redundancy standsrds demanded of conventional program components.

The problem set, to be broad enough, must represent a variety of different

stumbling blocks of operating system implementation, inciuding both theoretical
problems and problems known to cost time and manpower in real system
development efforts.

Section 2.2 will introduce a set of problems by which to test the utility of the
methodology. '

1.5.2. Clarity -

The methodology must lead to system descriptions in which a// of the connections
between a module and its neighbors are clearly represented.

Perlis et a/ [DeMillo 79] have argued that verifiability is more important than
verification for producing relisble programs. A notation must of course have a
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precise, axiomastizable meaning. but it must aiso be simple and clesr, to heip the
authors and readers of programs understand them = Any new notstions for
representing execution information must have meanings that are simple and
formalizable, in line with the embedding languasge. Furthermore, although multiple
languages may be necessary, for describing different aspects of the the system, the
total number of them must be kept smsll, and they must be sufficiently harmonious
that both human and automatic readers may easily understand the relationships
between parts written in different dialects.

1.5.3. Fitness

The methodology must provide notations that fit the problem domaing of operating
system description. It must provide, or provide the mesns to construct, notations
for the objects. structures, and operations with which the system designer must
deal, in & style which corresponds to the way the designer thinks and talks about
the problem damain. Thus asssembly isnguage would not be a fit lsnguage for
writing scheduling algorithms, nor would APL be a fit language for interrupt handiing.

The main thrust of data abstraction languages has been to let the programmer for
sny perticular domain construct the notations which fit- his domain However, they
succeed only to the extent to which the class of abstractions the language supports
fits the class of abstractions needed for the domain For instance, very few
languages provide iterstion abstraction constructs, and the ones that do aren't yet
fully mature. Any new notations introduced must be motivated by the problem
domsin, unsupportable in current languages, and general enough to find broad
spplication

1.8.4. Flexibility snd Transparency

The methodology must facilitate system construction without materially constraining
system design. That is, it must be transparent enough to give system designer full
use of the hardware's capabilities, and flexible enough to assist the designer in a
broad range of design methods. While not all system design practices sre worth
supporting, any system design style which can be defended shouid be possible
within the methodology.

The term “transparency” has several definitions in the computer science literature.
| define the transparency of a programming methodology, and of its notation, as the
degree to which it makes the underlying machine's functionality available to the
system designer. A methodology shou/d encourage certain uses of the machine and
and discourage or prevent others; howsver, the notation itsslf should only conceal
functionslity that is demonstrably undesirable. ~ For example, even though the
Bliss-11 lsnguage has no GOTO statement, its rich set of control flow structures
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and highly optimizing compiler support nearly all of the desirable code sequences
that an assembly language programmer might use. This definition of tranparency is
due to Parnas and Siewiorek [Parnas 72s)].

1.5.5. implementability

The methodology must lead to programs whose performance is compstitive with
conventional operating systems. Aiso, the program development toois dictated by it
must be sufficiently simple that they are easier to verify than conventional operating
systems, and that their implementation costs don't outweigh their benefits.

1.6. Outline of the Thesis

This thesis contends that a methodology for operating system design should
incorporate an explicit notation and specific methods for relating the source-
language system design to the execution environments in which it will reside. | will
substantiate this claim by extending a particular methodology. /incremental machine
design, with a notation and methods for dascribing execution environments, and then
using the extended methodoiogy to develop solutions to several system design and
development probiems.

in Chapter 2 we will examine incremental machine design as it was used in the
development of the FAMOS system. In that system we will see various exampies
of important relationships between the source-isnguage programs and the execution
environments in which they run, especially relationships which affect modularity and
hierarchy. From the FAMOS experience we will extract three significant probiem
areas to address with the extended methodoiogy: interrupt synchronization,
bootstrapping, and verifying hierarchy.

in Chapter 3 we will generalize from the FAMOS address spaces to a broad model
of environments, snd deveiop programming and system design techniques based on
the model. By examining various ways in which the representations of abstract
objects may overiap, we develop a model that supports many degrees of
cooperation between environments, from mutual suspicion to compiete trust
Viewing compilers and linkers as providing the concrete representstions of
programs, leads to an abstract data type model for the relationships between
compilers, linkers, and environments, thus providing the "missing link” betwaen virtual
machine levels in system descriptions. Within that framework we then study the
programming techniques needed to incorporate environment information in source
programs, including new techniques for controlling the visibility of names, binding
program components to environments, relating system generation progrsms to
system descriptions, and initializing muiti-layer systems.
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Chepters 4, 5, and 6 spply the new methods to the problem sreas identified in
chapter 2, both to elsborste the methods and demonstrate their usefuiness In
Chapter 7 we measurs the extended methodology agasinst the goals set for it in
section 1.5. Then, in chapter 8, we relste the methodology to other work in the
srea, summarize the contributions of the thesis, and outline directions for future
work. f
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CHAPTER 2
FAMOS: MeTHODS AND PROBLEMS

In this chapter we review the design of FAMOS. The FAMOS project produced a
methodology of operating system design. By reviewing FAMOS we can formulste
the principles used in thst design, see how the principles appear in prsctice, and
look for design and implementation problems thst the methodology does not
address. This analysis will provide the basis for extending the methodology with
techniques and tools for dealing with execution environments in system designs, in
chapter 3. The second half of this chapter formuiates three diverse operating
system design problems, srising from FAMOS but not unique to it, which will be
soived in later chapters using the extended methodology:

e Interfacing to inconvenient hardware
e Verifying hierarchical relations
e System integration

FAMOS is a suitable foundstion for this investigation because programming
methodology was a central issue in its design, and because it used many small
protection environments to achieve modularity within the operating system | do
not claim that the methods used in FAMOS are superior to thoss of other systems,
but only that they are suitsble for extension to cover problems of environments. |
will from time to time cite examples from other systems, to show thst the issues |
am addressing are of general concern.

2.1. The Methodology of FAMOS

The FAMOS project was an experiment in modulsr design of operating systems. |t
tested the feasibility of designing a Family of Operating Systems in such a way as
to minimize the redesign and recoding effort required to create a new member of
the family. The family members might differ in underlying hardware configurations
(anywhere from a single minicomputer to a large muitiprocessor system) and in
expected application (from batch to intersctive tc real-time). The material shared
between family members could be actual shared code, or it could be a shered
module specification, with different mplementations to satisfy different
performance requirements.

i ~
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To achieve sharing among family members, the FAMOS designers employed two
strategies:
e They identified a substantiasl set of Jdesign decisions that could be
shared among all family members

e They used program design and implementation methods that facilitated
module sharing among family members

Note carefully the distinction between the two strategies, and why both are
necessary. being sble to share code between family members is useless unless
their designs are sufficiently similar that some modules asre worth shering
Conversely, uniess two family members can actuslly share code, shsring design
decisions will not likely lsad to savings in the overaill cost of the systems., and the
designs will likely evolve in divergent directions.

The FAMOS methodology applies to more than just operating system families. The
dimensions of varigtion among family members are the the same dimensions slong
which a single, real opersting system is likely to change over time. An operating
systemn ought to be able to adapt to changes in the underlying hardware and in user
needs, without radical changes in the basic design.

Since the emphasis of this thesis is on methodology rather than system families,
we will organize our review of FAMOS around its programming methods, rather than
sround the shared design decisions. Thres terms cheracterize the methodology of
FAMOS:

e Incremental machine design
e Moduisrity
e Hierarchy

Incremental machine design denotes building a system as a sequence of software
layers, where each layer defines a virtuasl machine, on which subsequent layers can

"execute. The virtusl machine features provided by a lsyer come from one or more

modules, chosen and specified such that redesign of one module is unlikely to
require reimpliementation of other modules. In FAMOS two or more features at
different levels sometimes share a design decision, such that changing that decision
would require that they all be re~implemented. Those festures would sil reside in a
single module. Nonetheless, the entire set of procedures in FAMOS is partially
ordered (a hierarchy) according to functional dependency, defined as "X depends
on Y jff X calls Y and depends on the resuits.”

We shall discuss each of these concepts in some detail, then summarize the
important aspects as they relsta to environments.

S




2.1.1. incremental Machine Design

incremental machine design has three important characteristics:
e Each layer enhances only a portion of the underlying system

o Transferring control from one layer to another does not necessarily

imply any runtime overhead whatsoever

e The interfaces between layers can be viewed as virtusl machines

Each software layer adds a facility or feature to the system, and conceals part of
the underlying system. Specifically, sach layer will only conceal those parts of the
system that it uses; all other system features are freely available to subsequent
layers. The resulting combination of new and old facilities defines the virtva/

machine on which subsequent layers execute. A layer may

include several

independent features, which are each built upon the underlying system, but do not
make use of one another. For example, the two synchronization modules in FAMOS
both use the process manager to maintain waiting sets. but are otherwise unreisted.

The layers of FAMOS are shown in figure 2-1:
Figure 2-1: Software Layers in FAMOS

User Programs

More Process mansgement
Swapping
Block /0 managsment
Semaphores -- Path Expressions
Process Mansgement
Clock management
Address Space Management

clock driver -- disk driver -- tape driver -- terminal driver

Software interrupt management

Hardware

e The hardware for the initial family member was a PDP-11/40 with
memory msanagement option.
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e The software interrupt queue provides a communication facility
between interrupt routines and device management modules, and
conceals the hardware priority register in the CPU.

e The device drivers conceal the physical device control registers,
rophcmg them with “virtual devices” thst are |ess time-sensitive, and
cdl communicate with the device managers via protected procedure

s.

e The address space manager maintaing static and dynamic address
spaces. and implements protected procedure calls. It defines the state
vector of a process, and provides context switching instructions. It
conceals the relocstion hardware, and all physical memory.

e The ciock manager provides a set of interval timing clocks that can be
be started and stopped individuallyy. When sn interval has elapsed, the
clock manager invokes the appropriste wakeup routine via the software
interrupt mechanism

e The process manager keeps track of all "in—core” processes. It
rmitlphxu the processor among those processes that are ready to
, and maintains the data type “waiting set” to hold sets of processes
thathavoboenblocksd The process mansger uses and concesls one
of the interval timers, to measure time slices and signal when each one

e The semaphore facility and the path expression facility both use waiting
s;t‘: to hold blocked processes, but are not directly related to each
other.

e The Block /O manager schedules transfer requests between ?nmary
and secondary storage, and blocks processes that are waiting for /0
it concesis the virtual device registers that were provided by the

corresponding drivers.

e The Swapping manager copies segments to and from disk, and
permanently conceals a fixed portion of the disk, devoted to this
purpose.

e The upper-level process manager initiates and terminstes processes,
and moves them between primary and secondary memory.

Because each software ievel conceals only those system features it uses, crossing
a level need not cost any execution time at all. For example, the address space
manager uses the software interrupt mechanism to report exceptional events, such
as running out of free space. The memory manager may invoke the software
interrupt mechanism as easily as the device driver can; no code is associsted with
"crossing” the device level to invoke the software interrupt level

in FAMOS, each layer of the system is specified as a compiete execution
environment, with memories, processors, instruction sets, registers, and peripheral
devices. At iow levels, many of these environmental festures are provided directly
by the hardware; at higher ievels each is implemented or in some fashion managed
by the iower-level software.

For example, the clock driver executes in the privileged Kernel Address Space, is
driven by ordinary hardware interrupts from the clock, and is abie to manipulate the
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clock control and data registers directly. Its execution environment includes only
one programmed feature, the software interrupt queue. The clock driver implements
an abstract clock that is functionally identical to the hardware clock, except that the
abstract clock won't iogse time if the clock manager is delayed in responding to an
interrupt  Operations on the abstract ciock are implemented as kernel calls (invoked
by the EMT instruction)

The virtusl clock manager, in contrast to the clock driver, executes in an
unprivileged user address .space, maintained by the address space manager. It
communicates with the clock driver by invoking kernel calls, and by receiving virtual
{Le. programmed) interrupts from it

The combined set of new and old facilities available at each leve! define a virtua/
machine in the sense that the available facilities are analogous to hardware features;
more importantly, the level is compiletely specified, such that every correct and
incorrect use of the virtual machine produces a well-defined effect. and no
sequence of operations on it can break the underlying software.! Each virtual

machine level defines a possibie point of convergence between family members.

For example, the virtusl machine defined by the process muiltiplexor level could have
different implementations for uni— and muiti-processor configurations: two family
members could be identical above that level, and different below it

2.1.2. Modulsrity

The FAMOS system was decomposed into modules according to the criteria
sdvocated by Parnas [Parnas 72b, Parnas 71]:

e Generalityy A good decomposition. should keep viable as many useful
design aiternatives as possible.

¢ Informstion hiding Any system facility that could be implemented in
seversl useful ways, should be concesled in a module whose
specification does not reveal which implementation method was chosen

e Sparss connections: The connections between modules are the
assumptions the modules make about one  another. A module’s
specification lists all of the information that may be assumed about it;
in gomral this should be much less than the information that is known
sbout it by its implementors.

° Hiddon dsta structuress one aspect of a facility which is often
i is the organization of its data  Therefore. each data
structu'o should ordinarily be concesled in a module that provides all
of the operstions necessary to access it without revealing its
organizstion.

11'hu statement aasumes the impiementstion is type safe. in genersl, it s program bug at a higher
level can produce sn undetected address computation error (such as an array index out of bounds), the
bug can propsgste to any part of the system. The protected addressing environment tacility of FAMOS
is mtended to provide firewalls for defense ageinst such problems; we will discuss this more in the
context of modularity.
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e Design modules vs. execution modules The operations which a module
provides for its facilities may be impiementsd as procedures, macros,
interprocess messages, or even access algorithms. With this flexibility,
a single machine—language procedure could be made up of instructions
derived from several different design modules, provided that the
program development system includes an adequate transiation tool.

The clock manager illustrates several of these principles. 1t is specified such that
the clocks are not bound to any other system components, such as processes. That
allows higher system levels great flexibility in how clocks are used, whether to
measwre time—of-day, CPU slices, experimental phenomena, or program performance.
Conversely, the collection of clocks is specified as a set, rather than a vector or
list, so that the data structure organizing the clocks can be changed later if the
initial implementation is unsatisfactory. In fact, two implementations of the clock
manager have been built

e a linked list implementation, which handles an interrupt in constant time,

but resets a clock in time proportional to the number of running
clocks.

® a vector implementation, which handles an interrupt in time proportional
to the number of existing clocks, but resets a clock in constant time.
Both implementations satisfy the same external specification; a particular family
member would use the implementation best suited to its performance requirements.

The reader will have noticed that many of the principles of modularity listed above
have become codified in abstract data type programming methodologies. The
FAMOS developers employed data abstraction techniques in several ways:

e The "programming standard” for the project dictated that the individual
program components be written as abstract data type managers.

e Each major system facility is specified as a manager of some type,
where that type embodies some virtual machine feature.

e The protected address space facility was modelled after the modu/e
concept now found in many programming languages.

FAMOS is programmed in a strongly typed data abstraction language. for which no
compiler exists. Instead the system is transiated by hand into Bliss—11. The Bliss
code reflects the type definitions and module declarations of the high—level
description, although Bliss itseif does not support typed variables.

The process manager is an example of providing virtual machine features as an
instance of a type. It is specified as the manager for the types virtua/ processor
and waiting set. Each virtual processor provides a complete execution environment
identical to the virtual machine defined by the address space manager, except that a
virtual processor does not provide context switching instructions. Instead, it
provides the type waiting set with operations "block” and "wakeup”. A waiting set
is simply a collection of virtual processors that have been blocked pending some
event The "block” operation moves the invoking process form the ready set to the
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specified waiting set "Wakeup” selects a process from the specified waiting set
snd moves it back to the ready set

An address space in FAMOS consists of a set of code and data segments, a set
of entry points, and a list of "capabilities” representing the right to invoke other
address spaces. A program executing in one address space invokes another
address space by means of a protected procedure call, naming an entry point of
the invoked address spasce, and passing psrameters. An activation record for a
protected procedure has its own address mapping table and execution stack. Thus
there can be several processes executing in a single address space simuitaneously.

The festures of an address spsce are quite analogous to module facilities in i
modern languages The entry points amount to exported procedure names; the '
capabilities are importesd module names; and, procsduras can share code and data
fresly within the address space, but not between address spaces. Furthermore, an
address space can be very small or very large, so that conceivably each execution A
module of the system could be protected in a separate address space. .'

For example. in order to protect the process scheduling data structures from
errors in other system components, the process manager's procedures and data are
isolated in their own virtual address space. Like the clock manager's address
space, it has no special privileges. The process manager simply uses and conceals
the context switching instructions provided by the underlying virtual machine.

The process manager exemplifies close correspondence between a design module
and its execution environment All virtual processors descriptors, and all waiting
lists, are stored in the process manager's address space. Each abstract operation is
impiemented as a very simple macro, that sets up and invokes a protected
procedure call to the process address space. The correspondence is close because
the type manager is highly suspicious of its users Leaving any processor
descriptor or waiting list unprotected would make the entire system wvuinerabie:
damage toc one of these could shut down the scheduler. However, there need not
be a one—-to-one correspondence between design modules and protection
environmems. Other modules in FAMOS are less suspicious of their users, and sre
correspondingly less protected:

e The sorted /ist module is used independently by several other modules.

Each of them has a separate instance of the manager's code and data,
placed in the using module’'s environment

e The semaphore module uses a waiting set to hold blocked processes.
The representstion of the semaphore consists of a count field, placed
in the declarer's environment for efficiency, plus a waiting set, kept in
the process address space for safety. A bug which destroys the
count field will certainly destroy the semaphore; however, it cannot
damage the waiting set, nor the scheduler itself.

o The c/ock mensger module represents a virtual clock with a clock
descriptor, kept in the clock address space for quick access on
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inmerrupts, plus a programmed interrupt vector, kept in the address
space manager's (kernel) address space. The clock manager has no
control over access to the interrupt vectors. Neither does the address
space mansger check whether a request to set an interrupt vector
comes from its owner. Consequently, the wakeup routine register of a
virtusl clock is not protected by any run time mechanism.

These exampies serve to show that the partition of the FAMOS system into design
modules is different from its partition into execution modules. Partition for design
is based on concern for human comprehension; partition for execution is based on
concern for protection, efficiency, space limitations, and other physical properties.
The different partition for execution does not compromise the modularity of the
design; it merely specifiess mechanisms for run time checks on program integrity.

These examples also show different ways in which instances of a type appesr in
different execution environments. A methodology for dealing with environments
should provide tools for programming each of these type management styles.

2.1.3. The Uses Hiersrchy

Up to this point | have been somewhat informal about how the levels of the
FAMOS system interact with one another. In fact the interaction takes place via
function invocation, ie. by an operation of one level invoking an operation provided
by another level. Furthermore, the interactions between system levels obey a
functional hierarchy. ordered by the uses relstion

Hierarchy is a much-overworked term for a desirabie property of system designs.
it denotes a pertial ordering of system components according to some relation
To define a hierarchy, one must state both how the system is divided into parts,
and the precise naturs of the ordering reistion between parts. A waell-chosen
hierarchy, faithfully adhered to, can make a system much easier to understand,
leading to better design, easier debugging, and more straightforward verification

Parmas has surveyed [Parnas 74] the ordering relations most commonly appearing
in operating system designs, such as /nvokes, uses, gives work to. is composed of,
gives resources to, and is more privileged than. For example, the THE system
consists of a set of processes partisly ordered by the relation gives work to

[Dijkstra 68). Each process is responsible for servicing a queue of tasks, each
of which it supposedly either carries out directly, or passes on to other processes.
¥ esch process in THE can be shown to either carry out or delegate every task
given to it. then because of the partial ordering one can be convinced that all work
will eventually be done. If the reistion were not a partial ordering. but were cyclic,
then tasks could be delegated indefinitely, and never carried out

The FAMOS system is partially ordered by the uses relation, over the set of ail
operstions defined by all virtusl machine levels. The uses relation is defined as X
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uses Y if and only if X calls, and depends upon the results of calling, Y. A
program that calls procedurs X ordinsrily does not know or care whether or not X
calls some procedure Y. Since a failure in Y would ordinarily make X appesr to
malfunction, X ordinarily depends on the results of calling Y. On the other hand,
suppose X is a file manager, and Y is a file—user's "end-of-file’ routine. In that
case, X would be expected to call Y when the end of file was reached, and X
would not be biamed if Y malfunctioned Therefore, X would not be said to "use’
Y, even though X wouid call Y.

Unfortunately, X wi// be blamed if Y enters an infinite loop, and never returns
control to X Therefore, to call a procedure without using it requires some
guarantee that the procedure will terminate.

The FAMOS software trap mechanism embodies the “call-without-using” concept
directly. It provides a “virtual trap vector” in which high level modules can insert
protected procedure names When a low-ievel module uncovers some condition
that must be signalled (e.g "free space exhausted”, "sleep interval terminated”), it may
invoke the protected procedure, without knowing what the procedurs does, or
depending on the outcome. [t is the responsibility of the module defining the trap
handier to certify its termination? Roy Levin's exception mechsnism [Levin 77]
would include the FAMOS mechanism as a special case. We will axplore the impact
of exception protocols on modularity and hierarchy in chapter 4.

The wuses relation, like the gives work to relation, aids proofs of system
properties. In general, to verify that a module is consistent with its specifications,
one must assume that the modules used by the given moduie meet their
specifications. Consequently, if the uses relation is acyclic over a system, then the
consistency of a system can, one might conjecture, be composed out of the
consistency proofs of individual modules. This might not be easier than verifying
the entire system at once, but the ordering should make verification easier
regardiess of the method, simply because the system is more regular than an
unstructured one. Testing. too, is simplified by a wuses hierarchy: any subsystem
that is closed under the uses relastion may be tested separately from the rest of the
system. If the uses relation is a partial ordering, then the ordering defines a natural
system integration sequence. By testing the lowest module first, then repeatedly
adding the next lowest module and testing again, one can avoid having to debug a
large number of interrelated modules simultaneously.

Although making the uses relation among functions be a partial ordering seems
essential to good system design, other ordering relations affect system design,

2At one point during the system implementstion eftort, Cooprider proposed a change to the

software trap mechanism that would protect the invoker from non-terminstion. There was not time to
expiore the feasibility of the proposal.
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sometimas conflicting with the wuses relation For example, modern programming
languages, and module interconnaction languages. tend to highlight the composition
relation and the scope relation, by means of a modu/e construct A module is said
to be composed of the modules declared within it; it may also control the scope of
the names defined within it by making them available to, or hidden from, the
surrounding context. The nested modules form a directed, tree-structured graph for
both relations.

The relations uses, is composed of, and controls the scope of. interact in FAMOS
as followss A FAMOS module controls the scope of the names defined withing it
One function may use another only if the name of the latter is visible in the body
of the former. The uses relation defines a partial ordering of all functions in the
system; that partial ordering is partitioned into virtual machine levels, where the
functions within a level use only functions defined at the same and lower leveis. A
virtual machine /s composed of the functions of that level plus the next lower virtual
machina. Figure 2-2 depicts these concepts  single letters denote functions,
arrows depict the uses relation, the dashed box denotes a module, and the solid
boxes denote virtual machines. Module M has chosen to conceal function C, so that
only functions J and K may use it The latter two functions are not conceailed.

Y U I I [ J

VA1 Module M

VM2

VM3

Figure 2-2: Functions, Modules, and Leveis in FAMOS

Because FAMOS is organized as a hierarchy of functions, rather than modules, a
single module could contain functions from several non-adjacent system levels. For
example, the memory management module (cf. figure 2-1} implements the software
interrupt layer, the address space management layer, and the swapping layer. This
formulation of the module concept conflicts with recent programming language
modules, because it makes the scope relation quite different from the composition
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relstion. For exampie, the virtusl machine defined by the process manager level is
composed of, among other things, the address space manager, and yet some of the
features of the address space manager are concesled from the process manager,
but available to the swapping manager. | will address this issue in section 3.2,
presenting a new method for handling it, and apply that method in several of the
case studies in subsequent chapters.

2.1.4. Summary

The design of FAMOS is organized as a sequence of virtusl machines, from the
hardware to the user environment. Each virtusl machine is specified as an execution
snvironment on which subsequent layers can run A lsyer concesls only those
underlying system features that it uses, leaving the rest freely available to
subsecquent layers.

FAMOS is programmed using abstract data type methods, despite the fact that its
implementation language does not support typed data it contains many examples
where the partition of the system into design modules is quite different from its
partition imto execution modules. In particular it has many cases where several
different execution environments contsin instances of the same type.

Since the development of FAMOS, programming methods based on abstract data
types have crystallized into languages such as CLU Modula, Mess, Euclid, Alphard
and Ada Several sttempts have been made to build operating systems in data
abstraction languages. In each case, the entire system executes in a homogeneous
environment Those system components that must reside outside that environment
are either added to the programming language's “run time system”, or simply
programmed in some other language. In contrast to such systems, FAMOS is a
multi-layer, muiti—environment system. A strongly typed impiementation language for
such a system would have to nclude facilities for describing axecution environment
features, and for binding program esiements to environments.

FAMOS c/aims to exhibit a hierarchical structure, based on the uses reiation over
the set of virtual machine operations. However, this claim is hard to verify, or
disprove, because the bindings between virtual machine levels cannot be adequately
expressed in available notations.

in order to determine with any confidence that a programmed system exhibits
certain global properties, one must first be able to integrate all of the components
into a single, comprehensive system description, where all of the connections
between the pieces are represented explicitly. Without notations for representing
environments, such a system description is far from complete, and the system
designer must make do with ad hoc , piecemeal descriptions.
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in the next section we will discuss three problem areas where the lack of an
adequate methodology for dealing with environments, is keenly feit

2.2. System Description Problams

in Chapter 1 | proposed to develop 8 methodology for dealing with execution
environments, and to test that methodology by applying it to a set of operating
system design problems. in this section | will describe three problems to use for
the test

e System integration
e Interfacing to hardware

o Representing hierarchy

Esch of the problems arises in FAMOS, but is not uniqus to that system. Each
involves environment description in a slightly different way. System integration
requires environment descriptions to automate the transiation, integration,
bootstrapping, and startup of a system. The hardware interfaces in an operating
system are environment features; they must be repraesented in system descriptions in
a way that conveys their asynchronous nature, so that they may be coordinated with
the synchronization facilities of the implementation language. To impose a
hierarchical structure upon a system, its representation must exhibit a// dependencies
between modules, including those between program units and their environments.
Together, these thres problems are broad and deep enough tc test the clarity,
flexibility, asnd fitness of the proposed notation, and the overall usefulness of the
methodology.

For sach problem, | will first give a concise.statement of the particular design task
to be executed, then discuss the problem area in general, and finally give some
desired properties of a solution to the task. The solutions to the problems will be
presentad in chapters 5, 6 and 4, using the extended methodoiogy of chapter 3.

2.2.1. Hardware Interfaces

The architecture of the computer upon which an operating system runs determines
in lsrge part the character of the system However, language facilities for coping
with hardware features have so far been quite primitive, because hardware festures
theamseives do not mesh well with the kinds of abstractions most often found in
programming languages. Language designers have had to choose between providing
each hardware festure in its naked state, disjoint from other language features, or
providing it closked in some elegant language feature, making certain uses of the
hardware quits convenient, but others impossible.

Device communication hardware has received a grest desl of attention in systems
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implementation languages, and so it is the focus of the design task for this probiem
arex

integrate a modern architecture's interrupt mechanism into a system
d”it?mne and system implementation language, such that all reasonsbie uses
of hardware are available to the driver programs, and the resuiting
facilities are available via sbstract synchronization mechanisms, to higher
system leveis.

Three typical hardware facilities that are poorly represented in implementation
languages are address transistion managers. device drivers, and context switching
operations. For example, an address transiation manager will usually contain some
data structure that resides on secondary storage, with pieces swapped into primary
memory as needed This overlaying of data must be done behind the compiler's
back, since the compiler assumes that all data mentioned in a program will be
present in the address space as needed”. We discussed in section 1.2 a bug from
FAMOS in which a source program change that looked to be simply an optimization,
in fact changed the address transiation tables, leading to an "illegal address” error.
Because the compiler knew nothing about address translation, it could not help
detect the error.

Peripheral devices pose two kinds of problems to the system designer and
language designer. giving the device driver programs access to the hardware, and
synchronizing interrupt routines with the rest of the operating system. Operations
on device control registers are intrinsically hazardous to the entire system, at least
for devices that can read and write primary memory directly, because an incorrect
value placed in a data register couid cause the device to overwrite the wrong part
of memory. No amount of type checking could prevent such an error. However,
systems must have that access, so recent languages (e.g. Euclid, Modula) allow a
program to bind a varisble to a specific memory location, thersby giving source—
language access to device registers.

Device synchronization problems sre more difficuit The asynchronous execution
of an interrupt routine fits poorly, st best, into modern synchronization constructs.
Masking interrupts by manipulating the interrupt priority level register of the CPU, is
likewise clumsy and error prone. Concurrent Pascal, Modula, and Gypsy have each
taken the approach of transforming the arrival of an interrupt into some more
sbstract event, which could then be handled by a conventional synchronization
facility. Concurrent Pascal provides message channeis and monitors, Modula has
device processes, monitors, and signals, and Gypsy has a general message system.

To provide these sbstractions. the language systems have had to incorporate fairly
elaborate run—time support packages, consuming significant amounts of memory and
CPU time. Furthermore. these facilities actuslly constrain the class of operating

3A few iangusge systems do exist that support overisid data, but not for systems implementation.
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systems impienwntabie in each lsnguage. Concurrent Pascal preciuded virtual memory
operating systems, by concealing the interrupt structure inside its message queues.
Modula supports only non—preemptive scheduling of system processes, in order to
reduce the synchronization overhead for its monitor-like interface modules. Gypsy
provides s message system as its synchronization mechanism, thereby constraining
the message system component of the operating systems it is used to implement

Context switching operstions are even more difficult to support in type-—safe
languasges than device register operations, because they must directly manipulate the
representations of programs. For example, a protected procedure call mechsnism
must have access to facilities normally concealed by the language system, often
including access to its own representation The resulting facility must be formally
integrated with a language system that will make it useful for subssquent layers.

A good methodology for dealing with hardware interfaces should give the system
designer two notationss a transparent one for writing the programs that will deal
with the hardware directly, and another that conveys the abstract role of the
hardware component in subsequent system layers. For example, it would supply &
transparent notation for writing and synchronizing interrupt handlers, and an abstract
notation for synchronizing device managers with system and user processes.
Notations for each of these already exist; the methodoiogy would contribute the
"glue” to connect levels written in different notations.

2.2.2. System integration

The mtegrate—and—test phase of systam development has received very little
attention in programming languages, despite the large fraction of the total system
development time it often consumes. Many of the bugs that cause delays are due
to lsck of coordination between system integration, generation, configuration,
initislization, down-loading, bootstrapping, and startup. This lack of coordination is
due in large part to the lack of a comprehensive system description tying together
all of tha pieces.

A realistic problem in this area must be ifarge enough to draw in several
environments and several ievels. | propose the following

Give a set of module specifications for a simple operating system,
inciuding the levels that provide static and dynamic storage management,
virtuai memory, and process muitiplexing. The specifications must show
how system integration, initialization, bootstrapping. and startup interact
with one another in this system.

Programming languages for individuai compilation units have been comparatively
readsble and meaningful since Fortran, and axiomatizable at least since Pascal In
contrast, ianguages for system integration remasined quite primitive until the work of
Deremer and Kron [DeRemer 75], and are stii not commonplace [Tichy 80].

e — e ————— e
" - . S _ i




29

instead, most system integration information has been described by linker command
files, and ad hoc system generation programs. These notations are inappropriste for
two reasons: they don't support the kinds of system environment concepts the
programmer is trying to describe, and they don't mesh well with the programming
language used to describe the individual modules. Specifically, the linker command
languages do not typically provide any way to relste the object files to the source
language program entities they represent, nor to relste them to the operating system
programs that will manage the environment in which they are to reside. This type
of shortcoming leads to curiosities like the B5000 swapping manager. which would
occasionally swap out the space mansger. (This made all in—swapping impossible.)
The bug came about because the distinction between swappable and non—swappsbie
code was not adequately supported

Module interconnection langusges wers invented to address issues of name control
and system structure, which linker command langusges could not handle. Tichy's
/merco/ language, for example, supports vigibility control with an Ada-like module
specification syntax, asugmented with facilities to handle muitiple versions of system
components. However, Tichy's lsnguage describes only the source-ianguage
structure of systems.

Module interconnection languages provide the basis for automating the integration
of a multi-levei, muiti-environment system. However, they still need a way of
representing execution environments, in order to automate the collection of
environment management data Objects to be managed include both explicitly
declared ones. such as processes, and objects created by the compiler to represent
programs, such as code and data segments. Ad hoc schemes for assembling this
information tend to violate Parnas’ information hiding principle, by requiring too much
connection information to appear in specifications.

initialization, bootstrapping, and startup require coordination of hundreds of small
- bookkeeping tasks, in muitiple execution environments, for several different
purposes, in a very hostile debugging environment By “initialization” | mean inserting
a meaningful vaiue into every variable By "bootstrapping” | mean installing and
beginning to execute a compiete system on a machine that initially has no program
running and nothing meaningful in primary memory. By "startup” | mean connecting
the system software being bootstrapped to the environment "(hardware anc
permanent data) present at load time. (This may include primary memory diagnostics,
reading in root directories off disks, or establishing communication with a network.

Difficuities arise because all of these activities must go on simuitaneously, and
becsuse several of them require coordinstion between different exscution
environments. For instance:

e Some startup routine may fail because it attempted to use a data
structure that was not initialized yet
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e The act of moving a piece of data from secondary to primary
memory, then executing it, is usually considered a type breach

e The flow of control during bootstrapping is opposite to the usual
system hierarchy. Each virtual machine must, when done with its own
startup, transfer to a routine provided by its user.

e The loader must cooperaste with the host—machine programs that write
the data it reads. Again, this imisrface is usually poorly specified

e System resources (memory and processes especially) must be allocated
statically (during initialization), and also dynamically (on behaif of users).

e The bootstrapping and startup code itself must reside in special
execution environments that can be dismantied, and the resources
reusad, once the system is running.

Most of the above problems of system integration, initialization, bootstrapping, and
startup occur because existing notations do not allow the programmer to coordinste
these activities adequstely. System generation is normally handled by an ad Hoc
program Loading is divided into @ down-loading program on the host machine, and
a chain of bootstrapping progrsms on the target machine. Initialization is split
between the host and target machines, and on the target machine it is embedded in
the same procedures that do bootstrapping and startup, with no distinction among
them

A useful methodology for environment management should lead to system design
techniques that 4
e Transmit program representation objects le.g process descriptors) to
their managers automatically.

o Minimize the amount of relocation and linking that must wait until
startup.

. im:nate the necessity of type—breaching between virtual machine
els.

e Encapsulate decisions that affect code on both host and target
machines

o Rationslize the startup of successive system layers
e Dispose of "startup code” cleanly

2.2.3. Representing Hierarchy

In section 2.1 we discussed the benefits of modularization and hierarchy in
operating system design, but concluded that without explicit representation for
dependencies involving environments, claims about hisrarchy would be impossible to
verify. To see whether the proposed methodology satisfactorily captures such

dependencies, | will attempt to
Give a program decomposition for a system that supports

———————— e e
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muitiprogramming, space allocation, and i and swapping, such that
the “uses”, "composition®, and "onvirommn%htions sre all apparent in
the source code, and determine whether the reistions are hierarchical.

Operating systems are promising candidates for the benefits of modularity and
hierarchy, because they are large, complicated, long~lived, and continuously evolving
Furthermore, they must be able to recover from hardware errors gracefully, and
detect software errors without destroying user data irrecoverably. However, finding
a good hierarchical, modular system design is very difficult, because the components
of sn operating system interact with one another in subtie and complex ways, eg.:

e Process management is ususlly separated from address space
yet memory mapping information is part of the execution

management, r
state of a Procoss, and swapping managers need process
synchronization tacilities.

o Device interrupt routines often suspend the execution of the current
process, then invoke synchronization operations provided by the
process scheduler.

® Access to devices, interrupt vectors, and processor registers is often

provided in the form of special memor¥ locations, thus invoiving the

memory manager in sach of these other facilities.
Both FAMOS and MULTICS became entangied in a chicken—and—egg problem involving
process managers and memory managerss a process manager uses its memory
manager to move processes between primary and secondary memory; a memory
manager uses its process manager to keep track of processes that have incurred
page fauits or need more memory. The heart of the problem is that a process
needs both memory and a processor to run Both FAMOS and MULTICS [Reed
76. Janson 76] had to divide up the relevant management programs in fairly
unconventional ways to achieve hierarchical organization. The resuiting programs had
two or more versions of several descriptor types: a version for permanently
existing descriptors, to be muitiplexed by a low level manager, and a version for
descriptors to be created and destroyed at will by a higher level module.

Modern data abstraction languages have contributed a great deal to modular,
hierarchical system design The relations “is composed of", “"calls”, and "has access
to", can all be documented directly in the source programs, with the help of module
definition facilities to prevent unintended dependencies. However, these languages
come up short in supporting other relations:

e Partial Compositionm. In incremental machine design, each system layer
conceals only a part of the underlying system. In current languages it

is hard to say thst one module is composed of "part of" another
moduie.

e Uses. Current languages make it hard to distinguish procedure
invocations that imply wuses dependencies, from ones that do not
Current frontiers are exceptional condition handiers and iteration.

e Scope. |deally a program component should only be able to name the
facilities it is allowed to use. However, the scopes of identifiers in
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most are tree-shaped, following the composition rules,
whereas uses relation is often a directed, acyclic graph.

e Environment. Bindings batween source program entities and their
environments, are hot describsble in modern languages. Consequently,
many environment-based ies must be lumped under the ca//s
or uses relstion, without differentiation

Data abstraction does indeed solve well the probilems of data and program
composition. It generally assumes a base_ environment of independent primitive
cbjects, which can be composed into more- abstract objects., and manipulated by
abstract operstions defined by procedures. This methodology does not apply
equally well to data decomposition, however. [n conventional langusge systems the
representation of programs is left to the lsnguage system impiementor; the
programmer is allowed to think that he can create objects that are independent of
each other. In an operating system, however, there is only one basic object The
Machine. The job of the operating system is to decompose the machine into
independent objects that can be used to support independent program entities. For
example, on most DEC systems all of the interrupt vectors must reside contiguously
in physicai memory, even though they have nothing directly to do with each other.
The module that manages the interrupt vector table must arrange to decompose that
table into independent interrupt vectors, each paired with a device control register,
or some other hardware feature. Similarly, the very memory in which programs and
data reside is tightly coupled, through whatever mapping mechanism is used to
achieve virtual memory. The operating system must enforce a discipline on the use
of that mapping mechanism that will preserve the appesrance of independence of
individual program entities.

The "chicken and egg” probiem of FAMOS and MULTICS invoived the relationship
between static and dynamic versions of an object, environmental dependencies
between memory and process management programs, and "uses” dependencies that
did not follow the compositional hierarchy. An effective methodology for
environment management must facilitate identifying a// dependencies between
program components, and recording those dependencies in the program text It
shouid also contribute some insight into the relevance of the various ordering
reistions that have been advocated for structuring systems.

2.3. Summary

The three system design tasks posed in this section form a diverse sampling of
important problems involving the role of environments in system descriptions. The
system integration probiem has enormous practical implications, because it addresses
an expensive aspect of system construction which has previously eluded formal
treatment The hardware problem is an interasting operating system topic by itself,
because it must interact both with synchronization and exception—handling. It aiso
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raises general, practical questions, such as how much effort should go into tailored
language support for small system components. The hisrarchy probiem attempts to
bring theory a big step closer to practice, by capturing the ordering relations
directly in programs. In doing so we will be much better able to tell whether the
proposed hierarchies actually lead to relisble, economical software.

The tasks were inspired by difficulties in the implementation of FAMOS, but sre
common to many opersting systems. Their solution: should give us a measure both

- of how broadly useful the methodology is. and how deeply it penetrates three

diverse aress.




CHAPTER 3
TeECHNIQUES FOR ENVIRONMENT MANAGEMENT

The aim of the methodology is to describe an operating system compfetely within
a strongly typed notation, including the bindings between prog wms, environments,
environment managers, language support systems, and the physical components of
the machine. Such a complete description will be a valuable aid to system design,
integration, and verification /

The system of methods | present in this chapter synthesizes

e the /ncremental machine des/gn techniques used in the Family of
Operating Systems [Habermann 78],

e the data abstraction techniques represented in languages such as
Alphard and Ada, 3

e software management techniques based on a module interconnection
language [Tichy 80]

e a new conceptual framework and notation for environment management

Our discussion of FAMOS in Chapter 2 gave an intuitive feel for the interaction of
environments, modules, and shared data in that system. We begin this chapter by
defining an environment as an exp/icit list of memories and instruction execution
facilities. We discuss the features that may appesr in environment specifications,
and how they reiste to operating systems and to lsnguage systems.

incremental machine design methods require that a machine layer conceal only
those parts of the underlying machine that it uses. Binding environment festures to
the modules that build upon them, requires a notation for the concept of exc/usive
access, which is different from simple access and from ownership by containment
Wae shall introduce such a notation, derive scope rules to support the concept of
partial conceaiment, and show now the notation clarifies the dependency
relationships among program modules.

Interfacing the impiementation language system to a comprehensive operating

system description requires an integrated approach to the design of the two
systems. Because a systems implementation language should provide a fit, transparent I
notation for using the festures of each virtual machine layer, | propose that the L
operating system be the run—time system for the language. To ensure harmonious 1 \
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design, the system and its implementation language shouid be designed together. An
environment specification defines the interface between the langusge and the
system, expressed as a set of types, varisbles, and procedures provided by one and
used by the other. For example, the operating system provides the types section
and segment, which the compiler uses to implement types such as procedure and
variable. More generally, a language would specify the minimum set of festures
every environmemt module must provide. This view of languages and environments
lets us represent both compilers and environments as modules in comprehensive
system descriptions.

Programming in @ muiti~environment context requires the ability to place instances
of a single type in different environments. Coup/ing, through shared data, between a
type manager and instances of the type, affects the ways in which the scattered
type instances can be supported We shall survey several different type
managemr >t styles, seeing how coupling occurs in each, and how each can be used
in muiti-environment systems. We shall look at a specific case from FAMOS to
ilustrate the ideas.

Next we propose a laguage mechanism for binding program units to
environments. The mechanism is designed according to the following principles:

¢ Binding a program element to an environment consumes resources, and
therefore should normally be controlied by explicit program directives.

e A program unit may contain as much or as little binding information as
desired, including none at all. Binding directives should not clutter
programs unnecessarily.

o Binditiy a8 compound g::g_nm unit to an environment should bind its

components as well, in a way that is flexible enough to support

the full spectrum of type management techniques.
First | shall introduce a simplified notation for types and modules that clearly
separstes definition from instantistion, and add to it a syntax for environment
annotations. | shall propose inheritance rules for propagating environment bindings
to inner modules, and show that these rules harmonize with the type management
styles identified earlier. By programming some examples derived from FAMOS, we
shall see that the language mechanism sstisfies the goals of brevity, modularity,
information hiding, and utility.

To coordinste host machine and target machine activities in the system generation
process, | propose to view the host machine as one of the environments in which
the operating system resides. | shall program a small but realistic virtusl machine,
using the new notation, showing the relationships between compilers, linkers, loaders,
initislizstion, bootstrapping, and startup. At the topmost level, the system description
is & program to creste an operating system.
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3.1. Environments

in this section | shall define the concept of an environment | take the view that
an environment is a definite entity, corresponding somewhat to a virtual machine. A
system designer creates environments, and places system components in
environments.

An environment is neither a source-program name context nor a run-time
protection environment. Instead, an environment is a source-program list of
execution facilittes. A module may make use of several different environments, and
conversely, an environment may support several different modules. Furthermore, a
single exscution environment may span several protection environments, and a single
protaction environment may support several execution environments. An
enviornment need not be protected at all, or its protection may be implemented by
a combination of source language and run—time mechanisms.

Figwre 3-1 shows how modules, environments, and protection facilities relate to
one another, with respect to the memory portion of an execution environment The
system consists of two segments, S and T, two environments, £ and F, and two
modules, M and N Environment E allows access to both segments S and T, whereas
environment F only allows access to segment T. Moduie M uses only environment E,
while Module N places procedures in both E and F. Procedure C can name the
verisble B because B is visible in Module N; C can also access B because they reside
in tha same environment In contrast, Procedure A cannot name C because C is not
visible in module M Procedure D can name B, but cannot access it, because they
reside in different snvironments, even though they reside in the same segmert.
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Figure 3-1: Modules, Environments, and Segments

The features of an execution environment can be roughly classified as memories,
instruction interpreters, registers and devices, and entry points. We shall first
discuss each class of feature as it appears in operating systems and language
systems. Then we shall define in more detail the minimum set of features an
environment must have to support the execution of programs.

3.1.1. Memories

A memory in an execution environment is any block of storage accessible by
instructions executing in that environment in operating systems we find both
virtual memory and physical memory. We also find the notion of a name space
le.g in Multics) We must be careful to distinguish among these concepts.

We define the /ogical memory of an environment to be the set of objects
(variables and procedures) that a program executing in that environment can access
{read, write, or call. For the purposes of this thesis we nead to define a global
naming system for objects, independent of individual execution environments. Each
object in the system shall have a unique identifier, its /ogical name. FEach logical
name will denote a /ogical address, which specifies the r:" ory location containing
the object Typically, objects are collected into segments, for administrative
purposes. When this is the case, a logical address is composed of a segment name
and 3 displacement within the segment

P
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Any given system may or may not provide a concrete realization of such a naming
scheme. A good software development control system might have a global symbol
table with logical names and addresses. On the other hand, a traditional compile—
link-load system might only have segment-relative names, and a segment identifier
might only be the name of a linker output file in the host file system Specifically,
however, not all objects having logical names will reside in the segment management

facility of the system under construction, since some of them will be used to

implement segment management!

A virtual address is the means by which an individual machine language instruction,
within a given environment, refers to a particular location in the logical memory.
The lsnguage system is responsible for constructing the correct virtual address for
a given logical memory location. An operating system can move pieces of the
logical memory from place to place in the physical memory, and can even retain
several (identical) copies in different places. The execution environment is
responsible for translating each virtua/ address into the current physical address of
the designated location. However, the correspondence between virtual addresses
and logical addresses need not be static, nor one—to-one. It is both conceivable
and feasible in many systems to have more than one virtual address correspond to
the same logical location. Also, in environments where the total size of the logical
memory is larger than the virtual address space, such as in Hydra, FAMOS, and
RSX-11, it becomes necessary to change the mapping between them dynamically, so
that the "working set” is addressable.

Since a /ogical address is defined to be independent of any particular execution
environment, | define a /oca/ name, or simply name, to be the environment-relative
representation for a logical address. For example, a Hydra execution environment
provides a "capability page set” (CPS) listing the segments (pages) that are accessible
from that environment A program refers to a logical page, in a system call, by its
CPS index.

To illustrate the relationstup between local names, virtual addresses, logical
addresses, and physical addresses, consider the following scenario from Hydra A
program in some environment wishes to increment the variable V. V is located in
segment S, at displacement d The logical address of V is <S,d> The language
system reserves a place, C, in the CPS for the segment S. The local name for V is
<C.¢>. When the time comes for the program to access V, the language system
asks Hydra to make segment C addressable through reiocation register R. The virtual
address of V at that timo is <R,d>. At the same time, Hydra places logical segment
S in physical page frame P, making the physical address of V at that moment be
<P.d>.

4Hy:in actually uses the term "iocsl name” to refer to elements of the "local name space”, which is
the set of capsbilities » program running in the environment may use. | confine my use of the term
to refer to objects that may be made addressable.
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The Hydra addressing mechanism provides a separate CPS and relocation register
set for each addressing environment However, two environments within an
operating system might share address translation facilities. For example, the device
drivers and the address space manager in FAMOS coexist in the kernel address
space, even though their logical memories are nearly disjoint The fact that their
logical memories were designed to be disjoint, except for one segment, is sufficient
basis for saying that they reside in different environments.

Among the segments in the logical memory of an environment, we must distinguish
betwee~ those that are merely accessible from the environment, and those that
actuglly contain the programs residing in the environment An environment might
provide a set of utility procedurss, in an execute—only segment The programs
compiled to execute in that environment would occupy storage aliocated from a
different segment | define the term program region to denote the memory that
contains the programs residing in an environment

3.1.2. Instruction interpreters

The basic instruction set for a given environment is simply the set of opcodes
acceptable to the CPU's instruction interpreter. This set may vary depending on the
privilege levsl in the program status register, but the possibilities are generally fixed
once the underlying architecture has been constructed and the microcode written
However, from time to time we will want to designate certain procedures as "virtual
instructions”. For example, a "system call” instruction usually takes an immediate
operand designating a particular privileged subroutine. Each such subroutine can be
viewed as implementing a virtual instruction, whose "opcode’ is defined by viewing
the immediate operand as an extension to the basic opcode.

Protection—oriented operating systems often provide a "protected procedure call"
instruction, via the above mechanism. This raises the possibility of viewing protected
procedures as virtual instructions aiso, especially those procedures that perform
utility services, and those procedures that support high level language features, such
as synchronization and files. Finally, there are times when ordinary procedures are
viewed as virtual instruction, such as when they are supplied by the language system
to make up for omissions from the basic instruction set

3.1.3. Registers snd Devices

The assortment of registers and devices accessible in an execution environment
would include physical devices, virtual resources, and components of the
environment's instruction interpreter.

A physical device is often accessible only through virtus! instructions, which
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protect it from abuse and also make it more convenient to use. The clock provided
by the FAMOS clock driver is such a devics.

Virtual resources come in at least two varieties: those that embody physical
resources, and those thast simply provide system servicess FAMOS virtual clocks
ilustrate the former; waiting sets illustrate the latter. In both cases the
representations of the objects must be kept in a pool where the resource manager
can access them at all times. In FAMOS they were also outside the logical
memories of the environments that use them, although this wouid not always be
necessary.

Instruction interpreter features might include a virtual address transiation facility, a
capability list, an exception handler, and a synchronization facility. These differ from
ordinary devices and resources in that operations on them affect the instruction
interpretation process itself. A successful methodology for environment
management should coordinate the language system and the operating system with
respect to such features For example, the languag: system must know the
correspondence between logical and virtual addresses at all times. It should also be
able to relate the trap mechanism of the opersting system to its exception handling
and synchronization features.

3.1.4. Entry Points

An entry poinmt is a designated logical address in the program region of an
environment, to which control may be transferred from some other environment
This concept is intimately connected with virtual instructions and protection
Depending upon the protection mechanism separating two environments, a call from
one to the other might be implemented as a macro, an ordinary jump-to-subroutine
instruction, a trap instruction with literal argument, or a special protected procedure
call instruction, with operands specifying the environment and address. The protocol
for any procedure is part of its specification In friendly systems, the entry point
information could be the calier's responsibility, just as an ordinary assembly language
procedure reiies on its caller to use the correct starting addrass. in a protection—
oriented system, an environment specification could include a dispatch table, to
contain the addresses of legitimate entry points. The protected procedure call
instruction would then take operands specifying an environment and an index into its
dispatch table.

3.1.5. Definition of an Environment

The concept of environment | wish to define should satisfy the following
properties:

e It shouid suggest how a system designer might define and construct

P
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environments as concrete entities, rather than deriving them from
other informsation it must be possible for a system designer to select
the number and nature of the environments in his system, name the
memory and instructions in each, and name the runtime mechanisms that
will implement them

e it should reflect on/y the machine code aspects of an execution
facility, and not source language constraints. In particulsr, it should not
constrain the scope of identifiers.

e It should permit one to partition a program's executable representation
i y from its source language organization. It must be
possible both for an environment to contain components of several
source modules, and for each of those modules to spsn several
environments.

o It should support transfer of control between environments.

e It should give the system designer the flexibility to trade off between
compils-time and run-time protection mechanisms.

Therefore, we shall define an execution environment to be

a specification for a virtual machine, sufficiently detailed and compiete
that one could program that machine.

Such a specification would inciude, but not be iimited to:

e a set of /ogical memory segments whose contents are accessible to
programs rasiding in the environment

e a program region within the logical memory

e an address mapping function defining the relations between logical
memory and virtusl addresses

e an instruction set, including both basic and virtual instructions

e instruction interpreter registers, such as relocation facility and capability
list

e an entry point mechanism

e other machine features

An environment specification could be represented in a strongly typed language as
a8 module specification. This will let a system designer use source language facilities
to define and construct environments. In section 3.3 we will discuss methods of
doing this.

An environment constrains the use of identifiers only by defining the logical
memory and address mapping function. An identifier in a source language procedure
denotes a /ogica/ address, independent of any environment Only when a procedure
is bound to a particulsr environment must the lsnguage system transiate the
identifiers it uses into local names and virtual addresses. (in single—environment
systems this is customarily done by the linker) In section 34 we will discuss
seversl type management styles, and assess the implications of placing type
instances in several different environments.
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More generally, environment specifications allow a language processor to determine
whether a given source language unit is feasible in a specific environrment In
section 35 | wil define a syntax for binding individua!l program units to
environments, and develop rules for propagating bindings to inner units, such that
multi—environment modules are feasible. In particular, | will define a means of
designating entry points to environments, and for analyzing the feasibility of passing
parameters between environments.

The proposed approach to specifying environments not only distinguishes
environments from source modules, but aiso distinguishes them from the run—time
mechanisms used to implement them. This allows a system designer to use
compile—time mechanisms for enforcing protection For example, the page-fauit
handler in an operating system ordinarily cannot be aliowed to generate a page fauit
it must only access pages that are already in core. And yet, the handier code is
ordinarily mapped by the same page table as the other time—critical procedures of
the system. A system designer could define an “in core” environment, whose logical
memory contained only segments guaranteed to be in core. This environment could
use the same page table as other system environments, since the language system
would insure that only safe pages were actually used

To see how environment specifications would fit into a system description, in
section 3.6 | shall develop a small example that shows the relationships between
several environments in a small bootstrap loader. Chapters 4, 5, and 6 illustrate the
same techniques in more realistic domains. :

3.2. Partial Conceaiment of Machine Layers

Before pursuing the details of environment management, we shall discuss a
shortcoming in existing facilities for scope control in high level languages, and
propose a remedy. | will use the remedy to help describe dependencies between
modules. This issue affects all operating system features, not just those that
implement environments. Howaver, since it does not directly affect the management
of individual environments, the reader may want to skip this section on first reading
Section 3.3 begins on page 56.

Each of the virtual machine layers of FAMOS provides a rather long list of
machine features for use by subsequent layers. However, each level is only
incrementally different from the previous level. A module at a given level
enhances just a few of the features provided by lower levels, iesaving the rest
available, unmodified, for use by other modules. For example, one machine level in
FAMOS provides an address space management facility, a process muitiplexor, a
clock manager, and a variety of I/O devices. (Cf. figure 3-2) One of the modules
at the next level uses the address space manager and one of the disks to provide
support for swapped segments. This module does not modify the process
muitiplexor, clock manager, or other 1/0O devices in any way.




SUBSEQUENT LAYERS
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provides Swapped Address Spaces
SWAPPER MODWLE
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management A
\
/
provides address space disk [0..7] processes clocks
management

PROCESS VIRTUAL MACHINE

Figure 3-2: Incremental virtual machines in FAMOS

A module that builds upon certain features of the underlying machine level, must
conceal those features from subsequent layers to protect its own integrity. For
example, a process scheduler can only guarantee fair scheduling if it has exc/usive
access to the CPUs “process state register” (eg VAX's Process Control Block
Base register). If some other system module can switch process contexts without
the scheduler's consent. the scheduler can fail to provide the service it promiese.

A strongly typed, modular program defines access to & program component by
specifying the scope of the component's name. Only those program modules in
which the name is visib/e can invoke the name (and thus use the feature. However,
existing and proposed scope control meachanisms are inadequate for describing
exclusive access to some portion of a module’s features, because

e One module cannot enclose a portion of another module.

e An identifier's scope specification is distributed over most of the
modules that comprise the scope.

e Exclusive access cannot in general be verified by the compiler.

The acquires clause | shall propose is a /oca/ized specification of exclusive access,
that allows a module to concea/ an identifier within its boundaries without enclosing
the module that provides the feature.

We shall begin the discussion by defining a simple notation for modules, that
captures the common properties of existing scope control mechanisms, and by
describing an access scenario to be specified by scope control. Then, we shall
examine how exclusive access can be specified with existing notations, by
considering two cases:

e The module needing exclusive access encloses the module that defines

L, . .
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the feature needed This strategy contorts and obscures the program
structure by cluttering the enclosing module with the names of a// of
the enclosed module’'s features, most of which it does not need.

e The module noedir_rlgl exclusive access imports ( requires, uses ) the
needed feature. is strategy allows a change to a distant module
frequiring the name when it previously did not) to destroy the exclusive
access property without being detected by the translator.

Next we shall define the acguires clause, specifying its affect on the scopes of the
identifiers it names, and illustrating its meaning with several examples. Finally, we
shall program the access scenario using the acqdires clause to specify exclusive
access, and see that it satisfies the goals of the problem

3.21. A Conventional Scope Control Mechanism

To simplify the following discussion let us assume a data abstraction language with
a module construct for dividing programs into statically nested, closed scopes, and
two clsuses, provides and requires, for allowing names to be visible in more that
one scope. That is,

e A name is visible in the scope where it is declared

e A name visible within a module is visible outside that module /7 and
only if that moduie provides that name.

e A name visible immediately outside a module is visibie within that
module /f and only if that module requires that name.

This very simple language for modulsrization lacks many of the elegant properties of
existing and proposed module constructs, but it has two properties that they all
share: closed scopes are strictly nested, and visibility of names is regulated at the
boundary of each closed scope. :

To determine the scope of an identifier one must examine the defining module and
its neighbors, to determine what modules are reachab/e from the defining module
via provides and requires clauses that name the identifier. For a particular module
to have the use of an identifier, there must be a path from that module to the
defining module. More formally, we define the following relations:

DiVM)  Identifier i is declared in module M.
RiMN) Module M immediately encloses module N, and N requires i
PiM.N} Module N immediately encioses module M, and M provides i
ADJifM,N)  Pi U Ri (adjacency)
A program provides and requires correctly /f and only if, for each i,
e there exists a unique M such that Di(M), and
o the graph defined by ADJi forms a tree with root M
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This formulation implies that an identifier may not be both required and provided
bythesmmodule,mdﬂ'\atallmomodwesinmebasosotofmoremionwe
reschable from the deciaring module. The scope of i is the basis set of ADJi, that
is,

The scope of i, where i is declared in module M, is { N | ADJI"MN)}

3.2.2. An Access Control Problem

In incremental machine design, one often finds that a given module needs exclusive
access to only a subset of the facilities provided by the underlying virtual machine.
This most often happens when a set of facilities that appear to be independent of
one another, according to their specifications, turn out to be coupled in their
implementation. For example, two different I/O devices might have no /ogical
relstionship to one another, but might be coupled through shared use of interrupt
hardware and software. Therefore, a single module that encspsulates the design of
the machine's I/O subsystem, would provide the names of all the /O devices
present on the machine.

As @ basis for analyzing scope control mechanisms, we shall consider a system
consisting of

e A hsrdware module VMO, that provides the hardware devices "terminal”,
“disk”, and "clock";

e A Clock Manager module that uses the ciock to provide a time-
stamping procedure.

e A File Manager module that uses the disk to implement files.

o A Graphics module that uses terminals to display graphical images.

e A gystem of modules that use clocks. files and graphics.

The hardware devices must all be deciared within VMO for some unspecified but
unavoidable reason Each intermediste module needs exciusive access to the device
it uses, to maimain its integrity. Each intermediate module is programmed by a
different person, who is only dimly aware of the specifications of any modules his
program doesn't use. There are no hidden dependencies among the three
intermediate modules. Informally, the virtual machine layers of this system would
look like




An adequate scope specification for these modules would have the following
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Subsequent Layers
use
Time, Files, Graphics

Clock Manager File Manager Graphics Manager
provides provides provides
Time Files Graphics
conceals conceals conceals
Clock Disk Terminais
VMO
provides
Clock.Disk, Terminals

properties:

e A module exporting an identifier should NOT control access to that
identifier in the surrounding text (A module should work properly
regardiess of how the facilities it provides are used)

e A module needing exclusive use of an identifier should be abie to
decisre that need in its specification, ahd have that declaration enforced
by the language. (The declaration shouid be /oca/ized and attached to
the program unit most affected)

o A module should control the scope of only those identifiers that are
relevant to it purpose. (it should only know what it needs to know.

e The need for exclusive access should not contort the program
structure unduly.

3.2.3. Conceaiment By Containment

One way a moduie can be assured of exciusive access to a festure is by
containing the module that provides the festure. Abstractly, if module A is a virtual
machine providing festures F, G, and H, and module B uses feature F to implement

improved festure |, then the modules would be composed as in figure 3-3.

|
1
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Module B
provides G, H, |

Module A
provides F, G, H
<<implementation of F, G, and H>>
end Module A

procedure | = . . . << invocation of F >> . .
<< other impiementation details of B >>
end Module B

Figuwre 3-3: Conceaiment by Containment

Unfortunately, this design does not adequately document the fact that module B
has not invoked resources G and H at all. Not only did B have to specifically
export two items (G and H) that it didn't use, but presumably the specifications of G
and H had to be transmitted as well, showing that in fact B did not modify them

Aithough the clumsiness of this method may not seem burdensome in any
particular case, it has serious implications for the overall structure of a system
Essentially, it calls for a new virtual machine level for each management module.
This in turn imposes a total ordering on system features, some of which have no
intrinsic relation to one another. The access controi problem defined earlier would
have to be programmed something like figure 3-4.

module VM3
provides graphics, files, time

module VM2
provides terminal, files, time

module VM1
provides terminal, disk, time

module VMO
provides terminal, disk, clock

<< definas device hardware >>
end mogulo VMO

proc time = . . . << jnvokes clock >> . ..
end module VM1

type files =
< type definition using disk >
end moduie VM 2

<<implementation of graphics facilities using terminal >>
ond module VM3 :

Figure 3-4: Muiti-isvel Concesiment by Containment
The modules VM1, VM2, and VM3 have been totally ordered by contsinment, in

i
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order to achieve conceaiment This ordering is clumsy, and unnecessary, since
“graphics”, "files”, and "time" have nothing to do with one another. One could
imagine with even a moderately complex operating system, that the p:.ovi les clauses
could be ciogged with urrelated names. Furthermore, whenever an mner module
was modified to add a new feature, each subsequent moduie would have to add the
name of that feature to its provides clause.

This difficulty comes about when two or more vi-tual machine features at a given
level appear to be independent, in their specifications, but in fact are relsted in their
implementations. They must be declared in a single module, because they are
related, but can be used by different modules, because they are made to behave
independently. However, a module that needs only one such feature cannot control
its scope without controlling the scopes of all the objects exported from the same
module.

3.2.4. Concealment without Containment

An glternate design for modules A and B of the previous section would place
module A and module B side by side, and have module B import only the resources
it uses, as in figure 3-5. This design allows module B to leave undisturbed those
features of module A that it doesn't need; however, module B has not concealed
resource F, either! Indeed, it may not be possible to verify the correctness of
module B without external proof that resource F is not used eisewhere.

Module A
provides F, G, H

<< implementation of F, G, and H >>
end module A

Moduie B
requires F

provides |
procedure | = ... . << invocation of F >> . ..

<< other impiementation details of B >>
end module B

Figure 3-5: Importing as needed

To specify exclusive access, one must arrange the provides and requires clauses
to give the access needed, and refrain from providing or requiring the name
anywhere else. The access problem we've chosen would be specified as in figure
3-6.
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Module VM1
provides graphics, files, time

module VMO
provides terminal, disk, clock

<< definitions of device hardware >>
end module VMO

module Clock Manager
provides time
requires clock

proc time = . . . << invocation of clock >> . . .
end module Clock Manager

module File Manager
provides files

requires disk
type files =

< type definition using disk >

end module File manager

module Graphics
requires terminal
provides facilities for graphics displays

<<implementation of graphics using terminal >>
end module graphics

end moduls VM1

Figure 3-6: Distributed Specification of Exclusive Access

This program specifies that, for example, module Graphics has exclusive access to
the identifier terminal, by

® requiring the identifier into the module Graphics,
® not requiring it into C/ock Manager or File Manager, and
e not providing it out of the module VA/7.

Such a specification is inadequate because it imposes an unstated constraint on the
clock manager and file manager, namely that they »not require “terminal”.
Furthermore, if the programmer of either module overiooks or ignores the
constrsint, and violates it by requiring the identifier, the violation will not be
detected This exclusive access specification is thersfore unsatisfactory because it
is distributed over several modules that it should not invoive, and unenforced by

the lsngusge system.




3.2.5. The acquires Clause

To resoive  -=a difficulties, | propose a simple addition to the set of ways one
can transport a name across a module boundary: the soquires clause. Iinformally, a
module that acquires an identifier "requires exclusive access” to it For example,
we would rewrite figure 3-3 as in figure 3-7.

Module A
provides F, G, H

<< implementation of F, G, and H >>

end module A
Moduie B
acquires F << note change >>
provides |
procedure | = . . . << invocation of F >> . ..

<< other implementation details of B8 >>
end module B

Figure 3-7: Acquiring as needed

Here Module A provides unrelated resources F, G, and H Resource F is "parcelied
out” to moduie B for management The acquires clause specifies that no other
module (outside Al may access resource F. (Remember that the reason F is declsred
in A and not B is that the representation of F is coupled to other resources in A}

To make the acquires clause testabie and enforceable, we must specify precisely
the conditions under which it may be used, and its meaning under those conditions:

An identifier that would otherwise be visible in a scope may he
acquired by at most one module in that scope. Furthermore, it may only
be acquired when excjusive access can be guaranteed.

Exclusive access can only be guaranteed if the following conditions are met
e The module enclosing the scop"‘héiﬂnr requires nor provides the
identifier. This would risk use of the identifier outside the enclosing
module.
e No other module in the scope requires or scquires the identifier.

o No other program unit (such as a procedure or declaration) in the
scope uses the identifier.

More formally, we redefine the scope rules for the language with the following
relations:

DiM) Identifier i is declared in module M.
RiMN) Module M immediately encloses module N, and N requires |
Pi(M/N) Module N immediately encioses module M, and M provides i

,___-A‘»A_..“_-__.*__....._._>‘-_‘A..A

adain ik
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AiMN) Module M immediately encloses module N, and N soquires i
ADJIMN) Pi U Ri U Ai (adjacency)
A program provides, requires. and acquires correctly /f and only if, for each i,
o ther® exists a unique M such that DiM),
e the graph defined by ADJi forms a tree with root M, and
e VX Y,Z AiX.Y) A ADJI(X,Z) =» Y=2

That is, if Y acquires i from X, then Y is the only module that obtains access to i
from module X. The scope of i is the basis set of ADJi, excluding those modules
from which i has been acquired That is, the scope of i, where i is declared in

module M, is
{ N | ADJ"MN) A VP ~ AiN.PI}

3.2.8. Examples

Let us consider some examplas of how the acquiras clause might be used

Suppose an identifier declared in a scope is scquired by a module
declared in the same scope. The visibility of that identifier is limited to

the inner module.

Module main

var C

module B
acquires C

<< The scope of Cis { B} >>
end module B

<< C is not visible here >>
end moduls main
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Suppose an identifier is provided to a module by one of the modules
declared within it, and soquired by another. The visibility of the identifier
is limited to the two inner moduies.

module main

module C |
provides D

var D

<< D may be used within this module >>
end module C

scquires D

<< The scope of Dis { B, C} >

|
|

module B ;
|

end module B

<< D may not be used here >> ‘
end module main

One might argue that using an acquired identifier /nside the providin?
module violates the exclusive access granted to the acquirer. However, i '
such use affects the external behavior of the ject, it will be L
documented in the providing module's specification. The acquiring module |
only "knows about” the outermost specification for the identifier, and only i
requires exclusive access relative to that specification i
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Suppose an identifier is provided by several modules enclosin? its
declaration, then acquired The identifier may be used within any of the
providing modules. and within the innermost acquiring module.

module Main

Module Prov1
provides X

Module Prov2
provides X

var X
<< X may be used here >>

end module Prova

N << X may be used here >>
end module Prov1

moduis Acql
acquires X

module Acq2
acquires X

<< The sco(pe of X is
Provl, Prov2, Acq2 } >>

end module Acq2

<< X may not be used here >>
end module Acql

end module Main

To summarize, the essence of the acquires mechanism is that the identifier is
allocated from the outermost providing module to the innermost sequiring module.
That innermost module is guaranteed exciusive use of the identifier. The ailocation,

furthermore, is checkable at compile time.

3.2.7. Tha Access Problem, Revisited

Returning to the example of the three device mansgers, we may compose them
using scquires as in figure 3-8
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Module VM1
provides graphics, files, time

module VMO
provides terminal, disk, clock

<< definitions of device hardware >>
end module VMO

module Clock Manager
provides time
scquires clock

proc time = . . . << invocsation of clock >> . . .
end moduils Clock Manager

module File Manager
provides files

acquires disk
type files =
< ty'?e definition using disk >
end module File manager

module Graphics
requires terminal

<<implementation of graphics using terminal >>
end module graphics

ond module VM1

Figure 3-8: Multiple Acquiring Modules

Note that esach module needing exclusive access has a localized specification of
the need, enforced by the language. For example, if the File Manager's specification
were chsnged to require "terminal”, the transiator would detect the conflict with
Graphics, which acquires "terminal”. Furthermore, the nesting structure of the
program generally reflects the natural compositional structure of the system. Virtual
Machine 1 is composed of an underlying virtusl machine (VMO) and three modules,
each of which conceals the features it uses.

An aside about aliases: Note that each of the modules provides a facility built
upon the acquired resource. If the resource were only required, this wouid creste
an glias for the resource. Languages that sttempt to prevent sliases, such as Euclid,
would forbid the latter construction. However, by acquiring an identifier instead of
requiring it, a module actually removes that name from the surrounding environment,
thereby removing the alias problem.

&,




3.3. Environments as Modules

in section 3.1 we deveioped the notion of an environment by looking at operating
system protection environments and language run time systems. In this section we
shall clarify the roles of both language systems and environments in operating
system descriptions.

One purpose of a systems implementation language is to provide, for each
environment, a programming notation suited to the facilities available in that
environment Many of these facilities correspond to features of traditional high—
level languages. These high—level language constructs pose the following dilemma

e A language construct can provide a valuable abstract notation for using
an operating system facility.

® Incorporating the construct in a language, before the system is
designed, prematurely commits the system to provide the facility.

e The price of not providing the language construct is a significant loss
of abstraction in the system description, and lost ability to verify or
enforce system properties based on syntactic structure.
To resoive this dilemma, | propose to design operating systems and ther
implementation languages simuitaneously. Then, in each environment, the operating
system shall provide components of the impiementation language support system

An snvironment specification in such a system dafines the interface between the
language system and the operating system. We shall study an exampie (from the
language Euclid) where the language allows a program to provide part of its own
run time support (dynamic storage management) by giving specifications for a
support module { 3 zone module ) to be provided by the program and used by the
language system.

The specification method used for Euclid zones may be applied to any ordinary
run-time facility, such as synchronization or exception handling However, most
environment featuwres require interaction between the compilar or linker and the
operating system, such as when the compiler places a variable in a section, linked
into a segment, and generates instructions that use virtual addresses to access the
varisble. To accommodate these features, we shall explore the. view that a compiler
is a type manager for the abstract type "program”, which it implements using the
types section snd segment and the primitive types of the execution environment
This view will aliow us to represent the compiler, linker, and environments as
ordinary moduies in system descriptions.




57

3.3.1. Language Systems In Operating Systems

A programming language is both a design notation and an implementation tool As
8 design notation, it must fit the problem domain. Kt must give the system designer
the ability to describe the system in a way that emphasizes the important attributes
of the system. As an impiementation tool, it must be precise and complete. That
is, it must describe everything about a system, exactly. A good language, both for
design and implementation, will allow the programmer to juxtapose pieces of
information that are interrelsted, so that the reader of the design can study that
interaction without having to sift through lots of unrelated material In order to
present the important material, the [anguage must concea/ irrelevant detail.  This
emphasis and conceaiment is often called abstraction.

Languages support abstraction in two ways: by providing built-in abstractions, (e.g
infix arithmetic operators, semaphores), and by providing tools for constructing new
shstractions (e.g. type definitions, macros) With an appropriate set of primitives and
good construction tools, one can construct a set of abstractions that fit the
probiem domain.

However, sometimes the price of abstraction is loss of transparency or efficiency.
Certain programming techniques, such as performing arithmetic on pointers, are
impossible to achieve in most strongly typed ianguages. Languages that replace the
goto statement with rich vocabularies of control constructs, such as Bliss—-11, are
usually inadequate for expressing certain exception—handling techniques. Retaining
the goto statement often results in distributed overheads, either by preventing
certain optimizations or by making the cost of discovering them prohibitive.

A ianguage with good construction tools might still fail to support certain
abstractions because of inadequate primitives. For example, a language without
synchronization primitives might not be able to support good synchronization
sastractions Even if the proper code sequences can be generated to implement,
say, monitors, the language cannot provide the static checking needed to make sure
that monitor entry and exit are properly nested

Recent systems implementation isnguages can be classified in two groups:

e Transparent languages, such as Bliss and C, which emphasize access to
the machine and very good code generation, but do not enforce data

types

e Strongly typed languages, such as Euclid, Modula, and Gypsy, which
attempt to provide methodologicslly sound, type-safe abstractions
corresponding to the features of the underlying machine. Typical
sbstractions provide muilti-tasking, synchronization, and device
communication

Although transparency is often a desirable, even necesssry langusge property, |
reject existing transparent (anguages for lsrge system construction for their lack of

strong type facilities.
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The advantages of the strongly typed approach are three: the compiler can use
special knowledge about the facility to generate better code, it can automatically
generate a management dsta structure customized to the program being compiled,
and it can perform static checks on the proper use of the facility. Modula, for
instance, by providing a particular form of monitors, was able to ensure mutual
exclusion without any run time overhead at monitor entry or exit Using a
transparent language to construct monitors requires the programmer to check for
himself that the entry and exit procedures are invoked at the proper times.

The disadvantages of built—-in facilities are:

e Hidden structure: such facilities usually require non-trivisl run-time
support, which is normally exciuded from system descriptions as a
"mere implementation detail”.

o Lost transparency. to protect the integrity of the built-in facility, the
must prohibit any other access to the machine features upon

which 1t is built

e Imposed design constraints: as mentioned in section 2.2.1, providing a
particular synchronization construct in a system implementation language
constrains the class of systems that can be built in that language.

Nevertheless, an operating system component s/ou/d be written in a notstion that
expresses the abstract properties of the facilities it uses. For instance, if a
message system is implemented as a set of cooperating procssses, it should be
writtan in a language with facilities for multiprogramming and synchronization.

These built~in language facilities embody operating system-—like functions. A
language that supports dynamic object crestion needs a storage manager. A
language that supports multiprogramming must have a process scheduler. A
language that supports exception handling must have a software error reporting
mechanism.  All of these are common operating system facilities. Because of the
similarity of purpose, we need a way to integrate language support software with
operating system facilities, such thast there will not be duplication, excessive

overhead, or conflict

3.3.2. incremental Programming Systemn Design

To integrate an operating system and its implementation ianguage. they should be
designed together. Each virtual machine level of an incremental operating system
design defines one or more execution environments for use by subsequent levels.
For each environment, the impiementation ianguage should provide constructs that
embody the sbhstract properties and proper use of the availsbie facilities. For
example. a programming language construct for exceptional condition handling might
be the methodologically "right” way of using software trap vectors.

Starting with a langusge for sequentisl programming with abstract data types, the
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system designers would add facilities for multiprogramming, exception handiing, '
dynamic objects, etc, as the corresponding facilities were being designed for the ]
operating system.  Specifically, each operating system facility would be designed :
with a particulsr language construct in mind, so that the virtual machine level which
provided the facility could support programs that used the construct Each
execution environment would support a dislect of the implementation language
tailored to the facilities of the environment in this way, each system level could be
programmed in a notation fitting both the requirements of the level and the facilities
availsble. -

Looking back at FAMOS, it could have been designed as follows:

Level Facility Language Feature ]

VM5 Waiting Lists Semaphores, Path Expressions 'Y

VM4 Process Management Multitasking |

VM3 Address Spaces Overlaying, “Named Common” A

m% Space Allocation 8ynun|icR jects 1
interrupt Masking ritical Regions

Hardware Interrupt Vectors Exception ?-Omdling

Figurs 3-9: FAMOS as a Language Support System

Actuslly implementing a separate language for each system level would be ‘
outrageously expensive. instead, in chapter 7.4 we will discuss tools such as ]
preprocessors, parser generators, linkage editors, and compiler compilers, that make
the costs manageable by sharing most of the translation software among levels.

Next we shall consider how to specify the interface between the operating system
and the language at sach system level.

3.3.3. Specifying the Module interface

Developing systems implementation languages concurrently with developing the i ]
systems they are to implement, will only lead to serious delays in both eff ts,
uniess the interface between the two is carefully specified The interface must A
provide the same quality of separation between the compiler and the environment L

. support facilities as between one operating system component and another. '

Therefore | propose the following technique:

Each language dislect shall give a specificstion for the minimum features
it demands of the execution environments it will use. This specification ,
will be in the form of an environment module, which shall define the |
programming interface between the langusge system and the operating '
system.

To see what form this specification might tske, we shall look at the dynamic
storage management facility of the Euclid run time environment, which is specified
just this way. Euclid sliows programs to manage their own dynamic storage pools,
called storage zones. A dynamic record type in Euclid is called a coliection; two
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records from differsnt collections have different types, even if the two collections
uss the ssme base type to define the structure of individual instances. The
decisration of a collection may optionally name a storage zone module. If it does,
all members of the collection will be created out of storage allocated from that
zone.

Euclid gives a set of abstract and syntactic specifications for a set of standard
procedures that every storage zone module must provide. However, these
specifications are only a minimal set of requirements. The module providing the
storage zone may provide any additional services that are appropriate, such as
statistics gathering facilities or "storage low” warnings. The user of a collection
invokes language operators new and free to create and delets objects; those
routines (presumably just a few in—line instructions) call the zone manager to obtain
and release space, and invoke the initialization and finalization code for the
collection's base type.

Whenever an object is created, a type transformation take place. The Euclid
language uses the type "allocation unit”, implemented by an ordinary user module, to
implement the language feature “dynamic record". Another interesting type
transformation takes place within the zone manager, between storage units,
addresses, and pointers. A Euclid zone manager must somehow declare a variable
which occupies the storage it is to manage, then bresk up that varigble into
allocation units according to the demands of the zone users. To facilitate this, the
langusge defines a type storage unit which has no operations defined on it. and no
distinguishable values. However, there is a function which maps an array of storage
units into the address of the first element The type address is a subrange of the
integers, sliowing arithmetic on addresses. There is also a guarantse that addresses
and pointers have the same standard representation. This facility allows the zone
manager to declare a vector of storage units, compute the address of any position
in the vector, and create a pointer to it

To summarize, the Euclid storage zone mechanism has the following properties:

e The type conversion between allocation unit and dynsmic record is
protected by the compiler

e The storage zone manager is written in essentially the same language
as the user program, and can be included like any other program
component in the overall system description.

e A program may invoke the zone manager directly, for instance to ask
how mn:ach space is availsble, or indirectly, via the language features
new free.

e The language system uses the storage zone mechanism to represent
vu;ld:m without imposing significant constraints on storage allocation
policy.

o ‘The language ovides special-purpose types to aid in the
implementation of zones.

|
|
]
f
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e The verification of the programs which use the storage zone can be
separste from the verification of the zone manager.

The storage zone is the only environment feature that a Euclid program is allowed
to supply for itself. However, the same approach ought to be suitable for process
management, synchronization, exception handling, address space management,
capabilities. and message systems. To generalize from the zone manager, observe
that for each language construct requiring environmental support, there are a set of
types. varisble and procedures that cheracterize the interaction between the compiler
and the environment Each type is either implemented by the compiler and used by
the environment manager (e.g storage unit for zone manager., state vector for
process manager), or implemented by the environment manager and used by the
compiler (e.g allocation unit for zone manager, waiting list for synchronization).

A language specification for an environment facility, therefore, would include:
¢ The specifications of the types the facility must provide
¢ The specifications of the operations which must accompany the type

e Those compiler—implemented types which the environment manager will
need to construct the types it provides

For zone managers, Euclid specifies the names of the allocation procedures,
including the types of their parameters, and provides the types storage unit,
address, and pointer for constructing storage managers A language which
supported cooperating processes would specify the routines any process manager
must provide, and define the type state descriptor which would contain that portion
of the execution state of a process for which the compiier was responsible. That
type would support operations like "load” and "unload”, for installing it as the
currently exeouting program, without concerning the operating system designer with
details of which registers to save and restore. The process manager would then
construct the type process descriptor by combining the type state descriptor with
whatever other information was appropriste to the operating system design The
operations provided to the language system would then deal in process descriptors
and state descriptors.

The types and procedures wouid not necessarily have to be implemented at the
time the compiler was generated; they might simply form a database which the
compiler used for code generation. In that way, the development of the compiler
and the operating system could proceed independently. These issues will be
discussed more in Section 7.4.

By specifying the boundsry between the language system and the operating system
in terms of types and procedures, we can separate those design decisions having to
do with code generation and optimality, from those dealing with environment
management and operating system structure. In particulsr, the transistor csn provide
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a mechanism for connecting an object (e.g process) to its container (e.g process
descriptor) without imposing po/icy sbout how that container is to be implemented.

3.3.4. Compilers, Sections, Segments, and Systems

So far, we have discussed only specifications for conventional run time facilities.
However, most of the features of an environment require interaction between the
lsnguage system and the environment manager during translation, such as when the
compiler places a variable in a segment, then selects appropriate instructions and
virtual addresses to implement operations on the -variable. Compilers, linkers, and
loaders, in present technology, are processes which transform a source—language
program into a running system. If we view them instead as type managers which
provide the concrete representation of an abstract program, we can use abstract
dsta types to describe ‘e translation system's role in an operating system. Then we
can sketch the specification of each kind of environment feature.

We take as our "atomic unit” of a compiled program, the section. A section can
be an arbitrary sequence of machine language instructions and data, whose value has
been determined by a compiler. A section might represent a variable, or a
procedure, or several varisbles and procedures, or whatever the compiler cares to
produce. However, it must correspond to a contiguous sequence of memory
locations, so that the linker can ignore any internal divisions.

Let a2 compiler is a type manager for the abstract type program, where (for the
time being we define program as the unit of source code given to a compiler for
transiation. The concrete representation of a program shall be a group of sections
containing the code and data, plus whatever information about the program must be
recorded in the environment management data structures. The sections a compiler
creates for a program can be placed in different environments.

Let a linker be a type manager for the types segment and section. A segment is
" an administrative unit of the operating system's virtual memory manager. The internal
lsyout of objects in a segment is not known to the memory manager, although the
segment might be divided into pages, at run time, for efficient storage
administration The linker concatenates a sequence of sections into a segment, thus
fixing the displacements of identifiers within segments. The linker could provide a
global symbol table mapping logical names into logical addresses.

An environment is a module or type, and is impiemented by the operating system.
it provides an implementation of each of the conceptual environment components
described in section 3.1 including

e A logical memory, perhaps of type set of segment, defining the
sccessiblie logical names.

e A program region, composed of one or more segments, into which the
compiler may place sections.

e N e



e An address mappi facility, giving access to the virtuai memory
mechanism provided by the operating system

e A basic hardware instruction set defining the primitive types of the
target machine, the effects of instructions upon them, et cetera The
machine descriptions Catteli used for automatic generation of code
generators [Cattell 78] would be appropriate.

e A set of virtual instructions, including operations on special registers,
micro-coded procedures, extended opcodes for invoking kernel
procedures, and known entry points to other environments.

e An entry poirt set

e Runtime support facilities provided by lower system levels.

We shall discuss in section 3.6 how some of these sets could be generated
automatically, during transiation, rather than having their contents listed statically.
Prime candidates for this are logical memory, known entry points, and the entry
point set

The environment module relates to the language system in the same way that
Euclids zone managers do. the language defines the minimal set of facilities any
environment must provide, and accepts as an environment any module which
satisfies the requirements. The module may provide other facilities as well; also,
there can be many different environment modules, with different implementations.

We are accustomed to seeing compilers and linkers as "host machine” software.
Environments are, too! An environment must accumulate segments, virtual
instructions, entrypoints, and other program representation information, and
disseminate the information to the compiler. We will discuss in section 3.6 how
this can be done.

The transiation support modules could be specified something like as shown in
figure 3-10. The linker and compiler modules can be thought of as a "standard
prelude” to a system description The type section is managed by a particular
instance of the type segment. The types procedure, varisble, and task, each take
as a generic parameter the environment in which the particular instance will be
located. The system description itself begins with a module which satisfies the
syntactic specifications for an environment
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module linker
provides type segment
type section
type logical name
4yps logical address
module symbol table

module compiler
requires linker
- provides type procedure<Eenvironment>
type varigbie<Eenvironment>
typs task<Eenvironment>
et cetera

module BaseMachine -— an environment

requires segment, et cetera
provides var InstructionSet

var LogicalSegmentSet
var ProgramRegion
module Address Map
module Capabilities
module Entrypoints
module Synchronization

Figure 3-10: Specifications for Translators

In this "modular decomposition” of the language support task, we have not said
very much about how control flow will pass through such a type description to
actuslly create a running system. We will discuss that question at length in Section
7.4

3.4. Type Management in Operating Systems

An operating system is responsible for decomposing a single object, The Machine,
into useful components which behave as though they were independent of one
another (most of the timel. Consequently, many of the type managers that appear in
operating systems use shared variables, descriptor pools, and management sets to
impiement types whose instances appear, from the viewpoint of their users, to be
independent entities. Those users are often located in separate environments. Now
that we can describe environments, we can talk about programs whose components
reside in different environments. We approach the subject by identifying rour
classes of dsta type management commonly occurring in operating systems. For
each class we examine how coup/ing between type instances, via shared data,
affects the ways in which instances of such types might be scattered across
several environments. To illustrate the difficulties involved, we review the design of
the virtual clock manager in FAMOS.
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3.4.1. Kinds of Type Managers

A type manager is the source—language program unit that implements a type One
dimension along which styles of type management vary is the degree to which the
type manager controls the instances of the type. | see four major bands in the
spectrum of possibilities:

1. Value types: The essential aspect of the type is its abstract value, and
the set of abstract functions available involving values of the type.
The primitive types of conventional programming languages are .
representative; the type manager for each of them merely supplies
functions over vaiues of the type.

2 Object types: The essence of the type is not only its abstract value,
but also some sense of its state. For exampie, a stack is an object
type. The primitive operations defined on a stack all take into account
its previous value, i.e. its state. The notion of copying a stack varisble
is not ordinarily meaningful. When a stack variable is first created, it
is in a distinguished state, uninitialized. None of the stack operations
may be applied to it until the "initialize” operation sets the stack's state
to empty.

3 Monitored typess The type manager has continuous access to all
instances of the type. It may operate on instances of a type
asynchronously with respect to operations invoked by owners. In
contrast, a type mana?er for a value type or an object type has no
need to keep track of the set of existing variables of that type. For
value types, the type manager never has to access the type-—user's
objects at all. (ideally, the language system provides assignment and
equality operators automatically} For object types, the type manager
must examine the object in order to correctly compute its next vaiue,
but once an operation is complete the type manager relinquishes
access to the object of the operation Garbage-collecting storage
managers implement the type pointer as a monitored type. The
storage manager keeps a reference to every pointer variable of the
user's program, so that the garbage collector can determine which
storage units are in use and which can be reclaimed

4. Allocated types: An allocated type has a limited number of instances.
usually because its instances are resources, Or use resources. 1t
type manager declares how many instances of the type there will he,
and provides operations to allocate instances to users on request
Obvious examples are hardware devices such as magnetic tape drives
and Arpanet connections; less obvious ones are user—ievel "jobs” in a
timesharing system, and operating system table entries. An allocated
type is different from a monitored type in that the manager of a
monitored type does not contro/ the number (* instances of the type,
although it must have access to all of them; an allocated type manager
actually determines the number of type instances.

Some of the differences betwesn these classes of types can be seen in the
parameter mechanisms that are applicable to them. Value types may be passed by
any mechanism available: value, reference, name, copy, resuit, deferred evaiuation,
etc. Object types may be passed by name, by reference or by read-only. copying
of the object wouid be disallowed Monitored types couid be passed by reference,
but only if the type manager avoided (or documented} asynchronous changes to the
abstract state of its instances. Allocated types cannot be passed by refersnce if




the resource can be deallocsted from the user, because it must be possible to
delete all outstanding references to the resource. Instead of passing the resource
object itself, the right to access an allocated object must be recorded in an instance
of an object or monitored type, ansiogous to a capability. Then, that capability
could be passed as a raference parameter.

3.4.2. Coupling

Two variables are coup/ed if an operation on one of them can change the value
of the other [Parnas 78a]. The extent to which type instances are coupled limits
the ways in which they can be distributed among different environments. Coupling
among instances of a type can occur at at least three levels:

e The abstract type specification may refer to an abstract object that is

shared among the type instances, e.g a tree that is shared by all of its
nodes.

e The representation of instances may be coupled. as when some
property of an object is represented by its presence in a linked list of
objects having that property.

e The instances may be implemented using a shared resource, whether
aliocated (e.g. memory) or muitiplexed (e.g CPU)

The last two forms of coupling do not couple the abstract objects, but only their
representations. Furthermore, the last form would not even show the coupling in
the source-fanguage representation of the program. Two variabies created from the
same storage pool have coupled representations, in the sense that they are both
components of the shared variable "vector of storage”. however, the storage
manager makes sure that during the lifetime of a variable, changes to the storage
vector do not cause changes in the value of the particular variable.

For each kind of type management we can examine how coupling might be
manifested ’ :

® Va/ue type instances are never coupled, since replacing one value with
another in one veriable does not disturb any other variasble.

e Object type instances can be coupled either by representation, or by
resources, but not abstractly. The abstract state o* an object may not
be changed except by an explicit operation on that instance.

® Monitored type instances are coupled at some level. For example, a
wakeup operation on a waiting set changeas the abstract state of some
process from ‘“blocked” to ‘“ready". A process scheduler may
realiocate a processor from one process to another, changing their
concrete states from “running” to "not running” and vice versa, without
affecting the abstract states. A page of memory forced out of
primary memory to make room for another, is coupled to its
preemptor by resource usage.

e Allocated type instances are generally coupled to the allocation data
structure, and often through resources, but may or may not have
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coupled representations or abstractions. Two magnetic tape drives may
be administered by a central allocator, but are otherwise independent
{uniess they share a controlier or trap vector).

3.4.3. Type Managers in Multi-environment Programs

The extent to which instances of a type are coupled determines the options
available for distributing them among muitiple environments. The environments in
which they occur must be be sufficiently connected to support the coupling. For
example,

e A value type is never coupled, so its instances can be freely scattered
Each invocation of an operation may be an inline expansion of the
operation text |f many invocations of an operation appesar in the same
environment, a copy of the operation may made mto an executable
procedure and placed in the environment

e An uncoupied object type may be treated much like a8 value type, ,
insofar as simple operations are concerned. However, since object !
types can be passed to procedures only “by reference’, an object type '
instance can only be passed bestween environments if the protected '
procedure mechanism supports by-reference parameters.

e A coupled object type instance. and the objects with which it is |
coupled, must all be addressable simultaneously, but only for the
duration of each operation on the instance. This implies that such an
operation can be executed in any environment that can access the
particular objects that are coupled

e All instances of a monitored type must be iocatad where they are
permanently accessible to the operations of the pe manager.
Generally, this implies that either such objects are all located in a single
program region, with references to them handed out to their owners,
or that all objects are located in a known set of segments, which are
made accessible to whichever environments contain instructions that
must address them.

e An allocated type is constrained by the origin of the resources it
represents. Whatever environment has access to the basic resources
must also contain the declarations of the allocated type objects. For
example, device register variables on a PDP-11 must be deciared in an
environment that can address the physical memory segment containing
those device registers.

Choices among the options above cannot be automated with present technology. ‘
nor should they be. The choices can have significant impact on performance and on !
system structure, so we seek instead the tools to let the progrsmmer describe the 5
bindings he wants. The constraints above will then allow automatic validstion for the
proposed bindings.

We next examine in detail how monitored types were used in FAMOS, to gain a !
deeper understanding of the probiems they pose for muiti-environment systems. '

-t




3.4.4. Monitored Types in FAMOS

Most of the facility managers in FAMOS could be characterized as managers of
monitored types. In this section we begin by describing the clock manager in that
fashion, and abstracting the general properties of the FAMOS facility managers that
make implementation using monitored types appropriate. However, the clock
manager was actually implemented as an allocated type manager, as were most of
the managers of permanent objects. We shall discuss the actual implementation of
the clock manager, conciuding that the discrepancy is due primarily to inadequacies
in the program development facility. Since FAMOS was implemented in an untyped
language, we first try to remedy the inadequacies by programming the clock
manager in a strongly typed language, Euclid We see that monitored types can be
programmed easily in that language, provided that the type instances are to be
created and deleted dynamically, and management sets are implemented as linked
lists. However, many of the monitored types in FAMOS have only permanent
instances, and are implemented as static vectors We attempt to program FAMOS
clocks this way, borrowing notations from several languages. We discover that
such a module places substantial demands on the program translation facility. In
particular, it must be able to elaborate arbitrarily complex type initialization
procedures during transiation, and must alliow those procedures to invoke the static
storage allocator of the translator itself.

The FAMOS clock manager implements an abstract type virtual clock which
embodies the timing facilities provided by the clock module. A virtual clock is
specified sbstractly as an interval timer, with operations start, stop, and settime.
The clock manager uses a single hardware interval timer to impiement ail the virtual
clocks. The hardware timer is set to interrupt when the first of the running clocks
is due to expire. When the interrupt occurs, the clock manager notifies the user of
the clock, and resets the timer for the next most imminent alarm. The clock
manager must be able to access any instance at any time in order to determine
when to send a wakeup signal to the owner of the clock, but the correctness of
the implementation in no way depends on how many virtual clocks are to be
manasged. Therefore the type virtual clock can be considered a monitored type.
To implement continuous access, the clock descriptors are all located in the clock
manager's addressing environment. Conceptually, each module that declares a virtual
clock variable refers to it by a pointer into the clock manager's address space.
Because the virtual clocks are all static objects, the pointers are load-time constants.
The clocks occupy consecutive storage locations in the clock manager's address
space. in one implementation they are iterated over by index. In the other, they are
linked into a list in order of least remaining time.

From the clock manager we can generalize to a class of type managers for
operating system resources, having the following characteristics:

e Each facility is represented to the user as a virtual resource, that
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behaves like an idealized version of the actual resource. Exampies are
ciocks, processes, software trap vectors, disks. There can be any
number of instances of the virtual resource; the manager conceals how
many actusl resources there are. The virtual resource can be
represented as a monitored type.

o The type used to bind a user to a virtual resource can be sny of
several kinds. If the binding is permanent, it can be a value type, such
as a pointer. The user may copy that pointer as he pleasses. |f the
binding is temporary, but not pre—emptible, the binding type can be an
object type, such as a variable containing a pointer. The owner may
control access to that varisble as he chooses, but may not copy it
That way, the owner may acquire and give up a virtual resource, but
that resource can only be taken away as a consequence of an explicit
operation invocstion. If the binding must be pre—emptible, then the
binding type must be a monitored type, so that the type manager can
revoke access asynchronously.

o The actual resources being managed are characterized by an allocated
type (e.g processor, storage unit, disk block) The actual resources
might be shared, allocated, or multip/exed among the the virtual
rasources (e.g. clocks, memory, processor respectively. The facility
manager would use the actual resources to impiement the virtual
resources. Since the virtual resources appear as monitored types,
pre-emptibie bindings are easily implemented. Since the virtual
resources are usually monitored rather than allocated, the type binding
the user to the virtual resource would not have to be pre—emptibie,
and could thus be an object or a value type.

Although the clock manager could have been considered a monitored type, it was
actuslly programmed as an allocated type. The clock manager declared a fixed-size
vector of virtual clocks, where the size was a compile—-time constant Some of the
clocks were statically allocated to certasin higher—level modules. The allocation was
documented in a public file giving global names to certain clock table indices.
Higher level modules referred to clocks only by name, never by index The types
static address space, software interrupt vector, protected procesdure call stack,
and process, were likewise implemented as allocated types.

The allocated type implementation was used in FAMOS to prevent deadlock among
kernel services, to protect descriptors from addressing errors in the owner
modules, and to accommodate the program deveiopment facility in certain minor
ways. After discounting problems that are plainly due to that facility, there remain
two fundamental flaws in the approach

e The allocation file must be constructed by hand, and reconstructed for

every configuration of FAMOS. Such bookkeeping tasks are prone to
trivial but costly errors.

e The allocation file violates Parnas's information hiding principle [Parnas
72b]. Every module that deciares a process, for example, must write
into its external specification exactly how many it needs, including their
names. This sort of design decision is likely to change, leading to
changed specificstions, and forcing changes to the allocation file.

A better design would be one in which 8 module using a monitored type could

o
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simply declare a private instance of that type, and let the instantistion code
configure the type manager to accommodate the new instance. The module
specification for the owner of the ingtance would state only that it used the type,
J and not the number of instances (if any) it created

; Since FAMOS was programmed in an untyped language, we must ask whether
t simply using 8 modern strongly typed ilanguage would allow one to program a

defining a type virtual clock A virtual clock is itself an object type, implemented
as a pointer to a clock descriptor. The clock descriptor is a monitored type; all
instances are linked into a master list headed by the variable FirstC/ock, so that the
clock manager can access any descriptor at any time. The clock manager also
specifies the storage in which the clocks will be located, by assigning the collection
of clock descriptors to the zone C/ockStorage. Each time an owner creates a
virtual clock, the initialization code puts the new clock descriptor into the

management set.

var ClockMsnager: module
exports VirtualClock
imports ClockStorage

type ClockDescriptor = forward

var ClockCollection: collection of ClockDescriptor
in ClockStorage

type ClockDescriptor = record
var NextClock: A ClockCollection
var ClockData: . . .
end

var FirstClock: A ClockCollection

type VirtualClock = module
imports ClockCollection, FirstClock, ClockDescriptor

var cd A ClockCollection

initially begin
ClockCollectionNew( cd )
cdr NextClock = FirstClock
FirstClock := cd

end module VirtuaiClock

end module CiockManager
Figure 3-1: Clock manager, dynamically in Euclid

The key points that make this design work are that the type manager is notified
whenever an instance is created, and can carry out whatsver bookkeeping may be
required, that the type manager is not responsible for allocating type instances, and
that the owner of an instance obtains a private, unforgeable name for his clock,

monitored type more satisfactorily. Figure 3-11 gives a Euclid program fragment
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without obtaining access to the whole set of clocks. These features all derive from
the Euclid dynamic record facility.

To obtain analogous benefits for the static vector representations used in FAMOS,
let us borrow language features from several sources. Alphard supports its full
procedure syntax in initiglization clauses for permanent objects, and allows constant
fields of a record to be computed during its initislization  Algol 68 supports
flexible vectors and pointers into vectors. Dijkstra gives a suitable definition of the
HighExtend operastor on fiexible vectors [Dijkstra 76]. Figure 3-12 shows a
vector impiementation of monitored types. Instead of using the NEW function to
create a new clock descriptor, it extends the vector of descriptors and binds CO
(now a constant) to refer to the new one.

var clockmanager: module
sxports Virtual Clock
type Clock Data = . . .

var Count .= 0
var ClockTable: flex vector [1 . Count] of Clock Data

type Virtual Clock (StartTime) = module
imports Count, ClockTable
const cd ref clocktable[]
initially begin

HighExtend ( ClockTable ) -~- increases length by 1
Count := Count + 1

cd = ref ClockTable [ Count ] ~=- ¢d constant henceforth
S:tdﬂme { C, StartTime )

™

end Virtual Clock
end Clock Manager

Figure 3-12: Clock Manager, using Flexible Vectors

Such a structure sllows the compiler to know that "cd” is a constant, but still
leaves the clock table as a dynamic object It also describes the initialization of
permanent clocks as part of creation, instead of needing a separate call in the
startup code. in a system where all virtual clocks were permanent variables, the
varisble Count would be a constant after system integration, as would be the size
of the flexible vector ClockTable. Suppose that a transiation system were smart
enough to detect that “Count” was going to be a load time constant [t could
provide this information to the optimizing phase of the compiler, allowing
considerable constant folding Also, the starting time for each clock couid be filled
in by the compiler, reducing the amount of initialization code needesd at starting time.

However, there ares substantial roadblocks to making the above supposition a
reality:
e The initiglization code for the type Virtual Clock uses procedure cails,

flexes vectors, and increments varisbles. To initislize a permanent
clock would require a host machine implementation of the full source

language.

e The translator would have to compile the clock manager before
compiling owners of clocks, stretch the vector each time it




72

encountered s clock declaration, then freeze the vector size in time
for linking

e If the vector's elements were a program representstion type, such as a
process descriptor, the compiler and operating system would have to

agree upon the specification of the , 80 that the compiler itself
could invoke the type definition time it compiled a process
declaration.

A fiexible vector implementation of FAMOS segment tables would require even
more interaction betwsen initislization code and the transiation facility. The segment
manager must know the size of each segment in order to allocate enough storage,
and must have access to all segment descriptors at all times, but does not care
how many there are. Many environments in FAMOS have static logical memories,
sllowing individual segments to have local names that are compile-time constants.
However, the number and size of segments cannot be determined until after the
code and dsta residing in the environment has all been compiled and linked A
dynamic implementation as in the Euclid clock manager, above, would introduce
unnecessary overheads due to pointers. A flexible vector implementation wouid
require thst the compiler and linker notify the segment mansger each time a
segment declsration was transisted, and also fill in the segment descriptors with the
actual segment sizes after they are determined Furthermore, since the segment
manager in FAMOS actuslly resides in one of the addressing environments it
manages, the transigtor design would have to be very circumspect to avoid infinite
recursion

These difficulties are surmounted in conventional systems by ad /hoc system
generstion programs, and ill-structured interfaces between compilers, linkers, and
loaders. For example, the Modula process management facility is designed
somewhat like the Euclid clock manager in figura 3-11 except that the process
management set is not linked together until system startup. The compiler creates a
process descriptor each time it compiles a process declaration, and initializes it with
most of the initisl state description for the process. However, the "“main program”
must explicitly call an initialization routine for each process, during startup, st which
time the process is linked into the management set This design violates the
information hiding principle just as the FAMOS allocation files do, by requiring the
main program to know the name of every process.

in section 3.34 we developed a type model for the relstionships between the
compiler, linker, and environment, that suggest the form of a solution In section
36 | will describe s simple bootstrap loading facility based on this model, which
trests the host machine as one of the execution snvironments of the operating
system. This concept will asllow elaboration of intricate initialization clauses for
permanent objects. In chapter 5 | will use monitored types in the host environment
to automate the configurstion of environment management sets, such as process
sets and pege tables.
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3.4.5. Summary

In this section we have identified four interesting classes of type management
value, object, monitored, and allocated types. We have seen how coupling may be
manifested in each, and how coupling constrains the ways in which type instances
may be dispersed among several environments. We have seen that monitored types
could have been widely used in FAMOS, yet are difficult to program satisfactorily
when the type instances are permanent This is often the case for virtual resource
types such as segments, processes, and software trap vectors, when used within a
multi-layer operating system.

In the next section we will develop a conceptual framework and notation for
binding program units to environments. We will judge its suitability by sesing how
well it supports the type management classes identified above. In particular, we
shall loock to see how monitored types can be supported in muitiple environments
having overigpping logical memories.

3.5. A Notstion For Environment Bindings

We have now laid all the groundwork needed to develop and assess a nhotation
for programming the connections between program units and environments. We
have developed a way of representing an environment specification as a source
language module. We have identified four classes of type managesment that we
would like to support We have discussed exampiles of environments from several
operating systems, from which we can develop realistic protection scenarios.

The notation we develop should satisfy the following criteria

e Fithess: it should let the system designer specify bindings between
environments and source language program units, rather than object
modules. The designer should have complete control over the use of
resources to support programs.

e Clarity: the notation should facilitate reasoning about the use of
environments in systems.

e Brevity: binding information should not clutter programs unnecessarily.

o Flexibility: the notation should support the type managemsnt techniques
and protection scenarios discussed earlier.

o Modularity: binding information shouid not corrupt the modularity of
the system.

& implementability: the notation should lead to a straightforward
implementation.

First we shall define a notstion for types and modules, which emphasizes the
distinction between an abstract definition and a concrete implementation. We shall




74

discuss the sppesrance of thess concepts in existing languages, but retain our own
notation for clarity.

Next we add to the module syntax the mechanism for environment bindings. Each
kind of program unit can be viewed as a type implemented by the compiler. An
environment name attached to a program unit declaration becomes a generic
parameter to that instance of the type. The compiler uses the environment ngmed
to impiement the program unit Binding 8 source-language variabie to & module
implies binding all of its primitive components to that environment Binding a
source—language procedure only constrains the procedure to be compiled for the
named environment, /f and when it is instantiated. The transiation system is
permittad the freedom to instantiate a procedure separately, expand it in line at its
call sites, or eliminate it altogether if it is not used Binding a type or a module to
an environment binds all of its component variables and procedures to that
environment, but not inner types.

in contrast to an ordinary procedure, binding an entry point procedure to an
environment normally causes instantiation of the procedure, since it may not be
known until runtime whether the procedure will be invoked, and it cannot be
expanded in line in some other environment This in turn forces instantiation of all
the procedures it calls. In addition, the environment module records the entry point
for integration with the protected procedure call mechanism Parameters to entry
point procedurses can be by-reference, in operating systems that support segment
sharing between environments.

Mext, we briefly discuss how to control access to an environment manager, ie.
how to demarcate the set of system components that may may place code and data
in an environment DBecause an environment has a source language name, ordinary
scope maechanisms are sufficient We see how to describe FAMOS muilti-ievel
environments using an acquires cisuse to limit the scope of the environment name.

To see how the notation thus defined works in practice, we apply it to the type
management techniques identified in section 3.4. We see that binding information
can be added to each of them conveniently. In particular, we ses an example of
using an entrypoint procedure in the implementation of a monitored type without
making it visible outside the type management module. To gain further experience
with the notation, we reprogram FAMOS semaphores.

3.5.1. Definition vs. Declaration

Before we can develop a technique for binding program components to execution
environments, we need to understand the relationships betwsen an abstract
definition, which might be independent of any environment, and a concrete
dec/aration, which must be attached to one or several environments.
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When we write a type definition, we give the structure of the object (in high-
level terms), and a set of operations on the object (written as type—-safe aigorithms).
" The type definition itself is independent of the use to which the type will be put
As soon as we dec/are an object of that type, however, we are faced with
questions:
e Where will the object be located?
e How will the operations be implemented?
e What other objects must the operations be sble to access?

e Which other objects will be coupled with the new object, and how?

In single—environment programming systems, all of these decisions can be left to the
compiler, which can do either something reasonable or something optimal. However,
to transform existing programming styles into ones which accommodate muitipie
environments, we must come to grips with the relationship between a type definition
as an abstract entity and a type manager as a body of executable code.

The terms modu/e and type have acquired very similar meanings in modern data
abstraction methodology. Each denotes a program component that can restrict
access to its constituent parts: a type restricts access to its component fields; a
module restricts access to its component variables and other elements. If there is a
difference, it is more one of nuance than substance: In some languages, a type
definition describes a data structure with associsted operations, which can be
instantiated many times, whereas a moduie is instantiated only once.

Although most of the examples | will write could be programmed in existing data
abstraction languages, | wish to emphasize the distinction between modules and
types, and to suppress many of the details of real languages. Therefore, | shall use
the following definitions and notation:

e A type definition is a group of variable, operation, and type definitions.
Each of the variable definitions (formally identical to variabie
declarations) defines a component of the representation of the type.

e A vrrisble declaration names the type of which the variable is an
instance. Elaborating the declaration creates an instance of each of the
component variables of the type.

® A procedure defined in a type is privileged only in the sense that it
can use the names of components of the type. The first parameter to
8 procedure may be written as a prefix parameter, to differentiate ,
identical procedure names defined on different types. Howaever, if a i
procedure takes additional ar%uments of the same type, it may access I
the representation of each of them equally well, using the component
names.

e A name defined within a type and exported from it will normally be
referred to only as a component of an instance of the type, and not a
component of the type itself.

¢ Qualified names may be abbreviated wherever doing so does not cause *
ambiguity.
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e A module is a shorthand way of combining a type definition with its
only instance.

type A is
provides D, F
var B,C.integer
proc D ( XA, YA, Zboolean )
it Z then XB = Y.C —- full qualification

proc F ( XA, Zboolean )
itfZthenB =0 —- abbreviation

type Gis . ..

end type A

var Hi A
var J HG -~ Type LG is a different type from HG
-- A.G would be illegal

module B Is . . . <<type body>> . ..

Figure 3-13: Skeletal Program Showing Types
Figure 3-13 gives a schematic program which illustrates the notation The module
B defined at the end is a shorthand for

type UniqueName is —— type body
var B: UniqueName

Such a module definition would contain a group of variables, procedures, and types,
with import and export clauses, just as one would expect of a type. It is merely a
combination of a type definition and a declaration for the only variable of that type.

. A type definition has no built-in facility for declaring variables that are to be
shared among all type instances. That affect would be achieved by enclosing the
type definition in a :nodule or another type definition. Consider the following

module A )
provides B
var C

type B is
requires C

provides .. << operations >> .
. << type body >> . ..

ond moduis A

Since module A has only a single instance, there is only one instance of AC, which
is visible within the impiementation of type B, making it a shared variable The
reason for not allowing shared veriables within types, is that the shared variable
represents a central type manager The structure above makes the manager's
existence more apparent
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Sometimes one wishes several structurally identical yet distinct type managers,
such as storage managers. This can be achieved by replacing the word "module”
above by the word “type”, and derlaring several instances:

Type A is
provides B
var C

type B is
requires C
provides .. << operations >> ..
... << type body >> . ..
end type B

end module A

var X.Y.Z2 A
There are three distinct type managers. X, Y, and Z, managing the types XB, YB,
and ZB. Each distinct type has a copy of C to share among its instances.

The definitions | have chosen for type and modul/e will generally allow uncoupled
types to be described simply as type definitions However, to describe a type
whose instances are coupled by shared data, one must imbed the type definition in
an enclosing module or type, so that there will be an explicit instantiation of the
shared data, and so that the type name is qualified with the name of that module or
type instance, which then becomes the type manager.

The concepts defined above appear in various combinations in current languages.
Let us examine four: Modula, Euclid, Ada, and Alphard.

in Modula, a module description is simply a collection of procedure and variable
declarations, with a boundary drawn around it to limit the visibilty of names. A
module may also contain type definitions, which are non-forgeabie templates for
declaring structured variables. There are no explicitly designated operations on such
types; there are only procedures declared in the same moduie as the type definition,
which may use it to access the representations of their parameters. A Modula
module, therefore, defines a centralized type manager for the types within
Although the type instances themselves may be located anywhere, they may be
operated on only by passing them to one of the explicitiy—declared procedures.

Euclid modules are patterned after Modula moduies, but with one important
exception a module description may be used as the text of a type definition.
Therefore, there can be any number of instances of a module If the module
description includes a variable declaration, then each instantiation of the module
defines a distinct instantiation of the variable. If the module description includes a
type definition, then each instantistion of the module defines a distinct type.
Consequently, each time that type name is used, it must be qualified with the name
of the module instance which is to provide its implementation. Similarly, to invoke a




procedure defined in a module, one must name the module instance which supports
the procedure. There could be a separate procedure impiementation for each
module instance, or the module name could be viewed as a “prefix parameter’ to
the procedure. Euclid has explicitly allowed the translator this freedom; it goes
even further in stating that the notation inline is considered non-binding advice to
the compiler. Since a type management module in Euclid can itself be the text of a
type definition, there couid be several different type managers for textually identical
types. This would be highly desirable if each type manager maintained a resource
pool for use by its instances.

An Ada package is a module containing constant, varigble, type, procedure, and
package definitions. It is the type manager for any types it exports. Procedures
may be marked inline, so that the type manager need not be viewed as entirely
centralized Generic packages offer some flexibility for creating muitiple instances
of a type manger. However, it is not possible to define a type whose instances are
type managers, nor is it possible to define a type, one of whose components is
another type.

Alphard makes no distinction between a module and a type; both are written as
forms. [If several instances of a form are to be monitored by a central type
manager, that manager is usually written as an enclosing form, so that each
reference to the inner form must specify the outer form instance which will manage
it See figure 3—14. Alphard allows a form to declare a variable to be shared by
all instances of the form  This hidden variable would have to be accessible by
every instance of an operation on the form; thus, it forces centralized
implementation of the type manager without saying so in the specification.

form Set is spsc
form Element
function Contains ( Eelement )
end spec
impl Set is
impl element is
var data
var linkref slement
end impl slement

var Inlist . ref element

body Contains is
Temp := Inlist
while Temp not equal NiL do
if Temp equal E then return TRUE
Temp :-- Temp.next
end
return FALSE

end impl SET
Figure 3-14: Monitored Forms (Alphard)
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in the notation | have defined, creating a module, or an instance of a type,
involves creating only instances of the representation, and not necessarily the
operations. They might be marked as inline, or they might not be instantiated if
they are not invoked This is particularly significant if the type comes from some
library of type definitions. One would hope that creating an instance of 2 complex
number, for example, would not force creation of procedures for all the operations
which might have been defined with it in the library.

We will focus our discussion of binding on the relationship of variables to
environmants. We must eventually ask, however, when it is that the operations do
become transiated into real machine—language instructions.

3.5.2. Binding Program Units to Environments

We said in section 3.34 that environment information could be specified to a
compiler as a generic parameter to procedure and variable declarations. We shall
now integrate this notion into our notations for modules and types. We start by
reviewing the mechanisms by which a compiler places machine language objects into
environments. Then, we consider each kind of source language object in turn, from
the simple to the complex: variables, procedures, modules, and types.

In the exampies which follow, we use <pointed brackets> to indicate generic
parameters that are environment bindings, recognizing that the syntax is poor, but
explicit Remember, variables and procedures are themsesives types; environment
names are parameters to instances of these types. The pointed brackets merely
highlight those parameters which happen to be environments.

3.5.2.1. Primitive Machine Language Objects

A compiler represents all program units as primitive code and data objects. as
supported by the environment for which it is compiling. A data object depends on
the environment to provide the storage in which it resides and to define the
instructions that implement the operations of its type. A code object depends on
the environment to provide storage, an instruction set, an instruction interpreter, and
a virtusl memory mechanism. A data object may be accessible from several
environments as long as they all support its primitive type, but normally a code
object may only be invoked from within the environment in which it resides,
because the virtual addresses it uses depend on the particular address translation
database of that environment A compiler is free to concatenate several primitive
objects into a section, if they are to reside in the same segment The environment
module provides:

e the program region, with operations to allocate space for sections

e the virtual memory manager, with whatever operations the compiler
might need to determine virtual addresses
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e the name of the architecture description the compiler should use to
generate machine code

3.5.2.2. Varisbles

Assuming that an environment E is visible in a given scope, we would write a
variable declaration as
var<g> X: integer
Recall that ver is a type implemented by the compiler; the environment parameter
provides the program region segment, and primitive type integer, out of which to
build the var.

A user—defined type would be instantiated in a similar fashion. Consider the
deciaration
var<g> Y: usertype
Assuming that usertype is, say, a vaiue type, like complex, each primitive
component of its representation wouid be instantiated in environment E.

3.5.2.3. Procedures

The syntax for binding a procedure to an environment is analogous to that for

variables. Consider
proc<E> Y ( A Banytype )

However, binding a procedure to an environment does not necessarily imply that the
procedure will be instantiated. Depending on the cleverness of the translator, the
procedure might be instantiated once, many times, or not at all. | take the position
that binding a procedure to an environment constrains that procedure to be
instantiated only within that environment A simple compiier would instantiate such a
procedure, exactly once. A language supporting inline procedures, such as Euclid,
could expand them at any call site within the specified environment A more clever
compiler would choose whether the procedure were inline or out-of-line.

One might argue that the transiator should be given even more latitude. The
environment binding might indicate the minimum requirements of the instantiation
environment The translator might be allowed to instantiate the procedure in any
environment whose logical memory contained that of the namedJ snvironment, whose
virtusl memory was implemented by the same address translation database.
However, this possibility is quite speculative, so | will save it for future investigation
Instead, | simply allow a procedure to be explicitly marked free, meaning that it may
be instantiated in any environment that can access the objects it manipulates.

) |
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3.5.2.4. Types and Modulas

Attaching an environment name to a type definition attaches the environment name
to each constituent variable and procedure of the type. Instances of the type can
only be declared in source /anguage modules in which the environment name is
visible, and are bound to that environment The operations on those instances are
constrained to execute in the same environment, unless they are marked free. In
either case, the operations need not be instantiated uniess they are used

Attaching an environment name to & modu/e declaration is a shorthand for
attaching it to both the variable and the type embodied by the module. Thus, all of
the constituent variables and procedures named in the module would be bound to
that environment, as would their constituents. Whether or not the procedures in
the module are instantiated depends on whether or not they are used

Binding to a type or module is transitive to inner modules (because they are
constituent variables), but not to inner types. If an inner type is not exported, then
all of its instances will be bound anyway, being components of the outer module. If
the type /s exported, binding it to the environment of the enciosing module would
be too restrictive. If the typs is to be both bound and exported, the moduie would
import the environment name and bind the type expiicitly.

Aithough binding a type or module to an environment constrains the procedures
defined within, binding an instance of a type does not constrain the operations on
that /nstance. Because there might be other instances of the type in other
environments, and because the type might define binary operations on instances, we
must allow each instance to be operated on from any environment that can access
it

The rules | have chosen above may appear to be unduly irregular. Certainly | could
have chosen to make ali bindings transitive to all inner units, using the free attribute
to override this when necessary. Instead | have chosen the "defaults” that | believe
will fit the most common usage. In addition to attaching an environment name to a
declared object, one can pass environments as ordinary declaration parameters, or
place them in provides, requires and scquires clauses. Thus when one desires to
bind only certain components of a module or type, he may import the environment
or make it a generic parameter, and specify exactly which components are bound.

Observe that the rules above make it possible to place an ordinary self-contained
program, of any size or complexity, into a singie environment, by a singie annotation.
The program is a module, so binding that outer module to an environment binds the
representations of all varisbles and procedures in the module, at any nesting depth
Types defined within the module would be bound according to how they were used
the variables of that type, occurring within the module, would be bound by the top-
level binding. If the module exports a type, then any type instances occurring
outside the bound module would not be bound.




82

3.5.2.8. An axample: FAMOS semaphores

Although we have not yet discussed how entry points provide inter—environment
communication in the proposed notstion, we have sufficient tools to describe the
static structure of a muiti-environment type.

We referred in Section 2.1.2 to FAMOS semaphores, whose representations
spsnned two environments. We could program the representation of such
semaphores as in figure 3-15. The semaphore S would have its WaitCount in the
environment E, yet its Waitinglist would be in the process environment If the
semaphore were a permanent object there would never be a run time computation
of the address of Sw based on the address of S. instead, wherever Sw appeared,
the linker would substitute the address, in the process environment, of the waiting
list

P R e
provides Ingsert, Remove
var<ProcessEnv> WL:list[ProcessDescriptor]

end WaitingList

type Semaphore is
requires ProcessEnv

var WaitCount integer = -1
var W: WaitinglList

end Sanaphore
var<E> §: Semaphore
Figure 3-15: FAMOS Semaphores, With Environments

in section 354 we will expand this example with the operations on semaphores
and waiting lists, showing how the entrypoint procedures connect the environments.

3.5.2.8. Protected Procedures

We have defined an entry point, in Section 3.1.4, as a designated logical address
in the program region of an environment, to which control may be transferred from
some other environment In Muitics, Hydra, and FAMOS the entry points of address
spaces were used to implement protected procedures, so that a module could obtain
runtime address protection for its data structures. To incorporate such runtime
facilities into the implementation language, we must analyze its role in the
reistionship between source moduies, environments, and protection domains.

A procedure call can cause any of the following transitions:
e between modules

o between environments

et 5




e between protection domains

Since two modules might reside in the same environment, not every module
interface procedure should be an entry point Since two environments might coexist
in the same protection domain, not every entry point to an environment will cause a
change of address space. Since a single module might occupy several interacting
environments, entry points should be concealable.

Therefor, we adopt (and adapt) the technique used for Hydra and FAMOS, namely,
providing in the implementation language a way to explicitty mark the procedures
that are points of entry to environments. In Bliss~11 the denotation was used only
to generate the proper procedure linkages, we shall also use it to record the entry
point in the environment description. The syntax is straightforward:

entryproo<t> P( . . . )
This gives the author of the procedure the right to designate it as invocable from
other environments. Anywhere an entryproc can be named, it can be invoked
Compiling such a call would entail retrieving from E the necessary protocol, and
possibly also place in the invoking environment's representation a capability for P.

With entryprocs so defined, we can now restrict the use of non-entry
procedures:

A procedure bound to an environment may be invoked only by other
procedures bound to the same environment

Thus, control may flow from one environment to another on/y via entryprocs.

Since entryprocs are to be explicitty—named entities in source programs, they can
concealed within modules. We will shortly ses an example where a module
provides ordinary, unbound procedures to its users, each of which contains a
concealed call to an entryproc of the module's protected environment The module
could even conceal the very existence of its private environment.

Parameters to entrypoint procedures require special support from both the
operating system and the language system. The parameter mechanism support will
often involve the address transiation facility and the overall protection mechanism of
the operating system. Even if the operating system can support by-reference
parameters between environments, the translation system might still have to specify
when to make the actual psrameters addressable.

Segmented virtual memories combined with capability systems, such as in Multics
and Hydra, make possible by-reference parameters to entryprocs, between
otherwise suspicious environments. Each protected procedure refers to its formal
parameters by local names reserved for them. The protected procedure call
mechanism sets up the local name transistion table entry to refer to the actual
parameter segment. VAX/VMS, in contrast, provides protected procedure calis only
for entering protection rings. In that system, the caller's address space is always a
subset of the environment it is entering, so by-reference parameters are
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implemented simply by passing addresses. In general, one would expect system
designs exhibiting some mixture of these two approaches. Sometimes the cailer's
and callee’'s address spaces will be disjoint; sometimes they will intersect; sometimes
one will contain the other. and sometimes they will be identical. Depending on the !
degree of overiap between environments, an appropriate protocol can be found f
{perhaps with the help of a2 pragma), to bring about the transition between , 54
environments without undue overhead i

_ 5 . -
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3.8.3. Limiting Access to Environments |

g By making environments explicit objects in system descriptions, we have made it 4

; possible for a single module to declare objects in several environments. Howaever,
in so doing we have given up the right to create a single list of all the objects in a
given segment We did so willingly, but we still need to be able to //mit the set
of objects in an environment, so that only “authorized” modules have access to it

H Scope limitation facilities in modern languages provide a perfectly reasonable
means for doing thiss. A module defining an environment provides a name denoting g
the right to create objects in it (Typically, this would be the allocation procedure.) ‘
A system designer would limit the right to place objects in an environment by
limiting the scope of that name. He would define the modules allowed to place
sections in a given environment by surrounding them with 8 module which did not

| export the name of its allocation procedure. In many cases a suitable module would
already be present, deiimiting a virtual machine. In other cases, more selective =
access control is required. ' i

s e A ettt B

Sometimes a system designer might wish to protect a moduie from most of its '
users, by placing it in a protected addressing environment, but still allow the '
possibility of adding more procedures to the environment from within a higher ievel
module.  This arrangement occurred frequently in FAMOS [Habermann 76] The
specification of the protected module cannot regulate what modules wouid have ]
access to its program region; that would imply that the correctness of the module B
depended on how it was used Instead, the higher-level module which was to fill
up the environment would acquire it, as in figure 3—-16.
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module BaseMachine Is
provides BaseEnv, OtherThings

end module BaseMachine

module Featurel is ‘
requires OtherThings —— but not BaseEnv

end .ri\'odulo Feature1

- T

module Feature2 is
requires OtherThings —— but not BaseEnv

end 'n'l‘oduln Feature2

e IR

module MoreBaseMachine
scquires BaseMachine.ProgramRegion

-nci 'niodulo MoreBaseMachine

Figure 3-18: Selective Access to a8 Program Region B

If MoreBaseMachine weie not present, Featurel and Feature2 could both require
BaseMachine.ProgramRegion. This is perfectly proper, since MoreBaseMachine is the
only module whose correctness depends on keeping Featurel and Feature2 out of
the BaseMachine environment.

3.5.4. Binding Type Managers to Environmenits

Our notation for environment bindings is now essentially complete. To gain ‘
familiarity with it, and explore its utility, let us look at how various classes of type : :
managers (identified in section 34 ) would be programmed using these binding "
notations.

A value type would be written as a pure, unbound type, probably with all of. its
operations marked inline. Any particular instance could be bound to an environment
The compiler would - have the freedom to instantiste the operations in any
environment that can access the instances. Values could be fresly passed from one
environment to another, as value or copy parameters. Each formal parameter to an
entryproc could be a separate instance of the type.

Uncoupled object types would be treated in the same way as vaiue types, except
that they cannot be passed as value parameters. Each operation on the instance
would hsve to occur within an environment which could address its roprosentatlon
Binary operations pose certain problems, however, as in figure 3-17.
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YPe rovide BinOp
provides Bi
proc BinOp( X.Y.T )

end type T
var<ge> X: T
var<F> Y. T
XBinOp!{ Y )
Figure 3-17: Binary Operations on an Object Type

The invocation "XBinOp( Y |* would have to occur in an environment which could
address the program regions of both E and F. This could happen ¥ one
environment's logical address space contained the program region of the other.
Another way of handling it wouid be to pass Y as a by-reference parameter to a
protected procedure provided by E; this would bring Y into E for the duration of
the call. and thereby enable X.BinOp to do its work.

A coupled cbject type could be programmed as in figure 3-18. The Bank has a
central cash supply through which all monetary transactions must flow. The Bank
allk ws its customers (users) to examine balances, but not change them directly.
Instead, the customer must present the account to the bank for each transfer. The
central fund and transfer procedure are both bound to environment E, but individual
accounts may be created in other environments. A customer may examine his
account without entering environment E. but must go there to transfer money

between the central fund and his account Conversely, the bank cannhot move money -

out of an account unless the customer calls transfer.




S ——-s

module<E> Bank
provides Account [with Examine], Transfer

type Account is
provides Examine, Balance

var Balance: doliars

proc Examine { A:account ) : dollers =
retumn ABsglance

end type account

var CentraiFund: dollers

it S >= - ABalance then begin
CentralFund := CentralFund — S
ABalance = ABalance + S
return success
end

eise return failure

end transfer

end module Bank

o0c<E> Transfer ( A:account, S:doilars ) : ErrCode =

Figure 3-18: Coupled Object Type
For an example of programming monitored types, we rewrite the clock manager
of figure 3—-12 as in figure 3-18.

I T T T ot S -




module<ClockEnv> ClockManager is
provides Virtual Clock

type Clock Data = . . .
var Count .= 0
var ClockTable: flex vector [1 . Count] of Clock Data

typs Virtual Clock (StartTime) =
requires Count, ClockTable
provides Start, Stop, Reset
const cd ref ClockArray(]

entryproc<ClockEnv> Start ( C. Virtual Clock } = . . .
entryproc<ClockEnv> Stop ( C: Virtual Clock ) = . . .
entryproc<ClockEnv> Reset ( C: Virtual Clock )

entryproc<ClockEnv> Create returns ref ClockTable[] =
HighExtend ( ClockTable )
Count .= Count + 1
return ref ClockTable [ Count ]
ond

initially begin
¢d = Create ()
Reset ( self, StartTime )
end

end Virtual Clock
end Ciock Manager

Figurs 3-19: Muitiple Environment Virtual Clocks

ClockTable is a component of the moduie "ClockManager”, so it will be attached to
ClockEnv. The type “VirtualClock” is not bound to "ClockEnv'; instances can be
creasted anywhers. A “VirtualClock” obtains a pointer to an element of "ClockTable”
during initialization, by invoking the entryproc "Create”. Recall that a constant is a
varisble whose value doesn't change after initialization.

Observe that aithough "Create” is an entryproc, it is not visib/e in the source
program outside the type definition for "VirtuaiClock”. Therefore, it can be used
only as described there, namely, to obtain a table entry for a VirtualClock.

This ‘“invisible” entryproc satisfies a major goal of modular programming it
distinguishes the structure of the executable representation from the structure of
the source program [Parnas 71]. The entryproc is unquestionably a feature of the
run~time interface between the clock environment and other environments; vyet,
because the compiler can invoke the environment manager to create the entry point,
its existence is known (in the source language description) only to the type manager

for virtual clocks. Should that type be reimpiemented, chenging the specifications

for the entryproc, no other system components would be affected.

-




The Virtusl Clocks thus created are now implemented such that each clock user is
oblivious to how many other clocks there sre; the right to request operations on a
clock descriptor is protected by the source language type mechanism; the clock
descriptors are protected by the addressing mechanism; the number of clocks is
determined by demand, rather than by fiat; and, all of the clock descriptors are
continuously addressable by the clock management module.

Type managers for allocated types require no further programming innovations.
The objects themselves are private to the managing module, and created in the
corresponding environment The manager must define and export an unbound type
which can hold a capability for a resource. If the resource is pre—emptibie, the
holding type must be monitored If the resource is dynamically aliocated, but not
pre—emptible, then the holding type need only be coupied to the management data
structures. |f the resource is allocated statically, the binding type may be a value

type.

Each variable in each example above was associated with just one environment
Some modul/es contained elements bound to different environments, but each type
kept all of its immediste representation in a single environment Let us reexamine
FAMOS semaphores once more, to see the implications of declaring an unbound
procedure which operates on a muiti-environment object In figure 3-20 | have
reproduced figure 3-15, with the addition of the prccedures Waitinglist./nsert,
Pause, and Semaphore.P

kit i
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type Waitingl.ist is
requires ProcessEnv

provides Insert, Remove
var<ProcessEnv> W\ list[ProcessDescriptor]

proc insert ( W: WaitinglList, P. ProcessDascriptor ) =

requires ProcessEnv.ProgramRegion
—- the usual list ingertion text has been omitted

end Waitinglist

var<ProcessEnv> ReadyQueue: Queue of ProcessDescriptor
var<ProcessEnv> CurrentProc: ref ProcessDescriptor

entryproc<ProcessEnv> Pause (W: WaitinglList) =
{CurrentProc)
insert ( W, CurrentProc )
CurrentProc = RemovelReadyQueue)
Continue (CurrentProc)

Semaphore is

requires ProcessEnv.ProgramRegion
var WaitCount integer = -1

var W: Waitingl.ist

proc P ( S: samaphore ) =
if (Waitcount := Waitcount + 1) > 0
-- indivisible increment and test

then Pause { W)
proc V ( S: semaphore )} =

end Semaphore

var<E> S Semaphorr
Figure 3-20: FAMOS Semaphores, With Procedures Added
The procedure /nsert is not bound to any environment, but its text refers to
WaitinglLists, so it requires the program region to which they are bound In a
langusge where a procedure is an open scope, the need for that program region
would have to be derived from the text

The procedure Pause is bound to ProcessEnv, so it is assured of access to both
the waiting lists and the ready queue.

The procedure AP passes its waitinglist to Pause, without ever addressing it
However, imagine the situation if Pause were an unbound procedure, rather than an
entryproc. The compiler would deduce that, since WaitinglListiiisert needed to
address the waitinglist. so would Pause, and so would P. Therefors, semaphore
operations would only be allowed in environments which could addrass

ProcessEnv.ProgramRegion.

These two versions of the semaphore module il ustrate two ways of using muiti~
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environment objects: passing the components explicitly to the appropriste
environments, and deducing legal operations by induction on parameter chains. Either
way, the notation gives enough information to determine from the source text
whether the desired operation is feasible and accomplishes the intended deed

3.5.5. Summary

We have defined a notation for types and modules, and for describing the
associations between program elements and execution environments. Let us
consider how the notation measures up to the criteria we stated for it

o Fithess The system designer can attach an environment binding to any
piece of a program, large or small.

e Clarityy By embedding environment bindings in the source text, one can
relate that information to other aspects of the system structure.

e Brevity: The transitivity of bindings allows simple systems to use few
binding clauses.

e Flexibility: The notation supports unbound types, types with bound
representations but free operations, and bound types. Each of the
four classes of type management identified earlier can be programmed
conveniently in a multi-environment domainn We were also able to
reprogram parts of FAMOS conveniently.

¢ Modularity: Access to entrypoints and access to program creation
facilities can be controlled with the same scope mechanisms as other
source language entities, without violating the source language
modulgrity of the system

¢ implementability.: Each environment binding directs the compiler to the
program implementation resources it needs, in a straightforward
fashion. Section 7.4 contains a detailed discussion of implementation
issues.

3.6. Comprehensive System Descriptions

In this secion | will show how to use envirorment bindings to integrate all the
pieces of a muiti-level, multi—environment system into a single, comprehensive
system description. The notation defined in the previous section allows us to
describe the structural relaiionships between system components. In this section
we will detail the structure of a typical cross-compiled system, and describe the
contro/ flow between levels during translation, initialization, system generation,
loading, and startup. When we can trace that control flow from the beginning of
trangiation to the end of startup, we will have achieved a comprehensive system
description.

We will address two interrelated problems: how to include host—machine activities
in the overall system design, and how to sort out the initial bookkeeping activities at
each system level so that they can be correctly sequenced.
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| shall incorporate the host activities by tresting the host as one of the
environments comprising the system The lowest system level is a module
containing both host and target components, which communicate with one another
via the medium used for loading Typically the host component is a "down-~icader”
that writes a8 segment to, say, a tape. The target component is a bootstrap (oader,
which reads the segment from the tape. Each subsequent system level may bind
components to both host and target environments. These components communicate
via whatever facilities are provided by lower levels.

| shall differentiate three classes of bookkeeping tasks that take place during the
instantiation of a system initialization, system generation, and startup. The
initialization activities of a level take place before it is used to implement subsequent
levels, and consist primarily of putting the data structures of the level into well
definad initial states. System generation actions take place during and after
instantiation of subsequent levels, but before the system is transmitted to the target
machine. Startup activities are sequenced “bottom to top” on the target machine.
Each system level receives control from the underlying virtual machine, activates its
own facilities, and passes control on to the next higher ievel.

A system description is elaborated in order from lowest to highest virtual machine
level. Each module, in whatever environment, may specify an initialization clause that
is to be elaborated when that module is instantiated. The system generation
activities of a given level are written as host—environment procedures, which can be
invoked during elaboration of subsequent virtual machine levels, either directly from
initislization clauses, or by the translator when, say, instantiating a monitored type.
The startup activities of a level are written as target procedures invoked by a
handier for the condition startup.

| present the problems and their solutions in the context of an extended example:
a small loader for a PDP-11. The system has four execution environments: the
host environment, the bootstrapping environment, the loading environment, and the
user environment | present partial descriptions of each module and environment,
with commentary on the conceptual relationships between components and on the
details of key system interactions. Assembling the module descriptions thus
presented gives the skeleton of a comprehensive system description, with enough
detail to understand the flow of control from the beginning of transiation to the end

of startup.

3.6.1. A Simple Loader

The exampie | have chosen to describe is just sbout the smallest “operating
system” one could conceive: a loader. It is a8 "toy problem” in the sense that one
can understand how a loader works without the environment concepts and notations
deveioped in this thesis. However, even such a small system contains several

i P
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distinct execution environments, has components on both host and target machines,
and requires careful sequencing of initialization, generstion, and startup. | have
purposely chosen a small example so thst the reader may concentrste on the
representation of the solution without first having to grasp the design of a
complicated system, and without having to wade through a3 great deal of detsi. In
chapter 5 we will examine the system instantiation problems of a more substantial
system, to assess the power of the proposed methodology in more realistic
situstions.

The system we will describe is a very conventional loader for s PDP-11. It
consists of a bootstrap loader residing in block 0 of a DecTape. which loads and
starts whatever program starts in block 1 of that tape That program is itself a
loader, which loads and runs the user program residing later on the tape. This
second ioader might be thers for the purpose of allowing the user to choose
interactively among several programs on the tape, to set up debugging aids, and so
on Problems faced here include: transmitting information about the size of the
second loader and the user program; coordinating tape usage smong several system
levels; coordinating use of primary memory during loading; and formalizing the
sequence of bootstrapping operations taking place on the target machine.

3.6.2 The Host Environment

Conventional system instantistion technology opserates as a series of passes over
the system description A compiler transiatas the source files into s set of object
files. A linker transiates the object filas and linker command files into a set of
segments, again in files. A system generation program connects the segments,
constructing segment descriptors and process descriptors, coordinating linking and
relocation, allocating memory for system components, and so on A separate
down-loading program transfers the entire system to some medium suitable for
loading On the target machine, a chain of bootstrap loaders brings the system into
memory and sets it in motion

Assembling objects into segments and constructing environment management data
structures are as much a part of an operating system as scheduling processes snd
handiing page faults. In order to include these activities in system descriptions, we
shall include the host environment as one of the environments in which the
operating system resides. This allows us to declare system generstion procedures
just like other procedures, the only difference being the particular snvironment they
ars bound to.

Becsuse they execute in different environments and are usually written in different
languages, host and target machine portions of an operating system have customarily
been kept in completely separate modules, which communicate with each other via
the loading medium. Since the programs that generste a system and the programs
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that load it share information about a great many design decisions, they ought to be
combined into modules that conceal the shared information We would fike to
transform the multi-pass view of system instantistion into one in which the host-
machine representation for each program component resides in a host data structure
provided by the environment manager responsible for it Each environment manager
would provide host-machine procedures to enter program representstion information
into the structures, and to communicate the contents of those structures to the
target machine.

These host data structures would use the primitive type segment to contain the
representations of target-machine program units The linker would appear in a
system description as a host—-machine module providing the abstract type segment,
and a host-machine representation for them. One possible representation would be
the name of the host file containing the segment, together with some indication of
whether the segment has been linked yet With segments as atomic data items, the
opersting system can inciude host programs which link a segment, define its
relocationn base, examine its length, and copy it to a tape, disk, or communication
line. Such programs could also build tables of segment descriptors, create
directories, allocate storage, lay out page tables, and so on

The specification for a linker would look something like the following

module<host> Linker is
provides Segment, Section, CoreBlock, LogicalNameTable, LogicalMemory

type<host> segment is
requires Section
provides Insert, Link, Copy

path Inserte ; Link ; Copy* end

proc Insert { Seg segment, Sec: section) =
proc Link ( Seg segment ) =
proc Copy ( Seg segment, TB: tape block ) =

ondtyposogment

st> Section is . . .
type<host> CoreBlock is .
module LogicaiNameTabie is .
~-= Maintains globa! symbol table
type<host> LogicailMemory is .
-- a set of segmcnts ‘accessible to an environment
end module Linker

The type segment actuslly tskes several optional parameters specifying size, base
address, snd so on. One of them is the core block in which the segment is to
reside. The linker can check whether two or more segments residing in the same
core bilock will overiap, or it can compute the base address of one from the
limiting address of another. The type section is the unit of program representation
that the compiler can place in a segment, via the procedure insert All gections

|
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must be inserted before linking takes place. After linking, the system generation

program can make as many copies of the segment as it needs. The logical name

table maps each target object identifier in a system description to an ordered pair _

<ssgment, displacement>. It conceals the problem of unresoived references, i

maintaining whatever “fixup lists” are nesded The type ' sgicalMemory will be used ‘
; by environment modules to record the logical segments addrussable in & particular
, environment It provides operations to test whether a given symbolic address is
{ defined in any of the member segments, so that the language system can determine
if a procedure compiled for a given environment will be able to access the objects
it needs.

3.8.3. Initislization vs. Generation vs. Startup

In section 222 we described the many sorts of problems which arise during
system integration, often due to lack of coordination between initialization,
generation, and startup.

At each system level one can usually separate initialization actions from generation
actions, and those from startup actions. However, one cannot simply initialize all
levels, then generate a system, then start it up. If each system level is going to
participate in the representation of higher levels, then at least the host machine
portions of a level must be fully activated before the next level can be transiated.
Conversely, if a system level is going to contain static data structures configured to
the needs of the program it is managing then the target machine portion of a
system level cannot be generated untii the program it is managing has been
compiled Part of the problem comes from the distinction between "compile time"
and “run time". If we insist on compiling an entire system, then running it, we will
not be able to describe the system generation process.

in single—environment compilation technology, it is no longer necessary to
’ digtinguish “compile time" from ‘run time". One spesks simply of elaborating a
progran.  Each module of a system may contain initialization code, which is
executed immediately after the module is created  Assuming the module is
permanent, it is initialized before any subsequent module is created The initislization
code for the outermost module is none other than the "main program”.

If one were to apply this paradigm to cross—compilation technology., one would be
tempted to view the initialization code for each module as serving the needs both
of initislization and startup: any actions that a virtual machine must perform before !
beginning to execute the programs it is managing, wouid be stated in the initislization >
section However, this would not work, because some actions must take place on i
the host machine, and some on the startup machine, at different times:

e e s . i Pt M R A

e Some startup actions require interaction with the hardware and
permanent data on the target machine  The transiator couid not
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simuiate those actions on the host machine, and would therefore have
to put off all initislization until after the system was compiled, ]
generated, and transported to the target machine. i

e Even if startup could be accomplished on the host machine, requiring
all modules at a given level to be started befors transisting the next
level, would preclude customizing the static structures of a level to the

program it is managing.

instead, we shall separate initislization from startup, in such a way that initialization
can be performed during compilation, and startup deferred until after loading .

First, we observe that the concept of a "main program” simply does not apply to
an operating system. A running system does not normally have a3 master procecure
that carries out the task of running a machine. Instead it is simply a set of |
facilities, which are invoked by user programs, or which respond to external events.

Bootstrap loading can be viewed as a chsin of responses to an event, namely
someone pressing the “start” switch on the console. This is anslogous to the way P
existing systems typically recover from a crash A trap routine {etches a simple '
loader from some secondary storage location That loader dumps the core image
into an error log. then patches the svstem back together and restarts it

We shall write each bootstrap procedure as an exception handler for the condition
“startup”, raised by the underlying virtuasl machine. This allows each system level,
from the bottom up, to obtain control of the cpu for the purpose of setting itself
in motion, loading the program it is supposed to support, then signalling "startup” to
that program.

The exception handling | have in mind follows the work of Levin, in that one can
dec/are an exceptional condition, provide a hand/er for a condition, or raise a
condition (signal that the condition has arisen) [Levin 77]. A condition may be
signalled oniv from within the scope in which it is declared At this level we allow
only one hsndier for each condition, and require that handier to be permanently
ensbied for handling the condition

A condition must be associated with an environment, at least insofsr as the
representation of the condition handier register must be placed somewhere. | adopt
the convention that placing a condition in an environment constrains its handler to be
‘wvocable from that environment

With startup thus taken care of, the initialization clauses of modules can be used
exciusively for actions associsted with module instantiation. Elaborating & program
takes place in the order in which modules appear in a system description. As the
trangistor instantigtes each permanent module, it carries out the specified initialization

Ssome FAMOS tamily members had no system processes at all. §
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code. Regardiess of what environment the module is bound to, the representation
of the module, once instantisted, is accessible to the transistor. Therefore, should
the initislization code of a lster moduie invoke operations provided by an earlier
module, the transiator can carry out the specified actions on the host representstion
of the earlier module. Initislization clauses could not contain forward references, as
this would imply the use of objects not yet ingtantiated.

Once a module has been instantiated, its host components are availsble to

participate in system generation For example, an address space manager instantisted
i at one level couild be invoked to build address transistion tables for subsequent
: levels. In general, the system generastion activities of one level are triggered by the
‘ initialization activities of higher leveis.

One of the system instantistion phases | have fumped under system generation is
downl/oading. After all of the target code and data objects have been crested, they
must be transmitted to the target machine via some storage or communication
medium The order of transmission must be explicitly programmed. This can be
achieved by invoking the downloading code from the initislization clause of the
outermost module of the system  Each level would provide a downloading
procedure for its level, which would clean up its own dsta structures, call the
downloading procedure of the level bslow, then downioad the programs it has been
given to manage.

et byt

s

We can now program the initialization, generation, and startup of the first level of &
a PDP-11. We will need a specification of the target hardware environment in N
which the bootstrap loasder will run, and host facilities for placing the bootstrap
loader onto the tape. To be complete, | also insert the module specification for the
compiler, aithough it doesn't contain anything interesting

Module<host> compiler is
requires linker
provides type procedure, varigble, task, etc.

end module compiler

ko
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Module PDP-11
requires Linker
provides Mp, CommArea, BogtEnwvironment

ver Mp: CoreBlock[0:177777])  —- full configuration

module CommArea is
requires Linker
provides TrapSeg, |0Seg. TrapVectors, Devices, etc.

var TrapSeg segment {.at C in Mp, lerigth 240, volatile )
== trap vector declarations go here

var 10Seg

( at 160000 in Mp, length 20000, volatile )

—= device register declarations go here

end module CommArea

type Boot Environment is -— an environment
requires Linker
provides ProgramRegion, LogicalSegmentSet, Startup

ver ProgramRegion segment
(at 1000 in Mp, length 512 bytes)
var LogicalSegmentSet LogicalMamory
= (TrapSeg., |I0Seg, ProgramRegion)
condition<Boot Environment> Startup
end type Boot Environment

end moduis PDP-11

TrapSeg snd |0Seg are descriptions of the physical machine. They are listed as
volatile so that the linker will not produce a host representation for their contents,
nor sllow initial data to be stored in them during transiation

| have wr.iten BootEnvironment as a type rather than a module, because a single
opersting system could in fact have several boot blocks residing on different
secondwry storage devices The condition stertup defined in BootEnvironment
represents the mechanism by which the primitive loader residing in ROM on the bare
POP-11 transfers control to the program residing in the BootEnvironment

Observe that eisborating the above module definition does not require any
interaction with the target machine. The only concrete sctions that would be taken
are the creation of host machine descriptors for two volstile segments, and creation
of a CoreBlock to track the relocation of segments.

Now thst we have a type definition for a bootstrap environment, we can create
one and provide the host machine facilities necesssry to support it

) Tl I VUARAREAIIV S K: Y s e 1 <
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Modulo' Boog;rpap” DecT il
requires -11, apeimageFile
prevides 3ootEnv, Download, HostDT

var<host> HostDT: DecTapeimageFils

var BootEnv: BootEnvironment
proc<host> Download =
init (HostDT)
Link (BootEnv.ProgRegion)
1 Write (HostDT, BootEnv.ProgRegion, Block = 0)
end module Bootstrap

Eisborating this module would result in creating a segment to hold a boot block, a
logical memory descriptor, a file to hoid the generated system for transfer to a
dectape, and a host procedure for downioading BootEnv. it would also place an
instance of the condition Startup in the host representation of BootEnv. Again,
nothing has actually been dons on the target machine.

We have now completely described a very simple virtual machine, consisting of a
32K word address space that contains only 256 words of usable program region.
If we were to concatenate the definitions of the loader, compiler, PDP-11, and
BootStrap, and elaborate them, we would be creating a virtua! machine. We could
then proceed to create a tiny program and place it in BootEnv, and call DownlLoad
to place it on tape. The tiny program would consist entirely of a handler for the
condition BootEnv.Startup.

We shall now use BootStrap to support a loader that can fetch an arbitrarily large
program from the DecTape. We presume that one of the device control registers
declared in PDP-11 is named TargetDT, and controls the DecTape.
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Module DecTapel.oader is
acquires BootStrap.BootEnv, Bootstrap.Download
requires PDP-11, HostDT
provides SimpleEnv, DownlLoad, Startup

module SimpisEnv is == an environment
provides ProgramRegion, LogicalSegmentSet

var ProgramRegion. segment
(after BootEnv.ProgRegion in Mp)
yer LogicalSa%!nentSet logical memor;
= (TrapSeg,K2Seg.SimpleEnv.ProgramRegion)

Condition<SimpleEnv> Startup
var<BootEnv> RegionlLength, RegionBase -
proc<host> DownlLoad =

Link (SimpleEnv.ProgRegion)
RegionLength := length (Simgl:Env.ProgRegion)
e

RegionBase := Base (SimpieEnv.ProgRegion)
BootStrap.DownlLoad(
\‘Vn;ite HostDT, SimpleEnv.ProgRegion, Block=1)

handler<BootEnv> for BootEnv.Startup =
TargetDT.Read(block = 1, length=RegionLength,
Address = RegionBase)
nnidu DecTapeloader.Startup
[

end module DecTapeloader

SimpleEnv provides a program region of unspecified size, located immediately
following the boot block in primary memory. A program residing thers wili be
allowed to use the trap segment and the I/0 segment, but not the boot block. One
of the things a program residing there can do is handle the condition
“DecTapeloader.Startup”.

The DecTapeLoader records the size and starting address of the SimpleEnv
program region in a pair of target variables, RegionBase and RegionLength Rather
than writing their values out onto the tape separatsly, these values are recorded
right in the BootEnv. Observe how this happens: the host procedure
DecTape.Download links the program region and records its attributes in the two
varigbles before caliing BootStrap.Download. After the boothiock is recorded on the
tape, DecTapeloaderDownload puts the contents of SimpleEnv.ProgRegion on tape
starting at block 1. DecTapeLoader enables a handler for BootEnv.Startup, which
uses RegionBase and RegionLength to move SimpieEnv.ProgRegion from tape to

primary memory.

Eiaborating the module DecTapelLoader still does not require any interaction with
the target machine. Each of the target-machine objects crested is represented in

—— e e e e e |
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some segment, which in turn is represented as a host machine file. Even enabling !
the handler for BootEnv.Startup only requires proper placement of the compiled :
code in the tiny program region The module definition does not call for any target

machine procedures to be invoked

(This example does not attempt to solve the problems of allocating tape space in
a modulsr fashion and reusing target machine memory for successive layers. Such :
issues will be addressed in Chapter 5) _ i

So far we have declared two host machine proceduress BootStrap.DownlLoad and
DecTapel.oaderDownload Each procedurs embodies the system generation program
for the corresponding machine level, namely linking the managed segment and v
moving both the customized machine and the managed segment to tape. Howaever, 1
we have not called for either of these procedures to actually be invoked Below .
we will do so, after first elaborating an arbitrary user program:

4
; !
Module<SimpleEnv> UserProgram is ]
raquires SimpleEnv.Startup
handler for SimpleEnv.Startup is {
... == This is user's main program on PDP-11 :
end module UserProgram
-— Outermost initialization generates a system :
Begin
d Dectapet.oader.DownlLoad{
n . '
end moduie System ‘ 1

The user's program is a single module, bound to SimpleEnv, Elaborating that
module places its code and data in SimpieEnv.ProgramRegion When the transiator
elaborates the outermost initislization clause, it invokes the DecTapeloader's
download procedure, which precipitates the entire system generation process. To
get an overview of that process, we shall first sbstract the modules defined in this
section and combine them into a single, abbreviated system description:

PR




module system s |

module<host> Linker is
provides Segment, Section, CoreBlock,
LogicalNameTable, LogicalMemory

type<host> segment is
requires Section
provides Insert, Link, Copy

Module<host> compiler is
requires linker
provides type procedure, variable. task, etc.

Module PDP-11 "
requires Linker .
provides Mp, CommArea, BootEnvironment

module CommaArea is
requires Linker
provides TrapSeg, 10Seq, TrapVectors,
Devices, etc.

type Boot Environment is —— an environment
requires Linker
provides ProgramRegion, LogicalSegmentSet,
Startup

Module Bootstrap
requires PDP-11, DecTapeimagefile
provides BootEnv, Downl.oad, HostDT

Module DecTapeloader is
acquires BootStrap.BootEnv, Bootstrap.Download
requires PDP-11, HostDT
provides SimpleEnv, Download, Startup

module SimpleEnv is -- an environment
requires Linker
provides ProgramRegion, LogicalSegmentSet

Module<SimpleEnv> UserProgram is ;
requires SimpieEnv.Startup

We can trace the flow of control through this system description by expanding
the various downloaders and condition handlers in line, as follows:

g oo ST 3 G P
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e Link (SimpleEnv.ProgRegion)

e RegionLength := length (SimpleEnv.ProgRegion)

e RegionBase = Base (SimpleEnv.ProgRegion)

e init (HostDT)

e Link {BootEnv.ProgRegion)

e Write (HostDT, BootEnv.ProgRagfon, Biock = Q)

e Write (HostDT. SimpleEnv.ProgRegion, Block=1)

e Person copies HostDT to real DecTape

e Person carries tape to a PDP-11

e Person sets boostrap address, presses start switch

e Bootstrap ROM loads DecTape block O into location 1000 ff.
o TargetDT.Readlbblock = 1, length=RegionLength, Address = RegionBase)

¢ raise DecTapeloader.Startup

Thus we see that we have successfully written a program to create and run an
operating system, albeit a trivial one. The fact that we can trace the entire system
generation process gives us confidence that the system description is
comprehensive, as we had hoped

3.7. Summary

We have made the concept “execution environment” a concrete entity in system
descriptions, by using it to define the interface between the implementation language
and the system. We have defined a notation for explicitty programming the
associgtions between source program units and execution environments, so as to
support both muiti—environment modules and multi-module environments. ‘ve found
the notation sufficient to express a variety of type management styles in multi-
environment systems, including monitored types. By introducing the host machine as
one of an operating system's execution environments, we were able to program
initialization and system generation activities as par* of the modules that manage the
generated programs. The resulting system description is a complete program to
create the operating system.

The scquires clause introduced in section 3.2 facilitates programming incremental
machine designs that span muitiple environments. Bv supporting partial conceaiment,
it facilitates static representation and checking of the uses relation among system
components. In particular, it provides a way for a module to obtain exc/usive
access to an environment defined below it, so that the module controls what code
can be placed in that environment
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The toy problem solved in the last section was contrived to illustrate system
generation, and is not by itseif a demonstration of the vaiue of the methodology. In
the next three chapters we shall assess the power of the concepts and notations |
have introduced. by aspplying them to the system description problems identifiad in

section 2.2.
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CHar ER 4
RELATING TO HARDWARE

in this chapter we apply the proposed methodology to the description of
hardware device communication facilities. Interrupt handling and device handling
programs are some of the most likely programs to be written in assembiy language
rather than a higher—ievel language. Interrupts themselves don't fit into conventional
synchronization methodologies. Priority levels likewise are foreign to high—level
languages. Because short routines involving volatile storage are less likely to benefit
from optimizing compilers, the explicit control available in assembly language seems
to out weigh the benefits of strong typing and notational uniformity.

Device registers also pose a name control problem quite apart from interrupts and
priorities. If the device control registers are considered to be a set of objects
provided by the module “hardware”, then each moduie that uses and conceals a
device register must build on top of the hardware module, rather than simply
importing the device control register, in order to ensure that no other module has
access to that device. This imposes a total ordering on the modules that handie
interrupts, an ordering which must be made to fit other ordering constraints
imposed by interrupts and priorities.

Modula and Concurrent Pascal both abstract away from the interrupt level
altogether, providing the programmer instead with a high—level synchronization
construct, the monitor l(or inmterface module, in Modula), with which to describe
device communication. In section 2.2.1 | argued that each of these languages
substantially encumbered system design by burying interrupt handling in the language
runtime system

A fit language for describing device interactions must contain both a suitable
construct for defining interrupt routines, and a suitable means for describing the
effect of priority levels. The language must aiso be highly transparent, in order not
to impose overhead or constrain design.

This chapter presents the design of a device communication subsystem for a DEC
VAX-11, similar to the system used in the VAX/VMS operating system. The
individusl device control registers and interrupt vectors are declared in a moduie that
is responsible for the entire machine description. This module provides an interrupt
module for each device, containing both its interrupt vector and its control and data
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registers. The imerrupt vector is represented in the system implementation language
as an exceptions! condition, as defined by Levin [Levin 77]. The iangusge defines
the minimum set of festures an interrupt module must define. Each interrupt
module is scquired by the module that is 10 manage the device. That module
enables one handier. permanently, for responding to the interrupt The handier is
written in the form of an ordinary procedure.

interrupt routines ususlly communicate with other system components through
shered variasbles  Synchronizstion can be implemented either by manipulating the
interrupt priority level of the processor. or by masking interrupts from individual
devices A language for describing such synchronization should sliow the system
designer as much control over priority and selective masking as reasonabie, but need
not support unreasonsbie control | postulste that in a reasonable program the
priority at which each statement executes shouid be determinsble at compile time. |
propose a locking protocol that is only a slight restriction from primitive data locks,
and show how to compute the priority for each program statement that is both
necessary and sufficient to implement the requested locks.

| represent seiective masking by defining the sction defer on a condition, defined
in terms of Levin's primitive actions on conditions. | again show how to determine
the necessary and sufficient priority for each statement, this time including
knowledge about which handiers might be deferred

The priority determination method could be automated and incorporated into a
software development control facility. For the purposes of this thesis | indicate the
priority of each statement explicitly, so that the reader can see if a change to one
part of the system might change the necessary and sufficient priority of some other
part of the system. Whether the priorities are computed by the language system or
simply verifisd sufficient, incorporating priority manipulation into the language
provides significant assistance in producing reliable software, without unduly
constraining the system dasign space.

4.1. Interrupts as Exceptional Conditions

| briefly introduced Levin's exceptional condition mechanism in section 3.6, using it
to describe bootstrap loading The mechanism he defines is very general suitable
for programming unususl function returns, reporting data structure inconsistencies,
handling arithmetic overflow, and soliciting the return of unneeded resources when
the pool runs low, as well as interrupt handling, all in a muitiprogramming context
He is careful to point out that specific applications do not need the full generality
of the mechanism, and would be more efficient if only the needed features were
implemented. Also, he conjectures that certain usage patterns will occur so
frequently as to justify special langusge features that impiement them even more
efficiently. He envisions a large system containing several different exceptional
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condition reporting facilities, unified by 3 common syntax and semantics, but each
supporting only 8 subset of the mechsnism

| shall define a subset of Levin's handler mechanism that modeis the behavior of
interrupts and interrupt routines, and gracefully supports customary programming
methods. | shall define a special language feature, defer, to model the effect of
turning off interrupts from a particulsr device, in terms of the basic operations on
conditions.

An interrupt is an event signaliing the occurrence of some condition on some
object or process. For hardware devices, it normally signals the completion of
some command, or the occurrence of some asynchronous event, such as the
expiration of a time interval or the arrival of a message from a network A
memory violation interrupt signals a condition on the currently executing process.
However, for the purposes of this chapter we will limit our discussion to conditions
on objects. A handler for a condition is a procedure designed to respond to the
occurrence of the event When a device or program raises a condition (signals its
occurrence), the handler for the condition is executed The handier may use
variables defined in the scope in which it is declared, and may also receive
parameters from the device or program that raises a condition (Device status
registers would be accessed as shsred variables, not as parameters. Certain
hardwsre conditions in VAX, such as memory violations, push parameters on the
stack) There may be more than one handler for a condition, but a handler is only
invoked if it is snabled for thst condition A handler may be enabled for the
duration of some program statement, such as a loop or procedure call, or may be
enabled for the lifetime of the object on which the condition is defined An
interrupt condition may have at most one handier enabled for it at one time.
Normally that handler will be ensbled permanently.

Levin's mechanism dictates that when a condition occurs, its handier is invoked
immedistely. Since the CPU interrupt priority level may delay the invocation of a
handier, we must make some kind of accommodation. | choose to define the
interrupt dispatcher of the CPU as an intermediary between the hardware devices
and the software handlers. Each device may raise a condition, which the dispatcher
handles by setting a flag indicating that it occurred. Whenever the interrupt priority
level falls, the dispatcher checks its flags to see what conditions should be signalied
The condition thus signalled is different from the one the device raised, becausse it
refiects both a property of the device and a property of the interrupt priority level
register, e.g "the clock has ticked recently and priority is now below level 15" In
practice the priority is used only for controliing the urgency of computation and for
mutual exclusion. I will add notations for explaining these properties later.
Meanwhile, we shail assume that by coincidence no interrupt ever occurs during the
execution of another interrupt handier.
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Let us define a language system interface for interrupt vectors and devices. The
language will provide the following constructs to users of interrupt conditions:

handler for condition = procedure body
raise condition
defer condition

The handler clause declares and enables a handier for the condition For interrupt
conditions it shall only appear in a permanent module instance, making it a
permanently enabled handier. The lsnguage system must know what psrameters, if
any, will be passed by the signaller to the handler, and must give the exception
handling mechanism the address of the handler. For software interrupts, the user of
the condition may aiso-.raise it The language system must invoke an operation on
the exception mechanism when this occurs, transmitting the necessary parsmeters.
Many device registers support operations to suspend interrupts from an individual
device, regardiess of the current priority level. To defer a condition means to
postpone invoking the handler for the duration of some sequence of statements.
To support this, the language system will need operations to mask and unmask the
interrupts from that device at the beginning and end of the statement sequence.

An interrupt module shall have the following form

interrupt module modu/e name is
provides condition, priority[ defer, raise)

condition ( parameter list )

const priority = integer

proc set ( identifier . address | = procedure body
—- called to snable a handler

—- The following are optional. Their presence indicates
== that the corresponding language features sre supported.
proc mask = procedure body
proc unmask = procedure body
proc signal ( parameter /ist ) = procedure body
snd module modul/e name

The facilities thst are to be used only by the language system, namely set, mask,
unmeask, and signal, sre not provided, and so cannot be invoked directly by other
modules. instead, the module provides the corresponding /anguage festure, leaving
it to the langusge system to perform the transigtion As with other language

support modules, an interrupt module may provide any other facilities that e

appropriate, such as access functions for the device registers associsted with the
interrupts.
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4.2. VAX interrupt and Device Hardware

The VAX architecture provides 16 leveis of hardware interrupts, and 15 (lower)
levels of programmable interrupts. Interrupt handlers may execute either on the
kernel stack (provided that no other handier is running at the time the handler is
dispstched) or on the interrupt stack. Each interrupt routine begins execution at the
same priority level as the interrupt itself, but may raise or lower that priority.
However, the priority at the end of the handler execution must be at least as high
as when it started, because the REl (returmn from exception or interrupt) operation
will fail if completion would cause an increase in priority. Also, there is a kernel
stack for each process in the system, and the context swapping routines must use
the REl instruction, so any routine that calis the context swapping code must be
executing at a lower priority level than the level of the context swapping code.

Device control registers on VAX are accessible through ordinary memory read and
write operations, just like on PDP-11's. Esch device is assigned a separate
interrupt vector, so that interrupt routines don't need to poll several devices to find
the origin of an interrupt The interrupt vectors are located in the “system control
block”, which is identified to the CPU by the "system control block base” register.

4.3. VAX Device Communication Subsystem

We can now program the device registers and interrupt vectors for VAX. For
convenience we shall draw upon the simple system described in section 3.6 so as
not to bescome mired in repetitive detail We shall build an execution environment
that supports all devices and can access all of primary memory, through a page
table that provides an identity map for primary memory pages, and a suitable
address range for the device registers. One practical use for such an environment
would be an interactive loader that could select system components from
directory-structured devices, in response to console commands. Here is the overall
structure of the system

&
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moduie system is i

module<host> Linker is
provides Segment, Section, CoreBlock, LogicalNameTable,
LogicalMemory

Module compiler is
requires linker
provides type procedure, varisble, task, etc.

Module VAX
requires Linker
provides Mp, BootEnvironment, Devices

type Boot Environment is —— an environment

requires Linker .

provides ProgramRegion, LogicalSegmentSet,
Startup

typs Devices is “"
provides Console, Disk1 .. DiskN, i
DiskController, etc. P

e T e e oy s

Moduie Loader is
requires VAX, HostDisk
provides SimpleEnv, Download, Startup

Module Bootstrap
requires VAX, PseudoDisk
provides BootEnv, Download, HostDisk

Module<SimpleEnv> 10 is
provides TransferRequest, IOPostQueus, . . .

The components that pertain to device communication are:
o VAX: decisres the device registers

e Devices: defines the software control block containing ail interrupt
vectors, and pairs up each interrupt vector with the corresponding
device registers in an interrupt module.

e IO: deciares the queues through which input and output request blocks
pass going to and from the devices, and declares procedures and
condition handiers that process device commands.
The linker and compiler perform functions analogous to their counterparts in the
PDP-11 ioader. This loader is capable of placing a core image in primary memory
and raising the condition startup, to be handled by the program residing in that
image. (This condition is implemented by setting the initial program counter to the |
address of the handler, rather than through the interrupt mechanism) Most of the ;
details of the loader are irrelevant to this example, and will be omitted. »
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4.3.1. The Module VAX

The module VAX defines the physical characteristics of the hardware, including the
CPU registers, the primary memory and device communication memory, and the
interrupt vectors. This is its general form:

module VAX is ‘
requires linker }
provides Mp, BootEnvironment, Devices ‘

var Mp, IOMem, I0Seg, DeviceRegisters-. . . -

moduie CPU is
provides SCBB, . . .

type BootEnvironment is
requires PTType, Linker,
provides ProgramRegion, LogicalSegmentSet, PageTable, Startup

type Devices(SCBSegment Segment) is
provides ConsoleRec, ConsoleSend, DiskControlier,
MagTapeController, Softint1 . Softinti§, . . .

interrupt module ConsoleRec

interrupt type DiskControlierType is l
interrupt type SoftintType(tSoftintindex) is .

end typt Devices X
end module VAX |

IOMem is the range of physical addresses set aside for device control and status _
registers. | declare the segment !I0Seg to completely fill that range of addresses. .
All of the device control registers are bound to 10Seg, as follows: 3

var Mp: CoreBlock(1 Megabyte)
var IOMem:  CoreBlock (Base 512M, Ion?th ™M)
var I0Seg segment (at 0, length 1M, in IOmem, volatile)
var<iOSeg> DeviceRegisters : record

var ConsoleRegisters

var DiskRegisters

var TerminalRegisters

etc

!

t

Bootstrap loading on VAX is performed through a console that includes an LSiI-11 |
microcomputer and one or two floppy disk drives. The console can load an entire ; 1
binary file from a floppy disk into primary memory while the VAX CPU itself is '

haited To simplify this system description, | assume a console command file that {
initializes the system page table pointer to zero, implying that the first part of every
load file should be a page table. | document this design decision in the definition of |
BootEnvironment, which contains a segment for the page table and one for the i
remainder of primary memory. BootEnvironment aiso defines the condition Startup, E
which is implemented by a console command to start execution at the address of ;
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the handler code. BootEnvironment is a type rather than a module so that a system
may create more than one core image, for different purposes. ‘
type BootEnvironment is .
requires PTType, Linker, .
provides ProgramRegion, LogicalSegmentSet, PageTable, Startup '

var MapSeg segment (at 0, length 16K, in Mp)
var ProgramRegion: segment (at 16K, in Mpj
var<MspSeg> PageTsabie: PTtype =
(MapSeg.BootEnv.ProgramRegion, iI0Seg)
ver LogicalSegmentSet LogicalMemory :=
{MapSeg,BootEnv.ProgramRegion,|I0OSeg)
end type BootEnvironment

Devices is a type rather than a module because VAX allows the interrupt vectors
to reside anywhere in primary memory. They are made known to the CPU through
the System Control Block Base (SCBB) register. The record SCB (for System
Control Block) defines names for each of the interrupt vectors:

var<SCBSegment> SCB:packed record
aligned mod 512
var unused 1: interrupt vector
var MachineCheck: interrupt vector (IntStack)
var KernelStackNV: interrupt vector (IntStack)
var PowerFail: interrupt vector (KernStack)

var SoftintVec: array [Softintindex] of interrupt vector (KernStack)

s = ———

! var ConsoleReceive: interrupt vector (intStack)
; var ConsoleTransmit interrupt vector (IntStack)

3 var DiskController: array [Diskindex] of interrupt vector (IntStack)
! end record SCB

> [PEPORCoT Y e

The tyr2 Devices acquires DeviceRegisters so that the registers will be used only
through the interrupt modules. Each interrupt module scquires the device control .
and status registers and the interrupt vector it needs. For example, here is the i}
interrupt module for the Console Receiver: '[

interrupt module ConsoleRec
scquires ConsoleRecesive, ConsoleRecReg
provides condition, priority, defer, Console receive operstions

condition (no psrameters)
const priority = 14HEX
proc mask is
ConsoleRecReg.mask = true
proc unmask is
ConsoleRecReg.mask = faise
-— other operations on Console Receive go here
end module ConsoleRec

Because there is an interrupt vector for each disk controlier on VAX, there must
be a sepasrate interrupt module for each. Therefore, | define an interrupt type
giving the form of the module, and then deciare as many instancez as | need
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interrupt type DiskControllerType is
soquires SCBDiskController,DeviceRegisters.DiskController

provides condition, priority, defer, Disk command ops

end module DiskControlierType
var DiskControlier: array [Diskindex] of DiskControlierType

Software interrupt vectors support raising conditions as well as handling them

interrupt type SoftintType(tSoftintindex) is
scquires SoftintVec
provides condition, priority, raise

condition (no parameters)
const priority = |
proc si =
. SoftwareinterruptRequestRegister := |

end typo SoftintType
var Softint1: SoftintType(1)

var Softint15: SoftintType(15)

Although the text of the type devices is rather lengthy, the only primitive objects
instantisted in it sre the interrupt vectors themseives. The rest of the type simply
defines the interrupt conditions. Creating an instance of devices creates an SCB in
the environment of the instance. Here is an abbrevisted definition of the entire

module Devices, to show how the pieces fit together:
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type Devices(SCBSegment Segment] is
provides ConsoleRec. ConsoleSend. DiskControiler,

MogTCgonm'olw, Softint1 . Softint15, . . .
var<SCBSegment> ;packed record

sligned mod 512
var unused 1. interrupt veotor
var MachineCt . x. interrupt vector (IntStack)
var KernelStackNV: imerrupt vector (IntStack)
var SoftintVec: array [Softintindex]
of interrupt vector (KernStack)
ver ConsoleReceive: interrupt vector (intStack)
var ConsoleTransmit interrupt vector (IntStack)
ver DigskControlier: array [Diskindex]
of interrupt vector (intStack)

end record SCB

proc SetSCB is
CPU.SCBB = address of SCB

interrupt module ConsoleRec
acquires ConsoleReceive, ConsoleRecReg
provides condition, priority, defer, Console receive operations

condition (no parameters)
const priority = 14HEX
proc mask is

ConsoleRecRegmask = true
proc unmask is
ConsoleRecRegmask := faise

end module ConsoleRec

interrupt type DiskControllerType is :
acquires SCB.DiskController.DeviceRegisters.DiskController
provides condition, priority, defer, Disk command ops

end module DiskControllerType
var DiskController: array [Diskindex] of DiskControlierType

iﬁf-}rupt type SoftintType(lSoftintindex) is
acquires SoftintVec
provides condition, priority, raise

condition (no parameters)
const priority = |

proc s'gnal = )
CPU.SoftwareinterruptRequestRegister := |

end typo SoftintType
var Softint1: SoftintType(1)

i: var Softint15; SoftintType(15)
ond typo Devices

4 e T t—— e - ., _——————— -5




4.3.2. The Module Loader

The loader must define a useful execution environment.and arrange to have it
transported from the host to the target machine. It creates a BootEnvironment,
and places an instance of Devices in it Pagelab/e contains an identity map of
primary memory followed by a map of i{OSeg This defines the virtual addresses of
the device registers, and makes it easy to compute the physical address of SCB for
recording in SCBB.

module Loader is
requires VAX, HostDisk
provides SimpleEnv, Devices, DownlLoad, Startup

var SimpleEnv: Boot Environment
var<SimpleEnv> Devices: VAX Devices(SimpleEnv.ProgramRegion)
condlitlorés leEnv> for SimpleEnv.S
handler<Simp v> for SimpleEnv.Startup =
SetSCB

raise Startup

4.4. Synchronizing Interrupt Routines

Interrupt modules supporting conditions provide an adequate mechanism for
implementing interrupt routines for a strongly typed language. However, interrupt
routines ordinarily communicate with other portions of a system through shared
varigbles. The procedures that access them typically protect them from race
conditions by raising the interrupt priority levels high enough to block compaetition
from interrupt handlers, or by suspending interrupts from individual devices. A fit
language for synchronizing interrupt routines would provide a great deal of control
over the interrupt priority level, while at the same time providing as much heip as
possible in verifying mutual exclusion for shared variables.

Simply providing direct access to the interrupt priority level (IPL) register is
unacceptable, because the language system cannot give any assistance in verifying
synchronization constraints. Instead, the program ought to state which variables are
to be locked, and when | shall define a set of primitives for locking individual
variables, and show how to implement the locking primitives as operations on the
IPL register, such that the interrupt priority at any give time is both necessary and
sufficient to implement the locking commands.

It is reasonsble to expect that for any given statement of 8 program, the set of
varisbles that are to be locked during its execution should be determinable at
compiie time. Interprocedural data flow analysis technigques allow us to determine
which varisbles migit be locked during a given statement, prudence dictates that
they must be locked for that statement This restriction allows the priority
requirements to be determined at compile time.
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Masking and unmasking individual interrupts can also benefit from language support
Data flow analysis can determine which handiers mighit not be masked during a
given statment. by assuming they w/// not be masked, we can again determine the
necessary and sufficient priority for mutual exclusion.

Data locks and handler masking are unacceptably clumsy programming tools. | shall
introduce the language construct defer, defined in terms of primitive operations on
conditions, and implemented with mask and unmask. Similarly, many reasonable
synchronization constructs can be impiemented as data locks. | choose a form of
critical regions, which names the variables to be locked, and which can span either
procedures or entire modules. | shall demonstrate that the construct is immune to
the (nonjproblem of nested monitor calls [Parnas 78b].

Using critical regions and interrupt condition handlers, | shall show how to program
a device communication subsystem for VAX, much iike the one actually present in
VAX/VMS. By imbedding the priority and masking functions in the impiementation
language, | can express the needed synchronization in abstract terms, while retaining
reasonable control over changes in priority.

4.4.1. Analyzing Programs That Use Locking Primitives

One can describe the mutual exclusion requirements of a system of programs by
inserting explicit /ock and un/ock operations on individual variables. In general this
technique is unacceptable, because two processes that (ock the same set of
variables in different orders may become deadiocked This problem can be avoided
by imposing a strict ordering on variables, such that a process must lock the
variables it uses in a predetermined order. Because we intend to impiement locks
with priorities. we know that the ordering implied by priority levels will impose a
locking order on the variables. Therefore, the excess generality of locking primitives
in this situation is harmless. In fact, the problem of impiementing iocking with
priorities raduces to the problem of assigning variables to priority levels. To lock a
veriable, one raises the current priority level to the level of that variabie.

Because interrupt routines must share a single call stack, an interrupt routine must
be allowed to run to completion once it has begun execution To block an interrupt
routine, one must prevent it from being dispatched at all. So, to lock a variable X,
one must determine all the interrupt routines that might access X, and choose a
priority level sufficiently high to prevent any of those interrupt routines from being
dispatched.

| assume that a variable will be locked if it is to be used | do not prevent the
programmer from using a variable without locking it, nor do | detect such uses.
One can determine all of the variables a handler locks by forming the transitive
closure of the ca//s relation, and for each procedure in ca//swH), mark the variables
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locked in that procedure as locked by handler H The priority level needed to lock a
varigble V is the maximum initial priority among all handlers that lock V.

To impiement a compietely dynamic locking mechanism, one would add to the state
description of a process a /ocking set naming the variables currently locked The
procedures /ock and un/ock would change the set, and adjust the interrupt priority
level to fit However, this mechanism would be entirdly too expensive for use in
the interrupt routines of an operating system. Furthermore, a program in which the
priority of a statement couid not be determined until run time, would be hard to
understand. Therefore, | make the following restriction:

If a variable V might be locked when control reaches statement S,
then variable V wi// be locked when control reaches S.

Later, when | propose a specific language construct for synchronization, | will be
making more restrictions. This one simply limits the class of constructs | am
interested in supporting.

We determine what variables might be locked at a given point P by interprocedural
data~flow analysis. A variable V might be locked at P if there exists a path to P,
from the beginning of any handler or process, in which the variable is locked and
not subsequently unlocked  This is nearly identical to determining the set of
avallable expressions at a point P, if one views /ock(V) as defining V and un/ock(V)
as killing V. The only difference is that for available expressions we require every
path to define the expression

However, we now discover that the restriction above might be too strong A
utility procedure that makes no reference to any shared variable might be called
from two places: one which locks some variable V, and one which does not The
restriction would require V to be locked for both calls. instead, if we view each
invocation of a procedure as a separate copy of the procedure, the conceptual
problem disappears. When we imbed the lock operations in a more structured
synchronization tool, we will see that actually making separate ccpies is unnecessary.

Having determined the set of variables that might be locked at each point P, a
compiler can generate instructions to adjust the priority levels at each /ock and
uniock operation, such that the priority is always high enough to protect the locked
variables, but never higher than necessary.

4.4.2. Masking Individual Interrupts

Most device control registers contain a flag that determines whether or not the
device will interrupt the CPU when it compietes a command. An error recovery
procedurs could obtain mutual exclusion for the device register by turning off
interrupts from that device. Although priority manipulation is a more common form
of synchronization, | wish to demonstrate that this form, too, can benefit from
ianguage support




Consider a program containing both locking primitives and masking primitives (mask
and unmask). For a dynamic implementation one would add a masking set to each
process state descriptor. The necessary and sufficient priority at any time wouid
be the maximum initial priority of any non-masked handier that, if dispatched, might
lock one of the varigbies in the /ocking set. Each locking and masking operation
would recompute the priority to accommodate the changed set

Again, we would like to make the priority determingtion at compile time. By
interprocedural data flow analysis we can determine the handlers that will have been
masked when execution reaches a given point P. We again view different
invocations of a procedure as separate copies, since one invocation might mask a
given handler, and another not For each invocation, if there is uncertainty, we
assume that the handler in question will not be masked Knowing the handlers that
will be masked at each point, a compiler can generate the necessary IPL register
settings to protect the locked variables.

4.4.3. A Synchronization Notation

Individual data locks are sufficiently primitive that many well-known synchronization
mechanisms can be built out of them. For the purposes of this thesis | choose a
very simple one, just elaborate enough to support the programming example | will
be presenting | see great opportunity for further research to discover which
synchronization constructs can be simply implemented with priorities.

| choose a critical region construct that names the variables the region is to
protect

crit ( A, B C)
statement-sequence
end crit

| also sllow an entire module or type to be declared a critical region

module M is
requires . . .
provides . . .

erit { A, B, C

end module
All critical regions that protect a given variable must mutually exclude one another.
A critical module or type is simply an abbreviation for making every procedure body
defined therein critical. Critical regions have dynamically nesting scope. Consider
procedures P and Q, where P calls Q Any variables protected by a region spanning
the call of Q shall be protected for the duration of the call as well
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var A, B

proc P is
orit ( A)
csil Q
end crit

oc Q
crit (B )

o'na'efit
The variable A is protected throughout each invocation of P, even while P is waiting
for the completion of Q

To represent masking of interrupts from particular devices, | choose to define a
construct to defer a condition Levin's general condition mechanism allows a
handler to be enabled for the duration of any statement, written as follows:

<statement>{condition-name : handler-body]
A handler enabled this way supercedes handiers enabled farther down the call stack.
Also, if there is a handler statically enabled for the same condition, this handler
takes priority over the other handler. | now define the operation defer by the
following rewrite rule:

<statement>{defer condition-name ]
becomes

begin
boolesn flag = false;
<statement> [condition-name : flag := true];
if flag then raise condition-name

end

This rewrite ruls describes what a typical device actually does when it is masked
upon compieting a command it sets an internal flag; if that fiag is set when the
device is unmasked, it sends an interrupt

4.4.4. impismanting Critical Regions

Critical regions could be implemented dynamically by maintaining a muiti-set for
each process listing the variables currently protectsd by that process, and locking or
uniocking individual variables as appropriate. However, critical regions can easily be
transiated directly into priority manipulations.

The function ca//sMH) tells which variables a handler locks, by revesling which
critical regions it enters. The priority class of a variable follows from this
information as before. The priority of a given critical region is determined from the
priority classes of its variables and the priority of the dynamically enciosing region.
The entry code for a critical region shali push the current IPL value on the
execution stack, and replace it with a higher priority, if needed, to protect the
variables of the region. Exit code simply restores the old value of the IPL register.




This implementation of critical regions removes the need to make separate copies
of a procedure that is invoked from different locking contexts. Each caller of a
given procedure will set the IPL register sufficiently high to protect the variables
locked prior to the call; the called procedure will maintain a priority at least that
high.

A system designer may need to know at what priority each critical region actually
runs, in order to assess response time for time—critical handiers. A software
development control facility could easily display the determined priorities in the
source text for this purpose. Lacking that. a language designer could ask the
programmer to specify the priority of each critical region, and have the transistor
verify the mutual exclusion. For the remainder of this chapter | will specify the
priority of a region in the source text whenever it is significant

4.4.5. implementing Defer

An interrupt module will define the operations mask and unmask if the device
being described is to support the defer construct To allow for nested defer
regions, the transiator would supply a counter for each process and each handler,
to record the number of dynamically nested defer regions entered for a given
handler by ths given process.

Defer regions aiso affect the priority computations, howaver, and here we
discover a minor unpleasantness. Although we can determine, for each critical
region, exactly which handlers are certain to be masked when executing in the
region, we must either generate separate copies of procedures invoked from
different masking contexts, or assume the handlers in question sre not locked

4.4.6. Coordination with Process Multiplexing

The design described so far will fail for VAX if the operating system's process
muitiplexor suspends the currently executing process and begin executing another
during any critical region, because the interrupt priority level is maintained on a per-
process basis. VAX/VMS deals with this problem by doing context swapping at a
priority below all device—handling priorities, so that all critical regions that involve
devices will block context swapping as well. To incorporate this idea into the
current design, we specify that every critical region will execute at a priority at
least as high as the context switching priority, so that a critical region can
synchronize ordinary processes even if no interrupt handlers are involved
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4.4.7. Nested Monitor Calis

Monitors were involved recently in a controversy surrounding the “problem of
nested monitor calls. The debate surrounds the question of whether a process
calling monitor Y from within monitor X shouid be thought of as "leaving” monitor
X If not, then deadiock can result should another process call X from within
Y. Parnas argues that the snswer to the question depends entirely on the individusl
program. [Parnas 78b]. Modula avoids this alleged problem by forbidding all calls
out of an interface module. This means that all communication between handlers
must pass through ordinary processes, which is unacceptable.

A critical module, as | have defined it. strongly resembles a monitor. Let us
consider how it would answer the question for the following example:

moduie M is
scquires ConsoleReceiver

requires Q
provides P

var A
crit { A, priority = ConsoleReceiver.priority )
handler gr ngnsoleﬁeceivar.condition is ..

proc P =
call Q
end proc P

end module M

module N is
provides Q

var B
crit | 8 priority = ContextSwap.priority )

proc
end moduie N

proc R =
call P
call Q

end proc P

Assume that the interrupt priority of the ConsoleReceiver is 14, and that Q is not
calied by any handler, directly or indirectly. (This makes the priority for N be the
context switching priority, say 2). All of the code within module M would execute
at priority 14 or higher. When procedure P calls procedure Q, priority would
remsin st 14. However, because the handier for ConsoleReceiver.condition does not
call Q, the priority class for B is not affected by it Thus, when R calls Q, the
priority st which Q is executed can be lower than 14.
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Suppose that the priority class of N wers 10, rather than 2, because a new’
handier at priority 10 uses Q That handler could not enter N during the execution
of P because the IPL would be too high Furthermore, no handier could enter P
during the execution of Q, because that handler's initial priority would be less than
or equal to 10, and therefore it wouid not be dispatched

in general, a process executing in one critical region may enter snother critical
region without leaving the first, and not risk deadlock. The priorities used to
implement the regions define a locking order for them, so that there cannot be a
deadly embrace.

4.5. Device Drivers for VAX

VMS allocates four hardware priority levels and four software priority levels to
I/0 handling, in addition to one level of each f.r the interval timer. The general
design paradigm for interrupt handiing is that a device driver running at a software
interrupt priority level maintains the request queue for a device, passing one
command at a time to the hardware priority level. The hardware interrupt handler
simply copies the status information into the command description block, and puts
that block in the driver's queue of completed commands. At a still lower software
interrupt level, VMS maintains a queue of all completed user requests, sending the
completion notices on to the appropriate processes.

To illustrate device communication, | shall describe a subsystem that provides a
command to initiate (/O transfers, and a queue of completed requests. A request is
described in a Transfer Request Block (TRB). The overall structure of the subsystem

is as follows:

e .
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module 10 is
acquires loader.devices
provides IOPostQueue, TransferRequest, TRB

module IOPostQueue is
scquires Softintd
provides I0Done, SendiOPost, GetiOPost

module |ODoneQ11 is
acquires Softint11
requires DiskComplete, MagTapeComplets, . . .
provides 10Done 11

module I0DoneQ10 is . . .
module I0DoneQ9 is . . .
module 10DoneQ8 is . . .

Module DiskManager is
requires 10DoneQ 11, SendiOPost
provides DiskSubmit, DiskComplete

type Driver(t Diskindex) is
scquires DevicesDiskController
requires IQDone 11
provides Submit, Complete

var Cont srray [Diskindex] of ref driver

module MagTapeManager is . . .
module NetgworkMamger is . ..

module TerminaiManager is . . .

The I0PostQueue collects the completed requests, raising a condition each time a
new entry is placed in the queus. The type TRB has all of the data for a request,
plus link fields for placing it in queues. The procedure TransferRequest examines
the request and routes it to the proper device driver. The (ODoneQ’'s administer
four software priority levels for processing /0 completions. The individual
hardwere interrupt handlers each place the completed blocks in these queuss, to
minimize execution time spent at the hardware priority levels, thus reducing the
chance of a missed interrupt The disk manager contains an array of controllers,
with a sepsrate requast queue for each

4.5.1. Transfer Request Queues

The VAX/VMS hardware supports four indivisible operations on doubly linked lists:
insert and remove, at head or tail. They might be defined in a standard preiude as

follows:




type DequeDefinition[ T: type ]
provides deque, deqeit, value
insertiHead, insertTail, RemoveHead, RemoveTasil

InResults, RemResults

type Etag [member, header]
type EUnion ( tag Ert:? ) = record
var head, tail EUnion ( any )
case tag of
member: [var value: T] ,
header:[] o
end record . .

type deque = EUnion ( T, header )
type deqeit = EUnion ( T, member )

type InResults = [ wasempty, wasnonempty ]
type RemResults = [ wasempty, nowempty, nonempty ]

proc Empty { d deque ) b: boolean = . . .
proc InsertHead ( & deque. e deqgeit ) rinResults = . . .

proc insertTail ( & deque, & deqelt ) rinResults = . . .
proc RemoveMead ( d deque, eref deqgelt ) rRemResuits = . . .

proc RemoveTail { & deque, ersf deqeit ) rRemResuits = . . .

end module QueueDefinition
The module is generic in the type of value to be stored in elements of the deque.

Here are the details of the transfer request queue structures:
Type TRBTag = [disk, magtape, network, terminal ..

Type TRBdata is record

i:isi tag TRBtag of
disk: record
var controller:Diskindex
var command
var status
end record
end ca's'o'
end record
var 10QueueDef: DequeDefinition [TRBdata]

type TRB = I0OQueueDef.Deqelt
There is a variant of the TRBdsta type for each type of device. The disk request
block indicates which controlier is to receive the request. as well as containing
fisids for the command to be given and the status information to be received.

I0QueueDef defines a particulsr kind of deque, whose elements have a value of
type TRBdata This deque is used throughout the module 10. In particular, the

deque element type is renamed TRB.

P

i
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Both I0PostQueue and 10DoneQ8 . . I0DoneQ 11 are all implemented with deque's.

module I0PostQueue is
acquires Softint4
requires |0QueueDef, TRB
provides I0Done, SendiOPost, GetlOPost

rename I0Done = Softint4
var |[OPostQ: Deque

proc SendiOPost ( C: TRB ) =
insertTail ( IOPostQ, C )
raise I0Done

proc GetliOPost { C. TRB RemResuits =
RemoveHead ( IOPostQ, C )
snd module IOPostQueue

moduie I0DoneQ 11 is
acquires Softint11
requires DiskComplete, MagTapeComplete, . . .
provides IODone 11

var DoneQt: Deque

proc I0Done11 ( C. TRB) =
InsertTail ( DoneQ, C)
Raiss Softint11

handler for Softint11 =
var C. TRB
while not RemoveHead( DoneQ, C ) = wasempty do
case C.taj of
Disk: DiskC lete ( C )
MagTape: MagTapeComplete ( C )

end case o
end handier
end module |I0DoneQ 11

module I0ODoneQ10 is . . .
module I0DoneQ9 is . . .
module IODoneQ8 is . . .

iOPostQueue uses priority level 4, and signals |IODone (Softintd4) for sach completion.
Typically the procedure GetlOPost would be used inside a handler for |IOdone, which
would loop until the queue was empty. Because the hardware queue instructions
are uninterruptibie, no critical sections are needed t0 synchronize Send and Get

IODoneQ11 maintains a queue of completed TRB's for disk, magnetic tape, and
network controllers. Its handler drains the queue each time it is invoked, using the
tag field of each TRB to determine which completion procedure to invoke. Again,
no critical regions are needed. [0DoneQ10 . . I0DoneQ8 would have the same
form, for different devices.
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4.5.2. Disk Drivers

Recall that module devices defined a vector of hardware disk controliers. Each
controller driver maintains a single sorted list of transfer requests. To simplify this
exampie | have used a strict FIFO scheduling policy. Each driver maintains a flag
indicating whether a command is in progress, and a variable containing the TRB being
processed.

type Driver{l: Diskindex) is
acquires Devices.DiskControlier
requires 10Done11
provides Submit, Complete

var DiskQueue: Deque
var Current TRB
var Busy: Boolean = False

proc Selecc:tCommand { O driver} =
var C:
crit { Busy, priority = Softint11.priority )
if RemoveHead (DiskQueue, C) = wasempty
then Busy := faise
sise Current .= C
DiskController [I].Command := C.Command
end crit

handier for DiskController [I].condition is
Currentstatus := DiskControlier [1].Status
10Done11 ( Current )

proc Complete ( D: driver ) =
if << error >> then <<ratry>> else
SendiOPost ( Current )
Selectcommand

proc Submit ( D: driver, C. TRB) =

InsertTail { DiskQueue, C)

crit ( Busy, priority = Softint1 1.priority )

if not busy then

Selectcommand
end crit
end type driver

The driver synchronizes initiation, interrupt handling, and completion without using
critical regions, by programming them such that only one can be underway at any

one time:

e The procedure Se/ectCommand removes a TRB from the queue,
records it, and starts the controller.

e When the controller interrupts the CPU, the handler copies the status
register into the TRB, and moves it to IODoneQ11.

e I0DoneQ 11 passes the TRB to the procedure Complete, which either
retries it (if it failed) or starts a new one.
However, critical regions are needed to protect the Busy flag for each driver.
Since the interrupt handler does not lock Busy, the priority needed to protect Busy
is that of the handler for /ODoneQ717, namely 11.
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To round out the module DiskManager, we declare a vector of drivers, and the
routines DiskSubmit and DiskComplete to route TRB's to the appropriste drivers.
TransferRequest is likewise straightforward.

ver C'o?t srray [Diskindex] of ref driver
nit
for | := Diskindex do Cont[l] := new driver(l)
end init
proc DiskSubmit ( C. TRB ) =
Submit ( Cont[C.controtler], C )

proc DiskComplete { £: TRB ) =
Complete { Cont{C.controller] )
end module Disk Manager
module MagTapeManager is . . .
module NetworkManager is . . .
moduie TerminalManager is . . .

proc TransferRequest ( R TRB) =
case RTRBtag of

disk: DiskSubmit { R )

Having discussed the individual modules, we now juxtapose them in an abbreviated
description of the entire module 10.




module 10 is
scquires loader.devices
provides I0PostQueue, TransferRequest, TRB

module IOPostQueue is
scquires Softint4
requires 10QueueDef, TRB
provides |0Done, SendiOPost, GetlOPost

rename |ODone = Softint4

var I0PostQ Daque

proc SenlePost (C.TRB ) =

proc GetlOPost ( C. TRB )FlamResults
end module I0PostQueue

module I0DoneQ 11 is
acquires Softint11
requires DiskCompiete, MagTapeCompiete, . P
provides |I0Done11 ;

var DoneQ: Deque

proc I0Donet11 { C: TRB) = . . . |

handier for Softint11 = ;1
end moduie {0DoneQ 11 .

module I0DoneQ10 is . . .
module |ODoneQS is . . . ‘
module 1I0DoneQ8 is . . . |

; Module DiskManager is
f requires I0DoneQQ 11, SendlOPost
( provides DiskSubmit, DiskComplete

! type Driver(l: Diskindex) is

scquires Devices.DiskController
requires iIODone 11 !
provides Submit, Complete ‘ i

var DiskQusue: Deque

var Current TRB

var Busy: Boolean = Fuise

proc SelactCommand { D: driver) = . .

handler for DiskController [I].condition is

proc Complets ( D: driver ) = . . .

proc Submit ( D: driver, C. TRB) =
end type driver
var Cont srray [Diskindex] of ref driver f
proc DiskSubmit ( C: TRB ) = }
proc DiskComplete { C: TRB ) = i
'i end module Disk Manager I

; module MagTapeManager is .
moduie NetworkManager is .
module TerminalManager is .

proc TransferRequest { R TRB) =
end module 10

aal B
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4.5.3. Reflection

The example from VAX/VMS actually says as much about when not to use explicit
synchronization as about when to use it The VAX architecture helps considerably in
supporting interrupt handling; the conditions and critical regions simply imbed the
obvious program structures in a strongly typed notation Had the queue operations
not been indivisible, they would have been placed in critical regions. In such
situstions, the priority computation techniques would be very heipful in assuring
mutual exclusion. The critical region construct is a significant improvement over both
Moduia and Concurrent Pascal, in that it allows direct communication among various
device drivers and interrupt routines, via dynamically nested critical regions.

Stil, one might argue persuasively that the effort of putting a specialized feature
into ong's implementation language solely for this purpose, would not be
economically justifiable. For any individual operating system, this might well be true.
Nonetheless, modelling interrupts as conditions and deriving priorities from locks
provides the formal basis for verifying system properties, even if the transiation is
done by hand In section 7.4 we will discuss implementation techniques that might
bring costs within acceptable limits for specific situations.

4.6. Summaery

We have introduced hardware and software interrupt facilities into system
descriptions as support for strongly type conditions. We have integrated the IPL
register into the implementation language in support of critical regions, as a
convenient special case of data /ocks. The proposed methodology contributed to
this system design in the following ways:

e The device registers were declared in an environment having access to
the hardware /O memory, then acquired by their managers.

e The scquires construct allowed exciusive access by each device
mg‘;l" to its device, without unnecessary levels in the contains
hierarchy.

e The language system specifies the form of interrupt modules, but
allows the operating system to supply the contents.

e The language system can either transiate critical regions into priorities,
or verify that the indicated priorities are sufficient, at compile time.

e The interrupt vectors in the software control block can be initialized
during system ation, rather than during startup, without requiring a
central list of all handlers.




CHAPTER 5
BOOTSTRAPPING

This chapter describes the design of a bootstrapping mechanism for a DEC
VAX-11 operating system, similar to the mechanism actually used in VAX/VMS. The
design identifies the execution environments involved in the bootstrap sequence, and
describes the mechanisms that connect them, to configure, load and start the
operating system. The design is novel in the following ways:

¢ It describes segment layout using an abstract data type, /ayout. '

e Each environment manager initiates its environment by signalling a
startup condition

e Each system module can place configuration code in the system
generation environment

® Address translation, primary memory allocation, and demand paging
facilities conform to the same modularity and hierarchy in the bootstrap
sequence as they do in the running system In particular, the
permanent environment will ioad and run correctly whether or not the
demand paging facility is present

e The "trick” used to turn on virtual memory mapping without abrupt
discontinuity in control flow, is confined to a few lines of code in a
startup condition module, where its (rather peculiar) connections to
other system components can be identified

e The mechanism for disposing of startup code is embedded in the
startup condition’s termination protocol, where its connections likewise
can be scrutinized
Although one purpose of the case study is to demonstrate that the methodoiogy is
effective for real systems, the reader would quickly tire of the bookkeeping details
present in a complete implementation. Therefore, | give only the specifications of
certain modules.
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5.1. Segment Layout Description Language

To describe the pagbd environments of VAX, we shall need data abstraction to
describe how segments are arranged in address spaces. Most linkers use some
form of sequence or tree language to describe layout (see, for exampie, RSX-11
Overlay Description Language [RSX 78]). The language described here is sufficient
to support the loading example that follows, and furthermore can be generalized to
support intricate combinations of overlapping address spaces.

Layout == Leaf |
LayoutVariable |
( Layout {Layout} )

Leaf := Segment
AddressConstant |
Pool

LayoutVariable := Identifier

Two leafs occurring consecutively in a layout are to occupy consecutive virtl.!
addresses. The attributes of a segment are associated with the segment itself, not
with the layout (or layouts) in which it appears. An address constant appearing in a
layout specifies the endpoints of the leafs adjacent to it A pool is a shorthand
declaration for both a vector—-of-storage and the segment in which it resides,
where the size of the vector is determined by the layout in which it occurs. (A
pool may appear in exactly one layout)

Layout variables obey "object semantics” when they appear in other layouts, thus
providing a mechanism by which two layouts may share sublists. Any individual
layout may only contain one occurrence of any particular leaf, but the collection of
layouts in a system form a forast, with common subtrees. Layout variables are also
a forward reference mechanism a layout appearing early in a system description
can inciude a previously—declared layout variable, as a place—hoider for segments
that have not yet been declared.

This language definition is sufficient for the example of this chapter. More
generally, however, a layout could be any directad, acyclic graph Muitiple
occurrences of a segment only constrain the extent to which that segment may be
inter—linked with other segments. In computer systems with instruction sets
supporting PC-relative addressing, two segments may be linked relative to one
another if they have a unique least common ancestor. (A common ancestor of a
pair of leafs is least if none of its descendants are common ancestors of the pair.)




8.2. Startup Conditions

Exception hsndiing mechanisms for startup require close cooperation between the
operating system and the language system. The former must supply the execution
environment in which the latter elaborates a procedure invocation Here | shall
propose a simple model for the interaction, sufficient to characterize the VAX
solution, but not a detailed proposal for a real system

Executing an exception handler is very much like executing an ordinary procedure
call. The main differences are that the procedure address must be retrieved from a
set of eligible handlers (rather than being known at compilation time), and that the
procedure receives parameters from both the signalling and the enabling contexts.
These differences might be implemented by additions to the procedure invocation
protoco’ such as instructions to set up and tear down the interpretation stack
frame. In general, one might expect the exception protocol to add instructions

1. Before transferring to the procedure
2. Just after transferring
3. Just before return .

4. After return

In multi-environment systems the protocol might aiso effect a transfer to another
execution environment For example, a context switch operation in general can be
decomposed into the steps:

e Savé context
e Change "Current Context’ register

e Load context
These steps would be carried out at handier entry, then reversed at handler exit

Since each startup condilion is (potentially) specialized to a particuler environment,
we shall define the protocol for each startup mechanism in the module that declares
the condition, as a pair of parameteriess procedures named /nit and Quit.

For example, the condition handler to start up a bare machine would have to set
up the execution stack pointer. If the handler finished executing without some
ordingry process taking over the CPU, the handier might execute a "busy waiting”
loop waiting for device interrupts. Here is the condition module:




Condition Module Startup is
provides
condition(
const Priority = MinPriority
proc <host> Set ( StartingPoint address )

var ExecStack: Stack (MinDepth) of Storagelocstion
proc Init =
CPU.StackPointer := ExecStack.TopPointer

proc Quit =
while true do { Blink console lights! }

One additional detail of startup handiers must ‘be mentioned here. Since oftentimes
a loader and the segment it loads reside on different storage devices, the starting
address of the code being loaded is normally stored with the segment rather than
with the loader. To avoid relinking, the starting address is usually stored at some
known location (such as the first onel) in that segment We shall refer to that
location as the transfer vector of the segment, and treat it as a component field of

the type segment.

S.3. Bootstrap anvironments for VAX/VMS

The major components of the VAX system address space are linked together by
only 2 small number of pointers. This allows the size of many tables to be
configured during bootstrapping, including the system page table itself! VAX/VMS
accomplishes this by executing a substantial piece of system code before enabling
memory mapping That code intsrrogates the operator for changes in system
parameters, then sets the sizes of the appropriate tables, aliocates the system page
table, reads in the kernel code and data, and enables mapping. Further initialization
code, executed with mapping enabled, resides in a separate segment that is
discarded afterwards. The distinct execution environments of VAX/VMS may be
characterized as follows: .

1. Memory configuration environment ROM code in the memory
controller arranges the mapping from physical addresses to working
memory modules in a convenient pattern

2. VMB environment essentially a bare machine, except that the floppy
disk drive is known tc contain a directory-structured set of files.
program VMBoot constructs a bit map identifying the working pages of
the physical address space, provides various device communication
services to higher levels, sets up the SysBoot environment, and reads
idl'\e its program segment from one of several permissible bootstrap

vices.

3. SysBoot environment like VMB, except that it presumes the bit map
and device services. The SysBoot environment is used both by
SysBoot (the VMS loader) itself and by various diagnostic programs.
The program SysBoot configures the system tables, initiglizes the
system page tabie and page frame management data structures, reads
in executive code and data, enables memory mapping, and transfers
control to the executive initialization code.
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‘ 4. Permanent environment those portions of the operating system that
1 are permanently core resident, including process muiltiplexing, paging.
swapping, and other facilities. ,

5. System environment provides access to all system segments except
the "throw away" segment Contains no initialization code per se.
be entered by ftrap, interrupt or Change Mode instruction while
executing either on the interrupt stack or in a full process context

6. Init environment uses the interrupt stack, and virtual memory (system
space only), including all of the memory initially addressable. The
initiglization code resides in a small "throw away" segment that is
removed from the system page table when initialization is complete.

7. Multi-processing aenvironment large fixed-size seot of process
contexts, with full synchronization facilities. All system activities
except interrupt and context swap code execute within processes,
either by system call from user processes, or from dedicated system
processes.

The program skeleton on the next page shows the relationships between !
environments 2 through 7. At this point we depart from the “real” VMS |
bootstrapping sequence and discuss instead my simplification of it For example,
the skeleton shows a startup condition for several environments, whereas VAX/VMS
simply transfers control from one loader to the next In preparing this case study !
have taken care to confront each step of VAX/VMS bootstrapping, to see whether
it could be incorporated into my redesign. The abstraction presented here includes
the major design obstacies | uncovered, but suppresses many of the ordinary
chores.
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| environment module VMBEnv is
| requires HostEnv, linker, VAX.Devices

provides var AdSpc: AddressSpace. var PR: ProgramRegion
| condition module VmbStart, proc<host> downioad
4

Module VMBoot
requires MostEnv, VMBEnv
provides device drivers, var PfnBits: MemoryPageAliocationBitstring
|
| environment module SysBootEnv
| requires VmbEnv
| provides var AdSpc: AddressSpace, var PR: ProgramRegion
] condition module SysBootStart
[
Module SysBoot
requires HostEnv, SysBootEnv, VAXDevices
provides
module SptManager ‘
provides type PermSeg var SptSeg PermSeg !
var SptMap: layout, var Spt PageTable
proc InitSptAddressSpace
var SysPerm, IntStkSeg, ScbSeg. I0Seq, LockedPoolSeg. GPTSeg PermSeg ;

R

T -
| environment module PermEnv |
| provides var AdSpc: Address Space := |
| (SptManager.Map, { permanent segments }) ] l
) var PR: ProgramRegion | |
| := { .. subset of permanent segments .. } | '
— J :
type PagedSeg, var PinSeg. SysPhdSeg. PermSeg :
var SysSwapSeg, ThrowSeg. PagedPool: PagedSeg '
var SysSegPoolA, BalanceSlots:layout '
r 1
| environment module SysEnv | ;
] provides var AdSpc: AddressSpace := (SptManager.Map, | :
{ { all segments except ThrowSeg } ) | \
| var PR: ProgramRegion = { all available segments } | i
| — J
T 1
| environmynt module InitEnv ]
) provides var AdSpc: AddressSpace := : |
| ( SptManager.Map, { all initial segments }) |
| var PR: ProgramRegion = { ThrowSeg )} |
| proc ThrowAwasy | i
} condition module Sysinit | |
f— N .

handier<SysBootEnv> for SysBootStart =
-= Build initial segment list !
-~ Configure LoadSized segments |
InitSptAddressSpace ‘
-= raise Sysinit (
module ProcessManager i
requires SptManager, MHostEnv, SysEnv, PermEnv
provides
r 1 !

| environment type Process | f
[ S 3

This overview shows three significant features that we shall investigate:
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e Three environments supply startup conditions that form the
bootstrapping chain.

e The thres mapped environments, PermEnv, SysEnv, and InitEnv, all
originate in the SysBoot module, which both constructs the necessary
data structures initially and supplies the routines and access functions
needed to Manipuiate them during normal operation

‘s The system page table and the permanent environment are introduced
without reference to demand paging. even though the permanent and
paged segments all reside in the same system page table. .

5.3.1. General properties of the loaders

Each loader in the system is responsible for accumulating a set of segments on
the host machine, identifying a starting address within that segment set, transmitting
the segments to the target machine, loading them into the execution environment,
and transferring to the starting address. Each loader uses the module Linker to
impiement the types Segment, Layout, and AddressSpace. We shall assume that the
type segment resuits in a token that can be used both on the host machine and the
target machine to iocate the segment on the bootstrapping disks.

Module linker
provides
type SegmentAttribute = Absolute,Volatile LinkSized,
LoadSized,Uninitialized
type SegAttrList = set of SegmentAttribute
type segment( attr: SegAttrlist )
type layout
type AddressSpace is record
segments. segmentset

With these types, a loader can use a layout to determine the base addresses of a
set of segments, cause them to be linked, download them to the bootstrap medium,
and load them on the target machine. Once in place, the loader uses a startup
condition (implemented with a transfer vector) to initigte execution of the program it
has loaded The handier for that condition would be the next loader in the
bootstrapping sequence. Thus the primitive bootstrap function provided by the VAX
"intelligent console” loads VMBoot into VMBEnv and signals VmbStart. VMBoot loads
SysBoot into SysBootEnv and signals SysBootStart. SysBoot constructs the system
page table, creates the configured system tables, loads the operating system code
and data segments, and signals Sys/nit. To illustrate these concepts, here is a more
detailed description of the module VMBoot
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Moduie VMBoot
requires VMBEnv
provides device drivers, SysBootEnv, SysBootStart, PfnBits, MemoryPool

var<VmbEnv> PfnBits: bitstring[0 .. PhysicalCoreMax-1]

environment module SysBootEnv ;
requires VmbEnv
provides AdSpc, PR, MemoryPool

var Program segment
var MemoryPool: pool
var AdSpc: AddressSpace
AdSpcMap = (VmbEnv.AdSpc.Map, Program,
MemoryPool, [PhysicalCoreMax]
AdSpc.Segments = Leafs(AdSpc.Map)
var PR ProgramRegion := ( Program )

condition module SysBootStart is |
requires Program ,
provides condition, priority y

condition <SysBootEnv>() -—- handlers must reside in SysBootEnv -
proc<host> Set ( startingpoint address ) = ;
Program TransferVector := startingpoint
end module SysBootStart ;
end module SysBootEnv ?

proc<host> DownlLoad = o
—- Link Program and MemoryPool using AdSpc.Map .
—= Write Program to disk |
vmbEnv.Download -

handier<VmbEnv> for VmbStart = l i
-- Fill in PFNbits, checking pages for errors
-— load SysBootEnv.Program into its base address |
AbsoluteGoTo(Program TransferVector) ;

VMBoot implements the environment SysBootEnv, providing it with an address space, : l
a program segment, a storage pool, and a startup condition The downloading =
procedure links the program segment and places it on the boot disk. The loading _
procedure is implemented as the handler for VmbStart During translation some i
subsequent module enables a handler for SysBootStart, which causes the language '
system to csll SysBootStartSet, recording the starting address in the transfer vector. P
After the ioader reads in the program segment, it can fetch and go to the starting ’
address.

o ——— e —~

8.3.2. Modularity vs. Bootstrapping

The SysBoot procedure must carry out numerous bookkeeping details on behalf of
several different modules of the operating system. Therefore, we must consider it t
to be an integral part of the operating system, rather than a separate module. In
the proposed structure, the SysBoot module implements the system page table, the
page frame allocation module, the demand paging mechanism for paged system L!
segments, and all of the storage allocation zones in the system virtual address ]
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space. Code to initislize these structures resides in the SysBoot environment,
whereas code for conventional manipulation of these structures resides in the three
mapped system environments.

Although not part of this design, if subsequent system levels needed to perform
initislization in the SysBoot environment, the SysBoot module could define another
condition in that environment, and signa’ it from within the handler for SysBootStart

5.4. Address Transiation, Page Frame Allocation, snd Demand Paging

These three services interact closely in VAX/VMS, as in most operating systems.
inter dependencies among them can foil attempts to maintain a hierarchical system
structure. The interaction is especially apparent during bootstrapping, where

e page frames are allocated to contasin the address translation and
demand paging facilities

e address translation is set up for the page frame aliocation and demand
paging facilities
e the pa?e frame management and address transiation tables are filled
with information needod by the page fauit handler.
VAX/VMS keeps the mechanisms reasonably cieanly separated, but makes no claim
of hierarchy. The description | propose generally refiects the VAX/VMS structure,
but also admits the possibility of hierarchy. ( A detaiisd desigh would be beyond
the scope of this chapter.)

5.4.1. Table Sizes

in VAX/VMS the sizes of the address transiation table and page frame manasgement
table depend upon one another. Both tables occupy physical page frames (affecting
the page frame management table}] and virtual pages (affecting the system page
table. A good system design would make the system page table exact/y big
enough to transiate the system address space, and make the page frame table
exactly big enough to keep track of those page frames that are not occupied by
the resident monitor. We shall see how VMS approximates this ideal, and how it
could be accomplished while still maintaining separation between the two moduies.

The size of a VAX page table is 1/128th of the size of the address space it is
mapping That address space contains four classes of segments:
1. System page table (SPT)
2. Page frame table (PFT)

3. other Permanent Segments (PS)

4. Non-Permanent segments (MNPS)

Zhaniniial i ok andTe
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Using the above acronyms loosely to refer either to the segments themselves or to
the sizes of the segments, we can write the formula for SPT as

st = [(PS + NPS + PFT + SPT ) / 126]
The VAX page frame table contains 18 bytes for every (512 byte) page of
dynamically allocated storage. That storage is the amount of primary memory left
over when all of the permanent segments have been allocated, so

PFT = {CoreMax ~ PS -~ SPT - PFT} » 18 / 512
The first recurrence relation can be resolved as

spT = [iPs + NPs + PFT) / 127]

but the second one is more difficult Rather than an analytic soliution, DEC chose a
congervative method, hamely computing the size of the PFT before expanding the
SPT to accommodate the PFT itself. However, a more exact solution may be
obtained using a polynomial root-finding method, such as bisection

Proc PreSetPft =
{ CoreMax, PS, NPS, PFT, SPT in units of one page }
Function NewSpt = ( PS + NPS + PFT + 126 ) DIV 127
chnonNowPft=((CoreMax-PS SPT)~18+529)DIV530

~- Biggest possible PFT
~- Smallest possible PFT

dgh= o.o?~.g+ Righ) DIV 2
= NewSpt
Cormx-PS—SPT—PFT)>(PF-T~512)DIV 18 then
PFT .= Low = Mid + 1
else High = Mid
ond
The initisl value for High, above, is the size for PFT used by DEC. The differsnce
between High and Low initially could be as great as 10 pages when VAX becomes
available with a gigabyte of physical memory, but for presently available systems the

difference would be at most 6ne psge. and there might be no difference at ail

Nonetheless, to preserve separation bstween the address transiation and page
frame management modules, we would fike to concesl the amount of storage
overhead each moduie introduces. Let the SptManager provide a function whose
value is the difference between the size of the physical memory and the combined

sizes of the permanently resident segments This information can be computed
before attusily sllocsting space for those segments, as long as the individual sizes
have been specified Should the size of any segment be changed (e.g the PFT
segmentl), the value of that function would change correspondingly.

The bisection procedure would look like this

o

- e
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Procedure SetSize ( S: segment; size: integer } { provided by SPT manager }

Function FreeSpace: integer { private to SPT manager } o
Proc PreSetPft = .
Function NewPft = ( ( FreeSpace + PFT | » 18 + 529 ) DIV 530

SetSize(PFTseg, 0) ‘
High = NewPft —— Biggest possible PFT 1
SetSize( PFTse?, High) -- VAX/VMS stops here {
Low := NewPft —- Smaliest possible P
While Low < High do begin :
Mid := (Low + High) DIV 2 ‘
SetSizelPFTseg, Mid)
SPT = NewSpt ol
If FreeSpace > ( Mid » 512 ) DIV 18 then o
Low = Mid + 1 ;
eise High := Mid l

end :
SetSize(PFTseg.High) .
By this technique we can accommodate the discrete jumps in the size of the SPT
without making the PFT manager aware of its implementation. Should the system !
page table be redesigned, no further changes to the PFT manager would be needed
The conservative solution used by DEC is embodied in the first three steps of the A
program above. 3

5.4.2. Keeping Demand Paging Separate

Having disentangled the size of the SPT from the size of the PFT, we can ; J
consider how to keep the demand paging data sepsrate from the address transiation ,
and storage aliocation information  Fortunately, data abstraction provides a !
straightforward solution Both the SPT and PFT are vectors of records, where part
of the contenis of each record is solely for the paging mechanism, and of no
interest to the tabie manager {except for its sizel Therefore, we define two types,
SectionTablePointer and PfnData, which are required by the SPT and PFT modules,
respectively, but only so that they can be embedded in records. The SPT manager
smbeds the section table pointer in a variant fisld of a page tabie entry, indicating
which segment contains the missing page. The page frame table manager embeds
the PfnData in a dynamic record type, providing a pool of such records (1 per page :
frame), with facilities for allocation, desllocstion, snd building doubly circularly linked |
lists. . ;
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type SectionTablePointer is forward -- only the size is needed by PTE

type PageTableEntry is
case valid boolean of
true. . . .
false: STP. SectionTablePointer
type PageTablel s size ) = array[Q . s-1] of PageTableEntry

Module SptManager
requires PageTable, PageTableEntry, PfnBitsManager
provides
type PermSeg
var SptSeg :PermSegi{LoadSized, Uninitialized})
var<SptSeg> Spt PageTable

Type PfnData is forward

module PfnDataBase
requires PfnBitsManager, SptManager, PfnData
provides
var PfnSeg PermSeg ( {LoadSized Uninitialized} )
type Pfindex
type PfnDescriptor is record
suce, pred Pfindex
data PfnData
var PfnTable: array [PFindex] of PfnDescriptor
PfnList -- linked list of PfnDescriptor
proc AllocPfn( Size. integer )PfnlList
proc Free ( L. PfnList )

module PagedSeg er
requires PfnD. . SptManager, SegDesc
provides

type PagedSeg
ver SysPhdSeg PermSeg (LoadSized, Uninitialized)

type SectionTablePointer

type PfnData

type SectionTable(var PT:PageTable)
var<SysPhdSeg> SysSectionTable: SectionTableiSpt)

With this data organization, the permanently resident segments are protected from
being swapped, in two ways:
1. The paged segment manager does not have access to their segment

descriptors (indeed, their descriptors are not addressable in any of the
mapped environments.)

2 ;i;\enopages :\lt the permanent segments occupy are exciuded from the
When a page fault occurs, the paging module can examine the SPT to find the entry
for the faulting page, and use its SectionTablePointer to find the paged segment in
which the page resides. The page replacement algorithm would select from lists of
occupied page frames, ali of which would by definition come from the PfnDataBase.
Therefore, the paged segment manager would never swap out a page from a
permanent segment (Some page replacement schemes periodically scan the entire
page table, collecting usage information from every entry. Such a procedure would
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use the page frame number in the page table entry as an index into the PfnTable,
discarding information on pages beyond the bounds of the table.)

5.4.3. Putting the pieces together

The modules as described above obey a total ordering according to the "uses
relation, except for the two forward type definitions. (Even these could as well
have been generic parameters to the modules) The SPT manager provides the
system page table, the ability to create permanently resident segments, and a pool
of leftover space. The PfnDataBase resides in a permanent segment, and converts
the leftover space into a pool of page frames. The PagedSegment manager uses
the SPT and page frame pool to implement demand paging To complete the

analysis. however, we must examine the startup sequence, to see whether the

design is feasible, and to see whether the modularity is preserved

The sysboot loader must perform the following tasks:
1. Set the sizes of configured segments

2. Allocate storage for permanent segments
3. Build the system page table

4. Initialize the Pfn pool

5. Allocate storage for paged segments

6. Load the code and data segments from disk

To accomplish them in an orderly fashion, we group them according to the moduies
they affect, and find that both modularity and hierarchy can be preserved

The system page table, which is lowest in the hierarchy of the three modules
congidered, must be initialized after all other segment sizes are set, and before the
Pfn pool can be constructed Therefore, the SPT manager supplies an initialization
procedure that computes the size of the SPT, allocates space for the SPT segment

and all other permanent segments, and fills in their page table entries:
Proc StartSpt
{precondition. all segment sizes other than SptSeg
De i haVSOP'Ik"“'ﬂ s?t} SptMana Map
termine size from Sp ger.
SetSize(SPTseg, computed vaiue)
Allocate primary storage for all permanent segments
In SptSeg, construct system page tsble entries
or all permanent segments

Initializing the PFN pool involves activities both before and after setting up the SPT.
The size of the PFN segment must be set before the system page table can be
built; after setting up the SPT, the PFN segment is available to contain the page
frame descriptor pool




Proc StartP{ fn | 0 tnS Sots
precondition all segment sizes other than PfnSeg and Spt
have been fixed} °9
PreSetPfn
StartSpt
initPfnPool

To start up the paged segment manager, we must start up the PfnDataBase, then
allocate space and fill in page descriptors for paged segments. The positions of
those segments in the SPT are defined by SptManager.Map.

Proc StartPagedSepManager
{precondition same as for StartPfn}
StartPfn

AllocPagedSegs
Finally, we can describe the “main program” of the SysBoot loader:

handier <SysBootEnv> for SysBootStart =

Initialize segment sizes for configured segments

StartPagedSegmentiManager

Load code and data segments

Signal startup of the mapped environments
Although control flow passes between modules several times during startup, the
startup code conforms to the same modularity as the running system. Furthermore,
the ca//s relation during startup totally orders these three modules, suggesting that
higher modules could be removed and the lower modules would still start and run
correctly.

5.5. Starting Up The Mapped Environments

As with most virtual memory architectures, there is no elegance whatsoever in the
manner in which VAX/VMS first enables memory mapping. However, one would like
to encapsulste the peculiar act in a small portion of the system, where it can be
understood long enough to debug, and then can be ignored. First we shall discuss
the trick that VAX/VMS uses, then see how it can be encapsulated in a startup
condition.

8.5.1. How it works

Enabling memory mapping normally causes a discontinuity in control flow, because
the CPU suddenly begins interpreting the addresses in the program counter, stack
pointer, and other registers as virtual rather than physical addresses. Normally the
new interpretation is not a valid one, unless the designer chooses carefully what the
initial memory mapping will be. An identity mapping, for example, assures continuity.

On a PDP-11 an identity mapping, in low core, is convenient, because the interrupt
and trap vectors appear at predefined, low addresses which are virtual if mapping is
ensbled, or physical if not However, the VAX architecture requires the operating
system to occupy addresses in the upper half of the virtual address space, which

e,
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are all greater than the largest physical address. Therefore, a simple identity map
will not solve the problem Instead, VAX/VMS brings about the transfer in two
steps, involving three address spaces. The VAX address mapping architecture uses
three page tables: a system page table for translating addresses in the upper half
of the virtuai address space, and 2 pair of page tables for translating addresses in
the lower two quarters of the virtual address space. The system page table is
shared by all processes, whereas there is a separate pair of “user page tables” for
each process. The initiglization procedure is present simultanecusly in the sysboot
environment's unmapped address space, in a process—private address space, and in
the system address space. Sysboot constructs the process—private page table to
supply an identity map for the "Map enable” instruction, removing the original
discontinuity. The instruction following “Map enable” is an unconditional jump to the
very next instruction —— but using its address in the system address space. The
three instructions, and the address spaces in which they execute, are as follows:

CPUMapEnable := true —= Physical address space
Go To A —-= process private address space
A: Continue —-=— system address space

This is the heart of the “trick”, but there is more: The process—-private page table
is constructed by “equivaiencing’ the system page table! Since the initialization
procedure is present in the system address space, the page containing it is
described in the system page table. VMS locks up the physical page frame number
of the page containing the the startup procedure, and selects a subrange of the
system page table to be the process page table, such that the entry describing the
relevant page will occupy the same virtual and physical pages. (This implies that
many other system pages are also twice—mapped, but the process—private page
table is only used to execute one instruction)

5.5.2. Relating the “trick” to Environments

We shall embed the map enabling trick in Sys/nit, the startup condition for the
mapped environments. The condition's set procedure records the /ogics/ address of
the handler. The signa/ procedure, invoked in the SysBoot environment, determines
the virtual address of the handler using SptMangerMap, iooks up its physical
address, sets up the process—private page tahle, and transfers control to the handler
by jumping to its physica/ address.

To insert the "clever” instructions into the handler code, the condition module
defines a handler initistion procedure, which the language system expands in line at
the beginning of the handler. This code sets up interrupt stack pointer and other
environment features, enables mapping, jumps to the system address space, and then
invalidates the process—private page table.
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condition module Sysinit is
requires SptManager
provides condition, priority, signal

condition <initEnv>() —- handlers must reside in InitEnv
var<SysBootEnv> InitAddress: Logical Address

Proc<host> set { LA: LogicalAddress ) =
InitAddress := LA

Proc<sysbootenv> Signal =
X = VirtualAddress(SptManager .Map,initAddress)
Y := Translate(SPT, X)
set up private page table
AbsoluteGoTo(Y)

proc Init =
—- sat up stack -pointer, et cetera
CPUMAPEN := TRUE
AbsoluteGoTol(A)
A -- private page table length := 0

end module Sysinit

5.6. Disposing of startup code cleanly

Because startup code can be quite lengthy, and is executed only once, the virtual
and physical memory it occupies can and shouid be ‘recycled” when startup is
complete. Ideally, there should be no trace of the startup code remaining when
startup is complete, but this can be difficult Like jumping in a2 hole and puliing the
dirt in after you, it is hard to dispose of the code that disposes of the startup
code, without creating more code needing disposal.

One common technique for doing so places the startup code into a free storage
pool without notifying the storage manager that the space is in use. When control
transfers to the newly loaded system, the storage manager will "believe’ that the
storage is unoccupied VAX/VMS uses this technique twice: to recycle memory
from the unmapped environments, and to get rid of the program region for
/nitEnv, which contains all of the once-oniy initialization code for the kernel
system.

The code and data of VmbEnv and SysBootEnv reside in the lowest pages of
physical memory, which eventually become part of the PFN pool. During SysBoot,
physical pages sre aliocated for permanent segments from the high end of physical
memory first, ieaving the iow end undisturbed. When the PFN manager collects the
unused storage to construct the PFN pool, it record the low-end pages as free
even though they are still in use, but places them at the end of the free list so that
they will not be allocated until much later, after mapping is enabled.

The program segment for InitEnv is a paged segment, rather than a permanent one,

Fryon
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so that it can be deieted and its pages reused When the startup handler has
finished its tasks and is ready to signal the process dispatcher, it must first deiete
ts own program segment The code to do so is written as "position independent
cude”. the startup handler copies the code into a storage pool intended for device
handiers, then jumps to it The code deletes the segment, then jumps to the
process dispatcher.

| have not yet designed a representation for the InitEnv disposal mechanism.
However, it could be embedded in the handier termination protocol for the Sys/nit
condition.  Specifically, the startup handler would signal the process dispatcher via
the software interrupt mechanism, then terminate. ~ After disposing of the startup
segment, the termination protocol would execute a ‘return from interrupt’
instruction, triggering the process dispatcher interrupt routine.

5.7. Summary

The proposed methodology has provided a useful conceptual framework for
relating the many facets of bootstrapping in the VAX/VMS operating system.
Startup conditions allow control to flow from lower system levels to higher level
without violating hierarchy. and provide a logical place to connect the map enabling
code and ‘“disposal’ code. Multi-environment modules integrate bootstrapping
operations with conventionsl operations on page tables and storage pools.
Incorporating the host environment in the system description allows operations on
segments as bona fide data objects, making clear the relationships between address
translation, storage allocation, and demand paging.

The design ideas presented here cannot be fully explored without actually building
a language system and an operating system. However, each step in the
bootstrapping phase of VAX/VMS has a place in the proposed methodology. and a
niche in the resulting system description.

e
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CHAPTER 6
HieERARCHY IN OPERATING SYSTEMS

in this chapter we shall identify dependencies among several VAX/VMS modules
brought about by composition, procedure call, environment support, and data access,
and verify that the union of these dependency relations defines a partial ordering of
the modules involved To do so we shall recast the relevant portions in a strongly
typed notation, and in a wav that was probably not envisioned by the system
designers. Nonetheless, the redesign does not change the executabie representation
in any material way; only the source-language structure is different

This study depends heavily on the study in the previous chapter. There we
identified two relevant execution environments, Sysfnv and PermEnv, which both
used the System Page Table to implement their address translation In fact, the
logical address space of PermEnv is a subset of the logical address space of
SysEnv. We shall use the fact that code executing in PermEnv can never cause a
page fault, to help prevent a potential cycle in the module dependency graph6 As
with other examples, this one simplifies certain details that would greatly complicate
the description without posing any new technical problems.

6.1. Overview

The process management facilities in VMS consist of the following modules:

e Page Frame Managerr keeps track of the contents of all primary
memory pages

e Paged Segment Manager: keeps track of all the pages associated with
pageable segments, moving them in and out of memory on command

e Dispatcher: muitiplexes the processor among ready processes

e Schedulerr maintains a queue of processes for each possible process
state

. l?ager. manages all user page tables

o Swapper. moves processes in and out of primary memory

saocauu these two environments are aiready defined, this case study can be much briefer than the

other two.
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Some of the interesting relations among modules form partial or total orderings.
When they do, they follow the order given above. The cal/ls and implements
environment of relations both conform to that ordering

However, the data structures themselves seem to imply an ordering quite opposite
to the others The Dispatcher and Scheduler manipulate process descriptors, which
include page tables that are themselves paged. Furthermore, the process descriptors
themseives may be swapped by the Swapper. These dependencies contradict the
calls and environment ordering, causing the overall system structure to degenerate .
into an unordered digraph.

By careful use of generic module definitions, we shall structure the data in such a i
way that the dependencies involving data structures conform to the same hierarchy |
as the other relations. Intuitively the ordering ought to exist, because the dispatcher
and scheduler never access non-permanent memory, and the pager never accesses a
non-resident page table.

6.2. The Dsta Structures

A process in VAX/VMS is rooted in a software process contro/ block (Software ‘
PCB). This PCB contains a pointer to a process header (PHD). The process header
contains the hardwere process contro/ block (Hardware PCB), working set and
segment table information, and the process—private page tables (PO and P1). A
boolean variable in the software PCB indicates whether the process is executable
ie. whether PHD is in core)l. Should the process be swapped out, the PHD pointer i
is replaced by a pointer to the process image in the swapping file.

6.3. The Page Frame Manager and Paged Segment Manager

These two modules have already been discussed in Chapter 5. Briefly, the Page
Frame Manager allocates and deallocates primary memory pages, and provides a
page descriptor facility for use by the Paged Segment Manager. The paged
segment manager defines the Section Tabie data type, which keeps track of all of
the pages associated with a given page table. Its representation includes a working
set, which lists the incore pages in a form convenient for page replacement
algorithms.

In Chapter 5 we defined the paged segment manager to also declare one particular
section table, to accompany the system page table. In this chapter we will declare a
section table for each incore process.




6.4. The Scheduler and Dispatcher

The scheduler and dispatcher incorporate the concept that some processes might
not be exécutable, but do not access the information that is stored to describe a
non—executable process. The scheduler provides the types SoftPCB and Phd, and
preserves the property that an Executable SoftPcb contains a pointer to a valid Phd.

To reduce the complexity of this example, we shall suppress details of the
Dispatcher inside the Scheduler. The Scheduler provides the foliowing services:

e The type SoftPcb

e The type StateQueue, a circular list of SoftPcb's
e A particular state queue, the ReadyQueue

e Processor muiltiplexing

e The current process's SoftPcb

The scheduler resides in PermEnv, as does all the data that it accesses. One might
wonder how the scheduler avoids accessing the user page table, which could cause
a page fault The scheduler's responsibility concerning these tables is limited to
multiplexing the processor among ready processes. Only the executing process

itself accesses the user page tables.
Type ProcessStateType = (Ready, IOWait, PageWait, SwapWait, .. )

Type <PermEnv> SchedulerType[SwapDataType, PageDataType: Type] is
requires ProcessStateType, HardPcb
provides
type PHD is record
HPCB: HardPcb
PageData: PageDataType

type SoftPcb is record
prev.next A SoftPcb —— private
state: ProcessStateType
case Executable: boolean of —- ReadOnly
true: (exstate: A Phd<PermEnv>) == ReadOnly
false: (swapdata SwapDataType)
accounting: . . .

Proc MakeExecutable( Proc: SoftPcb, StateVector: APhd )
VProc MakeNonExec! Proc. SoftPcb APhd

function CurProc: SoftPcb —— current process

type <PermEnv> StateQueue is queue of SoftPcb
proc ChangeState(Oid New:StateQueue)

var ReadyQueue: StateQueue ~-- examine but not change
proc MakeReady ( Proc: SoftPch, OidState: statequeus)
proc MakeWaiting ( Proc: SoftPcb, NewState: statequeus)

e ——— e e e .




6.5. The Pager

The pager defines the notion of a pageable process. It supplies paging data to
the Phd, and supplies page tables for the HPCB. It creates a vector of such

pageable processes.

The page tables for user processes are themselves demand paged Because the
pager accesses these tables, it might be considered to reside in SysEnv rather than
in PermEnv. Nonetheless, it cannot afford to incur a page fault while accessing
such a page, because this would cause a recursive invocation of the page fault
handler. To prevent this, the pager always “locks in core” any page table page it
must access. To represent this concept one could either distribute the pager
across both PermEnv and SysEnv such that only a few key procedures were in
SysEnv; or, one could redefine PermEnv such that its logical address space changed
dynamically. For this example, however, we shall not page the user page tables.

The pager supplies the page fauit handler for the hardware condition trans/stion
error. It examines the faulting address to decide which address space caused the
fault, and calls the appropriate routine. That routine, if necessary, signals the
condition “page not in core’, which the page fault handier responds to by blocking

the current process.

Type<PermEnv> PagerType[ SwapDataType: type] ( Poolsize: integer ) is
requires SchedulerType, SectionTable
acqui_ges PageFauit -~ condition signalled by hardware
provides
var scheduler: SchedulerType[SwapDataType, SectionTable]
var PhdPool array [ O.Poolsize~1 ] of record
Header: Phd
POPT: page table
P1PT: page table

e
proc HandleFault ( addr: address )

handler for PageFault =
if address in system space
then call agedSengger.HandleFault(address)
eise call HandleFault(address)
endif [ on PageNotinCore:
MakeWaiting( CurProc, PageFaultQueue ) ]

8.6. The Swapper

The swapper defines the notion of a swappable process. It defines a swapped
out process to consist of the Phd and all of the pages in the process's working
set When it swaps out a process it first makes the process non-~executable, then
copies out the Phd and pages, then returns the Phd to the pager's pool of Phds.
The swapper code and data reside in PermEnv.

e ——— a -
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module <PermEnv> swapper is
requires SchedulerType, PagerType, PermEnv, SysEnv,
BalanceSetSize, MaxProcs, PfnDataBase.FreelistSizg
acquires PageFault
provides
type SwapData is private
var Pager. PagerType [ SwapData ] ( BalanceSetSize )
var ProcessPool array [ 0.MaxProcs-1 ] of SoftPcb
proc Balance —- anslyzes process mix and swaps accordingly

6.7. Analysis

We wish to derive the dependency relation over these modules and the modules
defined in Chapter 5. Because we have formulated environments as explicit
program elements, we can obtain that relation from the program text directly. The
domain of the relation is the set

{ PermEnv, PfnDataBase, PagedSegManager, SchedulerType,
PagerType, Swapper}

Each identifier required by a module connects it to the module providing that
identifier.

Requiring Module Modules it depends upon
PermEnv none
PfnDataBase PermEnv
PagedSegManager PermEnv
ve 9 PfnDataBase
SchedulerType PermEnv
PagerType PermEnv
PagedSegivana
agedSeg ger
SchedulerType
Swapper PermEnv
PfnDataBase
SchedulerType
PagerType

From this we conclude that the modules impiementing storage allocation,
scheduling, demand paging, and swapping are totally ordered with respect to one
another.




8.8. Summary

This example is very short becsuse the SysBoot module provided a permanent
environment which did not depend in any way on paging The chicken—and-egg
problem in esrlier systems came sbout because of inadequate distinction between
address transiation and paging By making that distinction | have broken the
dependency cycle: by making the distinction explicit in the program text the module
ordering can be derived directly from the provides and requires clauses.

The ordering among these modules is highly desirable during system development,
because it allows debugging of lower system levels without the complications of
demand paging and swapping It is desirable for formal analysis of system
properties, because it allows the designer to isolate the one place where recursive
page fauits might occur, namely where the pager accesses a user page table. It is
desirable for development of parallel versions, because it allows specialization for
systems that do not require swapping and/or demand paging.

A subtle point about using generic moduies: the scheduler is written to operate
correctly regsrdiess of the number and arrangement of SoftPcb's and Phds. The
pager defines the number of Phd's; the swapper defines the number of SoftPcb's.
This approach differs from Janson's and Reed's approaches in Multics in that it
views the type definition as more fundamental than the number of instances and

how they are instantiated
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CHAPTER 7 ‘ r
EVALUATION '

in chapter 1 we defined a set of criteria by which to evaluate the goodness of a
methodology. Now that we have developed the methodology and applied it to
several problems, we can use ihose criteria to evaluate the proposal.

7.1, Utility !

Does the proposed methodology facilitate operating system design and ’
construction? In each of the problem areas we found that the methodology '
contributed significantly to the solution of the problem:

e Device communication: By integrating the language system with the i
i operating system, we were able to model interrupts as exceptional
conditions. This allowed more flexible synchronization schemes than ;
were possible in Modula or Concurrent Pascal Controling access to |
the I/0 segment by means of environment descriptions aliowed explicit
control over access to individual devices.

e System Integration: By incorporating the host and unmapped target
environments into the overall system description, we were able to
combine system generation, linking, bootstrapping, initialization, and
startup activities into a single, comprehensive system description This
diows automatic propagation of changes across environment

nt levels, static analysis of the bootstrapping sequence, better
understinding of the relationship between initialization and startup, b
coordination of static and dynamic memory allocation, and a host of i
ather consistency checks that are difficult on a piecemeal description.

e Hierarchy: By distinguishing address transiation from. demand paging, 1
and by distinguishing data type definition from instantiation, we were
sble to impose and abstract structure on the VAX/VMS process
management facility that exhibited a total ordering over the dependency
relation. By recording environment dependencies explicitly in the
program text, we were able to verify that the program actually obeyed
the clasimed ordering.
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7.2. Clarity snd Fithess

Does the methodology and its notation significantly increase the clarity and
understandability of operating system descriptions? Is the meaning of the notation
itself well understood? Is the notation appropriate to the problem domain?

Clarity and fitness contributed to the success of each case study. Condition
modules, made possible by the integrated language/system approach, provided both a
model and a notation for interrupt routines, that faithfully reflected their usual role
in systems, and facilitated synchronization Incorporating host and bootstrapping
environments into system descriptions clarified many connections between system
components that previously were defined obscurely through ad hoc system
generation and initialization programs. Furthermore, it brought data abstraction tools
to the problems of integration, boostrapping, and startup. The distinction between
PermEnv and SysEnv clarified the dependencies between the pager and other system
code, resulting in a demonstrably hierarchical structure.

The significant notations introduced in this thesis are:

e A syntax for types and modul/es. This notation was just one more
varigtion on a set of well understood language features.

e Environment modules. These are ordinery modules that must supply
certain specified features. The specifications themselves are ordinary
program specifications. Making environment modules explicit entities
fits the problem domain, because an operating system designer thinks
in term of explicit domains.

® Acquires clause. The syntax and semantics of the clause are directly
analogous to the conventional requires clause, with the additional

constraint of exclusive access. The notation was introduced
specifically to fit that concept, which appears commonly in system
designs.

e Environmemnt annotations on program units. This notation requires more
justification than others, because it embodies the most novel aspect of
the methodology. The notation highlights the fact that a program unit
is an instance of an abstract type, whether the unit embodies data,
control, or both The environment annotation is in the form of an
instantiation parameter, specifying the resource pool and type manager
that impiement the program unit | have not undertsken a formal
specification of the meaning of the annotation. However, one can
conceptualize it by distinguishing between the abstract meaning of the
program unit, which is not affected by the annotstion, and the
executability of the program, which must be derived from the
snvironment information. In section 3.5.5, we discussed the notation in
more detail, concludin? that it was clear, fit, flexible, and terse. These
conclusions were confirmed in the bootstrapping case study, where we
found it suitable for describing the bootstrapping environments.

Another, less important notation was aiso introduced

e Condition modules. For this feature we used the specification
technique used in Euclid to specify storage 2one modules, and followed
the semantics proposed by Levinn We found the condition modules
suitable for describing interrupts, inciuding synchronization, and startup.
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To summarize, each of the notations introduced is similar in form and meaning to
some existing, well accepted notation. The notations snd methods together produce
comprehensive system descriptions that clarify important structural properties of
systems.

7.3. Flexibility

Does the methodology fatilitate system construction without unduly constraining
system design? Facility and transparency have shaped the methodology at every
step. Execution environments are defined in a way that accomodates both
suspicious and cooperative environments. The operating system and its
implementation language are integrated in a way that allows the language to facilitate
use of the system's resources while removing only that transparency which the
system design dictates be removed The environment binding notation accomodates
a broad range of type management styles in muiti—environment systems (cf section
355). The interrupt condition, with priority-based synchronization, is more
transparent than either Concurrent Pascal or Modula, and still provides mutual
exciusion  All three case studies deait with real-world hardware and software
systems. We were able to develop a hierarchical description of the VAX/VMS
process and memory management facilities without changing their impliementation
The bootstrapping description, likewise, was faithful to the actual VAX/VMS design
Although some system designs are not worth saving, if the methodology applies to
designs that were developed without its benefit, then one has some confidence that
the methodology does not constrain the design space unduly.

7.4. Implementability

We have deferred until this time almost all discussion of implementation issues.
Although a detailed implementation of the language support tools implied by the
methodoiogy would be premature, we seek some indication that they are feasible
and practical. To investigate this, we shall sketch a design for the program support
facility, then consider each of the implementation probiems implied by the overall
design.

An operating system written under the proposed methodology could conceivably
be written as a single program, that is transiated and elaborated as a single unit by
an sppropriste compiler. However, the size of the system dictates that we be able
to decompose it into separately compilable modules for purposes of development
and testing, and thst we be able to recompile selected portions of the system and
reintegrate them with previously compiled components. Waiter Tichy [Tichy 80]
has aiready shown how to control the development of large software systems
through a module interconnection language, including automating selective
recompilstion. Specisi probiems posed by muiti-environment systems include:

-t

= R, Wy




158

e The system integration phase is expilicitly programmed rather than
following the standard compile—link~load sequence. How can the
system integrate incremental changes without compietely
retransiating the system )
s How much code optimization can be carried out between separately
compiled modules?

o How shall ithe translator accommodate variations in the impiementation
language supported in different environments? How shall the translator
ma:e ef?fective use of user—supplied environment implementation
software

7.4.1. Seperate Compilation

Compilation under the proposed environment management paradigm is different
than the status gquo in the following ways:

o Translating a type definition never implies any code generation. Only
instantiating a type or transiating a module does.

e The size and contents of a permanent data structure may fluctuate
during transiation of subsequent system components, prior to linking
the data structure into a segment

e Consecutive program units within a single file may reside in different

To asccommodate these differences, we identify the foliowing stages in the
transiation of a program unit

1. Specification processing extracting the syntactic information needed
to check the syntactic correctness of other units.

2. Parsing translating the program text into an internal representation
{presumably syntax trees, a symbol table, and some representation for
permanent variables), and verifying its consistency with the
specifications of other units.

3. Code ation:. producing "object code” representation of individua!
procedures (leaving unresolved external identifiers), and constructir:’g an
interpretable representation for the sequence of actions implied by
elaborsting the program text

4. Initislization: carrying out the actions implied by elaborating the
program text, including storage allocation and expilicit initialization code.

8. Linking  finalizing the layout of permanent data structures, determining
the logical addresses of code and dats objects, and resolving external
references. This phase is radically different from the previous ones, in
that linking happens simuitanecusly to all objects in a segment, whereas
each previous phase s at the same tima to all objects in a
module. Linkin%,oin fact, 1s simply an abstract operation on a segment,
carried out by host-environment procedures of the module responsible
for the segment, usually as part of the down-loading phase initiated by
the the outermost module.

With this model of transistion in mind, we may determine which phases must be
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carried out simuitaneously for the whole system, which phases may be carried out
sequentiaily, and which phases can be carried out for each module independently.

1. Specification processing carried out independently for each program
unit Programming languages like Ada allow the specifications to be
compiled before the impiementation is even written.

2. Parsin a program unit may be parsed as soon as all s&eacifications
have geon collected for the program units it invokes. nging the
implementation of a program unit without changing its specification will
not force reparsing of any other program unit

3. Code generation code for a program unit may be generated as soon
as parsing is complete for the program units it uses. Generated code
is not placed in segments until the initialization stage.

4. Initialization the program units must be initialized in the order in which
they appear in the system description Forward references during
initialization might not be feasible (an open research/engineering
question). On the other hand, there may be iarge classes of
initialization actions that can be carried out covertly during code
generation.

B. Linking linking a segment terminates host-environment access to the
variables contained in it A segment can be linked any time this is
acceptable; the actual time of linking must be programmed explicitly as
gart of the host machine activities of the operating system.

resumably there will be portions of the linking activity that can be
carried out earlier, and will not need to be redone after each
incremental change.

Thus we see that each of the first three stages can be carried out on each
module independently, as soon as the modules upon which it depends have finished
the previous phase. Only during the initialization must the modules be processed
sequentially. Even then, the state of the system may be saved at any point, so that
the state of the earlier (lower—level} system components need not be reinitialized
after a change to a later part In particular, the segments containing code and data
for lower system levels might be linked quite early in the initialization phase, and
therefore rarely need to be relinked.

7.4.2. Inter-module optimization

Under the transiation paradigm given above, the code generator has access to the
syntax—tree representation of all of the program units being invoked. Depending on
the sophistication of the code generator, this allows iniine expansion of procedures,
optimization of access functions, and S0 on. Some value—dependent optimizations
may be preciuded because the values are not known until initialization. Inter~
environment optimizations are usually possibie, except when a procedure or data
structure is explicitly bound to a particular environment
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7.4.3. Customized Language Run-time Support Software

We have hypothesized the ability to use different implementation languages in
different execution environments within our system. This will be practical only if
the languages are ciosely related dialects of a single language. Variations should
only be necessary to remove unsupported features and accommodate peculiarities of
the operating system design itself. The case studies presented in the last three
chapters have so far permitted the use of a single language throughout, except that
some features might not be available in some environments. Should the need arise
to specify a dialect, it could be defined in the environment module interface. For
example, whether or not a particular feature is available to a particular program unit
depends primarily on whether or not the support module is present in the intended
execution environment Thus a single compiler could implement many subsets of a
language, where the subset is defined by the provides clause of the environment
module.

The translator applies support software for a given language feature by translating
uses of the feature into invocations of the support module. First it parses the user
and supporter of a given f iture separately. The user must adhere to the language
syntax of the feature; the supporter must adhere to the language specification for
the support module. Then, the parser replaces each occurrence of the feature in
the parse tree with the appropriate invocation of its implementation. (Recall that
support moduies do not export any names that are reserved to the translztor, so
that a program may use these names only via the language feature. See, for
example, Sten Andler's implementation of abstract types in Algol68S [Andler 79])
The parser having established the connection, the code generator can troat the
invocations just like ordinary procedure calls and data accesses.

Undoubtedly there ara a greast many implementation difficulties that will not surface
u:.il an implementation is actually attempted Nonetheless, by dividing the transiation
into the stages identified above, the program development environment can support
incremental recompilation, inter—-module optimization, and program-supplied language
support software.

7.5. Summaery

For each of the criteria established in Chapter 1, we have found the methodology
satisfactory:
e it is usefu/ for solving both theoretical and practiacl problems.

o It clarifies system descriptions, with notations that fit their problem
domains.

o It is flexib/e enough to support a broad range of design approaches,
facilitating system construction without constraining system design.

v it
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e It sppears to be /mplementable with available techniques, albeit applied
in novel combinations.
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CHAPTER 8
CONCLUSIONS

This thesis presents a methodology for describing the executable representation of
a program, and uses the methodology to investigate significant description problems
in operating systems. The methodology integrates an operating system with its
implementation language, so that the language can facilitate use of system
components without interfering in their design The system designer can define
execution environments as bona fide source program entities; each is a set of
resources that the language system uses to implement programs. The methodology
improves the system designer's ability to describe many system properties dirsctly in
the program text, as demonstrated in the areas of interrupt synchronization,
bootstrapping, and hierarchical structure,

To conclude this thesis we shall first compare the methodoiogy to other work in
operating system design methodology, then summarize the contributions of the work,
and discuss future directions the research might take.

8.1. Reistionship to Other Work

References to other work are scattered throughout this thesis, providing a basis
for developing new techniques. In this section we shall compare the outcome of
the thesis to the ideas and techniques previously known  The discussion is
organized by topic rather than by project Some projects appear under more than
one topic.

8.1.1. implementation Languages Supporting Synchronization

Concurrent Pascal, Modula, and Gypsy all provide synchronization mechanisms
explicitly in the language syntax. Concurrent Pascal provides monitors, Modula
provides /nterface modules, and Gypsy provides mai/boxes. Each of these
mechanisms requires runtime support, supplied by a language support kernel defined
outside the language.

Such language support kernels are actually supplying a portion of the operating
system, namely an execution environment that supports cooperating sequential
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processas. Under the proposed methodology the language definition could specify
the facilities the language kernel would supply, but leave the implementation of the
kernel to the operating system designer.

These languages incorporate device communication into the same synchronization
mechanism.  Concurrent Pascal represents its /0 devices as hypothetical processes
communicating with the program via queues and signals. Modula defines a device
imerface module which contains a device process. That process may communicate
only with ordinary processes. The interface module enforces mutual exciusion using
priority. An interrupt process cannot cause pre—emption

The interrupt condition module defined in chapter 4 is more transparent more
flexible, and more fit for device communication than the mechanisms described
above, while still providing an acceptable synchronization mechanism. An interrupt is
modeled by a procedure call rather than a signal or message, allowing the interrupt
routine to pre—process the arriving information without the overhead of a full
process context switch Two devices may communicate directly via shared
variables, again without the overhead of context swapping. Traps and programmed
interrupts can be described with the same notation, which is appropriate considering
that they are defined analogously in most architectures.

Peter Loehr, describing his attempts to write a virtual memory operating system in
Concurrent Pascal [Loehr 77], claims that systems implementation languages should
have fewer specific mechanisms and greater extensibility. Although | agree with his
reactions to Concurrent Pascal, a context-sensitive language notation can facilitate
static analysis and enforce methodological principles in ways that run—time
mechanisms cannot The methodology allows the system designer to select the
language mechanisms appropriate to the system being designed, and to retain contral
over the impiementation of the mechanisms.

8.1.2. Hardware Access in High-Level Languages

Euclid and Modula both give programs access to haic:vare—defined device
registers, by means of special variable declarations. | presume such a feature in my
implementation language, and use environment definitions to specify which program
units may declare such variables or access them. Rather than have each individual
device register declared within the module that manages it, | declare all hardware-
defined objects in modules corresponding to their hardware implementations, then iet
the managers acquire the objects they control.

P
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8.1.3. Process and Memory Management Methods

Janson observed that environment management greatly complicated the structure of
Muitics, threatening to make the dependency graph cyclic. For example, he thought
he might need capability lists to implement capability lists. He resolved this problem
by defining the notion of a “map” dependency, and then differentiating between a/f
types (allocated and freed as needed) and c/d types (created and deleted at willl. He
viewed a/f types as more fundamental than c/d types. Reed [ReedThesis)
proposed a similar scheme for process management

In my hierarchy case study | defined the scheduler in such a way that it would
work correctly regardiess of how many process descriptors existed, and regardiess
of whether the number was fixed or varying The swapper determined that there
would be a fixed number of them, but could easily have made them dynamically
allocated and deleted. Thus the muitiplexor did not need to be responsible for the
size of the management set

Incorporating the host environment in the operating system description explains the
relationship between permanent and non—permanent instances of a type, allowing
them to be derived from the same type definition but instantiated from different
resource pools.

8.1.4. "User-supplied” Runtime Support

Euclid storage zones illustrate how a language can specify the characteristics of its
runtime support system, letting programs supply their own implementations of the
support My methodology generalizes this technique to cover all of the basic
environment features, plus the condition module.

8.1.5. Module interconnection Languages

Tichy's module interconnection language and prccessor, and the Gandalf system,
provide the basis for the software development control system needed for
operating systems. it allows control over the development of muitiple serial and
paraliel versions, keeping enough information to minimize the amount of retransiation
needed to reconstruct a runnable system after a program change. However, Tichy's
scheme presumes a classical compile~link-load scheme. My comprehensive system
description replaces that scheme with a more detailed breakdown of the transiation
steps: process specifications, parse, generate code, and initiate (inciuding linking and
loading. The modified transiation scheme does not materially impact the other
Gandalf facilities for software development control, allowing the operating system
designer to obtain the same benefits availabie to single—~environment systems.
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8.2. Contributions of the Thesis

This thesis contributes three distinct kinds of knowiedge about operating system
design and implementation:

e ldeas about the relationships between langauges, execution
environments, and operating systems.

e Methods for describing the executable representation of programs,

e Solutions to three diverse operating system description problems,

8.2.1. Ideas about Execution Environments

A systems implementation langauge can facilitate system construction by providing
notations for muiti~tasking, synchronization, device communication, and so on
However, in doing so, the language imposes constraints on the operating system
design. Therefore, the system designer must choose (or design) an impelementation
language that harmonizes with the design he envisions. The operating system then
becomes the "run—time system” for the language. Execution environments define the
interface between the language and the operating system.

An execution environment is a complete set of operating system resources that
together provide everything the language needs to implement programs. We
distinguish the concept "execution environment’ both from the concept “surrounding
scope” and the concept "runtime protection domain’. Every module has a different
"surrounding scope’, whereas an operating System contains a relatively modest
number of coherently-designed execution environments. “Runtime protection
domains” define the possible actions of arbitrary machine language programs,
whereas operating systems programs are (or ought to be) written in strongly typed
languages with powerful tools for defining and enforcing modularity. By defining
execution environments explicitly in source—language terms, the system designer
gains the ability to write muiti-environment modules and muiti-module environments,
and to choose a biend of compile~time and run-—time protection mechanisms for
enforcing the boundaries of execution environments.

8.2.2. Methods for Describing Executable Representations

The exact details of the proposed methods are highly speculative, and | would
expect them to change considerably when tested experimentally. Nevertheless, |
expect the following principles to endure:

® An execution environment appears in a source program as an explicit
list of facilities, such as a module.

e That list defines the interface between the compiler and the operating
system, for all program units residing in that environment
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e A transiator is a type manager for the abstract type "program unit’,
implementing it with the resources supplied by the operating system
The particular environment supplying the resources for a given program
unit is a generic parameter to that instance of the type.

e The host environment and bootstrapping environments are bona fide
components of the operating system

e A complete system description is a host-machine program to create an
operating system

8.2.3. Specific Solutions

The interrupt condition mechanism of Chapter 4 is a strongly typed yet highly
transparent characterization of interrupt hardware. it provides an acceptably
powerful synchronization tool without pre—-empting operating system design

decisions.

in designing this mechanism we studied the tension between abstraction gained and
transparency lost when a language provides a synchronization mechanism. We
observed that a context-sensitive notation can facilitate static analysis and enforce
methodologically sound design priniciples in ways that the runtime support for the
mechanism cannot From this we conclude that systems implementation languages
shou/d include such features, even though they constrain system design; choosing
the language features should be part of the operating system design process.

in chapter 5 we outiined the design of the VAX/VMS bootstrapping mechanism.
We were able to embed it in the same module structure that defines the running
system. We used the startup condition to pass control from lower to higher system
levels without violating hierarchy. We used the host environment to create
permanent and paged segments using the same type definitions as are used in the
running system. The startup condition provided a place to represent the memory
map enabling trick and the machanism for disposing of startup code. Overall, we
found that every piece of the bootstrapping mechanism of VAX/VMS had a place in

the system description.

We were only able to look briefly at the problem of defining handier initialization
and finalization protocols. Further investigation in this area will benefit not only
bootstrapping. but also exceptional condition handling generally.

in chapter 6 we developed a demonstrably hierarchical description of a real
operating system. By using source language type checking and modulerity for
protection, we allowed two execution environments to share the system page tabile.
This broke the cycle in the dependency graph between process muiltiplexing and

demand paging.

To resolve the distinction between process muitiplexing and process crestion and
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deletion, we defined a generic scheduling module that was insensitive to the number
and location of process descriptors. Without environment bindings, we would have
informally placed the burden of addressability on the module instantiating a particular
scheduler. With environment bindings, we could specify directly the addressing
constraints for the scheduler code. process descriptors and process state vectors.

The acquires clause defined in section 3.2 supplies a source—language replacement
for a runtime protection paradigm in the Family of Operating Systems we
introduced multi-level modules as a way of explaining that certain facilities provided
by the lower level were accessible to only those upper level procedures residing in
the same module. By using the acguires clause to declare exclusive access, we can
define protection environments independently from source language modules, Using

the visibility of the environment name to specify which modules may place code and
data in it

More generally, the acqguires clause expresses more precisely the composition
relation in a system description. Statically nested program units by themselves
support only those composition relations that are trees. The acguires clause
supports composition relations that are directed acyclic graphs.

8.3. Future Directions

Demonstrating that explicit execution environments clarify the structure of
operating systems opens up many avenues for future research, including

e Refining the concept of an execution environment

e Implementing the transiation paradigm, especially the initialization phase
executing in the host environment

e Designing and implementing a systems implementation language that
includes notations for environment bindings, exceptional conditions
(including interrupt and startup conditions), capabilities, synchronization,
rfnult'iple processors, prctected procedures, snd other operating system
acilities.

. ating systems implementation experiments to test the usefuiness
of the methodoiogy.
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