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Abstract

Practical algorithms have been proposed to efficiently recompute the logical consequences of a Datalog
program after a new fact has been asserted or retracted. This is essential in a dynamic setting where
facts are frequently added and removed. Yet while assertion is logically well understood as incremental
inference, the monotonic nature of first-order logic is ill-suited to model retraction. As such, the traditional
logical interpretation of Datalog offers at most an abstract specification of Datalog systems, but has tenuous
relations to the algorithms that perform efficient assertions and retractions in practical implementations.
This report proposes a logical interpretation of Datalog based on linear logic. It not only captures the
meaning of Datalog updates, but also provides an operational model that underlies the dynamic changes of
the set of inferable facts, all within the confines of logic. We prove the correctness of this interpretation with
respect to its traditional counterpart.
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2 PRELIMINARIES

Assertion: P(B)
+a

==⇒P P(B, a) Retraction: P(B, a)
−a

==⇒P P(B)

where P(B) = {p(~t) | P,B ` p(~t)}.

Figure 1: Logical Specification of Datalog Updates

1 Introduction

Datalog, a logic programming language defined in the early 1980s, was originally used to describe and
implement deductive databases [GMN84]. Given a set B representing the data in the database, a Datalog
program P specified recursive views that a user could then query. Logically, B is a set of ground atomic
formulas (facts) and P a set of implicational formulas of a restricted form (Horn clauses). The semantics of
such a Datalog system, as well as some actual implementations [CGT89], was given by the set of the atomic
logical consequences of P with respect to B, in symbols {p(~t) | P,B ` p(~t)} — a beautifully pure use of
logic.

In the last ten years, Datalog has had a resurgence in a variety of domains other than databases: to
provide user authentication [LM03], to implement network protocols [GW10, LCG+06], to program cyber-
physical systems [ARLG+09] and to support deductive spreadsheets [Cer07], just to cite a few. In these
applications, the contents of the fact base B is highly dynamic, at least compared to the relatively static
databases of the 1980s. This requires efficient algorithms to assert new facts and to retract stale facts. While
such algorithms have been proposed [ARLG+09, CARG+12, GMS93, LCG+06, NJLS11], the connection with
logic has lagged behind, especially for retraction. Indeed, although it is easy to give a logical specification
of assertion and retraction, as done in Figure 1, a direct implementation of these specifications is horribly
inefficient as it involves recomputing logical consequences from scratch after each assertion or retraction.

In this report, we propose a logical interpretation of Datalog that supports updates internally. Like with
the traditional reading, the semantics of a Datalog system (P, B) will be the set {p(~t) | P, B ` p(~t)} of its
logical consequences (plus some bookkeeping information). However, the assertion or retraction of a fact a
will trigger a small number of logical inferences to determine the new set of logical consequences rather than
performing a full recalculation. In this way, the proposed encoding not only constitutes a logical specification
of the static and dynamic aspects of a Datalog system, but it can also be viewed as an efficient algorithm
to compute updates. Because retraction results in the removal of inferred facts, we base our encoding on a
fragment of first-order linear logic rather than on the traditional predicate calculus.

The main contributions of this report are therefore 1) the definition of an encoding of Datalog which
models the assertion and retraction of facts within logic, and 2) a proof of its correctness with respect to the
traditional interpretation.

The rest of this report is organized as follows: Section 2 reviews Datalog and linear logic. Section 3
illustrates our approach with an example. Section 4 introduces an initial linear logic interpretation of
Datalog that focuses just on assertion. Section 5 extends it to capture retraction as well. We discuss related
work in Section 6, while Section 7 outlines directions of future work.

2 Preliminaries

This section provides a brief review of Datalog and linear logic. We first recall some common mathematical
notions that we will use throughout this report.

2.1 Notations

In this report, we will refer to both sets and multisets. We write *a1, ..., an+ for a multiset with elements
a1, ..., an (possibly repeated) and S ] S′ for the multiset union of S and S′. We use ∅ to denote both the
empty set and the empty multiset. Given a multiset S, we write set(S) for the set of the elements of S

1



2 PRELIMINARIES

Terms: t ::= x | c
Facts: a, b, h ::= p(~t)

Clause: D ::= r : ∀~x. B ⊃ h
Clause bodies: B ::= b ∧B | b

Programs: P ::= D, P | ·
Fact bases: B ::= p(~c), B | ·

Figure 2: Syntax of Datalog

(without duplicates). We write ā for a generic set or multiset, disambiguating as needed. Sequences will be
written as (a1, ..., an) or ~a, with ε for the empty sequence and S, S′ for the concatenation of two sequences
S and S′. A substitution [t1/x1, .., tn/xn], denoted θ, is a mapping of variables xi to terms ti. Given a
collection S (set, multiset or sequence) of formulas and θ = [t1/x1, ..., tn/xn], we denotes with θ(S) the
simultaneous substitution of all free occurrences of xi in S with ti. We denote the set of free variables in S
as FV (S).

2.2 Datalog

Datalog is a declarative rule-based language, founded on traditional first-order logic. Its syntax is given in
Figure 2. A Datalog system consists of a fact base, B, and a program, P. A fact base is a set of ground
atomic formulas, called facts, of the form p(~c), where p is a predicate of fixed arity and ~c is a sequence of
constants drawn from a fixed and finite signature Σ. A Datalog program is a set of clauses of the form
r : ∀~x. b1 ∧ . . .∧ bn ⊃ h where h and bi are atomic formulas possibly mentioning variables among ~x, and r is
a unique label acting as the rule’s name. We call h the head of r and b1 ∧ . . . ∧ bn its body. Datalog clauses
are a restricted form of Horn clauses: the body cannot be empty, the arguments of each predicate must be
either constants or variables (function symbols are disallowed), and each variables in h must appear in the
antecedent b1 ∧ . . . ∧ bn (variables are range-restricted). Furthermore, to keep the presentation simple, we
shall assume that no two body atoms have common instances.

Datalog classifies predicates p into base predicates, whose values are supplied by the user and can appear
only in the body of a clause, and inferred predicates corresponding to views computed by the system. Clearly,
all heads have inferred predicates. We classify the facts built from these predicates into base facts and inferred
facts, respectively. The set of all facts that can be built from the signature Σ and the predicates mentioned
in a program P is traditionally called the Herbrand base of P. We denote it herbrand(P). Furthermore, we
write herbrandB(P) and herbrandI(P) for the portions of herbrand(P) that contain base and inferred facts,
respectively. The common assumption that both Σ and P are finite ensures that these sets are finite as well.

The semantics of a Datalog system (P,B) is defined as the set of all atomic logical consequences of P
and B, formally {p(~t) | P,B ` p(~t)}. This set, the inferential closure of P and B, consists of both base and
inferred facts. We will denote it as P(B), thereby emphasizing that a fixed program P can be viewed as a
function that maps a fact base B to the set of its logical consequences. This is particularly convenient given
that this report focuses on the effect of dynamic updates to the fact base of a Datalog system. Figure 3
details a traditional logic proof system, the intuitionistic sequent calculus, LJ . We will make reference to
LJ in our proofs in Section 4.3 and 5.5.

Given a fact base B, the assertion of a fact a yields the updated fact base B′ = B ∪ {a} (which we
abbreviate “B, a”). Similarly, the retraction of a from B produces B′ = B \ {a}. For convenience, we will
assume that a 6∈ B in the first case and a ∈ B in the second. The effect of either type of update is to
change the set P(B) to P(B′). We denote this as P(B)

α
==⇒P P(B′) where the action α is +a in the case of

assertion and −a for retraction. The logical meaning of both forms of update is summarized in Figure 1.
Although it is possible to compute P(B′) from scratch on the basis of P and B′, it is generally much more
efficient to do so starting from P(B). Although a number of algorithms have been proposed to do exactly
this [ARLG+09, CARG+12, GMS93, LCG+06, NJLS11], they lack a logical justification, especially in the

2



2 PRELIMINARIES

Formula A,B,C ::= p(~t) | A ∧B | A ⊃ B | ∀x.A
Context ∆ ::= . | ∆, A

A ` A
(Id)

∆ ` C

∆, A ` C
(WL)

∆, A,A ` C

∆, A ` C
(CL)

∆1 ` A ∆2, B ` C

∆1,∆2, A ⊃ B ` C
(⊃L)

t ∈ Σ ∆, [t/x]A ` C

∆,∀x.A ` C
(∀L)

∆, Ai ` C

∆, A1 ∧A2 ` C
(∧Li

)
∆ ` A ∆ ` B

∆ ` A ∧B
(∧R)

Figure 3: Fragment of the Intuitionistic Sequent Calculus, LJ

case of retraction. This report provides such a justification.

2.3 Linear Logic: LV obs and LV obs−

Linear logic [Gir87] is a substructural refinement of traditional logic. In traditional logic, assumptions grow
monotonically during proof search. By restricting the use of the structural rules of contraction and weakening,
linear logic enables the context to grow and shrink as inference rules are applied. This permits interpreting
formulas as resources that are produced and consumed during the process of constructing a derivation. The
result is a rich logic that is well-suited for modeling concurrent and dynamic systems [CS09].

In linear logic, the usage pattern of a formula is made explicit by replacing the connectives of traditional
logic with a new set of operators. For instance, multiplicative conjunction or tensor (A ⊗ B) denotes the
simultaneous occurrence of A and B, and additive conjunction (A&B) denotes the exclusive occurrence of
either A or B. Hence ⊗ and & models two understandings of “conjunction” on resources. Traditional logic
implication A ⊃ B is replaced by A ( B which preserves that idea of deducing B from A, but differs in
that A is consumed upon the application of A( B. An atom p(~t) is defined as in Figure 2. The fragment of
linear logic used in this report is shown in the top part of Figure 4. With the exception of the (a operator
(discussed below), it is a subset of LV obs [CS09], itself a restriction of linear logic that has been used to
faithfully encode concurrent languages and rewriting systems [CS09].

We use the judgment Γ; ∆ −→ C to express that the linear logic formula C is derivable from the unre-
stricted context Γ (a set of formulas that can be used as often as needed) and the linear context ∆ (a multiset
of formulas that must be used exactly once) [Pfe95, CS09]. The proof system defining this judgment is given
in the bottom part of Figure 4. Rules (obs), ((L) and ((−L ) make use of the tensorial closure

⊗
∆ of a

context ∆, defined as follows: ⊗
(.) = 1⊗
(A,∆) = A⊗ (

⊗
∆)

The language used in this report, LV obs−, adds one construct to LV obs (highlighted in Figure 4): guarded
implication, written A(a B, where A and B are any formulas and a is an atomic formula. Its left rule ((−L )
differs from that of regular implication in that it is applicable only when the linear context does not contain
the atomic formula a; moreover, once applied, a is inserted into the context alongside the consequent B. It
can be thought of as an implication with negation-as-absence on an atomic formula a (i.e., ¬a⊗A( B⊗a).

A formula of the form A( B ⊗ A is called reassertive in that applying it consumes A from the linear
context ∆ but immediately restores it there. If A ( B ⊗ A is in the unrestricted context Γ, it can then
be applied again and again, producing arbitrarily many copies of B. By contrast, the guarded reassertive
formula A(a B ⊗ A can be used at most once and produce a single B, even if it is unrestricted. Indeed,
it is enabled only if a 6∈ ∆ but its application adds a to ∆ thereby preventing additional uses. Therefore, a
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3 EXAMPLE

Atomic formulas: a, b ::= p(~t)

Formulas: A,B,C ::= a | 1 | A⊗B | A&B | A( B | ∀x.A | A(a B

Unrestricted contexts: Γ ::= . | Γ, A
Linear contexts: ∆ ::= . | ∆, A

Γ; ∆ −→
⊗

∆
(obs)

Γ, A; ∆, A −→ C

Γ, A; ∆ −→ C
(clone)

Γ; ∆ −→ C

Γ; ∆, 1 −→ C
(1L)

Γ; ∆, A1, A2 −→ C

Γ; ∆, A1 ⊗A2 −→ C
(⊗L)

Γ; ∆, Ai −→ C

Γ; ∆, A1&A2 −→ C
(&Li

)
t ∈ Σ Γ; ∆, [t/x]A −→ C

Γ; ∆,∀x.A −→ C
(∀L)

Γ; ∆, B −→ C

Γ; ∆,∆′, (
⊗

∆′)( B −→ C
((L)

a /∈ ∆ Γ; ∆, B, a −→ C

Γ; ∆,∆′, (
⊗

∆′)(a B −→ C
((−L )

Figure 4: LV obs and LV obs− Intuitionistic Linear Logic

can act both as a guard and a witness of the application of this rule. We will make abundant use of guarded
reassertive formulas and choose the witness a in such a way that distinct instances can be used at most once
in a derivation.

Given unrestricted context Γ and linear context ∆, the pair (Γ,∆) is quiescent if whenever Γ; ∆ −→
⊗

∆′

it must be the case that ∆ = ∆′. In the sequel, we will be encoding Datalog clauses as guarded reassertive
implications in Γ and facts as atomic formulas in ∆. Because the rules in Figure 4 operate exclusively on
the left-hand side of a sequent, the inferential closure of a fact base will obtained when these contexts reach
quiescence. The primary purpose of guarded implications is indeed to allow us to reach quiescence. This is
crucial to our results in Section 4.

3 Example

Consider the Datalog program P shown in Figure 5, together with a simplified version VPW′ of its linear logic
interpretation. This program computes the paths in a graph: the base predicate E(x, y) means that there is
an edge between nodes x and y, while the inferred predicate P (x, y) indicates that there is a path between
them. Each Datalog clause is represented by an unrestricted linear implication called an inference rule (I1

and I2). Intuitively, Datalog facts are not quite linear in that they should not be consumed when applied
to inference rules, yet we do not want to model them as unrestricted formulas in Γ because they are subject
to retraction. Hence we model Datalog facts as linear atomic formulas in ∆ which can be consumed, and
Datalog clauses as reassertive implications. In Figure 5, we model the retraction of a fact E(x, y) by defining
an equal and opposite fact Ẽ(x, y) that will consume a copy of the atomic formula E(x, y)1. Each inference
rule, modeling the inference of the head, embeds one or more scoped linear implications called retraction
rules (highlighted in boxes), that deals with the retraction of this same fact.

Embedded retraction rules prepare for the retraction of the head of the corresponding clause in the event
of the retraction of one of its body elements. For instance, the retraction rule in I1 states that if E(x, y) is
retracted — represented by Ẽ(x, y), we shall retract P (x, y) — represented by P̃ (x, y). Similarly, inference
rule I2 contains two embedded retraction rules, each preparing for the retraction of its consequent P̃ (x, z) in
the event of the retraction of either of its antecedents (Ẽ(x, y) or P̃ (y, z), respectively). These two retraction
rules are connected by the & operator, thereby strictly enforcing the exclusive use of either of the rules and

1Ẽ and P̃ are ordinary predicates. The notation is meant to indicate that they are related to E and P , respectively.
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4 MODELING DATALOG ASSERTION

P =

{
r1 : ∀x, y. E(x, y) ⊃ P (x, y)

r2 : ∀x, y, z. E(x, y) ∧ P (y, z) ⊃ P (x, z)

Linear Logic Interpretation (Simplified):

VPW′ =



∀x, y. E(x, y)

( P (x, y)⊗ E(x, y)⊗
(Ẽ(x, y)( P̃ (x, y)⊗ Ẽ(x, y))

– I1

∀x, y, z. E(x, y)⊗ P (y, z)

( P (x, z)⊗ E(x, y)⊗ P (y, z) ⊗
(Ẽ(x, y)( P̃ (x, z)⊗ Ẽ(x, y)) &

(P̃ (y, z)( P̃ (x, z)⊗ P̃ (y, z))

– I2

AP =

{
∀x, y. E(x, y)⊗ Ẽ(x, y)( 1 – A1

∀x, y. P (x, y)⊗ P̃ (x, y)( 1 – A2

Figure 5: Example of Linear Logic Interpretation

hence ensuring that we introduce at most a single P̃ (x, z) in the event of the retraction of either of P (x, z)’s
antecedents. Retraction rules enter a derivation as linear formulas, which means that they disappear the
moment they are used. The retraction of some base fact E(a, b) will trigger a cascade of applications of
retraction rules, effectively retracting all paths P (c, d) that are causally dependent on E(a, b). Notice that
retraction rules are reassertive (their antecedents appear as in their consequent). This is because a single
retraction atom Ẽ(x, y) might be responsible for producing more than one retraction atoms (e.g. Ẽ(1, 2)
might need to produce P̃ (1, 2) and P̃ (1, 3)) hence the actual consumption of a retraction atom Ẽ(x, y) cannot
be the responsibility of a retraction rule, but is pushed to an absorption rule (e.g., A1 and A2), which models
the annihilation of equal and opposite atoms.

The interpretation VPW′ illustrated in Figure 5 is a simplified form of our approach. Indeed, some
additional bookkeeping information needs to be included to guarantee quiescence and correctness. Sections 4
and 5 will describe refinements that will provide such guarantees.

4 Modeling Datalog Assertion

In this section, we define a linear logic interpretation of Datalog program which focuses only on assertions. We

call this interpretation llDAssert . It maps a Datalog assertions inference P(B)
+a

==⇒P P(B, a) to a derivation
of an LV obs− sequent Γ; ∆ −→

⊗
∆′ where Γ encodes P, ∆ encodes P(B) together with a, and ∆′ encodes

P(B, a).

4.1 Inference Rules and Interpretation

We model a Datalog clause as a guarded implication in the unrestricted context and a Datalog fact as a linear
atomic formula. Given a Datalog clause r : ∀~x. b1 ∧ ... ∧ bn ⊃ h, we interpret it as a linear logic implication
∀~x. b1⊗...⊗bn(r](~x) h⊗b1⊗...⊗bn which we call an inference rule (denoted by I ). The witness r](~x) serves
the purpose of reaching quiescence — it is discussed in detail below. While inference rules are unrestricted
formulas that can be applied as many times as needed (more precisely, as many times as the ((−L ) rule
permits), Datalog facts are linear atomic formulas. The responsibility of modeling their non-linearity is

5



4 MODELING DATALOG ASSERTION

P = I1 : ∀x, y. E(x, y) ⊃ P (x, y) , I2 : ∀x, y, z. E(x, y) ∧ P (y, z) ⊃ P (x, z)

dPe = ∀x, y. I(x,y)
1 ,∀x, y, z. I(x,y,z)

2

I(x,y)
1 = E(x, y)(I]1(x,y) P (x, y)⊗ E(x, y)

I(x,y,z)
2 = E(x, y)⊗ P (y, z)(I]2(x,y,z) P (x, z)⊗ E(x, y)⊗ P (y, z)

Assertion of E(1, 2): ∅ +E(1,2)
=====⇒

LL

dPe ∆ where ∆ = *P (1, 2), E(1, 2), I]1(1, 2)+

(obs)
dPe; P (1, 2), E(1, 2), I]1(1, 2) −→

⊗
∆

I(1,2)
1

(IL)
dPe ; E(1, 2) −→

⊗
∆

Assertion of E(2, 3):

∆
+E(2,3)

=====⇒
LL

dPe ∆′ where ∆′ = *P (1, 2), P (2, 3), P (1, 3), E(1, 2), E(2, 3), I]1(1, 2), I]1(2, 3), I]2(1, 2, 3)+

(obs)
dPe; P (1, 2), P (2, 3), P (1, 3), E(1, 2), E(2, 3), I]1(1, 2), I]1(2, 3), I]2(1, 2, 3) −→

⊗
∆′

I(1,2,3)
2

(IL)
dPe ;P (1, 2), P (2, 3), E(1, 2) , E(2, 3), I]1(1, 2), I]1(2, 3) −→

⊗
∆′

I(2,3)
1

(IL)
dPe ;P (1, 2), E(1, 2), E(2, 3) , I]1(1, 2) −→

⊗
∆′

Figure 6: LV obs− derivations of an example llDAssert interpretation

achieved by making inference rule reassertive. This choice is taken in anticipation to extending our logic
interpretation with retraction in Section 5.

Figure 7 formalizes the encoding function d−e which takes a Datalog program P and returns the cor-
responding linear logic interpretation dPe. Datalog facts are mapped to atomic formulas, and multisets of
facts are mapped to linear contexts of atomic formulas. A Datalog clause is mapped to a guarded reassertive
implication.

Inference rules are guarded by an atomic formula witness r](~x) where r is the unique name of the clause
and ~x are all the variables of the clause. Note that r] is not a Datalog predicate but an artifact of the
encoding. In particular r](~c) 6∈ herbrand(P) for any ~c. We write ∆] for a context fragment consisting only of
rule witnesses. An llDAssert state is a multiset of facts and witnesses. Specifically, given a Datalog program

Fact dp(~t)e = p(~t)

Program

{
dD , Pe = dDe, dPe
d.e = .

Conjunction db ∧Be = dbe ⊗ dBe
Clause dr : ∀~x. B ⊃ he = ∀~x. dBe(r](~x) dhe ⊗ dBe

Fact base

{
dB, ae = dBe, dae
d∅e = .

Figure 7: llDAssert Interpretation of Datalog
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4 MODELING DATALOG ASSERTION

Let dPe ≡ Γ, I
I ≡ ∀~x.

⊗
∆(r](~x) h⊗

⊗
∆

r](~t) /∈ ∆′ dPe; [~t/~x]h, [~t/~x]∆, r](~t),∆′ −→ C
(IL)

dPe; [~t/~x]∆,∆′ −→ C

which decomposes into:

r](~t) /∈ ∆′

dPe; [~t/~x]h, [~t/~x]∆, r](~t),∆′ −→ C
(⊗L)*

dPe; [~t/~x](h⊗
⊗

∆), r](~t),∆′ −→ C
((−L )

dPe; [~t/~x]I , [~t/~x]∆,∆′ −→ C
(∀L)*

dPe; I , [~t/~x]∆,∆′ −→ C
(clone)

dPe; [~t/~x]∆,∆′ −→ C

Figure 8: llDAssert Inference Macro Rule

P, a multiset of facts F ⊆ herbrand(P) and a multiset of rule witnesses ∆], an llDAssert state is defined
as the set of linear formula dF e,∆]. Moreover, given base facts B ⊆ herbrandB(P), the state dF e,∆] is
reachable from B if dPe; dBe −→

⊗
dF e ⊗

⊗
∆] is derivable. Note that dBe is always reachable from B —

it is called an initial state.

To model the application of a Datalog clause D, we consider the sequence of linear logic derivation steps
that corresponds to the cloning and instantiation of inference rule dDe, followed by the actual application of
the inference rule instance and assembly of the tensor closure of consequents into atomic formulas. Figure 8
factors out the mapping of this sequence of linear logic derivation steps into a macro rule (IL). Lemma 1
in Section 4.3 entails that any derivation on LV obs− states has an equivalent derivation comprised of only
(IL) and (obs) derivation steps.

We informally define a transition ∆
+a

==⇒
LL

dPe ∆′ that maps a state ∆ to another state ∆′ such that ∆′ has
reached quiescence and P; ∆, a −→

⊗
∆′. We will extend it to retraction in Section 5 and formally define

it in Section 5.3.

4.2 Quiescence and Complete Inference

Figure 6 illustrates an example LV obs− derivation based on the llDAssert interpretation of our example in
Figure 5. It features two successive assertion steps from an empty state. For clarity, we highlight (using
boxes) the formula fragments that are acted upon in each derivation step. The first derivation represents

the assertion of E(1, 2) from the empty state, during which the inference rule instance I(1,2)
1 is applied and

we produce the state ∆. Note that without the guards I]1(x, y) and I]2(x, y, z), the inference rules would
allow the derivation of goal formulas with arbitrarily many copies of the head of the clauses that have been
applied. Instead, from E(1, 2) we can only derive a single instance of P (1, 2) because an application of

I(x,y)
1 introduces the atomic formula I]1(1, 2) which, by rule ((−L ), prevents further application of I(x,y)

1 . In
fact, derivations such as this will always reach quiescence. The second derivation represents the assertion
of E(2, 3) from the state ∆ obtained in the previous derivation. Here, we reach quiescence with ∆′ after

applying inference rule instances I(2,3)
1 and I(1,2,3)

2 .

Given a Datalog program P, a state ∆ reachable from fact base B and some new fact a, to derive the
inferential closure of (B, a), we construct the derivation of dPe; ∆, a −→

⊗
∆′ such that ∆′ is quiescent

with respect to dPe.

7



4 MODELING DATALOG ASSERTION

P = I : ∀x. A(x) ∧B(x) ⊃ D(x)

dPe′ = ∀x. I(x)
1

I(x)
1 = A(x)⊗B(x)(I](x) D(x)⊗A(x)⊗B(x)⊗R(x)

1

R(x)
1 = (Ã(x)⊗ I](x)( D̃(x)⊗ Ã(x))&

(B̃(x)⊗ I](x)( D̃(x)⊗ B̃(x))

AP = ∀x. A(x)
A ,∀x. A(x)

B ,∀x. A(x)
D

A(x)
A = A(x)⊗ Ã(x)( 1

A(x)
B = B(x)⊗ B̃(x)( 1

A(x)
D = D(x)⊗ D̃(x)( 1

Assertion of B(5)

*A(5)+
+B(5)

====⇒
LL

dPe ∆′ where ∆′ = *A(5), B(5), D(5),R(5)
1 , I](5)+

(obs)

dPe′,AP ; A(5), B(5), D(5),R(5)
1 , I](5) −→

⊗
∆′

I(5)
1

dPe′ ,AP ; A(5), B(5) −→
⊗

∆′

Retraction of A(5)

∆′
−A(5)

====⇒
LL

dPe ∆′′ where ∆′′ = *B(5)+

(obs)
dPe′,AP ; B(5) −→

⊗
∆′′

A(5)
A

dPe′, AP ; A(5) , B(5), Ã(5) −→
⊗

∆′′

A(5)
D

dPe′, AP ;A(5), B(5), D(5) , Ã(5), D̃(5) −→
⊗

∆′′

R(5)
1

dPe′,AP ;A(5), B(5), D(5), R(5)
1 , I](5), Ã(5) −→

⊗
∆′′

Figure 9: An Example of llDFull− Interpretation with Assertion/Retraction Derivations

4.3 Correctness

In this section, we argue for the soundness and completeness of the llDAssert linear logic interpretation of
Datalog program.

As mentioned earlier, for LV obs− sequents of the form we are interested in, we can always find a normalized
LV obs− derivation that consist just of (IL) and (obs) rules. This simplifies the proof of the correctness of
our interpretation.

Lemma 1 (Normalized Derivations) Given a Datalog program P and states dF1e,∆]
1 and dF2e,∆]

2, a

sequent dPe; dF1e,∆]
1 −→

⊗
dF2e⊗

⊗
∆]

2 has a derivation consisting of only applications of (IL) and (obs)
derivation steps.

Proof: The bulk of the proof of this Lemma follows from permutability results of linear logic [GPI94].

We need show that we can always disentangle a generic derivation of any sequent dPe; dF1e,∆]
1 −→

⊗
dF2e⊗⊗

∆]
2, into an equivalent one which consists of an orderly sequence of LV obs− derivation steps that corre-

sponds to macro derivation steps (IL) described in Definition 8 and ending off with a (obs) derivation step.
We need to show that all (⊗L) derivation steps applying on a formula A⊗B can be safely permuted down-
wards until right after the ((−L ) derivation step which infers the formula A ⊗ B. Thanks to permutability
results in [GPI94], we have this property for all derivation rules except for ((−L ). To push the (⊗L) deriva-
tion step involving formula A⊗B safely downwards pass a ((−L ) step operating on disjoint set of formulas
C and C (a D, we argue that for interpretation of well-formed Datalog programs, we always have a /∈ A

8



4 MODELING DATALOG ASSERTION

and a /∈ B since rule witnesses a never occur in tensor formulas, hence such permutations are safe. Similarly,
we permute upwards all occurrences of (∀L) derivation step applying to a inference rule B (a h ⊗ B until
right after the ((−L ) derivation step which operates on B(a h⊗B ⊗ a. Lastly, occurrences of the (clone)
derivation steps that operates on inference rules ∀~x. B(a h⊗B⊗a in the unrestricted context are permuted
upwards until right before the first occurrences of (∀L) that operates on the same inference rule. As such,
we can replace each orderly sequence of (clone), (∀L)*,((−L ),(⊗L)* derivation steps by a (IL). Hence we

can obtain an llDAssert normalized proof from any LV obs− sequent dPe; dF1e,∆]
1 −→

⊗
dF2e ⊗

⊗
∆]

2. �

Lemma 2 states the redundancy of having multiple copies of facts, with respect to Datalog inference.
Essentially a consequence of the invertibility of the left contraction rule, this lemma allows us to safely go
back and forth between the multisets of facts of LV obs− and the sets of facts in traditional logic, in our
soundness proof (Theorem 3). In the reverse direction of the proof, it allows us to focus on traditional
logic proofs that are sufficiently saturated, meaning that multiple applications of the same instance of Horn
clauses do not provide more information. This is crucial for our completeness proof (Theorem 4), given that
in the llDAssert interpretation of Datalog clauses, inference rules are guarded implications that will reach
quiescence, preventing multiple applications of same implication rule instances.

Lemma 2 (Redundancy) Given a Datalog program P, states ∆1 ≡ dF1e,∆]
1 and ∆2 ≡ dF2e,∆]

2 and some
fact b ∈ herbrand(P), we have the following:

1. P, b, b, F1 `
∧
F2 if and only if P, b, F1 `

∧
F2

2. dPe; dbe, dbe,∆1 −→ dbe ⊗
⊗

∆2 if and only if dPe; dbe,∆1 −→
⊗

∆2

Proof:

1. This follows immediately from the invertibility of the left contraction rules of the traditional intuition-
istic logic proof system, LJ .

2. The proof proceeds by contraction as follows: Suppose there is some fact c such that dPe; dbe, dbe,∆1 −→
dbe ⊗ dce ⊗

⊗
∆2 and dPe; dbe,∆1 6−→Σ dbe ⊗ dce ⊗

⊗
∆2, hence it must be the case that the extra

dbe has allowed the inference of dce. We consider the 2 possible cases:

• (Case 1) There exists some implication rule ∀~x
⊗

∆ (a c ⊗
⊗

∆ in dPe such that there exists
b′, b′′ ∈ ∆ and we can find a unifier θ where θ(b′) = b and θ(b′′) = b. This means that we can infer
c from this rule which consumes two copies of b. Yet this is not possible, since we only consider
Datalog clauses where no two body atoms b′ and b′′ have common instances.

• (Case 2) There exists two implication rule
⊗

∆(a1 h⊗
⊗

∆ and
⊗

∆′ (a2 c⊗
⊗

∆′ in dPe
such that b ∈ ∆ and b ∈ ∆′, and hypothesize that applying the first implication consumes b and
disallows application of the second rule if we only have one copy of b. However the inference rules
in dPe are reassertive (antecedents ∆ appear as consequents as well), hence the second rule is
applicable regardless of whether the first rule applies before or after it.

Hence we can never find such a fact c. �

Given a Datalog program and a multiset of facts, every valid LV obs− derivation built from the llDAssert

interpretation has a corresponding valid traditional logic derivation. Therefore, our linear logic interpretation
is sound with respect to the traditional semantics of Datalog.

Theorem 3 (Soundness) Given a Datalog program P, fact base B and reachable llDAssert state dF e,∆], if
dPe; dBe −→

⊗
dF e ⊗

⊗
∆], then P,B `

∧
F .

9



4 MODELING DATALOG ASSERTION

Proof: For any sequent dPe; dBe −→
⊗
dF e ⊗

⊗
∆] constructed from our Datalog interpretation,

we inductively define their corresponding normalized derivations as follows: the rule (obs) is the only base
structural rule, while (IL) is the only inductive structural rule. By the form of the (IL) rule, we can conclude
that all intermediate sequents of the derivation are of the form dPe; dF ′e,∆′] −→

⊗
dF e⊗

⊗
∆], with initial

sequents as a special case, such that dF ′e ≡ dBe and d∆′e ≡ ∅. By Lemma 1, we can safely assert that no
sequents other than those generated by the base (obs) and inductive (IL) structural rules are valid derivations
of our Datalog interpretation. The inductive proof proceeds as follows:

• Base (obs) structural rule: We consider the sequent proof built from the (obs) derivation rule of
LV obs−. Hence for dPe; dF ′e,∆′] −→

⊗
dF e ⊗

⊗
∆] to be derivable for the (obs) rule, we must have

dF ′e ≡ dF e and ∆′] ≡ ∆]. As such we need to show that P, F ′ `
∧
F . This is proven in sequent

calculus LJ simply by applications of the left weakening rule (WL) to discard P from the left, separating∧
F with applications of the right ∧ rule (∧R) and finishing up with applications of the identity rule

(id).

• Inductive (IL) structural rule: We consider a macro derivation step (IL). Induction hypothesis, we
assume that for dPe ≡ Γ, (∀~x.

⊗
B(a h⊗

⊗
B), we have dPe; [~t/~x]h, [~t/~x]B,B′,∆′], [~t/~x]a−→

⊗
dF e⊗⊗

∆] where dF ′e ≡ [~t/~x]h, [~t/~x]B,B′ and also P, F ′ ` F . By applying the (IL) rule, we have
dPe; [~t/~x]B,B′,∆′] −→

⊗
dF e ⊗

⊗
∆]. We now need to prove that we also have P, F ′′ `

∧
F such

that [~t/~x]h, F ′′ ≡ F ′. We do this by considering a sequence of LJ derivations that mimics the (IL) rule,
specifically we do the following: we apply left contraction (CL) rules on each [~t/~x]B ∈ F ′ then we apply
the Datalog rule D = ∀~x. B ⊃ h such that dDe ≡ ∀~x.

⊗
B(a h⊗

⊗
B to obtain P, [~t/~x]h, F ′′ ` F

as the premise, which happens to be assumed valid by our induction hypothesis P, F ′ ` F (since
[~t/~x]h, F ′′ ≡ F ′).

Hence we have shown that Theorem 3 holds for all normalized derivations. �

Given a Datalog program and a set of facts, every valid traditional logic derivation built from the
traditional Horn clause interpretation of Datalog, has a corresponding LV obs− derivation built from its
llDAssert interpretation. Our interpretation is therefore also complete.

Theorem 4 (Completeness) Given a Datalog program P, fact base B and F ⊆ herbrand(P), if P,B `
∧
F ,

then there is ∆ such that dPe; dBe −→
⊗
dF e ⊗

⊗
∆.

Proof: The proof of this theorem is similar to the proof of Theorem 3, except that we do structural
induction on derivations of the corresponding fragment of LJ proof system (Figure 3), over well-formed
Datalog programs and facts. We inductively define the LJ derivations we consider as follows: Base structural
derivation steps built from left weakening (WL) rules, (id) rules and right conjunction (∧R) rules, while
induction structural steps consist of an orderly sequence of derivation steps that correspond to application of
Horn clauses. Specifically for a Datalog clause ∀~x. B ⊃ h, we instantiate the Horn clause by applying (∀L)
rule on each variable ~x, then left contraction rules (CL) on each atomic formula in the context that matches
to B, apply the implication rule (⊃L). We rely on permutability results of LJ derivations [MNPS91] to safely
restrict our attention to only sequents inductively generated by the above. Since we define our inductive
steps in this manner, all intermediate sequents during the inductive steps are of the form P, F ′ `

∧
F

where B ⊆ F ′, with the initial sequent being a special case such that F ′ ≡ B. We also exploit the results
from Lemma 2 that states that multiple copies of facts are redundant, allowing us to omit LJ derivations
that contains multiple applications of same Horn clause instances that produces the same facts (we cannot
replicate this in LV obs− guarded implications). The inductive proof proceeds as follows:

• Base structural rule: We consider the LJ sequent proof built from left weakening (WL) rules, (id)
rules and right conjunction (∧R) rules. Hence for P, F ′ `

∧
F to apply, we must have F ′ ≡ F . As

such, from P, F ′ `
∧
F we can use (WL) rules to remove P from the context, (∧R) rules to break

apart
∧
F and (id) rules to match the individual atomic formulas in F . We need to show for some ∆]

10



4 MODELING DATALOG ASSERTION

and ∆ that dPe; dF ′e,∆] −→
⊗
dF e ⊗∆. Since F ′ ≡ F , we have ∆] ≡ ∆ and apply the (obs) rule.

• Inductive structural rule: We consider the sequence of LJ derivation rules which involves the
orderly sequence of derivation steps that results to the applications of Horn clauses as defined above.
Induction hypothesis, we assume that given P, [~t/~x]h, [~t/~x]B,B′ `

∧
F and P ≡ Γ, (r : ∀~x. B ⊃ h) for

some Γ, then we have dPe; [~t, ~x]dhe, [~t/~x]dBe, dB′e,∆] −→
⊗
dF e ⊗∆ for some ∆] and ∆. We show

that we have the LJ sequent P, [~t/~x]B,B′ `
∧
F through the following LJ derivation steps: from

P, [~t/~x]B,B′ `
∧
F , given the Datalog clause r : ∀~x. B ⊃ h we apply (∀L) derivation steps on each

variable in ~x, followed by (CL) rules on each [~t/~x]B in the context. Next, we apply this implication
rule to obtain P, [~t/~x]h, [~t/~x]B,B′ `

∧
F as the premise of our derivation, which we assumed in our

induction hypothesis. We now show that dPe; [~t/~x]dBe, dB′e,∆′′] −→
⊗
dF e⊗∆ has a valid derivation

for some ∆′′]. We do this by applying the (IL) derivation step of the corresponding inference rule, i.e.,
∀~x. B(r(~x) h⊗B, which yields dPe; [~t, ~x]dhe, [~t/~x]dBe, dB′e,∆′′], r(~t) −→

⊗
dF e⊗∆ as the premise,

and by having ∆] ≡ ∆′′], r(~t) we have our induction hypothesis. Hence we proved the inductive case.

Hence we have shown that Theorem 4 holds for all normalized derivations. �

From Theorems 4 and 3, we have that the soundness and completeness. Given a fact base B, we can
always derive a state dF e, d∆]e such that the set interpretation of dF e (denoted set(F )) is equal to P(B)
and this state is quiescent. Further more, there can only be one such quiescent state.

Theorem 5 (Correctness) Let P be a Datalog program and B a collection of base facts.

1. There are dF e and ∆] such that dPe; dBe −→
⊗
dF e ⊗

⊗
∆] and Quiescent(dPe, (dF e,∆])) and

set(F ) = P(B).

2. For any state ∆, if dPe; dBe −→
⊗
d∆e and Quiescent(dPe,∆), then there is ∆] such that ∆ = dF e,∆]

and set(F ) = P(B).

Proof: We prove (1) and (2) as follows:

1. From Theorem 4, we can conclude that since P,B `
∧
P(B), then we have dPe; dBe −→

⊗
dF e⊗

⊗
∆]

for some ∆] and set(F ) = P(B). We prove that Quiescent(dPe, (dF e,∆])) by contradiction: Sup-
pose that Quiescent(dPe, (dF e,∆])) does not hold, hence we can apply more derivation rules from
that state. Yet given that our Datalog interpretation only has inference rule instances of the form⊗
B (a h ⊗

⊗
B which are reassertive, applying more such rules only produces an inferred fact h

such that h /∈ P(B). Yet we have a corresponding Datalog clause instance B ⊃ h that should have been
applied and captured in the inferential closure P(B) (i.e. h ∈ P(B)), as such we have a contradiction.
Hence, we must have Quiescent(dPe, (dF e,∆])).

2. Suppose that we have dPe; dBe −→
⊗
d∆e and Quiescent(dPe,∆), but there is no ∆] such that ∆ =

dF e,∆] and set(F ) = P(B). The implies that either we have set(F ) ⊂ P(B) or set(F ) ⊃ P(B). We can-
not have set(F ) ⊃ P(B) since by Theorem 3, we cannot infer more facts than P(B) (i.e. P,B `

∧
F ),

but yet we cannot have set(F ) ⊂ P(B) either, which would contradict Quiescent(dPe,∆). Hence our
assumption that there is no ∆] such that ∆ = dF e,∆] and set(F ) = P(B) has reached a contradiction.

Hence we have shown that Theorem 5 holds �

These results are incremental steps towards achieving the main goal of this report, which is to formalize
an interpretation of both assertion and retraction in Datalog, done in Section 5.
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P = I : ∀x. A(x) ∧B(x) ⊃ D(x) VPW = ∀x. I(x)
1

I(x)
1 = A(x)⊗B(x)(I](x) D(x)⊗A(x)⊗B(x)⊗R(x)

1 ⊗ A](x)⊗B](x)

R(x)
1 = (Ã(x)⊗ A](x)⊗B](x) ( D̃(x)⊗ Ã(x)) & (B̃(x)⊗ A](x)⊗B](x) ( D̃(x)⊗ B̃(x))

AP = ∀x. A(x)
A ,∀x. A(x)

B ,∀x. A(x)
D

A(x)
A = A(x)⊗ Ã(x) (A](x) (A](x)( 1)

A(x)
B = B(x)⊗ B̃(x) (B](x) (B](x)( 1)

A(x)
D = D(x)⊗ D̃(x) (D](x) (D](x)( 1)

Assertion of B(5): *A(5)+
+B(5)

====⇒
LL

VPW ∆′ where ∆′ = *A(5), B(5), D(5),R(5)
1 , I](5), A](5), B](5)+

(obs)

VPW,AP ; A(5), B(5), D(5),R(5)
1 , I](5), A](5), B](5) −→

⊗
∆′

I(5)
1

VPW ,AP ; A(5), B(5) −→
⊗

∆′

Retraction of A(5): ∆′
−A(5)

====⇒
LL

VPW ∆′′ where ∆′′ = *B(5)+

(obs)
VPW,AP ; B(5) −→

⊗
∆′′

A(5)
A

VPW, AP ; A(5) , B(5), Ã(5) −→
⊗

∆′′

A(5)
D

VPW, AP ;A(5), B(5), D(5) , Ã(5), D̃(5) −→
⊗

∆′′

R(5)
1

VPW,AP ;A(5), B(5), D(5), R(5)
1 , I](5), Ã(5), A](5), B](5) −→

⊗
∆′′

Figure 10: An Example of llDFull Interpretation

5 Modeling Datalog Retraction

In this section, we extend our linear logic interpretation of Datalog assertion to also account for the retraction
of facts. We first illustrate our technique in Section 5.1 by informally introducing a simplified version
called llDFull−. Unfortunately, this simplified version admits LV obs− sequent derivations that correspond to
incomplete retraction of facts, meaning that when such a derivation reaches quiescence there is no guarantee
that the state we obtain corresponds to a valid Datalog object. In Section, 5.2, we modify it into the llDFull

interpretation that provides guarantees of completeness when quiescence is achieved. Then in Section 5.3, we
formally define the llDFull interpretation that incorporates this modification and correctly models Datalog
assertion and retraction.

5.1 Retraction and Absorption Rules

We model the removal of facts by means of anti-predicates. An anti-predicate p̃ is an ordinary predicate
that is meant to be equal and opposite to p. While p applied to terms ~t forms a fact, p̃ applied to terms
form a retraction fact. For instance, recalling the reachability example from Figure 5, the predicates E and
P will have equal and opposite anti-predicates Ẽ and P̃ respectively. The intent is that an atom p̃(~t) will
ultimately absorb its equal and opposite atom p(~t). To model this property, we define absorption rules of

12



5 MODELING DATALOG RETRACTION

Fact Vp(~t)W = p(~t)

Program

{
VD, PW = VDW,VPW
V.W = .

Conjunction Vb ∧BW = VbW⊗ VBW

Clause Vr : ∀~x. B ⊃ hW = ∀~x. VBW(r](~x) VhW⊗ VBW⊗ VB]W⊗Ret(B,B, r](~x), h)

Fact base

{
VB, aW = VBW,VaW
V∅W = .

where

Ret(b ∧B′, B, r](~x), h) = (Vb̃W⊗ r](~x)⊗ VB]W( Vh̃W⊗ Vb̃W) & Ret(B′, B, r](~x), h)

Ret(b, B, r](~x), h) = (Vb̃W⊗ r](~x)⊗ VB]W( Vh̃W⊗ Vb̃W)

Figure 11: llDFull Interpretation of Datalog

the form ∀~x. p(~x) ⊗ p̃(~x) ( 1. We illustrate this by means of an example, displayed in Figure 9, which

shows a Datalog program P and its llDFull− interpretation. We have three absorption rules A(x)
− , one for

each predicate of this Datalog program. Also demonstrated here, we enrich the linear logic interpretation of
Datalog programs with retraction rules: Each Datalog clause r : ∀~x. p1(~t1)∧ . . .∧pn(~tn) ⊃ ph(~th) is modeled
by a inference rule that contains an additional consequent, the additive conjunction of n retraction rules,

each of which is uniquely associated with one of the antecedents pi(~ti). For instance, inference rule I(x)
1 has

an embedded retraction rule R(x)
1 in its consequent and R(x)

1 contains two linear implications, joined by the
& operator. Each of these linear implications produces a retraction of D(x) (i.e., D̃(x)) in the event that we
have a retraction of B(x) or C(x) respectively.

In the llDFull− interpretation of Datalog programs, we can always find a valid LV obs− derivation that
represents each assertion or retraction of facts. Figure 9 illustrates two such derivations, starting from a
state containing just the fact A(5), the first derivation shows a derivation in the llDFull− interpretation of
this program, that models the assertion of a new fact B(5). As such, we consider the derivation starting
from the initial state, consisting of A(5) and the newly asserted fact B(5). We highlight (using boxes) the
active fragments of the sequent which contributes to the application of the derivation step. Notice that when

the inference rule instance I(5)
1 applies, we have not only the inferred fact D(5), but we have the retraction

rule instance R(5)
1 as well. This retraction rule is bookkeeping information that will facilitate the retraction

of D(5), in the event that either A(5) or B(5) is retracted. To illustrate this, the second derivation of this
figure models the retraction of fact A(5). We consider the state ∆′ (obtained in the previous derivation)
with the retraction atom Ã(5) inserted. Ã(5) and I](5) triggers the first additive conjunction component

Ã(5)⊗I](5)( D̃(5)⊗Ã(5) of the retraction rule instance R(5)
1 and produces D̃(5) while retaining Ã(5). The

purpose of retaining Ã(5) is that in the general case, Ã(5) might be necessary for triggering the retraction of
other atoms, yet we consume I](5) to allow future applications of inference rule instance I](5) should A(5)

be re-asserted by future updates. Joining the linear implications of retraction rule R(x)
2 with the & operator

allows the creation of exactly one D̃(5) atom from the retraction of B(5) or C(5). Hence we will not be left

with a “dangling” copy of D̃(5) should C(5) be retracted as well (since R(5)
1 has completely been consumed

by B̃(5)). We finally complete the derivation by applying the absorption of D(5) and A(5) by D̃(5) and

Ã(5), via absorption rules A(5)
D and A(5)

A respectively. Note that ∆ and ∆′ are quiescent with respect to the
llDFull− interpretation of the Datalog program.

13



5 MODELING DATALOG RETRACTION

5.2 Quiescence and Complete Retraction

In this section we address a shortcoming of the llDFull− interpretation: we cannot guarantee that reachable
states derived by valid LV obs− derivations model complete retraction of Datalog facts when they reach
quiescence.

Refer to Figure 9 again. In the second derivation, which corresponds to the retraction of A(5) starting

from state ∆′, Ã(5), rather than applying retraction rule R(5)
1 , we could have instead immediately applied

the absorption rule instance A(5)
1 , yielding a state of quiescence and bypassing the retraction of D(5). This

state, however, would be an incorrect representation of the effect of retracting A(5), hence such derivations
should somehow be disallowed. In general, any pair of equal and opposite atoms p(~t) and p̃(~t) should be
applied to (and consumed by) their corresponding absorption rule only when all retraction rules that can be
applied to p(~t) have been applied. In other words, we must inhibit the application of absorption rules until
all such retraction rules have been applied. To do so, we use the same technique with which we achieved
quiescence in the presence of reassertive inference rules: guarded linear implications. Specifically we require
that for each inference rule that is applied, for each antecedent p(~t) of this inference rule we produce a witness
atom p](~t); retraction rules additionally consume these witness p](~t). We define absorption rules as guarded
implications p(~x) ⊗ p̃(~x) (p](~x) (p](~x) ( 1). The witnesses inhibit absorption rules until they are finally

removed by retraction rules. Notice that an absorption rule produces a peculiar consequent p](~x)( 1. The
purpose for this is to consume the atom p](~x) produced as a consequent of applying the ((−L ) rule.

Figure 10 illustrates this idea on our last example. The boxes highlight the components added on top of
the llDFull− interpretation example of Figure 9. We call it the llDFull interpretation, implemented by the

function V−W, defined in Section 5.3. Specifically inference rule I(x)
1 has two additional consequents A](x)

and B](x), which are witness atoms for antecedents A(x) and B(x) respectively. Absorption rules are now

guarded linear implications with witness atoms as inhibitors. For instance, A(x)
A can only apply if there

are no witnesses A](x) in the context. Finally, on top of consuming inference witness I](x) and producing

retraction atom D̃(x), the retraction rules in R(x)
1 have the additional responsibility of consuming witness

atoms A](x) and B](x).

Figure 10 shows derivations for the llDFull interpretation of our last example (Figure 9). The first
derivation corresponds to the assertion of B(5) starting from a state containing a single A(5) and is similar
to that in Figure 9 except we additionally infer witness atoms A](5) and B](5). The next derivation illustrates

the subsequent retraction of A(5). Now absorption rule A(5)
A cannot be applied to Ã(5) and A(5) as there is a

witness atom A](5) inhibiting A(5)
A . The only possible way forward is the application of retraction rule R(5)

1 ,

which on top of producing retraction atom ˜D(5) and consuming inference witness I](5), consumes witness

atoms A](5) and B](5), thereby unlocking the applicability of A(5)
A .

5.3 The llDFull Interpretation

We now formalize the llDFull interpretation of Datalog programs. For each atom representing a fact p(~t), we
define its equal and opposite retraction atom p̃(~t). We will extend this notation to collections of atoms, hence
for a multiset of atoms ∆, we denote a multiset of all equal and opposite retraction atoms of ∆ is denoted
∆̃. Beside the rule witnesses r](~x) of Section 4.1, for each atom p(~x) we have another type of witnesses, the
fact witness p](~x). While a rule witness r](~t) witnesses the application of an inference rule instance of r, a
fact p(~t) witnesses a use of p](~t) to infer some other fact. Given a Datalog program P, for each predicate p
of some arity n, we define the set of all absorption rules AP as follows:

AP = *∀~x.p(~x)⊗ p̃(~x)(p](~x) (p](~x)( 1) | p in P+

Figure 11 formalizes the llDFull interpretation of Datalog programs as the function V−W. The main
difference between this function and the function d−e of llDFull− is that Datalog clauses are inference
rules that include two additional types of consequents. Specifically, a retraction rule which is an additive

14



5 MODELING DATALOG RETRACTION

Let VPW ≡ Γ, I
I ≡ ∀~x.

⊗
∆(r](~x) h⊗

⊗
∆⊗Rr ⊗

⊗
∆]

r](~t) /∈ ∆′

VPW,AP ; [~t/~x](h,∆,Rr,∆]), r](~t),∆′ −→ C
(IL)

VPW,AP ; [~t/~x]∆,∆′ −→ C

which decomposes into:

r](~t) /∈ ∆′

VPW,AP ; [~t/~x](h,∆,Rr), r](~t), [~t/~x]∆],∆′ −→ C
(⊗L)*

VPW,AP ; [~t/~x](h⊗
⊗

∆⊗Rr ⊗
⊗

∆]), r](~t),∆′ −→ C
((−L )

VPW,AP ; [~t/~x]I , [~t/~x]∆,∆′ −→ C
(∀L)*

VPW,AP ; I , [~t/~x]∆,∆′ −→ C
(clone)

VPW,AP ; [~t/~x]∆,∆′ −→ C

Figure 12: llDFull Inference Macro Rule

conjunction of linear implications defined by the function Ret and a tensor closure of inference fact witnesses
derived from the antecedents of the inference rule. Altogether, given a Datalog clause r : ∀~x. B ⊃ h, its
corresponding inference rule in llDFull interpretation infers three types of bookkeeping information, namely,
the retraction rule Rr, the rule witness r](~x) and fact witnesses B].

Given a Datalog program P, a multiset of facts F ⊆ herbrand(P) and a multiset of retraction rules
∆R and a multiset of witness atoms ∆], a llDFull state of this Datalog program is an LV obs− linear con-
text VFW,∆R,∆]. Given base facts B ⊆ herbrandB(P), the state dF e,∆R,∆] is reachable from B if
VPW; dBe −→

⊗
VFW⊗

⊗
∆R⊗

⊗
∆] is derivable. Note that VBW is always reachable from B — it is called

an initial state.

Similarly to Figure 8, Figure 12 defines the inference macro derivation rule for the llDFull interpretation.

Figure 14 introduces the retraction macro step, which models the retraction of some fact h. As defined
in Figure 11 by the function Ret, a retraction rule Rr is an additive conjunction of linear implications of
the form ãi ⊗ r(~t) ⊗

⊗
∆] ( ãi ⊗ h̃, which are reassertive (antecedent ãi appears as consequent) and the

only component that varies among the linear implications is the antecedent ãi. As such, retraction rule Rr
can be viewed as a formula that reacts to any ãi which is an antecedent of one of its linear implications and,
when applied, consumes rule witness r(~t) and fact witnesses ∆], and produces h̃.

Figure 15 defines the last of the three macro derivation steps of the llDFull interpretation. It models the
absorption of an atom p(~t) and the equal and opposite p̃(~t), but only in the absence of any witness p](~t).

Figure 13 illustrates the top-level formulation of the main goal of this report, defining ==⇒LL

VPW, our linear

logic specification of Datalog assertion and retraction in terms of LV obs− derivations. In contrast to the
logical specification ==⇒P in Figure 1 which defines assertion and retraction based on inferential closures
of base facts, ==⇒LL

VPW is defined as follows: the assertion of a new base fact a to a state ∆ maps to the

derivation with fact a inserted into the original state, while the retraction an existing base fact a from state
∆ maps to a derivation with ã inserted. In both cases, we consider only resulting states which are quiescent.
Theorem 13 in Section 5.5 states the correspondence of the llDFull interpretation that formally prove the
correctness this logical specification.

5.4 Cycles and Re-assertion

In this section, we analyze two aspects of the llDFull interpretation. Specifically, we discuss cycles in Datalog
inference and the need for re-assertion when doing retraction.
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5 MODELING DATALOG RETRACTION

a /∈ ∆ VPW,AP ; ∆, a −→
⊗

∆′ Quiescent(∆′, (VPW,AP))

∆
+a

==⇒
LL

VPW ∆′
(Infer)

a ∈ ∆ VPW,AP ; ∆, ã −→
⊗

∆′ Quiescent(∆′, (VPW,AP))

∆
−a

==⇒
LL

VPW ∆′
(Retract)

Figure 13: Assertion and Retraction, in llDFull

Quiescence in Cycles: One important issue to consider for the llDFull interpretation, is whether
quiescence can be achieved for Datalog programs with cycle. Figure 16 shows one such example modified
from the graph example of Figure 6, along with its linear logic interpretation (we omit the absorption rules
for brevity). This example attempts to generate reflexive paths P (x, y) from base facts E(x, y) that represent
edges. Figure 16 also illustrates an LV obs− derivation which represents the assertion of E(4, 5) which in fact,

achieves quiescence: We infer the facts P (4, 5) and P (5, 4) through inference rule instances I(4,5)
1 and I(4,5)

2 ,

as well as an additional copy of P (4, 5) through I(5,4)
2 , before we reach quiescence. We omit fact witnesses

and retraction rules as they are inessential in this discussion. In general, as long as Datalog clauses are
well-formed and the set Σ of all possible constants is finite, the llDFull interpretation of Datalog programs
will reach quiescence under LV obs− derivations. This is because the possible combinations of rule instances
are finite, and since for each rule instance we can apply it at most once in a derivation, all LV obs− derivations
of well-formed Datalog programs reach quiescence.

Re-assertion during Retraction: In some cases, re-assertion of facts occurs during retraction while
working towards quiescence. Figure 17 illustrates a Datalog program which exhibits such a behavior. From
either base facts A(x) or B(x), we can infer C(x). We consider an initial state ∆ where A(2) and B(2) has

been asserted. Hence, inference rule instances I(2)
1 , I(2)

2 and I(2)
3 has been applied before reaching quiescence

at state ∆. Note that while we have two copies of C(2) (from I(2)
1 and I(2)

2 ), we only have one copy of D(2),

since rule instance I(2)
3 is only permitted to be applied once. Next we consider the situation when A(2) is

retracted, triggering the application of retraction rules R(2)
1 and R(2)

3 which ultimately absorbs A(2), C(2)
and D(2). This leads us to a seemingly inconsistent state, where B(2) and C(2) exists, yet D(2) has been
completely retracted as part of the retraction closure of A(2). However, quiescence is only achieved when

inference rule instance I(2)
3 is re-applied, re-asserting another copy of D(2). While re-assertion guarantees

the re-completion of assertion closures of the llDFull interpretation, it arguably adds overheads. One of our
future objectives is to refine the llDFull interpretation to overcome the need for re-assertion during retraction.

5.5 Correctness

In this section, we highlight the proofs of correspondence of the llDFull linear logic interpretation of Datalog
program.

For any LV obs− sequents constructed from the llDFull interpretations of Datalog assertion, we can always
find a normalized LV obs− derivation that consists only of (IL) and (obs) derivation rules. Similarly, for
sequents from llDFull interpretations of Datalog retraction, we can find normalized derivations that consist
strictly only of (IL), (RL), (AL) and (obs) derivation rules. This will simplify the proof of the correctness
of our interpretation.

Lemma 6 (Normalized Derivations) Given Datalog program P, llDFull states VF1W,∆R1 ,∆
]
1 and

VF2W,∆R2 ,∆
]
2, a LV obs− derivation VPW,AP ; VF1W,∆R1 ,∆

]
1 −→

⊗
VF1W⊗

⊗
∆R2 ⊗

⊗
∆]

2 has a proof con-
sisting of only applications of (IL), (RL), (AL) and (obs) derivation rules.

Proof: The bulk of the proof of this Lemma is derived from permutability results of linear logic [GPI94].
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Let Ri ≡ ãi ⊗ r(~t)⊗
⊗

∆]( ãi ⊗ h̃

VPW,AP ; ãk, h̃,∆ −→ C
(RL)

VPW,AP ; ãk,&
n
i=1Ri, r(~t),∆],∆ −→ C

for some k ≥ 1 and k ≤ n, which decomposes into:

VPW,AP ; ãk, h̃,∆ −→ C
(⊗L)

VPW,AP ; ãk ⊗ h̃,∆ −→ C
((L)

VPW,AP ; ãk,Rk, r(~t),∆],∆ −→ C
(&L)*

VPW,AP ; ãk,&
n
i=1Ri, r(~t),∆],∆ −→ C

Figure 14: llDFull Retraction Macro Rule

Essentially, we need to disentangle a generic derivation of any sequent VPW,AP ; VF1W,∆R1 ,∆
]
1 −→

⊗
VF1W⊗⊗

∆R2 ⊗
⊗

∆]
2, into one which comprises of an orderly sequence of LV obs− derivation steps that correspond to

macro derivation steps (IL), (RL) and (AL) of Figure 12, 14 and 15, and ending off with a (obs) derivation
step. We do this by showing that thanks to permutability results in [GPI94], we can safely rearrange
derivation steps. Most of the proof is very similar to Lemma 1, except that derivation steps may have to
be pushed pass the problematic (&) rule. Thankfully, retraction rules (the only formula where & operator
appears in) are designed to be confluent: regardless of which & sub-formula is chosen, the same effect is
achieved, for instance retraction rule &n

i=1(ãi ⊗ r(~t) ⊗∆] ( ãi ⊗ h̃) ultimately removes witnesses r(~t) and
∆], and introduces h̃ regardless of which sub-formula is chosen. As such, all other derivation steps can be
safely pushed pass it. We list the details of these permutation operation for each macro rule:

• (IL) rule: The proof is similar to Lemma 1, since the inference rule of llDFull interpretation (Figure 12)
is of the same form as llDAssert inference rules (Figure 8), only the body contains additional witness
atoms and retraction rules, which involves additional applications of (⊗L) and does not affect the
results of Lemma 1.

• (RL) rule: For a retraction rule &n
i=1(ãi ⊗ r(~t) ⊗ ∆] ( ãi ⊗ h̃), since the top most (⊗L) rule that

operates on the body of the retraction implication rule ãk ⊗ h̃ can be pushed downwards until right
before the ((L) derivation step that applied on the retraction implication rule. Next, we have to push
all (&L) rules applied on the retraction rule upwards to the rule application ((L) derivation step.
This is possible because of the confluence result in retraction rules stated above.

• (AL) rule: We can push the top most (1L) and ((L) derivation steps to just right after the ((−L )
derivation step of an application of the (AL) macro rule. Similarly to the (IL) macro rule, (clone) and
(∀L) derivation steps can be safely pushed upwards until right before the main ((−L ) derivation step.

Hence we have shown that all LV obs− derivations has a proof consisting of only the rules (IL), (RL), (AL)
and (obs). �

For every llDFull derivation that models the assertion of facts (excluding retraction), we have a corre-
sponding llDAssert derivation and vice versa. Both directions depend on the fact that witness facts and
retraction rules have no effects on the assertion of new facts.

Lemma 7 (Completeness and Soundness of Assertion) Given a Datalog Program P, for any fact base

B, multiset of facts F ⊆ herbrand(P), multiset of rule witnesses ∆]
R, multiset of fact witnesses ∆]

F and
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Let ∀~x. p(~x)⊗ p̃(~x)(p](~x) (p](~x)( 1) ∈ AP

p](~t) /∈ ∆ VPW,AP ; ∆ −→ C
(AL)

VPW,AP ; p(~t), p̃(~t),∆ −→ C

which decomposes into:

p](~t) /∈ ∆

VPW,AP ; ∆ −→ C
(1L)

VPW,AP ; 1,∆ −→ C
((L)

VPW,AP ; (p](~t)( 1), p](~t),∆ −→ C
((−L )

VPW,AP ; (p(~t)⊗ p̃(~t)(p](~t) (p](~t)( 1)), p(~t), p̃(~t),∆ −→ C
(∀L)*

VPW,AP ;Ap, p(~t), p̃(~t),∆ −→ C
(clone)

VPW,AP ; p(~t), p̃(~t),∆ −→ C

Figure 15: llDFull Absorption Macro Rule

multiset of retraction rules ∆R,

VPW,AP ; VBW −→
⊗

VFW⊗
⊗

∆R ⊗
⊗

∆]
R ⊗

⊗
∆]
F if and only if dPe; dBe −→

⊗
dF e ⊗

⊗
∆]
R

Proof:

• (⇒) For any llDFull derivation, we safely omit witnesses and retraction rules to obtain a llDAssert

derivation. This is because inference rules in both interpretations are the same, except that llDFull

inference rules have additional witnesses and retraction rules as consequents, which do not derive new
facts.

• (⇐) We show that any llDAssert normalized derivation has a corresponding llDFull normalized deriva-

tion, i.e. in general, if dPe; dF1e,∆]
R1 −→

⊗
dF2e ⊗

⊗
∆]
R2 then VPW,AP ; VF1W,∆R1 ,∆

]
F1,∆

]
R1 −→⊗

VF2W ⊗
⊗

∆R2 ⊗
⊗

∆]
F2 ⊗

⊗
∆]
R2 for some ∆R1 , ∆R2 , ∆]

F1 and ∆]
F2. We inductively define the

llDAssert derivation as follows: Base structural derivations steps are built from (obs) rule, while in-
ductive structural derivation steps are built from (IL) macro rule of the llDAssert interpretation. The
inductive proof proceeds as follows:

– Base structural rule: We consider the application of the (obs) rule. Hence for

dPe; dF1e,∆]
R1 −→

⊗
dF2e⊗

⊗
∆]
R2 to result from the (obs) rule, we must have dF1e ≡ dF2e and

d∆R1e ≡ d∆R2e. We show that there exist some ∆R1 , ∆R2 , ∆]
F1 and ∆]

F2 such that the llDFull

sequent VPW,AP ; VF1W,∆R1 ,∆
]
F1,∆

]
R1 −→

⊗
VF2W⊗

⊗
∆R2 ⊗

⊗
∆]
F2⊗

⊗
∆]
R2 has a derivation

as well. For that we simply choose ∆R1 ≡ ∆R2 and ∆]
F1 ≡ ∆]

F2, hence the llDFull sequent in
question applies to the (obs) rule as well.

– Inductive structural rule: We consider the application of the llDAssert (IL) macro derivation

step. Induction hypothesis, we assume that if we have dPe; [~t/~x]dhe, [~t/~x]dBe, dB′e,∆]
R, r(~t) −→⊗

dF2e ⊗
⊗

∆]
R2 such that (∀~x.

⊗
B (r(~x) h ⊗

⊗
B) ∈ dPe, then for some ∆R1 , ∆R2 , ∆]

F1

and ∆]
F2, we have VPW,AP ; [~t/~x]VhW, [~t/~x]VBW,VB′W,∆R1 ,∆

]
R1,∆

]
F1, r(~t) −→

⊗
VF2W⊗

⊗
∆R2 ⊗⊗

∆]
R2⊗

⊗
∆]
F2. For the llDAssert sequent, we apply a llDAssert (IL) macro derivation step to ob-

tain
dPe; [~t/~x]dBe, dB′e,∆]

R −→
⊗
dF2e ⊗

⊗
∆]
R2. We now need to show that

VPW,AP ; [~t/~x]VBW,VB′W,∆R3 ,∆
]
R1,∆

]
F3 −→

⊗
VF2W⊗

⊗
∆R4 ⊗

⊗
∆]
R2 ⊗

⊗
∆]
F4 for some ∆R3 ,

18



5 MODELING DATALOG RETRACTION

P = I1 : ∀x, y. E(x, y) ⊃ P (x, y) , I2 : ∀x, y. P (x, y) ⊃ P (y, x)

VPW = ∀x, y. I(x,y)
1 , ∀x, y. I(x,y)

2

I(x,y)
1 = E(x, y)(I]1(x,y) P (x, y)⊗ E(x, y)⊗ E](x, y)⊗R(x,y)

1

R(x,y)
1 = Ẽ(x, y)⊗ I]1(x, y)⊗ E](x, y)( P̃ (x, y)⊗ Ẽ(x, y)

I(x,y)
2 = P (x, y)(I]2(x,y) P (y, x)⊗ P (x, y)⊗ P ](x, y)⊗R(x,y)

2

R(x,y)
2 = P̃ (x, y)⊗ I]2(x, y)⊗ P ](x, y)( P̃ (y, x)⊗ P̃ (x, y)

Assertion of E(4, 5): ∅ +E(4,5)
=====⇒P ∆ where ∆ = *P (4, 5), P (5, 4), P (4, 5), E(4, 5), I]1(4, 5), I]2(4, 5), I]2(5, 4), ..+

(obs)
VPW,AP ; P (4, 5), P (5, 4), P (4, 5), E(4, 5), I]1(4, 5), I]2(4, 5), I]2(5, 4), .. −→

⊗
∆

I(5,4)
2

(IL)
VPW ,AP ; P (5, 4) , P (4, 5), E(4, 5), I]1(4, 5), I]2(4, 5), .. −→

⊗
∆

I(4,5)
2

(IL)
VPW ,AP ; P (4, 5) , E(4, 5), I]1(4, 5), .. −→

⊗
∆

I(4,5)
1

(IL)
VPW ,AP ; E(4, 5) −→

⊗
∆

Figure 16: Example of Quiescence in the Presence of Cycles

∆R4 , ∆]
F3 and ∆]

F4. To do this, we apply the llDFull (IL) macro derivation step corresponding to
the llDFull inference rule instance (∀~x.

⊗
B (r(~x) h ⊗

⊗
B ⊗

⊗
∆] ⊗R) ∈ VPW. We obtain a

derivation step with premise VPW,AP ; [~t/~x]VhW, [~t/~x]VBW,VB′W, [~t/~x],R,∆R3 , r(~t),∆
]
R3, [~t/~x]∆],∆]

F3

−→
⊗

VF2W ⊗
⊗

∆R4 ⊗
⊗

∆]
R2 ⊗

⊗
∆]
F4 where if we take ∆R1 ≡ R,∆R3 , ∆]

F1 ≡ [~t/~x]∆],∆]
F3,

∆R2 ≡ ∆R4 and ∆]
F2 ≡ ∆]

F4, is exactly equivalent to our induction hypothesis.

Hence we have proven the completeness and soundness of assertions. �

We show that for derivations that do not consist of anti-predicates (retraction of facts), we have a
quiescent state in llDFull corresponds to a quiescent state in llDAssert .

Lemma 8 (Correspondence of Quiescence) Let P be a Datalog program and B a collection of base facts,
for any F,∆R,∆] such that VPW,AP ; VBW −→

⊗
VFW⊗

⊗
∆R ⊗

⊗
∆],

Quiescent((VPW,AP), (VFW,∆R,∆])) if and only if Quiescent(dPe, (dF e,∆]))

Proof: This follows from Lemma 7. We show by contradiction:

• (⇒) Suppose that Quiescent((VPW,AP), (VFW,∆R,∆])) but Quiescent(dPe, (dF e,∆])) does not hold.

Hence there exists some F2,∆
R
2 ,∆

]
2 such that dPe; dF e,∆] −→

⊗
dF2e ⊗

⊗
∆]

2. and F 6≡ F2 and

∆] 6≡ ∆]
2. By Lemma 7, we have dPe; dF e,∆R,∆] −→

⊗
dF2e ⊗

⊗
∆R2 ⊗

⊗
∆]

2, contradicting
Quiescent((VPW,AP), (VFW,∆R,∆])). Hence it must be that Quiescent(dPe, (dF e,∆])).

• (⇐) Suppose that Quiescent(dPe, (dF e,∆])) but Quiescent((VPW,AP), (VFW,∆R,∆])) does not hold,

Hence there exists some F2,∆
R
2 ,∆

]
2 such that VPW,AP ; VFW,∆R,∆] −→

⊗
VF2W ⊗

⊗
∆R2 ⊗

⊗
∆]

2.

and F 6≡ F2 and ∆] 6≡ ∆]
2. By Lemma 7, we have dPe; dF e,∆] −→

⊗
dF2e ⊗

⊗
∆]

2, contradicting
Quiescent(dPe, (dF e,∆])). Hence it must be that Quiescent((VPW,AP), (VFW,∆R,∆])).
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P = I1 : ∀x. A(x) ⊃ C(x) I2 : ∀x. B(x) ⊃ C(x) I3 : ∀x. C(x) ⊃ D(x)

VPW = ∀x. I(x)
1 , ∀x. I(x)

2 , ∀x. I(x)
3

I(x)
1 = A(x)(I]1(x) C(x)⊗A(x)⊗A](x)⊗R(x)

1 R(x)
1 = Ã(x)⊗ I]1(x)⊗A](x)( C̃(x)⊗ Ã(x)

I(x)
2 = B(x)(I]2(x) C(x)⊗B(x)⊗B](x)⊗R(x)

2 R(x)
2 = B̃(x)⊗ I]2(x)⊗B](x)( C̃(x)⊗ B̃(x)

I(x)
3 = C(x)(I]3(x) D(x)⊗ C(x)⊗ C](x)⊗R(x)

3 R(x)
3 = C̃(x)⊗ I]3(x)⊗ C](x)( D̃(x)⊗ C̃(x)

Retraction of A(2): ∆
−A(2)

====⇒
LL

VPW ∆′ where ∆′ = *D(2), B(2), C(2), I]3(2), I]2(2), C](2), B](2),R(2)
3 ,R(2)

2 +

VPW,AP ; D(2), B(2), C(2), I]3(2), I]2(2), C](2), B](2),R(2)
3 ,R(2)

2 −→
⊗

∆′

I(2)
3

(IL)
VPW ,AP ;B(2), C(2) , I]2(2), B](2),R(2)

2 −→
⊗

∆′

A(2)
C

(AL)

VPW, AP ; C̃(2) , B(2), C(2) , C(2), I]2(2), B](2),R(2)
2 −→

⊗
∆′

A(2)
D

(AL)

VPW, AP ; D̃(2) , C̃(2), B(2), C(2), C(2), D(2) , I]2(2), B](2),R(2)
2 −→

⊗
∆′

R(2)
3

(RL)

VPW,AP ; C̃(2) , B(2), C(2), C(2), D(2), I]2(2), I]3(2) , B](2), C](2) ,R(2)
2 , R(2)

3 −→
⊗

∆′

A(2)
A

(AL)

VPW, AP ; C̃(2), Ã(2), A(2) , B(2), C(2), C(2), D(2), I]2(2), I]3(2), B](2), C](2),R(2)
2 ,R(2)

3 −→
⊗

∆′

R(2)
1

(RL)

VPW,AP ;
Ã(2) , A(2), B(2), C(2), C(2), D(2), I]1(2) , I]2(2), I]3(2),

A](2) , B](2), C](2), R(2)
1 ,R(2)

2 ,R(2)
3

−→
⊗

∆′

Figure 17: Example of re-assertion during retraction

Hence we have shown the correspondence of quiescence. �

Similarly to Theorem 5, for any fact base B, we can derive a quiescent state which is an inferential closure
of B. Furthermore, there can only be one such quiescent state.

Theorem 9 (Correctness of Assertion) Let P be a Datalog program and B a collection of base facts,

1. There is VFW,∆R,∆] such that VPW,AP ; VBW −→
⊗

VFW ⊗
⊗

∆R ⊗
⊗

∆] and
Quiescent((VPW,AP), (VFW,∆R,∆])) and set(F ) = P(B).

2. For any state ∆, if we have VPW; VBW −→
⊗

V∆W and Quiescent((VPW,AP),∆), then there is ∆R,∆]

such that ∆ = dF e,∆R,∆] and set(F ) = P(B).

Proof: This relies on Lemma 7, which states the correspondence between llDFull and llDAssert assertions.
As such, since Theorem 5 holds, then we must have Theorem 9 as well. Details as follows:

1. The proof proceeds by contradiction. Suppose that there does not exist a derivation
VPW,AP ; VBW −→

⊗
VFW⊗

⊗
∆R ⊗

⊗
∆] where we also have Quiescent((VPW,AP), (VFW,∆R,∆]))

and set(F ) = P(B). By Lemma 7 and Theorem 5 we can always find a corresponding llDAssert deriva-
tion dPe; dBe −→

⊗
VFW⊗

⊗
∆] where set(F ) = P(B) and Quiescent(dPe, (dF e,∆])). Yet Lemma 8

states that from Quiescent(dPe, (dF e,∆])), we can infer Quiescent((VPW,AP), (VFW,∆R,∆])), con-
tradicting our assumption.
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5 MODELING DATALOG RETRACTION

2. The proof proceeds by contradiction. Suppose that we have VPW; VBW −→
⊗

V∆W and
Quiescent((VPW,AP),∆), but for any ∆R,∆] such that ∆ = dF e,∆R,∆], set(F ) 6= P(B). How-
ever by Lemma 7 we can always find a llDAssert derivation dPe; dBe −→

⊗
d∆e and Theorem 5 states

that if Quiescent(dPe,∆) then set(F ) = P(B), contradicting our assumption.

Hence we have shown the correctness of assertions. �

While (IL) macro derivation rules in llDFull corresponds to llDAssert , applications of the (IL) macro
rules in llDFull that models assertion of facts provides certain properties that facilitates the retraction of
facts. Lemma 10 states these properties of assertion.

Lemma 10 (Properties of Assertion) Given a Datalog Program P, for any llDFull state ∆,∆R,∆],
and for some ∆′, if VPW,AP ; ∆,∆R,∆] −→

⊗
∆′ and Quiescent((VPW,AP),∆′) we have the following

properties:

1. For each a ∈ ∆′ such that a ∈ herbrandI(P) (i.e. a is inferred), there must exist some retraction rule
&n
i=1(ãi ⊗ r(~t)⊗

⊗
B]( ãi ⊗ h̃) ∈ ∆′ such that a = h.

2. For each retraction rule &n
i=1(ãi ⊗ r(~t) ⊗

⊗
B] ( ãi ⊗ h̃) ∈ ∆′, we must have for each ãi such that

equal and opposite ai ∈ ∆′.

3. For each retraction rule R = &n
i=1(ãi ⊗ r(~t) ⊗

⊗
B] ( ãi ⊗ h̃), R ∈ ∆′ if and only if B] ∈ ∆′ and

r(~t) ∈ ∆′ as well.

4. There always exists some ∆′ such that Quiescent((P,AP),∆′).

Proof: The proof of these properties relies entirely on the definition of inference rules in VPW (Figure 12).
Specifically they are of the form: ∀~x.

⊗
B(r(~x) h⊗

⊗
B⊗

⊗
B]⊗R such thatR = &n

i=1(ãi⊗r(~x)⊗
⊗
B](

ãi ⊗ h̃). Details of the proof for each property proceeds as follows:

1. For any fact a ∈ ∆′, if a is not a base fact then it must be the product of an application of an inference
rule instance from VPW. As such, by the definition of inference rules, for every fact h = a inferred, we
have a corresponding retraction rule R = &n

i=1(ãi ⊗ r(~x) ⊗
⊗
B] ( ãi ⊗ ã) as a by-product. Hence

we have property (1).

2. Since retraction rules are only introduced by inference rules, by the definition of inference rules, each
inference rule ∀~x.

⊗
B (r(~x) h ⊗

⊗
B ⊗

⊗
B] ⊗ R introduces retraction rule R such that each ãi

that appears in each implication of the retraction rule is the equal and opposite of a unique atom in
B. Hence we have property (2).

3. Similarly, since retraction rules are only introduced by inference rules, by the definition of inference
rules, each retraction rule R = &n

i=1(ãi ⊗ r(~x) ⊗
⊗
B] ( ãi ⊗ h̃) is introduced explicitly with B] as

accompanying consequents, while the formulation of ((−L ) rule dictates the introduction of inhibiting
atom r(~t). Hence we have property (3).

4. We argue that all inference rules are guarded implication rules inhibited by a unique rule instance r(~t).
Since all well-formed Datalog program we consider have finite number of clauses and finite constants,
there are finite number of rule instances r(~t). As such, we can apply finite number of (IL) macro
derivation steps and hence all derivations modeling assertion will reach quiescence.

Hence we have proven these properties of assertion. �

Like inference rules, retraction rules and absorption rules are defined in a manner which provides some
important properties that help to guarantee the correctness of retraction. Lemma 11 formally asserts these
properties.
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5 MODELING DATALOG RETRACTION

Lemma 11 (Properties of Retraction) Given a Datalog Program P, for any llDFull state that repre-
sent an intermediate state of retraction ∆,∆R,∆] such that ∆ = VFW,VaW,VF ′W,VF̃ ′W,VãW and F, F ′ ⊆
herbrand(P) and a ∈ herbrand(P), and for some ∆′, if VPW,AP ; ∆,∆R,∆] −→

⊗
∆′, we have the fol-

lowing properties:

1. For each retraction rule R = &n
i=1(ãi ⊗ r(~t) ⊗

⊗
B] ( ãi ⊗ h̃), R ∈ ∆′ if and only if B] ∈ ∆′ and

r(~t) ∈ ∆′.

2. If ã /∈ ∆′ then there not exists any retraction rule &n
i=1(ãi ⊗ r(~t) ⊗

⊗
B] ( ãi ⊗ h̃) ∈ ∆′, such that

ã = ãi for some i ≥ 1 and i ≤ n.

3. There always exists some ∆′ such that Quiescent((P,AP),∆′).

4. If Quiescent((VPW,AP),∆′) then there not exists any b̃ ∈ ∆′.

Proof: The proof of these properties relies on guarantees provided by assertion (Lemma 10) and the
definition of retraction rules and absorption rules (Figure 14 and 15 respectively). Details of the proof for
each property proceeds as follows:

1. Since all retraction rules are only introduced by inference rules and that state ∆,∆R,∆] is a reachable
state, property 3 of Lemma 10 guarantees that initially, each retraction rule in &n

i=1(ãi⊗r(~t)⊗
⊗
B](

ãi ⊗ h̃). ∈ ∆R has a complete set of witnesses in ∆] (i.e. r(~t), B] ⊆ ∆]) During retraction, each
application of a retraction R consumes the retraction rule itself as well as the exact set of witnesses B]

and r(~t) (and nothing more) which was introduced together with R in the same inference rule instance.
Hence, the property that any remaining retraction rules has its full set of witnesses in the context is
preserved throughout intermediate retraction states.

2. If ã /∈ ∆′, absorption rule a ⊗ ã (a] (a] ( 1) must have been applied, since it is the only way to
consume an ã. In order for the absorption rule to apply, the context must not have any occurrences of
a], and the only way to have achieved this is that all retraction rules &n

i=1(ãi⊗ r(~t)⊗
⊗
B]( ãi⊗ h̃)

such that ã = ãi for some i ≥ 1 and i ≤ n and a] ∈ B], were applied to consume all instance of a] and
hence allowing the absorption rule to be applied.

3. We argue that retraction rules are linear, hence there always exists a derivation which involves exhaus-
tive and finite application of the retraction macro derivation (RL). Since we can apply finite number
of (RL) derivations, we can generate finite numbers of retraction atoms ã. As such, we can apply finite
number of absorption (AL) macro derivation steps as well. Yet in retraction, it is possible that we
need to reassert facts via (IL). By property (4) of Lemma 10 we can conclude that there are also finite
number of reassertion steps. Hence we can always reach quiescence.

4. From (1), we argue that all retraction rules at any intermediate reachable states always have their
accompanying witnesses B] and r(~t). As such we can exhaustively apply retraction rules to remove all
witnesses inhibiting absorption rules from applying, after which all b̃ ∈ ∆ will be consumed. Hence if
∆′ is quiescent, we must have removed all retraction atom b̃.

Hence we have proven these properties of retraction. �

Inserting a set of retraction atoms B̃ in a llDFull state VFW,VBW,∆R,∆] will ultimately result in the
derivation of the state ∆1 which excludes VBW. Note that we disallow the insertion of a retraction atom b̃ if
b does not exist in the state. Theorem 12 states that (1) we can always find a quiescent state in retraction
of some b and this state corresponds to the state with b and all its consequents (facts, retraction rules and
witnesses) removed. (2) This quiescent state is unique.

Theorem 12 (Correctness of Retraction) Given a Datalog Program P and a base fact b ∈ herbrandB(P)
and llDFull states ∆1,
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1. There exists some state VFW,∆R,∆], and ∆1,∆2, such that

VPW,AP ; VFW,VbW,∆R,∆] −→
⊗

∆1 ⊗
⊗

∆2 and Quiescent((VPW,AP), (∆1,∆2)) and
VPW,AP ; VFW,∆R,∆] −→

⊗
∆1 and Quiescent((VPW,AP),∆1) and

VPW,AP ; VFW,VbW,∆R,∆],Vb̃W −→
⊗

∆1

2. For all states VFW,∆R,∆], there exists some ∆1,∆2, such that

if VPW,AP ; VFW,VbW,∆R,∆],Vb̃W −→
⊗

∆1 and Quiescent((VPW,AP),∆1)
then VPW,AP ; VFW,VbW,∆R,∆] −→

⊗
∆1 ⊗

⊗
∆2 and Quiescent((VPW,AP), (∆1,∆2))

and VPW,AP ; VFW,∆R,∆] −→
⊗

∆1

Proof: First, by relying on property 4 of Lemma 10, we can conclude that there exists an assertion
state ∆1,∆2 such that Quiescent((VPW,AP), (∆1,∆2)) and by property 3 of Lemma 11 we can conclude
that there exists a retraction state ∆1 such that Quiescent((VPW,AP),∆1). We now need to show that there

exist such quiescent assertion and retraction states where VPW,AP ; VFW,VbW,∆R,∆],Vb̃W −→
⊗

∆1. We

assume that VPW,AP ; VFW,VbW,∆R,∆],Vb̃W −→
⊗

∆3 for some ∆3, then proceed to show that if ∆1 = ∆3,
our assumption still holds. Property 4 of Lemma 11 states that quiescent retraction states have no retraction
atoms, hence we know for sure ∆3 contains no retraction atoms. By property 2 of Lemma 11, since b̃ /∈ ∆3,
we can safely assert that no retraction rule R = &n

i=1(ãi ⊗ r(~t) ⊗
⊗
B] ( ãi ⊗ h̃) ∈ ∆R such that ãi = b̃

for some i is in ∆3 as well. With all such retraction rule removed, property 1 of Lemma 11 further states
that corresponding witnesses of these retraction rules are not present in ∆3 either. Finally, we know that
to remove all retraction atoms ã from the context, ∆3 was the result of several (AL) macro derivation steps
that removed b and its consequent facts. Hence, we can conclude that ∆3 can be intermediately obtained by
removing b and all its consequents (facts, retraction rules and witnesses) from VFW,∆R,∆], yielding some
∆4 which contains no retraction atoms. From ∆4 we can apply (IL) macro steps to reassert facts common
to b’s consequents and by Theorem 5 we can guarantee that we can find a unique quiescent state ∆3 since
this quiescent state must be unique, hence ∆1 = ∆3. �

Corollary 13 formally asserts the bridge between our llDFull interpretation of Datalog in linear logic
LV obs− and the traditional interpretation (Figure 1 and 13).

Corollary 13 (Correctness) Given a Datalog Program P, for reachable states ∆1,∆
R
1 ,∆

]
1 and ∆2,∆

R
2 ,∆

]
2

such that ∆1 = VP(B1)W and ∆2 = VP(B2)W, then we have the following:

(∆1,∆
R
1 ,∆

]
1)

α
==⇒LL

VPW (∆2,∆
R
2 ,∆

]
2) iff P(B1)

α
==⇒P P(B2)

Note if α = +a we have B2 = B1, a. If α = −a we have B1 = B2, a.

Proof: Follows from Theorems 9 and 12. �

6 Related Work

Early work on Datalog focused on efficient support for querying the logical consequences of a static fact
base [CGT89] although some of it also supported assertions. Examples include the semi-naive strat-
egy [BR87], QSQ [Vie86], and magic sets [BMSU86]. Recently, there has been a trend in the paral-
lel and distributed programming research community to develop high-level declarative programming lan-
guages which are based on (or inspired by) Datalog. For instance, NetLog [GW10] and Network Datalog
(DNLog) [LCG+06] target the development of networking protocols, Meld [ARLG+09] for programming of
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large ensembles of embedded robotic devices, and the system in [LM03] enables distributed user authentica-
tion. All of these works to varying extends, credit the declarative nature of Datalog as a main motivation,
mitigating the notorious complexities of parallel and distributed programming. These new application areas
are characterized by frequent assertions and retractions. For example, the Nexcel language of [Cer07] uses
a dialect of Datalog to compute derived data in a spreadsheet as the user types.

By defining formal operational semantics and effective algorithms, these efforts contributed efficient
implementations to efficiently compute inferential closures incrementally as facts are dynamically added or
removed [ARLG+09, CARG+12, GMS93, LCG+06, NJLS11]. However we are unaware of any work that
bridges these algorithms back to formal logic. As such, our efforts here complement these developments.

7 Conclusions and Future Work

In this report, we have given a logical interpretation of Datalog in linear logic, which captures assertion and
retraction of facts within the confines of logic. It directly maps assertion and retraction steps to derivations
in linear logic, thereby functioning not only as an abstract specification, but as an operational blueprint for
practical implementations of Datalog systems. Indeed, we prove the llDFull interpretation corresponds with
the traditional logic interpretation of Datalog programs.

In the future, we plan to implement a Datalog system based on llDFull and exploiting ideas in [CS09].
We believe that this can be a foundationally strong approach for deriving expressive and powerful concurrent
logic programming languages to be applied to highly parallel systems such as Claytronics [ARLG+09]. We
also wish to further investigate re-assertion during retraction, briefly discussed in Section 5.4. Specifically, we
are interested in exploring the possibility of deriving a linear logic interpretation of Datalog programs that
removes the need for re-assertion during fact retraction, thereby providing a more streamlined and efficient
operational semantics for practical implementation. We intend to explore the use of other variants of linear
logic, in the attempt to streamline our interpretation of Datalog. For instance, representing Datalog facts
as consumable subexponentials [NM09] and using polarized presentations of linear logic.
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