Towards Efficient Automated Machine Learning

Liam Li

May 2020
CMU-ML-20-104

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Ameet Talwalkar (Chair)
Maria-Florina Balcan
Jeff Schneider
Kevin Jamieson (University of Washington)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (©) 2020 Liam Li

This work was supported in part by DARPA FA875017C0141, the National Science Foundation grants IIS1705121
and IIS1838017, an Okawa Grant, a Google Faculty Award, an Amazon Web Services Award, a JP Morgan A.IL.
Research Faculty Award, and a Carnegie Bosch Institute Research Award. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
DARPA, the National Science Foundation, or any other funding agency.

Keywords: AutoML, Hyperparameter Optimization, Neural Architecture Search

To my loving wife and family

Abstract

Machine learning is widely used in a variety of different disciplines to develop
predictive models for variables of interest. However, building such solutions is a time
consuming and challenging discipline that requires highly trained data scientists and
domain experts. In response, the field of automated machine learning (AutoML) aims
to reduce human effort and speedup the development cycle through automation.

Due to the ubiquity of hyperparameters in machine learning algorithms and
the impact that a well-tuned hyperparameter configuration can have on predictive
performance, hyperparameter optimization is a core problem in AutoML. More
recently, the rise of deep learning has motivated neural architecture search (NAS), a
specialized instance of a hyperparameter optimization problem focused on automating
the design of neural networks. Naive approaches to hyperparameter optimization like
grid search and random search are computationally intractable for large scale tuning
problems. Consequently, this thesis focuses on developing efficient and principled
methods for hyperparameter optimization and NAS.

In particular, we make progress towards answering the following questions with
the aim of developing algorithms for more efficient and effective automated machine
learning:

1. Hyperparameter Optimization

(a) How can we effectively use early-stopping to speed up hyperparameter
optimization?

(b) How can we exploit parallel computing to perform hyperparameter opti-
mization in the same time it takes to train a single model in the sequential
setting?

(c) For multi-stage machine learning pipelines, how can we exploit the structure
of the search space to reduce total computational cost?

2. Neural Architecture Search

(a) What is the gap in performance between state-of-the-art weight-sharing
NAS methods and random search baselines?

(b) How can we develop more principled weight-sharing methods with provably
faster convergence rates and improved empirical performance?

(c) Does the weight-sharing paradigm commonly used in NAS have applica-
tions to more general hyperparameter optimization problems?

Given these problems, this thesis is organized into two parts. The first part
focuses on progress we have made towards efficient hyperparameter optimization by
addressing Problems 1a, 1b, and Ic. The second part focuses on progress we have
made towards understanding and improving weight-sharing for neural architecture
search and beyond by addressing Problems 2a, 2b, and 2c.

Acknowledgments

I am grateful to have had the opportunity to work with so many amazing people
throughout my graduate studies. The work presented in this thesis would not have
been possible without them and the unwavering support from my loving family and
friends.

First and foremost, I would like to thank my advisor Ameet Talwalkar. Ameet has
been a constant source of support, encouragement, and guidance throughout graduate
school. From our early days in UCLA to the past few years at CMU, Ameet has been
my biggest advocate and believed in me even when I doubted myself. His confidence
in me has been instrumental in helping me navigate the challenges I faced to get to
where I am today. Thank you Ameet.

Special thanks to my close collaborators Professor Kevin Jamieson and Afshin
Rostamizadeh for mentoring me when I first started graduate school and being great
sources of inspiration and insight. It has also been great to work with Professor Nina
Balcan on more recent projects and I have learned so much from her. Other professors
I would like to thank include my co-authors Benjamin Recht, Moritz Hardt, and
Virginia Smith; Katerina Fragkiadaki and Aarti Singh, course instructors for classes |
TAed; and Ryan Tibshirani, for serving on the MLD Wellness Network. Thanks also
to Professor Jamieson, Balcan, and Schneider for serving on my thesis committee.

It has been great to have worked with collaborators from multiple institutions.
Special thanks to my close collaborators Misha Khodak and Maruan Al-Shedivat,
both of whom are tremendously knowledgeable and taught me so much. Thanks
also to Tian Li, Evan Sparks, Giulia DeSalvo, Haoping Bai, Nick Roberts, Jonathan
Ben-Tzur, and Katerina Gonina.

I 'am also grateful for the friends that I have made throughout my graduate school
including Chris Wu, Nolan Donoghue, Beer Changpinyo, and Ray Zhang from my
time at UCLA; Misha, Greg Plumb, Sebastian Caldas, Jeffrey Li, Jeremy Cohen, Joon
Kim, and Lucio Dery from the recently renamed Sage Lab; Maruan, Mariya Toneva,
Anthony Platanios, and Simon Du, who were instrumental in launching the MLD
Blog; Ifigeneia Apostolopoulou, Ritesh Noothigattu, Chieh Lin, Lisa Lee, and Leqi
Liu from CMU; and Xavier Bouthillier, Jean-Francois Kagy, David Rosenberg, and
Ningshan Zhang. Thanks also to Eric Forister, Maria Salgado, and Robert Sherman
for helping me get into graduate school in the first place.

The administrative staff at CMU has also been a great resource: special thanks
to Diane Stidle for always being there when I had questions and helping me feel at
home at CMU and to Christy Melucci for helping our lab run so smoothly.

Finally, my family has been there for me from the very beginning: my mom
Yuhong Chen, sister Grace Cantarella, Anthony and Grazia Cantarella, Jun Li, Du
Chun, Louisa and Hansen Li; their love keeps me going. I dedicate this thesis to them
and to my wife Seon Hee, who encouraged me to pursue my dreams, drove cross
country with me through multiple blizzards to help me achieve them, and continues
to be my greatest source of strength.

Contents

Introduction

1.1 Motivation e e e e e e e e e e e
1.2 Hyperparameter Optimizationo ...
1.3 Neural Architecture Search
1.4 Thesis Outline and Contributions

Hyperparameter Optimization

Principled Early-Stopping with Hyperband

2.1 Introduction e
22 Related Work
2.3 HYPERBAND Algorithm
24 EXPeriments it e e e e e e e e e e
2.5 Theory o . o e e e
2.6 Experimental Details
2.7 Proofs of Theoretical Results
Hyperparameter Optimization in the Large-Scale Regime

3.1 Introduction e
32 Related Work
3.3 ASHA Algorithm e
34 EXPeriments i e e e e e e e e e e e
3.5 Productionizing ASHA
3.6 Experimental Detailso

Reuse in Pipeline-Aware Hyperparameter Optimization

4.1 Introduction e e
42 Related Work L
4.3 DAG Formulation and Analysis,
4.4 Increasing Potential for Reuse in ML Pipelines
4.5 Experimentso e e e e

1X

11
11
13
15
20
29
40
45

55
55
56
58
63
67
71

II Neural Architecture Search

5 Random Search Baselines for NAS

5.1
5.2
5.3
54
5.5
5.6
5.7

Introduction L
Related Work
Background on Weight-Sharing
Random Search with Weight-Sharing
Experiments L
Discussion on Reproducibility
Experimental Details

6 Geometry-Aware Optimization for Gradient-Based NAS

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction oL
The Weight-Sharing Optimization Problem
Geometry-Aware Gradient Algorithms
Convergence of Block-Stochastic Mirror Descent
Experiments
Proof of Theoretical Results
Experiment Details

7 Weight-Sharing Beyond NAS

7.1
7.2
7.3
7.4
7.5

The Weight-Sharing Learning Problem
Feature Map Selection
Federated Hyperparameter Optimization
Generalization Results00,
Feature Map Selection Details

8 Conclusion

8.1 Hyperparameter Optimization

8.2 Neural Architecture Search

83 FutureWork
Bibliography

88

90
90
92
95
97
99
110
111

113
113
115
117
121
122
130
135

139
140
141
147
150
154

155
155
156
157

159

List of Figures

1.1
2.1

2.2
23
24
2.5
2.6
2.7
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

4.6
4.7

5.1
5.2

Components of hyperparameter optimization. 2

Two paradigms for adaptive hyperparameter optimization: adaptive selection and

adaptive evaluation. Lo 12
Learning curve envelopes and early-stopping. 16
Hyperband: CNN experiments on three datasets. 22
Hyperband: Experiments on 117 OpenML datasets. 24
Hyperband: Experiments on 117 OpenML datasets (relative performance). 26
Hyperband: Kernel classification experiment. 27
Hyperband: Random features experiment. 27
Hyperband: CNN experiments on three datasets with error bars. 42
Hyperband: Kernel classification experiment with error bars. 44
Hyperband: Random features experiment with errorbars. 44
Promotion scheme for Successive Halving. 59
ASHA: Simulated workloads comparing impact of stragglers and dropped jobs. . 61
ASHA: Sequential experiments on two CNN search spaces. 63
ASHA: Distributed experiments on two CNN search spaces. 65
ASHA: Distributed experiments on NAS search spaces. 65
ASHA: Distributed experiment tuning modern LSTM. 66
ASHA: Large scale distributed experiment tuning LSTM. 67
Speed vs throughput tradeoffs for parallel training of ImageNet on multiple GPU. 70
ASHA: Sequential experiments comparing to Fabolas. 73

Eliminating redundant computation through reuse in multi-stage pipeline tuning. 78

Impact of eliminating redundant computation in large computational graphs. . . . 78
Visual comparison of grid search versus gridded random search. 82
Decreasing average training time with early-stopping via SHA. 84
Comparison of speedups from reuse when using different cache strategies on

synthetic workloads. Lo 85
Effect of reuse on two real-world text pipeline tuning tasks. 86
Effect of reuse on tuning speed processing pipeline for TIMIT. 87
RSWS: Best recurrent cell discovered on DARTS RNN benchmark. 98
RSWS: Best convolutional cell discovered on DARTS CNN benchmark. 107

X1

6.1

6.2
6.3

7.1

7.2

GAEA: Best convolutional cells discovered on DARTS CNN benchmark (CIFAR-

10 and ImageNet). 127
GAEA: Experiments on NAS-Bench-1Shotl. 128
GAEA: Entropy comparison by search space. 129

Comparison of accuracy for weight-sharing versus ground truth on kernel classifi-
cationtuningtask. L L L 143
Weight sharing versus random search and SHA on kernel classification tuning task. 144

Xii

List of Tables

4.1

5.1
5.2
53
54
55
5.6
5.7
5.8

6.1
6.2
6.3
6.4

Grid search vs gridded random search on OpenML datasets. 83
Reproducibility of NAS publications appearing in major conferences (2018-2019). 94
RSWS: Final results on DARTS RNN benchmark. 101
RSWS: Intermediate results on DARTS RNN benchmark. 103
RSWS: Investigation broad reproducibility on DARTS RNN benchmark. 103
RSWS: Final results on DARTS CNN benchmark. 105
RSWS: Intermediate results on DARTS CNN benchmark. 106
Investigating the reproducibility of DARTS. 108
RSWS: Investigating broad reproducibility on DARTS CNN benchmark. 108
GAEA: Results on DARTS CNN benchmark (CIFAR-10). 123
GAEA: Broad reproducibility on DARTS CNN benchmark (CIFAR-10). 124
GAEA: Results on DARTS CNN benchmark (ImageNet). 125
GAEA: Results on NAS-Bench-201. 128

X1il

Chapter 1

Introduction

1.1 Motivation

Machine learning has made significant strides with the rise of deep learning and large-scale model
development evidenced by successes in robotics [Kober et al., 2013], healthcare [Greenspan et al.,
2016], and autonomous driving [Chen et al., 2015]. However, developing these solutions is a
resource intensive endeavour both in terms of computation and human expertise. Research in
automated machine learning (AutoML) aims to alleviate both the computational cost and human
effort associated with developing machine learning solutions through automation with efficient
algorithms.

Applying machine learning to real world problems is a multi-stage process requiring significant
human effort from data collection to model deployment. Although research in AutoML aim to
automate all aspects of a typical machine learning pipeline, much of the research has focused on
addressing the model search phase, where there is a multitude of tuning parameters that need to
be set. These “hyperparameters” critically impact the performance of a given model and require
careful tuning to achieve optimal performance. Hence, research in hyperparameter optimization
aims to develop more efficient algorithms to reduce both the time and computational cost of
identifying a good hyperparameter setting.

Recent trends towards larger models and search spaces have drastically increased the compu-
tational cost of hyperparameter optimization. For example, training a single state-of-the-art neural
machine translation architectures can require days to weeks [Britz et al., 2017] and searching
for quality image classification architectures can require evaluating over 20k architectures from
a search space for neural architecture search [Real et al., 2018]. For these types of large-scale
problems, naive methods like grid search and random search that allocate a uniform training
resource to every configuration are prohibitively slow and expensive. The long wait before
receiving a feedback on the performance of a well-tuned model limits user productivity, while the
high cost limits broad accessibility. Consequently, faster and more cost efficient hyperparameter
optimization methods are necessary for modern machine learning methods.

This thesis addresses this need with novel algorithms that exploit cost efficient methods of
evaluating configurations, enabling the exploration of orders-of-magnitude more hyperparameter
configurations than naive baselines. Before outlining the contributions presented in subsequent

Continuous &
Discrete

Random Search Full Training

Unstructured & Evolutionary Search ~ Partial Training

Structured .
Bayesian . .
Optimization Weight-Sharing
Cell Block Network Morphism
Meta-Architecture Gradlg n.t-Br_:lsed Hypernetworks
Optimization

Reinforcement
Learning

Figure 1.1: Components of hyperparameter optimization. Primarily NAS-specific methods
are outlined in purple.

chapters towards efficient hyperparameter optimization and neural architecture search, we first
provide relevant background on these two research subjects to contexualize our work.

1.2 Hyperparameter Optimization

We start with an overview of the components of hyperparameter optimization to provide a
taxonomy with which to characterize different approaches. As shown in Figure 1.1, a general
hyperparameter optimization problem has three components: (1) a search space, (2) a search
method, and (3) an evaluation method. We provide a high level overview of each component in
turn below and defer more detailed discussions as needed to Chapters 2, 3, and 4.

1.2.1 Search Space

Hyperparameter optimization involves identifying a good hyperparameter configuration from
a set of possible configurations. The search space defines this set of configurations, and can
include continuous or discrete hyperparameters in a structured or unstructured fashion [Bergstra
and Bengio, 2012, Feurer et al., 2015a, Olson and Moore, 2016, Snoek et al., 2012]. Examples
of continuous hyperparameters include learning rate and momentum for stochastic gradient
descent, degree of regularization to apply to the training objective, and scale of a kernel similarity
function for kernel classification. Examples of discrete hyperparameters include choices of
activation function, number of layers in a neural network, and number of trees in a random forest.
Finally, structured search spaces include those with conditional hyperparameters (e.g., the relevant

2

hyperparameters can depend on the choice of supervised learning method) and other tree type
search spaces [Olson and Moore, 2016].

1.2.2 Search Method

Given a search space, there are various search methods to select putative configurations to evaluate.
Random search over a predefined probability distribution over the search space is the most basic
approach, yet it is quite effective in practice [Bergstra and Bengio, 2012]. Various adaptive
methods have also been introduced, e.g., evolutionary search, gradient-based optimization, and
Bayesian optimization. Although these adaptive approaches differ in how they determine which
models to evaluate, they all attempt to bias the search in some way towards configurations that are
more likely to perform well.

Due to the underlying assumptions made by different search methods, the choice of an
appropriate search method can depends on the search space. Bayesian approaches based on
Gaussian processes [Kandasamy et al., 2016, Klein et al., 2017a, Snoek et al., 2012, Swersky et al.,
2013] and gradient-based approaches [Bengio, 2000, Maclaurin et al., 2015] are generally only
applicable to continuous search spaces. In contrast, tree-based Bayesian [Bergstra et al., 2011,
Hutter et al., 2011], evolutionary strategies [Olson and Moore, 2016], and random search are more
flexible and can be applied to any search space. The application of reinforcement learning to
general hyperparameter optimization problems is limited due to the difficulty of learning a policy
over large continuous action spaces.

1.2.3 Evaluation Method

For each hyperparameter configuration considered by a search method, we must evaluate its
quality. The default approach to perform such an evaluation involves fully training a model with
the given hyperparameters, and subsequently measuring its quality, e.g., its predictive accuracy
on a validation set. In contrast, partial training methods exploit early-stopping to speed up
the evaluation process at the cost of noisy estimates of configuration quality. These methods
use Bayesian optimization [Falkner et al., 2018, Kandasamy et al., 2016, Klein et al., 2017a],
performance prediction [Domhan et al., 2015, Golovin et al., 2017], or, as we show in Chapter 2,
multi-armed bandits to adaptively allocate resources to different configurations.

As we will will discuss in Section 1.4, our contributions to efficient hyperparameter optimiza-
tion largely focus on developing principled early-stopping methods to speed up configuration
evaluation.

1.3 Neural Architecture Search

The success of deep learning in various challenging real-world applications has generated sig-
nificant interest in designing even better neural network architectures. Initial work in neural
architecture search (NAS) by Zoph and Le [2017] used reinforcement learning to identify state-of-
the-art architectures for image classification and language modeling demonstrating the promising
potential of NAS to automatically identify architectures that outperform human designed ones.

3

Although NAS may appear to be a subfield of AutoML independent of hyperparameter
optimization, in reality, it is a specialized hyperparameter optimization problem distinguished by
the search spaces considered. Hence, we use the same taxonomy as that in the previous section
to provide an overview for NAS methods. We will discuss concepts in more detail as needed in
Chapters 5, 6, and 7.

1.3.1 Search Space

NAS-specific search spaces usually involve discrete architectural hyperparameters that control at
a more granular level which operations to use and how to connect the outputs of these operations
to form an architecture. Architecture instances within these search spaces can be represented as
directed acyclic graphs (DAG) [Liu et al., 2019, Pham et al., 2018], where nodes represent local
computation to form intermediate features and edges indicate the flow of information from one
node to another. Additionally, since a search space for designing an entire architecture would
have too many nodes and edges, search spaces are usually defined over some smaller building
block, i.e., cell blocks, that are repeated in some way via a preset or learned meta-architecture to
form a larger architecture [Elsken et al., 2018b].

1.3.2 Search Method

NAS-specific search methods can be categorized into the same broad categories as those for hyper-
parameter optimization but are specially tailored for structured NAS search spaces. Reinforcement
learning and evolutionary search approaches dominated early methods due to their suitability
for complex discrete search spaces [Real et al., 2017, 2018, Zoph and Le, 2017]. More recently,
gradient-based optimization of a continuous relaxation of the discrete search space has also seen
success [Cai et al., 2019, Liu et al., 2019]. Bayesian optimization approaches with specialized
architecture similarity kernels have also been developed for NAS [Jin et al., 2018, Kandasamy
et al., 2018].

1.3.3 Evaluation Method

The first generation of NAS methods relied on full training evaluation, and thus required thousands
of GPU days to achieve a desired result [Real et al., 2017, 2018, Zoph and Le, 2017, Zoph et al.,
2018]. NAS-specific evaluation methods —such as network morphism, weight-sharing, and
hypernetworks— exploit the structure of neural networks to provide even cheaper, heuristic
estimates of quality. Many of these methods center around sharing and reuse: network morphisms
build upon previously trained architectures [Cai et al., 2018, Elsken et al., 2018a, Jin et al., 2018];
hypernetworks and performance prediction encode information from previously seen architectures
[Brock et al., 2018, Liu et al., 2018a, Zhang et al., 2019]; and weight-sharing methods [Bender
et al., 2018, Cai et al., 2019, Liu et al., 2019, Pham et al., 2018, Xie et al., 2019] use a single set
of weights for all possible architectures. These more efficient NAS evaluation methods are 2-3
orders-of-magnitude cheaper than full training.

As we will will discuss in Section 1.4, our contributions to more efficient NAS largely focus
on developing a better understanding of the weight-sharing evaluation scheme and designing
better architecture search algorithms using our insights.

1.4 Thesis Outline and Contributions

With the requisite background from the previous section, we now present our contributions towards
more efficient automated machine learning. This thesis is organized into two parts, the first part
presents our contributions towards more efficient hyperparameter optimization while the second
part focuses on our contributions in neural architecture search. We provide an outline of our
contributions in each chapter below with a motivating problem and our associated solution.

Part 1: Hyperparameter Optimization

Motivated by the trend towards ever more expensive models and larger search spaces, we en-
deavour to develop faster methods for hyperparameter optimization that can evaluate orders-
of-magnitude more configurations than when using full training with the same computational
resource. Our contributions below exploit early-stopping and reuse of computation to drastically
decrease the average cost of evaluating a configuration, thereby increasing the total number of
configurations we can evaluate with the same resource.

This part is based on work presented in Li et al. [2017], Li et al. [2018a], Li et al. [2020a], and
Li et al. [2018b].

Chapter 2: Principled Early-Stopping with Hyperband

Problem Early-stopping is a commonly used during manual hyperparameter tuning and is a
natural approach to speed up the search for a quality hyperparameter setting. Early-stopping
rules like median early-stopping rule [Golovin et al., 2017] and improvement-based stopping
criterion are also available. However, these approaches are heuristic in nature and, therefore, lack
correctness and complexity guarantees. As we will show in Chapter 2, learning curves for different
hyperparameter configurations are not well behaved and can be non-monotonic, non-smooth, and
even diverge. Hence, a more principled approach is needed to guarantee robustness and efficiency.

Solution [Li et al., 2017, 2018a] In contrast to prior work that rely on heuristics to perform
early-stopping, we develop Hyperband, a principled approach to early-stopping for hyperparameter
optimization based on the successive halving bandit algorithm [Karnin et al., 2013]. Our bandit-
based algorithm poses hyperparameter optimization as a pure-exploration infinitely armed bandit
problem. Then, under weak assumptions, we show Hyperband only requires a small factor more
resource than that of optimal resource allocation to identify a sufficiently good configuration.
Our experiments on a suite of hyperparameter tuning tasks demonstrate Hyperband to be over an
order-of-magnitude faster than methods that use full evaluation.

5

Chapter 3: Hyperparameter Optimization in the Large-Scale Regime

Problem Hyperparameter tuning workloads for modern machine learning models require evalu-
ating thousands of expensive to train models motivating the large-scale regime for hyperparameter
optimization. In the large-scale regime, we have to exploit parallelism afforded to us through the
widespread availability of cloud computing to evaluate orders-of-magnitude more models than
available workers in order to return a good configuration in a small multiple of the wallclock time
required to train a single model. How can we design an algorithm suitable for the large-scale
regime of hyperparameter optimization?

Solution [Li et al., 2020a] We develop the Asynchronous Successive Halving Algorithm
(ASHA) for embarrassingly parallel asynchronous hyperparameter optimization. ASHA can
identify a quality configurations in the time it takes to train a single model if given enough dis-
tributed workers. Our algorithm addresses drawbacks of original synchronous successive halving
algorithm (Chapter 2) when running in distributed computing system. In particular, the asyn-
chronous algorithm is robust to stragglers and dropped jobs and scales linearly with the number
of workers. We also discuss systems design considerations that we faced when deploying ASHA
in a live production system. Our empirical studies for both sequential and distributed settings
show that ASHA can achieve state-of-the-art performance across a broad array of hyperparameter
tuning tasks.

Impact The theoretically principled algorithms we develop in Chapter 2 and Chapter 3 have
gained wide adoption, as evidenced by the availability of HYPERBAND and ASHA in many
AutoML frameworks like Optuna [Akiba et al.], Katib [Zhou et al., 2019], and Ray Tune [Liaw
et al., 2018].

Chapter 4: Reuse in Pipeline-Aware Hyperparameter Optimization

Problem Machine learning solutions often involve multiple stages forming a pipeline for data
processing, featurization, and model training. Each stage of the pipeline involves methods with
associated hyperparameters that need to be tuned to maximize performance on the downstream
task. For these structured search spaces, is there a way to reuse computation across pipeline
configurations to reduce total computational cost?

Solution [Li et al.,, 2018b] We present a novel paradigm for hyperparameter optimization
in structured search spaces where shared computation between pipelines are reused instead of
recomputed for each individual pipeline. Under this paradigm, we present an approach that
optimizes both the design and execution of pipelines to maximize speedups from reuse. We design
pipelines amenable for reuse by (1) introducing a novel hybrid hyperparameter tuning method
called gridded random search, and (2) reducing the average training time in pipelines by adapting
early-stopping hyperparameter tuning approaches. We conduct experiments on simulated and
real-world machine learning pipelines to show that a pipeline-aware approach to hyperparameter
tuning can offer over an order-of-magnitude speedup over independently evaluating pipeline
configurations.

Part 2: Neural Architecture Search

Due to the astronomical cost associated with neural architecture search methods that relied on
full training [Real et al., 2017, 2018, Zoph and Le, 2017], weight-sharing has emerged as a
cost-effective evaluation strategy for NAS. Weight-sharing methods reduce the cost of architecture
search to that of training a single super network encompassing all possible architectures within
the search space [Liu et al., 2019, Pham et al., 2018]. Although weight-sharing NAS methods
have seen empirical success [Cai et al., 2019, Liu et al., 2019, Pham et al., 2018], we address the
need for a better understanding of weight-sharing paradigm to inform more principled and robust
methods.

This part is based on work presented in Li and Talwalkar [2019], Li et al. [2020b], and Khodak
et al. [2020].

Chapter 5: Random Search Baselines for NAS

Problem While neural architecture search methods have identified state-of-the art architectures
for image recognition and language modeling, it is unclear how much of a gap exists between
traditional hyperparameter optimization methods and specialized NAS approaches. How do
traditional hyperparameter optimization methods perform on NAS search spaces and what are the
right baselines for NAS methods? In particular, are the speedups from weight-sharing methods
attributable to the search method used or to the faster architecture evaluation scheme?

Solution [Li and Talwalkar, 2019] Motivated by our work in hyperparameter optimization, we
investigate the effectiveness of random search in combination with efficient evaluation strategies on
two standard NAS benchmarks. Towards this effort, we evaluate ASHA on these two benchmarks
to quantify the gap between NAS methods and traditional hyperparameter optimization approaches.
Additionally, we develop a novel algorithm for NAS that combines random search with weight-
sharing (RSWS) to drastically reduce evaluation cost. Our results establish RSWS as a strong
baseline for NAS that has since proven to be a difficult baseline to beat [Carlucci et al., 2019, Cho
et al., 2019, Dong and Yang, 2020, Yu et al., 2020]. Finally, we discuss the state of reproducibility
in NAS and present suggestions to improve results reporting to ground future empirical studies.

Impact At the time of publication, RSWS attained state-of-the-art performance on designing
RNN cells for language modeling on the Penn Treebank dataset [Marcus et al., 1993] and remains
the method with the top result on that benchmark. RSWS has also gained traction as a strong
baseline for NAS, warranting comparisons from recent NAS work [Cho et al., 2019, Dong and
Yang, 2020, Zela et al., 2020b].

Chapter 6: Geometry-Aware Optimization for Gradient-Based NAS

Problem State-of-the-art NAS methods that outperform RSWS by larger margins combine
gradient-based optimization techniques with weight-sharing to speed up the search for a good
architecture. However, this training process remains poorly understood leading to a multitude of

7

methods based on heuristics and intuition. How do these methods behave and how can we design
more principled approaches with faster convergence rates and improved empirical performance?

Solution [Li et al., 2020b] We present a geometry-aware framework for designing and ana-
lyzing gradient-based NAS methods by drawing a connection to the theory of mirror descent.
Our framework allows us to reason about the convergence rate of existing gradient-based weight-
sharing approaches to NAS. Furthermore, our convergence analysis allows us to design novel
methods that exploit the underlying problem structure to quickly find highly-performant archi-
tectures. Our methods (1) enjoy faster convergence guarantees whose iteration complexity has a
weaker dependence on the size of the search space and (2) achieve higher accuracy on the latest
NAS benchmarks in computer vision.

Chapter 7: Weight-Sharing Beyond NAS

Problem Although NAS is a specialized instance of a hyperparameter optimization problem,
it is natural to wonder whether NAS specific methods have applications more broadly. Weight-
sharing in particular holds particular appeal due to its computational efficiency, reducing the cost
of exploring all architectures in the NAS search space to that of training a single network. Is it
possible to apply weight-sharing to problems beyond NAS and what insights can we derive from
this exploration?

Solution [Khodak et al., 2020] We identify weight-sharing as a widely applicable technique
for accelerating traditional hyperparameter optimization. We study weight-sharing for feature
map selection and show that it yields highly competitive performance. We also pose this setting
as a theoretically-tractable type of NAS and provide a sample-complexity-based explanation for
why NAS practitioners frequently obtain better performance using bilevel optimization instead of
joint empirical risk minimization over architectures and shared weights. Finally, we argue that
weight-sharing is a natural approach for hyperparameter optimization in the federated learning
setting and introduce an exponentiated gradient algorithm called FedEx for this settings

Part 1

Hyperparameter Optimization

Chapter 2

Principled Early-Stopping with Hyperband

With the requisite background on hyperparameter optimization in Chapter 1.2, we present HY-
PERBAND, our algorithm for theoretically grounded early-stopping, in this chapter.

2.1 Introduction

Early efforts towards more efficient hyperparameter optimization were dominated by Bayesian
optimization methods [Bergstra et al., 2011, Hutter et al., 2011, Snoek et al., 2012] that focus
on optimizing hyperparameter configuration selection. These methods aim to identify good
configurations more quickly than standard baselines like random search by selecting configurations
in an adaptive manner; see Figure 2.1a. Although empirical evidence suggests that these methods
outperform random search [Eggensperger et al., 2013, Snoek et al., 2015, Thornton et al., 2013],
these approaches tackle the fundamentally challenging problem of simultaneously fitting and
optimizing a high-dimensional, non-convex function with unknown smoothness, and possibly
noisy evaluations.

An orthogonal approach to hyperparameter optimization focuses on speeding up configuration
evaluation; see Figure 2.1b. These approaches are adaptive in computation, allocating more
resources to promising hyperparameter configurations while quickly eliminating poor ones.
Resources can take various forms, including size of training set, number of features, or number of
iterations for iterative algorithms. By adaptively allocating resources, these approaches aim to
examine orders-of-magnitude more hyperparameter configurations than approaches that uniformly
train all configurations to completion, thereby quickly identifying good hyperparameters.

More recently, hybrid approaches that combine adaptive configuration selection with adaptive
evaluation have been introduced [Domhan et al., 2015, Falkner et al., 2018, Jaderberg et al., 2017,
Klein et al., 2017a]. In this chapter, we focus on speeding up random search as it offers a simple
and theoretically principled launching point [Bergstra and Bengio, 2012].! We will compare
early-stopping with simple random search to leading hybrid approaches in Chapter 3.

'Random search will asymptotically converge to the optimal configuration, regardless of the smoothness or
structure of the function being optimized, by a simple covering argument. While the rate of convergence for random
search depends on the smoothness and is exponential in the number of dimensions in the search space, the same is
true for Bayesian optimization methods without additional structural assumptions [Kandasamy et al., 2015].

11

@‘ @ 0.25
‘@, 0.20
® . ® g 9
o § 015
o © o
@ @ 0.00 -
Resources
(a) Configuration Selection (b) Configuration Evaluation

Figure 2.1: (a) The heatmap shows the validation error over a two-dimensional search space
with red corresponding to areas with lower validation error. Configuration selection methods
adaptively choose new configurations to train, proceeding in a sequential manner as indicated by
the numbers. (b) The plot shows the validation error as a function of the resources allocated to
each configuration (i.e. each line in the plot). Configuration evaluation methods allocate more
resources to promising configurations.

In this chapter, as a counterpoint to prior work focused on adaptive configuration selection, we
develop a novel configuration evaluation approach by formulating hyperparameter optimization
as a pure-exploration adaptive resource allocation problem addressing how to allocate resources
among randomly sampled hyperparameter configurations. Our procedure, HYPERBAND, relies
on a principled early-stopping strategy to allocate resources, allowing it to evaluate orders-of-
magnitude more configurations than black-box procedures like Bayesian optimization methods.
HYPERBAND is a general-purpose technique that makes minimal assumptions unlike prior config-
uration evaluation approaches [Agarwal et al., 2011, Domhan et al., 2015, Gyorgy and Kocsis,
2011, Jamieson and Talwalkar, 2015, Sparks et al., 2015, Swersky et al., 2014].

Our theoretical analysis demonstrates the ability of HYPERBAND to adapt to unknown con-
vergence rates and to the behavior of validation losses as a function of the hyperparameters.
In addition, HYPERBAND is 5x to 30x faster than popular Bayesian optimization algorithms
on a variety of deep-learning and kernel-based learning problems. A theoretical contribution
of this chapter is the introduction of the pure-exploration, infinite-armed bandit problem in the
non-stochastic setting, for which HYPERBAND is one solution.

The remainder of the chapter is organized as follows. Section 2.2 summarizes related work in
two areas: (1) hyperparameter optimization, and (2) pure-exploration bandit problems. Section 2.3
describes HYPERBAND and the successive halving bandit algorithm, which HYPERBAND calls as
a subroutine. In Section 2.4, we present a wide range of empirical results comparing HYPERBAND
with popular adaptive configuration selection methods. Section 2.5 frames the hyperparameter
optimization problem as an infinite-armed bandit problem and summarizes the theoretical results
for HYPERBAND.

12

2.2 Related Work

In this section, we provide a discussion of early work in hyperparameter optimization motivating
HYPERBAND and also summarize significant related work on bandit problems. We will discuss
more recent methods introduced after HYPERBAND in the next chapter.

2.2.1 Hyperparameter Optimization

Bayesian optimization techniques model the conditional probability p(y|\) of a configuration’s
performance on an evaluation metric y (i.e., test accuracy), given a set of hyperparameters \.
Sequential Model-based Algorithm Configuration (SMAC), Tree-structure Parzen Estimator
(TPE), and Spearmint are three well-established methods [Feurer et al., 2014]. SMAC uses
random forests to model p(y|\) as a Gaussian distribution [Hutter et al., 2011]. TPE is a non-
standard Bayesian optimization algorithm based on tree-structured Parzen density estimators
[Bergstra et al., 2011]. Lastly, Spearmint uses Gaussian processes (GP) to model p(y|A) and
performs slice sampling over the GP’s hyperparameters [Snoek et al., 2012].

Previous work compared the relative performance of these Bayesian searchers [Bergstra et al.,
2011, Eggensperger et al., 2013, Feurer et al., 2014, 2015a, Snoek et al., 2012, Thornton et al.,
2013]. An extensive survey of these three methods by Eggensperger et al. [2013] introduced
a benchmark library for hyperparameter optimization called HPOlib, which we use for our
experiments. Bergstra et al. [2011] and Thornton et al. [2013] showed Bayesian optimization
methods empirically outperform random search on a few benchmark tasks. However, for high-
dimensional problems, standard Bayesian optimization methods perform similarly to random
search [Wang et al., 2013]. Methods specifically designed for high-dimensional problems assume
a lower effective dimension for the problem [Wang et al., 2013] or an additive decomposition for
the target function [Kandasamy et al., 2015]. However, as can be expected, the performance of
these methods is sensitive to required inputs; i.e. the effective dimension [Wang et al., 2013] or
the number of additive components [Kandasamy et al., 2015].

Gaussian processes have also been studied in the bandit setting using confidence bound
acquisition functions (GP-UCB), with associated sublinear regret bounds [Griinewilder et al.,
2010, Srinivas et al., 2010]. Wang et al. [2016] improved upon GP-UCB by removing the need to
tune a parameter that controls exploration and exploitation. Contal et al. [2014] derived a tighter
regret bound than that for GP-UCB by using a mutual information acquisition function. However,
van der Vaart and van Zanten [2011] showed that the learning rate of GPs are sensitive to the
definition of the prior through an example with a poor prior where the learning rate degraded
from polynomial to logarithmic in the number of observations n. Additionally, without structural
assumptions on the covariance matrix of the GP, fitting the posterior is O(n?®) [Wilson et al.,
2015]. Hence, Snoek et al. [2015] and Springenberg et al. [2016] proposed using Bayesian neural
networks, which scale linearly with n, to model the posterior.

Adaptive configuration evaluation is not a new idea. Maron and Moore [1997] and Mnih and
Audibert [2008] considered a setting where the training time is relatively inexpensive (e.g., k-
nearest-neighbor classification) and evaluation on a large validation set is accelerated by evaluating
on an increasing subset of the validation set, stopping early configurations that are performing
poorly. Since subsets of the validation set provide unbiased estimates of its expected performance,

13

this is an instance of the stochastic best-arm identification problem for multi-armed bandits [see
the work by Jamieson and Nowak, 2014, for a brief survey].

In contrast, we address a setting where the evaluation time is relatively inexpensive and the
goal is to early-stop long-running training procedures by evaluating partially trained models on
the full validation set. Previous approaches in this setting either require strong assumptions or
use heuristics to perform adaptive resource allocation. Gyorgy and Kocsis [2011] and Agarwal
et al. [2011] made parametric assumptions on the convergence behavior of training algorithms,
providing theoretical performance guarantees under these assumptions. Unfortunately, these
assumptions are often hard to verify, and empirical performance can drastically suffer when
they are violated. Krueger et al. [2015] proposed a heuristic based on sequential analysis to
determine stopping times for training configurations on increasing subsets of the data. However,
the theoretical correctness and empirical performance of this method are highly dependent on a
user-defined “‘safety zone.”

In another line of work, Sparks et al. [2015] proposed a halving style bandit algorithm that did
not require explicit convergence behavior, and Jamieson and Talwalkar [2015] analyzed a similar
algorithm originally proposed by Karnin et al. [2013] for a different setting, providing theoretical
guarantees and encouraging empirical results. Unfortunately, these halving style algorithms
suffer from the “n versus B/n” problem, which we will discuss in Section 2.3.1. HYPERBAND
addresses this issue and provides a robust, theoretically principled early-stopping algorithm for
hyperparameter optimization.

We note that HYPERBAND can be combined with any hyperparameter sampling approach and
does not depend on random sampling; the theoretical results only assume the validation losses of
sampled hyperparameter configurations are drawn from some stationary distribution. In fact, we
compare to a method combining HYPERBAND with adaptive sampling in Chapter 3.4.

2.2.2 Bandit Problems

Pure exploration bandit problems aim to minimize the simple regret, defined as the distance
from the optimal solution, as quickly as possible in any given setting. The pure-exploration
multi-armed bandit problem has a long history in the stochastic setting [Bubeck et al., 2009,
Even-Dar et al., 2006], and was extended to the non-stochastic setting by Jamieson and Talwalkar
[2015]. Relatedly, the stochastic pure-exploration infinite-armed bandit problem was studied by
Carpentier and Valko [2015], where a pull of each arm i yields an i.i.d. sample in [0, 1] with
expectation v;, where v; is a loss drawn from a distribution with cumulative distribution function,
F. Of course, the value of v; is unknown to the player, so the only way to infer its value is to
pull arm ¢ many times. Carpentier and Valko [2015] proposed an anytime algorithm, and derived
a tight (up to polylog factors) upper bound on its error assuming what we will refer to as the
[-parameterization of F’ described in Section 2.5.3.2. that succeeds with probability at least §
such that after B total pulls from all drawn arms it outputs an arm 7 that satisfies

Ef] < polylog(B) log(1/0) max{B "%, B 7}. @.1)

Conversely, they show that any algorithm that outputs an arm 7 after just B pulls must also

N §
satisfy E[1z] > max{B 2,8 #} showing that their algorithm is tight up to polylog factors

14

for this 3 parameterization of F'. However, their algorithm was derived specifically for the
[B-parameterization of F', and furthermore, they must estimate (5 before running the algorithm,
limiting the algorithm’s practical applicability. Also, the algorithm assumes stochastic losses
from the arms and thus the convergence behavior is known; consequently, it does not apply in
our hyperparameter optimization setting.”> Two related lines of work that both make use of an
underlying metric space are Gaussian process optimization [Srinivas et al., 2010] and X -armed
bandits [Bubeck et al., 2011], or bandits defined over a metric space. However, these works either
assume stochastic rewards or need to know something about the underlying function (e.g. an
appropriate kernel or level of smoothness).

In contrast, HYPERBAND is devised for the non-stochastic setting and automatically adapts
to unknown F' without making any parametric assumptions. Hence, we believe our work to be
a generally applicable pure exploration algorithm for infinite-armed bandits. To the best of our
knowledge, this is also the first work to test out such an algorithm on a real application.

2.3 HYPERBAND Algorithm

In this section, we present the HYPERBAND algorithm. Moreover, we provide intuition for the
algorithm and present a few guidelines on how to deploy HYPERBAND in practice.

2.3.1 Successive Halving

HYPERBAND extends the SUCCESSIVEHALVING algorithm proposed for hyperparameter op-
timization by Jamieson and Talwalkar [2015] and calls it as a subroutine. The idea behind the
original SUCCESSIVEHALVING algorithm follows directly from its name: uniformly allocate a
budget to a set of hyperparameter configurations, evaluate the performance of all configurations,
throw out the worst half, and repeat until one configuration remains. The algorithm allocates
exponentially more resources to more promising configurations. Unfortunately, SUCCESSIVE-
HALVING requires the number of configurations n as an input to the algorithm. Given some finite
budget B (e.g., an hour of training time to choose a hyperparameter configuration), B /n resources
are allocated on average across the configurations. However, for a fixed B, it is not clear a priori
whether we should (a) consider many configurations (large n) with a small average training time;
or (b) consider a small number of configurations (small n) with longer average training times.
We use a simple example to better understand this tradeoff. Figure 2.2 shows the validation
loss as a function of total resources allocated for two configurations with terminal validation
losses v and v5. The shaded areas bound the maximum deviation of the intermediate losses
from the terminal validation loss and will be referred to as “envelope” functions.? It is possible
to distinguish between the two configurations when the envelopes no longer overlap. Simple
arithmetic shows that this happens when the width of the envelopes is less than 15 — 11, i.e., when
the intermediate losses are guaranteed to be less than “5*1 away from the terminal losses. There

2See the work by Jamieson and Talwalkar [2015] for detailed discussion motivating the non-stochastic setting for
hyperparameter optimization.

3These envelope functions are guaranteed to exist; see discussion in Section 2.5.2 where we formally define these
envelope (or 7y) functions.

15

1)

vy

[50 100 150 200 250 300 350 400
Resources Allocated

Figure 2.2: The validation loss as a function of total resources allocated for two configurations
is shown. 1y and v, represent the terminal validation losses at convergence. The shaded areas
bound the maximum distance of the intermediate losses from the terminal validation loss and
monotonically decrease with the resource.

are two takeaways from this observation: more resources are needed to differentiate between the
two configurations when either (1) the envelope functions are wider or (2) the terminal losses are
closer together.

However, in practice, the optimal allocation strategy is unknown because we do not have
knowledge of the envelope functions nor the distribution of terminal losses. Hence, if more
resources are required before configurations can differentiate themselves in terms of quality (e.g.,
if an iterative training method converges very slowly for a given data set or if randomly selected
hyperparameter configurations perform similarly well), then it would be reasonable to work with
a small number of configurations. In contrast, if the quality of a configuration is typically revealed
after a small number of resources (e.g., if iterative training methods converge very quickly for a
given data set or if randomly selected hyperparameter configurations are of low-quality with high
probability), then 7 is the bottleneck and we should choose n to be large.

Certainly, if meta-data or previous experience suggests that a certain tradeoff is likely to work
well in practice, one should exploit that information and allocate the majority of resources to that
tradeoff. However, without this supplementary information, practitioners are forced to make this
tradeoff, severely hindering the applicability of prior configuration evaluation methods.

2.3.2 HYPERBAND

HYPERBAND, shown in Algorithm 1, addresses this “n versus B/n” problem by considering
several possible values of n for a fixed B, in essence performing a grid search over feasible
value of n. Associated with each value of n is a minimum resource 7 that is allocated to all
configurations before some are discarded; a larger value of n corresponds to a smaller r and
hence more aggressive early-stopping. There are two components to HYPERBAND; (1) the inner
loop invokes SUCCESSIVEHALVING for fixed values of n and r (lines 3-9) and (2) the outer
loop iterates over different values of n and r (lines 1-2). We will refer to each such run of
SUCCESSIVEHALVING within HYPERBAND as a “bracket.” Each bracket is designed to use
approximately B total resources and corresponds to a different tradeoff between n and B/n.
Hence, a single execution of HYPERBAND takes a finite budget of (s, + 1)B; we recommend
repeating it indefinitely.

16

Algorithm 1: HYPERBAND algorithm for hyperparameter optimization.
input : R, n (default n = 3)
initialization : s, = [log, (R)], B = (Smax + 1) R

1 for s € {0,1,..., Spax} do

2 n = [%%—I’ r = Rn_(smax_s)
// begin SuccessiveHalving with (n,r) inner loop
3 T =get_hyperparameter_configuration(n)
4 | forie{0,..., Spax — s} do
5 n; = [nn~']
6 ri =rn
7 L = {run_then return_val loss(¢,r;) : t € T'}
8 T :top,k(T, L, an/nJ)
9 end
10 end

1

—

return Configuration with the smallest intermediate loss seen so far.

HYPERBAND requires two inputs (1) R, the maximum amount of resource that can be allocated
to a single configuration, and (2) 7, an input that controls the proportion of configurations discarded
in each round of SUCCESSIVEHALVING. The two inputs dictate how many different brackets are
considered; specifically, sy, + 1 different values for n are considered with s, = Uogn(R)J.
HYPERBAND begins with the most aggressive bracket s = 0, which sets n to maximize exploration,
subject to the constraint that at least one configuration is allocated R resources. Each subsequent
bracket reduces n by a factor of approximately 7 until the final bracket, s = sy,.x, in Which every
configuration is allocated R resources (this bracket simply performs classical random search).
Hence, HYPERBAND performs a geometric search in the average budget per configuration and
removes the need to select n for a fixed budget at the cost of approximately s,.x + 1 times more
work than running SUCCESSIVEHALVING for a single value of n. By doing so, HYPERBAND
is able to exploit situations in which adaptive allocation works well, while protecting itself in
situations where more conservative allocations are required.

HYPERBAND requires the following methods to be defined for any given learning problem:

e get_hyperparameter_configuration(n) — a function that returns a set of n i.i.d. samples
from some distribution defined over the hyperparameter configuration space. In this thesis,
we assume hyperparameters are uniformly sampled from a predefined space (i.e., hypercube
with min and max bounds for each hyperparameter), which immediately yields consistency
guarantees. However, the more aligned the distribution is towards high quality hyperparam-
eters (i.e., a useful prior), the better HYPERBAND will perform. Since the introduction of
HYPERBAND, methods that combine HYPERBAND with adaptive hyperparameter selection
have been developed [Falkner et al., 2018, Klein et al., 2017b]. We compare to some of
these approaches in Chapter 3.

e run_then_return_val loss(t, r) — a function that takes a hyperparameter configuration ¢ and
resource allocation 7 as input and returns the validation loss after training the configuration

17

for the allocated resources.

e top_k(configs, losses, k) — a function that takes a set of configurations as well as their
associated losses and returns the top k performing configurations.

2.3.3 Different Types of Resources

Early-stopping with HYPERBAND can be performed with different notions of training resource.
¢ Training Iterations — Adaptively allocating the number of training iterations for an iterative
algorithm like stochastic gradient decent is perhaps the application of hyperband that most
naturally comes to mind.

¢ Time — Early-stopping in terms of time can be preferred when various hyperparameter
configurations differ in training time and the practitioner’s chief goal is to find a good
hyperparameter setting in a fixed wall-clock time. For instance, training time could be used
as a resource to quickly terminate straggler jobs in distributed computation environments.

e Data Set Subsampling — Here we consider the setting of a black-box batch training
algorithm that takes a data set as input and outputs a model. In this setting, we treat the
resource as the size of a random subset of the data set with R corresponding to the full
data set size. Subsampling data set sizes using HYPERBAND, especially for problems with
super-linear training times like kernel methods, can provide substantial speedups.

¢ Feature Subsampling — Random features or Nystrom-like methods are popular methods
for approximating kernels for machine learning applications [Rahimi and Recht, 2007].
In image processing, especially deep-learning applications, filters are usually sampled
randomly, with the number of filters having an impact on the performance. Downsam-
pling the number of features is a common tool used when hand-tuning hyperparameters;
HYPERBAND can formalize this heuristic.

2.3.4 Setting R

The resource R and n (which we address next) are the only required inputs to HYPERBAND. As
mentioned in Section 2.3.2, R represents the maximum amount of resources that can be allocated
to any given configuration. In most cases, there is a natural upper bound on the maximum budget
per configuration that is often dictated by the resource type (e.g., training set size for data set
downsampling; limitations based on memory constraint for feature downsampling; rule of thumb
regarding number of epochs when iteratively training neural networks). If there is a range of
possible values for R, a smaller R will give a result faster (since the budget B for each bracket is a
multiple of R), but a larger R will give a better guarantee of successfully differentiating between
the configurations.

Moreover, for settings in which either R is unknown or not desired, we provide an infinite
horizon version of HYPERBAND in Section 2.5. This version of the algorithm doubles the budget
over time, B € {2,4,8,16,...}, and for each B, tries all possible values of n € {2'c ke
{1,...,1og,(B)}}. For each combination of B and n, the algorithm runs an instance of the
(infinite horizon) SUCCESSIVEHALVING algorithm, which implicitly sets R = ﬁé(n), thereby

18

growing R as B increases. The main difference between the infinite horizon algorithm and
Algorithm 1 is that the number of unique brackets grows over time instead of staying constant with
each outer loop. We will analyze this version of HYPERBAND in more detail in Section 2.5 and
use it as the launching point for the theoretical analysis of standard (finite horizon) HYPERBAND.

Note that R is also the number of configurations evaluated in the bracket that performs the
most exploration, i.e s = (. In practice one may want n < n,,, to limit overhead associated with
training many configurations on a small budget, i.e., costs associated with initialization, loading
a model, and validation. In this case, only run brackets s > S0 — Uogn(nmax)j. Alternatively,
one can redefine one unit of resource so that R is artificially smaller (i.e., if the desired maximum
iteration is 100k, defining one unit of resource to be 100 iterations will give R = 1, 000, whereas
defining one unit to be 1k iterations will give & = 100). Thus, one unit of resource can be
interpreted as the minimum desired resource and R as the ratio between maximum resource and
minimum resource.

2.3.5 Setting 7

The value of 7 is a knob that can be tuned based on practical user constraints. Larger values of
71 correspond to more aggressive elimination schedules and thus fewer rounds of elimination;
specifically, each round retains 1/7 configurations for a total of [log, ()] +1 rounds of elimination
with n configurations. If one wishes to receive a result faster at the cost of a sub-optimal asymptotic
constant, one can increase 7 to reduce the budget per bracket B = (|log, (R)| + 1) R. We stress
that results are not very sensitive to the choice of 7). If our theoretical bounds are optimized (see
Section 2.5), they suggest choosing n = e ~ 2.718, but in practice we suggest taking 7 to be
equal to 3 or 4.

Tuning 1 will also change the number of brackets and consequently the number of different
tradeoffs that HYPERBAND tries. Usually, the possible range of brackets is fairly constrained,
since the number of brackets is logarithmic in R; namely, there are (|log, (R)| + 1) = Spax + 1
brackets. For our experiments in Section 2.4, we chose 7 to provide 5 brackets for the specified
R; for most problems, 5 is a reasonable number of n versus B/n tradeoffs to explore. However,
for large R, using n = 3 or 4 can give more brackets than desired. The number of brackets can
be controlled in a few ways. First, as mentioned in the previous section, if R is too large and
overhead is an issue, then one may want to control the overhead by limiting the maximum number
of configurations to n.,. If overhead is not a concern and aggressive exploration is desired,
one can (1) increase 7 to reduce the number of brackets while maintaining R as the maximum
number of configurations in the most exploratory bracket, or (2) still use = 3 or 4 but only
try brackets that do a baseline level of exploration, i.e., set n,;, and only try brackets from 0
t0 S = Smax — [l0g, (min)]. For computationally intensive problems that have long training
times and high-dimensional search spaces, we recommend the latter. Intuitively, if the number of
configurations that can be trained to completion (i.e., trained using R resources) in a reasonable
amount of time is on the order of the dimension of the search space and not exponential in the
dimension, then it will be impossible to find a good configuration without using an aggressive
exploratory tradeoff between n and B /n.

19

2.3.6 Overview of Theoretical Results

The theoretical properties of HYPERBAND are best demonstrated through an example. Suppose
there are n configurations, each with a given terminal validation error v; for7 = 1, ..., n. Without
loss of generality, index the configurations by performance so that v; corresponds to the best
performing configuration, v, to the second best, and so on. Now consider the task of identifying
the best configuration. The optimal strategy would allocate to each configuration ¢ the minimum
resource required to distinguish it from v, i.e., enough so that the envelope functions (see
Figure 2.2) bound the intermediate loss to be less than “Z* away from the terminal value. In
contrast, the naive uniform allocation strategy, which allocates B/n to each configuration, has to
allocate to every configuration the maximum resource required to distinguish any arm v; from 1.
Remarkably, the budget required by SUCCESSIVEHALVING is only a small factor of the optimal
because it capitalizes on configurations that are easy to distinguish from v;.

The relative size of the budget required for uniform allocation and SUCCESSIVEHALVING
depends on the envelope functions bounding deviation from terminal losses as well as the dis-
tribution from which v;’s are drawn. The budget required for SUCCESSIVEHALVING is smaller
when the optimal n versus B/n tradeoff discussed in Section 2.3.1 requires fewer resources per
configuration. Hence, if the envelope functions tighten quickly as a function of resource allocated,
or the average distances between terminal losses is large, then SUCCESSIVEHALVING can be
substantially faster than uniform allocation. These intuitions are formalized in Section 2.5 and
associated theorems/corollaries are provided that take into account the envelope functions and the
distribution from which v;’s are drawn.

In practice, we do not have knowledge of either the envelope functions or the distribution
of 1;’s, both of which are integral in characterizing SUCCESSIVEHALVING’s required budget.
With HYPERBAND we address this shortcoming by hedging our aggressiveness. We show in
Section 2.5.3.3 that HYPERBAND, despite having no knowledge of the envelope functions nor
the distribution of v;’s, requires a budget that is only log factors larger than that of SUCCESSIVE-
HALVING.

2.4 Experiments

In this section, we evaluate the empirical behavior of HYPERBAND with three different resource
types: iterations, data set subsamples, and feature samples. For all experiments, we compare
HYPERBAND with three well known Bayesian optimization algorithms—SMAC, TPE, and
Spearmint—using their default settings. We exclude Spearmint from the comparison set when
there are conditional hyperparameters in the search space because it does not natively support them
[Eggensperger et al., 2013]. We also show results for SUCCESSIVEHALVING corresponding to
repeating the most exploratory bracket of HYPERBAND to provide a baseline for aggressive early-
stopping.* Additionally, as standard baselines against which to measure all speedups, we consider
random search and “random 2Xx,” a variant of random search with twice the budget of other
methods. Furthermore, we compare to a variant of SMAC using the early termination criterion

4This is not done for the experiments in Section 2.4.2.1, since the most aggressive bracket varies from dataset to
dataset with the number of training points.

20

proposed by Domhan et al. [2015] in the deep learning experiments described in Section 2.4.1.
Note that we compare HYPERBAND to more sophisticated hybrid methods [Falkner et al., 2018,
Jaderberg et al., 2017, Klein et al., 2017a] in Chapter 3.4.
In the experiments below, we followed these loose guidelines when determining how to
configuration HYPERBAND:
1. The maximum resource R should be reasonable given the problem, but ideally large enough
so that early-stopping is beneficial.

2. 7 should depend on R and be selected to yield ~ 5 brackets with a minimum of 3 brackets.
This is to guarantee that HYPERBAND will use a baseline degree of early-stopping and
prevent too coarse of a grid of n vs B tradeoffs.

2.4.1 Early-Stopping Iterative Algorithms for Deep Learning

For this benchmark, we tuned a convolutional neural network® with the same architecture as
that used in Snoek et al. [2012] and Domhan et al. [2015]. The search spaces used in the
two previous works differ, and we used a search space similar to that of Snoek et al. [2012]
with 6 hyperparameters for stochastic gradient decent and 2 hyperparameters for the response
normalization layers (see Section 2.6 for details). In line with the two previous works, we used a
batch size of 100 for all experiments.

Data sets: We considered three image classification data sets: CIFAR-10 [Krizhevsky, 2009],
rotated MNIST with background images (MRBI) [Larochelle et al., 2007], and Street View House
Numbers (SVHN) [Netzer et al., 2011]. CIFAR-10 and SVHN contain 32 x 32 RGB images
while MRBI contains 28 x 28 grayscale images. Each data set was split into a training, validation,
and test set: (1) CIFAR-10 has 40k, 10k, and 10k instances; (2) MRBI has 10k, 2k, and 50k
instances; and (3) SVHN has close to 600k, 6k, and 26k instances for training, validation, and
test respectively. For all data sets, the only preprocessing performed on the raw images was
demeaning.

HYPERBAND Configuration: For these experiments, one unit of resource corresponds to
100 mini-batch iterations (10k examples with a batch size of 100). For CIFAR-10 and MRBI, R
was set to 300 (or 30k total iterations). For SVHN, R was set to 600 (or 60k total iterations) to
accommodate the larger training set. Given R for these experiments, we set 7 = 4 to yield five
SUCCESSIVEHALVING brackets for HYPERBAND.

Results: Each searcher was given a total budget of 50 R per trial to return the best possible
hyperparameter configuration. For HYPERBAND, the budget is sufficient to run the outer loop
twice (for a total of 10 SUCCESSIVEHALVING brackets). For SMAC, TPE, and random search,
the budget corresponds to training 50 different configurations to completion. Ten independent
trials were performed for each searcher. The experiments took the equivalent of over 1 year of
GPU hours on NVIDIA GRID K520 cards available on Amazon EC2 g2.8xlarge instances. We
set a total budget constraint in terms of iterations instead of compute time to make comparisons
hardware independent.® Comparing progress by iterations instead of time ignores overhead

>The model specification is available at http://code.google.com/p/cuda-convnet /.

®Most trials were run on Amazon EC2 g2.8xlarge instances but a few trials were run on different machines due to
the large computational demand of these experiments.

21

http://code.google.com/p/cuda-convnet/

o
")
o

T \

T
0.32 hyperband (finite) —— spearmint
0.30 hyperband (infinite)—— random 0.29
N —— SMAC —+— random 2x . 0.28
£0.281 —A— SMAC (early) —— bracket s=0 2
w — TPE w027
n 0.26 I}
e —~_ F 0.26
g0.24 =\ &
g = g 0.25
3022 <024
0.20 0.23
0.18 0.22
0 10 20 30 40 50] 10 20 30 40 50
Multiple of R Used Multiple of R Used
(a) CIFAR-10 (b) MRBI
0.10
0.09
§ 0.08
|
+ 0.07
@
o 0.06
(o))
o
0 0.05
<
0.04
0.03
0 10 20 30 40 50
Multiple of R Used
(c) SVHN

Figure 2.3: Average test error across 10 trials. Label “SMAC (early)” corresponds to SMAC
with the early-stopping criterion proposed in Domhan et al. [2015] and label “bracket s = 0”
corresponds to repeating the most exploratory bracket of HYPERBAND.

22

costs, e.g. the cost of configuration selection for Bayesian methods and model initialization
and validation costs for HYPERBAND. While overhead is hardware dependent, the overhead for
HYPERBAND is below 5% on EC2 g2.8xlarge machines, so comparing progress by time passed
would not change results significantly.

For CIFAR-10, the results in Figure 2.3(a) show that HYPERBAND is over an order-of-
magnitude faster than its competitiors. For MRBI, HYPERBAND is over an order-of-magnitude
faster than standard configuration selection approaches and 5x faster than SMAC (early). For
SVHN, while HYPERBAND finds a good configuration faster, Bayesian optimization methods are
competitive and SMAC (early) outperforms HYPERBAND. The performance of SMAC (early)
demonstrates there is merit to combining early-stopping and adaptive configuration selection.

Across the three data sets, HYPERBAND and SMAC (early) are the only two methods that
consistently outperform random 2x. On these data sets, HYPERBAND is over 20 x faster than
random search while SMAC (early) is < 7x faster than random search within the evaluation
window. In fact, the first result returned by HYPERBAND after using a budget of SR is often
competitive with results returned by other searchers after using 5S02. Additionally, HYPERBAND is
less variable than other searchers across trials, which is highly desirable in practice (see Section 2.6
for plots with error bars).

As discussed in Section 2.3.5, for computationally expensive problems in high-dimensional
search spaces, it may make sense to just repeat the most exploratory brackets. Similarly, if
meta-data is available about a problem or it is known that the quality of a configuration is evident
after allocating a small amount of resource, then one should just repeat the most exploratory
bracket. Indeed, for these experiments, bracket s = 0 vastly outperforms all other methods on
CIFAR-10 and MRBI and is nearly tied with SMAC (early) for first on SVHN.

While we set R for these experiments to facilitate comparison to Bayesian methods and
random search, it is also reasonable to use infinite horizon HYPERBAND to grow the maximum
resource until a desired level of performance is reached. We evaluate infinite horizon HYPERBAND
on CIFAR-10 using 7 = 4 and a starting budget of B = 2R. Figure 2.3(a) shows that infinite
horizon HYPERBAND is competitive with other methods but does not perform as well as finite
horizon HYPERBAND within the S50 budget limit. The infinite horizon algorithm underperforms
initially because it has to tune the maximum resource 12 as well and starts with a less aggressive
early-stopping rate. This demonstrates that in scenarios where a max resource is known, it is better
to use the finite horizon algorithm. Hence, we focus on the finite horizon version of HYPERBAND
for the remainder of our empirical studies.

Finally, CIFAR-10 is a very popular data set and state-of-the-art models achieve much lower
error rates than what is shown in Figure 2.3. The difference in performance is mainly attributable
to higher model complexities and data manipulation (i.e. using reflection or random cropping to
artificially increase the data set size). If we limit the comparison to published results that use the
same architecture and exclude data manipulation, the best human expert result for the data set is
18% error and the best hyperparameter optimized results are 15.0% for Snoek et al. [2012]” and
17.2% for Domhan et al. [2015]. These results exceed ours on CIFAR-10 because they train on
25% more data, by including the validation set, and also train for more epochs. When we train the

"We were unable to reproduce this result even after receiving the optimal hyperparameters from the authors
through a personal communication.

23

—— SMAC —— random
TPE —+— random 2x
4 4 hyperband

\

N —~————— N _——
~

Average Rank
w

N
Average Rank

N
N

e

0 500 1000 1500 2000 2500 3000 3500 10

500 1000 1500 2000 2500 3000 3500

Time (s) Time (s)
(a) Validation Error on 117 Datasets (b) Test Error on 117 Datasets
5
4

Average Rank
w

N

1
0 500 1000 1500 2000 2500 3000 3500
Time (s)

(c) Test Error on 21 Datasets

Figure 2.4: Average rank across all data sets for each searcher. For each data set, the searchers are
ranked according to the average validation/test error across 20 trials.

best model found by HYPERBAND on the combined training and validation data for 300 epochs,
the model achieved a test error of 17.0%.

2.4.2 Data Set Subsampling

We studied two different hyperparameter search optimization problems for which HYPERBAND
uses data set subsamples as the resource. The first adopts an extensive framework presented in
Feurer et al. [2015a] that attempts to automate preprocessing and model selection. Due to certain
limitations of the framework that fundamentally limited the impact of data set downsampling, we
conducted a second experiment using a kernel classification task.

24

2.4.2.1 117 Data Sets

We used the framework introduced by Feurer et al. [2015a], which explored a structured hyper-
parameter search space comprised of 15 classifiers, 14 feature preprocessing methods, and 4
data preprocessing methods for a total of 110 hyperparameters. We excluded the meta-learning
component introduced in Feurer et al. [2015a] used to warmstart Bayesian methods with promis-
ing configurations, in order to perform a fair comparison with random search and HYPERBAND.
Similar to Feurer et al. [2015a], we imposed a 3GB memory limit, a 6-minute timeout for each
hyperparameter configuration and a one-hour time window to evaluate each searcher on each data
set. Twenty trials of each searcher were performed per data set and all trials in aggregate took
over a year of CPU time on nl-standard-1 instances from Google Cloud Compute. Additional
details about our experimental framework are available in Section 2.6.

Data sets: Feurer et al. [2015a] used 140 binary and multiclass classification data sets from
OpenML, but 23 of them are incompatible with the latest version of the OpenML plugin [Feurer,
2015], so we worked with the remaining 117 data sets. Due to the limitations of the experimental
setup (discussed in Section 2.6), we also separately considered 21 of these data sets, which
demonstrated at least modest (though still sublinear) training speedups due to subsampling.
Specifically, each of these 21 data sets showed on average at least a 3x speedup due to 8x
downsampling on 100 randomly selected hyperparameter configurations.

HYPERBAND Configuration: Due to the wide range of dataset sizes, with some datasets
having fewer than 10k training points, we ran HYPERBAND with 7 = 3 to allow for at least
3 brackets without being overly aggressive in downsampling on small datasets. R was set to
the full training set size for each data set and the maximum number of configurations for any
bracket of SUCCESSIVEHALVING was limited to n,,,, = max{9, R/1000}. This ensured that
the most exploratory bracket of HYPERBAND will downsample at least twice. As mentioned
in Section 2.3.5, when n,,,, is specified, the only difference when running the algorithm is
Smax = |10g, (max)] instead of |log, (R)].

Results: The results on all 117 data sets in

Figure 2.4(a,b) show that HYPERBAND outperforms random search in test error rank despite
performing worse in validation error rank. Bayesian methods outperform HYPERBAND and
random search in test error performance but also exhibit signs of overfitting to the validation set,
as they outperform HYPERBAND by a larger margin on the validation error rank. Notably, random
2x outperforms all other methods. However, for the subset of 21 data sets, Figure 2.4(c) shows
that HYPERBAND outperforms all other searchers on test error rank, including random 2 x by a
very small margin. While these results are more promising, the effectiveness of HYPERBAND was
restricted in this experimental framework; for smaller data sets, the startup overhead was high
relative to total training time, while for larger data sets, only a handful of configurations could be
trained within the hour window.

We note that while average rank plots like those in Figure 2.4 are an effective way to aggregate
information across many searchers and data sets, they provide no indication about the magnitude
of the differences between the performance of the methods. Figure 2.5, which charts the difference
between the test error for each searcher and that of random search across all 117 datasets, highlights
the small difference in the magnitude of the test errors across searchers.

These results are not surprising; as mentioned in Section 2.2.1, vanilla Bayesian optimization

25

2.00%

1.50%¢f
1.00%¢f

0.50%|

0.00%}E

-0.50%—

1.00%] = =

Difference in Test Error vs Random

-1.50%}

_2. 0, s
00s/r9r1ac hyperopt hyperband

Searcher

Figure 2.5: Each line plots, for a single data set, the difference in test error versus random search
for each search, where lower is better. Nearly all the lines fall within the -0.5% and 0.5% band
and, with the exception of a few outliers, the lines are mostly flat.

methods perform similarly to random search in high-dimensional search spaces. Feurer et al.
[2015a] showed that using meta-learning to warmstart Bayesian optimization methods improved
performance in this high-dimensional setting. Using meta-learning to identify a promising
distribution from which to sample configurations as input into HYPERBAND is a direction for
future work.

2.4.2.2 Kernel Regularized Least Squares Classification

For this benchmark, we tuned the hyperparameters of a kernel-based classifier on CIFAR-10.
We used the multi-class regularized least squares classification model, which is known to have
comparable performance to SVMs [Agarwal et al., 2014, Rifkin and Klautau, 2004] but can
be trained significantly faster.® The hyperparameters considered in the search space include
preprocessing method, regularization, kernel type, kernel length scale, and other kernel specific
hyperparameters (see Section 2.6 for more details). For HYPERBAND, we set [7 = 400, with
each unit of resource representing 100 datapoints, and n = 4 to yield a total of 5 brackets.
Each hyperparameter optimization algorithm was run for ten trials on Amazon EC2 m4.2xlarge
instances; for a given trial, HYPERBAND was allowed to run for two outer loops, bracket s = 0
was repeated 10 times, and all other searchers were run for 12 hours.

Figure 2.6 shows that HYPERBAND returned a good configuration after completing the first
SUCCESSIVEHALVING bracket in approximately 20 minutes; other searchers failed to reach
this error rate on average even after the entire 12 hours. Notably, HYPERBAND was able to
evaluate over 250 configurations in this first bracket of SUCCESSIVEHALVING, while competitors
were able to evaluate only three configurations in the same amount of time. Consequently,
HYPERBAND is over 30X faster than Bayesian optimization methods and 70 faster than random

8The default SVM method in Scikit-learn is single core and takes hours to train on CIFAR-10, whereas a block
coordinate descent least squares solver takes less than 10 minutes on an 8 core machine.

26

0.70

hyperband (finite)
SMAC

0.65
— TPE
0.60 —— random
—— random 2x
0.55 —— bracket s=0

Test Error

o
wv
o

0.451 7

0.40
0

100 200 300 400 500 600 700
Minutes

Figure 2.6: Average test error of the

best kernel regularized least square

classification model found by each

searcher on CIFAR-10. The color

coded dashed lines indicate when the

hyperband (finite)
SMAC

TPE

spearmint
random

random 2x
bracket s=0

Test Error

100 200 300 400 500 600 700
Minutes

Figure 2.7: Average test error of the

best random features model found by

each searcher on CIFAR-10. The test

error for HYPERBAND and bracket s =

0 are calculated in every evaluation in-

last trial of a given searcher finished. stead of at the end of a bracket.

search. Bracket s = 0 sightly outperforms HYPERBAND but the terminal performance for the two
algorithms are the same. Random 2 X is competitive with SMAC and TPE.

2.4.3 Feature Subsampling to Speed Up Approximate Kernel Classifica-
tion

Next, we examine the performance of HYPERBAND when using features as a resource on a
random feature kernel approximations task. Features were randomly generated using the method
described in Rahimi and Recht [2007] to approximate the RBF kernel, and these random features
were then used as inputs to a ridge regression classifier. The hyperparameter search space included
the preprocessing method, kernel length scale, and L, penalty. While it may seem natural to use
infinite horizon HYPERBAND, since the fidelity of the approximation improves with more random
features, in practice, the amount of available machine memory imposes a natural upper bound on
the number of features. Thus, we used finite horizion HYPERBAND with a maximum resource of
100k random features, which comfortably fit into a machine with 60GB of memory. Additionally,
we set one unit of resource to be 100 features, so & = 1000. Again, we set n = 4 to yield 5
brackets of SUCCESSIVEHALVING. We ran 10 trials of each searcher, with each trial lasting 12
hours on a nl-standard-16 machine from Google Cloud Compute. The results in Figure 2.7 show
that HYPERBAND is around 6 x faster than Bayesian methods and random search. HYPERBAND
performs similarly to bracket s = 0. Random 2 x outperforms Bayesian optimization algorithms.

2.4.4 Experimental Discussion

While our experimental results show HYPERBAND is a promising algorithm for hyperparameter
optimization, a few questions naturally arise:
1. What impacts the speedups provided by HYPERBAND?

27

2. Why does SUCCESSIVEHALVING seem to outperform HYPERBAND?

3. What about hyperparameters that should depend on the resource?
We next address each of these questions in turn.

2.44.1 Factors Impacting the Performance of HYPERBAND

For a given R, the most exploratory SUCCESSIVEHALVING round performed by HYPERBAND
evaluates R configurations using a budget of (|log,(R)] + 1) R, which gives an upper bound
on the potential speedup over random search. If training time scales linearly with the resource,
the maximum speedup offered by HYPERBAND compared to random search is m. For
the values of 77 and R used in our experiments, the maximum speedup over random search is
approximately 50x given linear training time. However, we observe a range of speedups from 6 x
to 70x faster than random search. The differences in realized speedup can be explained by three
factors:

1. How training time scales with the given resource. In cases where training time is superlinear
as a function of the resource, HYPERBAND can offer higher speedups. For instance, if
training scales like a polynomial of degree p > 1, the maximum speedup for HYPERBAND
over random search is approximately 7;;11 R. In the kernel least square classifier experiment

discussed in Section 2.4.2.2, the training time scaled quadratically as a function of the

resource, which explains why the realized speedup of 70x is higher than the maximum

expected speedup given linear scaling.

2. Overhead costs associated with training. Total evaluation time also depends on fixed
overhead costs associated with evaluating each hyperparameter configuration, e.g., initial-
izing a model, resuming previously trained models, and calculating validation error. For
example, in the downsampling experiments on 117 data sets presented in Section 2.4.2.1,
HYPERBAND did not provide significant speedup because many data sets could be trained
in a matter of a few seconds and the initialization cost was high relative to training time.

3. The difficulty of finding a good configuration. Hyperparameter optimization problems
can vary in difficulty. For instance, an ‘easy’ problem is one where a randomly sampled
configuration is likely to result in a high-quality model, and thus we only need to evaluate a
small number of configurations to find a good setting. In contrast, a ‘hard’ problem is one
where an arbitrary configuration is likely to be bad, in which case many configurations must
be considered. HYPERBAND leverages downsampling to boost the number of configurations
that are evaluated, and thus is better suited for ‘hard’ problems where more evaluations
are actually necessary to find a good setting. Generally, the difficulty of a problem scales
with the dimensionality of the search space. For low-dimensional problems, the number
of configurations evaluated by random search and Bayesian methods is exponential in
the number of dimensions so good coverage can be achieved. For instance, the low-
dimensional (d = 3) search space in our feature subsampling experiment in Section 2.4.3
helps explain why HYPERBAND is only 6 faster than random search. In contrast, for
the neural network experiments in Section 2.4.1, we hypothesize that faster speedups are
observed for HYPERBAND because the dimension of the search space is higher.

28

2.4.4.2 Comparison to SUCCESSIVEHALVING

With the exception of the 117 Datasets experiment (Section 2.4.2.1), the most aggressive bracket
of SUCCESSIVEHALVING outperformed HYPERBAND in all of our experiments. In hindsight, we
should have just run bracket s = 0, since aggressive early-stopping provides massive speedups on
many of these benchmarking tasks. However, as previously mentioned, it was unknown a priori
that bracket s = 0 would perform the best and that is why we have to cycle through all possible
brackets with HYPERBAND. Another question is what happens when one increases s even further,
i.e. instead of 4 rounds of elimination, why not 5 or even more with the same maximum resource
R? In our case, s = 0 was the most aggressive bracket we could run given the minimum resource
per configuration limits imposed for the previous experiments. However, for larger data sets, it
is possible to extend the range of possible values for s, in which case, HYPERBAND may either
provide even faster speedups if more aggressive early-stopping helps or be slower by a small
factor if the most aggressive brackets are essentially throwaways.

We believe prior knowledge about a task can be particularly useful for limiting the range of
brackets explored by HYPERBAND. In our experience, aggressive early-stopping is generally safe
for neural network tasks and even more aggressive early-stopping may be reasonable for larger
data sets and longer training horizons. However, when pushing the degree of early-stopping by
increasing s, one has to consider the additional overhead cost associated with examining more
models. Hence, one way to leverage meta-learning would be to use learning curve convergence
rate, difficulty of different search spaces, and overhead costs of related tasks to determine the
brackets considered by HYPERBAND.

2.4.4.3 Resource Dependent Hyperparameters

In certain cases, the setting for a given hyperparameter should depend on the allocated resource.
For example, the maximum tree depth regularization hyperparameter for random forests should
be higher with more data and more features. However, the optimal tradeoff between maximum
tree depth and the resource is unknown and can be data set specific. In these situations, the rate
of convergence to the true loss is usually slow because the performance on a smaller resource is
not indicative of that on a larger resource. Hence, these problems are particularly difficult for
HYPERBAND, since the benefit of early-stopping can be muted. Again, while HYPERBAND will
only be a small factor slower than that of SUCCESSIVEHALVING with the optimal early-stopping
rate, we recommend removing the dependence of the hyperparameter on the resource if possible.
For the random forest example, an alternative regularization hyperparameter is minimum samples
per leaf, which is less dependent on the training set size. Additionally, the dependence can
oftentimes be removed with simple normalization. For example, the regularization term for our
kernel least squares experiments were normalized by the training set size to maintain a constant
tradeoff between the mean-squared error and the regularization term.

2.5 Theory

In this section, we introduce the pure-exploration non-stochastic infinite-armed bandit (NIAB)
problem, a very general setting which encompasses our hyperparameter optimization problem

29

of interest. As we will show, HYPERBAND is in fact applicable to problems far beyond just
hyperparameter optimization. We begin by formalizing the hyperparameter optimization problem
and then reducing it to the pure-exploration NIAB problem. We subsequently present a detailed
analysis of HYPERBAND in both the infinite and finite horizon settings.

2.5.1 Hyperparameter Optimization Problem Statement

Let X denote the space of valid hyperparameter configurations, which could include continuous,
discrete, or categorical variables that can be constrained with respect to each other in arbitrary
ways (i.e. X need not be limited to a subset of [0,1]%). For k = 1,2,... let {,: X — [0,1]
be a sequence of loss functions defined over X'. For any hyperparameter configuration z € X,
(i (x) represents the validation error of the model trained using = with & units of resources (e.g.
iterations). In addition, for some R € N U {oo}, define ¢, = limy_, g {; and v, = inf,cx (.(x).
Note that ¢, (-) for all & € N, ¢,(-), and v, are all unknown to the algorithm a priori. In particular,
it is uncertain how quickly ¢;(z) varies as a function of z for any fixed &, and how quickly
lx(z) — L.(z) as a function of k for any fixed x € X.

We assume hyperparameter configurations are sampled randomly from a known probability
distribution p(z): X — [0, 0o), with support on X'. In our experiments, p(z) is simply the uniform
distribution, but the algorithm can be used with any sampling method. If X € & is a random
sample from this probability distribution, then /,(.X) is a random variable whose distribution is
unknown since /,(-) is unknown. Additionally, since it is unknown how ¢ (x) varies as a function
of z or k, one cannot necessarily infer anything about ¢, (z) given knowledge of /;(y) for any
j € N,y € X. As a consequence, we reduce the hyperparmeter optimization problem down to
a much simpler problem that ignores all underlying structure of the hyperparameters: we only
interact with some = € X’ through its loss sequence ¢;(z) for k = 1,2, With this reduction,
the particular value of z € X does nothing more than index or uniquely identify the loss sequence.

Without knowledge of how fast /,(-) — /¢.(-) or how /,(X) is distributed, the goal of
HYPERBAND is to identify a hyperparameter configuration x € X” that minimizes ¢, (z) — v, by
drawing as many random configurations as desired while using as few total resources as possible.

2.5.2 The Pure-Exploration Non-stochastic Infinite-Armed Bandit Prob-
lem

We now formally define the bandit problem of interest, and relate it to the problem of hyperpa-
rameter optimization. Each “arm” in the NIAB game is associated with a sequence that is drawn
randomly from a distribution over sequences. If we “pull” the ith drawn arm exactly £ times,
we observe a loss ¢; ;. At each time, the player can either draw a new arm (sequence) or pull a
previously drawn arm an additional time. There is no limit on the number of arms that can be
drawn. We assume the arms are identifiable only by their index ¢ (i.e. we have no side-knowledge
or feature representation of an arm), and we also make the following two additional assumptions:

Assumption 1. For each i € N the limit limy,_,, {; j, exists and is equal to v;.0

9We can always define /; ;. so that convergence is guaranteed, i.e. taking the infimum of a sequence.

30

Assumption 2. Each v; is a bounded i.i.d. random variable with cumulative distribution func-
tion F.

The objective of the NIAB problem is to identify an arm 7 with small v; using as few total
pulls as possible. We are interested in characterizing 1; as a function of the total number of
pulls from all the arms. Clearly, the hyperparameter optimization problem described above is an
instance of the NIAB problem. In this case, arm 7 correspondes to a configuration z; € X, with
l; 1, = U (z;); Assumption 1 is equivalent to requiring that v; = ¢, (x;) exists; and Assumption 2
follows from the fact that the arms are drawn i.i.d. from X according to distribution function p(zx).
F is simply the cumulative distribution function of /,(X), where X is a random variable drawn
from the distribution p(z) over X'. Note that since the arm draws are independent, the v;’s are also
independent. Again, this is not to say that the validation losses do not depend on the settings of the
hyperparameters; the validation loss could well be correlated with certain hyperparameters, but
this is not used in the algorithm and no assumptions are made regarding the correlation structure.

In order to analyze the behavior of HYPERBAND in the NIAB setting, we must define a few
additional objects. Let v, = inf{m : P (v < m) > 0} > —o0, since the domain of the distribution
F’ is bounded. Hence, the cumulative distribution function F satisfies

Py, —v. <€)= F(vi +¢) 2.2)

and let F'~1(y) = inf,{z : F(x) < y}. Define v: N — R as the pointwise smallest, monotoni-
cally decreasing function satisfying

sup [€;j — s <7(5), VjeN (2.3)

The function y is guaranteed to exist by Assumption 1 and bounds the deviation from the limit
value as the sequence of iterates j increases. For hyperparameter optimization, this follows from
the fact that ¢;, uniformly converges to ¢, for all x € X'. In addition, 7 can be interpretted as the
deviation of the validation error of a configuration trained on a subset of resources versus the
maximum number of allocatable resources. Finally, define R as the first index such that y(R) = 0
if it exists, otherwise set R = oo. Fory > 0 let v~ !(y) = min{j € N: v(j) < y}, using the
convention that v~*(0) := R which we recall can be infinite.

As previously discussed, there are many real-world scenarios in which R is finite and known.
For instance, if increasing subsets of the full data set is used as a resource, then the maximum
number of resources cannot exceed the full data set size, and thus (k) = 0 for all £ > R where
R is the (known) full size of the data set. In other cases such as iterative training problems, one
might not want to or know how to bound R. We separate these two settings into the finite horizon
setting where R is finite and known, and the infinite horizon setting where no bound on R is
known and it is assumed to be infinite. While our empirical results suggest that the finite horizon
may be more practically relevant for the problem of hyperparameter optimization, the infinite
horizon case has natural connections to the literature, and we begin by analyzing this setting.

2.5.3 Infinite Horizon Setting (R = oo)

Consider the HYPERBAND algorithm of Figure 2.8. The algorithm uses SUCCESSIVEHALVING
(Figure 2.8) as a subroutine that takes a finite set of arms as input and outputs an estimate of the

31

SUCCESSIVEHALVING (Infinite horizon)
Input: Budget B, n arms where /; ;. denotes the kth loss from the ith arm

Initialize: Sp = [n].
For k =0,1,...,[logy(n)] —1

Pull each arm in Sy, for rj, = | 0)ﬂ times.

B
Sk [[og, (n
Keep the best ||Sk|/2| arms in terms of the r;th observed loss as Sg1.

Output: i, g, wherei= Sneg,(n)]
b Tlogy (7T

HYPERBAND (Infinite horizon)
Input: None
Fork=1,2,...
For s € Ns.t. k — s > logy(s)
Bys =2k ng s =2°
s U QIHJ <= SUCCESSIVEHALVING (B}, 5,0 5)

k,s> P

Figure 2.8: (Top) The SUCCESSIVEHALVING algorithm proposed and analyzed in Jamieson and
Talwalkar [2015] for the non-stochastic setting. Note this algorithm was originally proposed for
the stochastic setting in Karnin et al. [2013]. (Bottom) The HYPERBAND algorithm for the infinite
horizon setting. HYPERBAND calls SUCCESSIVEHALVING as a subroutine.

best performing arm in the set. We first analyze SUCCESSIVEHALVING (SHA) for a given set
of limits v; and then consider the performance of SHA when v; are drawn randomly according
to /. We then analyze the HYPERBAND algorithm. We note that the algorithm of Figure 2.8
was originally proposed by Karnin et al. [2013] for the stochastic setting. However, Jamieson
and Talwalkar [2015] analyzed it in the non-stochastic setting and also found it to work well in
practice. Extending the result of Jamieson and Talwalkar [2015] we have the following theorem:
Theorem 1. Fix n arms. Let v; = lim {; ; and assume v, < --- < v,,. For any € > 0 let

T—00

zsma = 2[logy(n)] max i (147" (max {g, 52 }))

< 2[log, (n)] (n + > v (max{§,55}))

i=1,...n

If the SUCCESSIVEHALVING algorithm of Figure 2.8 is run with any budget B > zgy 4 then an
arm 1 is returned that satisfies v; — v, < €/2. Moreover, B/2 | <e
" Tiog, (1
The next technical lemma will be used to characterize Zi:l,...,n 1 (max { < u}), a
problem dependent term that captures the effectiveness of early-stopping when the sequences are
drawn from a probability distribution.

Lemma 2. Fix 6 € (0,1). Let p, = %. For any ¢ > 4(F~(p,) — v.) define

o0

H(F,~,n,0,¢€) := 2n/ Y (EE)AE () + (3 log(2/0) + 2nF (v + €/4)) v (55)

vste/4

32

and H(F,~v,n,0) := H(F,v,n,0,4(F ' (p,) — v.)) so that

1
H(F,~,n,0) = Qn/ ’y’l(—Ffl(i)_V*)dt + 13—010g(2/<5)’f1 (—Fﬁl(i’t)_”*))

Pn

For n arms with limits v, < --- < v, drawn from F', then
< Flp,) and Y 47t (max{$, 451 }) <H(F,v,n,06,¢)
i=1

for any ¢ > 4(F~Y(p,) — v.) with probability at least 1 — 4.

Setting ¢ = 4(F~!(p,) — v,) in Theorem 1 and using the result of Lemma 2 that v, < vy <
Vi + (F~*(pn) — v«), we immediately obtain the following corollary.
Corollary 3. Fix 6 € (0,1) and € > 4(F*1(%) — v,). Let B = 4[logy(n)|H(F,~,n,d,€)
where H(F', v, n, 9, €) is defined in Lemma 2. If the SUCCESSIVEHALVING algorithm of Figure 2.8
is run with the specified B and n arm configurations drawn randomly according to F, then an arm
i € [n] is returned such that with probability at least 1 — 6 we have v; — v, < (F‘l(%) -
Vi) + €/2. In particular, if B = 4[log,(n)|H(F,~,n,8) and € = 4(F‘1(M) — v,) then
v, — Uy < 3(F*1(M) - l/*) with probability at least 1 — 6.

n

Note that for any fixed n € N we have for any A > 0
P(min v — v, > A) = (1 — F(v, + A))" m e "F0t8)

i=1,...,
which implies Elmin;_; _,, v; — v =~ F*I(%) — v,. That is, n needs to be sufficiently large so
that it is probable that a good limit is sampled. On the other hand, for any fixed n, Corollary 3
suggests that the total resource budget B needs to be large enough in order to overcome the rates
of convergence of the sequences described by . Next, we relate SHA to a naive approach that
uniformly allocates resources to a fixed set of n arms.

2.5.3.1 Non-Adaptive Uniform Allocation

The non-adaptive uniform allocation strategy takes as inputs a budget B and n arms, allocates
B/n to each of the arms, and picks the arm with the lowest loss. The following results allow us to
compare with SUCCESSIVEHALVING.

Proposition 4. Suppose we draw n random configurations from F, train each with j = min{B/n, R}
iterations, and let ©* = arg min,—; ., Ej(Xi). Without loss of generality assume v1 < ... < v,. If

.....

B> ny Tt (J(F ()) 2.4)

n

then with probability at least 1 — § we have v; — v, < 2 (F~! M) — V*>. In contrast, there
exists a sequence of functions ; that satisfy F' and vy such that if

_ — log(c/é
B <ny ! (2P () -)

then with probability at least 0, we have v; — v, > 2(F*1(%) — v,), where c is a constant
that depends on the regularity of F'.

33

For any fixed n and sufficiently large B, Corollary 3 shows that SUCCESSIVEHALVING
outputs an ¢ € [n] that satisfies v; — v, < Ffl(%) — v, with probability at least 1 — . This
guarantee is similar to the result in Proposition 4. However, SUCCESSIVEHALVING achieves its
guarantee as long as'®

1
B ~log,(n) llog(l/é)v‘1 (F‘l(M) - V*) + n/ YHFTHE) —w)dt| , (2.5)

og(1/6)

and this sample complexity may be substantially smaller than the budget required by uniform
allocation shown in Eq. (2.4) of Proposition 4. Essentially, the first term in Eq. (2.5) represents
the budget allocated to the constant number of arms with limits v; ~ F‘l(w) while the
second term describes the number of times the sub-optimal arms are sampled before discarded.
The next section uses a particular parameterization for F' and v to help better illustrate the
difference between the sample complexity of uniform allocation (Equation 2.4) versus that of
SUCCESSIVEHALVING (Equation 2.5).

2.5.3.2 A Parameterization of F' and ~ for Interpretability

To gain some intuition and relate the results back to the existing literature, we make explicit
parametric assumptions on [’ and -y. We stress that all of our results hold for general /' and «y as
previously stated, and this parameterization is simply a tool to provide intuition. First assume that
there exists a constant « > 0 such that

V() = (1> . : (2.6)

J

Note that a large value of o implies that the convergence of /; ;, — v; is very slow.
We will consider two possible parameterizations of F'. First, assume there exists positive
constants 3 such that
(x—wv)P ifx >,
F(zx) ~ . (2.7)
0 ifz <,

Here, a large value of 3 implies that it is very rare to draw a limit close to the optimal value v,.
The same model was studied in Carpentier and Valko [2015]. Fix some A > 0. As discussed
in the preceding section, if n = ;O(iilli)) ~ A~?log(1/5) arms are drawn from F then with
probability at least 1 — § we have min,—; _, v; < v, + A. Predictably, both uniform allocation

1/8
and SUCCESSIVEHALVING output a v; that satisfies v; — v, < <M> with probability at

least 1 — & provided their measurement budgets are large enough. Thus, if n ~ A~?log(1/§) and
the measurement budgets of the uniform allocation (Equation 2.4) and SUCCESSIVEHALVING

10We say f ~ g if there exist constants ¢, ¢/ such that cg(z) < f(z) < c'g(x).

34

(Equation 2.5) satisfy

Uniform allocation B ~ A~ 1og(1/4)

A8 _ Ao
1o/
~ log(A ™ log(1/6)) log(A~) A~ max{Bed 1901 /6)

SUCCESSIVEHALVING B ~ log,(A " log(1/6)) |A™*log(1/8) + log(1/0)

then both also satisfy v; — v, < A with probability at least 1 — §.!'! SUCCESSIVEHALVING’s
budget scales like A~ ™2*{®8} which can be significantly smaller than the uniform allocation’s
budget of A~(t6) However, because o and B are unknown in practice, neither method knows
how to choose the optimal n or B to achieve this A accuracy. In Section 2.5.3.3, we show how
HYPERBAND addresses this issue.

The second parameterization of F' is the following discrete distribution:

K
1 .
F(z) = = § 1{z < p;} with A=y — (2.8)

Jj=1

for some set of unique scalars 1y < py < -+ < pug. Note that by letting X' — oo this discrete
CDF can approximate any piecewise-continuous CDF to arbitrary accuracy. In particular, this
model can have multiple means take the same value so that & mass is on p; and 1 — o mass is
on [io > i1, capturing the stochastic infinite-armed bandit model of Jamieson et al. [2016]. In
this setting, both uniform allocation and SUCCESSIVEHALVING output a v; that is within the top
w fraction of the K arms with probability at least 1 — ¢ if their budgets are sufficiently large.

Thus, let ¢ > 0 be such that n ~ ¢! log(1/§). Then, if the measurement budgets of the uniform
allocation (Equation 2.4) and SUCCESSIVEHALVING (Equation 2.5) satisfy

K max A;* ifg=1/K
Uniform allocation B ~ log(1/4) J=2,..K

q_lAﬁﬁq ifg>1/K
(K

AT+ A ifg=1/K
j=2

SUCCESSIVEHALVING B =~ log(q " log(1/6))log(1/6) 4 i
A+ > A ifg>1/K,

L j=laK]

an arm that is in the best ¢-fraction of arms is returned, i.e. i/ K ~ g and v; — v, < Amax{2,¢K}]»
with probability at least 1 — d. This shows that the average resource per arm for uniform allocation
is that required to distinguish the top g-fraction from the best, while that for SUCCESSIVEHALV-
ING is a small multiple of the average resource required to distinguish an arm from the best;
the difference between the max and the average can be very large in practice. We remark that
the value of € in Corollary 3 is carefully chosen to make the SUCCESSIVEHALVING budget and
guarantee work out. Also note that one would never take ¢ < 1/K because ¢ = 1/K is sufficient
to return the best arm.

"'"These quantities are intermediate results in the proofs of the theorems of Section 2.5.3.3.

35

2.5.3.3 HYPERBAND Guarantees

The HYPERBAND algorithm of Figure 2.8 addresses the tradeoff between the number of arms
n versus the average number of times each one is pulled B/n by performing a two-dimensional
version of the so-called “doubling trick.” For each fixed B, we non-adaptively search a predeter-
mined grid of values of n spaced geometrically apart so that the incurred loss of identifying the
“best” setting takes a budget no more than log(B) times the budget necessary if the best setting
of n were known ahead of time. Then, we successively double B so that the cumulative number
of measurements needed to arrive at the necessary B is no more than 25. The idea is that even
though we do not know the optimal setting for I, n to achieve some desired error rate, the hope is
that by trying different values in a particular order, we will not waste too much effort.

Fix (5 € (0,1). For all (k, s) pairs defined in the HYPERBAND algorithm of Figure 2.8, let

Ok,s = 505. For all (k, s) define

Ers = {Bp.s > 4[logy(np.s) TH(F, 7, Ns, Ops) } = {27 > 4sH(F, v, 2°,2k*/6)}
Then by Corollary 3 we have

oo k 00
(U Ui, — > 3(F1(1B20)) mé’k,s> <D =) % <.

k=1 s=1 k=1 s=1 k=1

For sufficiently large k£ we will have U’;:l Ers # 0, so assume B = 2F is sufficiently large.
Let 25 be the empirically best-performing arm output from SUCCESSIVEHALVING of round
kg = |log,(B)] of HYPERBAND of Figure 2.8 and let sz < kp be the largest value such that
Eky s holds. Then
log(4|log,(B)]3/6 o _

Vi — Vs < ?)(Fil(g(L 58215)J /)) B I/*) _i_,y(LQLElOg;(Z;J)JlJ).
Also note that on stage & at most Zle iBip <k Zle B;1 < 2kBy s = 2logy (B s) By s total
samples have been taken. While this guarantee holds for general F' -y, the value of sp, and
consequently the resulting bound, is difficult to interpret. The following corollary considers the
[, a parameterizations of F' and -y, respectively, of Section 2.5.3.2 for better interpretation.
Theorem 5. Assume that Assumptions 1 and 2 of Section 2.5.2 hold and that the sampled loss
sequences obey the parametric assumptions of Equations 2.6 and 2.7. Fix § € (0,1). For any
T € N, let i1 be the empirically best-performing arm output from SUCCESSIVEHALVING from
the last round k of HYPERBAND of Figure 2.8 after exhausting a total budget of T from all rounds,
then

— 37— 1/ max{a,B}
v — v < (log(T) logélslog(T)/é)>

for some constant ¢ = exp(O(max{a, 3})) where log(z) = log(z) loglog(z).
By a straightforward modification of the proof, one can show that if uniform allocation is
used in place of SUCCESSIVEHALVING in HYPERBAND, the uniform allocation version achieves

T 1/(a+B)
log(T)log;log(T)/ 9) . We apply the above theorem to the stochastic infinite-

Vip — Vs < C

armed bandit setting in the following corollary.

36

Corollary 6. [Stochastic Infinite-armed Bandits] For any step k, s in the infinite horizon HYPER-
BAND algorithm with ny, ; arms drawn, consider the setting where the jth pull of the ith arm
results in a stochastic loss Y;j € [0,1] such that E[Y; ;| = v; and P(v; — v, < €) = ¢ 'e". If
0;(i) = 15 Y; then with probability at least 1 — §/2 we have Yk > 1,0 < s < k,1 <i <

7 s=1
nk,s;]- S] S Bk;

1/2
|l/i . €Z7J| S \/10g(Bk:T;l;,s/5k,s) S \/].Og(%) (%) .

Consequently, if after B total pulls we define U as the mean of the empirically best arm output
from the last fully completed round k, then with probability at least 1 — ¢

Up — v, < polylog(B/d) max{B~V/2 B~1/5}

The result of this corollary matches the anytime result of Section 4.3 of Carpentier and

Valko [2015] whose algorithm was built specifically for the case of stochastic arms and the 3
parameterization of F' defined in Eq. (2.7). Notably, this result also matches the lower bounds
shown in that work up to poly-logarithmic factors, revealing that HYPERBAND is nearly tight for
this important special case. However, we note that this earlier work has a more careful analysis
for the fixed budget setting.
Theorem 7. Assume that Assumptions 1 and 2 of Section 2.5.2 hold and that the sampled loss
sequences obey the parametric assumptions of Equations 2.6 and 2.8. For any T' € N, let
ir be the empirically best-performing arm output from SUCCESSIVEHALVING from the last
round k of HYPERBAND of Figure 2.8 after exhausting a total budget of T' from all rounds.
Fix 6 € (0,~1) and q € (1/K,1) and let z, = log(q_l)(Afn‘fw{Q’qKH + qLK Zilifmax{ZqK}] ATY).
Once T = Q) (z,log(z,) log(1/6)) total pulls have been made by HYPERBAND we have Uy — v, <
Afmax{2,qx}] With probability at least 1 — § where ﬁ() hides log log(-) factors.

Appealing to the stochastic setting of Corollary 6 so that & = 2, we conclude that the sample
complexity sufficient to identify an arm within the best g proportion with probabiltiy 1 — §, up
to log factors, scaIe.s like log(l/é) 1og(‘q’1)(Aﬁﬁﬂ + qLK Zi}i[qK] A}-_O‘). One may interpret this
result as an extension of the distribution-dependent pure-exploration results of Bubeck et al.
[2009]; but in our case, our bounds hold when the number of pulls is potentially much smaller
than the number of arms K. When ¢ = 1/K this implies that the best arm is identified with about
log(1/8)log(K){A;% + S°F, A7?} which matches known upper bounds [Jamieson et al., 2014,
Karnin et al., 2013] and lower bounds [Kaufmann et al., 2015] up to log factors. Thus, for the
stochastic K -armed bandit problem HYPERBAND recovers many of the known sample complexity
results up to log factors.

2.5.4 Finite Horizon Setting (R < 00)

In this section we analyze the algorithm described in Section 2.3, i.e. finite horizon HYPERBAND.
We present similar theoretical guarantees as in Section 2.5.3 for infinite horizon HYPERBAND,
and fortunately much of the analysis will be recycled. We state the finite horizon version of the
SUCCESSIVEHALVING and HYPERBAND algorithms in Figure 2.9.

37

SUCCESSIVEHALVING (Finite horizon)

input: Budget B, and n arms where /; ;. denotes the kth loss from the ith arm,
maximum size R, 7 > 2 (n = 3 by default).

Initialize: Sy = [n], s = min{t € N: nR(t + 1)n~" < B,t <log, (min{R, n})}.
For k=0,1,...,s

Setng, = [nn k|, r, = | RnF—*|

Pull each arm in S, for rj, times.

Keep the best |nn~*+1) | arms in terms of the r1th observed loss as S 1.

Output : i, /; p where ¢ = arg min;es, ., 4 r

HYPERBAND (Finite horizon)
Input: Budget B, maximum size R, n > 2 (n = 3 by default)
Initialize: s,.x = |log(R)/log(n)]|
Fork=1,2,...
For s = smax, Smax — 1,...,0
Bj,s = 2%, ny s = %1
is,0i,, R < SUCCESSIVEHALVING (B}, ¢,n 5,12,1)

Figure 2.9: The finite horizon SUCCESSIVEHALVING and HYPERBAND algorithms are inspired
by their infinite horizon counterparts of Figure 2.8 to handle practical constraints. HYPERBAND
calls SUCCESSIVEHALVING as a subroutine.

38

The finite horizon setting differs in two major ways. First, in each bracket at least one arm will
be pulled R times, but no arm will be pulled more than R times. Second, the number of brackets,
each representing SUCCESSIVEHALVING with a different tradeoff between n and B, is fixed at
log, (1) + 1. Hence, since we are sampling sequences randomly i.i.d., increasing B over time
would just multiply the number of arms in each bracket by a constant, affecting performance only
by a small constant.

Theorem 8. Fix n arms. Let v; = {; g and assume vy < --- < v,. For any € > 0 let

zsia = n(1og,(R) + 1) [n+ > min (R~ (max {5,552 }) }]

If the Successive Halving algorithm of Figure 2.9 is run with any budget B > zgp 4 then an arm i
is returned that satisfies v; — vy < €/2.

Recall that (R) = 0 in this setting and by definition sup,~, 7' (y) < R. Note that Lemma 2
still applies in this setting and just like above we obtain the following corollary.
Corollary 9. Fix § € (0,1) and ¢ > 4(F‘1(%) —). Let H(F,~,n,0,¢€) be as defined
in Lemma 2 and B = nlog, (R)(n + max{R, H(F,v,n,d,€)}). If the SUCCESSIVEHALVING
algorithm of Figure 2.9 is run with the specified B and n arm configurations drawn randomly
according to F then an arm i € |n| is returned such that with probability at least 1 — § we
have v; — v, < (F‘l(%) — v,) + €/2. In particular, if B = 4[log,(n)|H(F,~,n,d) and
€= 4(F‘1(%) — v,) then v; — v, < 3(F‘1(%) — v,) with probability at least 1 — 0.

As in Section 2.5.3.2 we can apply the «, 8 parameterization for interpretability, with the

1/
added constraint that sup,~, 7~ (y) < R so that y(j) ~ 1;r (%) . Note that the approximate

sample complexity of SUCCESSIVEHALVING given in Eq. (2.5) is still valid for the finite horizon
algorithm.

Fixing some A > 0, 6 € (0,1), and applying the parameterization of Eq. (2.7) we recognize
that if n ~ A=%log(1/4) and the sufficient sampling budgets (treating 7 as an absolute constant)
of the uniform allocation (Equation 2.4) and SUCCESSIVEHALVING (Eq. (2.5)) satisfy

Uniform allocation B ~ RA Plog(1/6)
(af B)RY-Oe
1—a/f

1—
SUCCESSIVEHALVING B~ log(A™ " log(1/8)) log(1/8) | R+ A~

then both also satisfy v; — v, < A with probability at least 1 — §. Recalling that a larger o means
slower convergence and that a larger 3 means a greater difficulty of sampling a good limit, note
that when o/ 3 < 1 the budget of SUCCESSIVEHALVING behaves like R + A~ log(1/§) but as
a/B — oo the budget asymptotes to RA " log(1/6).

We can also apply the discrete-CDF parameterization of Eq. (2.8). For any ¢ € (0, 1), if
n ~ g 1log(1/4) and the measurement budgets of the uniform allocation (Equation 2.4) and

39

SUCCESSIVEHALVING (Equation 2.5) satisfy

Kmin{R, ‘:maXKAj—a} ifg=1/K

Uniform allocation: B ~log(1/6) 7=2,0,
¢ ! min{R, At ifg>1/K
SUCCESSIVEHALVING:
(K
min{R, A;*} + Z min{ R, A;*} ifg=1/K
B = log(q ™" log(1/6)) log(1/0) =k
min{R, A j} + qLK Z min{ R, A;*} ifg>1/K
L J=[qK]

then an arm that is in the best g-fraction of arms is returned, i.e. i/K ~ ¢ and v; — v, <
Afmax{2,¢k}]» With probability at least 1 — J. Once again we observe a stark difference between
uniform allocation and SUCCESSIVEHALVING, particularly when A < R for many values of
je{l,...,n}.

Armed with Corollary 9, all of the discussion of Section 2.5.3.3 preceding Theorem 5 holds for
the finite case (R < co) as well. Predictably analogous theorems also hold for the finite horizon
setting, but their specific forms (with the polylog factors) provide no additional insights beyond
the sample complexities sufficient for SUCCESSIVEHALVING to succeed, given immediately
above.

It is important to note that in the finite horizon setting, for all sufficiently large B (e.g.
B > 3R) and all distributions F', the budget B of SUCCESSIVEHALVING should scale linearly
with n ~ A=Plog(1/5) as A — 0. Contrast this with the infinite horizon setting in which the
ratio of B to n can become unbounded based on the values of «, # as A — 0. One consequence
of this observation is that in the finite horizon setting it suffices to set B large enough to identify
an A-good arm with just constant probability, say 1/10, and then repeat SUCCESSIVEHALVING
m times to boost this constant probability to probability 1 — (%)m. While in this theoretical
treatment of HYPERBAND we grow B over time, in practice we recommend fixing B as a multiple
of IR as we have done in Section 2.3. The fixed budget version of finite horizon HYPERBAND
is more suitable for practical application due to the constant time, instead of exponential time,

between configurations trained to completion in each outer loop.

2.6 Experimental Details

Additional details for experiments presented in 2.4 are provided below.

2.6.1 Experiments Using Alex Krizhevsky’s CNN Architecture

For the experiments discussed in Section 2.4.1, the exact architecture used is the 18% model
provided on cuda-convnet for CIFAR-10."?

12The model specification is available at http://code.google.com/p/cuda-convnet /.

40

http://code.google.com/p/cuda-convnet/

Search Space: The search space used for the experiments is shown in Table 2.1. The learning
rate reductions hyperparameter indicates how many times the learning rate was reduced by a factor
of 10 over the maximum iteration window. For example, on CIFAR-10, which has a maximum
iteration of 30,000, a learning rate reduction of 2 corresponds to reducing the learning every
10,000 iterations, for a total of 2 reductions over the 30,000 iteration window. All hyperparameters,
with the exception of the learning rate decay reduction, overlap with those in Snoek et al. [2012].
Two hyperparameters in Snoek et al. [2012] were excluded from our experiments: (1) the width of
the response normalization layer was excluded due to limitations of the Caffe framework and (2)
the number of epochs was excluded because it is incompatible with dynamic resource allocation.

Hyperparameter Scale Min Max
Learning Parameters
Initial Learning Rate log 5%10° 5
Convl L, Penalty log 5%10° 5
Conv2 L, Penalty log 5%x107° 5
Conv3 L, Penalty log 5x10° 5
FC4 L, Penalty log 5%107% 500
Learning Rate Reductions integer 0 3
Local Response Normalization
Scale log 5%x10% 5
Power linear 0.01 3

Table 2.1: Hyperparameters and associated ranges for the three-layer convolutional network.

Data Splits: For CIFAR-10, the training (40,000 instances) and validation (10,000 instances)
sets were sampled from data batches 1-5 with balanced classes. The original test set (10,000
instances) was used for testing. For MRBI, the training (10,000 instances) and validation (2,000
instances) sets were sampled from the original training set with balanced classes. The original
test set (50,000 instances) was used for testing. Lastly, for SVHN, the train, validation, and test
splits were created using the same procedure as that in Sermanet et al. [2012].

Comparison with Early-Stopping: Domhan et al. [2015] proposed an early-stopping method
for neural networks and combined it with SMAC to speed up hyperparameter optimization. Their
method stops training a configuration if the probability of the configuration beating the current
best is below a specified threshold. This probability is estimated by extrapolating learning curves
fit to the intermediate validation error losses of a configuration. If a configuration is terminated
early, the predicted terminal value from the estimated learning curves is used as the validation
error passed to the hyperparameter optimization algorithm. Hence, if the learning curve fit is poor,
it could impact the performance of the configuration selection algorithm. While this approach is
heuristic in nature, it could work well in practice so we compare HYPERBAND to SMAC with early
termination (labeled SMAC (early) in Figure 2.10). We used the conservative termination criterion
with default parameters and recorded the validation loss every 400 iterations and evaluated the
termination criterion 3 times within the training period (every 8k iterations for CIFAR-10 and
MRBI and every 16k iterations for SVHN).!> Comparing the performance by the number of total

13We used the code provided at https://github.com/automl/pylearningcurvepredictor.

41

TT TN WT TV T 0.30

e
w
N

hyperband (finite) spearmint
0.30 hyperband (infinite) —— random 0.29
_ —— SMAC —F— random 2x . 0.28
202871 —Z— SMAC (early) —F— bracket s=0 2
S oae| TP 027
0 Q. 7]
g h | ’\ﬂL\H‘ % 0.26
o 0.24 \ S o
g I LJ \z T TS £o025
fozzy 3 | LWNIEEE 2.,
0.20 T 023
0.18 ‘ ‘ ‘ ‘ 0.22 : , , :
0 10 20 30 40 50 o 10 20 30 40 50
Multiple of R Used Multiple of R Used
(a) CIFAR-10 (b) MRBI
0.10
0.09
é 0.08
i
= 0.07
(]
[
o 0.06
(o))
o
e 0.05
<
0.04
0.03
0 10 20 30 40 50
Multiple of R Used
(c) SVHN

Figure 2.10: Average test error across 10 trials is shown in all plots. Error bars indicate the top
and bottom quartiles of the test error corresponding to the model with the best validation error

iterations as mulitple of R is conservative because it does not account for the time spent fitting the
learning curve in order to check the termination criterion.

2.6.2 117 Data Sets Experiment

For the experiments discussed in Section 2.4.2.1, we followed Feurer et al. [2015a] and imposed a
3GB memory limit, a 6-minute timeout for each hyperparameter configuration and a one-hour
time window to evaluate each searcher on each data set. Moreover, we evaluated the performance
of each searcher by aggregating results across all data sets and reporting the average rank of each
method. Specifically, the hour training window is divided up into 30 second intervals and, at
each time point, the model with the best validation error at that time is used in the calculation
of the average error across all trials for each (data set-searcher) pair. Then, the performance
of each searcher is ranked by data set and averaged across all data sets. All experiments were
performed on Google Cloud Compute nl-standard-1 instances in us-centrall-f region with 1 CPU

42

and 3.75GB of memory.

Data Splits: Feurer et al. [2015a] split each data set into 2/3 training and 1/3 test set, whereas
we introduce a validation set to avoid overfitting to the test data. We also used 2/3 of the data
for training, but split the rest of the data into two equally sized validation and test sets. We
reported results on both the validation and test data. Moreover, we performed 20 trials of each
(data set-searcher) pair, and as in Feurer et al. [2015a] we kept the same data splits across trials,
while using a different random seed for each searcher in each trial.

Shortcomings of the Experimental Setup: The benchmark contains a large variety of
training set sizes and feature dimensions'* resulting in random search being able to test 600
configurations on some data sets but just dozens on others. HYPERBAND was designed under
the implicit assumption that computation scaled at least linearly with the data set size. For very
small data sets that are trained in seconds, the initialization overheads dominate the computation
and subsampling provides no computational benefit. In addition, many of the classifiers and
preprocessing methods under consideration return memory errors as they require storage quadratic
in the number of features (e.g., covariance matrix) or the number of observations (e.g., kernel
methods). These errors usually happen immediately (thus wasting little time); however, they often
occur on the full data set and not on subsampled data sets. A searcher like HYPERBAND that uses
a subsampled data set could spend significant time training on a subsample only to error out when
attempting to train it on the full data set.

2.6.3 Kernel Classification Experiments

Table 2.2 shows the hyperparameters and associated ranges considered in the kernel least squares
classification experiment discussed in Section 2.4.2.2.

Hyperparameter | Type Values

preprocessor Categorical min/max, standardize, normalize
kernel Categorical rbf, polynomial, sigmoid

C Continuous log [1072,10°]

gamma Continuous log [107°,10]

degree if kernel=poly integer [2, 5]

coef0 if kernel=poly, sigmoid | uniform [-1.0, 1.0]

Table 2.2: Hyperparameter space for kernel regularized least squares classification problem
discussed in Section 2.4.2.2.

Table 2.3 shows the hyperparameters and associated ranges considered in the random features
kernel approximation classification experiment discussed in Section 2.4.3. The regularization
term A is divided by the number of features so that the tradeoff between the squared error and the
L, penalty would remain constant as the resource increased. Additionally, the average test error
with the top and bottom quartiles across 10 trials are show in Figure 2.12.

14Training set size ranges from 670 to 73,962 observations, and number of features ranges from 1 to 10,935.

43

hyperband (finite)
—— SMAC
—— TPE
—— random
—F— random 2x
—— bracket s=0

Test Error

0.651 :

0.601]

0.551

0.501 i

0.45 4l LJ ““% = 7, =

|
1
|

0 100 200 300 400 500 600 700
Minutes

Figure 2.11: Average test error of the best kernel regularized least square classification model
found by each searcher on CIFAR-10. The color coded dashed lines indicate when the last trial of
a given searcher finished. Error bars correspond to the top and bottom quartiles of the test error
across 10 trials.

hyperband (finite)
SMAC

TPE

spearmint
random

random 2x
bracket s=0

Test Error

0 100 200 300 400 500 600 700

Minutes
Figure 2.12: Average test error of the best random features model found by each searcher on
CIFAR-10. The test error for HYPERBAND and bracket s = 0 are calculated in every evaluation
instead of at the end of a bracket. Error bars correspond to the top and bottom quartiles of the test
error across 10 trials.

44

Hyperparameter | Type Values

preprocessor Categorical | none, min/max, standardize, normalize
A Continuous | log [1073, 10

gamma Continuous | log [107°, 10]

Table 2.3: Hyperparameter space for random feature kernel approximation classification problem
discussed in Section 2.4.3.

The cost term C is divided by the number of samples so that the tradeoff between the squared
error and the L- penalty would remain constant as the resource increased (squared error is summed
across observations and not averaged). The regularization term A is equal to the inverse of the
scaled cost term C. Additionally, the average test error with the top and bottom quartiles across 10
trials are show in Figure 2.11.

2.7 Proofs of Theoretical Results

In this section, we provide proofs for the theorems presented in Section 2.5.

2.7.1 Proof of Theorem 1

Proof. First, we verify that the algorithm never takes a total number of samples that exceeds the
budget B:

[logy(n)]—1 [logy(n)]—1

B B
Z | Sk| \TSHHOE(TL)]J < Z [log(n)] <B.

k=0 k=0

For notational ease, let /; ; := ¢;(X;). Again, for each i € [n] := {1,...,n} we assume the
limit limy,_, ., ¢; , exists and is equal to ;. As areminder, v : N — R is defined as the pointwise
smallest, monotonically decreasing function satisfying

max |; ; — v;| <(j), VjeN. (2.9)

Note v is guaranteed to exist by the existence of v; and bounds the deviation from the limit value
as the sequence of iterates j increases.

Without loss of generality, order the terminal losses so that vy < 15 < --- < 1,,. Assume that

45

B > zgp. Then we have for each round &

> B 1
T 2 e —
Sk [logy(n)]
2 i
Zﬁ max 2<1+7 1(max ZEL Vi 21/1})) —1

> (HSkI/?J + 1)(1 +7—1(max{i V(|Syl/2)41 — V1 })) .

2
> (maX{E Vusk\m; Vl})) L
v

l(ma {5 VLISk\/2J2+1 Vl})7

where the fourth line follows from [|Sk|/2] > |Sk|/2 — 1.

First we show that ¢;, — ¢, > O forall ¢t > 7; := 1 (%) Given the definition of v, we
have for all i € [n] that [(;; — 1;| < 7(t) < “5% where the last inequality holds for ¢ > 7;. Thus,
for ¢t > 7; we have

iv =l =Vliy—vi+v; —v +1p — by
=l —vi— (e —1)+v—1n
> —2v(t)+ v, — 1y

Vvi—n

> =2
- 2

+v, — 1

=0.

Under this scenario, we will eliminate arm ¢ before arm 1 since on each round the arms are sorted
by their empirical losses and the top half are discarded. Note that by the assumption the v; limits
are non-decreasing in ¢ so that the 7; values are non-increasing in 4.

Fix a round k and assume 1 € S}, (note, 1 € Sy). The above calculation shows that

t>1 — gi,t > gl,t- (2.10)

Consequently,

{1€ 8k, 1¢ Sk} — 1{&@ <lip}> L|Sk|/2j}

— { Hr, <7} > H5k|/2J}

|Sk\/2 J+1
Hry <7} > [[Sk]/2]

{Tk <T |sk\/2j+1}

46

where the first line follows by the definition of the algorithm, the second by Equation 2.10,
and the third by 7; being non-increasing (for all © < j we have 7, > 7; and consequently,
1{r, < 7} > 1{r; < 7;} so the first indicators of the sum not including 1 would be on before
any other i’s in S C [n] sprinkled throughout [r]). This implies

{1 € Sk, T > TL|5k|/2J+1} —— {1 € Sk+1}- 2.11)

VIISgl/2]+1711 Y0Sgl/2]+171

Recalling that i > 7~ (max {5, "S55 }) and g = 77 (UH452), e
examine the following three exhaustive cases:

e Case 1: “Bk2EE > € apd 1 € S,

Ysgl/2)+171

In this case, r, > 771(2

since 1 € S.

e Case 2: Mg“ﬂ/l < <and1 € S
In this case rj, > ~~* (i) but v~ ! (i) < T||sy|/2)+1- Equation 2.11 suggests that it may be
possible for 1 € S but 1 ¢ Sy,1. On the good event that 1 € Sy, the algorithm continues
and on the next round either case 1 or case 2 could be true. So assume 1 ¢ Sj;. Here
we show that {1 € Si, 1 ¢ Sip1} = maxieg,,, i < 11 + €/2. Because 1 € Sy, this
guarantees that SUCCESSIVEHALVING either exits with arm i = 1 or some arm?satisfying
v, <y +€/2.
Let p = min{i € [n] : “5% > {}. Note that p > [|Sk|/2] + 1 by the criterion of the case
and

T >yt <i) >t <Vi ; Vl) =7, Vi>p.

Thus, by Equation 2.10 (t > 7, = {;+ > () we have that arms 7 > p would always
have /;,, > {,,, and be eliminated before or at the same time as arm 1, presuming 1 € Sj.
In conclusion, if arm 1 is eliminated so that 1 € Si but 1 ¢ Sy then max;eg, LU <
max;, ; < V1 + €/2 by the definition of p.

e Case3: 1¢S5,
Since 1 € S, there exists some r < k such that 1 € S, and 1 ¢ S,..;. For this r, only case
2 is possible since case 1 would proliferate 1 € S, ;. However, under case 2, if 1 ¢ S,

then max;eg,,, v; < 11 +€/2.

) = T||5,|/2/+1- By Equation 2.11 we have that 1 € Sy,

Because 1 € S, we either have that 1 remains in Sy, (possibly alternating between cases 1 and
2) for all £ until the algorithm exits with the best arm 1, or there exists some & such that case 3
is true and the algorithm exits with an arm 7 such that v; < 11 + €/2. The proof is complete by
noting that

‘g,.\ B/2 —V1’§|&\ B/2 —Vg|+‘Vg—V1|§€/4+€/2§€
5L Tlogy (m)] L Tlog, (m)]

by the triangle inequality and because B > 2[log,(n)]y~!(e/4) by assumption.
The second, looser, but perhaps more interpretable form of zgy follows from the fact that
v~ !(z) is non-increasing in x so that

Jnax g7t (max {§, 232 }) <) 97" (max {§, 45 }).

n .
i=1,...,n

47

2.7.2 Proof of Lemma 2
Proof. Let p, = & 2/5 , M =~7" (%), and pp = E[min{M, "' (452)}]. Define the events
51 = {Vl < F (pn)}

= {Z min{ M,y (4322)} < np+ \/2npuM log(2/6) + %Mlog(2/5)}

Note that P(ﬁl) = P(min—1, , v > F~'(py)) = (1 — po)" < exp(—np,) < 2. Moreover,
P(&5) < & by Bernstein’s inequality since

E [min{M,y7" (432)}?] <E [M min{M,y" (43%)}] = Mpu.

Thus, P(& N &) > 1 — § so in what follows assume these events hold.

First we show that if v, < v; < F~!(p,), which we will refer to as equation (x), then
max{6 vio ”1} > maux{6 M}
Casel: { < “7" ande > 4(F(pn) — va).

v; —U1 (;) Vi—Vstvi—F 1 (pn) _ vi—vs + Vi—Vsx F~1(pn)—vs (;) Vi —Vs + Vi—V1 F~1(pp)—vs > Vsl
2 - 2 - 4 4 2 — 4 4 — 4

Case2: £ > ““Mand e > 4(F~!(p,) —).

Case 2

(%) -1

S

Vi—Us __ Vi— V1 vi— V* € V1 Vi F~(pn)—vs €
i = + < g+ < s+ 7 4

which shows the desired result.
Consequently, for any € > 4(F~!(p,) — v.) we have

Z'y_ max{6 s Z'y max{6 u})
i=1
<>y (max {5, “5})
i=1

= Z min{M,y~" (45%)}
i=1

< np 4 /2nuM log(1/68) + 2Mlog(1/6)
2

< (\/n,u + %Mlog(Q/d)) < 2np + 5 M log(2/6).
A direct computation yields

= Elmin{, 7 (23))
=Ely! (max {5, 552 })]

= () F(v - ¢/4) + / o (t) (1)

«+e/d

48

so that

n

Zy‘l (max {£, %51 1) < 2np+ M log(2/6)

=1

— o /i /47—1(%)%(75) + (310g(2/8) + 2nF(v. + ¢/4) v (&)

which completes the proof. []

2.7.3 Proof of Proposition 4

We break the proposition up into upper and lower bounds and prove them seperately.

2.7.4 Uniform Allocation

Proposition 10. Suppose we draw n random configurations from F, train each with a budget
of 5, and let i = argmin;—y__, {;(X;). Let v; = (.(X;) and without loss of generality assume
n<...<uvlf

.....

Bz ny ! (P () 1)) (2.12)

n

then with probability at least 1 — 0 we have v; — v, < 2 (Ffl (W) — V*>.

Proof. Note that if we draw n random configurations from F' and i, = argmin;—; __, ¢.(X;) then

1111

P(0(X;.)~v. <€)= IP’(U{E*(XZ») < e})
—1—(1—F(r,+e)">1— et

which is equivalent to saying that with probability at least 1—6, £, (X;,)—v, < F~(log(1/d)/n)—
v,. Furthermore, if each configuration is trained for j iterations then with probability at least 1 —
0(XG) — v < U(X5) — v +9() < (Xi) — v +7(9)
< LX) = v+ 29(7) < P (REUD) — 4 29(),

n

If our measurement budget B is constrained so that B = nj then solving for j in terms of B and
n yields the result. O

The following proposition demonstrates that the upper bound on the error of the uniform
allocation strategy in Proposition 4 is in fact tight. That is, for any distribution F' and function y
there exists a loss sequence that requires the budget described in Eq. (2.4) in order to avoid a loss
of more than e with high probability.

I5Here j can be bounded (finite horizon) or unbounded (infinite horizon).

49

Proposition 11. Fix any 6 € (0,1) and n € N. For any ¢ € (0, 1], let F. denote the space of con-
tinuous cumulative distribution functions F satisfying'® inf e, 1-0,] IDfAc01-2) F(ﬁﬁ;ﬁ—(ﬁg/ 2) >
c. And let I denote the space of monotonically decreasing functions over N. For any F' € F,. and
v € I there exists a probability distribution |1 over X and a sequence of functions {; : X — R
Vj € Nwith (, := lim;_, ¢, v. = infyex 0.(z) such that sup,cy |[(;j(x) — l(x)] < 7(j) and
P,(0.(X) — v. <€) = F(€). Moreover, if n configurations Xy, ..., X, are drawn from y and

77777

— og(c/d
LX) = 2 27 Gl))

whenever B < ny~! <2(F*1(%) - 1/*)>

Proof. Let X = [0,1], £,(z) = F~'(x), and u be the uniform distribution over [0, 1]. Define
U= F‘l(%) and set
U+ 3570) + 0+ 390) — (@) i [P+ 39() — C@)] < 390)

g . —
(@) li(x) otherwise.

Essentially, if £, (z) is within 2v(j) of 7 + £+(3) then we set £;(z) equal to £, (z) reflected across
the value 20 + 7(j). Clearly, |{;(x) — £.(z)] < y(j) forall z € X.
Since each /7, (X;) is distributed according to F', we have

]P(ﬂ{g*(Xz) — V2 6}) =(1—=F(vi+e€)" > e nF(ste)/(1=F(vite))
i=1

Setting the right-hand-side greater than or equal to ¢/c and solving for ¢, we find v, + ¢ >

—1, log(c/d) o~
P Ciosterm) = 7

Define Iy = [v.,7), I, = [V,v+37(B/n)) and I, = [D+3~v(B/n),v+~(B/n)|. Furthermore,
for j € {0,1,2} define N; = 37" | 1, (x,)er,- Given Ny = 0 (which occurs with probability at
least 0/c), if Ny = 0 then 0, (X;) — v, > F_l(%) + 37(B/n) and the claim is true.

Below we will show that if Ny > 0 whenever N; > 0 then the claim is also true. We now
show that this happens with at least probability ¢ whenever N; + Ny = m for any m > 0. Observe

that
P(Ny > 0|N; + Ny =m) =1—P(Ny = 0[Ny + Ny = m)
=1-(1-Pyebly,e LUL)">1—-(1—-¢)">c¢
since
Pl e e L) = g = = 2
Thus, the probability of the event that Ny = 0 and N, > 0 whenever N; > 0 occurs with

probability at least d/c - ¢ = 4, so assume this is the case in what follows.
Since Ny = 0, for all j € N, each X; must fall into one of three cases:

16 Note that this condition is met whenever F is convex. Moreover, if F/(v, + €) = c; ‘¢ then it is easy to verify
thate =1 —27% > 1 min{1, 8}.

50

(Xi) >V +() = (X)) >V +90))
(X)) <T+370) <= T+ 370)) < (X)) <v+
570) S 6L(X:) ST+A()) <= V< 4(X) <v+

) t)f\

1.
2. 7(7)
3, 370

The first case holds since within that regime we have ¢;(z) = ¢,(x), while the last two cases
hold since they consider the regime where /;(z) = 2v + 7(/) — {.(x). Thus, for any ¢ such that
(. (X;) € I, it must be the case that Ej(XZ-) € I and vice versa. Because Ny > N; > 0, we
conclude that if ¢ = argmin; ¢/, (X;) then {p/,(X;) € I; and (. (X;) € I,. Thatis, v; — v, >

~ . _ log(c/d — log(c/d
UV—vi+37(j) =F 1(%)—%—%27(). So if we wish v; — v, < 2(F 1(%)—%‘)

with probability at least § then we require B/n = j > ! (2(F ’1(%) - l/*)) O

<
+

2.7.5 Proof of Theorem 5

Proof. Step 1: Simplify H(F',~v,n,0). We begin by simplifying H(F,~, n, d) in terms of just
n, d, a, B. In what follows, we use a constant ¢ that may differ from one inequality to the next but
remains an absolute constant that depends on «, 3 only. Let p,, = 1°g(2/ 9 50 that

7 (B < (7 ()) < el

and

1 _ 1 clog(1/p,) ifa=
/ 771(—F l(i)_y*)dt < c/ =B < { . g1< a//]B))) P
s fa#p.
Pn Pn c 1-a/B 1«

We conclude that

1
H(F,7,n,8) = 2n / I dt 4 Wlog(2/6)y ! ()

Pn

log(1/p, if a =
< epr®Plog(1/6) + cn 1g§ Zﬁ) . p
e fa# S

Step 2: Solve for (By;,ny,;) in terms of A. Fix A > 0. Our strategy is to describe ny; in

log(4k*/3) _ AB ¢o that n;; =

terms of A. In particular, parameterize ny, such that p,, , = ¢==~-

cA=Plog(4k?/6) so

log(1/pn,,) ifa=p

H(F, v, np,01) < cpno‘/ﬁ log(1/6k1) + cngy] 4 Py’

/B if o # .
A Plog(A™Y) ifa=p
< clog(k/d) [A‘O‘—i— b r—a i
(k/ {Agﬁr if o # 3

< clog(k/0) mln{|1 /Bljlog(A—l)}A,maX{B,a}

51

where the last line follows from
-8 _ A—« max{0,a—8} _ A max{0,0—«a
Ama(pay A7 Z A7 A {0.0-8} _ Amax{0,5-a}
[—a/B F-a

1-AB—e
f
= ﬁ{ fa iff>a < cmin{|1+ log(A™H}.

_Aa—B .)
1 e if <« /Bl

Using the upperbound [log(ng,)] < clog(log(k/d)A") < clog(log(k/d)) log(A~1) and letting
za = log(A™1)2A~max{8e} we conclude that

By, < min{2* : 2% > Alog(n) |H(F, v, e, Ox) }
< min{2"* : 2 > clog(k/6)log(log(k/8))za}
< cza log(log(za)/0) log(log(log(za)/9))
= czalog(log(za)/0).

Step 3: Count the total number of measurements. Moreover, the total number of measurements
before i is output is upperbounded by

k i k
T=Y"> Bi;<k)» By <2kByy =2By;log,(By1)
i=1 j=I i=1

where we have employed the so-called “doubling trick”: Zle By = Zle 20 < 28 = 2By ..
Simplifying,

T < czplog(log(2a)/8)log(2a log(log(24)/6)) < eA™ ™0 og(A~")*log(log(A™) /0)

Solving for A in terms of 7" obtains

 (Tog(T)*Tog(log(T) /6)\ /™7
A=c < T) .

Because the output arm is just the empirical best, there is some error associated with us-

ing the empirical estimate. The arm returned returned on round (k,[) is pulled LQT >

1/a
B,/ log(By,) times so the possible error is bounded by (B, / log(By,;)) < ¢ <M) <

By:.1

U

. (10g(3>2 loglog(B))
B

1/a
) which is dominated by the value of A solved for above.

2.7.6 Proof of Theorem 7

Proof. Step 1: Simplify H(F,~,n,d,¢). We begin by simplifying H(F, v, n, , €) in terms of
justn, 9, v, 3. As before, we use a constant ¢ that may differ from one inequality to the next but
remains an absolute constant. Let p,, = W First we solve for € by noting that we identify the

best arm if v; — v, < As. Thus, if v; — v, < (F~Y(p,) — 1) + €/2 then we set

€= maX{Q(AQ — (F_l(pn) — 1/*)),4(F_1(pn) — 1/*)}

52

so that
Vi — Vs S max {S(F_l(pn) - V*)aAQ} - A[maX{Z,cKpn}]-

We treat the case when 3(F~*(p,) — v..) < A, and the alternative separately.
First assume 3(F~'(p,) — v.) > Ay so that € = 4(F~!(p,) — v.) and H(F,7v,n,d,¢) =
H(F,~,n,d). We also have

4L (F*l(ljln)—l/*> <e (F_l (pn) — 1/*) < CA—nK]

and
1 T 1 c X
[sa = [e s Y A
Pn F=1(pn) i=[pn K]
so that

1
H(F,%n,é) = 2n/ 7_1(W)dt + 13_010g(2/5>7_1 (F_ (p47l)_1/*>

Pn

< eAL i log(1/) + Z AT
1= |—an1
Now consider the case when 3(F~!(p,) — v.) < A,. In this case F (v, + ¢/4) = 1/K,

77 () S edyand [[7 v (EE)AE () < e, AT so that

[e.e]

H(F,v,n,0,¢) = 2n/ v (E)AE () + (3 log(2/0) + 2nF (v + €/4)) v (55)

vite/4

< c(log(1/0) + n/K)A;* —i——ZA «

Step 2: Solve for (By;,ng,;) in terms of A. Note there is no improvement possible once
Py, < 1/K since 3(F‘1(1/K) — V*) < A,. That is, when p,, , < 1/K the algorithm has found
the best arm but will continue to take samples indefinetely. Thus, we only consider the case when

¢=1/Kand ¢ > 1/K. Fix A > 0. Our strategy is to describe ny; in terms of ¢. In particular,
log(4k3/5)
Nkl

parameterize ny,; such that p,, , = ¢ = ¢ so that ng; = cq ' log(4k3/§) so

(log(1/dk1) + M)A + ML SK AT i 5(FYpy,,) — vi) < Ay

H(Fa ERLIRE 5k,l7 ek,l) S c —a n K —a . .
Afpnk,lfﬂ log(1/0k,) + = Zi=fpnk,lK1 A; if otherwise

A+, A ifg=1/K
a K —a .
Argry T qLK D i—rqr] D ifg>1/K.
1 K

i=[max{2,qK}]

< clog(k/d) {

53

Using the upperbound flog(nklﬂ < clog(log(k;/é) 1) < clog(log(k/d))log(q~') and letting
= log(q~)(A[mffax{2 gy Tt qK Z rmax{2,gi) D7 ©)» We apply the exact sequence of steps as

in the proof of Theorem 5 to obtain

T < ez,log(log (=) /)108(=, log(log (=) /)

Because the output arm is just the empirical best, there is some error associated with using the em-

pirical estimate. The arm returned on round (k, [) is pulled (217 "1 > ¢By,/ log(By,) times so the

log(Bep))/ loa(T)? los(log () | /* .
Tj;l S Is w . This
is dominated by Ayax{2,4x}) for the value of T" prescribed by the above calculation, completing

the proof. [

possible error is bounded by v(By ;/ log(By,)) <

2.7.7 Proof of Theorem 8§

Proof. Let s denote the index of the last stage, to be determined later. If 7, = Rn
nr = nn~F so that v, = |7] and ny = |7y then

k=s and

Z?’L}J’k S Zﬁk?k = nR(s -+ 1)77_5 S B
k=0 k=0
since, by definition, s = min{t € N : nR(t + 1)n~" < B,t < log,(min{R,n})}. Itis
straightforward to verify that B > zgy ensures that rg > 1 and ng > 1.
The proof for Theorem 1 holds here with a few modifications. First, we derive a lower bound
on the resource per arm 7, per round if B > zgy with generalized elimination rate 7:

T > =
ISkI(UOgn(n)J +1)

-1

> m (Hsk‘/?ﬂ + 1) (1 —i—min{R,”y_l(max{i VL|Sk\/2J2+1 — 11 })}) 1
> <1+min{R,fy (e { £, S })}) .

1“{R,7 1(maX{e uLISk\/2J2+1 Vl})}.

Also, note that v(R) = 0, hence if the minimum is ever active, {; p = ; and we know the true
loss. The rest of the proof is same as that for Theorem 1 for 7 in place of 2.
In addition, we note that

iy (e {5, 552)) < (mas {5) 4 300 (max {5,252)).

’L>TLS

]

54

Chapter 3

Hyperparameter Optimization in the
Large-Scale Regime

In the previous chapter, we presented HYPERBAND for fast hyperparameter optimization with
early-stopping. However, as we will discuss in Section 3.3, HYPERBAND is poorly suited for the
parallel setting since it is susceptible to stragglers and dropped jobs. In this chapter, we address
these issues with a massively parallel asynchronous algorithm called ASHA for Asynchronous
Successive Halving Algorithm. Recall from Chapter 2, the successive halving algorithm (SHA)
serves as the inner loop for HYPERBAND, with HYPERBAND automating the choice of the
early-stopping rate by running different variants of SHA. While the appropriate choice of early
stopping rate is problem dependent, our empirical results in the previous chapter demonstrated that
aggressive early-stopping works well for a wide variety of tasks. Hence, we focus on parallelizing
successive halving in this chapter. Additionally, the experiments in Section 3.4 provide a refresh
over those in Chapter 2.4 by comparing to more recent hyperparameter optimization approaches
on more difficult hyperparameter tuning problems.

3.1 Introduction

As alluded to in Chapter 1.4, three trends in modern machine learning motivate a new approach to
hyperparameter tuning:

1. High-dimensional hyperparameter spaces. Machine learning models are becoming in-
creasingly complex, as evidenced by modern neural networks with dozens of hyperparam-
eters. For such complex models with hyperparameters that interact in unknown ways, a
practitioner is forced to evaluate potentially thousands of different hyperparameter settings.

2. Increasing training times. As datasets grow larger and models become more complex,
training a model has become dramatically more expensive, often taking days or weeks on
specialized high-performance hardware. This trend is particularly onerous in the context
of hyperparameter tuning, as a new model must be trained to evaluate each candidate
hyperparameter configuration.

3. Rise of parallel computing. The combination of a growing number of hyperparameters

55

and longer training time per model precludes evaluating configurations sequentially; we
simply cannot wait months or years to find a suitable hyperparameter setting. Leveraging
parallel and distributed computational resources presents a solution to the increasingly
challenging problem of hyperparameter optimization.

Our goal is to design a hyperparameter tuning algorithm that can effectively leverage parallel
resources. This goal seems trivial with standard methods like random search, where we could train
different configurations in an embarrassingly parallel fashion. However, for high-dimensional
search spaces, the number of candidate configurations required to find a good configuration often
dwarfs the number of available parallel resources, and when possible, our goal is to:

Evaluate orders of magnitude more hyperparameter configurations than available parallel
workers in a small multiple of the wall-clock time needed to train a single model.
We denote this setting the large-scale regime for hyperparameter optimization.

In the remainder of this chapter, after discussing related work, we present ASHA and show that
it successfully addresses the large-scale regime. In particular, we perform a thorough comparison
of several hyperparameter tuning methods in both the sequential and parallel settings. We focus on
‘mature’ methods, i.e., well-established techniques that have been empirically and/or theoretically
studied to an extent that they could be considered for adoption in a production-grade system. In
the sequential setting, we compare SHA with Fabolas [Klein et al., 2017a], Population Based
Tuning (PBT) [Jaderberg et al., 2017], and BOHB [Falkner et al., 2018], state-of-the-art methods
that exploit partial training. Our results show that SHA outperforms these methods, which when
coupled with SHA’s simplicity and theoretical grounding, motivate the use of a SHA-based method
in production. We further verify that SHA and ASHA achieve similar results. In the parallel
setting, our experiments demonstrate that ASHA addresses the intrinsic issues of parallelizing
SHA, scales linearly with the number of workers, and exceeds the performance of PBT, BOHB,
and Vizier [Golovin et al., 2017], Google’s internal hyperparameter optimization service.

Finally, based on our experience developing ASHA within Determined AI’s production-quality
machine learning system that offers hyperparameter tuning as a service, we describe several sys-
tems design decisions and optimizations that we explored as part of the implementation. We focus
on four key considerations: (1) streamlining the user interface to enhance usability; (2) autoscaling
parallel training to systematically balance the tradeoff between lower latency in individual model
training and higher throughput in total configuration evaluation; (3) efficiently scheduling ML
jobs to optimize multi-tenant cluster utilization; and (4) tracking parallel hyperparameter tuning
jobs for reproducibility.

3.2 Related Work

We will first discuss related work that motivated our focus on parallelizing SHA for the large-scale
regime. We then provide an overview of methods for parallel hyperparameter tuning, from which
we identify a mature subset to compare to in our empirical studies (Section 3.4). Finally, we
discuss related work on systems for hyperparameter optimization.

Sequential Methods. Klein et al. [2017a] reported state-of-the-art performance for Fabolas
on several tasks in comparison to Hyperband and other leading methods. However, our results
in Section 3.4.1 demonstrate that under an appropriate experimental setup, SHA and Hyperband

56

in fact outperform Fabolas. Moreover, we note that Fabolas, along with most other Bayesian
optimization approaches, can be parallelized using a constant liar (CL) type heuristic [Ginsbourger
et al., 2010, Gonzélez et al., 2016]. However, the parallel version will underperform the sequential
version, since the latter uses a more accurate posterior to propose new points. Hence, our
comparisons to these methods are restricted to the sequential setting.

Other hybrid approaches combine Hyperband with adaptive sampling. For example, Klein et al.
[2017b] combined Bayesian neural networks with Hyperband by first training a Bayesian neural
network to predict learning curves and then using the model to select promising configurations
to use as inputs to Hyperband. More recently, Falkner et al. [2018] introduced BOHB, a hybrid
method combining Bayesian optimization with Hyperband. They also propose a parallelization
scheme for SHA that retains synchronized eliminations of underperforming configurations. We
discuss the drawbacks of this parallelization scheme in Section 3.3 and demonstrate that ASHA
outperforms this version of parallel SHA as well as BOHB in Section 3.4.2. We note that similar
to SHA/Hyperband, ASHA can be combined with adaptive sampling for more robustness to
certain challenges of parallel computing that we discuss in Section 3.3.

Parallel Methods. Established parallel methods for hyperparameter tuning include PBT
[Jaderberg et al., 2017, Li et al., 2019a] and Vizier [Golovin et al., 2017]. PBT is a state-of-the-
art hybrid evolutionary approach that exploits partial training to iteratively increase the fitness
of a population of models. In contrast to Hyperband, PBT lacks any theoretical guarantees.
Additionally, PBT is primarily designed for neural networks and is not a general approach
for hyperparameter tuning. We further note that PBT is more comparable to SHA than to
Hyperband since both PBT and SHA require the user to set the early-stopping rate via internal
hyperparameters.

Vizier is Google’s black-box optimization service with support for multiple hyperparameter
optimization methods and early-stopping options. For succinctness, we will refer to Vizier’s
default algorithm as “Vizier” although it is simply one of methods available on the Vizier platform.
While Vizier provides early-stopping rules, the strategies only offer approximately 3x speedup in
contrast to the order of magnitude speedups observed for SHA. We compare to PBT and Vizier in
Section 3.4.2 and Section 3.4.5, respectively.

Hyperparameter Optimization Systems. While there is a large body of work on systems for
machine learning, we narrow our focus to systems for hyperparameter optimization. AutoWEKA
[Kotthoff et al., 2017] and AutoSklearn [Feurer et al., 2015a] are two established single-machine,
single-user systems for hyperparameter optimization. Existing systems for distributed hyperpa-
rameter optimization include Vizier [Golovin et al., 2017], RayTune [Liaw et al., 2018], CHOPT
[Kim et al., 2018] and Optuna [Akiba et al.]. These existing systems provide generic support
for a wide range of hyperparameter tuning algorithms; both RayTune and Optuna in fact have
support for ASHA. In contrast, our work focuses on a specific algorithm—ASHA—that we
argue is particularly well-suited for massively parallel hyperparameter optimization. We further
introduce a variety of systems optimizations designed specifically to improve the performance, us-
ability, and robustness of ASHA in production environments. We believe that these optimizations
would directly benefit existing systems to effectively support ASHA, and generalizations of these
optimizations could also be beneficial in supporting other hyperparameter tuning algorithms.

Similarly, we note that Kim et al. [2018] address the problem of resource management for
generic hyperparameter optimization methods in a shared compute environment, while we focus

57

on efficient resource allocation with adaptive scheduling specifically for ASHA in Section 3.5.3.
Additionally, in contrast to the user-specified automated scaling capability for parallel training
presented in Xiao et al. [2018], we propose to automate appropriate autoscaling limits by using
the performance prediction framework by Qi et al. [2017].

3.3 ASHA Algorithm

We start with a discussion of naive ways of parallelizing synchronous successive halving. Then
we present ASHA and discuss how it addresses issues with synchronous SHA and improves upon
the original algorithm.

3.3.1 Synchronous SHA

Algorithm 2: Successive Halving Algorithm.

1 Input: number of configurations n, minimum resource 7, maximum resource I,
reduction factor 7, minimum early-stopping rate s

2 Smax = [log, (R/7)]

3 assert n > n°max"% so that at least one configuration will be allocated R.
4 T = get_hyperparameter_configuration(n)

s fori € {0,..., Spax — s} do

6 // All configurations trained for a given i constitute a “rung.”

2 | me= [nn)

8§ | ry=rnts

9

L = run_then _return_val loss(0,7;) : 06 € T'
T = topk(T, L,n;/n)

end

return best configuration in T’

o
-

o
(8]

To keep this chapter self-contained and for consistency, we present SHA in Algorithm 2
using the same notation and terminology that we will use for ASHA in the next section. Here,
n denotes the number of configurations, r the minimum resource per configuration, R the
maximum resource per configuration, 7 > 2 the reduction factor, and s the early-stopping
rate. Additionally, the get_hyperparameter_configuration(n) subroutine returns n configurations
sampled randomly from a given search space; and the run_then_ return_val_loss(6, r) subroutine
returns the validation loss after training the model with the hyperparameter setting ¢ and for r
resources. For a given early-stopping rate s, a minimum resource of o = 77° will be allocated to
each configuration. Hence, lower s corresponds to more aggressive early-stopping, with s = 0
prescribing a minimum resource of 7. As in the previous chapter, we will refer to SHA with
different values of s as brackets and, within a bracket, we will refer to each round of promotion as a
rung with the base rung numbered 0 and increasing. In order to have a concrete example to refer to
later, Figure 3.1(a) shows the rungs for bracket O for an example setting withn = 9,r =1, R =9,

58

and 1 = 3, while Figure 3.1(b) shows how resource allocations change for different brackets s.
Namely, the starting budget per configuration ry < R increases by a factor of 7 per increment of
s.

Straightforward ways of parallelizing SHA are not well suited for the parallel regime. We
could consider the embarrassingly parallel approach of running multiple instances of SHA, one on
each worker. However, this strategy is not well suited for the large-scale regime, where we would
like results in little more than the time to train one configuration. To see this, assume that training
time for a configuration scales linearly with the allocated resource and time(R) represents the time
required to train a configuration for the maximum resource 1. In general, for a given bracket s, the
minimum time to return a configuration trained to completion is (log, (R/r) — s 4 1) x time(R),
where log, (12/r) — s + 1 counts the number of rungs. For example, consider Bracket 0 in the toy
example in Figure 3.1. The time needed to return a fully trained configuration is 3 x time(R),
since there are three rungs and each rung is allocated I? resource. In contrast, as we will see in the
next section, our parallelization scheme for SHA can return an answer in just time(R).

bracket s rung: n; r; total budget

0 0 9 1 9

§_“ 1 3 3 9

2 2 1 9 9

1 0 9 3 27

1 3 9 27

(a) Visual depiction of the promotion scheme for 2 0 9 9 81

bracket s = 0. (b) Promotion scheme for different brackets s.

Figure 3.1: Promotion scheme for SHA withn =9,r =1, R=9,and n = 3.

Another naive way of parallelizing SHA is to distribute the training of the n/n* surviving
configurations on each rung k as is done by Falkner et al. [2018] and add brackets when there
are no jobs available in existing brackets. We will refer to this method as “synchronous” SHA.
The efficacy of this strategy is severely hampered by two issues: (1) SHA’s synchronous nature
is sensitive to stragglers and dropped jobs as every configuration within a rung must complete
before proceeding to the next rung, and (2) the estimate of the top 1/7 configurations for a given
early-stopping rate does not improve as more brackets are run since promotions are performed
independently for each bracket. We will demonstrate the susceptibility of synchronous SHA to
stragglers and dropped jobs on simulated workloads in Section 3.3.3.

3.3.2 Asynchronous SHA (ASHA)

We now introduce ASHA as an effective technique to parallelize SHA, leveraging asynchrony to
mitigate stragglers and maximize parallelism. Intuitively, ASHA promotes configurations to the
next rung whenever possible instead of waiting for a rung to complete before proceeding to the
next rung. Additionally, if no promotions are possible, ASHA simply adds a configuration to the
base rung, so that more configurations can be promoted to the upper rungs. ASHA is formally
defined in Algorithm 3. Given its asynchronous nature it does not require the user to pre-specify

59

Algorithm 3: Asynchronous Successive Halving Algorithm.

1 Input: minimum resource r, maximum resource R, reduction factor 7, minimum
early-stopping rate s

2 Algorithm ASHA()

repeat

for each free worker do
(6, k) = get_job()
run_then_return_val loss(6, rn*t*)

end

for completed job (0, k) with loss [do

‘ Update configuration 6 in rung k& with loss /.

10 end

11 Procedure get_job()

12 // Check to see if there is a promotable config.

13 for k = [log,(R/r)] —s—1,...,1,0do

N=-CHE S B Y T

14 candidates = top_k(rung k, |rung k|/n)

15 promotable = {t for ¢ € candidates if ¢ not already promoted }
16 if |promotable| > 0 then

17 | return promotable[0], k + 1

18 end

19 end

20 Draw random configuration 6. // If not, grow bottom rung.

21 return 6, 0

the number of configurations to evaluate, but it otherwise requires the same inputs as SHA. Note
that the run_then_return_val loss subroutine in ASHA is asynchronous and the code execution
continues after the job is passed to the worker. ASHA’s promotion scheme is laid out in the
get_job subroutine.

ASHA is well-suited for the large-scale regime, where wall-clock time is constrained to a
small multiple of the time needed to train a single model. For ease of comparison with SHA,
assume training time scales linearly with the resource. Consider the example of Bracket O shown
in Figure 3.1, and assume we can run ASHA with 9 machines. Then ASHA returns a fully trained
configuration in 13/9 x time(R), since 9 machines are sufficient to promote configurations to
the next rung in the same time it takes to train a single configuration in the rung. Hence, the
training time for a configuration in rung 0 is 1/9 x time(R), for rung 1 it is 1/3 x time(R), and
for rung 2 it is time(R). In general, 1°#7)=* machines are needed to advance a configuration
to the next rung in the same time it takes to train a single configuration in the rung, and it takes
n°+i7180 () time(R) to train a configuration in rung . Hence, ASHA can return a configuration
trained to completion in time

log,, (R)

(3 nilognw)) x time(R) < 2time(R).

1=s

60

train std: 0.10) train std: 0.24 train std: 0.67 train std: 1.00

train std: 0.56) train std: 1.33 train std: 1.33 train std: 1.67
—— ASHA

16- 16 - SHA

configurations trained for R
&
-
5
time until first configuration trained for R
I
2
8
I
8
8

250 - 250 - —— ASHA
SHA

- 0- 0-
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 00 05 10 15 20 25 3.0 00 05 1.0 15 20 25 3.0
le-2 le-3

le—2 To—
drop probability drop probability

(a) Average number of configurations trained on R (b) Average time before a configuration is trained
resource. on R resource.

Figure 3.2: Simulated workloads comparing impact of stragglers and dropped jobs. The
number of configurations trained for I? resource (left) is higher for ASHA than synchronous
SHA when the standard deviation is high. Additionally, the average time before a configuration
is trained for R resource (right) is lower for ASHA than for synchronous SHA when there is
high variability in training time (i.e., stragglers). Hence, ASHA is more robust to stragglers and
dropped jobs than synchronous SHA since it returns a completed configuration faster and returns
more configurations trained to completion.

Moreover, when training is iterative, ASHA can return an answer in time(R), since incrementally
trained configurations can be checkpointed and resumed.

Finally, since Hyperband simply runs multiple SHA brackets, we can asynchronously paral-
lelize Hyperband by either running multiple brackets of ASHA or looping through brackets of
ASHA sequentially as is done in the original Hyperband. We employ the latter looping scheme
for asynchronous Hyperband in the next section.

3.3.3 Comparison of Synchronous SHA and ASHA

We now verify that ASHA is indeed more robust to stragglers and dropped jobs using simulated
workloads. For these simulations, we run synchronous SHA with n = 4, r = 1, R = 256, and
n = 256 and ASHA with the same values and the maximum early-stopping rate s = (. Note that
BOHB [Falkner et al., 2018], one of the competitors we empirically compare to in Section 3.4, is
also susceptible to stragglers and dropped jobs since it uses synchronous SHA as its parallelization
scheme but leverages Bayesian optimization to perform adaptive sampling.

For these synthetic experiments, we assume that the expected training time for each job is the
same as the allocated resource. We simulate stragglers by multiplying the expected training time

61

by (1 + |z|) where z is drawn from a normal distribution with mean 0 and a specified standard
deviation. We simulated dropped jobs by assuming that there is a given p probability that a job
will be dropped at each time unit, hence, for a job with a runtime of 256 units, the probability that
it is not dropped is 1 — (1 — p)?°.

Figure 3.2 shows the number of configurations trained to completion (left) and time required
before one configuration is trained to completion (right) when running synchronous SHA and
ASHA using 25 workers. For each combination of training time standard deviation and drop
probability, we simulate ASHA and synchronous SHA 25 times and report the average. As can
be seen in Figure 3.2a, ASHA trains many more configurations to completion than synchronous
SHA when the standard deviation is high; we hypothesize that this is one reason ASHA performs
significantly better than synchronous SHA and BOHB for the second benchmark in Section 3.4.2.
Figure 3.2b shows that ASHA returns a configuration trained for the maximum resource R much
faster than synchronous SHA when there is high variability in training time (i.e., stragglers) and
high risk of dropped jobs. Although ASHA is more robust than synchronous SHA to stragglers
and dropped jobs on these simulated workloads, we nonetheless compare synchronous SHA in
Section 3.4.5 and show that ASHA performs better.

3.3.4 Algorithm Discussion

ASHA is able to remove the bottleneck associated with synchronous promotions by incurring
a small number of incorrect promotions, i.e. configurations that were promoted early on but
are not in the top 1/7n of configurations in hindsight. By the law of large numbers, we expect
to erroneously promote a vanishing fraction of configurations in each rung as the number of
configurations grows. Intuitively, in the first rung with n evaluated configurations, the number of
mispromoted configurations is roughly /n, since the process resembles the convergence of an
empirical cumulative distribution function (CDF) to its expected value [Dvoretzky et al., 1956].
For later rungs, although the configurations are no longer i.i.d. since they were advanced based on
the empirical CDF from the rung below, we expect this dependence to be weak.

We further note that ASHA improves upon SHA in two ways. First, in Chapter 2.5 we
discussed two SHA variants: finite horizon (bounded resource R per configuration) and infinite
horizon (unbounded resources R per configuration). ASHA consolidates these settings into one
algorithm. In Algorithm 3, we do not promote configurations that have been trained for R, thereby
restricting the number of rungs. However, this algorithm trivially generalizes to the infinite
horizon; we can remove this restriction so that the maximum resource per configuration increases
naturally as configurations are promoted to higher rungs. In contrast, SHA does not naturally
extend to the infinite horizon setting, as it relies on the doubling trick and must rerun brackets
with larger budgets to increase the maximum resource.

Additionally, SHA does not return an output until a single bracket completes. In the finite
horizon this means that there is a constant interval of (# of rungs x time(R)) between receiving
outputs from SHA. In the infinite horizon this interval doubles between outputs. In contrast,
ASHA grows the bracket incrementally instead of in fixed budget intervals. To further reduce
latency, ASHA uses intermediate losses to determine the current best performing configuration,
as opposed to only considering the final SHA outputs.

62

3.4 Experiments

We start with experiments in the sequential setting to verify that SHA/Hyperband achieves state-
of-the-art performance and study the impact of asynchronous promotions on the performance of
ASHA. We next evaluate ASHA in parallel environments on three benchmark tasks.

3.4.1 Sequential Experiments

We benchmark Hyperband and SHA against PBT, BOHB (synchronous SHA with Bayesian
optimization as introduced by Falkner et al. [2018]), and Fabolas, and examine the relative
performance of SHA versus ASHA and Hyperband versus asynchronous Hyperband. As men-
tioned previously, asynchronous Hyperband loops through brackets of ASHA with different
early-stopping rates.

~ CIFAR10 Using Small Cuda Convnet Model 02(%IFARlO Using Small CNN Architecture Tuning Task

— SHA —— ASHA i —— SHA —¢— ASHA

: "1 —— Hyperband Hyperband (async)
Random —— BOHB

PBT

—— Hyperband Hyperband (async) 0.25 -
Random —— BOHB
PBT

560 10‘00 1550 20‘00 25‘00 é 560 10‘00 15‘00 20‘00 25‘00
Duration (Minutes) Duration (Minutes)

Figure 3.3: Sequential experiments (1 worker). Average across 10 trials is shown for each

hyperparameter optimization method. Gridded lines represent top and bottom quartiles of trials.

We compare ASHA against PBT, BOHB, and synchronous SHA on two benchmarks for
CIFAR-10: (1) tuning a convolutional neural network (CNN) with the cuda-convnet architecture
and the same search space as that considered in the experiments in Chapter 2.4.1; and (2) tuning a
CNN architecture with varying number of layers, batch size, and number of filters. The details
for the search spaces considered and the settings we used for each search method can be found
in Section 3.6.2. Note that BOHB uses SHA to perform early-stopping and differs only in how
configurations are sampled; while SHA uses random sampling, BOHB uses Bayesian optimization
to adaptively sample new configurations. In the following experiments, we run BOHB using the
same early-stopping rate as SHA and ASHA instead of looping through brackets with different
early-stopping rates as is done by Hyperband.

The results on these two benchmarks are shown in Figure 3.3. On benchmark 1, Hyperband
and all variants of SHA (i.e., SHA, ASHA, and BOHB) outperform PBT by 3 x. On benchmark 2,
while all methods comfortably beat random search, SHA, ASHA, BOHB and PBT performed
similarly and slightly outperform Hyperband and asynchronous Hyperband. This last observation
(1) corroborates the results in Chapter 2.4, which found that the brackets with the most aggressive
early-stopping rates performed the best; and (i1) follows from the discussion in Section 3.2
noting that PBT is more similar in spirit to SHA than Hyperband, as PBT / SHA both require

63

user-specified early-stopping rates (and are more aggressive in their early-stopping behavior in
these experiments). We observe that SHA and ASHA are competitive with BOHB, despite the
adaptive sampling scheme used by BOHB. Additionally, for both tasks, introducing asynchrony
does not consequentially impact the performance of ASHA (relative to SHA) or asynchronous
Hyperband (relative to Hyperband). This not surprising; as discussed in Section 3.3.4, we expect
the number of ASHA mispromotions to be square root in the number of configurations.

Finally, due to the nuanced nature of the evaluation framework used by Klein et al. [2017a], we
present our results on 4 different benchmarks comparing Hyperband to Fabolas in Section 3.6.1.
In summary, our results show that Hyperband, specifically the first bracket of SHA, tends to
outperform Fabolas while also exhibiting lower variance across experimental trials.

3.4.2 Limited-Scale Distributed Experiments

We next compare ASHA to synchronous SHA, the parallelization scheme discussed in Sec-
tion 3.3.1; BOHB; and PBT on the same two tasks. For each experiment, we run each search
method with 25 workers for 150 minutes. We use the same setups for ASHA and PBT as in the
previous section. We run synchronous SHA and BOHB with default settings and the same 7 and
early-stopping rate as ASHA.

Figure 3.4 shows the average test error across 5 trials for each search method. On benchmark
1, ASHA evaluated over 1000 configurations in just over 40 minutes with 25 workers and found
a good configuration (error rate below 0.21) in approximately the time needed to train a single
model, whereas it took ASHA nearly 400 minutes to do so in the sequential setting (Figure 3.3).
Notably, we only achieve a 10x speedup on 25 workers due to the relative simplicity of this
task, i.e., it only required evaluating a few hundred configurations to identify a good one in the
sequential setting. In contrast, for the more difficult search space used in benchmark 2, we observe
linear speedups with ASHA, as the ~ 700 minutes needed in the sequential setting (Figure 3.3) to
reach a test error below 0.23 is reduced to under 25 minutes in the distributed setting.

Compared to synchronous SHA and BOHB, ASHA finds a good configuration 1.5x as fast on
benchmark 1 while BOHB finds a slightly better final configuration. On benchmark 2, ASHA
performs significantly better than synchronous SHA and BOHB due to the higher variance
in training times between configurations (the average time required to train a configuration
on the maximum resource 2 is 30 minutes with a standard deviation of 27 minutes), which
exacerbates the sensitivity of synchronous SHA to stragglers (see Section 3.3.3). BOHB actually
underperforms synchronous SHA on benchmark 2 due to its bias towards more computationally
expensive configurations, reducing the number of configurations trained to completion within the
given time frame.

We further note that ASHA outperforms PBT on benchmark 1; in fact the minimum and
maximum range for ASHA across 5 trials does not overlap with the average for PBT. On bench-
mark 2, PBT slightly outperforms asynchronous Hyperband and performs comparably to ASHA.
However, note that the ranges for the searchers share large overlap and the result is likely not
significant. Overall, ASHA outperforms PBT, BOHB and SHA on these two tasks. This improved
performance, coupled with the fact that it is a more principled and general approach than either
BOHB or PBT (e.g., agnostic to resource type and robust to hyperparameters that change the size
of the model), further motivates its use for the large-scale regime.

64

e CIFAR10 Using Small Cuda Convnet Model 02(%IFARIO Using Small CNN Architecture Tuning Task
ey il —e ASHA |

0.25 -— PBT
i — SHA
0.24- —— BOHB

Test Error
Test Error

46 Gb Sb 160 1é0 11‘lO O 2‘0 4‘0 6‘0 8‘0 100 1é0 14‘lO
Duration (Minutes) Duration (Minutes)

Figure 3.4: Limited-scale distributed experiments with 25 workers. For each searcher, the
average test error across 5 trials is shown in each plot. The light dashed lines indicate the min/max
ranges. The dotted black line represents the time needed to train the most expensive model
in the search space for the maximum resource R. The dotted blue line represents the point at
which 25 workers in parallel have performed as much work as a single machine in the sequential
experiments (Figure 3.3).

3.4.3 Tuning Neural Network Architectures

Motivated by the emergence of neural architecture search (NAS) as a specialized hyperparameter
optimization problem, we evaluate ASHA and competitors on two NAS benchmarks: (1) designing
convolutional neural networks (CNN) for CIFAR-10 and (2) designing recurrent neural networks
(RNN) for Penn Treebank [Marcus et al., 1993]. We use the same search spaces as that considered
by Liu et al. [2019] (see Section 3.6.4 for more details).

NAS CNN Search Space on CIFAR-10 NAS RNN Search Space on PTB

100 -

! | { —— ASHA
95- | { | —— BOHB
} | — SHA

90 -

85 -

80 -

Test Error
o
(=]
=S

75 -

Validation Perplexity

70 -

65 -

E) 260 460 660 860 10‘00 12‘00 14‘00 60 2) 160 260 360 460 560 660

Duration (Minutes) Duration (Minutes)
Figure 3.5: Tuning neural network architectures with 16 workers. For each searcher, the
average test error across 4 trials is shown in each plot. The light dashed lines indicate the min/max

ranges.

For both benchmarks, we ran ASHA, SHA, and BOHB on 16 workers with » = 4 and a
maximum resource of R = 300 epochs. The results in Figure 3.5 shows ASHA outperforms
SHA and BOHB on both benchmarks. Our results for CNN search show that ASHA finds an
architecture with test error below 10% nearly twice as fast as SHA and BOHB. ASHA also
finds final architectures with lower test error on average: 3.24% for ASHA vs 3.42% for SHA

65

~
IS)

LSTM with DropConnect on PTB

PBT
—— ASHA
—— BOHB
— SHA

Validation Perplexity
()] (2] [*)]
s (=] 4]

o
¥}

o
=]

0 200 400 600 800 1000 1200 1400
Duration (Minutes)

Figure 3.6: Modern LSTM benchmark with DropConnect [Merity et al., 2018] using 16 GPUs.
The average across 5 trials is shown, with dashed lines indicating min/max ranges.

and 3.36% for BOHB. Our results for RNN search show that ASHA finds an architecture with
validation perplexity below 80 nearly trice as fast as SHA and BOHB and also converges an
architecture with lower perplexity: 63.5 for ASHA vs 64.3 for SHA and 64.2 for BOHB. Note
that vanilla PBT is incompatible with these search spaces since it is not possible to warmstart
training with weights from a different architecture.

3.4.4 Tuning Modern LSTM Architectures

As a followup to the experiment in Section 3.4.3, we consider a search space for language
modeling that is able to achieve near state-of-the-art performance. Our starting point was the
work of Merity et al. [2018], which introduced a near state-of-the-art LSTM architecture with a
more effective regularization scheme called DropConenct. We constructed a search space around
their configuration and ran ASHA and PBT, each with 16 GPUS on one p2.16xlarge instance on
AWS. Additional details for this experiment along with the hyperparameters that we considered
are available in Section 3.6.5.

Figure 3.6 shows that while PBT performs better initially, ASHA soon catches up and finds a
better final configuration; in fact, the min/max ranges for ASHA and PBT do not overlap at the
end. ASHA is also faster than SHA and BOHB at finding a good configuration and converges to a
better hyperparameter setting.

We then trained the best configuration found by ASHA for more epochs and reached validation
and test perplexities of 60.2 and 58.1 respectively before fine-tuning and 58.7 and 56.3 after fine-
tuning. For reference, Merity et al. [2018] reported validation and test perplexities respectively
of 60.7 and 58.8 without fine-tuning and 60.0 and 57.3 with fine-tuning. This demonstrates
the effectiveness of ASHA in the large-scale regime for modern hyperparameter optimization
problems.

3.4.5 Tuning Large-Scale Language Models

In this experiment, we increase the number of workers to 500 to evaluate ASHA for massively
parallel hyperparameter tuning. Our search space is constructed based off of the LSTMs considered

66

LSTM on PTB

fi — asHA Vizier
88 - “\: — Hyperband (Loop Brackets) -
d

Perplexity

| | | | | | |
OR 1R 2R 3R 4R 5R 6R

Figure 3.7: Large-scale ASHA benchmark requiring weeks to run with 500 workers. The x-axis
is measured in units of average time to train a single configuration for R resource. The average
across 35 trials is shown, with dashed lines indicating min/max ranges.

in Zaremba et al. [2014], with the largest model in our search space matching their large LSTM
(see Section 3.6.6). For ASHA, we set 7 = 4, r = £/64, and s = 0; asynchronous Hyperband
loops through brackets s = 0,1,2,3. We compare to Vizier without the performance curve
early-stopping rule [Golovin et al., 2017].!

The results in Figure 3.7 show that ASHA and asynchronous Hyperband found good configu-
rations for this task in 1 x time(R). Additionally, ASHA and asynchronous Hyperband are both
about 3 x faster than Vizier at finding a configuration with test perplexity below 80, despite being
much simpler and easier to implement. Furthermore, the best model found by ASHA achieved
a test perplexity of 76.6, which is significantly better than 78.4 reported for the large LSTM in
Zaremba et al. [2014]. We also note that asynchronous Hyperband initially lags behind ASHA,
but eventually catches up at around 1.5 x time(R).

Notably, we observe that certain hyperparameter configurations in this benchmark induce
perplexities that are orders of magnitude larger than the average case perplexity. Model-based
methods that make assumptions on the data distribution, such as Vizier, can degrade in performance
without further care to adjust this signal. We attempted to alleviate this by capping perplexity
scores at 1000 but this still significantly hampered the performance of Vizier. We view robustness
to these types of scenarios as an additional benefit of ASHA and Hyperband.

3.5 Productionizing ASHA

While integrating ASHA in Determined AI’s software platform to deliver production-quality
hyperparameter tuning functionality, we encountered several fundamental design decisions that
impacted usability, computational performance, and reproducibility. We next discuss each of these
design decisions along with proposed systems optimizations for each decision.

I At the time of running the experiment, it was brought to our attention by the team maintaining the Vizier service
that the early-stopping code contained a bug which negatively impacted its performance. Hence, we omit the results
here.

67

3.5.1 Usability

Ease of use is one of the most important considerations in production; if an advanced method
is too cumbersome to use, its benefits may never be realized. In the context of hyperparameter
optimization, classical methods like random or grid search require only two intuitive inputs:
number of configurations (n) and training resources per configuration (R). In contrast, as a
byproduct of adaptivity, all of the modern methods we considered in this chapter have many
internal hyperparameters. ASHA in particular has the following internal settings: elimination rate
7, early-stopping rate s, and, in the case of asynchronous Hyperband, the brackets of ASHA to
run. To facilitate use and increase adoption of ASHA, we simplify its user interface to require the
same inputs as random search and grid search, exposing the internal hyperparameters of ASHA
only to advanced users.

Selecting ASHA default settings. Our experiments in Section 3.4, as well as those in Chap-
ter 2.4, show that aggressive early-stopping is effective across a variety of different hyperparameter
tuning tasks. Hence, using both works as guidelines, we propose the following default settings for
ASHA:

¢ Elimination rate: we set 7 = 4 so that the top 1/4 of configurations are promoted to the next
rung.

¢ Maximum early-stopping rate: we set the maximum early-stopping rate for bracket s, to
allow for a maximum of 5 rungs which indicates a minimum resource of r = (1/44)R =
R/256. Then the minimum resource per configuration for a given bracket s is r; = rn°.

¢ Brackets to run: to increase robustness to misspecification of the early-stopping rate, we
default to running the three most aggressively early-stopping brackets s = 0, 1, 2 of ASHA.
We exclude the two least aggressive brackets (i.e. s4 with 4 = R and s3 with r3 = R/4) to
allow for higher speedups from early-stopping. We define this default set of brackets as
the ‘standard’ set of early-stopping brackets, though we also expose the options for more
conservative or more aggressive bracket sets.

Using n as ASHA'’s stopping criterion. Algorithm 3 does not specify a stopping criterion;
instead, it relies on the user to stop once an implicit condition is met, e.g., number of configurations
evaluated, compute time, or minimum performance achieved. In a production environment, we
decided to use the number of configurations n as an explicit stopping criterion both to match
the user interface for random and grid search, and to provide an intuitive connection to the
underlying difficulty of the search space. In contrast, setting a maximum compute time or
minimum performance threshold requires prior knowledge that may not be available.

From a technical perspective, n is allocated to the different brackets while maintaining the
same total training resources across brackets. We do this by first calculating the average budget per
configuration for a bracket (assuming no incorrect promotions), and then allocating configurations
to brackets according to the inverse of this ratio. For concreteness, let B be the set of brackets we
are considering, then the average resource for a given bracket s is 7y = # of Rungs/pllosy #/r]=s_For
the default settings described above, this corresponds to 7y = 5/256, 7, = 4/64, and 75 = 3/16,
and further translates to 70.5%), 22.1%, and 7.1% of the configurations being allocated to brackets
S0, S1, and s, respectively.

Note that we still run each bracket asynchronously; the allocated number of configurations n

68

for a particular bracket s simply imposes a limit on the width of the bottom rung. In particular,
upon reaching the limit n, in the bottom rung, the number of pending configurations in the bottom
rung is at most equal to the number of workers, k. Therefore, since blocking occurs once a bracket
can no longer add configuration to the bottom rung and must wait for promotable configurations,
for large-scale problems where ns > k, limiting the width of rungs will not block promotions
until the bracket is near completion. In contrast, synchronous SHA is susceptible to blocking from
stragglers throughout the entire process, which can greatly reduce both the latency and throughput
of configurations promoted to the top rung (e.g. Section 3.4.2 and Section 3.3.3).

3.5.2 Automatic Scaling of Parallel Training

The promotion schedule for ASHA geometrically increases the resource per configuration as we
move up the rungs of a bracket. Hence, the average training time for configurations in higher
rungs increases drastically for computation that scales linearly or super-linearly with the training
resource, presenting an opportunity to speed up training by using multiple GPUs. We explore
autoscaling of parallel training to exploit this opportunity when resources are available.

We determine the maximum degree of parallelism for autoscaling a training task using an
efficiency criteria motivated by the observation that speedups from parallel training do not scale
linearly with the number of GPUs [Goyal et al., 2017, Krizhevsky, 2014, Szegedy et al., 2015,
You et al., 2017, You et al., 2017]. More specifically, we can use the Paleo framework, introduced
by Qi et al. [2017], to estimate the cost of training neural networks in parallel given different
specifications. Qi et al. [2017] demonstrated that the speedups from parallel training computed
using Paleo are fairly accurate when compared to the actual observed speedups for a variety of
models.

Figure 3.8 shows Paleo applied to Inception on ImageNet [Murray et al., 2016] to estimate
the training time with different numbers of GPUs under strong scaling (i.e. fixed batch size with
increasing parallelism), Butterfly AlIReduce communication scheme, specified hardware settings
(namely Tesla K80 GPU and 20G Ethernet), and a batch size of 1024.

The diminishing returns when using more GPUs to train a single model is evident in Figure 3.8.
Additionally, there is a tradeoff between using resources to train a model faster to reduce latency
versus evaluating more configurations to increase throughput. Using the predicted tradeoff curves
generated using Paleo, we can automatically limit the number of GPUs per configuration to control
efficiency relative to perfect linear scaling, e.g., if the desired level of efficiency is at least 75%,
then we would limit the number of GPUs per configuration for Inception to at most 16 GPUs.

3.5.3 Resource Allocation

Whereas research clusters often require users to specify the number of workers requested and
allocate workers on a first-in-first-out (FIFO) fashion, this scheduling mechanism is poorly suited
for production settings for two main reasons. First, as we discuss below in the context of ASHA,
machine learning workflows can have variable resource requirements over the lifetime of a job,
and forcing users to specify static resource requirements can result in suboptimal cluster utilization.
Second, FIFO scheduling can result in poor sharing of cluster resources among users, as a single
large job could saturate the cluster and block all other user jobs.

69

Inception

23 - 1 days
3 days
22 - 6 days
—— 9 days
16 days
—— 24 days

of Models Evaluated

N
=

2 21 22 23 24 25 26 27
of GPUs per Model

Figure 3.8: Tradeoffs for parallel training of Imagenet using Inception V3. Given that each
configuration takes 24 days to train on a single Tesla K80 GPU, we chart the estimated number
(according to the Paleo performance model) of configurations evaluated by 128 Tesla K80s as a
function of the number of GPUs used to train each model for different time budgets. The dashed
line for each color represents the number of models evaluated under perfect scaling, i.e. n GPUs
train a single model n times as fast, and span the feasible range for number of GPUs per model in
order to train within the allocated time budget. As expected, more GPUs per configuration are
required for smaller time budgets and the total number of configurations evaluated decreases with
number of GPUs per model due to decreasing marginal benefit.

We address these issues with a centralized fair-share scheduler that adaptively allocates
resources over the lifetime of each job. Such a scheduler must both (i) determine the appropriate
amount of parallelism for each individual job, and (ii) allocate computational resources across
all user jobs. In the context of an ASHA workload, the scheduler automatically determines the
maximum resource requirement at any given time based on the inputs to ASHA and the parallel
scaling profile determined by Paleo. Then, the scheduler allocates cluster resources by considering
the resource requirements of all jobs while maintaining fair allocation across users. We describe
each of these components in more detail below.

Algorithm level resource allocation. Recall that we propose to use the number of configura-
tions, n, as a stopping criteria for ASHA in production settings. Crucially, this design decision
limits the maximum degree of parallelism for an ASHA job. If n is the number of desired
configurations for a given ASHA bracket and x the maximum allowable training parallelism,
e.g., as determined by Paleo, then at initialization, the maximum parallelism for the bracket is
nk. We maintain a stack of training tasks S that is populated initially with all configurations
for the bottom rung n. The top task in S is popped off whenever a worker requests a task and
promotable configurations are added to the top of S when tasks complete. As ASHA progresses,
the maximum parallelism is adaptively defined as x|S|. Hence, an adaptive worker allocation
schedule that relies on x|S| would improve cluster utilization relative to a static allocation scheme,
without adversely impacting performance.

Cluster level resource allocation. Given the maximum degree of parallelism for any ASHA
job, the scheduler then allocates resources uniformly across all jobs while respecting these
maximum parallelism limits. We allow for an optional priority weighting factor so that certain jobs

70

can receive a larger ratio of the total computational resources. Resource allocation is performed
using a water-filling scheme where any allocation above the maximum resource requirements for
a job are distributed evenly to remaining jobs.

For concreteness, consider a scenario in which we have a cluster of 32 GPUs shared between
a group of users. When a single user is running an ASHA job with 8 configurations in S; and a
maximum training parallelism of x; = 4, the scheduler will allocate all 32 GPUs to this ASHA
job. When another user submits an ASHA job with a maximum parallelism of x5|Ss| = 64, the
central scheduler will then allocate 16 GPUs to each user. This simple scenario demonstrate
how our central scheduler allows jobs to benefit from maximum parallelism when the computing
resources are available, while maintaining fair allocation across jobs in the presence of resource
contention.

3.5.4 Reproducibility in Distributed Environments

Reproducibility is critical in production settings to instill trust during the model development
process; foster collaboration and knowledge transfer across teams of users; and allow for fault tol-
erance and iterative refinement of models. However, ASHA introduces two primary reproducibility
challenges, each of which we describe below.

Pausing and restarting configurations. There are many sources of randomness when train-
ing machine learning models; some source can be made deterministic by setting the random seed,
while others related to GPU floating-point computations and CPU multi-threading are harder
to avoid without performance ramifications. Hence, reproducibility when resuming promoted
configurations requires carefully checkpointing all stateful objects pertaining to the model. At a
minimum this includes the model weights, model optimizer state, random number generator states,
and data generator state. We provide a checkpointing solution that facilitates reproducibility in
the presence of stateful variables and seeded random generators. The availability of deterministic
GPU floating-point computations is dependent on the deep learning framework, but we allow
users to control for all other sources of randomness during training.

Asynchronous promotions. To allow for full reproducibility of ASHA, we track the sequence
of all promotions made within a bracket. This sequence fixes the nondeterminism from asynchrony,
allowing subsequent replay of the exact promotions as the original run. Consequently, we can
reconstruct the full state of a bracket at any point in time, i.e. which configurations are on which
rungs and which training tasks are in the stack.

Taken together, reproducible checkpoints and full bracket states allow us to seamlessly resume
hyperparameter tuning jobs when crashes happen and allow users to request to evaluate more
configurations if desired. For ASHA, refining hyperparameter selection by resuming an existing
bracket is highly beneficial, since a wider rung gives better empirical estimates of the top 1/7
configurations.

3.6 Experimental Details

In this section, we present the comparison to Fabolas in the sequential setting and provide
additional details for the empirical results shown in Section 3.4.

71

3.6.1 Comparison with Fabolas in Sequential Setting

Klein et al. [2017a] showed that Fabolas can be over an order of magnitude faster than prior
Bayesian optimization methods. Additionally, the empirical studies presented by Klein et al.
[2017a] suggest that Fabolas is faster than Hyperband at finding a good configuration. We
conducted our own experiments to compare Fabolas with Hyperband on the following tasks:

1. Tuning an SVM using the same search space as that used by Klein et al. [2017a].

2. Tuning a convolutional neural network (CNN) with the same search space as that considered
in Chapter 2.4.1 on CIFAR-10 [Krizhevsky, 2009].

3. Tuning a CNN on SVHN [Netzer et al., 2011] with varying number of layers, batch size,
and number of filters (see Section 3.6.3 for more details).

In the case of the SVM task, the allocated resource is number of training datapoints, while for the
CNN tasks, the allocated resource is the number of training iterations.

We note that Fabolas was specifically designed for data points as the resource, and hence, is
not directly applicable to tasks (2) and (3). However, freeze-thaw Bayesian optimization [Swersky
et al., 2014], which was specifically designed for models that use iterations as the resource, is
known to perform poorly on deep learning tasks [Domhan et al., 2015]. Hence, we believe
Fabolas to be a reasonable competitor for tasks (2) and (3) as well, despite the aforementioned
shortcoming.

We use the same evaluation framework as Klein et al. [2017a], where the best configuration,
also known as the incumbent, is recorded through time and the test error is calculated in an offline
validation step. Following Klein et al. [2017a], the incumbent for Hyperband is taken to be the
configuration with the lowest validation loss and the incumbent for Fabolas is the configuration
with the lowest predicted validation loss on the full dataset. Moreover, for these experiments, we
set n = 4 for Hyperband.

Notably, when tracking the best performing configuration for Hyperband, we consider two
approaches. We first consider the approach proposed in Chapter 2.3 used by Klein et al. [2017a]
in their evaluation of Hyperband. In this variant, which we refer to as “Hyperband (by bracket),”
the incumbent is recorded after the completion of each SHA bracket. We also consider a second
approach where we record the incumbent after the completion of each rung of SHA to make
use of intermediate validation losses, similar to what we propose for ASHA (see discussion in
Section 3.3.4 for details). We will refer to Hyperband using this accounting scheme as “Hyperband
(by rung).” Interestingly, by leveraging these intermediate losses, we observe that Hyperband

actually outperforms Fabolas.

In Figure 3.9, we show the performance of Hyperband, Fabolas, and random search. Our
results show that Hyperband (by rung) is competitive with Fabolas at finding a good configuration
and will often find a better configuration than Fabolas with less variance. Note that Hyperband
loops through the brackets of SHA, ordered by decreasing early-stopping rate; the first bracket
finishes when the test error for Hyperband (by bracket) drops. Hence, most of the progress made
by Hyperband comes from the bracket with the most aggressive early-stopping rate, i.e. bracket 0.

72

SVM on vehicle

SVM on MNIST

0.40 - 0.6 -
—— Hyperband (by rung)
- Hyperband (by bracket)
0.35- — Fabolas 0.5-
Random
0.4 -
§ § —— Hyperband (by rung)
AT i 03- Hyperband (by bracket)
7 9 —— Fabolas
A 2 Random
0.2-
0.1-
0.10- ! ! ! ! ! ! ! \ 0.0 - ‘ ‘ : = : : : ‘
100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

0.40 -

Duration (Minutes)

CIFAR10 Using Small Cuda Convnet Model

Duration (Minutes)

%\zlé-(i)l}l Trained Using Small CNN Architecture Tuning Task

L l —— Hyperband (by rung) —— Hyperband (by rung)
‘_\ —— Hyperband (by bracket) 0.175 - —— Hyperband (by bracket)
0.35- | \1,, —— Fabolas —— Fabolas
Random 0.150 - Random
S 0.30- 5 0.125
= b=
w w0100
- i o
g : g
P 02571 4 F 0.075
0.050 -
0.20 - —
0.025 -
0.15 - ' ' ' ' ' 0.000 ~ ' ' ' ' '
500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Duration (Minutes)

Duration (Minutes)

Figure 3.9: Sequential Experiments (1 worker) with Hyperband running synchronous SHA.
Hyperband (by rung) records the incumbent after the completion of a SHA rung, while Hyperband
(by bracket) records the incumbent after the completion of an entire SHA bracket. The average
test error across 10 trials of each hyperparameter optimization method is shown in each plot.
Dashed lines represent min and max ranges for each tuning method.

73

3.6.2 Experiments in Section 3.4.1 and Section 3.4.2

We use the usual train/validation/test splits for CIFAR-10, evaluate configurations on the validation
set to inform algorithm decisions, and report test error. These experiments were conducted using
g2.2xlarge instances on Amazon AWS.

For both benchmark tasks, we run SHA and BOHB with n = 256, n = 4, s = 0, and set
r = R/256, where R = 30000 iterations of stochastic gradient descent. Hyperband loops through
5 brackets of SHA, moving from bracket s = 0,7 = R/256 to bracket s = 4,7 = R. We run
ASHA and asynchronous Hyperband with the same settings as the synchronous versions. We run
PBT with a population size of 25, which is between the recommended 20-40 [Jaderberg et al.,
2017]. Furthermore, to help PBT evolve from a good set of configurations, we randomly sample
configurations until at least half of the population performs above random guessing.

We implement PBT with truncation selection for the exploit phase, where the bottom 20%
of configurations are replaced with a uniformly sampled configuration from the top 20% (both
weights and hyperparameters are copied over). Then, the inherited hyperparameters pass through
an exploration phase where 3/4 of the time they are either perturbed by a factor of 1.2 or 0.8
(discrete hyperparameters are perturbed to two adjacent choices), and /4 of the time they are
randomly resampled. Configurations are considered for exploitation/exploration every 1000
iterations, for a total of 30 rounds of adaptation. For the experiments in Section 3.4.2, to maintain
100% worker efficiently for PBT while enforcing that all configurations are trained for within
2000 iterations of each other, we spawn new populations of 25 whenever a job is not available
from existing populations.

Hyperparameter Type Values
batch size choice {26 27 28 29}
of layers choice {2,3,4}
of filters choice {16, 32,48, 64}

weight init std 1 continuous log [107*,1071]

weight init std 2 continuous log [1073, 1]

weight init std 3 continuous log [1072, 1]
l5 penalty 1 continuous log [107°, 1]
I penalty 2 continuous log [107°, 1]
I, penalty 3 continuous log [1073, 107
learning rate continuous log [107°,101]

Table 3.1: Hyperparameters for small CNN architecture tuning task.

Vanilla PBT is not compatible with hyperparameters that change the architecture of the neural
network, since inherited weights are no longer valid once those hyperparameters are perturbed.
To adapt PBT for the architecture tuning task, we fix hyperparameters that affect the architecture
in the explore stage. Additionally, we restrict configurations to be trained within 2000 iterations
of each other so a fair comparison is made to select configurations to exploit. If we do not impose
this restriction, PBT will be biased against configurations that take longer to train, since it will be
comparing these configurations with those that have been trained for more iterations.

74

3.6.3 Experimental Setup for the Small CNN Architecture Tuning Task

This benchmark tunes a multiple layer CNN network with the hyperparameters shown in Table 3.1.
This search space was used for the small architecture task on SVHN (Section 3.6.1) and CIFAR-10
(Section 3.4.2). The # of layers hyperparameter indicate the number of convolutional layers before
two fully connected layers. The # of filters indicates the # of filters in the CNN layers with the last
CNN layer having 2 x # filters. Weights are initialized randomly from a Gaussian distribution with
the indicated standard deviation. There are three sets of weight init and [/, penalty hyperparameters;
weight init 1 and /5 penalty 1 apply to the convolutional layers, weight init 2 and /5 penalty 2 to
the first fully connected layer, and weight init 3 and [, penalty 3 to the last fully connected layer.
Finally, the learning rate hyperparameter controls the initial learning rate for SGD. All models use
a fixed learning rate schedule with the learning rate decreasing by a factor of 10 twice in equally
spaced intervals over the training window. This benchmark is run on the SVHN dataset [Netzer
et al., 2011] following Sermanet et al. [2012] to create the train, validation, and test splits.

3.6.4 Experimental Setup for Neural Architecture Search Benchmarks

For NAS benchmarks evaluated in Section 3.4.3, we used the same search space as that considered
by Liu et al. [2019] for designing CNN and RNN cells. We sample architectures from the
associated search space randomly and train them using the same hyperparameter settings as
that used by Liu et al. [2019] in the evaluation stage. We refer the reader to the following code
repository for more details: https://github.com/liamcli/darts_asha.

3.6.5 Tuning Modern LSTM Architectures

For the experiments in Section 3.4.4, we used = 4, r = 1 epoch, R = 256 epochs, and s = 0
for ASHA, SHA, and BOHB. For PBT, we use a population size to 20, a maximum resource of
256 epochs, and perform explore/exploit every 8 epochs using the same settings as the previous
experiments. The hyperparameters that we considered along with their associated ranges are
shown in Table 3.2.

Hyperparameter Type Values
learning rate continuous log 10, 100]
dropout (rnn) continuous [0.15,0.35]

dropout (input) continuous [0.3,0.5]

dropout (embedding) continuous [0.05,0.2]
dropout (output) continuous [0.3,0.5]
dropout (dropconnect) continuous [0.4,0.6]
weight decay continuous log [0.5¢ — 6, 2e — 6]
batch size discrete [15, 20, 25]
time steps discrete (65,70, 75]

Table 3.2: Hyperparameters for 16 GPU near state-of-the-art LSTM task.

75

https://github.com/liamcli/darts_asha

3.6.6 Experimental Setup for Large-Scale Benchmarks

Hyperparameter Type Values
batch size discrete 10, 80]
of time steps discrete 10, 80]
of hidden nodes discrete [200, 1500]
learning rate continuous log [0.01, 100.]
decay rate continuous [0.01,0.99]
decay epochs discrete [1,10]
clip gradients continuous 1,10]
dropout probability continuous [0.1,1.]

weight init range continuous log [0.001, 1]

Table 3.3: Hyperparameters for PTB LSTM task.

The hyperparameters for the LSTM tuning task comparing ASHA to Vizier on the Penn Tree
Bank (PTB) dataset presented in Section 3.4.5 is shown in Table 3.3. Note that all hyperparameters
are tuned on a linear scale and sampled uniform over the specified range. The inputs to the LSTM
layer are embeddings of the words in a sequence. The number of hidden nodes hyperparameter
refers to the number of nodes in the LSTM. The learning rate is decayed by the decay rate after
each interval of decay steps. Finally, the weight initialization range indicates the upper bound
of the uniform distribution used to initialize all weights. The other hyperparameters have their
standard interpretations for neural networks. The default training (929k words) and test (82k
words) splits for PTB are used for training and evaluation [Marcus et al., 1993]. We define
resources as the number of training records, which translates into the number of training iterations
after accounting for certain hyperparameters.

76

Chapter 4

Reuse in Pipeline-Aware Hyperparameter
Optimization

The hyperparameter tuning experiments in Chapter 2.4.2.1 considered a search space for machine
learning pipelines that included methods for data preprocessing, featurization, and model selection.
Such multi-stage machine learning pipeline search spaces will be the focus of this chapter. In
particular, we explore methods to speed up hyperparameter optimization for pipelines by exploiting
the structure inherent in the search space to remove redundant computation. This work extends
the methodology by Sparks [2016, Chapter 6] with strategies to increase potential for reuse in
pipeline search spaces.

4.1 Introduction

Modern machine learning workflows combine multiple stages of data-preprocessing, feature
extraction, and supervised and unsupervised learning [Feurer et al., 2015a, Sinchez et al.,
2013]. The methods considered in each of these stages typically have their own associated
hyperparameters, which must be tuned to achieve high predictive accuracy. Although tools have
been designed to speed up the development and execution of such complex pipelines [Meng et al.,
2016, Pedregosa et al., 2011, Sparks et al., 2017], tuning hyperparameters at various pipeline
stages remains a computationally burdensome task.

Some tuning methods are sequential in nature and recommend hyperparameter configurations
one at a time for evaluation [e.g. Bergstraetal., 2011, Hutter et al., 2011, Snoek et al., 2012], while
other batch mode algorithms like HYPERBAND (Chapter 2) and ASHA (Chapter 3) among others
[e.g. Krueger et al., 2015, Sabharwal et al., 2016] evaluate multiple configurations simultaneously.
In either case, holistically analyzing the functional structure of the resulting collection of evaluated
configurations introduces opportunities to exploit computational reuse in the traditional black-box
optimization problem.

Given a batch of candidate pipeline configurations, it is natural to model the dependencies
between pipelines via a directed acyclic graph (DAG). We can eliminate redundant computation
in the original DAG by collapsing shared prefixes so that pipeline configurations that depend
on the same intermediate computation will share parents, resulting in a merged DAG. We define

77

(a) (b)

Figure 4.1: Three pipelines with overlapping hyperparameter configurations for operations A, B,
and C'. (a) Three independent pipelines. (b) Merged DAG after eliminating shared prefixes.

. . TopFeatures NaiveBayes
Data ->[Trim J—>E_owercasej—>[Tokenizer J—>[nGrams]—>[Transformer J*[Model J

(a) Example pipeline for text classification.

(c) Post-elimination pipeline.

(b) Pre-elimination pipeline.

Figure 4.2: Ten sampled hyperparameter configurations for the pipeline in 4.2a before and after
common prefix elimination.

pipeline-aware hyperparameter tuning as the task of leveraging this merged DAG to evaluate
hyperparameter configurations, with the goal being to exploit reuse for improved efficiency.

Consider the example of the three toy pipelines in Figure 4.1(a). All of them have the identical
configuration for operator A, and the first two have the same configuration for operator B, leading
to the merged DAG illustrated in Figure 4.1(b). Whereas treating each configuration independently
requires computing node A, ; three times and node B, twice, operating on the merged DAG
allows us to compute each node once. Figure 4.2 illustrates the potential for reuse via merged
DAGs in a more realistic problem.

In this chapter, we tackle the problem of pipeline-aware hyperparameter tuning, by optimizing
both the design and evaluation of merged DAGs to maximally exploit reuse. In particular, we
identify the following three core challenges, and our associated contributions addressing them.

78

Designing Reusable DAGs. Hyperparameter configurations are typically randomly sampled,
often from continuous search spaces. The resulting merged DAGs consequently are extremely
limited in terms of their shared prefixes, which fundamentally restricts the amount of possible
reuse. To overcome this limitation, we introduce a novel configuration selection method that
encourages shared prefixes. Our proposed approach gridded random search limits the branching
factor of continuous hyperparameters, while performing more exploration than standard grid
search.

Designing Balanced DAGs. Modern learning models are computationally expensive to train.
Therefore, the leaf nodes of the DAG can be more expensive to evaluate than intermediate
nodes, limiting the impact of reuse. To balance backloaded computation, we propose using
hyperparameter tuning strategies that exploit early-stopping and partial training. These approaches
can be interpreted as converting a single, expensive training node into a sequence of cheaper
training nodes, resulting in a more balanced DAG. In particular, we show how the successive
halving algorithm presented in Chapter 2 can be used to significantly reduce total training time.

Exploiting Reuse via Caching. Exploiting reuse requires an efficient cache strategy suitable
for machine learning pipelines, which can have highly variable computational profiles at different
nodes. Although the general problem of caching is well studied in computer science [McGeoch
and Sleator, 1991, Sleator and Tarjan, 1985], there is limited work on caching machine learning
workloads, where the cost of computing an item can depend on the state of the cache. Surprisingly,
our results demonstrate that the least-recently used (LRU) cache eviction heuristic used in many
frameworks (e.g., scikit-learn and MLIib) is not well suited for this setting, and we thus propose
using WRECIPROCAL [Gunda et al., 2010], a caching strategy that accounts for both the size
and the computational cost of an operation.

In Section 4.5, we apply these three complementary approaches to real pipelines and show
that pipeline-aware hyperparameter tuning can offer more than an order-of-magnitude speedup
compared with the standard practice of evaluating each pipeline independently.

4.2 Related Work

Hyperparameter tuning and caching are both areas with extensive prior work. We highlight
pertinent results in both areas in the context of reuse.

Hyperparameter Tuning Methods. The classical hyperparameter tuning method grid search
is naturally amenable to reuse via prefix sharing. However, random search performs better in
practice than grid search [Bergstra and Bengio, 2012]. Our gridded random search approach
combines the best of both of these classical methods (reuse from grid search and improved
accuracy from random search).

Early-stopping methods like successive halving and others mentioned in Chapter 2 and
Chapter 3 reduce average training time per configuration by over an order-of-magnitude. We
leverage this observation by deploying these early stopping methods in a pipeline-aware context
to generate balanced DAGs amenable for reuse.

Caching with Perfect Information. One straightforward way of reusing intermediate com-
putation is to save results to disk. However, the associated I/O costs are large, thus motivating
our exploration of efficient caching in memory as the primary method of realizing reuse in

79

pipeline-aware hyperparameter tuning.

Hence, we study the benefits from reuse of three online strategies: (1) LRU: Least recently
used items are evicted first. LRU is k-competitive with Belady’s algorithm [Sleator and Tarjan,
1985] for the classic paging problem with uniform size and cost.! (2) RECIPROCAL: Items are
evicted with probability inversely proportional to the cost. RECIPROCAL is k-competitive with
the optimal caching strategy for the weighted paging problem [Motwani and Raghavan, 1995]. (3)
WRECIPROCAL.: Items are evicted with probability inversely proportional to cost and directly
proportional to size. WRECIPROCAL is a weighted variant of RECIPROCAL that has been
shown to work well for datacenter management [Gunda et al., 2010].

For the classic paging problem, randomized online caching strategies outperform deterministic
ones and are more robust [Fiat et al., 1991]. However, we include LRU in our comparison since it
is widely used on account of its simplicity (including in some of the machine learning methods
described below). Additionally, there is a large body of work on efficient randomized online
caching policies for the weighted paging problem and generalized paging problem [Bansal et al.,
2008]. Studying the empirical effectiveness of these more recent and complex caching methods
for tuning machine learning pipelines is a direction for future work.

Caching in Machine Learning. Popular frameworks scikit-learn and MLIib offer caching via
the least-recently used heuristic (LRU). Some hyperparameter tuning algorithms like TPOT [Gi-
jsbers et al., 2018] and FLASH [Zhang et al., 2016] also offer LRU caching of intermediate
computation. However, as we show in Section 4.4.3, LRU is unsuitable for machine learning
pipelines.

4.3 DAG Formulation and Analysis

We first formalize the DAG representation of the computation associated with a set of candidate
pipeline configurations. Nodes within the DAG represent the computation associated with each
stage of a single pipeline with specific hyperparameter settings and edges within the DAG
represent the flow of the transformed data to another stage of the pipeline. For a given node,
the cost refers to the time needed to compute the output of the node, while the size refers to the
memory required to store the output. Finally, to construct the merged DAG, we merge two nodes
if (1) they share the same ancestors, indicating they operate on the same data; and (2) they have
the same hyperparameter settings, indicating they represent the same computation.

We can use our DAG representation to gain intuition for potential speedups from reuse. For
simplicity, we assume the cache is unbounded and we can store as many intermediate results as
desired. Additionally, let P be the set of all pipelines considered in the DAG. Next, for a given
pipeline p, let V, represent the nodes associated with each operator within the pipeline and c(v)
be the cost in execution time for a given node v € V,,. Then the total time required to evaluate the
DAG without reuse is TP(P) =3 cp >~ ey, ¢(v).

Let Prerged = UpepV), represent the nodes in the merged DAG, where U is the merge operator
following the rules described above. Then the runtime for the merged DAG is T'P(Prerged) =
> vevy C(v), and the ratio, TP(P)/TP(Pyuy) is the speedup achieved from merging two pipelines.

merged

! An algorithm is k-competitive if its worst case performance is no more than a factor of & worse than the optimal
algorithm, where k denotes the size of the cache.

80

For the purposes of illustration, if one holds ¢(v) constant and assumes that each pipeline has
the same length, |V], it is simple to see that T'P(P) = | P||V'|c(v). For the merged pipeline, if all
the pipelines in the set are disjoint, then 7'P(P) = T'P(Pereea) and the speedup is 1x, indicating
no benefit from reuse. On the other hand, for the maximally redundant pipeline, where all the
pipelines differ only in the last node, the total execution time is 7"P(Pergea) = (|V|+|P|—1)c(v).
Hence, the maximum speedup ratio in this setting is IVII?l/(v|+|p|-1). In the limit, when all
pipelines are long, speedups tend to | P|, while if the number of trajectories dominate, speedups
tend to |V|.

Next, if we relax the assumption that ¢(v) is fixed, and assume instead that merged nodes
are expensive relative to the last stage of the pipeline, the speedups will approach |P|, since a
pipeline with more expensive intermediate nodes is similar to a longer pipeline with fixed cost.
Alternatively, if we assume that the last stage of the pipeline is expensive relative to intermediate
stages, we can interpret this as a long pipeline where many stages are disjoint, and the speedups
will approach 1x. Hence, to maximize speedups from reuse, we need to optimize the design of
DAGs to promote prefix sharing and a balanced computational profile with limited time spent on
training leaf nodes.

4.4 Increasing Potential for Reuse in ML Pipelines

In this section, we delve into our proposed solutions to each of the three core challenges limiting
reuse in machine learning pipelines. Specifically, we introduce gridded random search in Sec-
tion 4.4.1 to increase prefix sharing; demonstrate how early-stopping can balance training-heavy
DAGs by decreasing average training time in Section 4.4.2; and identify suitable caching strategies
for machine learning workloads in Section 4.4.3.

4.4.1 Gridded Random Search versus Random Search

As discussed in Section 4.2, grid search discretizes each hyperparameter dimension, while random
search samples randomly in each dimension. Gridded random is a hybrid of the two approaches
that encourages prefix sharing by controlling the branching factor from each node in a given stage
of the pipeline, promoting a narrower tree-like structure. We show a visual comparison between
grid search and gridded random search in Figure 4.3. The key difference from grid search is
that the children of different parent nodes from the same level are not required to have the same
hyperparameter settings. In effect each node performs a separate instance of gridded random
search for the remaining downstream hyperparameters. Gridded random search introduces a
tradeoff between the amount of potential reuse and coverage of the search space. Generally, the
branching factor should be higher for nodes that have more hyperparameters in order to guarantee
sufficient coverage. As we will see next, gridded random search achieves performance comparable
to random search, despite the former’s limited coverage of the search space relative to the latter.

We evaluate the performance of gridded random search compared to standard random search
on 20 OpenML classification datasets. The search space we consider includes the following
pipeline stages: (1) Preprocessor: choice of none, standardize, normalize, or min/max scaler; (2)
Featurizer: choice of PCA, select features with top percentile variance, or ICA; (3) Classifier:

81

o Bpfo 2 e
Raw Flaw
Data

Data
Bp70 | Bp_o ;

Figure 4.3: Comparison of grid search versus gridded random search. Grid search considers
two different values for each hyperparameter dimension. In contrast, gridded random considers
two hyperparameter values for operator A and four different values for operator B, while still
maintaining a branching factor of two for the DAG. Note that random search would consider four
different values for A and four different values for B but allow no potential for reuse.

choice of linear classifier using stochastic gradient descent, random forests, or logistic regression.
For each dataset, all four preprocessors are considered, but a single featurizer and a single classifier
are randomly selected. For gridded random search, the branching factor in the first stage is 4, one
for each preprocessor type; the branching factor is 5 per node for the selected featurizer; and then
5 per featurizer node for the selected classifier. This results in 100 total pipelines for gridded
random search.

For each dataset, we evaluated a set of 100 pipelines sampled using either random or gridded
random and recorded the best configuration for each sampling method. To reduce the effect of
randomness, we averaged results across 10 trials of 100 pipelines for each dataset. Our results in
Table 4.1 show that on average gridded random search converges to similar objective values as
standard random search on a variety of datasets. With the exception of one task, the differences in
performance between random and gridded random are all below 1% accuracy. While by no means
exhaustive, these results demonstrate the viability of using gridded random search to increase
reuse.

4.4.2 Balancing DAGs via Successive Halving

The benefit from reuse is limited for pipelines with long training times due to Amdahl’s Law,
i.e., the relative amount of redundant computation is only a small fraction of the total time. For
backloaded pipelines, we can increase the potential for reuse by reducing the average training time
per configuration, e.g., by employing iterative early-stopping hyperparameter tuning algorithms
when evaluating a batch of configurations. We next demonstrate how early-stopping via successive
halving (Algorithm 2) can be used to generate more balanced DAGs when training time dominates.

As an example of how SHA can be combined with pipeline-aware hyperparameter tuning,
consider the DAG in Figure 4.4 where the time needed for the preprocessing steps in the pipeline is
the same as the training time. Assume we run SHA with n = 16 pipelines, 77 = 4, for a maximum

82

Dataset ID Featurizer Classifier Mean 20% 80%
OpenML 182 SelectPercentile LogisticReg 0.1% 0.0% 0.0%
OpenML 300 SelectPercentile SVC 0.6% 0.6% 0.6%
OpenML 554 PCA LogisticReg 0.0% 0.1% 0.0%
OpenML 722 PCA RandForest -0.1% -0.1% -0.1%
OpenML 734 SelectPercentile LogisticReg 0.0% 0.1% 0.0%
OpenML 752 SelectPercentile LogisticReg -0.0% 0.0% -0.0%
OpenML 761 SelectPercentile LogisticReg 0.6% 2.1% 0.0%
OpenML 833 SelectPercentile RandForest -0.0% 0.1% -0.1%
OpenML 1116 PCA RandForest -0.2% -0.2% -0.3%
OpenML 1475 SelectPercentile SvC -0.8% -0.9% -0.9%
OpenML 1476 PCA SVC 0.3% -0.4% 0.0%
OpenML 1477 PCA SvC 0.4% -0.8% 0.1%
OpenML 1486 PCA SVC 0.2% 0.3% 0.3%
OpenML 1496 FastICA LogisticReg 0.0% 0.1% -0.0%
OpenML 1497 PCA RandForest -0.3% -0.1% 0.2%
OpenML 1507 SelectPercentile SvC 0.1% 0.2% 0.0%
OpenML 4538 SelectPercentile RandForest -0.0% -0.4% 0.3%
OpenML 23517 SelectPercentile RandForest -0.0% 0.0% -0.1%
OpenML 40499 PCA LogisticReg 2.9% 6.1% 1.5%
OpenML 40996 SelectPercentile RandForest -0.0% -0.1% -0.1%

Table 4.1: For each OpenML dataset, we randomly sample a featurizer and classifier to construct
the search space. The right three columns show the difference in aggregate statistics between
random search and gridded random search. Positive values indicates the performance of random
is better than that of gridded random. For each task, statistics for the best hyperparameter setting
found over 100 pipelines are computed over 10 independent runs.

resource of R. SHA begins with the full DAG containing 16 pipelines and traverses the DAG,
while training leaf nodes (i.e., a classifier) with the initial minimum resource » = R/16 (blue
sub-DAG). In the next rung, it increases the resource per leaf node to R/4 and traverse the pruned
DAG with 4 remaining configurations (yellow sub-DAG). Finally, in the top rung a single pipeline
remains, and it is trained for the maximum resource R (red sub-DAG). Hence in total, SHA use
3R resources for training compared to the 16 R that would be needed without early-stopping. If
training times scaled linearly, then total training time is reduced by over 5x with SH. Visually,
this reduction in training time is evident in Figure 4.4, where the computational profile for the
sub-DAGs is much more frontloaded.

In general, for a maximum resource of R per configuration, a total budget of n R is needed to
evaluate n configurations without early-stopping. In contrast, SHA with & rungs requires a budget
equivalent to (nRn~*)k, where nRn~* indicates the total resource allocated in each rung. Hence,
SHA can be used to balance backloaded computation by reducing the total training time by a
factor of n* /k relative to no early-stopping. Note that SHA is normally run with larger DAGs and
more aggressive early-stopping rates, which as we show in Section 4.5.2, can drastically increase

83

Sub-DAGs: | Rung 1
Rung 2

Rung 3

'RIM6 R4 ‘R

Preprocessor 1 Preprocessor 2 Train Model

Figure 4.4: In this DAG, all pipelines start with the raw data in the root node and proceed to
subsequent steps of the pipeline with a branching factor of 4 for a total of 16 pipelines. The
lengths of the edges correspond to the time needed to compute the subsequent node. Hence, for
the depicted pipelines, the time needed to train a model on R resource is equal to the time needed
to compute the two preprocessing steps. Therefore, without early-stopping, training time accounts
for over half of the total time needed to execute the entire DAG. Switching over to Successive
Halving (SHA) with elimination rate 7 = 4, the shaded blocks indicate the resulting pruned DAGs
after each rung. The lengths of the edges in the ‘Train Model’ phase correspond to resources
allocated to those configurations by SHA: 16 configurations are trained for R/16 in the first rung,
4 configurations for R/4 in the second rung, and one configuration for R in the top rung. Hence,
the total training time required for SHA is 3R, which is over 5x smaller than the 16 R needed
without early-stopping, leading to a DAG with more frontloaded computation. Note that SHA is
normally run with larger DAGs (more pipelines) and more aggressive early-stopping rates, which,
as we show in Section 4.5.2, further increase speedups from reuse.

the speedups from reuse on a real world pipeline optimization task.

4.4.3 Evaluating Caching Strategies

We compare the performance of online caching strategies introduced in Section 4.2 to the precom-
puted optimal policy (OPT) on synthetic DAGs designed to look like common hyperparameter
tuning pipelines in terms of size and computational cost. We consider DAGs of k-ary trees with
varying depth d and branching factor k; this is akin to generated DAGs using gridded random
search on pipelines of length d for which there are k choices of hyperparameter values at each
node.

First we consider a scenario where the memory size of each result is fixed at 10 and the root
node is assigned a computational cost of 100 while all other nodes have a cost of 1. Figure 4.5a
shows the results of this experiment. LRU performs poorly for this configuration precisely because

84

20+ 3

a

2
Policy

LRU

Policy
LRU

B oer

RECIPROCAL
[reciprocAL [wreciprocAL
WRECIPROCAL

| IIMiIIIIII E
T 1M MMM - I

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 8 100 120 140 160 180 200
Memory Memory

Ratio of Runtime to Optimal
5
Ratio of Runtime to Optimal

@

(a) All nodes have size 10; root node has cost (b) For each node, size is randomized to be 10
100 and all other nodes have cost 1. or 50 and cost is randomized to be 1 or 100.

Figure 4.5: A comparison of cache management policies on a 3-ary tree with depth 3.

the root node in the tree uses 100 units of computation and LRU does not account for this. The
other strategies converge to the optimal strategy relatively quickly.

Next, we allow for variable sizes and costs. Each node is randomly given a size of either 10
or 50 units with equal probability and a corresponding cost of 1 or 100. Figure 4.5b shows the
competitiveness of each strategy vs. the optimal strategy. In this setting, LRU is again the least
effective policy while WRECIPROCAL is closest to optimal for most cache sizes. These results
on synthetic DAGs suggest that LRU, the default caching strategy in scikit-learn and MLlib, is
poorly suited for machine learning pipelines. Our experiments in the next section on real-world
tasks reinforce this conclusion.

4.5 Experiments

In this section we evaluate the speedups from reuse on real-world hyperparameter tuning tasks
gained by integrating our proposed techniques. We consider tuning pipelines for the following
three datasets: 20 Newsgroups,” Amazon Reviews [McAuley et al., 2015], and the TIMIT [Huang
et al., 2014] speech dataset. Our results are simulated on DAGs generated using profiles collected
during actual runs of each pipeline. For each task, we examine potential savings from reuse for
100 pipelines trained simultaneously.

In Section 4.5.1, we examine the speedups from the caching component of pipeline-aware tun-
ing on a text classification pipeline for the Newsgroup and Amazon Reviews datasets. The DAGs
associated with both datasets are naturally amenable to reuse due to discrete hyperparameters and
front-loaded computation. In Section 4.5.2, we then leverage our entire three-pronged approach
to pipeline-aware hyperparameter tuning on a speech classification task that at first glance is not
amenable to reuse.

We quantify the speedups by comparing the execution time required for our pipeline-aware
approach to the execution time when evaluating the pipelines independently. We focus on the
computational efficiency of our approach as opposed to accuracy, since we have already explored

Zhttp://qwone.com/~jason/20Newsgroups,/

85

http://qwone.com/~jason/20Newsgroups/

40 -

30 -

20-

10 -

— LRU

—— RECIPROCAL
WRECIPROCAL

— LRU
—— RECIPROCAL
WRECIPROCAL

0-

Speedups Over Independent Configuration Evaluation
Speedups Over Independent Configuration Evaluation

0.0 05 10 15 20 25 30 35 4.0
Cache Size as Multiple of Largest Node

0.0 05 10 15 20 25 30 35 4.0
Cache Size as Multiple of Largest Node

(a) 20 Newsgroups (b) Amazon Reviews

Figure 4.6: Effect of reuse on two real-world text processing hyperparameter tuning tasks.
Speedups over independent configuration evaluation when evaluating a DAG with 100 pipelines
are shown for each cache policy given a particular cache size.

the impact of gridded random search.

4.5.1 Tuning Text Classification Pipelines

We tune the pipeline in Figure 4.2(a) for the 20 Newsgroups and the Amazon Reviews datasets. As
shown in Figure 4.2a, RECIPROCAL and WRECIPROCAL offer 70 x speedup over independent
configuration evaluation for the 20 Newsgroups dataset. Similarly, for the Amazon Reviews
dataset, all the caching strategies offer more than 40x speedup over independent configuration
evaluation. In these instances, caching offers significant speedups due to the front-loaded nature
of the pipelines. By caching, we save on several shared steps: tokenization, NGrams generation,
and feature selection/generation. Additionally, compared to the preprocessing and featurization
steps, training is relative inexpensive.

The frontloaded computation also explains why LRU underperforms on small memory sizes;
by biasing older nodes, earlier and more expensive pipeline stages are more likely to be evicted.
Another drawback of LRU is that it does not take into account the cost of computing each node
and it will always try to cache the most recent node. Hence, once the size of the cache is large
enough to cache the output of the largest node, LRU adds the node to cache and evicts all previous
caches, while RECIPROCAL and WRECIPROCAL are less likely to cache the node. This
explains the severe drop in performance for LRU once cache size exceeded 1. These results also
show WRECIPROCAL to be more robust than RECIPROCAL because it is less likely to cache
large nodes with relatively inexpensive cost. Hence, we propose using WRECIPROCAL as an
alternative to LRU in popular machine learning libraries.

4.5.2 Designing DAGs for Reuse on TIMIT

The TIMIT pipeline tuning task performs random feature kernel approximation followed by 20
iterations of LBFGS. The first stage of the pipeline is a continuous hyperparameter, so we first

86

— LRU

g- —— RECIPROCAL
WRECIPROCAL
7-

Speedups of WRECIPROCAL

1.2-

0.0 05 10 15 20 25 30 35
Cache Size as Multiple of Largest Node

0.0 0.5 10 15 20 25 30 35
Cache Size as Multiple of Largest Node

Speedups Over Independent Configuration Evaluation

— LRU
—— RECIPROCAL
WRECIPROCAL

17.5-

15.0-

12.5-

10.0 -

Speedups Over Independent Configuration Evaluation

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
Cache Size as Multiple of Largest Node

Figure 4.7: Speedups over independent configuration evaluation on TIMIT. Left: Speedups
using WRECIPROCAL for a DAG with 100 pipelines generated using gridded random search
with different branching factors in the random feature step. As expected, speedups from reuse
is higher for DAGs with smaller branching factors. Middle: DAG with 100 pipelines and a
maximum downsampling rate of £/64 for SHA. Right: DAG with 256 pipelines and a maximum
downsampling rate of £/256 for SHA.

examine the impact of promoting prefix sharing through gridded random search. Figure 4.7(left)
shows the speedups when using WRECIPROCAL over independent configuration evaluation for
gridded random search with different branching factors. As expected, speedups increase with
lower branching factor, though the speedups are muted for all branching factors due to the long
training time for this task. We proceed with a branching factor of 10 for the random feature stage
of the pipeline.

Next, we use Successive Halving with training set size as the resource to evaluate the impact
on speedups when reducing the portion of time spent on the last stage of the pipeline. We run
SHA with the following parameters: 7 = 4 and G = 4 (which implies » = R/64). Figure 4.7
(middle) shows the speedups over independent configuration evaluation increases from 2x for
uniform allocation to over 8x when using Successive Halving. Finally, we examine a more
realistic setup for SHA where the number of pipelines considered is higher to allow for a more
aggressive downsampling rate (n = 256, G = 5, and r = R/256). Figure 4.7 (right) shows that
in this case, speedups from reuse via caching reaches over 17 x.

87

Part 11

Neural Architecture Search

88

Chapter 5

Random Search Baselines for NAS

In the first part of this thesis, we developed novel algorithms for efficient hyperparameter opti-
mization by exploiting early-stopping to reduce the average computational cost needed to evaluate
a hyperparameter configurations. In this second part, we continue the exploration of cost-efficient
evaluation methods but focus on the problem of neural architecture search (NAS), a sub-field
of hyperparamter optimization that has attracted significant interest recently. We begin, in this
chapter, by establishing two random search baselines for NAS to ground results for prior NAS
methods and culminate in a detailed discussion of the state of reproducibility in NAS.

5.1 Introduction

Deep learning offers the promise of bypassing the process of manual feature engineering by
learning representations in conjunction with statistical models in an end-to-end fashion. However,
neural network architectures themselves are typically designed by experts in a painstaking, ad-hoc
fashion. Neural architecture search (NAS) presents a promising path for alleviating this pain by
automatically identifying architectures that are superior to hand-designed ones. Since the work
by Zoph and Le [2017], there has been explosion of research activity on this problem [Bender
et al., 2018, Brock et al., 2018, Cai et al., 2019, Elsken et al., 2018a, Jin et al., 2018, Liu et al.,
2018a,b, 2019, Negrinho and Gordon, 2017, Pham et al., 2018, Real et al., 2018, Xie et al., 2019,
Zhang et al., 2019]. Notably, there has been great industry interest in NAS, as evidenced by
the vast computational [Real et al., 2018, Zoph and Le, 2017, Zoph et al., 2018] and marketing
resources [Google, 2018b] committed to industry-driven NAS research. However, despite a steady
stream of promising empirical results [Cai et al., 2019, Liu et al., 2019, Luo et al., 2018, Real
et al., 2018, Zoph and Le, 2017, Zoph et al., 2018], we see three fundamental issues motivating
the work in this chapter:

Inadequate Baselines. NAS methods exploit many of the strategies that were initially ex-
plored in the context of traditional hyperparameter optimization tasks, e.g., evolutionary search
[Jaderberg et al., 2017, Olson and Moore, 2016], Bayesian optimization [Bergstra et al., 2011,
Hutter et al., 2011, Snoek et al., 2012], and gradient-based approaches [Bengio, 2000, Maclaurin
et al., 2015]. Moreover, the NAS problem is in fact a specialized instance of the broader hy-
perparameter optimization problem. However, in spite of the close relationship between these

90

two problems, prior comparisons between novel NAS methods and standard hyperparameter
optimization methods are inadequate. In particular, at the time of this work, no state-of-the-art
hyperparameter optimization methods have been evaluated on standard NAS benchmarks. Without
benchmarking against leading hyperparameter optimization baselines, it difficult to quantify the
performance gains provided by specialized NAS methods.

Complex Methods. We have witnessed a proliferation of novel NAS methods, with research
progressing in many different directions. Some approaches introduce a significant amount of
algorithmic complexity in the search process, including complicated training routines [Bender
et al., 2018, Cai et al., 2019, Pham et al., 2018, Xie et al., 2019], architecture transformations
[Cai et al., 2018, Elsken et al., 2018a, Liu et al., 2018b, Real et al., 2018, Wei et al., 2016], and
modeling assumptions [Brock et al., 2018, Jin et al., 2018, Kandasamy et al., 2018, Liu et al.,
2018a, Zhang et al., 2019] (see Section 5.2 for more details). While many technically diverse
NAS methods demonstrate good empirical performance, they often lack corresponding ablation
studies [Cai et al., 2019, Luo et al., 2018, Zhang et al., 2019], and as a result, it is unclear what
NAS component(s) are necessary to achieve a competitive empirical result.

Lack of Reproducibility. Experimental reproducibility is of paramount importance in the
context of NAS research, given the empirical nature of the field, the complexity of new NAS
methods, and the steep computational costs associated with empirical evaluation. In particular,
there are (at least) two important notions of reproducibility to consider: (1) “exact” reproducibility
i.e., whether it is possible to reproduce explicitly reported experimental results; and “broad”
reproducibility, i.e., the degree to which the reported experimental results are themselves robust
and generalizable. Broad reproducibility is difficult to measure due to the computational burden
of NAS methods and the high variance associated with extremal statistics. However, most of the
published results in this field do not even satisfy exact reproducibility. For example, of the 12
papers published since 2018 at NeurlPS, ICML, and ICLR that introduce novel NAS methods (see
Table 5.1), none are exactly reproducible. Indeed, each fails on account of some combination
of missing model evaluation code, architecture search code, random seeds used for search and
evaluation, and/or undocumented hyperparameter tuning.'

While addressing these challenges will require community-wide efforts, in this chapter, we
present results that aim to make some initial progress on each of these issues. In particular, our
contributions are as follows:

1. We help ground prior NAS results by providing a new perspective on the gap between
traditional hyperparameter optimization and leading NAS methods. Specifically, we evaluate
the ASHA algorithm presented in Chapter 3 on two standard NAS benchmarks (CIFAR-
10 and PTB) and compare our results to DARTS [Liu et al., 2019] and ENAS [Pham
et al., 2018], two well-known NAS methods. With approximately the same amount of
compute as DARTS, this simple method provides a much more competitive baseline for

'Tt is important to note that these works vary drastically in terms of what materials they provide, and some authors
such as Liu et al. [2019], provide a relatively complete codebase for their methods. However, even in the case of
DARTS, the code for the CIFAR-10 benchmark is not deterministic and Liu et al. [2019] do not provide random
seeds or documentation regarding the post-processing steps in which they perform hyperparameter optimization on
final architectures returned by DARTS. We were thus not able to reproduce the results in Liu et al. [2019], but we
were able to use the DARTS code repository (https://github.com/quark0/darts) as the launching point for our
experimental setup.

91

https://github.com/quark0/darts

both benchmarks: (1) on PTB, random search with early-stopping reaches test perplexity of
56.4 compared to the published result for ENAS of 56.3,% and (2) for CIFAR-10, random
search with early-stopping achieves a test error of 2.85%, whereas the published result for
ENAS is 2.89%. While DARTS still outperforms this baseline, our results demonstrate that
the gap is not nearly as large as that suggested by published random search baselines on
these tasks [Liu et al., 2019, Pham et al., 2018].

2. We identify a small subset of NAS components that are sufficient for achieving good
empirical results. We construct a simple algorithm from the ground up starting from vanilla
random search, and demonstrate that properly tuned random search with weight-sharing
is competitive with much more complicated methods when using similar computational
budgets. In particular, we identify the following meta-hyperparameters that impact the
behavior of our algorithm: batch size, number of epochs, network size, and number of
evaluated architectures. We evaluate our proposed method using the same search space and
evaluation scheme as DARTS. We explore a few modifications of the meta-hyperparameters
to improve search quality and make full use of available GPU memory and computational
resources, and observe state-of-the-art performance on the PTB benchmark and comparable
performance to DARTS on the CIFAR-10 benchmark. We emphasize that we do not perform
additional hyperparameter tuning of the final architectures discovered at the end of the
search process.

3. We open-source all of the necessary code, random seeds, and documentation necessary to
reproduce our experiments. Our single machine results shown in Table 5.2 and Table 5.5
follow a deterministic experimental setup, given a fixed random seed, and satisfy exact
reproducibility. For these experiments on the two standard benchmarks, we study the broad
reproduciblity of our random search with weight-sharing results by repeating our experi-
ments with different random seeds. We observe non-trivial differences across independent
runs and identify potential sources for these differences. Our results highlight the need
for more careful reporting of experimental results, increased transparency of intermediate
results, and more robust statistics to quantify the performance of NAS methods.

5.2 Related Work

We now provide additional context for the three issues we identified with prior empirical studies
in NAS in Section 5.1.

5.2.1 Inadequate Baselines

Prior works in NAS do not provide adequate comparison to random search and other hyperpa-
rameter optimization methods. Some works either compare to random search given a budget of

2We could not reproduce this result using the initial final architecture and code provided by the authors
(https://github.com/melodyguan/enas). They have since released another repository (https://github.com/
google-research /google-research /tree /master/enas_lm) that reports reproduced results but we have not verified
these figures.

92

https://github.com/melodyguan/enas
https://github.com/google-research/google-research/tree/master/enas_lm
https://github.com/google-research/google-research/tree/master/enas_lm

just of few evaluations [Liu et al., 2019, Pham et al., 2018] or Bayesian optimization methods
without efficient architecture evaluation schemes [Jin et al., 2018]. While Real et al. [2018]
and Cai et al. [2018] provide a thorough comparison to random search, they use random search
with full training even though our empirical studies in Chapter 2 and Chapter 3 demonstrate that
partial training via early-stopping is often orders-of-magnitude faster than standard random search.
Hence, we compare the empirical performance of ASHA (Chapter 3) with that of NAS methods
in Section 5.5.

5.2.2 Complex Methods

Much of the complexity of NAS methods is introduced in the process of adapting search methods
for NAS-specific search spaces: evolutionary approaches need to define a set of possible mutations
to apply to different architectures [Real et al., 2017, 2018]; Bayesian optimization approaches [Jin
et al., 2018, Kandasamy et al., 2018] rely on specially designed kernels; gradient-based methods
transform the discrete architecture search problem into a continuous optimization problem so that
gradients can be applied [Cai et al., 2019, Liu et al., 2019, Luo et al., 2018, Xie et al., 2019]; and
reinforcement learning approaches need to train a recurrent neural network controller to generate
good architectures [Pham et al., 2018, Zoph and Le, 2017, Zoph et al., 2018]. All of these search
approaches add a significant amount of complexity with no clear winner, especially since methods
some times use different search spaces and evaluation methods. To simplify the search process
and help isolate important components of NAS, we use random search to sample architectures
from the search space.

Additional complexity is also introduced by the NAS-specific evaluation methods mentioned
previously. Network morphisms require architecture transformations that satisfy certain criteria;
hypernetworks and performance prediction methods encode information from previously seen
architectures in an auxiliary network; and weight-sharing methods [Bender et al., 2018, Cai et al.,
2019, Liu et al., 2019, Pham et al., 2018, Xie et al., 2019] use a single set of weights for all
possible architectures and hence, can require careful training routines. Despite their complexity,
these more efficient NAS evaluation methods are 1-3 orders-of-magnitude cheaper than full
training (see Table 5.5 and Table 5.2), at the expense of decreased fidelity to the true performance.
Of these evaluation methods, network morphism still requires on the order of 100 GPU days
[Elsken et al., 2018a, Liu et al., 2018a] and, while hypernetworks and prediction performance
based methods can be cheaper, weight-sharing is less complex since it does not require training
an auxiliary network. In addition to the computational efficiency of weight-sharing methods [Cai
et al., 2019, Liu et al., 2019, Pham et al., 2018, Xie et al., 2019], which only require computation
on the order of fully training a single architecture, this approach has also achieved the best result
on the two standard benchmarks [Cai et al., 2019, Liu et al., 2019]. Hence, we use random search
with weight-sharing as our starting point for a simple and efficient NAS method.

Our work is inspired by the result of Bender et al. [2018], which showed that random
search, combined with a well-trained set of shared weights can successfully differentiate good
architectures from poor performing ones. However, their work required several modifications
to stabilize training (e.g., a tunable path dropout schedule over edges of the search DAG and
a specialized ghost batch normalization scheme [Hoffer et al., 2017]). Furthermore, they only
report experimental results on the CIFAR-10 benchmark, on which they fell slightly short of the

93

results for ENAS and DARTS. In contrast, our combination of random search with weight-sharing
greatly simplifies the training routine and we identify key variables needed to achieve competitive
results on both CIFAR-10 and PTB benchmarks.

5.2.3 Lack of Reproducibility

The earliest NAS results lacked exact and broad reproducibility due to the tremendous amount of
computation required to achieve the results [Real et al., 2018, Zoph and Le, 2017, Zoph et al.,
2018]. Additionally, some of these methods used specialized hardware (i.e., TPUs) that were not
easily accessible to researchers at the time [Real et al., 2018]. Although the final architectures
were eventually provided [Google, 2018a,c], the code for the search methods used to produce
these results has not been released, precluding researchers from reproducing these results even if
they had sufficient computational resources.

Table 5.1: Reproducibility of NAS Publications. Summary of the reproducibility status of prior
NAS publications appearing in top machine learning conferences. For the hyperparameter tuning
column, N/A indicates we are not aware that the authors performed additional hyperparameter
optimization.

f Published result is not reproducible for the PTB benchmark when training the reported final
architecture with provided code.

* Code to reproduce experiments was requested on OpenReview.

Architecture Model Evaluation Random Hyperparameter

Conference Publication Search Code Code Seeds Tuning
ICLR 2018 Brock et al. [2018] Yes Yes No N/A
Liu et al. [2018b] No No
ICML 2018 Pham et al. [2018]F Yes Yes No Undocumented
Cai et al. [2018] Yes Yes No N/A
Bender et al. [2018] No No
NIPS 2018 Kandasamy et al. [2018] Yes Yes No N/A
Luo et al. [2018] Yes Yes No Grid Search
ICLR 2019 Liu et al. [2019] Yes Yes No Undocumented
Cai et al. [2019] No Yes No N/A
Zhang et al. [2019]* No No
Xie et al. [2019]* No No
Cao et al. [2019] No No

It has become feasible to evaluate the exact and broad reproducibility of many NAS methods
due to their reduced computational cost. However, while many authors have released code for
their work [e.g., Brock et al., 2018, Cai et al., 2018, Liu et al., 2019, Pham et al., 2018], others
have not made their code publicly available [e.g., Xie et al., 2019, Zhang et al., 2019], including
the work most closely related to ours by Bender et al. [2018]. We summarize the reproducibility of
prior NAS publications at some of the major machine learning conferences in Table 5.1 according
to the availability of the following:

1. Architecture search code. The output of this code is the final architecture that should be
trained on the evaluation task.

94

2. Model evaluation code. The output of this code is the final performance on the evaluation
task.

3. Hyperparameter tuning documentation. This includes code used to perform hyperpa-
rameter tuning of the final architectures, if any.

4. Random Seeds. This includes random seeds used for both the search and post-processing
(i.e., retraining of final architecture as well as any additional hyperparameter tuning) phases.
Most works provide the final architectures but random seeds are required to verify that the
search process actually results in those final architectures and the performance of the final
architectures matches the published result. Note the random seeds are only useful if the
code for search and post-processing phases are deterministic up to a random seed; this was
not the case for the DARTS code used for the CIFAR-10 benchmark.

All 4 criteria are necessary for exact reproducibility. Due to the absence of random seeds for
all methods with released code, none of the methods in Table 5.1 are exactly reproducible from
the search phase to the final architecture evaluation phase.

While only criteria 1-3 are necessary to estimate broad reproducibility, there is minimal
discussion of the broad reproducibility of prior methods in published work. With the exception of
NASBOT [Kandasamy et al., 2018] and DARTS [Liu et al., 2019], the methods in Table 5.1 only
report the performance of the best found architecture, presumably resulting from a single run of
the search process. Although this is understandable in light of the computational costs for some
of these methods [Cai et al., 2018, Luo et al., 2018], the high variance of extremal statistics makes
it difficult to isolate the impact of the novel contributions introduced in each work. DARTS is
particularly commendable in acknowledging its dependence on random initialization, prompting
the use multiple runs to select the best architecture. In our experiments in Section 5.5, we follow
DARTS and report the result of our random weight-sharing method across multiple trials; in fact,
we go one step further and evaluate the broad reproducibility of our results with multiple sets of
random seeds.

5.3 Background on Weight-Sharing

In this section, we first provide relevant background on weight-sharing to contexualize our novel
algorithm combining random search with weight-sharing in the next section.

5.3.1 Search Spaces

Since weight-sharing methods reduce the architecture evaluation cost to that of training a single
supernetwork encompassing all architectures, the memory requirement of weight-sharing is
significantly higher than that of a standalone architecture. Consequently, weight-sharing is usually
used to search smaller cell-based search spaces so that the supernetwork can fit within the memory
of a single GPU. We will review the CNN and RNN cell-based search spaces considered by Liu
et al. [2019] to ground our discussion.

95

5.3.1.1 Convolutional Cell

Recall from Chapter 1.3 that NAS search spaces can be represented as directed acyclic graphs
(DAGs). The nodes of the DAG represent intermediate features and the directed edges correspond
to transformations applied to the features from the source node which are then passed to the
destination node. Hence, a search space A is fully defined by the set of possible DAGs and the set
of possible transformations O that can be applied at each edge.

The CNN search space considered by Liu et al. [2019] includes cells represented by DAGs
with NV total nodes, including two input nodes followed by N — 2 intermediate nodes. Valid
architecture DAGs must further satisfy the following constraints:

1. Edges can only go from lower indexed nodes to higher indexed nodes, where the nodes are

indexed according to their topological order in the DAG.

2. Each intermediate node has two incoming edges.
Each selected edge is then associated with an operation from a set of transformations O with the
following possible operations: zero, max pooling, average pooling, skip connection, separable
convolution (3x3), separable convolution (5x5), dilated convolution (3x3), and dilated convolution
(5x5). Given this setup, we compute the resulting feature at node j as

Z 0l (),

i<J

where (Y denotes the latent representation at node i and o(*/) denotes the selected operation
associated with the edge from node ¢ to node j; note there will only be two edges with nonzero
operations do the the edge constraints.

The final architecture consists of both a normal cell and a reduction cell from this search space.
The normal cell is applied with stride length 1 to maintain the feature dimension and the reduction
cell is applied with stride length 2 to reduce the feature dimension by a factor of 2. Hence, this

search space contains a total of
N-L 2
O 2

n=2
possible architectures. For the search space considered by Liu et al. [2019] in their experiments
with NV = 6 nodes, there are a total of 9.1e18 possible architectures.

5.3.1.2 Recurrent Cell

The recurrent cell search space considered by Liu et al. [2019] includes DAGs with one input node
indexed O and a variable number of intermediate nodes. Valid architecture DAGs must further
satisfy the following constraints:

1. Edges can only go from lower indexed nodes to higher indexed nodes.

2. Each intermediate node has one incoming edge.
Each selected edge is then associated with an operation from a set of transformations O =
{zero, tanh, ReLU, sigmoid, identity }. Hence, for a search space including DAGs with a total of
N nodes, there are a total of (N — 1)!|O|(N — 1). For the actual search space considered by Liu
et al. [2019] in their experiments with N = 9 nodes, there are a total of 15.8 billion architectures.

96

5.3.2 The Weight-Sharing Paradigm

Given a cell-based search space, the supernetwork trained by weight-sharing methods includes all
possible edges and operations per edge. More concretely, the supernetwork contains all edges (i, ;)
with 7 < j and there is an instantiation of every operation from the set O for each edge. Therefore,
for a search space with N nodes, relative to a standalone architecture, the weight-sharing network
would have O(N?) edges instead of O(N) edges and O(ON?) instead of O(N) total operations.

The supernetwork is further parameterized by a set of architecture weights « that provide
an interface for us to configure the supernetwork during the architecture search process. Let
a"7) € 10,1]1°! correspond to a set of weights on the operations at edge (i, j). Then, the feature

at node j can be computed as
0|

> a0 @),

i<j k=1
where £ indexes the operation. We can then use the architecture parameters « to configure the
supernetwork to individual architectures from the search space A by setting the weights for active
edge-operation pairs to 1 and the rest to 0. As we will see in the Chapter 6, besides random
search, weight-sharing based NAS methods also apply different search methods to the architecture
parameters of the weight-sharing supernetwork to identify promising architectures.

5.4 Random Search with Weight-Sharing

We now introduce our NAS algorithm that combines random search with weight-sharing. Our
algorithm can be applied to any search space that is compatible with weight-sharing. In our
experiments in Section 5.5, we use the same search spaces as that considered by DARTS [Liu
et al., 2019] for the standard CIFAR-10 and PTB NAS benchmarks.

For concreteness, consider the search space used by DARTS for designing a recurrent cell
for the PTB benchmark with NV = 8 nodes. To sample an architecture from this search space, we
apply random search in the following manner:

1. For each node in the DAG, determine what decisions must be made. In the case of the RNN
search space, we need to choose a node as input and a corresponding operation to apply to
generate the output of the node.

2. For each decision, identify the possible choices for the given node. In the case of the RNN
search space, if we number the nodes from 1 to NV, node ¢ can take the outputs of nodes 0
to node ¢+ — 1 as input (the initial input to the cell is index O and is also a possible input).
Additionally, we can choose an operation to apply to the selected input.

3. Finally, moving from node to node, we sample uniformly from the set of possible choices
for each decision that needs to be made.

Figure 5.1 shows an example of an architecture from this search space.

In order to combine random search with weight-sharing, we simply use randomly sampled
architectures to train the shared weights. Shared weights are updated by selecting a single
architecture for a given minibatch and updating the shared weights by back-propagating through

97

Figure 5.1: Recurrent Cell on PTB Benchmark. The best architecture found by random search
with weight-sharing in Section 5.5.1 is depicted. Each numbered square is a node of the DAG
and each edge represents the flow of data from one node to another after applying the indicated
operation along the edge. Nodes with multiple incoming edges (i.e., node 0 and output node h_{t}
concatenate the inputs to form the output of the node.

the network with only the edges and operations as indicated by the architecture activated. Hence,
the number of architectures used to update the shared weights is equivalent to the total number of
minibatch training iterations.

After training the shared weights for a certain number of epochs, we use these trained shared
weights to evaluate the performance of a number of randomly sampled architectures on a separate
held out dataset. We select the best performing one as the final architecture, i.e., as the output of
our search algorithm.

5.4.1 Relevant Meta-Hyperparameters

There are a few key meta-hyperparameters that impact the behavior of our search algorithm. We
describe each of them below, along with a description of how we expect them to impact the search
algorithm, both in terms of search quality and computational costs.

1. Training epochs. Increasing the number of training epochs while keeping all other param-
eters the same increases the total number of minibatch updates and hence, the number of
architectures used to update the shared weights. Intuitively, training with more architectures
should help the shared weights generalize better to what are likely unseen architectures in
the evaluation step. Unsurprisingly, more epochs increase the computational time required
for architecture search.

2. Batch size. Decreasing the batch size while keeping all other parameters the same also
increases the number of minibatch updates but at the cost of noisier gradient update. Hence,
we expect reducing the batch size to have a similar effect as increasing the number of
training epochs but may necessitate adjusting other meta-hyperparameters to account for
the noisier gradient update. Intuitively, more minibatch updates increase the computational
time required for architecture search.

3. Network size. Increasing the search network size increases the dimension of the shared
weights. Intuitively, this should boost performance since a larger search network can store

98

more information about different architectures. Unsurprisingly, larger networks require
more GPU memory.

4. Number of evaluated architectures. Increasing the number of architectures that we evalu-
ate using the shared weights allows for more exploration in the architecture search space.
Intuitively, this should help assuming that there is a high correlation between the perfor-
mance of an architecture evaluated using shared weights and the ground truth performance of
that architecture when trained from scratch [Bender et al., 2018]. Unsurprisingly, evaluating
more architectures increases the computational time required for architecture search.

Other learning meta-hyperparameters will likely need to be adjusted accordingly for different
settings of the key relevant meta-hyperparameters listed above. In our experiments in Section 5.5,
we tune gradient clipping as a fifth meta-hyperparameter, though there are other possible meta-
hyperparameters that may benefit from additional tuning (e.g., learning rate, momentum).

In Section 5.5, following these intuitions, we incrementally explore the design space of our
search method in order to improve search quality and make full use of the available GPU memory
and computational resources.

5.4.2 Memory Footprint

Since we train the shared weights using a single architecture at a time, we have the option of only
loading the weights associated with the operations and edges that are activated into GPU memory.
Hence, the memory footprint of our random search with weight-sharing can be reduced to that
of a single model. In this sense, our approach is similar to ProxylessNAS [Cai et al., 2019] and
allows us to perform architecture search with weight-sharing on the larger “proxyless” models
that are usually used in the final architecture evaluation step instead of the smaller proxy models
that are usually used in the search step. We take advantage of this in a subset of our experiments
for the PTB benchmark in Section 5.5.1; performing random search with weight-sharing on a
proxyless network for the CIFAR-10 benchmark is a direction for future work.

In contrast, Bender et al. [2018] train the shared weights with a path dropout schedule that
incrementally prunes edges within the DAG so that the sub-DAGs used to train the shared weights
become sparser as training progresses. Under this training routine, since most of the edges in the
search DAG are activated in the beginning, the memory footprint cannot be reduced to that of a
single model to allow a proxyless network for the shared weights.

5.5 Experiments

In line with prior work [Liu et al., 2019, Pham et al., 2018, Zoph and Le, 2017], we consider
the two standard benchmarks for neural architecture search: (1) language modeling on the
Penn Treebank (PTB) dataset [Marcus et al., 1993] and (2) image classification on CIFAR-10
[Krizhevsky, 2009]. For each of these benchmarks, we consider the same search space and use
much of the same experimental setups as DARTS [Liu et al., 2019], and by association SNAS
[Xie et al., 2019], to facilitate a fair comparison of our results to prior work.

To evaluate the performance of random search with weight-sharing on these two benchmarks,
we proceed in the same three stages as Liu et al. [2019]:

99

e Stage 1: Perform architecture search for a cell block on a cheaper search task.

e Stage 2: Evaluate the best architecture from the first stage by retraining a larger, network
formed from multiple cell blocks of the best found architecture from scratch. This stage is
used to select the best architecture from multiple trials.

e Stage 3: Perform the full evaluation of the best found architecture from the second stage by
either training for more epochs (PTB) or training with more seeds (CIFAR-10).
We start with the same meta-hyperparameter settings used by DARTS to train the shared weights.
Then, we incrementally modify the meta-hyperparameters identified in Section 5.4.1 to improve
performance until we either reach state-of-the-art performance (for PTB) or match the performance
of DARTS and SNAS (for CIFAR-10).

For our evaluation of random search with early-stopping (i.e., ASHA) on these two bench-
marks, we perform architecture search using partial training of the stage (2) evaluation network
and then select the best architecture for stage (3) evaluation. For both benchmarks, we run ASHA
with a starting resource per architecture of » = 1 epoch, a maximum resource of 300 epochs, and
a promotion rate of 77 = 4, indicating the top 1/4 of architectures will be promoted in each round
and trained for 4x more resource.

5.5.1 PTB Benchmark

We now present results for the PTB benchmark. We use the DARTS search space for the recurrent
cell, which is described in Section 5.4. For this benchmark, due to higher memory requirements
for their mixture operation, DARTS used a small recurrent network with embedding and hidden
dimension of 300 to perform the architecture search followed by a larger network with embedding
and hidden dimension of 850 to perform the evaluation. For the PTB benchmark, we refer to the
network used in the first stage as the proxy network and the network in the later stages as the
proxyless network. We next present the final search results. We subsequently explore the impact
of various meta-hyperparameters on random search with weight-sharing, and finally evaluate the
reproducibility of various methods on this benchmark.

5.5.1.1 Final Search Results

We now present our final evaluation results in Table 5.2. Specifically, we report the output of
stage (3), in which we train the proxyless network configured according to the best architectures
found by different methods for 3600 epochs. This setup matches the evaluation scheme used for
the reported results in Table 2 of Liu et al. [2019] (see Section 5.7.2 for more details). We discuss
various aspects of these results in the context of the three issues—baselines, complex methods,
reproducibility—introduced in Section 5.1.

First, we evaluate the ASHA baseline using 2 GPU days, which is equivalent to the total cost
of DARTS (second order). In contrast to the one random architecture evaluated by Pham et al.
[2018] and the 8 evaluated by Liu et al. [2019] for their random search baselines, ASHA evaluated
over 300 architectures with the allotted computation time. The best architecture found by ASHA
achieves a test perplexity of 56.4, which is comparable to the published result for ENAS and
significantly better than the random search baseline provided by Liu et al. [2019], DARTS (first

100

Table 5.2: PTB Benchmark: Comparison with NAS methods and manually designed net-
works. Lower test perplexity is better on this benchmark. The results are grouped by those
for manually designed networks, published NAS methods, and the methods that we evaluated.
Table entries denoted by - indicate that the field does not apply, while entries denoted by "N/A”
indicate unknown entries. The search cost, unless otherwise noted, is measured in GPU days.
Note that the search cost is hardware dependent and the search cost shown for our results are
calculated for Tesla P100 GPUs; all other numbers are those reported by Liu et al. [2019].

Search cost is in CPU-days.

* We could not reproduce this result using the code released by the authors at https://github.
com/melodyguan /enas.

T The stage (1) cost shown is that for 1 trial as opposed to the cost for 4 trials shown for DARTS
and Random search WS. It is unclear whether ENAS requires multiple trials followed by stage (2)
evaluation in order to find a good architecture.

Test Perplexity Params Search Cost Comparable Search
Architecture Source Valid Test M) Stage 1 Stage2 Total Search Space? Method
LSTM + DropConnect [Merity et al., 2018] 60.0 57.3 24 - - - - manual
ASHA + LSTM + DropConnect Chapter 3.4.4 58.1 56.3 24 - - 13 N HP-tuned
LSTM + MoS [Yang et al., 2018] 56.5 54.4 22 - - manual
NAS# [Zoph and Le, 2017] N/A 64.0 25 - - led N RL
ENAS*t [Pham et al., 2018] N/A 56.3 24 0.5 N/A N/A Y RL
ENAS' [Liu et al., 2019] 60.8 58.6 24 0.5 N/A N/A Y random
Random search baseline [Liu et al., 2019] 61.8 594 23 - - 2 Y random
DARTS (first order) [Liu et al., 2019] 60.2 57.6 23 0.5 1 1.5 Y gradient-based
DARTS (second order) [Liu et al., 2019] 58.1 55.7 23 1 1 2 Y gradient-based
DARTS (second order) Ours 58.2 55.9 23 1 1 2 Y gradient-based
ASHA baseline Ours 58.6 56.4 23 - - 2 Y random
Random search WS Ours 57.8 55.5 23 0.25 1 1.25 Y random

order), and the reproduced result for ENAS [Liu et al., 2019]. Our result demonstrates that the
gap between competitive NAS methods and standard hyperparameter optimization approaches

on the PTB benchmark is significantly smaller than that suggested by the prior comparisons to
random search [Liu et al., 2019, Pham et al., 2018].

Next, we evaluate random search with weight-sharing with tuned meta-hyperparameters (see
Section 5.5.1.2 for details). With slightly lower search cost than DARTS, this method finds
an architecture that reaches test perplexity 55.5, achieving state-of-the-art (SOTA) perplexity
compared to previous NAS approaches. We note that manually designed architectures are
competitive with RNN cells designed by NAS methods on this benchmark. In fact, the work by
Yang et al. [2018] using LSTM with mixture of experts in the softmax layer (MoS) outperforms
automatically designed cells. Our architecture would likely also improve significantly with MoS,
but we train without MoS to provide a fair comparison to ENAS and DARTS.

Finally, we examine the reproducibility of the NAS methods with available code for both
architecture search and evaluation. For DARTS, exact reproducibility was not feasible since Liu
et al. [2019] do not provide random seeds for the search process; however, we were able to
reproduce the performance of their reported best architecture. We also evaluated the broad
reproducibility of DARTS through an independent run, which reached a test perplexity of 55.9,
compared to the published value of 55.7. For ENAS, end-to-end exact reproducibility was
infeasible due to non-deterministic code and missing random seeds for both the search and

101

https://github.com/melodyguan/enas
https://github.com/melodyguan/enas

evaluation steps. Additionally, when we tried to reproduce their result using the provided final
architecture, we could not match the reported test perplexity of 56.3 in our rerun. Consequently,
in Table 5.2 we show the test perplexity for the final architecture found by ENAS trained using the
DARTS code base, which Liu et al. [2019] observed to give a better test perplexity than using the
architecture evaluation code provided by ENAS. We next considered the reproducibility of random
search with weight-sharing. We verified the exact reproducibility of our reported results, and
then investigated their broad reproducibility by running another experiment with different random
seeds. In this second experiment, we observed a final text perplexity of 56.5, compared with a
final test perplexity of 55.5 in the first experiment. Our detailed investigation in Section 5.5.1.3
shows that the discrepancies across both DARTS and random search with weight-sharing are
unsurprising in light of the differing convergence rates among architectures on this benchmark.

5.5.1.2 Impact of Meta-Hyperparameters

We now detail the meta-hyperparameter settings that we tried for random search with weight-
sharing in order to achieve SOTA performance on the PTB benchmark. Similar to DARTS, in
these preliminary experiments we performed 4 separate trials of each version of random search
with weight-sharing, where each trial consists of executing stage (1) followed by stage (2). In
stage (1), we train the shared weights and then use them to evaluate 2000 randomly sampled
architectures. In stage (2), we select the best architecture out of 2000, according to the shared
weights, to train from scratch using the proxyless network for 300 epochs.

We incrementally tune random search with weight-sharing by adjusting the following meta-
hyperparameters associated with training the shared weights in stage (1): (1) gradient clipping,
(2) batch size, and (3) network size. The settings we consider proceed as follows:

¢ Random (1): We train the shared weights of the proxy network using the same setup as
DARTS with the same values for number of epochs, batch size, and gradient clipping; all
other meta-hyperparameters are the same.

¢ Random (2): We decrease the maximum gradient norm to account for discrete architectures,
as opposed to the weighted combination used by DARTS, so that gradient updates are not
as large in each direction.

e Random (3): We decrease batch size from 256 to 64 in order to increase the number of
architectures used to train the shared weights.

¢ Random (4): We train the larger proxyless network architecture with shared weights instead
of the proxy network, thereby significantly increasing the number of parameters in the
model.

The stage (2) performance of the final architecture after retraining from scratch for each of these
settings is shown in Table 5.3. With the extra capacity in the larger network used in Random (4),
random search with weight-sharing achieves average validation perplexity of 64.7 across 4 trials,
with the best architecture (shown in Figure 5.1 in Section 5.4) reaching 63.8. In light of these
stage (2) results, we focused in stage (3) on the best architecture found by Random (4) Run 1, and
achieved test perplexity of 55.5 after training for 3600 epochs as reported in Table 5.2.

102

Table 5.3: PTB Benchmark: Comparison of Stage (2) Intermediate Search Results for
Weight-Sharing Methods. In stage (1), random search is run with different settings to train
the shared weights. The resulting networks are used to evaluate 2000 randomly sampled architec-
tures. In stage (2), the best of these architectures for each trial is then trained from scratch for 300
epochs. We report the performance of the best architecture after stage (2) across 4 trials for each
search method.

Setting
Network Batch Gradient Trial
Method Config Epochs Size Clipping | 1 2 3 4 Best Average
DARTS [Liu et al., 2019] proxy 50 256 0.25 673 663 634 634 634 651
Reproduced DARTS proxy 50 256 0.25 645 67.7 640 67.7 64.0 66.0
Random (1) proxy 50 256 0.25 65.6 663 660 656 656 659
Random (2) proxy 50 256 0.1 658 67.7 653 649 649 659
Random (3) proxy 50 64 0.1 66.1 650 649 645 645 65.1
Random (4) Run 1 proxyless 50 64 0.1 663 64.6 64.1 63.8 63.8 64.7
Random (4) Run 2 proxyless 50 64 0.1 639 648 663 667 639 654

Table 5.4: PTB Benchmark: Ranking of Intermediate Validation Perplexity. Architectures
are retrained from scratch using the proxyless network and the validation perplexity is reported
after training for the indicated number of epochs. The final test perplexity after training for 3600
epochs is also shown for reference.

Validation Perplexity by Epoch Test
300 500 1600 2600 3600 Perplexity
Search Method | Value Rank Value Rank Value Rank Value Rank Value Rank | Value Rank
DARTS 64.0 4 61.9 2 59.5 2 58.5 2 58.2 2 55.9 2

ASHA 63.9 2 62.0 3 59.8 4 59.0 3 58.6 3 56.4 3
Random (4) Run 1 | 63.8 1 61.7 1 59.3 1 58.4 1 57.8 1 55.5 1
Random (4) Run2 | 63.9 2 62.1 4 59.6 3 59.0 3 58.8 4 56.5 4

5.5.1.3 Investigating Reproducibility

We next examine the stage (2) intermediate results in Table 5.3 in the context of reproducibility.
The first two rows of Table 5.3 show a comparison of the published stage (2) results for DARTS
and our independent runs of DARTS. Both the best and average across 4 trials are worse in our
reproduction of their results. Additionally, as previously mentioned, we perform an additional
run of Random (4) with 4 different random seeds to test the broad reproducibility our result.
The minimum stage (2) validation perplexity over these 4 trials is 63.9, compared to a minimum
validation perplexity of 63.8 for the first set of seeds.

Next, in Table 5.4 we compare the validation perplexities of the best architectures from ASHA,
Random (4) Run 1, Random (4) Run 2, and our independent run of DARTS after training each
from scratch for up to 3600 epochs. The swap in relative ranking across epochs demonstrates
the risk of using noisy signals for the reward. In this case, we see that even partial training for
300 epochs does not recover the correct ranking; training using shared weights further obscures
the signal. The differing convergence rates explain the difference in final test perplexity of the
best architecture from Random (4) Run 2 and those from DARTS and Random (4) Run 1, despite
Random (4) Run 2 reaching a comparable perplexity after 300 epochs.

Overall, the results of Tables 5.3 and 5.4 demonstrate a high variance in the stage (2) inter-

103

mediate results across trials, along with issues related to differing convergence rates for different
architectures. These two issues help explain the differences between the independent runs of
DARTS and random search with weight-sharing. A third potential source of variation, which
could in particular adversely impact our random search with weight-sharing results, stems from
the fact that we did not perform any additional hyperparameter tuning in stage (3); instead we used
the same training hyperparameters that were tuned by Liu et al. [2019] for the final architecture
found by DARTS.

5.5.2 CIFAR-10 Benchmark

We next present results for the CIFAR-10 benchmark. The DAG considered for the convolutional
cell has N = 4 search nodes and the operations considered include 3 x 3 and 5 x 5 separable
convolutions, 3 X 3 and 5 x 5 dilated separable convolutions, 3 X 3 max pooling, and 3 x 3 average
pooling, and zero [Liu et al., 2019]. To sample an architecture from this search space, we have to
choose, for each node, 2 input nodes from previous nodes and associated operations to perform
on each input (there are two initial inputs to the cell that are also possible input); we sample in
this fashion twice, once for the normal convolution cell and one for the reduction cell (e.g., see
Figure 5.2). Note that in contrast to DARTS, we include the zero operation when choosing the
final architecture for each trial for further evaluation in stages (2) and (3). We hypothesize that
our results may improve if we impose a higher complexity on the final architectures by excluding
the zero op.

Due to higher memory requirements for weight-sharing, Liu et al. [2019] uses a smaller
network with 8 stacked cells and 16 initial channels to perform the convolutional cell search,
followed by a larger network with 20 stacked cells and 36 initial channels to perform the evaluation.
Again, we will refer to the network used in the first stage as the proxy network and the network in
the second stage the proxyless network.

Similar to the PTB results in Section 5.5.1, we will next present the final search results for
the CIFAR-10 benchmark, and then dive deeper into these results to explore the impact of meta-
hyperparameters on stage (2) intermediate results, and finally evaluate associated reproducibility
ramifications.

5.5.2.1 Final Search Results

We now present our results after performing the final evaluation in stage (3). We use the same
evaluation scheme used to produce the results in Table 1 of Liu et al. [2019]. In particular, we train
the proxyless network configured according to the best architectures found by different methods
with 10 different seeds and report the average and standard deviation. Again, we discuss our
results in the context of the three issues introduced in Section 5.1.

First, we evaluate the ASHA baseline using 9 GPU days, which is comparable to the 10 GPU
days we allotted to our independent run of DARTS. In contrast to the one random architecture
evaluated by Pham et al. [2018] and the 24 evaluated by Liu et al. [2019] for their random search
baselines, ASHA evaluated over 700 architectures in the allotted computation time. The best
architecture found by ASHA achieves an average error of 3.03 £ 0.13, which is significantly better
than the random search baseline provided by Liu et al. [2019] and comparable to DARTS (first

104

Table 5.5: CIFAR-10 Benchmark: Comparison with NAS methods and manually designed
networks. The results are grouped by those for manually designed networks, published NAS
methods, and the methods that we evaluated. Models for all methods are trained with auxiliary
towers and cutout. Test error for our contributions are averaged over 10 random seeds. Table
entries denoted by ”-” indicate that the field does not apply, while entries denoted by "N/A”
indicate unknown entries. The search cost is measured in GPU days. Note that the search cost
is hardware dependent and the search cost shown for our results are calculated for Tesla P100
GPUs; all other numbers follow those reported by Liu et al. [2019].

* We show results for the variants of these networks with comparable number of parameters.
Larger versions of these networks achieve lower errors.

Reported test error averaged over 5 seeds.

T The stage (1) cost shown is that for 1 trial as opposed to the cost for 4 trials shown for DARTS
and Random search WS. It is unclear whether the method requires multiple trials followed by
stage (2) evaluation in order to find a good architecture.

! Due to the longer evaluation we employ in stage (2) to account for unstable rankings, the cost
for stage (2) is 1 GPU day for results reported by Liu et al. [2019] and 6 GPU days for our results.

Test Error Params Search Cost Comparable Search
Architecture Source Best Average M) Stage 1 Stage2 Total Search Space? Method
Shake-Shake# [Devries and Taylor, 2017] N/A 2.56 26.2 - - - - manual
PyramidNet [Yamada et al., 2018] 2.31 N/A 26 - - - - manual
NASNet-A#* [Zoph et al., 2018] N/A 2.65 33 - - 2000 N RL
AmoebaNet-B* [Real et al., 2018] N/A 2.55+0.05 2.8 - - 3150 N evolution
ProxylessNAS' [Cai et al., 2019] 2.08 N/A 5.7 4 N/A N/A N gradient-based
GHN#f [Zhang et al., 2019] N/A 284+0.07 57 0.84 N/A N/A N hypernetwork
SNASH [Xie et al., 2019] N/A 2.85+0.02 2.8 1.5 N/A N/A Y gradient-based
ENASt [Pham et al., 2018] 2.89 N/A 4.6 0.5 N/A N/A Y RL
ENAS [Liu et al., 2019] 291 N/A 4.2 4 2 6 Y RL
Random search baseline [Liu et al., 2019] N/A 3.294+0.15 3.2 - - 4 Y random
DARTS (first order) [Liu et al., 2019] N/A 3.004+0.14 3.3 1.5 1 2.5 Y gradient-based
DARTS (second order) [Liu et al., 2019] N/A 2.76 +0.09 3.3 4 1 5 Y gradient-based
DARTS (second order)* Ours 2,62 2.78+0.12 33 4 6 10 Y gradient-based
ASHA baseline Ours 2.85 3.03+0.13 2.2 - - 9 Y random
Random search WS* Ours 271 2.85+0.08 4.3 2.7 6 8.7 Y random

order). Additionally, the best performing seed reached a test error of 2.85, which is lower than
the published result for ENAS. Similar to the PTB benchmark, these results suggest that the gap
between SOTA NAS methods and standard hyperparameter optimization is much smaller than
previously reported [Liu et al., 2019, Pham et al., 2018].

Next, we evaluate random search with weight-sharing with tuned meta-hyperparameters (see
Section 5.5.2.2 for details). This method finds an architecture that achieves an average test error
of 2.85 = 0.08, which is comparable to the reported results for SNAS and DARTS, the top 2
weight-sharing algorithms that use a comparable search space, as well as GHN [Zhang et al.,
2019]. Note that while the two manually tuned architectures we show in Table 5.5 outperform
the best architecture discovered by random search with weight-sharing, they have over 7x more
parameters. Additionally, the best-performing efficient NAS method, ProxylessNAS, uses a
larger proxyless network and a significantly different search space than the one we consider.
As mentioned in Section 5.4, random search with weight-sharing can also directly search over
larger proxyless networks since it trains using discrete architectures. We hypothesize that using a

105

proxyless network and applying random search with weight-sharing to the same search space as
ProxylessNAS would further improve our results; we leave this as a direction for future work.

Finally, we examine the reproducibility of the NAS methods using a comparable search space
with available code for both architecture search and evaluation (i.e., DARTS and ENAS; to our
knowledge, code is not currently available for SNAS). For DARTS, exact reproducibility was not
feasible since the code is non-deterministic and Liu et al. [2019] do not provide random seeds for
the search process; hence, we focus on broad reproducibility of the results. In our independent
run, DARTS reached an average test error of 2.78 4+ 0.12 compared to the published result of
2.76 £ 0.09. Notably, we observed that the process of selecting the best architecture in stage (2) is
unstable when training stage (2) models for only 100 epochs; see Section 5.5.2.3 for details. Hence,
we use 600 epochs in all of our CIFAR experiments, including our independent DARTS run,
which explains the discrepancy in stage (2) costs between original DARTS and our independent
run. For ENAS, the published results do not satisfy exact reproducibility due to the same issues as
those for DARTS. We show in Table 5.5 the broad reproducibility experiment conducted by Liu
et al. [2019] for ENAS; here, ENAS found an architecture that achieved a comparable test error of
2.91 in 8 the reported stage (1) search cost. As with the PTB benchmark, we then investigated
the reproducibility of random search with weight-sharing. We verified exact reproducibility and
then examined broad reproducibility by evaluating 5 additional independent runs of our method.
We observe performance below 2.90 test error in 2 of the 5 runs and an average of 2.92 across all
6 runs. We investigate various sources for these discrepancies in Section 5.5.2.3.

Table 5.6: CIFAR-10 Benchmark: Comparison of Stage (2) Intermediate Search Results for
Weight-Sharing Methods. In stage (1), random search is run with different settings to train the
shared weights. The shared weights are then used to evaluate the indicated number of randomly
sampled architectures. In stage (2), the best of these architectures for each trial is then trained
from scratch for 600 epochs. We report the performance of the best architecture after stage (2) for
each trial for each search method.

T This run was performed using the DARTS code before we corrected for non-determinism (see
Section 5.7.2).

Setting
Gradient Initial # Archs Trial
Method Epochs Clipping Channels Evaluated | 1 2 3 4 Best Average

Reproduced DARTST 50 5 16 - 292 277 3.00 3.05 277 294
Random (1) 50 5 16 1000 325 400 298 3.58 298 3.45
Random (2) 150 5 16 5000 293 380 3.19 296 293 3.22
Random (3) 150 1 16 5000 350 342 297 295 297 3.21
Random (4) 300 1 16 11000 |3.04 290 3.14 3.09 2.90 3.04
Random (5) Run 1 150 1 24 5000 296 333 283 3.00 2.83 3.03

5.5.2.2 Impact of Meta-Hyperparameters

We next detail the meta-hyperparameter settings that we tried in order to reach competitive
performance on the CIFAR-10 benchmark via random search with weight-sharing. Similar to
DARTS, and as with the PTB benchmark, in these preliminary experiments we performed 4
separate trials of each version of random search with weight-sharing, where each trial consists

106

sep_conv_5x5

max_pool_3x3

sep_conv_3x3 :

c_{k2} | sep_conv_5x5

(a) Normal Cell (b) Reduction Cell

Figure 5.2: Convolutional Cells on CIFAR-10 Benchmark: Best architecture found by random
search with weight-sharing.

of executing stage (1) followed by stage (2). In stage (1), we train the shared weights and use
them to evaluate a given number of randomly sampled architectures on the test set. In stage (2),
we select the best architecture, according to the shared weights, to train from scratch using the
proxyless network for 600 epochs.

We incrementally tune random search with weight-sharing by adjusting the following meta-
hyperparameters that impact both the training of shared weights and the evaluation of architectures
using these trained weights: number of training epochs, gradient clipping, number of architectures
evaluated using shared weights, and network size. The settings we consider for random search
proceed as follows:

e Random (1): We start by training the shared weights with the proxy network used by
DARTS and default values for number of epochs, gradient clipping, and number of initial
filters; all other meta-hyperparameters are the same.

¢ Random (2): We increase the number of training epochs from 50 to 150, which concurrently
increases the number of architectures used to update the shared weights.

¢ Random (3): We reduce the maximum gradient norm from 5 to 1 to adjust for discrete
architectures instead of the weighted combination used by DARTS.

e Random (4): We further increase the number of epochs for training the proxy network
with shared weights to 300 and increase the number of architectures evaluated using the
shared weights to 11k.

¢ Random (5): We separately increase the proxy network size to be as large as possible given
the available memory on a Nvidia Tesla P100 GPU (i.e. by ~ 50% due to increasing the
number of initial channels from 16 to 24).

The performance of the final architecture after retraining from scratch for each of these settings
is shown in Table 5.6. Similar to the PTB benchmark, the best setting for random search was
Random (5), which has a larger network size. The best trial for this setting reached a test error of
2.83 when retraining from scratch; we show the normal and reduction cells found by this trial in
Figure 5.2. In light of these stage (2) results, we focus in stage (3) on the best architecture found
by Random (5) Run 1, and achieve an average test error of 2.85 £ 0.08 over 10 random seeds as
shown in Table 5.5.

107

5.5.2.3 Investigating Reproducibility

Our results in this section show that although DARTS appears broadly reproducible, this result is
surprising given the unstable ranking in architectures observed between 100 and 600 epochs for
stage (2) evaluation. To begin, the first row of Table 5.6 shows our reproduced results for DARTS
after training the best architecture for each trial from scratch for 600 epochs. In our reproduced
run, DARTS reaches an average test error of 2.94 and a minimum of 2.77 across 4 trials (see
Table 5.6). Note that this is not a direct comparison to the published result for DARTS since there,
the stage (2) evaluation was performed after training for only 100 epochs.

Table 5.7: CIFAR-10 Benchmark: Ranking of Intermediate Test Error for DARTS. Archi-
tectures are retrained from scratch using the proxyless network and the error on the test set is
reported after training for the indicated number of epochs. Rank is calculated across the 4 trials.
We also show the average over 10 seeds for the best architecture from the top trial for reference.
T These results were run before we fixed the non-determinism in DARTS code (see Section 5.7.2).

Epochs Across
Search 100 600 10 Seeds
Method Trial | Value Rank Value Rank|Min Avg
Reproduced 1 |7.63 2 292 2

Darts' 2 1767 3 277 1]2.62 2.78+0.12
3 1838 4 300 3
4 1751 1 305 4

Table 5.8: CIFAR-10 Benchmark: Broad Reproducibility of Random Search WS We report
the stage 3 performance of the final architecture from 6 independent runs of random search with
weight-sharing.

T This run was performed using the DARTS code before we corrected for non-determinism (see
Section 5.7.2).

Test Error Across 10 Seeds
Run 1 Run 27 Run 3 Run 4 Run 5 Run 6 Average
2.85+0.08 2.86+0.09 2.88+0.10 2.95+0.09 298+0.12 3.00=+0.19 2.92

Delving into the intermediate results, we compare the performance of the best architectures
across trials from our independent run of DARTS after training each from scratch for 100 epochs
and 600 epochs (see Table 5.7). We see that the ranking is unstable between 100 epochs and
600 epochs, which motivated our strategy of training the final architectures across trials to 600
epochs in order to select the best architecture for final evaluation across 10 seeds. This suggests
we should be cautious when using noisy signals for the performance of different architectures,
especially since architecture search is conducted for DARTS and Random (5) for only 50 and 150
epochs respectively.

Finally, we investigate the variance of random search with weight-sharing with 5 additional
runs as shown in Table 5.8. The stage (3) evaluation of the best architecture for these 5 additional
runs reveal that 2 out of 5 achieve similar performance as Run 1, while the 3 remainder underper-
form but still reach a better test error than ASHA. These broad reproducibility results show that
random search with weight-sharing has high variance between runs, which is not surprising given
the change in intermediate rankings that we observed for DARTS.

108

5.5.3 Computational Cost

As mentioned in Section 5.2, there is a trade off between computational cost and the quality of the
signal that we get per architecture that we evaluate. To get a better sense of the tradeoff, we estimate
the per architecture computational cost of different methods considered in our experiments, noting
that these methods differ in per architecture cost by at least an order-of-magnitude as we move
from expensive to cheaper evaluation methods:
1. Full training: The random search baselines considered by Liu et al. [2019] cost 0.5 GPU
days per architecture for the PTB benchmark and 4 GPU hours per architecture for the
CIFAR-10 benchmark.

2. Partial training: The amortized cost of ASHA is 9 minutes per architecture for the PTB
benchmark and 19 minutes per architecture for the CIFAR-10 benchmark.

3. Weight-sharing: It is difficult to quantify the equivalent number of architectures evaluated
by DARTS and random search with weight-sharing. For DARTS, the final architecture is
taken to be the highest weighted operation for each architectural decision, but it is unclear
how much information is provided by the gradient updates to the architecture mixture
weights during architecture search. For random search with weight sharing, although we
evaluate a given number of architectures using the shared weights, as stated in Section 5.4,
this is a tunable meta-hyperparameter and the quality of the performance estimates we
receive can be noisy.’ Nonetheless, to provide a rough estimate of the cost per architecture
for random search with weight-sharing, we calculate the amortized cost by dividing the
total search cost by the number of architectures evaluated using the shared weights. Hence,
the amortized cost for random search with weight-sharing is 0.2 minutes per architecture
for the PTB benchmark and 0.8 minutes per architecture for the CIFAR-10 benchmark.

Despite the apparent computational savings from weight-sharing methods, without more

robustness and transparency, it is difficult to ascertain whether the total cost of applying weight-
sharing methods to NAS problems warrants their broad application. In particular, the total costs
of ProxylessNAS, ENAS, and SNAS are likely much higher than that reported in Table 5.2
and Table 5.5 since, as we saw with DARTS and random search with weight-sharing, multiple
trials are needed due to sensitivity to initialization. Additionally, while we lightly tuned the
meta-hyperparameter settings, we used DARTS’ settings as our starting point and it is unclear
whether the settings they use required considerable tuning. In contrast, we were able to achieve
nearly competitive performance with the default settings of ASHA using roughly the same total
computation as that needed by DARTS and random search with weight-sharing.

5.5.4 Available Code

Unless otherwise noted, our results are exactly reproducible from architecture search to final
evaluation using the code available at https://github.com/liamcli/randomNAS release. The
code we use for random search with weight-sharing on both benchmarks is deterministic con-

3In principle, the equivalent number of architectures evaluated can be calculated by applying an oracle CDF of

ground truth performance over randomly sampled architectures to the performance of the architectures found by the
shared weights.

109

https://github.com/liamcli/randomNAS_release

ditioned on a fixed random seed. We provide the final architectures used for each of the trials
shown in the tables above, as well as the random seeds used to find those architectures. In
addition, we perform no additional hyperparameter tuning for final architectures and only tune the
meta-hyperparameters according to the discussion in the text itself. We also provide code, final
architectures, and random seeds used for our experiments using ASHA. However, we note that
there is one uncontrolled source of randomness in our ASHA experiments—in the distributed
setting, the asynchronous nature of the algorithm means that the results depend on the order in
which different architectures finish (partially) training. Lastly, our experiments were conducted
using Tesla P100 and V100 GPUs on Google Cloud. We convert GPU time on V100 to equivalent
time on P100 by applying a multiple of 1.5.

5.6 Discussion on Reproducibility

We conclude by summarizing our results and proposing suggestions to push the field forward and
foster broader adoption of NAS methods. Since this work, we have seen recent papers adopt some
of our suggestions presented below [Carlucci et al., 2019, Cho et al., 2019, Dong and Yang, 2020,
Xu et al., 2020, Yu et al., 2020, Zela et al., 2020b].

1. Better baselines that accurately quantify the performance gains of NAS methods. The
performance of random search with early-stopping evaluated in Section 5.5 reveals a surpris-
ingly small performance gap between leading general-purpose hyperparameter optimization
methods and specialized methods tailored for NAS. As shown in Chapter 2.4, random
search is a difficult baseline to beat for traditional hyperparameter tuning tasks as well.
For these benchmarks, an informative measure of the performance of a novel algorithm is
its ‘multiple of random search,’ i.e., how much more compute would random search need
to achieve similar performance. An analogous baseline could be useful for NAS, where
the impact of a novel NAS method can be quantified in terms of a multiplicative speedup
relative to a standard hyperparameter optimization method such as random search with
early-stopping.

2. Ablation studies that isolate the impact of individual NAS components. Our head-to-
head experimental evaluation of two variants of random search (with early stopping and with
weight-sharing) allows us to pinpoint the performance gains associated with the cheaper
weight-sharing evaluation scheme. In contrast, the fact that random search with weight-
sharing is comparable in performance to competitive NAS methods calls into question
the necessity of the auxiliary network used by GHN and the complicated algorithmic
components employed by ENAS, SNAS, and DARTS. Relatedly, while ProxylessNAS
achieves better average test error on CIFAR-10 than random search with weight-sharing,
it is unclear to what degree these performance gains are attributable to the search space,
search method, and/or proxyless shared-weights evaluation method. To promote scientific
progress, we believe that ablation studies should be conducted to answer these questions in
isolation.

3. Reproducible results that engender confidence and foster scientific progress. Repro-
ducibility is a core tenet of scientific progress and crucial to promoting wider adoption

110

of NAS methods. Following standard practice in traditional hyperparameter optimization
[Feurer et al., 2015a, Kandasamy et al., 2017, Klein et al., 2017a], empirical results in this
thesis are reported over over multiple independent experimental runs. In contrast, as we
discuss Section 5.2, results for NAS methods are often reported over a single experimental
run [Cai et al., 2019, Pham et al., 2018, Xie et al., 2019, Zhang et al., 2019], without exact
reproducibility. This is a consequence of the steep time and computational cost required to
perform NAS experiments, e.g., generating the experiments reported in this chapter alone re-
quired several months of wall-clock time and tens of thousands of dollars. However, in order
to adequately differentiate between various methods, results need to be reported over several
independent experimental runs, especially given the nature of the extremal statistics that are
being reported. Consequently, we conclude that either significantly more computational
resources need to be devoted to evaluating NAS methods and/or more computationally
tractable benchmarks need to be developed to lower the barrier for performing adequate
empirical evaluations. Relatedly, we feel it is imperative to evaluate the merits of NAS
methods not only on their accuracy, but also on their robustness across these independent
runs.

5.7 Experimental Details

In this section, we provide additional detail for the experiments in Section 5.5.1 and Section 5.5.2.

5.7.1 PTB Benchmark

Architecture Operations. In stage (1), DARTS trained the shared weights network with the
zero operation included in the list of considered operations but removed the zero operation when
selecting the final architecture to evaluate in stages (2) and (3). For our random search with
weight-sharing, we decided to exclude the zero operation for both search and evaluation.

Stage 3 Procedure. For stage (3) evaluation, we follow the ArXiv version of DARTS [Liu
et al., 2018c], which reported two sets of results, one after training for 1600 epochs and another
fine tuned result after training for an additional 1000 epochs. In the ICLR version, Liu et al.
[2019] simply say they trained the final network to convergence. We trained for another 1000
epochs for a total of 3600 epochs to approximate training to convergence.

5.7.2 CIFAR-10 Benchmark

Architecture Operations. In stage (1), DARTS trained the shared weights network with the
zero operation included in the list of considered operations but removed the zero operation when
selecting the final architecture to evaluate in stages (2) and (3). For our random search with
weight-sharing, we decided to include the zero operation for both search and evaluation.

Stage 1 Procedure. For random search with weight-sharing, after the shared weights are
fully trained, we evaluate randomly sampled architectures using the shared weights and select
the best one for stage (2) evaluation. Due to the higher cost of evaluating on the full validation
set, we evaluate each architecture using 10 minibatches instead. We split the total number of

111

architectures to be evaluated into sets of 1000. For each 1000, we select the best 10 according
the cheap evaluation on part of the validation set and evaluate on the full validation set. Then we
select the top architecture across all sets of 1000 for stage (2) evaluation.

Reproducibility. The code released by Liu et al. [2019] did not produce deterministic results
for the CNN benchmark due to non-determinism in CuDNN and in data loading. We removed the
non-deterministic behavior in CuDNN by setting
cudnn.benchmark = False
cudnn.deterministic = True
cudnn.enabled=True
Note that this only disables the non-deterministic functions in CuDNN and does not adversely
affect training time as much as turning off CuDNN completely. We fix additional non-determinism
from data loading by setting the seed for the random package in addition to numpy.random and
pytorch seed and turning off multiple threads for data loading.

We ran ASHA and one set of trials for Random Search (5) with weight-sharing using the
non-deterministic code before fixing the seeding to get deterministic results; all other settings for
random search with weight-sharing are deterministic. Hence, the result for ASHA does not satisfy
exact reproduciblity due to non-deterministic training and asynchronous updates.

112

Chapter 6

Geometry-Aware Optimization for
Gradient-Based NAS

In the previous chapter, we established random search with weight-sharing (RSWS) as a strong
baselines for neural architecture search that achieves competitive performance relative to DARTS
[Liu et al., 2019] although with higher variance. More recent gradient-based weight-sharing NAS
approaches have improved significantly upon DARTS [Chen et al., 2019, Nayman et al., 2019, Xu
et al., 2020], widening the lead over RSWS. In this chapter, we study the optimization problem
associated with gradient-based weight-sharing methods. Our efforts culminate in a framework
for analyzing the convergence rates of gradient-based methods. We use our framework to design
geometry-aware gradient-based NAS methods with faster convergence and better empirical
performance.

6.1 Introduction

As is the case for the weight-sharing methods we compared to in the previous Chapter [Liu et al.,
2019, Pham et al., 2018], weight-sharing is often combined with a continuous relaxation of the
discrete search space to allow cheap gradient updates to architecture hyperparameters [Akimoto
et al., 2019, Cai et al., 2019, Dong and Yang, 2019, Laube and Zell, 2019, Liu et al., 2018a,
Nayman et al., 2019, Noy et al., 2019, Xie et al., 2019, Xu et al., 2020, Yang et al., 2019, Zheng
et al., 2019], enabling the use of popular optimizers such as stochastic gradient descent (SGD)
or Adam [Kingma and Ba, 2015]. However, despite some empirical success, weight-sharing
remains poorly understood and subsequent improvements to the search process continue to be
largely heuristic [Carlucci et al., 2019, Li et al., 2019b, Liang et al., 2019, Nayman et al., 2019,
Noy et al., 2019, Xu et al., 2020, Zela et al., 2020a]. Furthermore, on recent computer vision
benchmarks weight-sharing methods can still be outperformed by traditional hyperparameter
optimization algorithms given a similar time-budget [Dong and Yang, 2020]. Thus, motivated by
the challenge of developing simple, principled, and efficient NAS methods that achieve state-of-
the-art performance in computer vision and beyond, we make progress on the following question:
how can we design and analyze fast and accurate methods for NAS with weight-sharing ?

We start from the fact that methods that use weight-sharing subsume architecture hyperpa-

113

rameters as another set of learned parameters of the shared-weights network, in effect extending
the class of functions being learned. Our motivating question thus reduces to the following: how
can we design and analyze fast and accurate methods for empirical risk minimization (ERM)
over this extended class? While this is a well-studied problem in ML and procedures such as
SGD have been remarkably effective for unconstrained optimization of standard neural networks
[Wilson et al., 2017], it is far from clear that this will naturally extend to optimizing architecture
parameters, which can lie in constrained, non-Euclidean domains.

In this chapter, we develop a more principled, geometry-aware framework for designing and
analyzing both continuous relaxations and optimizers for NAS with weight-sharing. Drawing
upon the mirror descent meta-algorithm [Beck and Teboulle, 2003, Nemirovski and Yudin, 1983],
we give polynomial-time convergence guarantees when optimizing the weight-sharing objective
for a broad class of gradient-based methods that connect to the underlying problem structure.
Notably, this allows us to reason about (1) the speed of both new and existing NAS methods, and
(2) how to construct continuous relaxations of discrete search spaces. We use this framework to
design state-of-the-art NAS methods, as detailed below in our contributions:

1. We study the optimization of NAS with weight-sharing as ERM over a structured func-
tion class in which architectural decisions are treated as learned parameters rather than
hyperparameters. We prove polynomial-time stationary-point convergence guarantees for
block-stochastic mirror descent over a continuous relaxation of this objective and show that
gradient-based methods such as ENAS [Pham et al., 2018] and DARTS [Liu et al., 2019]
can be viewed as variants of this meta-algorithm. To the best of our knowledge these are
the first finite-time convergence guarantees for any gradient-based NAS method.

2. Crucially, these convergence rates depend on the underlying architecture parameterization.
We thus aim to improve upon existing algorithms by (1) using different continuous relax-
ations of the search space and (2) applying mirror descent procedures adapted to these new
geometries. Our first instantiation is a simple modification, applicable to many methods
including first-order DARTS, that constrains architecture parameters to the simplex and
updates them using exponentiated gradient, a variant of mirror descent that converges
quickly over the simplex and enjoys favorable sparsity properties.

3. We use this Geometry-Aware Exponentiated Algorithm (GAEA) to improve state-of-
the-art methods on three NAS benchmarks for computer vision:

(a) On the DARTS search space [Liu et al., 2019], GAEA exceeds the best published
results by finding an architecture achieving 2.50% test error on CIFAR-10 and, sepa-
rately, an architecture achieving 24.0% test error on ImageNet.

(b) On the three search spaces in the NASBench-1Shot1 benchmark [Zela et al., 2020b],
GAEA matches or slightly exceeds the performance of the best reported method for
each search space.

(c) On the three datasets within the NAS-Bench-201 benchmark [Dong and Yang, 2020],
GAEA exceeds the performance of both weight-sharing and traditional hyperparameter
approaches and identifies architectures with near optimal performance on each dataset.

114

6.1.1 Related Work

Most analyses of optimization problems associated with NAS show monotonic improvement
[Akimoto et al., 2019], asymptotic guarantees [Yao et al., 2019], or bounds on auxiliary quantities,
e.g. regret, that are not well-connected to the objective [Carlucci et al., 2019, Nayman et al.,
2019, Noy et al., 2019]. In contrast, we prove polynomial-time stationary-point convergence on
the single-level (ERM) objective for NAS with weight-sharing, which is effective in practice.
Furthermore, due to the generality of mirror descent, our results can applied to un-analyzed
methods such as first-order DARTS [Liu et al., 2019] and ENAS [Pham et al., 2018]. Finally, we
note that a variant of GAEA that modifies first-order DARTS is related to XNAS [Nayman et al.,
2019], whose update also involves an exponentiated gradient step; however, GAEA is simpler,
easier to implement, and reproducible.! Furthermore, the regret guarantees for XNAS do not
relate to any meaningful performance measure for NAS such as speed or accuracy, whereas we
guarantee convergence on the ERM objective.

Our results draw upon the extensive literature on first-order optimization [Beck, 2017] in
particular on the mirror descent meta-algorithm [Beck and Teboulle, 2003, Nemirovski and Yudin,
1983]. Such methods have been successfully used in a wide array of applications in machine
learning [Abernethy et al., 2008, Daskalakis et al., 2018, Mahadevan and Liu, 2012], computer
vision [Ajanthan et al., 2019, Kunapuli and Shavlik, 2012, Luong et al., 2012], and theoretical
computer science [Arora et al., 2012, Bubeck et al., 2018, Rakhlin and Sridharan, 2013]. We
extend recent nonconvex convergence guarantees for stochastic mirror descent [Zhang and He,
2018] to handle alternating descent schemes; while there exist related results in this setting [Dang
and Lan, 2015] the associated guarantees do not hold for the algorithms we propose.

6.2 The Weight-Sharing Optimization Problem

In standard supervised ML we are given a dataset 7" of labeled pairs (x, y) drawn from a distri-
bution D over input space X and output space Y. The goal is to use this data to search some
parameterized function class H for a function hy, : X + Y parameterized by w € R? that has
low expected test loss ¢(hyw (), y) when using x to predict the associated y over unseen sample
drawn from the same distribution, as measured by some loss function ¢ : Y x Y — [0, 00). A
common way to this is (regularized) ERM, which outputs w € R? such that hy, € H has the
smallest average (regularized) loss over the training sample 7.

6.2.1 Single-Level Neural Architecture Search

As a subset of hyperparameter optimization, NAS can be viewed as hyperparameter optimization
on top of ERM, with each architecture a € A corresponding to a function class H, to be selected
via validation data. However, unlike hyperparameters such as regularization and step-size, these

!Code provided for XNAS (https://github.com/NivNayman/XNAS) does not implement the search algorithm
and, as with previous efforts [Li et al., 2019b, OpenReview Forum], we were unable to reproduce the reported search
results after correspondence with the authors. The best architecture reported by XNAS achieves an average test error
of 2.70% under the DARTS evaluation protocol, while GAEA achieves 2.50%. We provide further discussion and
experimental comparison with XNAS in Section 6.5.5.

115

https://github.com/NivNayman/XNAS

architectural hyperparameters directly affect the mapping from X to Y, so one can forgo holding
out validation data and find the best function in H4 = J,c 4 Ho = {hwa : X » Y, w e R% a €
A}, or more formally (for some regularization parameter A > 0) solve

. 1
min AWIE o+ D (o)) (6.)

weRd ac A | ‘ (r.g)eT

Under this formulation, the use of weight-sharing is perhaps not surprising: both the network
parameters w and architecture decisions a are part of the same optimization domain. This is
made even more clear in the common approach where the discrete decision space is relaxed into a
continuous one and the optimization becomes one over some subset © of a finite-dimensional real
vector space:

min MNwlz + % Z U(hwo(z),y) (6.2)

weR4,0€0 | | (eg)eT

Here hy g : X — Y is determined by some superposition of architectures, such as a f-weighted
mixture on each edge used by DARTS [Liu et al., 2019] or a randomized function with 6-
parameterized distribution employed by GDAS [Dong and Yang, 2019]; this is detailed in Sec-
tion 6.2.2. Note that in order for the relaxation Eq. (6.2) to be a useful surrogate for Eq. (6.1), we
need a (possibly randomized) mapping from a feasible point § € © to a € A; the associated error
or variance of this mapping can be catastrophic, as witnessed by the performance of DARTS [Liu
et al., 2019] on NAS-Bench-201 [Dong and Yang, 2020].

This analysis reduces our motivating question from the introduction to the following: how do
we design a relaxation © of architecture space A that admits an optimizer that is simultaneously
fast at solving Eq. (6.2) and leads to architecture parameters 6 € O that can be mapped to some
a € A with low test error? In the sequel, we provide an answer via the mirror descent framework
and demonstrate its theoretical and empirical success.

Before proceeding, we note that many weight-sharing approaches [Dong and Yang, 2019, Liu
et al., 2019, Pham et al., 2018] attempt to solve a bilevel problem rather than ERM by using a
validation set V':

1

i — U hwo(x),
welzlgdl,l(;le@ V| (zz);\/ Uiwo(2),y)
Y . (6.3)
s.t. W € argmin Mul; + — Z U(hao(2),y)
uGRd ‘Tl ($,y)€T

Here our theory does not hold,? but we believe that our guarantees for block-stochastic methods—
the heuristic of choice for modern bilevel problems [Franceschi et al., 2018, Liu et al., 2019]-are
still useful for algorithm design. Furthermore, past work has sometimes used the single-level
approach [Li et al., 2019b, Xie et al., 2019] and we find it very effective on some benchmarks.

2Known guarantees for gradient-based bilevel optimization are asymptotic and rely on strong assumptions such as
uniqueness of the minimum of the inner optimization [Franceschi et al., 2018].

116

6.2.2 Neural Architecture Search with Weight-Sharing

Recall from Chapter 5.3 the cell-based search spaces considered for NAS, where architectures
can be represented as DAGs. Let E be the set of possible edges and O the set of possible
operations. Then, A C {0, 1}/F1xI91 is the set of all valid architectures for encoded by edge and
operation decisions. Treating both the shared weights w € R? and architecture decisions a € A
as parameters, weight-sharing methods train a single network subsuming all possible functions
within the search space.

Gradient-based weight-sharing methods apply continuous relaxations to the architecture space
A in order to compute gradients in a continuous space ©. Methods like DARTS [Liu et al., 2019]
and its variants [Chen et al., 2019, Hundt et al., 2019, Laube and Zell, 2019, Liang et al., 2019,
Nayman et al., 2019, Noy et al., 2019] relax the search space by considering a mixture of operations
per edge. For example, we will consider a relaxation where the architecture space {0, 1}/#1*I9! is
relaxed into © = [0, 1]/P*I9 with the constraint that >, _, 6; ;, = 1, i.e., the operation weights
on each edge sum to 1. The feature at node i is then 2() = qu‘ Y 0o 0; j.00(z9). To get a
valid architecture a € A from a mixture 6, rounding and pruning are typically employed after the
search phase.

A different, stochastic approach, e.g., GDAS [Dong and Yang, 2019], instead uses O-
parameterized distributions py over A to sample architectures [Akimoto et al., 2019, Cai et al.,
2019, Pham et al., 2018, Xie et al., 2019]; unbiased gradients w.r.t. § € © can be computed
using Monte Carlo sampling. The goal of all these relaxations is to use simple gradient-based
approaches to approximately optimize Eq. (6.1) over a € A by optimizing Eq. (6.2) over § € ©
instead. However, both the relaxation and the optimizer critically affect the convergence speed
and solution quality. We next present a principled approach for understanding both mixture and
stochastic methods.

6.3 Geometry-Aware Gradient Algorithms

Recall that we want a fast algorithm that minimizes the regularized empirical risk f(w,0) =
Awl|3 + ﬁ > @yer {hwo(x), y) over shared-weights w € R? and architecture parameters
6 € ©. We assume that we can take noisy derivatives of f separately w.r.t. either w and ¢
at any point (w,6) € R? x O, i.e. stochastic gradients V., f(w,6) or V,f(w,#) satisfying
EVyf(w,0) = Vyf(w,0) or EVof(w,0) = V,f(w,0), respectively. In practice this is done
by minibatch sampling of datapoints from 7". Our goal will be to make the function f small while
taking as few stochastic gradients as possible, although in the nonconvex case we must settle for
finding a point (w, #) € R? x © with a small gradient.

6.3.1 Background on Mirror Descent

While there are many ways of motivating, formulating, and describing mirror descent [Beck and
Teboulle, 2003, Nemirovski and Yudin, 1983, Shalev-Shwartz, 2011], for simplicity we consider
the proximal formulation. The starting point here is the observation that, in the unconstrained
case, performing an SGD update of a point § € © = RF by a stochastic gradient V f (0) with

117

learning rate 7 > 0 is equivalent to solving a regularized optimization problem:

0 —nVfl) = argmin nVf(#)-u + %Hu—QHg (6.4)

ucRd

Thus the update aligns the output with the gradient while regularizing for closeness to the previous
point in the Euclidean norm. This works for unconstrained high-dimensional optimization, e.g.
deep net training, but the choice of regularizer may be sub-optimal over a constrained space with
sparse solutions.

The canonical example of when a geometry-aware algorithm gives a concrete benefit is when
we are optimizing a function over the unit simplex, i.e. when © = {6 € [0,1]* : ||0]|; = 1}. Here,
if we replace the /5-regularizer in Equation 6.4 by the relative entropy u - (logu — log @), i.e. the
Kullback-Liebler (KL) divergence between u and 6, then we obtain the exponentiated gradient
(EG) update:

0 ©exp(—nV () o argmin V@) -u + u-(logu—logh) (6.5)

uco

A classical result states that EG over the k-dimensional simplex requires only O(log k/&?) itera-
tions to achieve a function value e-away from optimal [Beck and Teboulle, 2003, Theorem 5.1],
compared to the O(k /&%) guarantee for SGD. This nearly dimension-independent iteration com-
plexity is achieved by choosing a regularizer—the KL divergence—well suited to the underlying
geometry—the simplex.

In full generality, mirror descent algorithms are specified by a distance-generating function
(DGF) ¢ on ©, which should be strongly-convex w.r.t. some suitable norm || - || in order to
provide geometry-aware regularization. The DGF ¢ induces a Bregman divergence D,(u||v) =
o(u) — ¢(v) — Vo(v) + (u — v) [Bregman, 1967], a notion of distance on © that acts as a
regularizer in the mirror descent update:

argmin - nVf(0)-u + Dy(ulf) (6.6)

ueO

For example, to recover the SGD update Eq. (6.4) set ¢(u) = 3| u||3, which is strongly-convex
w.r.t. the Euclidean norm, and to get the EG update Eq. (6.5) set ¢(u) = u - logu, which is
strongly-convex w.r.t. the /;-norm. As we will see, regularization w.r.t. the latter norm is useful
for obtaining sparse solutions with few iterations.

6.3.2 Block-Stochastic Mirror Descent

In the previous section we saw how mirror descent can yield fast convergence over certain
geometries such as the simplex. However, in NAS with weight-sharing we are often interested in
optimizing over a hybrid geometry, e.g. one containing both the shared weights in an unconstrained
Euclidean space and the architecture parameters in a potentially non-Euclidean domain. Thus we
focus on the optimization of a non-convex function over two blocks: shared weights w € R? and
architecture parameters 6 € ©, where O is associated with a DGF ¢ that is strongly-convex w.r.t.
some norm || - ||. In NAS a common approach is to perform alternating gradient steps on each

118

Algorithm 4: Block-stochastic mirror descent optimization of a function f : R? x © —
R, where O has an associated DGF ¢.

Input: initialization (w, (") € R? x ©, no. of steps T > 1, step-size > 0
1 for iterationt =1,...,7 do

2 sample b; ~ Unif{w, 6} // randomly select update block
3 if block b; = w then
4 wtt) — wt) — v f(w®, o0) // SGD update to shared weights
5 O+ 9 // no update to architecture parameters
6 else
7 with wlt) // no update to shared weights
8 O+ < argming.e nVef(W®,00).u + Dy(ul|d®)
// mirror descent update to architecture parameters
9 end
10 end
Output: (w™ 0™ for r ~ Unif{l,... T} // return random iterate

domain; for example, both ENAS [Pham et al., 2018] and first-order DARTS [Liu et al., 2019]
alternate between SGD updates to the shared weights and Adam [Kingma and Ba, 2015] updates
to the architecture parameters. This type of approach is encapsulated in the block-stochastic
algorithm described in Algorithm 4, which at each iteration chooses one block at random to update
using mirror descent (recall that SGD is also a variant of mirror descent) and after 7' such steps
returns a random iterate. Note that Algorithm 4 subsumes both ENAS and first-order DARTS if
SGD is used over the architecture parameters instead of Adam, with the following mild caveats:
in practice blocks are picked cyclically rather than randomly and the algorithm returns the last
iterate rather than a random one.

In Section 6.4 we prove that, under some assumptions on the objective f, the output (w("), §()
of Algorithm 4 is an e-stationary-point of f if we run at least 7' = O(G?, + G%) /&? iterations; here
e > 0 measures the expected non-stationarity, G2, upper-bounds the expected squared ¢5-norm of
the stochastic gradient V, w.r.t. the shared weights, and G2 upper-bounds the expected squared
magnitude of the stochastic gradient Vy w.r.t. the architecture parameters, as measured by the
dual norm || - || of || - |-

This last term G is key to understanding the usefulness of mirror descent, as it is the only
term that is affected by our choice of DGF ¢, which is strongly-convex w.r.t. || - || (recall
from Section 6.3.1 that a variant of mirror descent is defined by its DGF). In the case of SGD,
¢(u) = 3|lul|3 is strongly-convex w.r.t. the {-norm, which is its own dual norm; this is why G2,
is defined via the /»-norm of the shared weights gradient. However, in the case of exponentiated
gradient ¢(u) = u - log u is strongly-convex w.r.t. the ¢1-norm, whose dual norm is the /..-norm.
Since the ¢5-norm of a k-dimensional vector can be a factor Vk larger than its ¢,,-norm, and is
never smaller, picking a DGF that is strongly-convex w.r.t. the ¢;-norm can lead to much better

bound on Gy and thus in-turn on the number of iterations needed to reach a stationary point.

119

6.3.3 A Single-Level Analysis of ENAS and DARTS

Before using this analysis for new NAS algorithms, we first apply it to existing methods, specif-
ically ENAS [Pham et al., 2018] and DARTS [Liu et al., 2019]. For simplicity, we assume all
architectures in the relaxed search space are y-smooth, which excludes components such as ReLU.
However, the objective are still smooth when convolved with a Gaussian, which is equivalent to
adding noise to every gradient; thus given the noisiness of SGD training we believe the following
analysis is still informative [Kleinberg et al., 2018].

ENAS continuously relaxes A via a neural controller that samples architectures a € A, so
O = ROW), where h is the number of hidden units. The controller is trained with Monte Carlo
gradients. On the other hand, first-order DARTS uses a mixture relaxation similar to the one
in Section 6.2.2 but using a softmax instead of constraining parameters to the simplex. Thus
© = RIFIXI0l for E the set of learnable edges and O the set of possible operations. If we assume
that both algorithms use SGD for the architecture parameters then to compare them we are
interested in their respective values of GGy, which we will refer to as Ggnas and Gparrs. Before
proceeding, we note again that our theory holds only for the single-level objective and when using
SGD as the architecture optimizer, whereas both algorithms specify the bilevel objective and
Adam [Kingma and Ba, 2015], respectively.

At a very high level, the Monte Carlo gradients used by ENAS are known to be high-variance,
so Genas may be much larger than Gpagrs, yielding faster convergence for DARTS, which is
reflected in practice [Liu et al., 2019]. We can also do a simple low-level analysis under the
assumption that all architecture gradients are bounded entry-wise, i.e. in {,,-norm, by some
constant; then since the squared ¢»-norm is bounded by the product of the dimension and the
squared (,.-norm we have G, = O(h?) while G&,rrs = O(|E||O]). Since ENAS uses a
hidden state size of h = 100 and the DARTS search space has |E| = 14 edges and |O| = 7
operations, this also points to DARTS needing fewer iterations to converge.

6.3.4 GAEA: A Geometry-Aware Exponentiated Algorithm

Equipped with a general understanding block-stochastic optimizers for NAS, we now turn to
designing new methods. Our goal is to pick architecture parameterizations and algorithms that
(a) have fast convergence in appropriate geometries and (b) encourage favorable properties in
the learned parameters. To do so, we return to the exponentiated gradient (EG) update discussed
in Section 6.3.1 and propose GAEA, a Geometry-Aware Exponentiated Algorithm in which
operation weights on each edge are constrained to the simplex and trained using EG, i.e., mirror
descent with entropic DGF ¢(u) = u - log u; as in DARTS [Liu et al., 2019], the shared weights
are trained using SGD. A simple but principled modification, GAEA obtains state-of-the-art
performance on several NAS benchmarks in computer vision.

Here we describe the EG update for the mixture relaxation, although as shown in Section 6.6,
it is straightforward to use GAEA to modify a stochastic approach such as GDAS [Dong and
Yang, 2019]. As in Section 6.2.2 let © be the product set of | F'| simplices, each corresponding to
an edge (7, 7) € E; thus 6, ;,, € O corresponds to the weight placed on operation o € O for edge
(i, 7). Given a stochastic gradient Vy f(w®,0®) and step-size n > 0, the GAEA update has two

120

steps:

0t — 9 @ exp (—nﬁg f(w®, 9(”)) (multiplicative update)
(t+1) éz(t%ol) ©.7
0,50 W Yoe O,V (i,j)e E (simplex projection)
o'€0 “i,j,0

This is equivalent to mirror descent Eq. (6.6) with ¢(0) = >_; e > oo 010 108 i 5,0, Which is
strongly-convex w.r.t. the norm || - ||, /1/| E| over the product of | E| simplices of size |O|. The
dual norm is /| E[|| - ||, so if as before G\, bounds the gradient w.r.t. the shared weights and
we have an entry-wise bound on the architecture gradient then GAEA needs O(G?, + |E|)/&?
iterations to reach e-stationary-point. This can be up to a factor |O| improvement over just using
SGD, e.g. the DARTS bound in Section 6.3.3. In addition to fast convergence, GAEA encourages
sparsity in the architecture weights by using a multiplicative update over the simplex and not an
additive update over R?, reducing the effect of post-hoc pruning or sampling when obtaining a
valid architecture a € A from 6. Obtaining sparse final architecture parameters is critical for good
performance, both for the mixture relaxation, where it alleviates the effect of overfitting, and for
the stochastic relaxation, where it reduces noise when sampling architectures.

6.4 Convergence of Block-Stochastic Mirror Descent

Here we give a self-contained formalization of the Algorithm 4 guarantees governing the analysis
in Section 6.3. We start with the following regularity assumptions:

Assumption 1. Suppose ¢ is strongly-convex w.r.t. some norm || - || on a convex set © and the
objective function f : R x © s [0, 00) satisfies the following:

1. f(w,0) + Z|wl[3 + v¢(0) is convex on R? x © for some v > 0.

2. EB||[Vwf(w,0)|2 < G2 and E||Vyf(w,0)|> < G2 for some Gy, Gg > 0.

The first condition, vy-relatively-weak-convexity [Zhang and He, 2018], allows all y-smooth
nonconvex functions and certain non-smooth ones. The second bounds the expected stochastic
gradient on each block. We also require a convergence measure; in the unconstrained case we
could just use the gradient norm, but for constrained O the gradient may never be zero. Thus
we use the Bregman stationarity [Zhang and He, 2018, Equation 2.11], which uses the proximal
operator prox, to encode non-stationarity:

Dy g(w,0|| prox,(w, 0)) 4+ D 4(prox, (w, 0)||w, 0)
= 3

Here \ = %, D, 4 is the Bregman divergence of ||w||3 + ¢(6), and the proximal operator
prox,(w, #) = arg min,cpa o Af (1) + D2 s(u||w, 0); note that the dependence of the measure
on ~y is standard [Dang and Lan, 2015, Zhang and He, 2018]. Roughly speaking, the Bregman
stationarity is O(¢) if (w, 6) is O(e)-close to an O(e)-approximate stationary-point [Davis and
Drusvyatskiy, 2019]; in the smooth case over Euclidean geometries, i.e. SGD, if A 1 < ¢ then

Ay (w,0) (6.8)

2y
we have an O(e)-bound on the squared gradient norm, recovering the standard definition of
e-stationarity.

121

Theorem 1. Let F' = f(w",0W) be the value of f at initialization. Under Assumption 1, if
liZF(Ga, + G3) iterations with step-size n = m then

]EA% (W(T), 0(")) < €. Here the expectation is over the randomness of the algorithm and over
Y

we run Algorithm 4 for T' =

that of the stochastic gradients.

The proof in Section 6.6 follows from a single-block analysis of mirror descent [Zhang and
He, 2018, Theorem 3.1] and in fact holds for the general case of any finite number of blocks
associated to any set of strongly-convex DGFs. Although there are prior results for the multi-block
case [Dang and Lan, 2015], they do not hold for nonsmooth Bregman divergences such as the KL.
divergence, which we need for exponentiated gradient.

6.5 Experiments

We evaluate GAEA, our geometry-aware NAS method, on three different computer vision bench-
marks: the CNN search space from DARTS [Liu et al., 2019], NAS-Bench-1Shot1 [Zela et al.,
2020b], and NAS-Bench-201 [Dong and Yang, 2020]. Note that in Section 6.3.4 we described
GAEA as a re-parameterization and modification of single-level first-order DARTS, but in fact
we can use it to modify in a similar fashion a wide variety of related methods including bilevel
DARTS, PC-DARTS [Xu et al., 2020], and GDAS [Dong and Yang, 2019]. This is described
more thoroughly in Section 6.6. Thus on each benchmark we start off by attempting to modify the
current state-of-the-art method on that benchmark. We conclude with an empirical evaluation of
the convergence rate of the architecture parameters of GAEA compared to methods it modifies.

The three benchmarks we use comprise a diverse and complementary set of leading NAS
search spaces for computer vision problems. The DARTS search space is large and heavily-studied
[Chen et al., 2019, Liang et al., 2019, Nayman et al., 2019, Noy et al., 2019, Xie et al., 2019, Xu
et al., 2020], while NAS-Bench-1Shot]l and NAS-Bench-201 are smaller benchmarks that allow
for oracle evaluation of weight-sharing algorithms. NAS-Bench-1Shot]1 further differs from the
other two by applying operations per node instead of per edge. NAS-Bench-201 further differs
from the other two by not requiring edge-pruning. We demonstrate that despite this diversity,
GAEA is able to improve upon state-of-the-art across all three search spaces.

We defer details of the experimental setup and hyperparameter settings used for GAEA to
Section 3.6.4. We note that we use the same learning rate for GAEA variants of DARTS/PC-
DARTS and do not require additional weight-decay for architecture parameters. Furthermore, in
the interest of reproducibility, we will be releasing all code, hyperparameters, and random seeds
for our experiments.

6.5.1 GAEA on the DARTS Search Space

We evaluate GAEA on the task of designing a CNN cell by modifying PC-DARTS [Xu et al., 2020],
the current state-of-the-art method, to use the simplex parameterization along with exponentiated
gradient (6.7) for the architecture parameters. We consider the same search space as DARTS [Liu
et al., 2019], and follow the same three stage process used in Chapter 5 for search and architecture
evaluation.

122

Table 6.1: DARTS Benchmark (CIFAR-10): Comparison with manually designed networks
and those found by SOTA NAS methods, mainly on the DARTS search space [Liu et al., 2019].
Results grouped by those for manual designs, architectures found by full-evaluation NAS, and
architectures found by weight-sharing NAS. All test errors are for models trained with auxiliary
towers and cutout (parameter counts exclude auxiliary weights). Test errors we report are averaged
over 10 seeds. “-” indicates that the field does not apply while “N/A” indicates unknown. Note
that search cost is hardware-dependent; our results used Tesla V100 GPUs.

* We show results for networks with a comparable number of parameters.

f For fair comparison to other work, we show the search cost for training the shared-weights
network with a single initialization.

' Both the search space and backbone architecture (PyramidNet) differ from the DARTS setting.
PDARTS results are not reported for multiple seeds. Additionally, PDARTS uses deeper weight-
sharing networks during the search process, on which PC-DARTS has also been shown to improve
performance. We expect GAEA PC-DARTS to further improve if combined with PDARTS’s
deeper weight-sharing networks.

Test Error Params Search Cost Comparable Search
Architecture Source Best Average ™M) (GPU Days) Search Space Method
Shake-Shake [Devries and Taylor, 2017] N/A 2.56 26.2 - - manual
PyramidNet [Yamada et al., 2018] 2.31 N/A 26 - - manual
NASNet-A* [Zoph et al., 2018] N/A 2.65 33 2000 N RL
AmoebaNet-B* [Real et al., 2018] N/A 255+0.05 2.8 3150 N evolution
ProxylessNAS? [Cai et al., 2019] 2.08 N/A 5.7 4 N gradient
ENAS [Pham et al., 2018] 2.89 N/A 4.6 0.5 Y RL
Random search WS Chapter 5 271 2.85£0.08 3.8 0.7 Y random
ASNG-NAS [Akimoto et al., 2019] N/A 2.83+0.14 39 0.1 Y gradient
SNAS [Xie et al., 2019] N/A 2.85+0.02 2.8 1.5 Y gradient
DARTS (1st-order)f [Liu et al., 2019] N/A 3.00+£0.14 33 0.4 Y gradient
DARTS (2nd-order)f [Liu et al., 2019] N/A 276 £0.09 33 1 Y gradient
PDARTS# [Chen et al., 2019] 2.50 N/A 34 0.3 Y gradient
PC-DARTS' [Xu et al., 2020] N/A 2.574+0.07 3.6 0.1 Y gradient
GAEA PC-DARTS' Ours 2.39 2.5040.06 3.7 0.1 Y gradient

123

6.5.1.1 GAEA PC-DARTS on CIFAR-10

As shown in Table 6.1, GAEA PC-DARTS finds an architecture that achieves lower error than
comparably sized AmoebaNet-B and NASNet-A architectures, which required thousands of GPU
days in search cost. We also demonstrate that geometry-aware co-design of the architecture
parameterization and optimization scheme improves upon the original PC-DARTS, which uses
Adam [Kingma and Ba, 2015] to optimize a softmax parameterization. GAEA PC-DARTS also
outperforms all non-manual methods etoxcept ProxylessNAS [Cai et al., 2019], which takes 40
times as much time, uses 1.5 times as many parameters, and is run on a different search space.
Thus on the DARTS search space itself our results improve upon the state-of-the-art.

Broad Reproducibility: Similar to Chapter 5, to meet a higher bar for reproducibility, we
report ‘broad reproducibility’ results by repeating the entire 3 stage pipeline for GAEA PC-
DARTS on additional sets of seeds. Our results in Table 6.2 show that while GAEA PC-DARTS
is consistently able to find good architectures when selecting the best architecture across four
independent weight-sharing trials, multiple trials are required due to sensitivity to the initialization
of the weight-sharing network, as is the case for many weight-sharing approaches [Liu et al., 2019,
Xu et al., 2020]. Specifically, the performance of GAEA PC-DARTS for one set is similar to that
reported in Table 6.1, while the other is on par with the performance reported for PC-DARTS in
Xu et al. [2020].

Stage 3 Evaluation
Set 1 (Reported) Set 2 Set 3
2.50 £0.07 2.50 £ 0.09 | 2.60 4 0.09

Table 6.2: GAEA PC-DARTS Stage 3 Evaluation for 3 sets of random seeds.

We depict the top architecture found by GAEA PC-DARTS in Figure 6.1.

6.5.1.2 GAEA PC-DARTS on ImageNet

Following Xu et al. [2020], we also evaluate GAEA PC-DARTS by searching direct on ImageNet.
Our evaluation methodology closely mirrors that of Xu et al. [2020]. Namely, we created a
smaller dataset from ILSVRC2012 [Russakovsky et al., 2015] for architecture search: the training
set included 10% of the images and the validation set included 2.5%. We fixed the architecture
weights for the first 35 epochs before running GAEA PC-DARTS with a learning rate of 0.1. All
other hyperparameters match that used by Xu et al. [2020]. We depict the architecture found by
GAEA PC-DARTS for ImageNet in Figure 6.1.

Table 6.3 shows the final evaluation performance of both the architecture found by GAEA
PC-DARTS on CIFAR-10 as well as the one searched directly on ImageNet when trained from
scratch for 250 epochs using the same hyperparameter settings as Xu et al. [2020]. Our results
demonstrate that the architecture found by GAEA PC-DARTS for ImageNet achieves a top-1
test error of 24.0%, which is state-of-the-art performance in the mobile setting on ImageNet
when excluding additional training modifications like label smoothing [Miiller et al., 2019],
AutoAugment [Cubuk et al., 2019], swish activation [Ramachandran et al., 2017], and squeeze

124

Table 6.3: DARTS Benchmark (ImageNet): Comparison with manually designed networks
and those found by SOTA NAS methods, mainly on the DARTS search space [Liu et al., 2019].
Results grouped by those for manual designs, architectures found by full-evaluation NAS, and
architectures found by weight-sharing NAS. All test errors are for models trained with auxiliary
towers and cutout but no other modifications, e.g., label smoothing [Miiller et al., 2019], Au-
toAugment [Cubuk et al., 2019], swish activation [Ramachandran et al., 2017], squeeze and excite
modules [Hu et al., 2018], etc. “-” indicates that the field does not apply while “N/A” indicates
unknown. Note that search cost is hardware-dependent; our results used Tesla V100 GPUs.

* We show results for networks with a comparable number of parameters.

f For fair comparison to other work, we show the search cost for training the shared-weights
network with a single initialization.

 Both the search space and backbone architecture (PyramidNet) differ from the DARTS setting.
PDARTS results are not reported for multiple seeds. Additionally, PDARTS uses deeper weight-
sharing networks during the search process, on which PC-DARTS has also been shown to improve
performance. We expect GAEA PC-DARTS to further improve if combined with PDARTS’s
deeper weight-sharing networks.

Test Error Params Search Cost Comparable Search

Architecture Source top-1 top-5 (M) (GPU Days) Search Space Method
MobileNet [Howard et al., 2017] 29.4 10.5 4.2 - - manual
ShuffleNet V2 2x [Ma et al., 2018] 25.1 N/A ~5 - - manual
NASNet-A* [Zoph et al., 2018] 26.0 8.4 5.3 1800 N RL
AmoebaNet-C* [Real et al., 2018] 24.3 7.6 6.4 3150 N evolution
DARTST [Liu et al., 2019] 26.7 8.7 4.7 4.0 Y gradient
SNAS [Xie et al., 2019] 27.3 9.2 4.3 1.5 Y gradient
ProxylessNAS* [Cai et al., 2019] 24.9 7.5 7.1 8.3 N gradient
PDARTS# [Chen et al., 2019] 24.4 7.4 4.9 0.3 Y gradient
PC-DARTS (CIFAR-10)f [Xu et al., 2020] 25.1 7.8 53 0.1 Y gradient
PC-DARTS (ImageNet)? [Xu et al., 2020] 24.2 7.3 5.3 3.8 Y gradient
GAEA PC-DARTS (CIFAR-10)f Ours 24.3 7.3 5.3 0.1 Y gradient
GAEA PC-DARTS (ImageNet) Ours 24.0 7.3 5.6 3.8 Y gradient

125

and excite modules [Hu et al., 2018]. Additionally, the architecture found by GAEA PC-DARTS
for CIFAR-10 and transferred to ImageNet achieves a test error of 24.2%, which is comparable to
the 24.2% error for the architecture found by PC-DARTS searched directly on ImageNet.

6.5.2 GAEA on NAS-Bench-1Shotl

NAS-Bench-1Shotl [Zela et al., 2020b] considers a subset of NAS-Bench-101 [Ying et al., 2019]
that allows the benchmarking of weight-sharing methods on three different search spaces over
CIFAR-10. The search spaces differ in the number of nodes considered as well as the number
of input edges per node, which jointly affects the search space size. Specifically, search space 1
has 2487 possible architectures, search space 2 has 3609 possible architectures, and search space
3 has 24066 possible architectures. For all three search spaces, a single operation from {3x3
convolution, 1x1 convolution, 3x3 max-pool} is applied to the sum of inputs to a node.

Of the weight-sharing methods benchmarked by Zela et al. [2020b], PC-DARTS achieves
the best performance on 2 of 3 search spaces. Therefore, we apply GAEA again to PC-DARTS
to investigate the impact of a geometry-aware approach on these search spaces. The results in
Figure 6.2 show that GAEA PC-DARTS finds slightly better architectures than PC-DARTS across
all 3 search spaces and exceeds the performance of the best method from Zela et al. [2020b] on 2
out of 3. We hypothesize that the benefits of GAEA are limited on this benchmark due to the
near saturation of NAS methods on its search spaces. In particular, NAS already obtains networks
that get within 1% test error of the top architecture in each space, while the standard deviations of
the test error for the top architectures in each space when evaluated with different initializations
are 0.37%, 0.23% and 0.19% respectively.

6.5.3 GAEA on NAS-Bench-201

NAS-Bench-201 considers one search space—evaluated on CIFAR10, CIFAR100, and ImageNet16-
120—that includes 4-node architectures with an operation from O = {none, skip connect, 1x1
convolution, 3x3 convolution, 3x3 avg pool} on each edge, yielding 15625 possible architectures.
In Table 6.4 we report a subset of the results from Dong and Yang [2020] alongside our GAEA
approaches, showing that GDAS Dong and Yang [2019] is the best previous weight-sharing
method on all three datasets. Our reproduced results for GDAS are slightly worse than the
published result on all three datasets but confirm GDAS as the top weight-sharing method. We
evaluate GAEA GDAS on the three datasets and find that it achieves better results on CIFAR-100
than our reproduced runs of GDAS and similar results on the other two datasets.

However, as we are interested in improving upon the reported results as well, we proceeded to
investigate the performance of GAEA when applied to first-order DARTS. We evaluated GAEA
DARTS with both single-level (ERM) and bilevel optimization for architecture parameters; recall
that in the bilevel case we optimize the architecture parameters w.r.t. the validation loss and the
shared weights w.r.t. the training loss, whereas in the ERM approach there is no training-validation
split. Our results show that GAEA DARTS (ERM) achieves state-of-the-art performance on all
three datasets, exceeding the test accuracy of both weight-sharing and traditional hyperparameter
optimization approaches by a wide margin. This result also shows that our convergence theory,
which is for the single-level case, is useful to directly understand strong NAS methods. GAEA

126

sep_conv_3x3

sep_conv_3x3 di]_
= ¢
1

</

(a) CIFAR-10: Normal Cell

skip_connect

sep_conv_3x3

sep_conv_5x5

max_pool_3x3

max_pool_3x3

sep_conv_3x

(b) CIFAR-10: Reduction Cell

sep_conv_3x3

sep_conv_5x5

skip_connect sep_conv_5x5

> 0 sep_conv_5x5
p—conv—

skip_connect =
sep_conv_3x3 sep_conv_3x3

|c (K2} I sep_conv_3x3
— max_pool_3x3

sep_conv_5x5

(d) ImageNet: Reduction Cell

Figure 6.1: Normal and reduction cells found by GAEA PC-DARTS on CIFAR-10 and ImageNet.

127

Test Regret

Figure 6.2: NAS-Bench-1Shot1: Chart of the ground truth performance of the proposed architec-
ture by epoch of shared-weights training averaged over 4 different shared-weights initializations.
The dashed black line indicates the performance of the best weight-sharing method originally

1o+ NAS-Bench-1Shotl: Search Space 1
—— GAEA PC-DARTS

1o-1.. NAS-Bench-1Shotl: Search Space 2

Test Regret

—— GAEA PC-DARTS

—— PC-DARTS

101 NAS-Bench-1Shotl: Search Space 3
—— GAEA PC-DARTS

—— PC-DARTS

Test Regret

20 30
Epochs

evaluated on the benchmark [Zela et al., 2020b].

%

<

Epochs

Search CIFAR-10 CIFAR-100 ImageNet16-120

Method (seconds) test test test
RSWS 7587 87.66 £1.69 58.33 +4.34 31.14 £ 3.88
DARTS 35781 54.30 £0.00 15.61 = 0.00 16.32 + 0.00
SETN 34139 87.64 £0.00 59.05+£0.24 32.52+0.21
GDAS 31609 93.61 £0.09 70.70 + 0.30 41.71 +0.98
GDAS (Reproduced) 279231 93.52+0.15 67.52+0.15 40.91 £ 0.12
GAEA GDAS 167541 93.55£0.13 70.47 +0.47 40.91 £ 0.12
GAEA DARTS (ERM) 90617 94.10£0.29 73.43+0.13 46.36 4+ 0.00
GAEA DARTS (bilevel) 79307 91.87+0.57 T71.87+0.57 45.69 £+ 0.56
REA N/A 93.92+0.30 71.84 +0.99 45.54 +1.03
RS N/A 93.70 £0.36 71.04 +1.08 44.57 +1.25
REINFORCE N/A 93.85+£0.37 T71.71 +1.09 45.25 +1.18
BOHB N/A 93.61 £0.52 70.85+1.28 44.42 4+ 1.49
ResNet N/A 93.97 70.86 43.63
Optimal N/A 94.37 73.51 47.31

Table 6.4: NAS-Bench-201: Results are separated into those for weight-sharing methods

" Search cost measured on NVIDIA P100 GPUs.

(top) and those for traditional hyperparameter optimization methods.

DARTS (bilevel) does not perform as well as single-level but still exceeds all other methods on

CIFAR-100 and ImageNet16-120.

6.5.4 Convergence of GAEA

128

While in the previous sections we focused on the test accuracy of GAEA, we now examine the
impact of GAEA on the speed of convergence of the architecture parameters during training.
Figure 6.3 shows the entropy of the operation weights averaged across nodes for a GAEA-

DARTS Search Space Entropy NAS-Bench-1Shotl: Space 1 Entropy NAS-Bench-201: CIFAR-10 Entropy

2.075-7% 11l 14
2.050- LS 1.0- 4 Y
N 1 1.2- \\

>, 2.025-

-~ >0.9- > ",
S 2.000- s g 4 —— PC-DARTS 211 o —— DARTS (first order)
5 £08- \ === - £ 1.0- S ---- i-level
3 \ GAEA PC-DARTS - GAEA DARTS (bi-level)
W1.975- [\ fri] o
‘\ 0.9-
M 0.7 - \ yiwra ~
1.950- — pCDARTS . .. e o8- B ,
1.925- ---- GAEA PC-DARTS | 0.6- _~_\J,—-\V_~,«_/‘* 07- N *_,\,_—/,

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 50
Epochs Epochs Epochs

Figure 6.3: GAEA Convergence: Evolution over search phase epochs of the average entropy
of the operation-weights for GAEA and the approaches it modifies when run on the DARTS
search space (left), NAS-Bench-1Shotl Search Space 1 (middle), and NASBench-201 on CIFAR-
10 (right). GAEA reduces entropy much more quickly than previous gradient-based methods,
allowing it to quickly obtain sparse architecture weights. This leads to both faster convergence to
a single architecture and a lower loss when pruning at the end of the search phase.

variant versus the base method across all three benchmarks. It is evident that the entropy of
operation weights decreases much faster for GAEA-modified approaches across all benchmarks
relative to the base methods. This also validates our expectation that GAEA encourages sparsity
in architecture parameters, which should alleviate the mismatch between using a continuous
relaxation of the architecture space and the discrete architecture derivation performed at the end
of search. Note that, in addition to GAEA’s use of exponentiated gradient over the simplex, the
entropy decrease of PC-DARTS may be further slowed by an additional weight decay term that is
applied to architecture weights, which is not required for GAEA PC-DARTS.

6.5.5 Comparison to XNAS

As discussed in Section 6.1.1, XNAS is similar to GAEA in that it uses an exponentiated gradient
update but is motivated from a regret minimization perspective. Nayman et al. [2019] provides
regret bounds for XNAS relative to the observed sequence of validation losses, however, this is
not equivalent to the regret relative to the best architecture in the search space, which would have
generated a different sequence of validation losses.

XNAS also differs in its implementation in two ways: (1) a wipeout routine is used to zero
out operations that cannot recover to exceed the current best operation within the remaining
number of iterations and (2) architecture gradient clipping is applied per data point before
aggregating to form the update. These differences are motivated from the regret analysis and
meaningfully increase the complexity of the algorithm. Unfortunately, the authors do not provide
the code for architecture search in their code release at https://github.com/NivNayman/XNAS.
Nonetheless, we implemented XNAS [Nayman et al., 2019] for the NAS-Bench-201 search space
to provide a point of comparison to GAEA.

Our results shown in Figure 6.4 demonstrate that XNAS exhibits much of the same behavior as
DARTS in that the operations all converge to skip connections. We hypothesize that this is due to
the gradient clipping, which obscures the signal kept by GAEA DARTS in favor of convolutional
operations.

129

https://github.com/NivNayman/XNAS

CIFAR10: XNAS CIFAR100: XNAS IMAGENET16-120: XNAS

5
=3
N »
S o
N

IS
S
a

w
S
Oracle Test Acc
Now ow
S

Oracle Test Acc
.
S
Oracle Test Acc
&

N
S

N

o

H
S
‘\
-
G

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Epochs Epochs Epochs

Figure 6.4: NAS-Bench-201: XNAS Learning Curves. Evolution over search phase epochs of
the best architecture according 4 runs of XNAS. XNAS exhibits the same behavior as DARTS
and converges to nearly all skip connections.

6.6 Proof of Theoretical Results

This section contains proofs and generalizations of the non-convex optimization results in Sec-
tion 6.3. Throughout this section, V denotes a finite-dimensional real vector space with Euclidean
inner product (-, -), R, denotes the set of nonnegative real numbers, and R denotes the set of
extended real numbers R U {+o0}.

6.6.1 Preliminaries

Definition 1. Consider a closed and convex subset X C V. For any o > 0 and norm || - || : X'
R, an everywhere-subdifferentiable function f : X — R is called a-strongly-convex w.r.t. || - ||
ifVx,y € X we have

F9) 2 F60) +(VF(x),y =) + Slly = I

Definition 2. Consider a closed and convex subset X C V. For any 3 > 0 and norm || - || : X —
R an continuously-differentiable function f : X — R is called 5-strongly-smooth w.r.z. || - || if
Vx,y € X we have

F(y) < F60) + (V100 =) + 2y —x]?

Definition 3. Let X be a closed and convex subset of V. The Bregman divergence induced by a
strictly convex, continuously-differentiable distance-generating function (DGF) ¢ : X — R is

Dy(x|ly) = 6(x) — ¢(y) = (Vo(y),x—y) Vx,y € X

By definition, the Bregman divergence satisfies the following properties:
1. Dy(x|ly) >0V x,y € Xand Dy(x|]ly) =0 <= z =uy.
2. If ¢ is a-strongly-convex w.rt. norm || - || then so is Dy(-|ly) V'y € X. Furthermore,
Dy(x|ly) = 5lx—yl*Vx,y € X.
3. If ¢ is (-strongly-smooth w.rt. norm || - || then so is Dy(-||y) Vy € X. Furthermore,
Dy(xlly) < 5lx—y[?Vx,y € X.

130

Definition 4. [Zhang and He, 201 8, Definition 2.1] Consider a closed and convex subset X C V.
For any v > 0 and ¢ : X — R an everywhere-subdifferentiable function f : X — R is called
~-relatively-weakly-convex (yv-RWC) w.r.t. ¢ if f(-) + v¢(-) is convex on X.

Definition S. [Zhang and He, 2018, Definition 2.3] Consider a closed and convex subset X C V.
For any A > 0, function f : X — R, and DGF ¢ : X — R the Bregman proximal operator of

fis

prox, (x) = argmin A f(u) + Dy(u||x)
uex

Definition 6. [Zhang and He, 2018, Equation 2.11] Cons_ider a closed and convex subset X C V.
For any \ > 0, function f : X — R, and DGF ¢ : X — R the Bregman stationarity of f at any
pointx € X is

Dy (x|| prox, (x)) + Dy (prox, (x)[[x)

A)\<X) =)\2

6.6.2 Results

Throughout this subsection let V = szl V; be a product space of b finite-dimensional real vector

)) b
spaces V;, each with an associated norm || - [|; : V; = R, and X = X,_, &; be a product set

of b subsets &X; C V;, each with an associated 1-strongly-convex DGF ¢; : &; — R w.rt. || - ||s.
For each ¢ € [b] will use || - ||;« to denote the dual norm of | - ||; and for any element x € X
we will use x; to denote its component in block ¢ and x_; to denote the component across all
blocks other than i. Define the functions || - || : V. — R, and || - ||,V +— R, for any x € V
by [|Ix]|> = 3°0_, [Ixi||? and [[x||2 = 30_, [[x:[|3., respectively, and the function ¢ : X — R
for any x € X by ¢(x) = S.°_, ¢;(x). Finally, for any n € N we will use [n] to denote the set

{1,...,n}.

Setting 1. For some fixed constants v;, L; > 0 for each i € [b] we have the following:

1. f: X — Ris everywhere-subdifferentiable with minimum f* > —oo and for all x € X
and each i € [b] the restriction f(-,Xx_;) is 7;-RWC w.r.t. ¢;.

2. Foreachi € [b] there exists a stochastic oracle G; that for input x € X outputs a random
vector G;(x,€) s.t. EcG;(x,€) € 0,f(x), where 0, f(x) is the subdifferential set of the
restriction f(-,x_;) at x;. Moreover, E¢||G;(x,§)|7, < L.

Define v = max;ep) y; and L? = Zle L2

Claim 1. || - || isa norm on V.

Proof. Positivity and homogeneity are trivial. For the triangle inequality, note that for any

131

A € [0,1] and any x,y € X we have that

b
A+ (1= Ayl = \ DI+ (1= A)yl?
i=1

b

\ > Allills + (1 = X lyill:)?

i=1

IN

b
<A Z I%:]|7 + (1= N)
i=1

= Al + (1= A)lyll

b
i=1

where the first inequality follows by convexity of the norms || - ||; Vi € [b] and the fact that the
Euclidean norm on R? is nondecreasing in each argument, while the second inequality follows by
convexity of the Euclidean norm on R?.]

132

Algorithm 5: Block-stochastic mirror descent over X' = szl AX; given associated
DGFs ¢; : X; — R.

Input: initialization x) € X', number of steps T > 1, step-size sequence {n;}L_,
1 for iteration t € [T] do
2 sample i ~ Unif|[b]

3 set x(tH) x(_tz

getg = G;(x, &)

E°S

5 set x(= = arg min,,c y, ni(g, u) + D¢i(u||xgt))
¢ end
o 5 — (1) 7t
Output: X = x w.p. ST
Claim 2. 1|| - ||2 is the convex conjugate of 5| - ||*.

Proof. Consider any u € V. To upper-bound the convex conjugate note that

N x| Z 2
p(u, x) — = sup u;, X;)
xeV xeV 4 2

X
SSUP§ [[l]|s — H ZH
xeV i1

b
1
=52 Il
2
i=1

R

2

where the first inequality follows by definition of a dual norm and the second by maximizing
each term w.r.t. ||x;|/;. For the lower bound, pick x € V s.t. (u;,x;) = ||u|i«|/%;]|; and
|Ix;||; = ||will;« V4 € [b], which must exist by the definition of a dual norm. Then

b b
] HXzH2 Lo w2 H11||2
(u,x) — 5 Z(uiuxi> - = 52
i=1 i=1
S0 SUP,ey (U, x) — 3[x]|? > 1{|u||% completing the proof. O

133

Theorem 2. Let & be the output of Algorithm 5 after T' iterations with non-increasing step-size
sequence {n;}L_,. Then under Setting I, for any 4 > ~y we have that

~ . ~ * 272
4b mingey f(u) +4Dg(u|[x®) — f* 4 E ST 2

T
T Zt:1 Nt

where the expectation is w.r.t. & and the randomness of the algorithm.

EA

(%) <

BN

Proof. Define transforms U;,i € [b] s.t. Ul'x = x; and x = Z?Zl Ux;Vx e X. Let G
be a stochastic oracle that for input x € X outputs G(x,4,£) = bU,;G;(x,£). This implies
EieG(x,0,€) = § 25 WUEGi(x,€) € 37 Uidif(x) = 0f(x) and Eye||G(x, 0,62 =
3 i PEUGi(x, €) |7, < b320, L7 = bL?. Then

X+ _ [arg min g, u) + D¢i<u||x§f>>]
uex;

b
U [arg min g, (U Gi(x,), u) + D@(umx?’)]
=1

ueX

= argmin 7 (G(x, 3, &), w) + Dy (uf}x)
ucekx

Thus Algorithm 5 is equivalent to [Zhang and He, 2018, Algorithm 1] with stochastic oracle
G(x,1,&), step-size sequence {n;/b}L_,, and no regularizer. Note that ¢ is 1-strongly-convex w.r.t.
| - || and f is v-RWC w.r.t. ¢, so in light of Claims 1 and 2 our setup satisfies [Zhang and He,
2018, Assumption 3.1]. The result then follows from [Zhang and He, 2018, Theorem 3.1]. [

Corollary 1. Under Setting 1 let X be the output of Algorithm 5 with constant step-size 1, =
BUS) ¢ e [T), where fO = f(x(D). Then we have

~L2T
(1) _ F=
EA ; (%) < QL\/M

where the expectation is w.r.t. & and the randomness of the algorithm. Equivalently, we can reach

8YOL2(F D —f*)
2

a point X satisfying EA% (X) <ein stochastic oracle calls.
Y

134

6.7 Experiment Details

We provide additional detail on the experimental setup and hyperparameter settings used for each
benchmark studied in Section 6.5. We also provide a more detail discussion of how XNAS differs
from GAEA, along with empirical results for XNAS on the NAS-Bench-201 benchmark.

6.7.1 DARTS Search Space

We consider the same search space as DARTS [Liu et al., 2019], which has become one of the

standard search spaces for CNN cell search [Chen et al., 2019, Liang et al., 2019, Nayman et al.,

2019, Noy et al., 2019, Xie et al., 2019]. Following the evaluation procedure used in Liu et al.

[2019] and Xu et al. [2020] , our evaluation of GAEA PC-DARTS consists of three stages:

e Stage 1: In the search phase, we run GAEA PC-DARTS with 5 random seeds to reduce variance
from different initialization of the shared-weights network.?

e Stage 2: We evaluate the best architecture identified by each search run by training from
scratch.

e Stage 3: We perform a more thorough evaluation of the best architecture from stage 2 by
training with ten different random seed initializations.

For completeness, we describe the convolutional neural network search space considered. A
cell consists of 2 input nodes and 4 intermediate nodes for a total of 6 nodes. The nodes are
ordered and subsequent nodes can receive the output of prior nodes as input so for a given node k,
there are £ — 1 possible input edges to node k. Therefore, there are atotal of 2 +3 +4+5 =14
edges in the weight-sharing network.

An architecture is defined by selecting 2 input edges per intermediate node and also selecting
a single operation per edge from the following 8 operations: (1) 3 x 3 separable convolution, (2)
5 X 5 separable convolution, (3) 3 x 3 dilated convolution, (4) 5 x 5 dilated convolution, (5) max
pooling, (6) average pooling, (7) identity (8) zero.

We use the same search space to design a “normal” cell and a “reduction” cell; the normal cells
have stride 1 operations that do not change the dimension of the input, while the reduction cells
have stride 2 operations that half the length and width dimensions of the input. In the experiments,
for both cell types, , after which the output of all intermediate nodes are concatenated to form the
output of the cell.

6.7.1.1 Stage 1: Architecture Search

For stage 1, as is done by DARTS and PC-DARTS, we use GAEA PC-DARTS to update architec-
ture parameters for a smaller shared-weights network in the search phase with 8 layers and 16
initial channels. All hyperparameters for training the weight-sharing network are the same as that
used by PC-DART:
train:

scheduler: cosine

3Note Liu et al. [2019] trains the weight-sharing network with 4 random seeds. However, since PC-DARTS is
significantly faster than DARTS, the cost of an additional seed is negligible.

135

Ir'anneal cycles: 1

smooth cross’entropy: false

batch’size: 256

learning rate: 0.1

learning rate min: 0.0

momentum: 0.9

weight 'decay: 0.0003

init'channels: 16

layers: 8

autoaugment: false

cutout: false

auxiliary: false

drop path prob: 0

grad clip: 5
For GAEA PC-DARTS, we initialize the architecture parameters with equal weight across all
options (equal weight across all operations per edge and equal weight across all input edges per
node). Then, we train the shared-weights network for 10 epochs without performing any architec-
ture updates to warmup the weights. Then, we use a learning rate of 0.1 for the exponentiated
gradient update for GAEA PC-DARTS.

6.7.1.2 Stage 2 and 3: Architecture Evaluation

For stages 2 and 3, we train each architecture for 600 epochs with the same hyperparameter
settings as PC-DARTS:

train:
scheduler: cosine
Ir'anneal cycles: 1
smooth cross’entropy: false
batch’size: 128
learning rate: 0.025
learning rate min: 0.0
momentum: 0.9
weight 'decay: 0.0003
init'channels: 36
layers: 20
autoaugment: false
cutout: true
cutout'length: 16
auxiliary: true
auxiliary weight: 0.4
drop'path prob: 0.3
grad clip: 5

136

6.7.2 NAS-Bench-1Shotl

The NAS-Bench-1Shotl benchmark [Zela et al., 2020b] contains 3 different search spaces that
are subsets of the NAS-Bench-101 search space. The search spaces differ in the number of nodes
and the number of input edges selected per node. We refer the reader to Zela et al. [2020b] for
details about each individual search space.

Of the NAS methods evaluated by Zela et al. [2020b], PC-DARTS had the most robust
performance across the three search spaces and converged to the best architecture in search
spaces 1 and 3. GDAS, a probabilistic gradient NAS method, achieved the best performance on
search space 2. Hence, we focused on applying a geometry-aware approach to PC-DARTS. We
implemented GAEA PC-DARTS within the repository provided by Zela et al. [2020b] available at
https://github.com/automl/nasbench-1shot1. We used the same hyperparameter settings for
training the weight-sharing network as that used by Zela et al. [2020b] for PC-DARTS. Similar
to the previous benchmark, we initialize architecture parameters to allocate equal weight to all
options. For the architecture updates, the only hyperparameter for GAEA PC-DARTS is the
learning rate for exponentiated gradient, which we set to 0.1.

As mentioned in Section 6.5, the search spaces considered in this benchmark differ in that
operations are applied after aggregating all edge inputs to a node instead of per edge input as
in the DARTS and NAS-Bench-201 search spaces. This structure inherently limits the size of
the weight-sharing network to scale with the number of nodes instead of the number of edges
(O(|nodes|?)), thereby limiting the degree of overparameterization. Understanding the impact of
overparameterization on the performance of weight-sharing NAS methods is a direction for future
study.

6.7.3 NAS-Bench-201

The NAS-Bench-201 benchmark [Dong and Yang, 2020] evaluates a single search space across
3 datasets: CIFAR-10, CIFAR-100, and a miniature version of ImageNet (ImageNet16-120).
ImageNet16-120 is a downsampled version of ImageNet with 16 x 16 images and 120 classes for
a total of 151.7k training images, 3k validation images, and 3k test images.

Dong and Yang [2020] evaluated the architecture search performance of multiple weight-
sharing methods and traditional hyperparameter optimization methods on all three datasets.
According to the results by Dong and Yang [2020], GDAS outperformed other weight-sharing
methods by a large margin. Hence, we first evaluated the performance of GAEA GDAS on each
of the three datasets. Our implementation of GAEA GDAS uses an architecture learning rate of
0.1, which matches the learning rate used for GAEA approaches in the previous two benchmarks.
Additionally, we run GAEA GDAS for 150 epochs instead of 250 epochs used for GDAS in
the original benchmarked results; this is why the search cost is lower for GAEA GDAS. All
other hyperparameter settings are the same. Our results for GAEA GDAS is comparable to the
reported results for GDAS on CIFAR-10 and CIFAR-100 but slightly lower on ImageNet16-120.
Compared to our reproduced results for GDAS, GAEA GDAS outperforms GDAS on CIFAR-100
and matches it on CIFAR-10 and ImageNet16-120.

Next, to see if we can use GAEA to further improve the performance of weight-sharing
methods, we evaluated GAEA DARTS (first order) applied to both the single-level (ERM) and

137

https://github.com/automl/nasbench-1shot1

bi-level optimization problems. Again, we used a learning rate of 0.1 and trained GAEA DARTS
for 25 epochs on each dataset. The one additional modification we made was to exclude the zero
operation, which limits GAEA DARTS to a subset of the search space. To isolate the impact of
this modification, we also evaluated first-order DARTS with this modification. Similar to Dong
and Yang [2020], we observe DARTS with this modification to also converge to architectures with
nearly all skip connections, resulting in similar performance as that reported by Dong and Yang
[2020].

For GAEA GDAS and GAEA DARTS, we train the weight-sharing network with the following
hyperparameters:
train:

scheduler: cosine

Ir'anneal cycles: 1

smooth’cross’entropy: false

batch’size: 64

learning rate: 0.025

learning rate min: 0.001

momentum: 0.9

weight decay: 0.0003

init'channels: 16

layers: 5

autoaugment: false

cutout: false

auxiliary: false

auxiliary weight: 0.4

drop path prob: 0

grad clip: 5

Surprisingly, we observe single-level optimization to yield better performance than solving
the bi-level problem with GAEA DARTS on this search space. In fact, the performance of
GAEA DARTS (ERM) not only exceeds that of GDAS, but also outperforms traditional hyper-
parameter optimization approaches on all three datasets, nearly reaching the optimal accuracy
on all three datasets. In contrast, GAEA DARTS (bi-level) outperforms GDAS on CIFAR-100
and ImageNet16-120 but underperforms slightly on CIFAR-10. The single-level results on this
benchmark provides concrete support for our convergence analysis, which only applies to the
ERM problem.

As noted in Section 6.5, the search space considered in this benchmark differs from the prior
two in that there is no subsequent edge pruning. Additionally, the search space is fairly small
with only 3 nodes for which architecture decisions must be made. The success of GAEA DARTS
(ERM) on this benchmark indicate the need for a better understanding of when single-level
optimization should be used in favor of the default bi-level optimization problem and how the
search space impacts the decision.

138

Chapter 7
Weight-Sharing Beyond NAS

In Chapter 5, we showed that combining random search with weight-sharing improved perfor-
mance over ASHA on NAS benchmarks. Additionally, in the previous chapter, we developed
a geometry-aware gradient-based weight-sharing approach that achieved state-of-the-art perfor-
mance on image classification tasks. Given the surprising effectiveness of weight-sharing, it is
natural to wonder whether it is possible to extend this approach to accelerate algorithms in other
settings of interest, and in doing so to enhance our empirical and/or theoretical understanding of
the original NAS problem. Since NAS is a specialized instance of hyperparameter optimization,
the latter is a reasonable place to start.

In this chapter, we show that weight-sharing can be fruitfully applied to a subclass of hyperpa-
rameter optimization problems we refer to as architecture search, yielding:

¢ Fast and simple methods for two important problems: (1) feature map selection and (2)
hyperparameter optimization for federated learning.

¢ Novel insight into the use of bilevel optimization in NAS by way of comparison with a
simpler setting.

Our contributions, which we summarize below, demonstrate that weight-sharing is a powerful
heuristic worthy of both further theoretical study and widespread application beyond the NAS
setting.

e Starting from the observation that feature map selection—the problem of picking the best
of a finite set of fixed data representations—can be viewed as a shallow NAS problem,
we apply weight-sharing to construct a simple, fast, and accurate algorithm that we show
outperforms strong baselines— random search [Bergstra and Bengio, 2012] and successive
halving (Chapter 2)— on a feature map selection problem.

e Motivated by this success, we use feature map selection as a simple setting to study
architecture search. Empirically, we observe several phenomena in this setting that are
similar to those seen in NAS with weight-sharing. Theoretically, we give a possible
explanation for why most modern NAS methods employ a bilevel objective, despite the fact
that weight-sharing precludes standard model-selection-based justifications for doing so.

¢ Finally, we study hyperparameter optimization for federated learning, which performs
massively distributed optimization over networks of heterogenous devices. We show that
weight-sharing is particularly well-suited to this setting due to the limited amount of

139

computation and inherently noisy validation signal from ephemeral data. This motivates
the development of Federated Exponentiated-Gradient (FedEx), a simple extension of the
popular Federated Averaging (FedAvg) method [McMahan et al., 2017] that uses weight-
sharing to automatically tune optimization parameters while simultaneously training across
devices.

7.1 The Weight-Sharing Learning Problem

Recall from Chapter 5.3 that weight-sharing is an efficient evaluation method for NAS that trains
a single supernetwork in lieu of individual architectures to obtain noisy signals of the performance
of different architectures from the search space. In this chapter, we will use weight-sharing to
refer to any technique that uses the same set of weights w €)V to obtain noisy evaluations of the
quality of multiple configurations ¢ € C, thus removing the need to train custom weights for each
one. Note that in NAS, C is the set of all possible architectures in a given search space and the
goal is to find ¢ € C that can be optimized to achieve low population error, while d is the number
of weights needed to parameterize the largest architecture in C.

Similar to Chapter 6.2, for our more general search space C, the joint hypothesis space over
configurations and parameters is the following union:

He=|JH. = {hwe: X =Y, weW,ceC}

ceC

As usual the goal of learning is to find h, . € Hc with low population risk {p(w, ¢) = p(hy,) =
E(¢y)~Dl(hw.c(x),y) forloss £ : J' x Y — R and some distribution D over sample space X x).

We studied the empirical risk minimization problem (ERM) for a dataset of labeled examples
in Chapter 6.3. However, as mentioned before, most NAS algorithms split the data into training
and validation sets 7, V' C X x) and instead solve the following bilevel optimization problem:

i 14 1. € in L 7.1
Woin_ viw,c) st w arfervl\lzm r(u,c) (7.1)

where ¢y is the empirical risk over V' while L is a (possibly) regularized objective over 7. While
the bilevel approach is very common in standard hyperparameter optimization and model selection
[Franceschi et al., 2018], we will see that its widespread use in conjunction with weight-sharing is
not an obvious decision. However, in Section 7.2.2 we show that this formulation can improve
sample complexity via adaptation to the generalization error of the best configuration ¢ € C rather
than to the average or the worst one, with explicit bounds on the excess risk for the case of feature
map selection given in Corollaries 2 and 3.

7.1.1 The Unreasonable Effectiveness of Weight-Sharing

As we demonstrated in Chapter 5 and Chapter 6, despite the noise due to numerous SGD updates
w.r.t. different architectures, weight-sharing has become an incredibly successful tool for NAS.
The random search with weight-sharing (RSWS) approach introduced in Chapter 5 is a simple

140

example illustrating the surprising power of weight-sharing. The bilevel object solved by RSWS
is effectively
min ly(w* c) st w'e arir;lvm CNU]Ef(C) Lr(u,c)

where the shared-weights are trained to optimize the expected performance of architectures
sampled uniformly from C. This shows how weight-sharing reduces the computational cost to that
of training a single model, followed by (relatively cheap) evaluations of different configurations
c € C using the resulting shared weights w*. If the learned shared-weights w* have high validation
accuracy on the best architectures from the search space, then this approximation to the bilevel
problem is useful for identifying good architectures. Surprisingly, this is the case for the two
standard NAS benchmarks evaluated in Chapter 5.5, in Section 7.2 we observe analogous behavior
for a much simpler hyperparameter configuration problem.

Instead of relying on uniform sampling, other NAS approaches attempt to adaptively learn a
good distribution over configurations [Akimoto et al., 2019, Guo et al., 2019, Pham et al., 2018,
Xie et al., 2019, Zheng et al., 2019]. For both problems that we study—feature map selection
and federated hyperparameter tuning—we will see that simple distribution-updating schemes
such as successive elimination or exponentiated gradient descent (multiplicative weights) are very
effective.

7.1.2 Limitations and Questions

The above results highlight how shared weights are able to encode a remarkable amount of signal
in over-parameterized NAS models and motivate our development of weight-sharing algorithms
for other hyperparameter configuration problems. However, in addition to the inherent noisiness of
the process, weight-sharing is limited to only providing signal for architectural hyperparameters;
for a fixed set of weights, settings such as learning rate and regularization cannot be tuned because
changing them does not affect the function being computed and thus leaves the loss unchanged.
Although an important drawback, in Section 7.3 we show how it can be circumvented in the
setting of federated learning with personalization.

This limitation also brings into question why most modern NAS methods employ weight-
sharing to solve a bilevel optimization problem. Indeed, recent work has questioned this trend
[Li et al., 2019b, Xie et al., 2019] since it seems perfectly justified to use the simpler single-level
(regularized) ERM to directly inform the choice of architectural hyperparameters. In the next
section, we use our study of feature map selection, a hyperparameter configuration problem that
can be viewed as the simplest form of NAS, to provide concrete excess risk bounds as part of
a broader theory of why bilevel optimization has been found to lead to better generalization in
practice.

7.2 Feature Map Selection

In this section, we demonstrate how weight-sharing can be applied as a hyperparameter opti-
mization method to simple feature map selection problems. Our empirical results show that
weight-sharing outperforms random search and successive halving (Chapter 2) when selecting

141

Algorithm 6: Feature map selection using successive halving with weight-sharing.
Input: training set 7', validation set V', convex loss /, set of feature map ¢, configurations
C, regularization parameter A > 0
1 for roundt =1, ..., log,|C| do
2 | for datapoint (z,y) € TUV do
3 | assign ¢, ~ Unif(C) i.id.
4 end
s | wp<argmin A[wl+ 3 ((w, ¢, (2)),y)
weR? (z.y)€T
6 for configuration c € C do
7 Ve—A{(z,y) €V :iec, =c}
8 Se <= |x}6\ > W ¢, (2)),y)
(z,y)eVe
9 end
10w | C={ceC:s.<Median({s.:c€C})}
1 end
Result: Singleton set of configurations C.

random Fourier features for CIFAR-10, motivating further analysis. We use this simple setting to
help us understand the benefit of solving the bilevel problem for generalization.

In feature map selection we have a small set C of configurations ¢ each corresponding to some
feature map ¢, : X — RY of the input that is to be passed to a linear classifier in W = RY; the
hypothesis space is then He = {{w, ¢.(-)) : w € R% ¢ € C}. Observe that feature map selection
can be viewed as a very simple NAS problem, with the difference that in neural networks the
feature maps ¢, also depend on parameter-weights w, whereas here we only parameterize the last
layer.

For standard hyperparameter optimization, feature map selection is done via the following
bilevel optimization for regularization parameter A > 0:

min Z £<<W:7¢c($)>7y)

ceC
(et) (7.2)
w, = arg min Mwls + Y (w, 6.(x)),v)
we

(z,y)ET

Note that A is usually part of C, but as a non-architectural hyperparameter it is not tuned by
weight-sharing. !

7.2.1 Weight-Sharing for Feature Map Selection

How can we use weight-sharing to approximate Eq. (7.2) without solving a Ridge regression
problem to obtain w for each configuration ¢ € C? As with most hyperparameter optimization

' We do not find that including regularization as a hyperparameter significantly affects performance of random
search. This is perhaps not surprising as architectural parameters such as kernel bandwidth and feature weighting
play similar roles in this setting.

142

Shared-Weights Signal on CIFAR-10

o ©

o
o]

I
S

o
W

3125 features
6250 features
12500 features
e 25000 features
50000 features
. » 100000 features

Validation accuracy using standalone weights
o

°
o

U.;lO OA'15 OA'ZO O.’25 0.’30 0.’35 0.;10
Validation accuracy using shared-weights

Figure 7.1: CIFAR-10 validation accuracy of each feature map (random Fourier kernel ap-
proximation) when using the jointly trained classifier (shared weights after a single round of
training) compared to its validation accuracy when using its own independently trained classifier
(standalone weights). The accuracies given by the shared-weights classifier correlate strongly
with those of individual classifiers, providing a strong signal for selecting feature maps without
solving Ridge regression many times.

problems, we need a method for resource allocation—a way to prioritize different configurations
based on validation data. We take inspiration from the RSWS algorithm described in Section 7.1,
which allocates a resource—a minibatch of training examples—to some configuration at each
iteration. Analogously, in Algorithm 6, we propose to allocate training examples to feature maps:
at each iteration ¢ we solve an /y-regularized ERM problem in which each point is featurized
by a random map ¢., ¢ ~ Unif(C). The resulting classifier w; is thus shared among the feature
maps rather than being the minimizer for any single one; nevertheless, as with RSWS we find that,
despite being trained using the uniform distribution over configurations, the shared-weights w,
are much better classifiers for data featurized using the best feature maps (c.f. Figure 7.1). We use
this as validation signal in a successive halving procedure that approximates Eq. (7.2) in log, |C|
regression solves.

We evaluate Algorithm 6 on the feature map selection problem of kernel ridge regression over
random Fourier features [Rahimi and Recht, 2007] on CIFAR-10. In addition to the weight-sharing
approach described in Algorithm 6, we evaluate a variant we call Fast Weight-Sharing in which
at each round ¢ the feature dimension used is a constant multiplicative factor greater than that
used on the previous round (we use v/2, finding doubling to be too aggressive), with the final
dimension d reached only at the last round. This is reminiscent of the successive halving resource
allocation scheme since the promoted feature maps are given multiplicatively more random
features. Following the experiments in Chapter 2.4.3, we tune the bandwidth, the preprocessing,

143

Comparison of weight-sharing variants to random search on CIFAR-10

0.65 —— Random Search 0.65 1 —— Random Search
’ —— SHA(r=R/64) ' —— Weight-Sharing
—— Weight-Sharing

- Fast Weight-Sharing 2)
O 0.60 . 0.60
—
= o
9] c
"(71’ ()
Q 0
5 055 $ 055
O +J
Y (0]
2 IS
3 0.50 © o.50
o o
(@)

0.45 0.45

0 5 10 15 20 25 30 35 40 45 0 2 4 6 8 10 12 14 16
Time (minutes) Function evaluations

Figure 7.2: Observed test-error on CIFAR-10 as a function of time (left) and oracle test-error on
CIFAR-10 as a function of number of calls to the Ridge regression solver. Here, oracle test-error
refers to evaluation of a separately trained, non-weight-shared, classifier on the best config at any
given round according to weight-sharing. All curves are averaged over 10 independent trials.

and replace their tuning of the regularization A\ by tuning the choice of kernel instead; further
details are provided in Section 7.5. For all experiments we set the maximum number of features
to be d = 100000. We set the minimum number of features for successive halving to be 6250 for
a total of 5 rounds. For random search, we continue sampling configurations until the cumulative
number of features evaluated matches that of successive halving.

We find that both weight-sharing algorithms consistently outperform or match the performance
of random search and successive halving in both speed and accuracy. In Figure 7.2 we show
that weight-sharing based methods achieve lower observed test-error than the baseline methods.
While successive halving and random search converge more quickly (to slightly less optimal
configurations) in terms of wall-clock time, fast weight-sharing converges to the same best
observed test-error as weight-sharing in significantly less time. We also find that, while random
search appears to converge faster than weight-sharing in terms of observed test-error measured on
shared weights over wall-clock time, weight-sharing converges faster in terms of oracle test-error
over the number of function evaluations. The lower observed test error during intermediate rounds
of weight-sharing is due the shared classifiers not being optimal for any single configuration. Note
that we do not compare to SHA or fast weight-sharing in the right-hand plot because they compute
many more solutions to lower-dimensional Ridge regression problems and so the evaluations are
incomparable.

7.2.2 Generalization Guarantees for the Bilevel Problem

Bilevel objectives such as Eq. (6.3) and Eq. (7.2) are closely related to the well-studied problems
of model selection and cross-validation. However, a key difference in our case is that the choice of
configuration ¢ € C does not necessarily provide any control over the complexity of the hypothesis

144

space; for example, in NAS it is often unclear how the hypothesis space changes due to the change
in one decision. By contrast, the theory of model selection is often directly concerned with control
of model complexity. Indeed, in possibly the most common setting the hypothesis classes are
nested according to some total order of increasing complexity, forming a structure [Kearns et al.,
1997, Vapnik, 1982]. This is for example the case in most norm-based regularization schemes.
Even in the non-nested case, there is often an explicit tradeoff between parsimony and accuracy
[Vuong, 1989].

On the other hand, in our feature map experiments we do not tune the one explicit capacity-
controlling parameter, A\, because it is non-architectural. This brings into question why we need
the bilevel formulation in the first place; instead we could still use weight-sharing but solve the
joint ERM problem over the combined data:

min - Awl3 + D (W, (), y)

ceC,wew
(z,y)€eTUV

We are especially interested in this question due to the widespread use of the bilevel formulation in
NAS with weight-sharing, despite the identical limitations on tuning non-architectural parameters
discussed in Section 7.1.2. Especially when continuous relaxation [Liu et al., 2019] is applied,
architecture parameters in NAS appear more similar to regular model parameters rather than
controls on the model complexity, so it becomes reasonable to wonder why most NAS practitioners
have used the bilevel formulation. In this section we give an analysis suggesting that decomposing
the objective can improve generalization by adapting to the sample complexity of the best
configuration in C, whereas ERM suffers that of the worst. For feature map selection our theory
gives concrete excess risk bounds.

To see why the bilevel formulation Eq. (6.3) might be useful, we first note that a key aspect
of the optima of the bilevel problem is the restriction on the model weights: they must be in
the set arg min, ¢y, L7(w, ¢) of the inner objective L. We refer to the subset H.r = {hw., :
w € argmin, ., Lr(u,c)} of the associated hypotheses associated as the version space [Kearns
et al., 1997, Equation 6] induced by some configuration c and the objective function. Then letting
N(F,¢) be the L>®-covering-number of a set of functions F at scale ¢ > 0, i.e. the number of
L™ balls required to construct an e-cover of /' [Mohri et al., 2012, Equation 3.60], we define the
following empirical complexity measure:

Definition 7. The version entropy of Hc at scale ¢ > 0 induced by the objective L1 over training
data T is A(H,e,T) =1og N (U.cc Her,€).

The version entropy is a data-dependent quantification of how much the hypothesis class is
restricted by the inner optimization. For finite C, a naive bound shows that A(H, e, T) is bounded
by log |C| + max ¢ log N(H.r,¢), so that the second term measures the worst-case complexity
of the global minimizers of L. In the feature selection problem, L is usually a strongly-convex
loss due to regularization and so all version spaces are singleton sets, making the version entropy
log |C|. In the other extreme case of nested model selection the version entropy reduces to the
complexity of the version space of the largest model and so may not be informative. However, in
practical problems such as NAS an inductive bias is often imposed via constraints on the number
of input edges.

To bound the excess risk in terms of the version entropy, we first discuss an important
assumption describing cases when we expect the bilevel approach to perform well:

145

Assumption 2. There exists a good ¢ € C—one such that (w*,c*) € argminy,, . {p(W,c)
for some w* € W-—such that w.h.p. over the drawing of training set I at least one of the
minima of the optimization induced by ¢* and 'T' has low excess risk, i.e. w.p. 1 — ¢ there
exists w € argmin,yy, Lr(u, ¢*) s.t. {p(hyw) — bp(h*) < e*(|T],9) for excess risk £* and all
h* € He.

This assumption requires that w.h.p. the inner optimization objective does not exclude all
low-risk classifiers for the optimal configuration. Note that it asks nothing of either the other
configurations in C, which may be arbitrarily bad, nor of the hypotheses found by the procedure.
It does however prevent the case where even minimizing the objective L7 (-, ¢*) does not provide
a set of good weights. Note that if the inner optimization is simply ERM over the training set 7',
i.e. L7 = {7, then standard learning-theoretic guarantees will give ¢*(|T’|, §) decreasing in the
size |T'| of the training set and increasing at most poly-logarithmically in % With this assumption,
we can show the following guarantee for solutions to the bilevel optimization Eq. (6.3):
Theorem 3. Let h = hw.c be a hypothesis corresponding to a solution (w,c) € W x C of the
bilevel objective:

i 14 1. in L
Wln v(iw,c) s Weargeryr\l)m r(u,c)

for space He and data VT, as in Section 7.1. Under Assumption 2 if { is B-bounded then w.p.
1 — 36 we have

Ip(h) < min (p(h) + (7], 9)

) 3B | 2 1
+ ;2535 + 7\/m (A(H,e,T) + log 5)
Proof Sketch. For all h* € He decompose the excess risk (p(h) — (p(h*) as

Up(h) — ty(h) + by(h)— Oy (P
-+ gV(hw,c*> — gp(hwycﬁ + gp(hw’c*) — gp(lf)

The first difference is bounded by version entropy via h € H,, the second by optimality of heV,
the third by Hoeffding’s inequality, and the last by Assumption 2. [

7.2.2.1 Excess Risk of Feature Map Selection

To obtain meaningful guarantees from this theorem we must bound the version entropy. By strong-
convexity of the inner objective, in feature map selection each ¢, induces a unique minimizing
weight w € YV and thus a singleton version space, so the version entropy is bounded by log |C|.
Furthermore, for Lipschitz (e.g. hinge) losses and appropriate regularization, standard results for
ly-regularized ERM for linear classification (e.g. Sridharan et al. [2008]) show that Assumption 2

holds for e*(|T'|,0) = O (”W%H log %) Applying Theorem 3 yields

Corollary 2. For feature map selection the bilevel optimization Eq. (7.2) with A\ = |T| log + 3

yields a hypothesis with excess risk w.r.t. He bounded by O (HW‘%H log + st \/“1/' log C|>.

146

In the special case of selection random Fourier approximations of kernels, we can apply
associated generalization guarantees [Rudi and Rosasco, 2017, Theorem 1] to show that we can
compete with the optimal RKHS from among those associated with one of the configurations :
Corollary 3. In feature map selection suppose each map ¢., c € C is associated with a random
Fourier feature approximation of a continuous shift-invariant kernel that approximates an RKHS
H, and (is the square loss. If the number of features d = O(+/|T|log |T|/6) and A = 1//|T]|
then w.p. 1 — ¢ solving Eq. (7.2) yields a hypothesis with excess risk w.rt. H4 bounded by

log? L
@) (% + ‘—‘1/‘ log |§—|)

In this case we are able to get risk bounds almost identical to the excess risk achievable if we
knew the optimal configuration beforehand, up to an additional term depending weakly on the
number of configurations. This would not be possible with solving the regular ERM objective
instead of the bilevel optimization as we would then have to contend with the possibly high
complexity of the hypothesis space induced by the worst configuration.

7.2.2.2 Version Entropy and NAS

As shown above, the significance of Theorem 3 in simple settings is that a bound on the version
entropy can guarantee excess risk almost as good as that of the (unknown) optimal configuration
without assuming anything about the complexity or behavior of sub-optimal configurations. In
the case of NAS we do not have a bound on the version entropy, which now depends on all of C.
Whether the version space, and thus the complexity, of deep networks is small compared to the
number of samples is unclear, although we gather some evidence below. The question amounts to
how many (functional) global optima are induced by a training set of size |T'|. In an idealized
spin-glass model, Choromanska et al. [2015, Theorem 11.1] suggest that the number of critical
points is exponential only in the number of layers, which would yield a small version entropy. It
is conceivable that the quantity may be further bounded by the complexity of solutions explored
by the algorithm when optimizing L7 [Bartlett et al., 2017, Nagarajan and Kolter, 2017]. On the
other hand, Nagarajan and Kolter [2019] argue, with evidence in restricted settings, that even the
most stringent implicit regularization cannot lead to a non-vacuous uniform convergence bound;
if true more generally this would imply that the NAS version entropy is quite large.

7.3 Federated Hyperparameter Optimization

Having established the effectiveness of weight-sharing for feature map selection, we now argue
for its application to more difficult and larger-scale configuration problems. We focus on the
problem of hyperparameter optimization in the federated learning setting, where it remains a major
challenge [Kairouz et al., 2019]. In particular, because of the ephemeral nature of multi-device
learning, in which the data is bound to the device and the number of training rounds is limited
due to computation and communication constraints, running standard cross-validation and more
sophisticated hyperparameter optimization approaches necessarily involves making use of subsets
of devices to train individual configurations. Hence, with existing methods, we cannot update
all configurations using data from all devices, which can be problematic when data is non-i.i.d

147

Algorithm 7: Federated Exponentiated-Gradient (FedEx) algorithm for federated hy-
perparameter optimization.
Input: model initialization w, initial distribution Dy(C) over configurations C,
configuration learning rates 7; > 0
1 for roundt =1,...,T do
2 for device k =1,...,B do
3 send (w,) to device
4 c~ Dy(C) // each device gets a random configuration c¢
5 Wi, < SGDy (Ti) // run local SGD from w with configuration ¢
6 get (Wy, gi) from device, where Eggr, = VoEcjoFyv,, (W) // stochastic
gradient w.r.t. 0
7 end
5| W 0 Tl Wi/ 4y Tl // FedAvg update
9 0 < 0 ©exp <—77t Sy Vielde/ S]V}k\) // exponentiated-gradient update
10 0« 0/10 // project back to the probability simplex
11 end
Result: model initialization w and configuration ¢ ~ Dy of local SGD for on-device
personalization.

across devices. On the other hand, if we treat each device as a data-point to be allocated to some
configuration in order to make a local update, weight-sharing naturally aligns with the dominant
method in federated learning, Federated Averaging FedAvg, in which at each communication
round multiple devices run local SGD from a shared initialization before averaging the output
[McMahan et al., 2017].

7.3.1 Tuning the Hyperparameters of FedAvg

In federated learning we have a set of clients £k = 1, ..., K each with a training dataset 7}, C
X x Y = Z consisting of examples 2z € Z corresponding to functions f, : R? — R, over the
parameter space w € R? of some prediction function. The standard optimization problem [Li
et al., 2019c¢] is then of form

K
1
min > Tkl P, (w) for FT(W):WZ fo(w)

k=1 zeT

Optimization is a major challenge in federated learning due to non-i.i.d. ephemeral data, limited
communication, and relatively weak devices [Kairouz et al., 2019, Li et al., 2019c]. As a result,
many of the hyperparameters tuned by practitioners, such as the learning rate, on-device batch-
size, and number of epochs per-device, are algorithmic rather than architectural [McMahan et al.,
2017]. Following the discussion in Section 7.1.2, this brings into question the applicability
of weight-sharing, which relies on validation signal that cannot be directly obtained for such
hyperparameters.

148

To resolve this we take advantage of the recent re-interpretation of federated learning with
personalization over non-i.i.d. data as a meta-learning problem [Chen et al., 2019, Jiang et al.,
2019, Khodak et al., 2019, Li et al., 2019b], with the goal being to learn a shared initialization
w € R? and configuration ¢ for SGDy . : 2% — R? an algorithm that takes training data
T C Z as input and outputs a model parameter. We can then construct a single-level federated
hyperparameter optimization objective:

K
min Y |Vi|Fy, (SGDw.o(Th)) (7.3)
k=1

weW,ceC

Thus the formal goal is to learn a model initialization w € R? and an SGD configuration ¢ € C
such that on any device with training/validation data 7'/V/, if we run SGD,, .. initialized at w using
samples 7' then the validation loss of the resulting parameter over V' will be small. Here the shared
weights correspond to the SGD initialization, which is used to evaluate multiple configurations
of SGD per round via the on-device validation accuracy after local training. Note that although
we split on-device data into training and validation sets, the objective is single level since here
devices are data-points with loss corresponding to the error on its validation data of the model
obtained by running local SGD. This highlights the Section 7.1.2 point that weight-sharing is not
inherently tied to the bilevel formulation, although our theory does not hold for this setting.

In Algorithm 7 we use this formulation to develop FedEx, a weight-sharing extension of
FedAvg [McMahan et al., 2017]. Note that the update to the model parameters w is exactly the
same, except that local SGD may be run using a different configuration on different devices.
Following the approach used by stochastic relaxation methods for differentiable NAS [Akimoto
et al., 2019], we note that the goal of learning ¢ € C is equivalent to learning a parameterization
6 of a categorical distribution Dy(C) over the configuration space, where if ¢ ~ Dy(C) then
Py(c = i) = ;. We can then use evaluations of these configurations, in the form of the per-device
validation accuracies Fy, (W) of models w, trained locally using the shared initialization w, to
obtain a stochastic estimate of the gradient using the re-parameterization trick [Rubinstein and
Shapiro, 1993]. Specifically, we can write the expected value of the gradient for a categorical
architecture distribution with a baseline objective value \ as follows:

Vez‘jEC\GFVtk (wk) = veijEC|9<F‘/tk (wk) -)\)
= Eejo ((Fy,,, (Wi) — A) Vg, log Py(c))

= IE:c|0 ((FVtk (“A’k) -)‘)VQU' 1OgHIP’9(ci = j))

i=1

= EcjoGrij-

149

Hence, the stochastic gradient g; w.r.t. 6; of the kth device on round ¢

(Fv,, (Wi) — M1
0;

ki =

is an unbiased estimate of the architecture gradient. As with weight-sharing NAS, our algorithm
alternates between updating this distribution using exponentiated-gradient descent and updating
the shared-weights using the configured SGD algorithm on each device.

7.3.2 Ongoing Work

As part of ongoing work, we are evaluating FedEx and ASHA on the federated learning bench-
marks available within the LEAF framework [Caldas et al., 2018]. The two benchmarks of interest
include a federated version of MNIST and a language-modeling task over the Shakespeare dataset.
While CNNs and LSTMs [Hochreiter and Schmidhuber, 1997] have seen heavy development for
the respective benchmarks, they still require a great deal of hyperparameter tuning for parameters
such as learning rate, weight-decay, batch size, and dropout probability. Our empirical evaluation
aims to compare the performance of automated hyperparameter tuning with FedEx and ASHA
relative to that of manual-tuning [McMahan et al., 2017].

7.4 Generalization Results

This section contains proofs of the generalization results in Section 7.2.2.

7.4.1 Settings and Main Assumption

We first describe the setting for which we prove our general result.

Setting 2. Let C be a set of possible architecture/configurations of finite size such that each ¢ € C
is associated with a parameterized hypothesis class H.={h, . : X — Y : w € W} for input
space X, output space)', and fixed set of possible weights V. We will measure the performance
of a hypothesis h.,, . on an input v,y € X x Y for some output space Y using a B-bounded loss
function £ : V' x Y+ [0, B]. Note that while the examples below have unbounded loss functions,
in practice they are explicitly or implicitly bounded by explicit or implicit regularization.

We are given a training sample T ~ DTl and a validation sample V- ~ DV, where D is
some distribution over X x). We will denote the the population risk by {p(hy.) = {p(w,c) =
E @)l hwc(x),y) and for any finite subset S C X x) we will denote the empirical risk over
S by ES(hw,v) = £S<wv C) = ﬁ Z(x7y)€5' E(hw,c(l‘)7 y)

Finally, we will consider solutions of optimization problems that depend on the training data
and architecture. Specifically, for any configuration ¢ € C and finite subset S C X x) let
We(S) C W be the set of global minima of some optimization problem induced by S and ¢ and
let the associated version space [Kearns et al., 1997] be H.(S) = {hy.: w € W.(S)}.

We next give as examples two specific settings encompassed by Setting 2.

150

Setting 3. For feature map selection, in Setting 2 the configuration space C is a set of feature
maps ¢, : X — R% the set of weights W C R? consists of linear classifiers, for inputs x € X the

hypotheses are hy, .(x) = (w, ¢.(x)) for w € W, and so W,(S) is the singleton set of solutions
to the regularized ERM problem

arg min Mwl|z + Z (w, pe(x)),y)

wew (z.9)€S

for square loss { : Y’ x Y +— R, and some coefficient A > 0.

Setting 4. For neural architecture search, in Setting 2 the configuration space consists of all
possible choices of edges on a DAG of N nodes and a choice from one of K operations at each
edge, for a total number of configurations bounded by K" *. The hypothesis hy, . : X — Y'is
determined by a choice of architecture ¢ € C and a set of network weights w € VW and the loss

0:)Y' xY — R, is the cross-entropy loss. In the simplest case W, (S) is the set of global minima
of the ERM problem

min > U huwe(),)
(z,y)eS

We now state the main assumption we require.
Assumption 3. In Setting 2 there exists a good architecture ¢* € C, i.e. one satisfying (w*,c*) €

arg miny,,.. {p(w, c) for some weights w* € W, such that w.p. 1 — § over the drawing of training

set T ~ DTl at least one of the minima of the optimization problem induced by ¢* and T has low
excess risk, i.e. 3w € W, (T) s.t.

gD(wac*) _E’D(w*ac*) < €*<|T‘75) (74)

for some error function .

Clearly, we prefer error functions * that are decreasing in the number of training samples |T'|
and increasing at most poly-logarithmically i 1n . This assumption requires that if we knew the
optimal configuration a priori, then the pr0v1ded optimization problem will find a good set of
weights for it. We will show how, under reasonable assumptions, Assumption 3 can be formally
shown to hold in Settings 3 and 4.

151

7.4.2 Main Result

Our general result will be stated in terms of covering numbers of certain function classes.
Definition 8. Let H be a class of functions from X to Y'. For any ¢ > 0 the associated L>
covering number N (H, ¢) of H is the minimal positive integer k such that H can be covered by
k balls of L*>°-radius .

The following is then a standard result in statistical learning theory (see e.g. Lafferty et al.
[2010, Theorem 7.82]):

Theorem 4. Let H be a class of functions from X to Y and let { : Y' x Y — [0, B] be an
L-Lipschitz, B-bounded loss function. Then for any distribution D over X X) we have

2
SEgm (22}8 [p(h) — Ls(h)| > 35> < 2N (H,¢)exp (—%)
where we use the loss notation from Setting 2.

Before stating our theorem, we define a final quantity, which measures the log covering
number of the version spaces induced by the optimization procedure over a given training set.
Definition 9. In Setting 2, for any sample S C X X)Y define the version entropy to be
A(H,e,S) =log N (U,cc He(S),€).

Theorem 5. In Setting 2 let (w, ¢) € W xC be obtained as a solution to the following optimization
problem:

argmin ly(w, c) s.t. w e W.(T)

weW,ceC

Then under Assumption 3 we have w.p. 1 — 36 that

£D<UA}7 é) < ED(U)*, C*>

1 1 1
*(|T B 1 f B A(H, e, T)+1
+e*(|T,9) + “2"/’ 0g 5 +1n 3e+ \/|V‘ e, T) + og(s)

Proof. We have for any w € W, (T) satisfying Equation 7.4, whose existence holds by Assump-
tion 3, that

£D<w7é) _ED(w*ac*) < £D<wvé) _£V(UA)76> + gv(’lfj,é) _gV(w7c*)

1 2
+ ly(w,c") —lp(w,c*) + Ip(w,c") — lp(w*,)

J/ J/
~ ~~

3 4

each term of which can be bounded as follows:

1. Since w € W;(T') for some ¢ € C the hypothesis space can be covered by the union of the
coverings of H.(T) over ¢ € C, so by Theorem 4 we have that w.p. 1 — ¢

o A 2 1
lp(w, ¢) — by (w,¢) < ;2%38 + B\/m (A(H,E,T) + log 5)

152

2. By optimality of the pair (w0, ¢) and the fact that w € W, (T') we have

é N A — : E ! A < : E / * <€ *
v(w,¢) o nin, v(w',¢) < duin v(w', ") < ly(w,c”)

3. Hoeffding’s inequality yields ¢y (w, ¢*) — lp(w, c*) < B, /55 2\V\ log s w.p. 1 —¢
4. Assumption 3 states that {p(w, ¢*) — lp(w*, c¢*) < e*(|T|0) w.p. 1 — 6.

7.4.3 Applications

For the feature map selection problem, Assumption 3 holds by standard results for /5-regularized
ERM for linear classification (e.g. Sridharan et al. [2008]):
Corollary 4. In Setting 3, suppose the loss function (is Lipschitz. Then for regularization

parameter \ = , [il log & 5 we have

e o1, 1
Ip(w, c*) — lp(<(9(\/ 7])

We can then directly apply Theorem 5 and the fact that the version entropy is bounded by
log |C| because the minimizer over the training set is always unique to get the following:
Corollary 5. In Setting 3 let (1, ¢) € VW XC be obtained as a solution to the following optimization
problem:

argmin ly(w, c) s.t. w=argmin \|wl|3 + Z ((w, p()),y)

weW,ceC wew (zy)eT

]\w*\\2+1 IC| +1
—) < - log
lp(w,¢) —bp(w*,c") <O <\/ T +]V] 5

In the special case of kernel selection we can apply generalization results for learning with

random features to show that we can compete with the optimal RKHS from among those associated
with one of the configurations [Rudi and Rosasco, 2017, Theorem 1]:
Corollary 6. In Setting 3, suppose each configuration c € C is associated with a random Fourier
feature approximation of a continuous shift-invariant kernel that approximates an RKHS H..
Suppose (is the squared loss so that (W, ¢) € W x C is obtained as a solution to the following
optimization problem:

argmin fy(w, c) s.1. w=argmin \|wl|3 + Z (w, pe()) — y)?

wEW,ceC wew (zy)eT

Then

If the number of random features d = O(+\/|T|log \/|T|/0) and X = 1/+/|T| then w.p. 1 — 6 we

have
21
= Cl+1
.. — mi ; <0) |
tp(hie) — min min fp(h) < (\/|V| 5)

153

In the case of neural architecture search we are often solving (unregularized) ERM in the
inner optimization problem. In this case we can make an assumption weaker than Assumption 3,
namely that the set of empirical risk minimizers contains a solution that, rather than having low
excess risk, simply has low generalization error; then applying Hoeffding’s inequality yields the
following:

Corollary 7. In Setting 2 let (W, ¢) € W XC be obtained as a solution to the following optimization
problem:

argmin ly(w,c) st w € arg min {7 (w', ¢)

weW,ceC w'eW
Suppose there exists ¢* € C satisfying (w*, ¢*) € argminy,, . {p(w, ¢) for some weights w* € VW
such that w.p. 1 — 8§ over the drawing of training set T ~ DT at least one of the minima
of the optimization problem induced by c* and T has low generalization error, i.e. 3 w €
arg min, .y, r(w', c) s.t.

Up(w,) — bp(w*, ¢*) < e(|T),6)

for some error function c*. Then we have w.p. 1 — 44 that

1 1 1 1
lp(w,¢) < lp(w*,c” “(|T,9) + By | == log = + By | == log —
p(1.8) < (') + ' (T1,) + By g dow 5 + By [g ow 5

7.5 Feature Map Selection Details

For selecting feature maps on CIFAR-10 we used the Ridge regression solver from scikit-learn
[Pedregosa et al., 2011] to solve the inner ¢>-regularized ERM problem. The regularization was
fixed to A = % since weight-sharing does not tune non-architectural hyperparameters; the same
A was used for all search algorithms. We tested whether including X in the search space helped
random search and found that it did not, or even caused random search to do worse; this is likely
due to the bandwidth parameter playing a similar role.

For the search space we used the same kernel configuration settings as Table 2.3 but replacing
the regularization parameter by the option to use the Laplace kernel instead of the Gaussian
kernel. The data split used was the standard 40K/10K/10K for training/validation/testing. Our
main results in Figure 7.2 are for 10 independent trials of each algorithm with the maximum
number of features used by all competing algorithms set to 100K. For both the Weight-Sharing
and Fast Weight-Sharing algorithms we started with 256 different configurations. For Figure 7.1
we varied the feature dimension as shown and considered the correlation between shared-weights
performance and standalone performance fo 32 different configurations.

154

Chapter 8

Conclusion

In this chapter, we provide a summary of our contributions by chapter before concluding with a
discussion of the future of AutoML.

8.1 Hyperparameter Optimization

Motivated by the rising computational cost of training modern machine learning models and the
ever larger search spaces accompanying such models, the first part of this thesis presented efficient
methods for hyperparameter optimization that exploit principled early-stopping to drastically
decrease the cost associated with evaluating a hyperparameter configuration.

Chapter 2: Principled Early-Stopping with Hyperband

1. We introduced HYPERBAND (Chapter 2.3), which runs successive halving (SHA) with
multiple early-stopping rates to automatically tradeoff between exploration and exploitation
when the optimal early-stopping rate is unknown.

2. Our theoretical analysis of HYPERBAND (Chapter 2.5) demonstrated that we only require a
small constant factor more budget than optimal to find a good configuration.

3. We benchmarked HYPERBAND against random search, Hyperopt, Spearmint, SMAC, and
SMAC with early-stopping via performance prediction. Our results showed HYPERBAND
to be up to an order-of-magnitude faster than methods that use full-training (Chapter 2.4).

Chapter 3: Hyperparameter Optimization in the Large-Scale Regime

1. We presented the Asynchronous Successive Halving Algorithm (ASHA) to address the
synchronization bottleneck associated with SHA (Chapter 3.3). Using simulated workloads,
we showed ASHA is indeed more robust to stragglers and dropped jobs than synchronous
SHA.

2. We evaluated ASHA against mature state-of-the-art hyperparameter optimization methods,
i.e., PBT, BOHB, and Vizier, on a comprehensive suite of tuning tasks (Chapter 3.4). Our

155

results showed ASHA outperforms or matches the top competing method on all benchmarks.
Additionally, we showed ASHA can scale linearly with the number of workers and is
well-suited to the large-scale regime.

3. In response to the systems considerations we faced when implementing ASHA, we dis-
cussed design decisions we made to improve usability, parallel training efficiency, resource
utilization, and reproducibility (Chapter 3.5).

Chapter 4: Reuse in Pipeline-Aware Hyperparameter Optimization

1. Recognizing the potential speedups from reuse when tuning the hyperparameters of multi-
stage machine learning pipelines, we presented a pipeline-aware approach to hyperparameter
optimization that maximizes shared computation across multiple pipelines; balances training
heavy search spaces; and captures the benefits from reuse with a suitable caching strategy
(Chapter 4.4).

2. Our experiments demonstrated that combining early-stopping via successive halving with
reuse of shared computation can offer over an order-of-magnitude speedups over naive
evaluation of a set of pipelines (Chapter 4.5).

8.2 Neural Architecture Search

First generation NAS methods were prohibitively expensive since they relied on full-training to
evaluate different architectures. Since then, weight-sharing has become a common component
in NAS methods due to its computational efficiency. The second part of this thesis focused on
developing a better understanding of weight-sharing and using our insights to inform the design
of better algorithms for NAS.

Chapter 5: Random Search Baselines for NAS

1. Although NAS is a specialized hyperparameter optimization problem, it was unclear how
much of a gap existed between NAS-specific methods and traditional hyperparameter
optimization approaches. The dearth of ablation studies also obscured the impact of
different NAS components. We introduced random search weight-sharing (RSWS) to
isolate the impact of weight-sharing on performance and provide a better baseline for NAS
(Chapter 5.4).

2. Our empirical studies established ASHA and RSWS as two competitive random search
baselines for NAS. In fact, we showed that RSWS achieves state-of-the-art performance on
designing RNN cells for language modeling on PTB (Chapter 5.5).

Chapter 6: Geometry-Aware Optimization for Gradient-Based NAS

1. We developed a framework for gradient-based weight-sharing NAS by drawing upon the
theory of mirror descent (Chapter 6.3). Our framework connects the convergence rate

156

with the underlying optimization geometry, motivating Geometry-Aware Exponentiated
Algorithms (GAEA) for NAS.

2. Under this framework, we provided finite-time convergence guarantees for many existing
gradient-based weight-sharing methods (Chapter 6.4).

3. Applying GAEA to existing NAS methods, we achieved state-of-the-art performance on the
DARTS search space for CIFAR-10 and ImageNet; and reach near-oracle optimality on the
NASBench-201 benchmarks (Chapter 6.5).

Chapter 7: Weight-Sharing Beyond NAS

1. We applied weight-sharing to feature map selection and showed that it is competitive
with successive halving and outperforms random search on a kernel classification task
(Chapter 7.2). In this simplified setting, we demonstrated how solving the bi-level problem
provides better generalization guarantees than that possible with empirical risk minimiza-
tion.

2. We made a case for the suitability of weight-sharing for hyperparameter optimization in the
federated learning setting due to its resource efficiency and potential to preserve information
from ephemeral devices in the shared weights (Chapter 7.3). We introduced FedEx for this
setting and defer an empirical study of the method to future work.

8.3 Future Work

While, collectively, the community has made great strides towards efficient automated machine
learning, there remains important outstanding directions for future research. Externally, the
deleterious environmental impact associated with large-scale machine learning and the shortage
of ML talent present tough challenges but also opportunities for advances in AutoML to make
an outsized impact. We present some thoughts on the current state of research and promising
directions for future work below.

8.3.1 Hyperparameter Optimization

With the methods presented in Part 1 of this thesis, as well as other state-of-the-art hyperparameter
approaches [Falkner et al., 2018, Jaderberg et al., 2017], we have fairly efficient algorithms for
one-off hyperparameter tuning tasks. However, as more experience is collected from diverse hy-
perparameter tuning tasks, we should ideally be able to transfer information from prior experience
to speed up the search for a good configuration on a new problem. While there has been some
work on learning from prior experience, existing methods offer modest speedups over tuning
each tasks independently [Feurer et al., 2015b, Perrone et al., 2018, 2019]. Developing more
sophisticated methods that better capture the relationship between the objective of interest, the
search space, and the underlying datasets across multiple hyperparameter tuning experiments is
hence an interesting direction for future research.

157

A second thread of future work is motivated by the development of new learning paradigms
like federated learning, meta-learning, and never-ending learning, which each have their own
nuances. Hyperparameter optimization in these settings will require novel techniques that move
beyond one-off model training workloads. We proposed one such approach for federated learning
in Chapter 7.3 but, as we move away from one-off models towards methods that continually learn
and adapt, a new paradigm for hyperparameter optimization is needed. Under such a paradigm,
hyperparameters will need to be continually refined along with the underlying model for changing
data distributions.

8.3.2 Neural Architecture Search

Great strides have been made to reduce the computational cost and improve the robustness of NAS
methods, thereby increasing the value proposition of NAS. NAS designed CNN architectures like
AmoebaNet [Real et al., 2018] and EfficientNet [Tan and Le, 2019] are becoming the new go-to
models for computer vision tasks. Weight-sharing NAS approaches are also used at Google to
design architectures for specific deployment environments. Future work will continue to improve
the value proposition of NAS by extending the search space to jointly optimize over deployment
constraints and compression techniques. We have already seen some exciting developments
in this direction: Cai et al. [2020] explore the performance of training a single super network
encompassing high quality architectures for multiple deployment scenarios and Wang et al. [2020]
develop a method for jointly learning neural network architecture, pruning, and quantization.

A more grandiose goal is to design algorithms that can automatically discover novel funda-
mental building blocks akin to spatial convolution, batch normalization, and residual connections.
This will require abandoning existing NAS search spaces, which incorporate expert knowledge by
design, in favor of larger spaces with less inherent structure and lower level primitives. Prior work
has succeeded in designing better data augmentation strategies [Cubuk et al., 2019] and activation
functions [Ramachandran et al., 2017], but each of these search spaces is fairly narrow and was
designed with human expertise. A key question going forward is how can we automatically
discover and capture the right invariances for any dataset?

158

Bibliography

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient algorithm for bandit
linear optimization. In Proceedings of the International Conference on Computational Learning
Theory, 2008. 6.1.1

A. Agarwal, J. Duchi, P. L. Bartlett, and C. Levrard. Oracle inequalities for computationally
budgeted model selection. In Conference on Learning Theory, 2011. 2.1,2.2.1

A. Agarwal, S. Kakade, N. Karampatziakis, L. Song, and G. Valiant. Least squares revisited:
Scalable approaches for multi-class prediction. In International Conference on Machine
Learning, 2014. 2.4.2.2

T. Ajanthan, K. Gupta, P. H. S. Torr, R. Hartley, and P. K. Dokania. Mirror descent view for neural
network quantization. arXiv, 2019. 6.1.1

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter
optimization framework. In International Conference on Knowledge Discovery and Data
Mining. 1.4,3.2

Y. Akimoto, S. Shirakawa, N. Noshinari, K. Uchida, S. Saito, and K. Nishida. Adaptive stochastic
natural gradient method for one-shot neural architecture search. In International Conference on
Machine Learning, 2019. 6.1, 6.1.1,6.2.2,6.1,7.1.1, 7.3.1

S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm
and applications. Theory of Computing, 8:121-164, 2012. 6.1.1

N. Bansal, N. Buchbinder, and J. S. Naor. Randomized competitive algorithms for generalized
caching. In Symposium on Theory of Computing. ACM, 2008. 4.2

P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Neural Information Processing Systems, 2017. 7.2.2.2

A. Beck. First-Order Methods in Optimization. MOS-SIAM, 2017. 6.1.1

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31:167-175, 2003. 6.1, 6.1.1, 6.3.1, 6.3.1

G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le. Understanding and simplifying
one-shot architecture search. In International Conference on Machine Learning, 2018. 1.3.3,
5.1,5.22,5.1,5.23,4,54.2

Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12:1889—-1900,
2000. 1.2.2,5.1

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine

159

Learning Research, 13(Feb):281-305, 2012. 1.2.1, 1.2.2,2.1,4.2,7

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms for hyper-parameter optimization.
In Neural Information Processing Systems, 2011. 1.2.2,2.1,2.2.1,4.1, 5.1

L. M. Bregman. The relaxation method of finding the common point of convex sets and its appli-
cation to the solution of problems in convex programming. USSR Computational Mathematics
and Mathematical Physics, 7:200-217, 1967. 6.3.1

D. Britz, A. Goldie, M.-T. Luong, and Q. Le. Massive exploration of neural machine transla-
tion architectures. In Conference on Empirical Methods in Natural Language Processing,
Copenhagen, Denmark, 2017. Association for Computational Linguistics. 1.1

A. Brock, T. Lim, J. Ritchie, and N. Weston. SMASH: One-shot model architecture search
through hypernetworks. In International Conference on Learning Representations, 2018. 1.3.3,
5.1,5.1,5.2.3

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits problems. In
International Conference on Algorithmic Learning Theory, 2009. 2.2.2,2.5.3.3

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. X-armed bandits. Journal of Machine
Learning Research, 12:1655-1695, 2011. 2.2.2

S. Bubeck, M. B. Cohen, J. R. Lee, Y. T. Lee, , and A. Madry. K-server via multiscale entropic
regularization. In Symposium on Theory of Computing, 2018. 6.1.1

H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu. Path-level network transformation for efficient
architecture search. In International Conference on Machine Learning, 2018. 1.3.3, 5.1, 5.2.1,
5.1,52.3,52.3

H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural architecture search on target task and
hardware. In International Conference on Learning Representations, 2019. 1.3.2, 1.3.3, 1.4,
5.1,522,51,54.2,55,3,6.1,6.2.2,6.1,6.5.1.1,6.3

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network and specialize it
for efficient deployment. In International Conference on Learning Representations, 2020. 8.3.2

S. Caldas, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan, V. Smith, and A. Talwalkar. LEAF: A
benchmark for federated settings. arXiv, 2018. 7.3.2

S. Cao, X. Wang, and K. M. Kitani. Learnable embedding space for efficient neural architecture
compression. In International Conference on Learning Representations, 2019. 5.1

F. M. Carlucci, P. M. Esperanca, M. Singh, V. Gabillon, A. Yang, H. Xu, Z. Chen, and J. Wang.
MANAS: Multi-Agent Neural Architecture Search. arXiv, 2019. 1.4, 5.6, 6.1, 6.1.1

A. Carpentier and M. Valko. Simple regret for infinitely many armed bandits. In International
Conference on Machine Learning, 2015. 2.2.2,2.5.3.2,2.5.3.3

C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving: Learning affordance for direct
perception in autonomous driving. In International Conference on Computer Vision, 2015. 1.1

F. Chen, Z. Dong, Z. Li, and X. He. Federated meta-learning with fast convergence and efficient
communication. arXiv, 2019. 7.3.1

X. Chen, L. Xie, J. Wu, and Q. Tian. Progressive Differentiable Architecture Search: Bridging

160

the Depth Gap between Search and Evaluation. arXiv, 2019. 6, 6.2.2, 6.5, 6.1, 6.3, 6.7.1

M. Cho, M. Soltani, and C. Hegde. One-shot neural architecture search via compressive sensing.
arXiv,2019. 1.4,1.4,5.6

A. Choromanska, M. Henaff, M. M. G. B. Arous, and Y. LeCun. The loss surface of multilayer
networks. In International Conference on Artificial Intelligence and Statistics, 2015. 7.2.2.2

E. Contal, V. Perchet, and N. Vayatis. Gaussian process optimization with mutual information. In
International Conference on Machine Learning, 2014. 2.2.1

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning augmenta-
tion strategies from data. In Conference on Computer Vision and Pattern Recognition, 2019.
6.5.1.2,6.3,8.3.2

C. D. Dang and G. Lan. Stochastic block mirror descent methods for nonsmooth and stochastic
optimization. SIAM Journal on Optimization, 25:856-881, 2015. 6.1.1, 6.4, 6.4

C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. Training GANs with optimism. In Interna-
tional Conference on Learning Representations, 2018. 6.1.1

D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions.
SIAM Journal on Optimization, 29(1):207-239, 2019. 6.4

T. Devries and G. W. Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv, 2017. 5.5, 6.1

T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter optimization
of deep neural networks by extrapolation of learning curves. In International Joint Conference
on Artificial Intelligence, 2015. 1.2.3,2.1,2.4,2.4.1,2.3,2.4.1,2.6.1, 3.6.1

X. Dong and Y. Yang. Searching for a robust neural architecture in four gpu hours. In Conference
on Computer Vision and Pattern Recognition, 2019. 6.1, 6.2.1, 6.2.2, 6.3.4, 6.5, 6.5.3

X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations, 2020. 1.4, 1.4,5.6, 6.1, 3c,
6.2.1,6.5,6.5.3,6.7.3

A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribu-
tion function and of the classical multinomial estimator. The Annals of Mathematical Statistics,
27:642-669, 1956. 3.3.4

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown.
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In
NIPS Bayesian Optimization Workshop, 2013. 2.1,2.2.1,2.4

T. Elsken, J. H. Metzen, and F. Hutter. Multi-objective Architecture Search for CNNs. arXiv,
2018a. 1.3.3,5.1,5.2.2

T. Elsken, J. H. Metzen, and F. Hutter. Neural Architecture Search: A Survey. arXiv, 2018b. 1.3.1

E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping conditions for the multi-
armed bandit and reinforcement learning problems. Journal of Machine Learning Research, 7:
1079-1105, 2006. 2.2.2

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimization at

161

scale. In International Conference on Machine Learning, 2018. 1.2.3,2.1,11,2.4,3.1, 3.2, 12,
3.3.3,3.4.1,8.3.1

M. Feurer. Personal communication, 2015. 2.4.2.1

M. Feurer, J. Springenberg, and F. Hutter. Using meta-learning to initialize Bayesian optimization
of hyperparameters. In ECAI Workshop on Meta-Learning and Algorithm Selection, 2014.
221

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and
robust automated machine learning. In Neural Information Processing Systems, 2015a. 1.2.1,
22.1,242,242.1,2.6.2,3.2,4.1,3

M. Feurer, J. T. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimization
via meta-learning. In Association for the Advancement of Artificial Intelligence, 2015b. 8.3.1

A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young. Competitive
paging algorithms. J. Algorithms, 12(4):685-699, Dec. 1991. 4.2

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel programming for hyperpa-
rameter optimization and meta-learning. In International Conference on Machine Learning,
2018. 6.2.1,2,7.1

P. Gijsbers, J. Vanschoren, and R. S. Olson. Layered tpot: Speeding up tree-based pipeline
optimization. arXiv, 2018. 4.2

D. Ginsbourger, R. Le Riche, and L. Carraro. Kriging is well-suited to parallelize optimization.
In Computational Intelligence in Expensive Optimization Problems, pages 131-162. Springer,
2010. 3.2

D. Golovin, B. Sonik, S. Moitra, G. Kochanski, J. Karro, and D.Sculley. Google Vizier: A service
for black-box optimization. In International Conference on Knowledge Discovery and Data
Mining, 2017. 1.2.3,1.4,3.1,3.2,3.4.5

J. Gonzélez, D. Zhenwen, P. Hennig, and N. Lawrence. Batch Bayesian optimization via local
penalization. In International Conference on Artificial Intelligence and Statistics, 2016. 3.2

Google. Google repo for amoebanet. https://github.com/tensorflow/tpu/tree/master/
models/official /amoeba_net, 2018a. 5.2.3

Google. Google automl. https://cloud.google.com/automl/, 2018b. 5.1

Google. Google repo for nasnet. https://github.com/tensorflow/models/tree/master/
research/slim/nets/nasnet, 2018c. 5.2.3

P. Goyal, P. Dollar, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He. Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv, 2017. 3.5.2

H. Greenspan, B. Van Ginneken, and R. M. Summers. Guest editorial deep learning in medical
imaging: Overview and future promise of an exciting new technique. /EEE Transactions on
Medical Imaging, 35(5):1153-1159, 2016. 1.1

S. Griinewilder, J. Audibert, M. Opper, and J. Shawe—Taylor. Regret bounds for Gaussian process

bandit problems. In International Conference on Artificial Intelligence and Statistics, 2010.
221

162

https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net
https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net
https://cloud.google.com/automl/
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet

P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang. Nectar: Automatic
management of data and computation in datacenters. In Symposium on Operating Systems
Design and Implementation, volume 10, pages 1-8, 2010. 4.1, 4.2

Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun. Single path one-shot neural
architecture search with uniform sampling. arXiv, 2019. 7.1.1

A. Gyorgy and L. Kocsis. Efficient multi-start strategies for local search algorithms. Journal of
Artificial Intelligence Research, 41, 2011. 2.1,2.2.1

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9:1735-1780,
1997. 7.3.2

E. Hoffer, I. Hubara, and D. Soudry. Train longer, generalize better: closing the generalization
gap in large batch training of neural networks. In Neural Information Processing Systems, 2017.
52.2

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv, 2017. 6.3

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Conference on Computer Vision
and Pattern Recognition, 2018. 6.3, 6.5.1.2

P.-S. Huang, H. Avron, T. N. Sainath, V. Sindhwani, and B. Ramabhadran. Kernel methods match
deep neural networks on TIMIT. In International Conference on Acoustics, Speech and Signal
Processing. IEEE, 2014. 4.5

A. Hundt, V. Jain, and G. Hager. sharpdarts: Faster and more accurate differentiable architecture
search. arXiv, 2019. 6.2.2

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International Conference on Learning and Intelligent Optimization,

2011. 1.2.2,2.1,2.2.1,4.1,5.1

M. Jaderberg, V. Dalibard, S. Osindero, W. Czarnecki, J. Donahue, A. Razavi, O. Vinyals, T. Green,
I. Dunning, K. Simonyan, et al. Population based training of neural networks. arXiv, 2017. 2.1,
24,3.1,3.2,3.6.2,5.1,8.3.1

K. Jamieson and R. Nowak. Best-arm identification algorithms for multi-armed bandits in the

fixed confidence setting. In Conference on Information Sciences and Systems, pages 1-6. IEEE,
2014. 2.2.1

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In International Conference on Artificial Intelligence and Statistics, 2015. 2.1,
2.2.1,2.22,23.1,2,2.8,2.5.3

K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. lil’'UCB: An optimal exploration algorithm
for multi-armed bandits. In Conference On Learning Theory, pages 423-439, 2014. 2.5.3.3

K. G. Jamieson, D. Haas, and B. Recht. The power of adaptivity in identifying statistical
alternatives. In Neural Information Processing Systems, pages 775-783, 2016. 2.5.3.2

Y. Jiang, J. Kone¢ny, K. Rush, and S. Kannan. Improving federated learning personalization via

163

model agnostic meta learning. arXiv, 2019. 7.3.1

H. Jin, Q. Song, and X. Hu. Auto-Keras: Efficient Neural Architecture Search with Network
Morphism. arXiv, 2018. 1.3.2,1.3.3,5.1,5.2.1,5.2.2

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira, S. E. Rouayheb, D. Evans,
J. Gardner, Z. Garrett, A. Gascén, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He,
L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konec¢ny,
A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock,
A. Ozgﬁr, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich,
Z. Sun, A. T. Suresh, F. Tramer, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu,
H. Yu, and S. Zhao. Advances and open problems in federated learning. arXiv, 2019. 7.3, 7.3.1

K. Kandasamy, J. Schneider, and B. P6czos. High dimensional Bayesian optimization and bandits
via additive models. In International Conference on Machine Learning, 2015. 1,2.2.1

K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schneider, and B. P6czos. Gaussian process bandit
optimisation with multi-fidelity evaluations. In Neural Information Processing Systems, 2016.
1.2.2,1.2.3

K. Kandasamy, G. Dasarathy, J. Schneider, and B. P6czos. Multi-fidelity bayesian optimisation
with continuous approximations. In International Conference on Machine Learning, 2017. 3

K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing. Neural Architecture Search
with Bayesian Optimization and Optimal Transport. arXiv, 2018. 1.3.2,5.1,5.2.2,5.1,5.2.3

Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed bandits. In
International Conference on Machine Learning, 2013. 1.4,2.2.1,2.8,2.5.3,2.5.3.3

E. Kaufmann, O. Cappé, and A. Garivier. On the complexity of best arm identification in
multi-armed bandit models. The Journal of Machine Learning Research, 2015. 2.5.3.3

M. Kearns, Y. Mansour, A. Y. Ng, and D. Ron. An experimental and theoretical comparison of
model selection methods. Machine Learning, 27:7-50, 1997. 7.2.2, 2

M. Khodak, M.-F. Balcan, and A. Talwalkar. Adaptive gradient-based meta-learning methods. In
Neural Information Processing Systems, 2019. 7.3.1

M. Khodak, L. Li, T. Li, N. Roberts, V. Smith, M. Balcan, and A. Talwalkar. Weight-sharing
beyond neural architecture search. Preprint: In Submission, 2020. 1.4, 1.4

J. Kim, M. Kim, H. Park, E. Kusdavletov, D. Lee, A. Kim, J. Kim, J. Ha, and N. Sung. CHOPT
: Automated hyperparameter optimization framework for cloud-based machine learning plat-
forms. arXiv, 2018. 3.2

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015. 6.1, 10, 6.3.3, 6.5.1.1

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of ma-
chine learning hyperparameters on large datasets. In International Conference on Artificial
Intelligence and Statistics, 2017a. 1.2.2,1.2.3,2.1,2.4,3.1,3.2,3.4.1,3.6.1,1,3.6.1,3

A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. Learning curve prediction with Bayesian

164

neural networks. In International Conference On Learning Representation, 2017b. 11, 3.2

B. Kleinberg, Y. Li, and Y. Yuan. An alternative view: When does SGD escape local minima? In
International Conference on Machine Learning, 2018. 6.3.3

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238-1274, 2013. 1.1

L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-weka 2.0: Automatic
model selection and hyperparameter optimization in weka. The Journal of Machine Learning
Research, 18(1):826-830, 2017. 3.2

A. Krizhevsky. Learning multiple layers of features from tiny images. In Technical report,
Department of Computer Science, Univsersity of Toronto, 2009. 2.4.1,2,5.5

A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv, 2014.
352

T. Krueger, D. Panknin, and M. Braun. Fast cross-validation via sequential testing. Journal of
Machine Learning Research, 16:1103—-1155, 2015. 2.2.1, 4.1

G. Kunapuli and J. Shavlik. Mirror descent for metric learning: A unified approach. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, 2012.
6.1.1

J. Lafferty, H. Liu, and L. Wasserman. Statistical machine learning. 2010. 7.4.2

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of
deep architectures on problems with many factors of variation. In International Conference on
Machine Learning, 2007. 2.4.1

K. A. Laube and A. Zell. Prune and replace nas. arXiv preprint https://arxiv.org/abs/1906.07528,
2019. 6.1,6.2.2

A. Li, O. Spyra, S. Perel, V. Dalibard, M. Jaderberg, C. Gu, D. Budden, T. Harley, and P. Gupta.
A generalized framework for population based training. arXiv, 2019a. 3.2

G. Li, X. Zhang, Z. Wang, Z. Li, and T. Zhang. StacNAS: Towards stable and consistent
differentiable neural architecture search. arXiv, 2019b. 6.1, 1, 6.2.1, 7.1.2, 7.3.1

L. Li and A. Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in Artificial Intelligence, 2019. 1.4, 1.4

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-
based configuration evaluation for hyperparameter optimization. International Conference on
Learning Representation, 17,2017. 1.4, 1.4

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research,
18(185):1-52,2018a. 1.4, 1.4

L. Li, E. Sparks, K. Jamieson, and A. Talwalkar. Exploiting reuse in pipeline-aware hyperparame-
ter tuning. In Workshop on Systems for ML at NeurIPS, 2018b. 1.4, 1.4

L. Li, K. G. Jamieson, A. Rostamizadeh, E. Gonina, M. H. Jonathan Ben-Tzur, B. Recht, and
A. Talwalkar. A system for massively parallel hyperparameter tuning. In Conference on

165

Machine Learning and Systems, 2020a. 1.4, 1.4

L. Li, M. Khodak, M. Balcan, and A. Talwalkar. Geometry-aware gradient algorithms for neural
architecture search. arXiv, 2020b. 1.4, 1.4

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and
future directions. arXiv, 2019c. 7.3.1

H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, and Z. Li. DARTS+: Improved
Differentiable Architecture Search with Early Stopping. arXiv, 2019. 6.1, 6.2.2, 6.5, 6.7.1

R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune: A research
platform for distributed model selection and training. arXiv, 2018. 1.4, 3.2

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and
K. Murphy. Progressive Neural Architecture Search. arXiv, 2018a. 1.3.3,5.1,5.2.2, 6.1

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical representations
for efficient architecture search. In International Conference on Learning Representations,

2018b. 5.1, 5.1

H. Liu, K. Simonyan, and Y. Yang. DARTS: differentiable architecture search. arXiv, 2018c.
5.7.1

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
SleYHoCHFX. 1.3.1,1.3.2,1.3.3,14,343,3.64,5.1,1,1,52.1,522,5.1,5.2.3,52.3,
53.1,5.3.1.1,53.1.1,5.3.1.2,53.1.2,5.4,55,5.5.1.1,55.1.1,5.2,5.3,5.5.1.3,5.5.2, 5.5.2.1,
55,1,5.7.1,5.7.2,6,6.1, 1,3a,6.1.1,6.2.1,6.2.1,6.2.2, 10, 6.3.3, 6.3.4, 6.5, 6.5.1, 6.1, 6.5.1.1,
6.3,6.7.1,3,7.2.2

R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neural Architecture Optimization. arXiv, 2018.
5.1,522,5.1,52.3

D. V. N. Luong, P. Parpas, D. Rueckert, and B. Rustem. Solving MRF minimization by mirror
descent. In Advances in Visual Computing, 2012. 6.1.1

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for efficient cnn
architecture design. In European Conference on Computer Vision, pages 116—-131, 2018. 6.3

D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimization
through reversible learning. arXiv, 2015. 1.2.2, 5.1

S. Mahadevan and B. Liu. Sparse g-learning with mirror descent. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, 2012. 6.1.1

M. Marcus, M. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english:
The penn treebank. Computational Linguistics, 19(2):313-330, 1993. 1.4, 3.4.3,3.6.6,5.5

O. Maron and A. Moore. The racing algorithm: Model selection for lazy learners. Artificial
Intelligence Review, 11:193-225,1997. 2.2.1

J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel. Image-based recommendations on styles
and substitutes. In Conference on Research and Development in Information Retrieval. ACM,
2015. 4.5

166

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

L. A. McGeoch and D. D. Sleator. A strongly competitive randomized paging algorithm. Algo-
rithmica, 6(1):816-825, Jun 1991. 4.1

H. B. McMabhan, E. Moore, D. Ramage, S. Hampson, and B. Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In International Conference on
Artifical Intelligence and Statistics, 2017. 7,7.3,7.3.1,7.3.1,7.3.2

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde,
S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. Mllib:
Machine learning in apache spark. Journal of Machine Learning Research, 2016. 4.1

S. Merity, N. Keskar, and R. Socher. Regularizing and optimizing LSTM language models. In
International Conference on Learning Representations, 2018. 3.6, 3.4.4,5.2

V. Mnih and J.-Y. Audibert. Empirical Bernstein stopping. In International Conference on
Machine Learning, 2008. 2.2.1

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press,
2012. 7.2.2

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995. 4.2

R. Miiller, S. Kornblith, and G. E. Hinton. When does label smoothing help? In Neural
Information Processing Systems, 2019. 6.5.1.2, 6.3

D. Murray et al. Announcing tensorflow 0.8 now with distributed computing support!, 2016. URL
https:/ /research.googleblog.com /2016 /04 /announcing-tensorflow-08-now-with.html.
352

V. Nagarajan and J. Z. Kolter. Generalization in deep networks: The role of distance from
initialization. arXiv, 2017. 7.2.2.2

V. Nagarajan and J. Z. Kolter. Uniform convergence may be unable to explain generalization in
deep learning. In Neural Information Processing Systems, 2019. 7.2.2.2

N. Nayman, A. Noy, T. Ridnik, I. Friedman, R. Jin, and L. Zelnik. Xnas: Neural architecture
search with expert advice. In Neural Information Processing Systems, 2019. 6, 6.1, 6.1.1, 6.2.2,
6.5,6.5.5,6.7.1

R. Negrinho and G. Gordon. DeepArchitect: Automatically Designing and Training Deep
Architectures. arXiv, 2017. 5.1

A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimization. Wiley,
1983. 6.1, 6.1.1, 6.3.1

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011. 2.4.1, 3, 3.6.3

A. Noy, N. Nayman, T. Ridnik, N. Zamir, S. Doveh, I. Friedman, R. Giryes, and L. Zelnik-Manor.
ASAP: Architecture Search, Anneal and Prune. arXiv, 2019. 6.1, 6.1.1, 6.2.2, 6.5, 6.7.1

R. S. Olson and J. H. Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on Automatic Machine Learning, 2016. 1.2.1, 1.2.2, 5.1

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

167

https://research.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011. 4.1, 7.5

V. Perrone, R. Jenatton, M. W. Seeger, and C. Archambeau. Scalable hyperparameter transfer
learning. In Advances in Neural Information Processing Systems, pages 6845—6855, 2018.
8.3.1

V. Perrone, H. Shen, M. W. Seeger, C. Archambeau, and R. Jenatton. Learning search spaces
for bayesian optimization: Another view of hyperparameter transfer learning. In Advances in
Neural Information Processing Systems, pages 12751-12761, 2019. 8.3.1

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning, 2018. 1.3.1,1.3.3,1.4,5.1, 1,5.2.1,
52.2,5.1,523,55,55.1.1,52,55.2.1,55,3,6.1,1,6.1.1,6.2.1,6.2.2, 10,6.3.3,6.1, 7.1.1

H. Qi, E. R. Sparks, and A. Talwalkar. Paleo: A performance model for deep neural networks. In
International Conference on Learning Representation, 2017. 3.2,3.5.2

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Neural Information
Processing Systems, 2007. 2.3.3,2.4.3,7.2.1

A. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences. In
Neural Information Processing Systems, 2013. 6.1.1

P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. arXiv, 2017. 6.5.1.2,
6.3,8.3.2

E. Real, S. Moore, A. Selle, S. Saxena, Y. Leon Suematsu, Q. Le, and A. Kurakin. Large-scale
evolution of image classifiers. In International Conference on Machine Learning, 2017. 1.3.2,
1.33,14,52.2

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized Evolution for Image Classifier
Architecture Search. arXiv, 2018. 1.1, 1.3.2,1.3.3,1.4,5.1,5.2.1,5.2.2,5.2.3,5.5, 6.1, 6.3,
8.3.2

R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine Learning
Research, 5:101-141, 2004. 2.4.2.2

R. Y. Rubinstein and A. Shapiro. Discrete Event Systems: Sensitivity Analysis and Stochastic
Optimization by the Score Function Method. John Wiley & Sons, Inc., 1993. 7.3.1

A. Rudi and L. Rosasco. Generalization properties of learning with random features. In Neural
Information Processing Systems, 2017. 7.2.2.1,7.4.3

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211-252, 2015. 6.5.1.2

A. Sabharwal, H. Samulowitz, and G. Tesauro. Selecting near-optimal learners via incremental
data allocation. In Association for the Advancement of Artificial Intelligence, pages 2007-2015,
2016. 4.1

J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector:

168

Theory and practice. International Journal of Computer Vision, 105(3):222-245, 2013. 4.1

P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house numbers
digit classification. In International Association for Pattern Recognition, 2012. 2.6.1, 3.6.3

S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107—-194, 2011. 6.3.1

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Commun.
ACM, 28(2):202-208, 1985. 4.1, 4.2

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning
algorithms. In Neural Information Processing Systems, 2012. 1.2.1, 1.2.2,2.1,2.2.1, 2.4.1,
24.1,2.6.1,4.1,5.1

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, Prabhat, and
R. Adams. Scalable Bayesian optimization using deep neural networks. In International
Conference on Machine Learning, 2015. 2.1,2.2.1

E. Sparks. End-to-End Large Scale Machine Learning with KeystoneML. PhD thesis, EECS
Department, University of California, Berkeley, Dec 2016. URL http: //www?2.eecs.berkeley.
edu/Pubs/TechRpts/2016 /EECS-2016-200.html. 4

E. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. 1. Jordan, and T. Kraska. Automating model
search for large scale machine learning,. In ACM Symposium on Cloud Computing, 2015. 2.1,
2.2.1

E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht. Keystoneml: Optimizing
pipelines for large-scale advanced analytics. In International Conference on Data Engineering,
2017. 4.1

J. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust Bayesian
neural networks. In Neural Information Processing Systems, 2016. 2.2.1

K. Sridharan, N. Srebro, and S. Shalev-Schwartz. Fast rates for regularized objectives. In Neural
Information Processing Systems, 2008. 7.2.2.1,7.4.3

N. Srinivas, A. Krause, M. Seeger, and S. M. Kakade. Gaussian process optimization in the bandit

setting: No regret and experimental design. In International Conference on Machine Learning,
2010. 2.2.1,2.2.2

K. Swersky, J. Snoek, and R. Adams. Multi-task Bayesian optimization. In Neural Information
Processing Systems, 2013. 1.2.2

K. Swersky, J. Snoek, and R. P. Adams. Freeze-thaw Bayesian optimization. arXiv, 2014. 2.1,
3.6.1

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In IEEE conference on computer vision and
pattern recognition, pages 1-9, 2015. 3.5.2

M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, pages 6105-6114, 2019. 8.3.2

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-weka: Combined selection and

169

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-200.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-200.html

hyperparameter optimization of classification algorithms. In International Conference on
Knowledge Discovery and Data Mining, 2013. 2.1, 2.2.1

A. van der Vaart and H. van Zanten. Information rates of nonparametric Gaussian process methods.
Journal of Machine Learning Research, 12:2095-2119, 2011. 2.2.1

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982. 7.2.2

Q. H. Vuong. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica:
Journal of the Econometric Society, pages 307-333, 1989. 7.2.2

T. Wang, K. Wang, H. Cai, J. Lin, Z. Lu, H. Wang, Y. Lin, and S. Han. APQ: Joint search for
network architecture, pruning, and quantization policy. In Conference on Computer Vision and
Pattern Recognition, 2020. 8.3.2

Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Freitas. Bayesian optimization in high
dimensions via random embeddings. In International Joint Conference on Artificial Intelligence,
2013. 2.2.1

Z. Wang, B. Zhou, and S. Jegelka. Optimization as estimation with Gaussian processes in bandit
settings. In International Conference on Artificial Intelligence and Statistics, 2016. 2.2.1

T. Wei, C. Wang, Y. Rui, and C. W. Chen. Network morphism. In International Conference on
Machine Learning, 2016. 5.1

A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of adaptive
gradient methods in machine learning. In Neural Information Processing Systems, 2017. 6.1

A. G. Wilson, C. Dann, and H. Nickisch. Thoughts on massively scalable Gaussian processes.
arXiv, 2015. 2.2.1

W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao,
Q. Zhang, et al. Gandiva: Introspective cluster scheduling for deep learning. In Symposium on
Operating Systems Design and Implementation, 2018. 3.2

S. Xie, H. Zheng, C. Liu, and L. Lin. SNAS: stochastic neural architecture search. In International
Conference on Learning Representations, 2019. 1.3.3,5.1,5.2.2,5.1,5.2.3,5.5, 5.5, 3, 6.1,
6.2.1,6.2.2,6.5,6.1,6.3,6.7.1,7.1.1,7.1.2

Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong. PC-DARTS: Partial channel
connections for memory-efficient architecture search. In International Conference on Learning
Representations, 2020. 5.6, 6, 6.1, 6.5, 6.5.1,6.1,6.5.1.1,6.5.1.2, 6.3, 6.7.1

Y. Yamada, M. Iwamura, and K. Kise. Shakedrop regularization. arXiv, 2018. 5.5, 6.1

Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen. Breaking the softmax bottleneck: A
high-rank RNN language model. In International Conference on Learning Representations,
2018. 5.2,5.5.1.1

Z. Yang, Y. Wang, X. Chen, B. Shi, C. Xu, C. Xu, Q. Tian, and C. Xu. CARS: Continuous
Evolution for Efficient Neural Architecture Search. arXiv, 2019. 6.1

Q. Yao, J. Xu, W.-W. Tu, and Z. Zhu. Differentiable Neural Architecture Search via Proximal
Iterations. arXiv, 2019. 6.1.1

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. NAS-bench-101: Towards

170

reproducible neural architecture search. In International Conference on Machine Learning,
2019. 6.5.2

Y. You, I. Gitman, and B. Ginsburg. Scaling SGD batch size to 32k for imagenet training. arXiv,
2017. 3.5.2

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer. 100-epoch ImageNet Training with
AlexNet in 24 Minutes. arXiv, 2017. 3.5.2

K. Yu, R. Ranftl, and M. Salzmann. How to train your super-net: An analysis of training heuristics
in weight-sharing nas. arXiv, 2020. 1.4, 5.6

W. Zaremba, 1. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv, 2014.
345,345

A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter. Understanding and robustifying
differentiable architecture search. In International Conference on Learning Representations,
2020a. 6.1

A. Zela, J. Siems, and F. Hutter. NAS-Bench-1Shotl: Benchmarking and dissecting one-shot

neural architecture search. In International Conference on Learning Representations, 2020b.
1.4,5.6,3b,6.5,6.5.2,6.2,6.7.2

C. Zhang, M. Ren, and R. Urtasun. Graph hypernetworks for neural architecture search. In
International Conference on Learning Representations, 2019. 1.3.3, 5.1, 5.1, 5.2.3,5.5, 5.5.2.1,
3

S. Zhang and N. He. On the convergence rate of stochastic mirror descent for nonsmooth
nonconvex optimization. arXiv, 2018. 6.1.1,6.4,6.4,6.4,4,5,6, 6

Y. Zhang, M. T. Bahadori, H. Su, and J. Sun. Flash: Fast Bayesian optimization for data analytic
pipelines. In International Conference on Knowledge Discovery and Data Mining, 2016. 4.2

X. Zheng, R. Ji, L. Tang, B. Zhang, J. Liu, and Q. Tian. Multinomial Distribution Learning for
Effective Neural Architecture Search. arXiv, 2019. 6.1, 7.1.1

J. Zhou, A. Velichkevich, K. Prosvirov, A. Garg, Y. Oshima, and D. Dutta. Katib: A distributed
general automl platform on kubernetes. In Conference on Operational Machine Learning, 2019.
1.4

B. Zoph and Q. V. Le. Neural Architecture Search with Reinforcement Learning. In International
Conference on Learning Representation, 2017. 1.3,1.3.2,1.3.3,1.4,5.1,5.2.2,5.2.3,5.5,5.2

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable
image recognition. In Conference on Computer Vision and Pattern Recognition, 2018. 1.3.3,
5.1,5.22,52.3,55,6.1,6.3

171

	1 Introduction
	1.1 Motivation
	1.2 Hyperparameter Optimization
	1.3 Neural Architecture Search
	1.4 Thesis Outline and Contributions

	I Hyperparameter Optimization
	2 Principled Early-Stopping with Hyperband
	2.1 Introduction
	2.2 Related Work
	2.3 Hyperband Algorithm
	2.4 Experiments
	2.5 Theory
	2.6 Experimental Details
	2.7 Proofs of Theoretical Results

	3 Hyperparameter Optimization in the Large-Scale Regime
	3.1 Introduction
	3.2 Related Work
	3.3 ASHA Algorithm
	3.4 Experiments
	3.5 Productionizing ASHA
	3.6 Experimental Details

	4 Reuse in Pipeline-Aware Hyperparameter Optimization
	4.1 Introduction
	4.2 Related Work
	4.3 DAG Formulation and Analysis
	4.4 Increasing Potential for Reuse in ML Pipelines
	4.5 Experiments

	II Neural Architecture Search
	5 Random Search Baselines for NAS
	5.1 Introduction
	5.2 Related Work
	5.3 Background on Weight-Sharing
	5.4 Random Search with Weight-Sharing
	5.5 Experiments
	5.6 Discussion on Reproducibility
	5.7 Experimental Details

	6 Geometry-Aware Optimization for Gradient-Based NAS
	6.1 Introduction
	6.2 The Weight-Sharing Optimization Problem
	6.3 Geometry-Aware Gradient Algorithms
	6.4 Convergence of Block-Stochastic Mirror Descent
	6.5 Experiments
	6.6 Proof of Theoretical Results
	6.7 Experiment Details

	7 Weight-Sharing Beyond NAS
	7.1 The Weight-Sharing Learning Problem
	7.2 Feature Map Selection
	7.3 Federated Hyperparameter Optimization
	7.4 Generalization Results
	7.5 Feature Map Selection Details

	8 Conclusion
	8.1 Hyperparameter Optimization
	8.2 Neural Architecture Search
	8.3 Future Work

	Bibliography

