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Abstract
Standardized tests are used to test students as they progress in the formal educa-

tion system. These tests are readily available and have clear evaluation procedures.
Hence, it has been proposed that these tests can serve as good benchmarks for AI.
In this thesis, we propose approaches for solving some common standardized tests
taken by students such as reading comprehensions, elementary science exams, ge-
ometry questions in the SAT exam and mechanics questions in the AP physics exam.
Answering these test problems requires deep linguistic (and sometimes visual) un-
derstanding and reasoning capabilities which is challenging for modern AI systems.

In the first part of this thesis, we explore novel approaches to answer natural lan-
guage comprehension tests such as reading comprehensions and elementary science
tests (chapters 4, 5 and 6). These tests evaluate the system’s ability to understand
text through a question-answering task. We present new latent structure models
for these tasks. We posit that there is a hidden (latent) structure that explains the
relation between the question, the correct answer, and the piece of text. We call
this the answer-entailing structure; given the structure, the correctness of the answer
is evident. Since the structure is latent, it must be inferred. We present a unified
max-margin framework that learns to find these hidden structures given a corpus of
question-answer pairs, and uses what it learns to answer questions on novel texts.
We also describe a simple but effective extension of this framework to incorporate
multi-task learning on the different subtasks that are required to perform the over-
all task (chapter 4), a deeper representation of language based on AMRs (chapter
5) and how can we incorporate external knowledge in the answer-entailing struc-
ture (chapter 6). These advances help us obtain state-of-the-art performance on two
well-known natural language comprehension benchmarks.

In the second part of this thesis (chapter 7), we tackle some hard reasoning prob-
lems in the domains of math and science - geometry questions in the SAT exam and
mechanics question in the AP physics exam. Solving these problems requires an
ability to incorporate the rich domain knowledge as well as an ability to perform
reasoning based on this knowledge. We propose a parsing to programs (P2P) ap-
proach for these problems. P2P assumes a formal representation language of the
domain and domain knowledge written down as programs. This domain knowledge
can be manually provided by a domain expert, or, as we show in our work, can be
extracted by reading a number of textbooks in an automated way. When presented
with a question, P2P learns a representation of the question in the formal language
via a multi-modal semantic parser. Then, it uses the formal question interpretation
and the domain knowledge to obtain an answer by using a probabilistic reasoner.

A key bottleneck in building these models is the amount of domain-specific su-
pervision required to build them. Thus, in the final part of this thesis (chapter 8),
we propose a self-training method based on curriculum learning that jointly learns
to generate and answer questions. This method obtains near state-of-the-art models
on a number of natural language comprehension tests with lesser supervision.
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Chapter 1

Introduction

Alan Turing, one of the pioneers of computer science, proposed that it would someday be possi-
ble for a sufficiently advanced computer to think and to have some form of consciousness [276].
This was accompanied by a proposal for a test for artificial intelligence known as the Turing test.
The Turing test proposes that a human evaluator judge natural language conversations between
a human and a machine designed to generate human-like responses. If the evaluator cannot re-
liably tell the machine from the human, the machine is said to have passed the test. Since then,
there have been a number of attempts [55, 260, 290] to build a system that can pass the test.
While a number of these proposals have indeed come close to technically passing the test, most
AI practitioners believe that the AI dream is still a non-reality. Despite the explosion of impres-
sive data-driven AI applications in recent years, computers, unlike humans, largely lack a deeper
understanding of the world. More specifically, they cannot efficiently extract, represent or reason
with the information that is provided to them. Consequently, if posed with questions about what
they have read, they cannot answer questions that go beyond a prototypical typecast – informa-
tion either explicitly stated in the text, or simple questions relating to recognising objects, etc. in
images and videos. On the other hand, human learning is much more general, robust and power-
ful. Humans display common sense, judgment, reasoning and creative abilities well beyond the
capability of modern AI systems.

The formal education system plays an important role in imbibing these abilities in humans.
Children typically learn incrementally grade by grade covering instructional content with varying
levels of difficulty. Children are frequently tested by various standardized tests to gauge their
understanding of the instructional content. As many researchers [93, 164, 195, 201, 222, 249,
252] have pointed out, the definition of the Turing test has resulted in researchers focusing on the
wrong task, namely, fooling human judges, rather than achieving true intelligence. Shoehorning
the research to meet the goal of appearing human-like is a red herring. To this end, standardised
tests have often been proposed as replacements to the Turing test as a driver for progress in AI
[50]. These include tests on understanding passages and stories and answering questions about
them [227], math and science question answering using instructional material [158, 241, 253],
visual question answering [7], etc. Many of these tests require sophisticated understanding of
the world, aiming to push the boundaries of AI.

Standardised tests are easily accessible, comprehensible, incremental, and easily measurable.
These tests do not cover all aspects of intelligence [50]. For example, spatial/kinematic reason-
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ing, some types of commonsense reasoning, and interaction/dialogue are under-represented or
absent, and thus the exams do not constitute a full test of machine intelligence, they are neces-
sary but not sufficient. Nonetheless, they cover a wide variety of problem types and levels of
difficulty in representing and extracting the knowledge relevant for the task and reasoning, mak-
ing them a driver for progress in AI. Furthermore, the mark down in the aspects of intelligence
required to solve them allows us to tease out and test various components of our AI systems.
Standardized tests could potentially allow us to study the skills of AI in contrast with the skill set
of humans which are believed to be acquired by humans through education.

In this thesis, we describe some of these tests and propose some approaches for solving them.
These include approaches for answering reading comprehension based questions (chapters 4 and
5), answering science questions using instructional material (chapter 6), and answering math
and science questions in geometry and Newtonian physics (chapter 7). Such problems frequent
the curriculum of students and also appear in standardised tests such as the SAT or Advanced
Placement college level courses.

Reading comprehension tests require the system to answer multiple-choice questions based
on a text passage. We show that we can answer such questions well by modeling this as a textual
entailment task and learning latent answer-entailing structures similar to the structures often
used in various models for machine translation [21]. The answer-entailing structure aligns parts
of the question and answer candidate with candidate snippets in the passage. Furthermore, we
show that we can account for question types by introducing a multi-task learner.

Language representation has been a key and open question in natural language understand-
ing and a number of language representation formalisms have been proposed in the recent years.
These include domain-specific sembanks like GeoQuery, and more recently larger, broad-coverage
formalisms such as the Groningen Meaning Bank, UCCA, Semantic Treebank, the Prague De-
pendency Treebank and UNL. We also extend our learning latent answer-entailing structure
learning approach by using various types of language representation – bag of words, syntactic
parses and in particular the abstract meaning representation (AMR) [14]. Our results show that
in scenarios such as children story comprehension where AMR parsers are typically accurate,
using a rich language representation based on AMR indeed leads to improved performance.

We also applied our approach of learning latent answer-entailing structures in the Allen In-
stitue of AI’s Kaggle challenge for 8th grade science question answering which requires a rich
integration of language understanding and external knowledge. In this setting, we re-described
the answer-entailing structure as a search through the student’s curriculum comprising of a num-
ber of textbooks followed by alignment of the hypothesis to the snippet returned by retrieval and
used external domain-specific knowledge resources such as science dictionaries, study guides
and semi-structured tables to further refine the answer-entailing structure. We achieved signif-
icant improvements over a number of lexical and neural network baselines which have been
shown to do well on this task.

Reasoning is another unique human ability. This ability allows us to make sense of things,
verify facts, apply logic, and justifying or deny various hypotheses based on prior beliefs and
existing information. Standardized tests in the domains of math and science offer us prob-
lems which are quite challenging and require significant reasoning abilities. Thus, as a small
step towards this goal, we proposed an approach to tackle some hard reasoning problems in
various math and science standardized tests – primarily geometry and mechanics problems in
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pre-university examinations. Out approach, called parsing to programs, combines ideas from
semantic parsing [139, 311, 312] and probabilistic programming [100]. When presented with a
novel question, the system learns a formal representation of the question by combining interpre-
tations from the question text and any associated diagram. Finally, the system uses this formal
representation to solve the question using the relevant domain knowledge provided to it in the
form of programs. Our approach can be seen as a natural language interface to expert systems
[130]. We use this technique to build two systems – the first answers SAT style geometry ques-
tions and the second answers mechanics problems from the AP Physics exams. Both systems
achieve near human performance on multiple datasets taken from a variety of textbooks, SAT
practice and official tests and section 1 of AP Physics C mechanics exams held in 1998 and
2012.

A key issue in many NLP approaches for question answering (including the work presented
in this thesis) is that all these approaches are very data hungry and depend on a large number
of labeled question answer pairs. This is expensive to obtain in many domains and is a key
impediment in the adoption of this technology. Thus, as a first step in this direction, in the final
part of this thesis, we looked at the inverse of the question answering problem – i.e. question
generation. We show that question answering and question generation problems are closely
related (in fact dual problems) and we proposed a self-training method to jointly ask as well
as generate questions by leveraging unlabeled text along with a much smaller set of labeled
question answer pairs for learning. Self-training is a common unsupervised data augmentation
technique that augments the original training set with model predictions on an unlabeled data.
The addition of this synthetic labeled data needs to be performed carefully. During self-training,
typically the most confident samples, along with their predicted labels, are added to the training
set [318]. We show that the performance of our QA model can be used as a proxy for computing
the confidence value of the questions. We describe a suite of heuristics inspired from curriculum
learning [17] to select the unlabeled samples (sentences) to be labeled and added to the training
set at each epoch. Curriculum learning is inspired from the incremental nature of human learning
and orders training samples on the easiness scale so that easy samples can be introduced to
the learning algorithm first and harder samples can be introduced successively. We show that
selecting training samples in increasing order of easiness leads to improvements over a random
sample introduction baseline.

Our approaches of answer-entailing structures for reading comprehensions as well as the
parsing to programs approach for math and science questions provide comprehensive, easy-to-
understand and interpretable solution to the questions. This is beneficial as these techniques
can assist the students by providing them the deductive or derivational process used to obtain
the answer. By conducting various small scale experiments on human subjects (students), we
plan to answer the questions if the subjects would find our tools for answering as well as asking
questions useful.

In the future, we would like to expand the answer-entailing structure and P2P frameworks
to support question answering and reasoning problems in various other domains. In order to
make these frameworks scalable and robust, we would like to tackle the issue of supervision
by working on representation learning, active (perhaps interactive) learning, few shot learning,
weak supervision, domain transfer and multi-task learning. We would like to pursue research
that combines symbolic and non-symbolic methods. In order to achieve this, we are particularly
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interested in advancing some recent work on combining symbolic methods with distributional
models of meaning [54], neural networks [257] and statistical learning [68].

1.1 Thesis statement

Motivation: Turing test has resulted in researchers focusing on the wrong task; namely, fooling
human judges, rather than achieving true intelligence. We believe that standardized tests can
serve as replacements to the Turing test as drivers for progress in AI.
Contributions: We build solvers for various standardized tests, including reading comprehen-
sions and elementary school tests where the goal is to find the support for an answer from the
student curriculum, and intermediate level math and science tests which require the system to
reason using its prior subject knowledge.
Implications: These solvers provide easy-to-understand solutions, along with the deductive pro-
cess used to obtain the answer, and can potentially be used as assistive tools in education.

1.2 Contributions of the thesis

In this thesis, we made the following contributions:
• We proposed a latent answer-entailing structure approach for solving reading comprehen-

sion questions where we model various latent structures to model the reasoning process
needed to answer various comprehension questions.

• We further proposed a multi-task learning model that models the various kinds of ques-
tions/answers/reasoning types required to solve reading comprehension problems. We
show that multi-task learning leads to significant improvements over the base model.

• We also extended the latent answer-entailing structure model to use rich graph based se-
mantic representations such as AMR and then used it to obtain state-of-the-art results on
popular benchmarks in the community.

• Reasoning is a key challenge in NLP and AI. Thus, as a step in that direction, we proposed
a model to answer problems such as geometry and mechanics problems in SAT and AP
Physics exams which require rich axiomatic reasoning. Our approach called parsing to
programs combines semantic parsing and probabilistic reasoning to solve these reasoning
problems.

• As a part of our approach to solve geometry reasoning problems, we also developed a
model to automatically extract geometry axioms from math textbooks in rich structured
forms. This model was driven by formatting features in textbooks and the notion of redun-
dancy to successfully extract and parse geometry axioms.

• A key issue in all of the above models is supervision. Thus, as a step in that direction,
we proposed a self-training method based on curriculum learning that jointly learns to
generate and answer questions. This model helps us obtain near state-of-the-art models on
a number of question answering tasks with less supervision.
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1.3 Structure of the thesis

This thesis is structured as follows:
• Chapter 1 introduces the thesis.
• Chapter 2 describes the related work on all the past work on solving various standardized

tests.
• Chapter 3 pins down some of the relevant background – in particular structured prediction

models, latent variable models and constraint and rule driven learning.
• Chapter 4 describes our latent answer-entailing structure approach for solving reading

comprehension questions.
• Chapter 5 describes an extension of the latent answer-entailing structure approach to rich

graph based semantic representations, particularly the AMR representation.
• Chapter 6 describes the extension of our latent answer-entailing structure approach with

external sources of knowledge for solving science question answering problems .
• Chapter 7 describes our parsing to programs approach to answer geometry and mechanics

reasoning problems.
• Chapter 8 describes the self-training method based on curriculum learning to jointly learn

to generate and answer questions.
• We conclude and describe future work in chapter 9.

This thesis summarizes the work previously published as the following:
• Mrinmaya Sachan, Minjoon Seo, Hannaneh Hajishirzi and Eric P. Xing. Parsing to Pro-

grams: A Framework for Situated Question Answering. (In Preparation)
• Mrinmaya Sachan, Avinava Dubey, Eduard Hovy, Tom Mitchell, Dan Roth and Eric P.

Xing. Discourse in Multimedia: A Case Study in Information Extraction. (To appear in
the Computational Linguistics (CL) journal)

• Mrinmaya Sachan, Avinava Dubey, Tom Mitchell, Dan Roth and Eric P. Xing. Learning
Pipelines with Limited Data and Domain Knowledge: A Study in Parsing Physics Prob-
lems. NeurIPS 2018

• Mrinmaya Sachan and Eric P. Xing. Parsing to Programs: A Framework for Situated QA.
KDD 2018

• Mrinmaya Sachan, Eric P. Xing. Self-Training for Jointly Learning to Ask and Answer
Questions. NAACL-HLT 2018

• Mrinmaya Sachan, Avinava Dubey and Eric P. Xing. From Textbooks to Knowledge:
A Case Study in Harvesting Axiomatic Knowledge from Textbooks to Solve Geometry
Problems. EMNLP 2017

• Mrinmaya Sachan and Eric P. Xing. Learning to Solve Geometry Problems from Natural
Language Demonstrations in Textbooks. *SEM 2017

• Mrinmaya Sachan and Eric P. Xing. Easy Questions First? A Case Study on Curriculum
Learning for Question Answering. ACL 2016
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• Mrinmaya Sachan, Avinava Dubey and Eric P. Xing. Science Question Answering using
Instructional Materials. ACL 2016

• Mrinmaya Sachan and Eric P. Xing. Machine Comprehension using Rich Semantic Rep-
resentations. ACL 2016

• Mrinmaya Sachan, Avinava Dubey, Eric P. Xing and Matthew Richardson. Learning
Answer-Entailing Structures for Machine Comprehension. (Best paper nomination, named
one of 5 outstanding papers at the conference) ACL 2015

6



Chapter 2

Related Work

The idea of having a test for AI has a long history and dates back to the discussion by Rene
Descartes in his famous treatise Discourse on the Method in which he writes that automata (ma-
chines) can be capable of responding to human interactions but also argues that such automata
cannot respond appropriately to things said in their presence in the way that any human can. This
idea of using the insufficiency of linguistic response as what separates the humans from automa-
ton was later corroborated by Denis Diderot in his book Pensees philosophiques who famously
said that “If one can find a parrot who could answer to everything, I would claim it to be an
intelligent being without hesitation”. In his book, Language, Truth and Logic, Alfred Jules Ayer
suggested a protocol to distinguish between a conscious man and an unconscious machine. A
similar idea was famously proposed by Alan Turing in his famous Computing Machinery and
Intelligence paper [276] where he proposed the Turing test. The Turing test is carried out as a
sort of imitation game. On one side of a computer screen sits a human judge, whose job is to chat
to some mysterious interlocutors on the other side. Most of those interlocutors will be humans;
one will be a chatbot, created for the sole purpose of tricking the judge into thinking that it is the
real human. Turing argued that if the judges could not distinguish the humans with the computer
after the conversation, then it would be unreasonable not to call the computer intelligent, because
we judge other people’s intelligence from external observation in just this way.

While the Turing test is powerful and appealing due to its simplicity. it does not directly test
whether the computer behaves intelligently. It tests only whether the computer behaves like a
human being. This requires that the machine be able to execute all human behaviors, regardless
of whether they are intelligent. This led to objections famously being raised by The Economist,
in an article entitled “artificial stupidity”. A number of chat bots have been developed which have
come close to passing the Turing test. See ELIZA [289] and PARRY [55] as two early attempts
at cracking the test. While the final nature of the results has also been debated, it has been seen
that most of the systems competing to pass the test resort to tricks like masquerading as people
with specific roles (e.g. ELIZA pretended to be a Rogerian therapist whereas PARRY pretended
to be a paranoid schizophrenic) or deliberately adding errors into their output, so as to be better
“players” of the game. Due to these criticisms, it has been argued that systems attempting to pass
the Turing test are not necessarily intelligent and thus Turing test is not a tractable test for AI.
Many researchers have since mooted several alternatives to the Turing test.

An interesting recent proposition is to use standardized tests as alternatives to the Turing
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test. Standardized tests are large-scale tests administered to large populations of students, such
as a multiple-choice science tests given to all the eighth-grade public-school students in the
US. These tests are consistently administered to objectively measure the knowledge and skills
students learned in school or to determine the academic progress they have made over a period of
time. Thus it is natural to use these tests to measure the intelligence of our AI systems. The tests
have an added advantage that they can be provide a graded measure of machine Intelligence with
respect to humans. The tests are readily available and they reduce any potential for favoritism,
bias, or subjective evaluation.

The proposition of using standardized tests as challenge problems also has a long history in
AI. In 1972, Charniak, in his PhD thesis [43], proposed a background model to answer questions
about children’s stories. Also, famously, Hirschmann et al. [119] showed that a bag of words
pattern matching approach with some additional automated linguistic processing could achieve
40% accuracy for the task of picking the sentence that best matches the query for “who / what
/ when / where / why” questions, on the well-known reading comprehension dataset called Re-
media. The results on this dataset have since been improved upon by [104, 109, 291]. Riloff
et. al [228] also developed a rule-based system, Quarc, which used lexical and semantic clues in
the question and the story to answer questions about it. On reading comprehension tests given
to children in grades 3-6, Quarc also achieved an accuracy of around 40%. Breck et. al [25]
collected 75 stories from the Canadian Broadcasting Corporation’s web site for children and
generated 650 questions for them manually where each question was answered by a sentence in
the text. Leidner et. al [162] used the CBC4kids data and added layers of annotation (such as
semantic and POS tags), thus measuring QA performance as a function of question difficulty.

More recently, there has been a renewed interest in reading comprehensions (also known
as machine comprehension in some works). The nomenclature of machine comprehension was
popularized by [227] who crowd-sources dataset of 660 stories and multiple-choice questions.
By restricting the vocabulary, it was ensured that the stories could be understood by the av-
erage 7 year old. Since the popularity of deep learning, a number of larger datasets have
been built for machine comprehension. Popular examples include Children’s Book Test [118]
from FAIR, CNN/Daily Mail [117] released by Google DeepMind, Stanford Question Answer-
ing Dataset or SQuAD [224], LAnguage Modeling Broadened to Account for Disclourse As-
pects or LAMBADA dataset [211] from University of Trento and University of Amsterdam,
QuizBowl questions [129] from University of Maryland and University of Colorado, NewsQA
dataset [275] from Maluuba Research, and MS MARCO [203] from Microsoft. Infact, a num-
ber of companies and startups such as Allen Institute for AI 1 and Microsoft Maluuba2 fo-
cus on the idea of building solvers for various standardized tests. Various lexical approaches
[227, 265], structured prediction approaches [202, 236, 239, 241, 285], and neural network ap-
proaches [45, 124, 182, 254, 259, 305] have been proposed for a number of these datasets and
the state-of-the-art on these datasets continues to move at the time of writing this document.

Simultaneously, there has been interest in building QA systems for other standardized tests.
For example, there has been significant work in science question answering [140, 141, 142, 256],
solving algebra word problems [122, 123, 158, 189, 231, 232] and SAT style geometry problems

1http://allenai.org/
2http://www.maluuba.com/
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[253]. Infact, researchers at the National Institute of Informatics in Tokyo have undertaken the
grand challenge of creating an AI system that can answer real questions on university entrance
examinations of the University of Tokyo [8]. While, the project has not succeeded in doing so,
their system is reportedly already competent enough to pass the entrance exams of 404 out of
744 private universities in Japan.

The latter part of this thesis focuses on generation of questions. Question generation, also
refered to as question asking in this thesis, has been pursued before in a number of works such
as [114] which focuses on generating questions based on given sources of knowledge. More
recently, [70, 274] build on the sequence to sequence paradigm of deep learning to generate
questions conditioned on an answer sentence. Finally, we build upon the relationship between
question answering and question asking and propose a joint training framework for the two.
Concurrently, some recent works [274, 288] also build upon this idea. We will distinguish our
work with these later in chapter 8. This work was published as [234, 235].

In the final part of this thesis, we show how our works can be potentially useful as assistive
tools for education. A large body of work already employs AI and automated methods for recom-
mending, organizing and optimizing content modules [1, 69, 101, 125, 181, 207], to track student
knowledge and recommend next steps using adaptive learning systems or game-based learning
[26, 72, 188, 221, 269], grading systems that assess and score student responses to assessments
and computer assignments at large scale, either automatically or via peer grading for scoring stu-
dent responses or detecting plagiarism [2, 11, 18, 30], and predicting enrollment, placements and
boosting retention [175, 210, 296]. In our work, we show how question answering and question
generation can be used to assist student learning.
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Chapter 3

Background

Statistical machine learning approaches are being widely used in NLP and computer vision today.
In this chapter, we will cover a few basic machine learning concepts which will be used in the
rest of the thesis. We will mainly focus on supervised learning and structured prediction, since
these paradigms are most widely used in this thesis.

3.1 Supervised Machine Learning as Optimization
The dominant paradigm of machine learning is supervised learning. In supervised learning prob-
lems, we are given data in the form of input-output pairs {(x,y) ∈X ×Y }. An example super-
vised learning problem is document classification where the inputs x ∈X are documents and
outputs y ∈ Y are a set of document classes and the goal is to learn a classification function
f : X → Y which learns to predict the document class for a given document x.

In supervised learning, we typically define an appropriate loss function L : Y ×Y → R≥0

which models the loss L(y, f (x)) incurred when the predicted output f (x) is not the same as the
true output y. Thus, given a training dataset D = {(x1,y1), . . . ,(xN ,yN)}, supervised learning is
formulated as an optimization problem (also known as the empirical risk minimization (ERM)
framework where our goal is to learn the function f̂ which best optimizes the sum of losses over
all samples in the training data:

f̂ = argmin
f

N

∑
i=1

L(yi, f (xi))

A typical idea in machine learning is regularization where the idea is to regularize i.e. incor-
porate some priors on the weights w. In this case the ERM framework is written as:

f̂ = argmin
f

N

∑
i=1

L(yi, f (xi))+Ω(w)

Here, Ω(w) is the regularizer on weights w.
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3.2 Structured Prediction
Often in natural language processing and computer vision, the output space Y is structured,
where the goal is to predict complex structures instead of labels. The structures are typically se-
mantic or linguistic structures or structured labels in a complex scene. For illustration purposes,
let us take the canonical example of part-of-speech tagging. Given an input sentence to the prob-
lem denoted as x, and the output structure denoted as y, the output structure y can be decomposed
into a set of m variables y1,y2, . . . ,ym, where m is the number of words in the input sentence x.
Each output variable yi denotes the part of speech tag for the ith word of input sentence x. Each
yi is assigned one of the 45 part-of-speech tags.

The structured prediction problem is to learn a mapping function f (x;w) from the input space
X to the output space Y . This mapping function is parameterized with weights w of the relevant
features φ(x,y). Note that the feature function is defined over both the entire input structure x and
the entire output structure y. However, in practice the features are defined locally to express the
dependency between the local inputs and outputs. The design of these feature templates typically
requires a lot of domain knowledge. The weight vector w and the feature function φ(x,y) are
typically used to define a scoring function for the output structures. Often the scoring function
takes the following linear form:

S(y;w,x) = wT
φ(x,y)

Ideally, this scoring function would assign a higher score to the correct output structure and
a lower score to all other structures.

3.2.1 Inference and Learning
In many machine learning approach, there are two key involved issues: inference and learning.
Given the scoring function S(y;w,x), the Inference procedure predicts the output structure for
the input x by searching for the best structure according to the scoring function. Formally, the
inference procedure is:

y∗ = argmax
y∈Y

wT
φ(x,y)

Inference: Typically, the output space Y is very large. For example, in the part of speech
example above, |Y | = 45m. Thus, naively enumerating all output sequences and checking their
score is not a computationally feasible solution. There are a number of well-known approaches
used to perform this search more efficiently. These include dynamic programming, ILPs and
beam search. In this thesis, we will often use beam search. The main idea behind beam search
is to enumerate all possible assignments to the first output variable and score them, keep the top
k assignments and discard the rest. Next, for each assignment of the first variable, enumerate
all possible assignments for the second output variable, and again, keep the k highest scoring
partial assignments, and discard the rest, and so on. Here k is often referred to as the beam size.
Although beam search is an approximate procedure, in practice, it is very effective.
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Learning: Given a set of N labeled training examples D = {(x1,y1), . . . ,(xN ,yN)}, the learn-
ing problem is to find a weight vector w such that it scores the target output structures yi is higher
than other structure y′i. This means that we want the value of the score S(yi;w,xi) to be higher
than S(y′i;w,xi) forall i = 1 . . .N. This can be readily defined as an optimization problem and a
number of instances of the structured prediction paradigm are popular in literature. Let us dive
down to a special case of structured prediction – structured prediction with latent variables which
is more relevant to this thesis.

3.3 Structured Prediction with Latent Variables
Our structured prediction framework described above has only two types of variables – input
variables x and output variables y. Typically, both these variables are observed and are given
as part of the training data. However, often, we want to model some other information that is
not provided as part of the training data. Formally, we additionally also model latent variables
h ∈H , where H is the set of feasible assignments to the hidden variables. We extend the
structured prediction formulation above to include hidden variables.

We redefine the feature function to also include latent variables (written as φ(x,h,y)). For
inference, we search for the best output structure and the best assignment to the latent variables
as below:

(h∗,y∗) = argmax
(h,y)∈H ×Y

wT
φ(x,h,y)

Given a set of N labeled training examples D = {(x1,y1), . . . ,(xN ,yN)}, the learning problem
is to again find a weight vector w such that it scores the target output structures yi is higher than
other structure y′i. The learning problem is similar, however, with one key difference that the
score of a structure y is now given as: S(y;w,x) = max

h∈H
wT φ(x,h,y).

3.4 Special Cases
In this thesis, we mostly use two key structured prediction models: structural SVM with latent
variables [307] and Constraint or rule driven learning [42]. Let us cover them in more detail:

3.4.1 Latent Structure SVM
The structured SVM generalizes the support vector machine classifier for general structured out-
put labels. Structured SVM defines the following objective:

min
w,ξ

1
2
||w||22 +C∑

i
ξi

s.t. wT
φ(xi,yi)≥ wT

φ(xi,y)+∆(yi,y)−ξi
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The Latent Structure SVM further generalizes the structured SVM by incorporating latent
variables h. We again redefine the feature function to also include latent variables (written as
φ(x,h,y)). For inference, we again search for the best output structure and the best assignment
to the latent variables as: (h∗,y∗) = argmax

(h,y)∈H ×Y
wT φ(x,h,y). The latent structure SVM is written

down as the following:

min
w,ξ

1
2
||w||22 +C∑

i
ξi

s.t. max
h

wT
φ(xi,h,yi)≥max

h
wT

φ(xi,h,y)+∆(yi,y)−ξi

A key property of the above objective is that it can be written as the difference of two convex
functions. This allows us to solve the optimization problem using the Concave-Convex Proce-
dure (CCCP) [309]. The CCCP algorithm is guaranteed to decrease the objective function at
every iteration and to converge to a local minimum or a saddle point of the objective. The CCCP
algorithm applied to Structural SVM with latent variables gives rise to a very intuitive algo-
rithm that alternates between imputing the latent variables h∗i that best explain the training pair
(xi,yi) and solving the Structural SVM optimization problem while treating the latent variables
as completely observed. For more details, we refer the reader to [307].

3.4.2 Constraint or Rule driven learning

A key issue in machine learning models for NLP is how we can incorporate the domain knowl-
edge from domain experts into our models. There are many ways this problem is expressed
[41, 56, 160]. A dominant family of models used in structured prediction are linear models,
which can be represented as a weight vector w, corresponding to a set of feature functions {φ}.
For an input instance x and an output assignment y, the “score” of the instance can be expressed
as a weighted sum of feature functions: f (x,y) = ∑i wiφi(x,y). Let us focus on constrained con-
ditional models (CCM) [42], a classic technique for combining domain knowledge provided as
constraints in (typically linear) structured prediction models.

Let us assume that we are presented with the domain knowledge as a set of constraints C =
{Ck()}m

k=1,Ck : X ×Y → {0,1} which encode predicates over a pair (x,y). If Ck(x,y) = 1, it
means that the pair (x,y) violates the constraint Ck . For each constraint, we are also provided a
function dCk : X ×Y →R that measures the degree to which the constraint Ck is violated in a pair
(x,y). While there are different ways to estimate dCk , CCMs define what is called a “violation
function”. Let y[1...i] = (y1, . . .yi) be a partial assignment of y. Then, dCk = ∑

|y|
i=1 Ĉk(x,y[1...i])

where Ck(x,y[1...i]) is a binary function which indicates whether yi violates the constraint Ck
with respect to the partial assignment. For some of these constraints, the violation cannot be
calculated with partial assignments. In these cases, Ĉk returns 0 to indicate that the constraint i is
not violated according to the current partial assignment.

A CCM is represented using two weight vectors: the feature weight vector w and the con-
straint penalty vector ρ . The score of an output assignment y for an input x is given by:
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f (x,y) =
n

∑
i=1

wiφi(x,y)−
m

∑
k=1

ρkdck(x,y)

There has been a large body of work in inference methods for constraint driven models in-
cluding dynamic programming, ILPs and beam search as well as in learning methods which are
usually some variants of the EM algorithm. We will skip the details of inference and learning
methods and refer them to [42] for more details.
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Chapter 4

Answering Reading Comprehension
Problems: Alignment as a proxy for
Reasoning

Developing an ability to understand natural language is a long-standing goal in NLP and holds
the promise of revolutionising the way in which people interact with machines and retrieve in-
formation (e.g., for scientific endeavour). To evaluate this ability, we tackle the task of machine
comprehension. Machine comprehension evaluates a machine’s understanding by posing a series
of reading comprehension questions and associated texts, where the answer to each question can
be found only in its associated text. In contrast, historically, QA evaluations such as TREC have
focused on short factoid questions where simple IR based approaches [198] that treat this as a
problem of retrieval from existing knowledge sources followed by some shallow inference tend
to do well. In figure 4.1, we show an example of a reading comprehension question from the
MCTest dataset [227]. Our goal is to build a model that can answer questions based on the given
piece of text.

Factoid question answering contains questions about some factual knowledge such as “Who
is the president of the United States?” which can usually be answered by querying the web or
existing knowledge tables. We point the interested reader to the TREC1 and CLEF2 evaluations
for more more details on the prior work on factoid QA. Recently, there has been a resurgence of
non-factoid QA in the form of reading comprehensions (QA4MRE evaluations3, MCTest [227]
and bAbI [293] datasets are notable examples). Non Factoid QA focuses on answering questions
that are not fact based. They require solutions that can “understand” the content rather than using
IR style solutions or solutions that use the redundancy of the web to answer questions. This is
one of the main reasons for the growing interest in Non Factoid QA.

In this chapter, we present a strategy for learning answer-entailing structures that help us
perform inference over much longer texts by treating this as a structured input-output problem.
The approach of treating a problem as one of mapping structured inputs to structured outputs is
common across many NLP applications. Examples include word or phrase alignment for bitexts

1http://trec.nist.gov/
2http://nlp.uned.es/clef-qa/
3http://nlp.uned.es/clef-qa/repository/qa4mre.php
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Figure 4.1: An example reading comprehension question from the MCTest500 dataset.
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in MT [21], text-hypothesis alignment in RTE [184, 247, 272, 300], question-answer alignment
in QA [20, 303], etc. All of these approaches align local parts of the input to local parts of the
output. In this work, we extended the word alignment formalism to align multiple sentences in
the text to the hypothesis. We also incorporated the document structure (rhetorical structures
[185]) and co-reference information to help us perform inference over longer documents.

QA has had a long history of using pipeline models that extract a limited number of high-level
features from induced representations of question-answer pairs, and then build a classifier using
some labelled corpora. On the other hand, we learn these structures and the model for answering
standardized test questions jointly through a unified max-margin framework. We note that there
exist some recent models such as Yih et. al. 2013 that do model QA by automatically defining
some kind of alignment between the question and answer snippets and use a similar structured
input-output model. However, they are limited to single sentence matching to determine answers.

Another advantage of our approach is its simple and elegant extension to multi-task settings
as a way to combine the retrieval and alignment model. There has been a rich vein of work
in multi-task learning for SVMs in the ML community. Evgeniou and Pontil 2004 proposed a
multi-task SVM formulation assuming that the multi-task predictor w factorizes as the sum of a
shared and a task-specific component. We used the same idea to propose a multi-task variant of
Latent Structured SVMs. This allows us to use the single task SVM in the multi-task setting with
a different feature mapping. This is much simpler than other competing approaches such as Zhu
et. al. 2011 proposed in the literature for multi-task LSSVM. We provide the details below:

4.1 Methodology
Let us first formalize the machine comprehension setup. For each question qi ∈ Q, let Ai =
{ai1, . . . ,aim} be the set of candidate answers to the question. Let a∗i be the correct answer.
The candidate answers may be pre-defined, as in multiple-choice QA, or may be undefined but
easy to extract with a high degree of confidence (e.g., by using a pre-existing system). We
want to learn a function f : (q,K )→ a that, given a question qi and background knowledge
K (texts/resources required to answer the question), outputs an answer âi ∈ Ai. We consider
a scoring function Sw(q,a;K ) (with model parameters w) and a prediction rule fw(qi) = âi =
argmax

ai j∈Ai

Sw(qi,ai j;K ). Let ∆(âi,a∗i ) be the cost of giving a wrong answer. We consider the

empirical risk minimization (ERM) framework given a loss function L and a regularizer Ω:

min
w ∑

qi∈Q
Lw(a∗i , fw(qi);K )+Ω(w) (4.1)

4.1.1 Alignment based approach to Question Answering
In this work, we use alignment based models [303] and cast QA as a textual entailment prob-
lem by converting each question-answer candidate pair (qi,ai j) into a hypothesis statement hi j.
For example, the question “What are the important greenhouse gases?” and answer candidate
“Carbon dioxide, Methane, Ozone and CFC” can be combined to achieve a hypothesis “The im-
portant greenhouse gases are Carbon dioxide , Methane, Ozone and CFC.”. A set of question
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matching/rewriting rules are used to achieve this transformation. These rules match the question
into one of a large set of pre-defined templates and apply a unique transformation to the question
and answer candidate to achieve the hypothesis statement. For each question qi, the QA task
thereby reduces to picking the hypothesis ĥi that has the highest likelihood among the set of hy-
potheses hi = {hi1, . . . ,him} generated for that question of being entailed by a body of relevant
texts. The body of relevant texts can vary for each instance of the QA task. For example, it
could be just the passage in a reading comprehension task, or a set of science textbooks in the
science QA task. Let h∗i ∈ hi be the correct hypothesis. The model considers the quality of word
alignment from a hypothesis hi j (formed by combining question-answer candidates (qi,ai j)) to
snippets in the corresponding passage as a proxy for the evidence.

The latent alignment zi j for the question-answer candidate pair (qi,ai, j) depends on: (a) snip-
pet from the relevant text chosen to be aligned to the hypothesis and (b) word alignment from the
hypothesis to the snippet. The snippet from the text to be aligned to the hypothesis is determined
by picking a subset of sentences in the text. Then each hypothesis word is aligned to a unique
word in the snippet. Learning these alignment edges typically helps a model decompose the in-
put and output structures into semantic constituents and determine which constituents should be
compared to each other. These alignments can then be used to generate more effective features.

The choice of the snippet and the word alignment is latent. A natural solution is to treat QA
as a problem of ranking the hypothesis set hi such that the correct hypothesis is at the top of
this ranking. Hence, a scoring function Sw(h,z) is learnt such that the score given to the correct
hypothesis h∗i and the corresponding latent structure z∗i is higher than the score given to any other
hypothesis and its corresponding latent structure. In fact, in a max-margin fashion, the model
learns the scoring function such that Sw(h∗i ,z∗i )> Sw(hi j,zi j)+∆(h∗i ,hi j)−ξi for all h j ∈ h\h∗

for some slack ξi. This can be formulated as the following optimization problem:

min
||w||

1
2
||w||22 +C∑

i
ξi

s.t. Sw(h∗i ,z
∗
i )≥max

zi j
Sw(hi j,zi j)+∆(h∗i ,hi j)−ξi (4.2)

It is intuitive to use the 0-1 cost, i.e. ∆(h∗i ,hi j) = 1(h∗i 6= hi j) If the scoring function is
convex then this objective is in concave-convex form and can be minimized by the concave-
convex programming procedure (CCCP) [309]. The scoring function is assumed to be linear:
Sw(h,z) = wT ψ(h,z). Here, ψ(h,z) is a task-dependent feature map which will be described
later.

4.1.2 Multi-task Learning

Machine comprehension is a complex task which often requires us to interpret questions, the kind
of answers they seek as well as the kinds of inference required to solve them. Many approaches
in QA [89, 199] solve this by having a top-level classifier that categorizes the complex task
into a variety of sub-tasks. The sub-tasks can correspond to various categories of questions that
can be asked or various facets of text understanding that are required to do well at machine
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Figure 4.2: The answer-entailing structure for an example from MCTest500 dataset. The question and an-
swer candidate are combined to generate a hypothesis sentence. Then latent alignments are found between
the hypothesis and the appropriate snippets in the text. The solid red lines show the word alignments from
the hypothesis words to the passage words, the dashed black lines show auxiliary co-reference links in the
text and the labelled dotted black arrows show the RST relation (elaboration) between the two sentences.
Note that the two sentences do not have to be contiguous sentences in the text.

comprehension in its entirety.It is well known that learning a sub-task together with other related
sub-tasks leads to a better solution for each sub-task.

Hence, we consider learning classifications of the sub-tasks and then using multi-task learn-
ing. We simply extend our LSSVM formulation described above to this multi-task setting. Let S
be the number of sub-tasks. We assume that the predictor w for each subtask s is partitioned into
two parts: a parameter w0 that is globally shared across each subtasks and a parameter vs that is
locally used to provide for the variations within the particular subtask: w = w0+vs. Mathemati-
cally we define the scoring function for hypothesis h and latent structure z of the sub-task s to be
Scorew0,vs(h,z) = (w0 +vs)

T ψ(h,z).
Now, we extend a trick that Evgeiou et. al [78] used for linear SVM to reformulate this

problem into an objective that looks like (4.2). Such reformulation will help in using the CCCP
algorithm again to solve the multi-task problem as well. Lets define a new feature map ψs, one
for each sub-task s using the old feature map ψ as:

ψs(h,z) = (
ψ(h,z)

µ
,0, . . . ,0︸ ︷︷ ︸

s−1

,ψ(h,z),0, . . . ,0︸ ︷︷ ︸
S−s

)

where µ = Sλ1
λ2

and the 0 denotes the zero vector of the same size as ψ . Also define our new
predictor as w = (

√
µw0,v1, . . . ,vS). Using this formulation we can show that wT ψs(h,z) =

(w0 +vs)
T ψ(h,z) and ‖w‖2 = ∑s ‖vs‖2 +µ‖w0‖2. Hence, if we now define the objective (4.2)

but use the new feature map and w then we will get back our multi-task objective. Thus we can
use the same setup as before for multi-task learning after appropriately changing the feature map.
We will explore a few definitions of sub-tasks in our experiments.
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4.2 Experiments

Answer-entailing structures: Reading comprehensions are very common tests given to students
studying languages and form important component in the language portions of standardized tests
like the SAT, GRE, GMAT, etc. As described above, o ur approach models machine compre-
hension as an extension to textual entailment, learning to output an answer that is best entailed
by the passage. We use latent answer-entailing structures to estimate the degree of entailment.
The answer-entailing structures are closely related to the inference procedure often used in var-
ious models for MT [21], RTE [184], paraphrase [301], QA [303], etc. and correspond to the
best (latent) alignment between a hypothesis (formed from the question and a candidate answer)
with appropriate snippets in the text that are required to answer the question. We consider the
quality of a one-to-one word alignment from a hypothesis to snippets in the text as a proxy for
the evidence. Hypothesis words are aligned to a unique text word in the text or an empty word.
For example, in Figure 4.2, all words but “at” are aligned to a word in the text. The word “at”
can be assumed to be aligned to an empty word and it has no effect on the model. Learning
these alignment edges typically helps a model decompose the input and output structures into se-
mantic constituents and determine which constituents should be compared to each other. These
alignments can then be used to generate more effective features. The alignment depends on two
things: (a) snippets in the text to be aligned to the hypothesis and (b) word alignment from the
hypothesis to the snippets. We explore three variants of the snippets in the text to be aligned to
the hypothesis. The choice of these snippets composed with the word alignment is the resulting
hidden structure called an answer-entailing structure.
1. Sentence Alignment: The simplest variant is to find a single sentence in the text that best aligns
to the hypothesis. This is the structure considered in a majority of previous works in RTE [184]
and QA [303] as they only reason on single sentence length texts.
2. Subset Alignment: Here we find a subset of sentences from the text (instead of just one sen-
tence) that best aligns with the hypothesis.
3. Subset+ Alignment: This is the same as above except that the best subset is an ordered set.

The key difference between the answer-entailing structures considered here and the align-
ment structures considered in previous works is that we can align multiple sentences in the text
to the hypothesis. The sentences in the text considered for alignment are not restricted to oc-
cur contiguously in the text. To allow such a dis-contiguous alignment, we make use of the
document structure; in particular, we take help from rhetorical structure theory [185] and event
and entity coreference links across sentences. Modelling the inference procedure via answer-
entailing structures is a crude yet effective and computationally inexpensive proxy to model the
semantics needed for the problem. Learning these latent structures can also be beneficial as they
can assist a human in verifying the correctness of the answer, eliminating the need to read a
lengthy document.
Multi-task Learning: We also extend our LSSVM to multi-task settings using a top-level
question-type classification. Many QA systems include a question classification component
[166, 314], which typically divides the questions into semantic categories based on the type
of the question or answers expected. This helps the system impose some constraints on the plau-
sible answers. Machine comprehension can benefit from such a pre-classification step, not only
to constrain plausible answers, but also to allow the system to use different processing strategies
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for each category. Recently, [293] defined a set of 20 sub-tasks in the machine comprehension
setting, each referring to a specific aspect of language understanding and reasoning required to
build a machine comprehension system. They include fact chaining, negation, temporal and spa-
tial reasoning, simple induction, deduction and many more. We use this set to learn to classify
questions into the various machine comprehension sub-tasks, and show that this task classifica-
tion further improves our performance on MCTest. By using the multi-task setting, our learner
is able to exploit the commonality among tasks where possible, while having the flexibility to
learn task-specific parameters where needed. To the best of our knowledge, this is the first use of
multi-task learning in a structured prediction model for QA.
Features: Recall that our features had the form ψ(t,h,z) where the hypothesis h was itself
formed from a question q and answer candidate a. Given an answer-entailing structure z, we
induce the following features based on word level similarity of aligned words: (a) Limited word-
level surface-form matching and (b) Semantic word form matching: Word similarity for syn-
onymy using SENNA word vectors [57], “Antonymy” ‘Class-Inclusion’ or ‘Is-A’ relations using
Wordnet [84]. We compute additional features of the aforementioned kinds to match named
entities and events. We also add features for matching local neighborhood in the aligned struc-
ture: features for matching bigrams, trigrams, dependencies, semantic roles, predicate-argument
structure as well as features for matching global structure: a tree kernel for matching syntactic
representations of entire sentences using [268]. The local and global features can use the RST
and coreference links enabling inference across sentences. For instance, in the example shown
in Figure 4.2, the coreference link connecting the two “restaurant” words brings the snippets
“Alyssa enjoyed the” and “had a special on catfish” closer making these features more effec-
tive. The answer-entailing structures should be intuitively similar to the question but also the
answer. Hence, we add features that are the product of features for the text-question match and
text-answer match.
String edit Features: In addition to looking for features on exact word/phrase match, we also add
features using two paraphrase databases ParaPara [36] and DIRT [174]. The ParaPara database
contains strings of the form string1 → string2 like “total lack of” → “lack of”, “is one of” →
“among”, etc. Similarly, the DIRT database contains paraphrases of the form “If X decreases Y
then X reduces Y”, “If X causes Y then X affects Y”, etc. Whenever we have a substring in the
text can be transformed into another using these two databases, we keep match features for the
substring with a higher score (according to w) and ignore the other substring.
The sentences with discourse relations are related to each other by means of substitution, ellip-
sis, conjunction and lexical cohesion, etc [185] and can help us answer certain kinds of questions
[132]. As an example, the “cause” relation between sentences in the text can often give cues that
can help us answer “why” or “how” questions. Hence, we add additional features - conjunction
of the RST label and the question word - to our feature vector. Similarly, the entity and event
co-reference relations can allows the system to reason about repeating entities or events through
all the sentences they get mentioned in. Thus, we add additional features of the aforementioned
types by replacing entity mentions with their first mentions.
Subset+ Features: We add an additional set of features which match the first sentence in the
ordered set to the question and the last sentence in the ordered set to the answer. This helps in
the case when a certain portion of the text is targeted by the question but then it must be used in
combination with another sentence to answer the question. For instance, in Figure 4.2, sentence
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2 mentions the target of the question but the answer can only be given when in combination with
sentence 1.
Negation We empirically found that one key limitation in our formulation is its inability to han-
dle negation (both in questions and text). Negation is especially hurtful to our model as it not
only results in poor performance on questions that require us to reason with negated facts, it
provides our model with a wrong signal (facts usually align well with their negated versions).
We use a simple heuristic to overcome the negation problem. We detect negation (either in the
hypothesis or a sentence in the text snippet aligned to it) using a small set of manually defined
rules that test for presence of words such as “not”, “n’t”, etc. Then, we flip the partial order - i.e.
the correct hypothesis is now ranked below the other competing hypotheses. For inference at test
time, we also invert the prediction rule i.e. we predict the hypothesis (answer) that has the least
score under the model.
Datasets: We use two datasets for our evaluation.
(1) First is the MCTest-500 dataset 4, a freely available set of 500 stories (split into 300 train,
50 dev and 150 test) and associated questions [227]. The stories are fictional so the answers can
be found only in the story itself. The stories and questions are carefully limited, thereby mini-
mizing the world knowledge required for this task. Yet, the task is challenging for most modern
NLP systems. Each story in MCTest has four multiple choice questions, each with four answer
choices. Each question has only one correct answer. Furthermore, questions are also annotated
with ‘single’ and ‘multiple’ labels. The questions annotated ‘single’ only require one sentence
in the story to answer them. For ‘multiple’ questions it should not be possible to find the answer
to the question in any individual sentence of the passage. In a sense, the ‘multiple’ questions are
harder than the ‘single’ questions as they typically require complex lexical analysis, some infer-
ence and some form of limited reasoning. Cucerzan-converted questions can also be downloaded
from the MCTest website.
(2) The second dataset is a synthetic dataset released under the bAbI project5 [293]. The dataset
presents a set of 20 ‘tasks’, each testing a different aspect of text understanding and reasoning
in the QA setting, and hence can be used to test and compare capabilities of learning models
in a fine-grained manner. For each ‘task’, 1000 questions are used for training and 1000 for
testing. The ‘tasks’ refer to question categories such as questions requiring reasoning over sin-
gle/two/three supporting facts or two/three arg. relations, yes/no questions, counting questions,
etc. Candidate answers are not provided but the answers are typically constrained to a small set:
either yes or no or entities already appearing in the text, etc. We write simple rules to convert the
question and answer candidate pairs to hypotheses. 6

Baselines: We have five baselines. (1) The first three baselines are inspired from [227]. The first
baseline (called SW) uses a sliding window and matches a bag of words constructed from the
question and hypothesized answer to the text. (2) Since this ignores long range dependencies,

4http://research.microsoft.com/mct
5https://research.facebook.com/researchers/1543934539189348
6Note that the bAbI dataset is artificial and not meant for open-domain machine comprehension. It is a toy

dataset generated from a simulated world. Due to its restrictive nature, we do not use it directly in evaluating
our method vs. other open-domain machine comprehension methods. However, it provides benefit in identifying
interesting subtasks of machine comprehension. As will be seen, we are able to leverage the dataset both to improve
our multi-task learning algorithm, as well as to analyze the strengths and weaknesses of our model.
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the second baseline (called SW+D) accounts for intra-word distances as well. As far as we know,
SW+D is the best previously published result on this task.7 (3) The third baseline (called RTE)
uses textual entailment to answer MCTest questions. For this baseline, MCTest is again re-casted
as an RTE task by converting each question-answer pair into a statement (using [59]) and then
selecting the answer whose statement has the highest likelihood of being entailed by the story. 8

(4) The fourth baseline (called LSTM) is taken from [293]. The baseline uses LSTMs [121] to
accomplish the task. LSTMs have recently achieved state-of-the-art results in a variety of tasks
due to their ability to model long-term context information as opposed to other neural networks
based techniques. (5) The fifth baseline (called QANTA)9 is taken from [128]. QANTA too uses
a recursive neural network for question answering.
Task Classifications: We consider three alternative task classifications for our experiments.
First, we look at question classification. We use a simple question classification based on the
question word (what, why, what, etc.). We call this QClassification. Next, we also use a ques-
tion/answer classification10 from [166]. This classifies questions into different semantic classes
based on the possible semantic types of the answers sought. We call this QAClassification. Fi-
nally, we also learn a classifier for the 20 tasks in the Machine Comprehension gamut described
in [293]. The classification algorithm (called TaskClassification) was built on the bAbI training
set. It is essentially a Naive-Bayes classifier and uses only simple unigram and bigram features
for the question and answer. The tasks typically correspond to different strategies when looking
for an answer in the machine comprehension setting. In our experiments we will see that learning
these strategies is better than learning the question answer classification which is in turn better
than learning the question classification.
Results: We compare multiple variants of our LSSVM11 where we consider a variety of answer-
entailing structures and our modification for negation and multi-task LSSVM, where we consider
three kinds of task classification strategies against the baselines on the MCTest dataset. We con-
sider two evaluation metrics: accuracy (proportion of questions correctly answered) and NDCG4
[133]. Unlike classification accuracy which evaluates if the prediction is correct or not, NDCG4,
being a measure of ranking quality, evaluates the position of the correct answer in our predicted
ranking.

Figure 4.3 describes the comparison on MCTest. We can observe that all the LSSVM models
have a better performance than all the five baselines (including LSTMs and RNNs which are
state-of-the-art for many other NLP tasks) on both metrics. Very interestingly, LSSVMs have
a considerable improvement over the baselines for “multiple” questions. We posit that this is
because of our answer-entailing structure alignment strategy which is a weak proxy to the deep
semantic inference procedure required for machine comprehension. The RTE baseline achieves

7We also construct two additional baselines (LSTM and QANTA) for comparison in this paper both of which
achieve superior performance to SW+D.

8The BIUTEE system [270] available under the Excitement Open Platform http://hltfbk.github.io/Excitement-
Open-Platform/ was used for recognizing textual entailment.

9http://cs.umd.edu/ miyyer/qblearn/
10http://cogcomp.cs.illinois.edu/Data/QA/QC/
11We tune the SVM regularization parameter C and the penalty factor on the subset size on the development set.

We use a beam of size 5 in our experiments. We use Stanford CoreNLP and the HILDA parser [86] for linguistic
preprocessing.
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Figure 4.3: Comparison of variations of our method against several baselines on the MCTest-500 dataset.
The figure shows two statistics, accuracy (on the left) and NDCG4 (on the right) on the test set of MCTest-
500. All differences between the baselines and LSSVMs, the improvement due to negation and the im-
provements due to multi-task learning are significant (p < 0.01) using the two-tailed paired T-test. The
exact numbers are available in the supplementary.
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the best performance on the “single” questions. This is perhaps because the RTE community has
almost entirely focused on single sentence text hypothesis pairs for a long time. However, RTE
fares pretty poorly on the “multiple” questions indicating that of-the-shelf RTE systems cannot
perform inference across large texts.

Figure 4.3 also compares the performance of LSSVM variants when various answer-entailing
structures are considered. Here we observe a clear benefit of using the alignment to the best
subset structure over alignment to best sentence structure. We furthermore see improvements
when the best subset alignment structure is augmented with the subset+ features. We can observe
that the negation heuristic also helps, especially for “single” questions (majority of negation cases
in the MCTest dataset are for the “single” questions).

It is also interesting to see that the multi-task learners show a substantial boost over the single
task SSVM. Also, it can be observed that the multi-task learner greatly benefits if we can learn a
separation between the various strategies needed to learn an overarching list of subtasks required
to solve the machine comprehension task. 12 The multi-task method (TaskClassification) which
uses the Weston style categorization does better than the multi-task method (QAClassification)
that learns the question answer classification. QAClassification in turn performs better than
multi-task method (QClassification) that learns the question classification only.
Analysis: A good question to be asked is how good is structure alignment as a proxy to the
semantics of the problem? In this section, we attempt to tease out the strengths and limitations
of such a structure alignment approach for machine comprehension. To do so, we evaluate our
methods on various tasks in the bAbl dataset. For the bAbI dataset, we add additional features
inspired from the “task” distinction to handle specific “tasks”.

Table 4.1 shows the results of various LSSVM models on the bAbI datasets for each sub-task.
In our experiments, we observed a similar general pattern of improvement of LSSVM over the
baselines as well as the improvement due to multi-task learning. Again task classification helped
the multi-task learner the most and the QA classification helped more than the QClassification.
It is interesting here to look at the performance within the sub-tasks. Negation improved the
performance for three sub-tasks, namely, the tasks of modelling “yes/no questions”, “simple
negations” and “indefinite knowledge” (the “Indefinite Knowledge” sub-task tests the ability
to model statements that describe possibilities rather than certainties). Each of these sub-tasks
contain a significant number of negation cases. Our models do especially well on questions
requiring reasoning over one and two supporting facts, two arg. relations, indefinite knowledge,
basic and compound coreference and conjunction. Our models achieve lower accuracy better
than the baselines on two sub-tasks, namely “path finding” and “agent motivations”. Our model
along with the baselines do not do too well on the “counting” sub-task, although we get slightly
better scores. The “counting” sub-task (which asks about the number of objects with a certain
property) requires the inference to have an ability to perform simple counting operations. The
“path finding” sub-task requires the inference to reason about the spatial path between locations
(e.g. Pittsburgh is located on the west of New York). The “agent’s motivations” sub-task asks
questions such as ‘why an agent performs a certain action’. As inference is cheaply modelled

12Note that this is despite the fact that the classifier in not learned on the MCTest dataset but the bAbI detaset!
This hints at the fact that the task classification proposed in [293] is more general and broadly also makes sense for
other machine comprehension settings such as MCTest.
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Single Supporting Fact 36 98 50 89 100 100 100 100 100 100 100
Two Supporting Facts 2 79 20 69 60 91 92 91 93 93 94
Three Supporting Facts 7 46 20 42 52 84 86 84 86 87 88
Two Arg. Relations 50 54 61 68 89 91 91 90 92 93 93
Three Arg. Relations 20 31 70 63 84 89 89 88 91 90 91
Yes/No Questions 49 48 48 54 58 58 58 78 81 84 85
Counting 52 11 49 55 61 59 63 61 65 64 64
Lists/Sets 42 34 45 47 55 72 73 71 77 80 82
Simple Negation 62 56 64 72 63 63 64 76 79 80 81
Indefinite Knowledge 45 43 44 68 74 74 78 87 88 91 92
Basic Coreference 25 31 72 80 91 93 96 96 97 97 98
Conjunction 9 59 74 86 94 91 91 90 95 96 97
Compound Coreference 26 72 94 95 86 89 89 88 93 93 94
Time Reasoning 19 68 27 43 65 68 70 68 71 74 76
Basic Deduction 20 49 21 72 76 74 78 76 80 81 82
Basic Induction 43 53 23 55 57 59 61 58 61 63 64
Positional Reasoning 46 66 51 55 81 85 88 88 90 91 90
Size Reasoning 52 77 52 63 78 82 84 83 85 87 89
Path Finding 0 11 8 45 9 9 9 9 11 11 11
Agent’s Motivations 76 91 91 93 66 69 70 68 69 69 70
Mean Performance 34 54 49 66 70 75 77 78 79 81 82

Table 4.1: Comparison of accuracies on the variations of our method against several baselines on 20 Tasks
of the bAbI dataset. All integer differences are significant (p < 0.01) using the two-tailed paired T-test.
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via alignment structure, we lack the ability to deeply reason about facts or numbers. This is an
important challenge for future work.

4.3 Conclusion
In this chapter, we addressed the problem of machine comprehension which tests language un-
derstanding through multiple choice question answering tasks. We posed the task as an extension
to RTE. Then, we proposed a solution by learning latent alignment structures between texts and
the hypotheses in the equivalent RTE setting. The task requires solving a variety of sub-tasks
so we extended our technique to a multi-task setting. Our technique showed empirical improve-
ments over various IR and neural network baselines. The latent structures while effective are
cheap proxies to the reasoning and language understanding required for this task and have their
own limitations. We also discuss strengths and limitations of our model in a more fine-grained
analysis. In the next chapters, we address some of these issued by exploring logic-like semantic
representations of texts, questions and answers and explore approaches that perform structured
inference over richer semantic representations.
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Chapter 5

AMR as a Semantic Representation

Learning to efficiently represent and reason with natural language is a fundamental yet long-
standing goal in NLP. In the previous section, we used a suite of linguistic features derived from
POS taggers, parse trees, semantic role labellers, etc. This raises a fundamental question. Can
we choose a better representation of language and improve our model. Recently, there have been
a series of efforts in broad-coverage semantic representation (or “sembanking”). AMR, a new
semantic representation in standard neo-Davidsonian [62, 213] framework has been proposed.
AMRs are rooted, labeled graphs which incorporate PropBank style semantic roles, within-
sentence coreference, named entities and the notion of types, modality, negation, quantification,
etc. in one framework.

In this chapter, we ask the question if richer meaning representations such as the AMR rep-
resentation could help us in the task of machine comprehension. Our approach again models
machine comprehension as an extension to textual entailment, learning to output an answer that
is best entailed by the passage. It works in two stages. First, we construct a meaning repre-
sentation graph for the entire passage from the AMR graphs of comprising sentences. To do
this, we account for cross-sentence linguistic phenomena such as entity and event coreference,
and rhetorical structures. A similar meaning representation graph is also constructed for each
question-answer pair. Once we have these graphs, the comprehension task henceforth can be re-
duced to a graph containment problem. We posit that there is a latent subgraph of the text mean-
ing representation graph (called snippet graph) and a latent alignment of the question-answer
graph onto this snippet graph that entails the answer (see Figure 5.1 for an example). Then, our
unified max-margin model jointly learns the latent structure (subgraph selection and alignment)
and the QA model.

5.1 The AMR Meaning Representation Graph

We construct the meaning representation graph using individual sentences’ AMR graphs and
merging identical concepts (using entity and event coreference). First, for each sentence AMR,
we merge nodes corresponding to multi-word expressions and nodes headed by a date entity
(“date-entity”), or a named entity (“name”) or a person entity (“person”). For example, the
hypothesis meaning representation graph in Figure 5.1 was achieved by merging the AMR parse
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Text: ... Katie also has a dog, but he does not like Bows. ... His name is Sammy. ...

Hypothesis: Sammy is the name of Katie’s dog.

Question: What is the name of Katie’s dog. Answer: Sammy

Figure 5.1: Example latent answer-entailing structure from the MCTest dataset. The question and answer
candidate are combined to generate a hypothesis. This hypothesis is AMR parsed to construct a hypoth-
esis meaning representation graph after some post-processing (section 5.1). Similar processing is done
for each sentence in the passage as well. Then, a subset (not necessarily contiguous) of these sentence
meaning representation graphs is found. These representation subgraphs are further merged using coref-
erence information, resulting into a structure called the relevant text snippet graph. Finally, the hypothesis
meaning representation graph is aligned to the snippet graph. The dashed red lines show node alignments,
solid red lines show edge alignments, and thick solid black arrow shows the rhetorical structure label
(elaboration).
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Figure 5.2: AMR parse for the hypothesis in Figure 5.1. The person nodes are merged to achieve the
hypothesis meaning representation graph.

shown in Figure 5.2.
Next, we select the subset of sentence AMRs corresponding to sentences needed to answer

the question. This step uses cross-sentential phenomena such as rhetorical structures1 and enti-
ties/event coreference. The coreferent entities/event mentions are further merged into one node
resulting in a graph called the relevant text snippet graph. A similar process is also performed
with the hypothesis sentences (generated by combining the question and answer candidate) as
shown in Figure 5.1.

5.2 Redefined Scoring Function and Inference
We use the same latent structural SVM as described before in our setup. The only difference is
that in this case, we redefine the scoring function Sw(h,z). Let the hypothesis meaning represen-
tation graph be G′= (V ′,E ′). Our latent structure z decomposes into the selection (zs) of relevant
sentences that lead to the text snippet graph G, and the mapping (zm) of every node and edge in
G′ onto G. We define the score such that it factorizes over the nodes and edges in G′. The weight
vector w also has three components ws, wv and we corresponding to the relevant sentences se-
lection, node matches and edge matches respectively. An edge in the graph is represented as a
triple (v1,r,v2) consisting of the enpoint vertices and relation r.

Sw(h,z) = wT
s f(G′,G, t,h,zs)+ ∑

v′∈V ′
wT

v f(v′,zm(v′))+ ∑
e′∈E ′

wT
e f(e′,zm(e′))

Here, t is the text corresponding to the hypothesis h, and f are parts of the feature map ψ to
be described later. z(v′) maps a node v′ ∈V ′ to a node in V . Similarly, z(e′) maps an edge e′ ∈ E ′

to an edge in E.
Next, we describe the inference procedure i.e. how to select the structure that gives the best

score for a given hypothesis. The inference is performed in two steps: The first step selects the
relevant sentences from the text. This is done by simply maximizing the first part of the score:

1Rhetorical structure theory [185] tells us that sentences with discourse relations are related to each other. Pre-
vious works in QA [132] have shown that these relations can help us answer certain kinds of questions. As an
example, the “cause” relation between sentences in the text can often give cues that can help us answer “why” or
“how” questions. Hence, the passage meaning representation also remembers RST relations between sentences.
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zs = argmaxzs
wT

s f(G′,G, t,h,zs). Here, we only consider subsets of 1, 2 and 3 sentences as most
questions can be answered by 3 sentences in the passage. The second step is formulated as an
integer linear program by rewriting the scoring function. The ILP objective is:

∑
v′∈V ′

∑
v∈V

zv′,vwT
v f(v′,v)+ ∑

e′∈E ′
∑
e∈E

ze′,ewT
e f(e′,e)

Here, with some abuse of notation, zv′,v and ze′,e are binary integers such that zv′,v = 1 iff z
maps v′ onto v else zv′,v = 0. Similarly, ze′,e = 1 iff z maps e′ onto e else ze′,e = 0. Additionally,
we have the following constrains to our ILP:
• Each node v′ ∈V ′ (or each edge e′ ∈ E ′) is mapped to exactly one node v ∈V (or one edge

e ∈ E). Hence: ∑v∈V zv′,v = 1 ∀v′ and ∑e∈E ze′,e = 1 ∀e′

• If an edge e′ ∈ E ′ is mapped to an edge e ∈ E, then vertices (v1
e′,v

2
e′) that form the end

points of e′ must also be aligned to vertices (v1
e ,v

2
e) that form the end points of e. Here,

we note that AMR parses also have inverse relations such as “arg0-of”. Hence, we resolve
this with a slight modification. If neither or both relations (corresponding to edges e′ and
e) are inverse relations (case 1), we enforce that v1

e′ align with v1
e and v2

e′ align with v2
e . If

exactly one of the relations is an inverse relation (case 2), we enforce that v1
e′ align with v2

e
and v2

e′ align with v1
e . Hence, we introduce the following constraints:

ze′e ≤ zv1
e′v

1
e

and ze′e ≤ zv2
e′v

2
e
∀e′.e in case 1

ze′e ≤ zv1
e′v

2
e

and ze′e ≤ zv2
e′v

1
e
∀e′.e in case 2

Features: Our feature function decomposes into three parts, each corresponding to a part of the
latent structure.

The first part corresponds to relevant sentence selection. Here, we include features for match-
ing local neighborhoods in the sentence subset and the hypothesis: features for matching bi-
grams, trigrams, dependencies, semantic roles, predicate-argument structure as well as the global
syntactic structure: a graph kernel for matching AMR graphs of entire sentences [268]. Before
computing the graph kernel, we reverse all inverse relation edges in the AMR graph. Note that
if a sentence subset contains the answer to the question, it should intuitively be similar to the
question as well as to the answer. Hence, we add features that are the element-wise product of
features for the subset-question match and subset-answer match. In addition to features for the
exact word/phrase match of the snippet and the hypothesis, we also add features using two para-
phrase databases: ParaPara [36] and DIRT [174]. These databases contain paraphrase rules of
the form string1→ string2. ParaPara rules were extracted through bilingual pivoting and DIRT
rules were extracted using the distributional hypothesis. Whenever we have a substring in the text
snippet that can be transformed into another using any of these two databases, we keep match
features for the substring with a higher score (according to the current w) and ignore the other
substring. Finally, we also have features corresponding to the RST [185] links to enable infer-
ence across sentences. RST tells us that sentences with discourse relations are related to each
other and can help us answer certain kinds of questions [132]. For example, the “cause” relation
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between sentences in the text can often give cues that can help us answer “why” or “how” ques-
tions. Hence, we have additional features - conjunction of the rhetorical structure label from a
RST parser and the question word as well.

The second part corresponds to node matches. Here, we have features for (a) Surface-form
match (Edit-distance), and (b) Semantic word match (cosine similarity using SENNA word vec-
tors [57] and “Antonymy” ‘Class-Inclusion’ or ‘Is-A’ relations using Wordnet).

The third part corresponds to edge matches. Let the edges be e=(v1,r,v2) and e′=(v′1,r′,v′2)
for notational convenience. Here, we introduce two features based on the relations - indicator
that the two relations are the same or inverse of each other, indicator that the two relations are
in the same relation category – categories as described in [14]. Then, we introduce a number
of features based on distributional representation of the node pairs. We compute three vertex
vector compositions (sum, difference and product) of the nodes for each edge proposed in recent
representation learning literature in NLP [194, 196] i.e. v1� v2 and v′1� v′2 for �= {+,−,×}.
Then, we compute the cosine similarities of the resulting compositions producing three fea-
tures. Finally we introduce features based on the structured distributional semantic representa-
tion [16, 75, 102] which takes the relations into account while performing the composition. Here,
we use a large text corpora (in our experiments, the English Wikipedia) and construct a repre-
sentation matrix M(r) ⊂V ×V for every relation r (V is the vocabulary) where, the i jth element
M(r)

i j has the value log(1+ x) where x is the frequency for the ith and jth vocabulary items being
in relation r in the corpora. This allows us to compose the node and relation representations
and compare them. Here we compute the cosine similarity of the compositions (v1)T M(r) and
(v′1)T M(r′), the compositions M(r)v2 and M(r′)v′2 and their repective sums (v1)T M(r)+M(r)v2

and (v′1)T M(r′)+M(r′)v′2 to get three more features.

5.3 Experiments
Datasets: We use MCTest-500 dataset [227], a freely available set of 500 stories (300 train, 50
dev and 150 test) and associated questions to evaluate our model. Each story in MCTest has
four multiple-choice questions, each with four answer choices. Each question has exactly one
correct answer. Each question is also annotated as ‘single’ or ‘multiple’. The questions anno-
tated ‘single’ require just one sentence in the passage to answer them. For ‘multiple’ questions
it should not be possible to find the answer to the question with just one sentence of the passage.
In a sense, ‘multiple’ questions are harder than ‘single’ questions as they require more complex
inference. We will present the results breakdown for ‘single’ or ‘multiple’ category questions as
well.
Baselines: We compare our approach to the following baselines: (1-3) The first three baselines
are taken from [227]. SW and SW+D use a sliding window and match a bag of words constructed
from the question and the candidate answer to the text. RTE uses textual entailment by select-
ing the hypothesis that has the highest likelihood of being entailed by the passage. (4) LEX++,
taken from [265] is another lexical matching method that takes into account multiple context
windows, question types and coreference. (5) JACANA uses an off the shelf aligner and aligns
the hypothesis statement with the passage. (6-7) LSTM and QANTA, taken from [239], use neural
networks (LTSMs and Recursive NNs, respectively). (8) ATTENTION, taken from [306], uses
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Single Multiple All

A
M

R

Subgraph 67.28 65.24 66.16
Subgraph+Negation 69.48 66.46 67.83

+M
T

L QClassification 70.59 67.99 69.17
QAClassification 71.32 68.29 69.67

TaskClassification 72.05 68.90 70.33

B
as

el
in

es
SW 54.56 54.04 54.28

SW+D 62.99 58.00 60.26
RTE 69.85 42.71 55.01

LEX++ 69.12 63.34 65.96
JACANA Aligner 58.82 54.88 56.67

LSTM 62.13 58.84 60.33
QANTA 63.23 59.45 61.00

ATTENTION 54.20 51.70 52.90
DISCOURSE 68.38 59.90 63.75

LSSVM 61.12 66.67 64.15
LSSVM+Negation 63.24 66.15 64.83

+M
T

L QClassification 64.34 66.46 65.50
QAClassification 66.18 67.37 66.83

TaskClassification 67.65 67.99 67.83
SYN+FRM+SEM 72.05 67.94 69.94

Table 5.1: Comparison of variations of our method against several baselines on the MCTest-500 dataset.
The table shows accuracy on the test set of MCTest-500. All differences between the baselines (except
SYN+FRM+SEM) and our approaches, and the improvements due to negation and multi-task learning are
significant (p < 0.05) using the two-tailed paired T-test.

an attention-based convolutional neural network. (9) DISCOURSE, taken from [202], proposes
a discourse based model. (10-14) LSSVM, LSSVM+Negation, LSSVM+Negation (MultiTask),
taken from [239] are all discourse aware latent structural svm models. LSSVM+Negation ac-
counts for negation. LSSVM+Negation+MTL further incoporates multi-task learning based on
question types. Here, we have three variants of multitask learners based on the three question
classification strategies. (15) Finally, SYN+FRM+SEM, taken from [284] proposes a framework
with features based on syntax, frame semantics, coreference and word embeddings.
Results: We compare our AMR subgraph containment approach2 where we consider our modifi-
cations for negation and multi-task learning as well in Table 5.1. We can observe that our models
have a comparable performance to all the baselines including the neural network approaches and
all previous approaches proposed for this task. Further, when we incorporate multi-task learning,
our approach achieves the state of the art. Also, our approaches have a considerable improve-
ment over the baselines for ‘multiple’ questions. This shows the benefit of our latent structure
that allows us to combine evidence from multiple sentences. The negation heuristic helps signif-

2We tune the SVM parameter C on the dev set. We use Stanford CoreNLP, HILDA parser [86] and JAMR [92]
for preprocessing.
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icantly, especially for ‘single’ questions (majority of negation cases in the MCTest dataset are for
the “single” questions). The multi-task method which performs a classification based on the sub-
tasks for machine comprehension defined in [293] does better than QAClassification that learns
the question answer classification. QAClassification in turn performs better than QClassification
that learns the question classification only.

5.4 Conclusion
Our results, together, provide validation for our approach of subgraph matching over meaning
representation graphs, and the incorporation of negation and multi-task learning. These results
also provide evidence that good richer meaning representations of language such as AMR can
indeed be useful in comprehension tasks such as machine comprehension. This motivates us to
seek richer meaning representations and to find efficient and accurate ways to map language to
these complex meaning representations.
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Chapter 6

Science Question Answering from
Instructional Materials: Incorporating
External Knowledge in the Alignment
Model

A key aspect in language comprehension is external knowledge. Accurately capturing back-
ground knowledge of the world and then using it in downstream language comprehension tasks
is a key goal of natural language processing. As a way to push the community towards this
goal, Elementary Science tests [50] have been proposed by the Allen Institute of AI1 as a grand
challenge to the research community under their Aristo project2. Succesfully solving these tests
really requires building models that can understand language but also capture and use rich world
knowledge. These tests comprise of English language questions from the domain of elementary
school science that span several grade levels. Each question is a 4-way multiple choice struc-
ture and the goal is to build a system that acquires and stores a vast amount of knowledge in
computable form, then applies this knowledge to answer these science questions. These tests are
quite challenging because of a wide variety of knowledge and reasoning required to answer these
questions. Despite significant interest in the recent years [53, 141, 167], the problem remains un-
solved.

A typical elementary science question is shown in Figure 6.1. Answering the question
“Which of the following gases cause the greenhouse effect?” and the (correct) answer candi-
date “CO2, CH4, O3 and CFC” requires the model to seek evidence for answering the question
in a large corpus of textbooks but also a number of external knowledge sources such as periodic
tables, dictionaries, etc. which can provide us with useful facts such as CO2 is the chemical
symbol for “carbon dioxide” and that “greenhouse gases cause greenhouse effect”.

Thus, in order to handle retrieval from a large courpus of textbooks and external knowledge
sources, we extended our answer-entailing modelling approach in the task of answering multiple-
choice elementary science tests [50]. In this case, our approach learns latent answer-entailing

1https://allenai.org/
2https://allenai.org/aristo/
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structures that align question-answers with appropriate snippets in the curriculum or any external
available knowledge sources. The student curriculum usually comprises of a set of textbooks.
Each textbook, in-turn comprises of a set of chapters, each chapter is further divided into sections
– each discussing a particular science concept. Hence, the answer-entailing structure consists of
selecting a particular textbook from the curriculum, picking a chapter in the textbook, picking
a section in the chapter, picking a few sentences in the section and then aligning words/multi-
word expressions (mwe’s) in the hypothesis (formed by combining the question and an answer
candidate) to words/mwe’s in the picked sentences. The answer-entailing structures are further
refined using external domain-specific knowledge resources such as science dictionaries, study
guides and semi-structured tables (see Figure 6.1). These domain-specific knowledge resources
can be very useful forms of knowledge representation as shown in previous works [53].

In this case, we incorporate the curriculum hierarchy (i.e. the book, chapter, section bifur-
cation) into the latent structure. This helps us jointly learn the retrieval and answer selection
modules of a QA system. Retrieval and answer selection are usually designed as isolated or
loosely connected components in QA systems [89] leading to loss in performance – our ap-
proach mitigates this shortcoming. We also utilize domain-specific knowledge sources such as
study guides, science dictionaries or semi-structured knowledge tables within our model.

The joint model is again trained in max-margin fashion using a latent structural SVM (LSSVM)
where the answer-entailing structures are latent. We train and evaluate our models on a set of 8th

grade science problems, science textbooks and multiple domain-specific knowledge resources.
We achieve superior performance vs. a number of baselines.

6.1 The Answer-Entailing Structure
For the science question answering from instructional material, our latent answer-entailing struc-
ture depends on: (a) snippet from the curriculum hierarchy chosen to be aligned to the hypoth-
esis, (b) external knowledge relevant for this entailment, and (c) the word/mwe alignment. The
snippet from the curriculum to be aligned to the hypothesis is determined by walking down the
curriculum hierarchy and then picking a set of sentences from the section chosen. Then, a subset
of relevant external knowledge in the form of triples and equivalences (called knowledge bits)
is selected from our reservoir of external knowledge (science dictionaries, cheat sheets, semi-
structured tables, etc). Finally, words/mwe’s in the hypothesis are aligned to words/mwe’s in
the snippet or knowledge bits. Learning these alignment edges helps the model determine which
semantic constituents should be compared to each other. These alignments are also used to gen-
erate more effective features. The choice of snippets, choice of the relevant external knowledge
and the alignments in conjunction form the latent answer-entailing structure.

6.2 Inference and knowledge selection
We use beam search with a fixed beam size (5) for inference. We infer the textbook, chapter,
section, snippet and alignments one by one in this order. In each step, we only expand the five
most promising (given by the current score) substructure candidates so far. During inference, we
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Figure 6.1: An example answer-entailing structure for science question answering. The answer-entailing
structure consists of selecting a particular textbook from the curriculum, picking a chapter in the textbook,
picking a section in the chapter, picking sentences in the section and then aligning words/mwe’s in the
hypothesis (formed by combining the question and an answer candidate) to words/mwe’s in the picked
sentences or some related “knowledge” appropriately chosen from additional knowledge stores. In this
case, the relation (greenhouse gases, cause, greenhouse effect) and the equivalences (e.g. carbon dioxide
= CO2) – shown in violet – are hypothesized using external knowledge resources. The dashed red lines
show the word/mwe alignments from the hypothesis to the sentences (some word/mwe are not aligned, in
which case the alignments are not shown), the solid black lines show coreference links in the text and the
RST relation (elaboration) between the two sentences. The picked sentences do not have to be contiguous
sentences in the text. All mwe’s are shown in green.
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select top 5 knowledge bits (triples, equivalences, etc.) from the knowledge resources that could
be relevant for this question-answer. This is done heuristically by picking knowledge bits that
explain parts of the hypothesis not explained by the chosen snippets.
Incorporating partially known structures: As described earlier, modern textbooks often pro-
vide review problems at the end of each section. These review problems have value as part of the
answer-entailing structure (textbook, chapter and section) is known for these problems. In this
case, we use the formulation (equation 1) except that the max over z for the review questions is
only taken over the unknown part of the latent structure.

6.3 Features

Our feature vector ψ(h,z) decomposes into five parts, where each part corresponds to a part of
the answer-entailing structure. For the first part, we index all the textbooks and score the top re-
trieved textbook by querying the hypothesis statement. We use tf-idf and BM25 scorers resulting
in two features. Then, we find the jaccard similarity of bigrams and trigrams in the hypothesis
and the textbook to get two more features for the first part. Similarly, for the second part we in-
dex all the textbook chapters and compute the tf-idf, BM25 and bigram, trigram features. For the
third part we index all the sections instead. The fourth part has features based on the text snip-
pet part of the answer-entailing structure. Here we do a deeper linguistic analysis and include
features for matching local neighborhoods in the snippet and the hypothesis: features for match-
ing bigrams, trigrams, dependencies, semantic roles, predicate-argument structure as well as the
global syntactic structure: a tree kernel for matching dependency parse trees of entire sentences
[268]. If a text snippet contains the answer to the question, it should intuitively be similar to the
question as well as to the answer. Hence, we add features that are the element-wise product of
features for the text-question match and text-answer match. Finally, we also have features corre-
sponding to the RST [185] and coreference links to enable inference across sentences. RST tells
us that sentences with discourse relations are related to each other and can help us answer certain
kinds of questions [131]. For example, the “cause” relation between sentences in the text can
often give cues that can help us answer “why” or “how” questions. Hence, we add additional fea-
tures - conjunction of the rhetorical structure label from a RST parser and the question word - to
our feature vector. Similarly, the entity and event co-reference relations allow us to reason about
repeating entities or events. Hence, we replace an entity/event mention with their first mentions
if that results into a greater score. For the alignment part, we induce features based on word/mwe
level similarity of aligned words: (a) Surface-form match (Edit-distance), and (b) Semantic word
match (cosine similarity using SENNA word vectors [57] and “Antonymy” ‘Class-Inclusion’ or
‘Is-A’ relations using Wordnet). Distributional vectors for mwe’s are obtained by adding the vec-
tor representations of comprising words [196]. To account for the hypothesized knowledge bits,
whenever we have the case that a word/mwe in the hypothesis can be aligned to a word/mwe
in a hypothesized knowledge bit to produce a greater score, then we keep the features for the
alignment with the knowledge bit instead.
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Question Category Example
Questions with-
out context

Which example describes a learned behavior in a dog?

Questions with
context

When athletes begin to exercise, their heart rates and respiration
rates increase. At what level of organization does the human body
coordinate these functions?

Negation Ques-
tions

A teacher builds a model of a hydrogen atom. A red golf ball is used
for a proton, and a green golf ball is used for an electron. Which is
not accurate concerning the model?

Table 6.1: Example questions for Qtype classification

6.4 Experiments

Dataset: We used a set of 8th grade science questions released as the training set in the Allen AI
Science Challenge3 for training and evaluating our model. The dataset comprises of 2500 ques-
tions. Each question has 4 answer candidates, of which exactly one is correct. We used questions
1-1500 for training, questions 1500-2000 for development and questions 2000-2500 for testing.
We also used publicly available 8th grade science textbooks available through ck12.org. The
science curriculum consists of seven textbooks on Physics, Chemistry, Biology, Earth Science
and Life Science. Each textbook on an average has 18 chapters, and each chapter in turn is di-
vided into 12 sections on an average. Also, as described before, each section, on an average, is
followed by 3-4 multiple choice review questions (total 1369 review questions). We collected
a number of domain specific science dictionaries, study guides, flash cards and semi-structured
tables (Simple English Wiktionary and Aristo Tablestore) available online and create triples and
equivalences used as external knowledge.
Baselines: We compare our framework with ten baselines. The first two baselines (Lucene and
PMI) are taken from [53]. The Lucene baseline scores each answer candidate ai by searching
for the combination of the question q and answer candidate ai in a lucene-based search engine
and returns the highest scoring answer candidate. The PMI baseline similarly scores each an-
swer candidate ai by computing the point-wise mutual information to measure the strength of
the association between parts of the question-answer candidate combine and parts of the CK12
curriculum. The next three baselines, inspired from [227], retrieve the top two CK12 sections
querying q+ai in Lucene and score the answer candidates using these documents. The SW and
SW+D baselines match bag of words constructed from the question and the answer answer can-
didate to the retrieved document. The RTE baseline uses textual entailment [270] to score answer
candidates as the likelihood of being entailed by the retrieved document. Then we also tried other
approaches such as the RNN approach described in [53], Jacana aligner [300] and two neural
network approaches, LSTM [121] and QANTA [128] They form our next four baselines. To test
if our approach indeed benefits from jointly learning the retrieval and the answer selection mod-
ules, our final baseline Lucene+LSSVM Alignment retrieves the top section by querying q+ai in
Lucene and then learns the remaining answer-entailment structure (i.e. the alignment part of the

3https://www.kaggle.com/c/the-allen-ai-science-challenge/
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answer-entailing structure) using a LSSVM.
Task Classification for Multitask Learning: We explore two simple question classification
schemes. The first classification scheme classifies questions based on the question word (what,
why, etc.). We call this Qword classification. The second scheme is based on the type of the
question asked and classifies questions into three coarser categories: (a) questions without con-
text, (b) questions with context and (c) negation questions. This classification is based on the
observation that many questions lay down some context and then ask a science concept based
on this context. However, other questions are framed without any context and directly ask for
the science concept itself. Then there is a smaller, yet, important subset of questions that involve
negation that also needs to be handled separately. Table 6.1 gives examples of this classification.
We call this classification Qtype classification4.
Results: We compare variants of our method5 where we consider our modification for negation
or not and multi-task LSSVMs. We consider both kinds of task classification strategies and joint
training (JT). Finally, we compare our methods against the baselines described above. We report
accuracy (proportion of questions correctly answered) in our results. Figure 6.2 shows the re-
sults. First, we can immediately observe that all the LSSVM models have a better performance
than all the baselines. We also found an improvement when we handle negation using the heuris-
tic described above6. MTLSSVMs showed a boost over single task LSSVM. Qtype classification
scheme was found to work better than Qword classification which simply classifies questions
based on the question word. The multi-task learner could benefit even more if we can learn a
better separation between the various strategies needed to answer science questions. We found
that joint training with review questions helped improve accuracy as well.
Feature Ablation: As described before, our feature set comprises of five parts, where each
part corresponds to a part of the answer-entailing structure – textbook (z1), chapter (z2), sec-
tion (z3), snippets (z4), and alignment (z5). It is interesting to know the relative importance of
these parts in our model. Hence, we perform feature ablation on our best performing model -
MTLSSVM(QWord, JT) where we remove the five feature parts one by one and measure the loss
in accuracy. Figure 6.3 shows that the choice of section and alignment are important components
of our model. Yet, all components are important and removing any of them will result in a loss
of accuracy. Finally, in order to understand the value of external knowledge resources (K), we
removed the component that induces and aligns the hypothesis with knowledge bits. This results
in significant loss in performance, estabishing the efficacy of adding in external knowledge via
our approach.

4We wrote a set of question matching rules (similar to the rules used to convert question answer pairs to hypothe-
ses) to achieve this classification

5We tune the SVM regularization parameter C on the development set. We use Stanford CoreNLP, the HILDA
parser [86], and jMWE [156] for linguistic preprocessing

6We found that the accuracy over test questions tagged by our heuristic as negation questions went up from 33.64
percent to 42.52 percent and the accuracy over test questions not tagged as negation did not decrease significantly
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Figure 6.2: Variations of our method vs several baselines on the Science QA dataset. Differences between
the baselines and LSSVMs, the improvement due to negation, the improvements due to multi-task learning
and joint-learning are significant (p < 0.05) using the two-tailed paired T-test.
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Figure 6.3: Ablation on MTLSSVM(Qword, JT) model

6.5 Conclusion
The science question answering task requires the ability to understand unstructured information
in the form of textbooks in the student curriculum as well as external structured knowledge in
the form of various knowledge tables, periodic tables, etc. Our results provide validation for our
latent structure learning approach of jointly modelling retrieval and alignment and incorporat-
ing external knowledge in the answer-entailing structure. Furthermore, the multi-task learning
approach which models different question types further improves performance of the model.
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Chapter 7

Mathematical Question Answering: A
Case for Explicit Reasoning

Human beings are rational – a view often attributed to Aristotle – and a major component of
rationality is the ability to reason. Humans have a unique ability to reason based on their past
interactions with other humans and their experiences with other devices inside their prescribed
environment. Reasoning comes in many forms – including, but not restricted to logical reasoning,
deductive reasoning, inductive reasoning, abductive reasoning; and other forms of reasoning
considered more informal such as intuitive and verbal reasoning.

In the previous chapters, we looked at question answering tasks that test natural language
comprehension such as reading comprehensions or science question answering. Even though
reading comprehensions or science questions were targetted to students of particular age or grade
level, the questions involved natural language in all its syntactic or semantic ambiguity. While
these tasks clearly required a lot of reasoning, it is not clear how the various models to solve
these natural language comprehension tasks model reasoning.

On the other hand, a number of standardised test problems in the domains of math and science
require explicit forms of reasoning. This provides us with a number of rich problems that force us
to think how we can model reasoning interacts with natural language understanding. Let us take
the example of the math SAT exam – a popular mathematics examination given to pre-university
students in the US. A large part of the math SAT exam comprises of problems in geometry. SAT
geometry tests the student’s knowledge of Euclidean geometry in its classical sense, including
an understanding of points, lines, planes, angles, triangles, congruence, similarity, solid figures,
circles, and analytical geometry. A typical geometry problem is provided in Table 7.1 (left).
The geometry question typically includes a textual description, and is often accompanied by a
diagram. Various levels of understanding are required to solve geometry problems. An important
challenge is understanding both the diagram (which consists of identifying visual elements in the
diagram, their locations, their geometric properties, etc) and the text simultaneously, and then
reasoning about the geometrical concepts using well-known axioms of Euclidean geometry.

Yet another similar task is of solving university level Newtonian Physics questions such as
the one in Table 7.1 (right). These questions typically consist of a paragraph size piece of text
describing the question and (optionally) an associated diagram. An AI system that can answer
these questions must again be able to interpret both the question text as well as the associated
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Table 7.1: On the left: An example SAT geometry problem. Right: An example AP Newtonian physics
problem.

diagram. These questions are quite diverse, offering a number of challenges. The questions text
is usually ambiguous, posing a number of NLP challenges. The diagrams associated with these
questions represent complex physical and mathematical concepts; not often represented in nat-
ural images. Hence, traditional computer vision technology cannot easily extract and represent
the semantics of these diagrams. Finally, solving these questions requires the system to reason
with domain knowledge of Physics (axioms, theorems, etc.).

These math and science problems explore a rich interplay of text and visual understanding,
knowledge representation and extraction, and reasoning, posing a formidable challenge for AI
systems. The task of answering these problems poses a number of key challenges for our AI
systems:

1. How to interpret the question (i.e. interpret the question text together with the associated
diagram)?

2. How to gather the domain knowledge of geometry and physics required to answer these
questions?

3. How to use the question interpretation along with the domain knowledge to determine the
answer?

In order to tackle these challenges, we propose a framework called parsing to programs
(P2P). P2P assumes a formal language for the domain (geometry or physics) and some domain
knowledge (representing rules, axioms and theorems in the domain) needed to solve these ques-
tions. The formal language and the domain knowledge can be manually provided by a domain
expert, or, as we show in our work, can be extracted from textbooks in an automated way. We
extract axiomatic knowledge from textbooks [242, 243] by (a) leveraging the redundancy and
shared ordering of axiom mentions across multiple textbooks, and (b) utilizing rich contextual
and typographical features1 in textbooks to extract and parse axioms. When presented with a

1A major contribution of this line of work is in linguistics. Linguistic theories of discourse only consider written
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question, P2P learns a representation of the question in the formal language. This is challenging
as:

1. P2P needs to interpret the question text in concert with the diagram.

2. Our datasets are small – these questions are curated by human experts for testing purposes;
moreover, annotating formal representations of questions is expensive.

3. These problems are diverse, representing complex concepts which are not often present
in natural text and images. For instance, in Figure 7.1b, the visual concept of floor is
represented as a solid horizontal line with many small, same sized, parallel lines with their
end points on the horizontal line. This concept can be concisely expressed as a rule but
is hard to learn. Hence, traditional NLP and computer vision methods cannot directly be
ported to extract and represent the semantics of these problems as a rich integration of
domain knowledge is needed.

To tackle these issues, we proposed Nuts&Bolts [244], an approach to learn a pipeline
process that incorporates existing code, pre-learned machine learning models and human engi-
neered rules. It jointly trains the interpretation pipeline to prevent propagation of errors, using
labeled as well as unlabeled data.

In the final step, P2P uses the formal question interpretation to solve the question using
relevant domain knowledge. P2P can be seen as a v2.0 expert system. Expert systems [130]
were popular in early stages of AI but went out of favor as (a) they could not support linguistic
and visual input and (b) they needed extensive knowledge engineering which was expensive. Our
research demonstrates that we can use machine learning to mitigate these two key issues in expert
systems and successfully deploy them. We can indeed build a system that can read textbooks and
answer challenging reasoning problems in the domains of geometry [245] and mechanics [238].

7.1 Related Work
The P2P framework bring together multiple ideas from semantic parsing of text, diagram under-
standing, multimodal learning, knowledge representation, information extraction and reasoning
in order to solve situated questions. We review related work thematically under the aforemen-
tioned heading. As described earlier, P2P can be viewed as a natural language interface to expert
systems. We begin by reviewing some early work (for example, by building expert systems) for
solving geometry and physics problems.
Historical work on solving geometry and physics Problems: The problem of using computers
to solve geometry questions is old [64, 82, 251]. However, these approaches have mostly been
rule-based or have employed very limited amount of machine learning. Expert system type ap-
proaches that use logical inference for geometry theorem proving such as the Wus method [292],
Grobner basis method [137], and angle method [49] have been proposed for tutoring systems
such as Geometry Expert [95] and Geometry Explorer [294]. There has also been research in

text without much formatting. However, in this multimedia age, text is often richly formatted. Especially, textbooks
contain rich formatting features with the intent of making the subject material easy to grasp and remember for
students. We provided the first corpus analysis of multimedia text and used it to show that the formatting features
can be used for information extraction.

49



synthesizing geometry constructions given logical constraints [106, 127] or generating geomet-
ric proof problems [5] for applications in tutoring systems. However, these approaches were
pretty brittle and can only handle limited types of questions. Similarly for the physics domain,
prior work has focused on expert systems that can solve a very narrow domain of problems. For
example, [40] solves simple vector addition, tension, and gravitation ranking problems and [148]
solves physical reasoning problems by analyzing sketches. [144, 145, 146, 147] further use the
expert systems to explore the idea of domain transfer via analogies for solving physics problems,
however, with limited success. On the other hand, P2P uses machine learning for majority of
the pipeline. Thus, it is more robust. Moreover, the domain knowledge necessary for these ques-
tions is automatically harvested from textbooks in P2P. In all the mentioned expert systems, the
domain knowledge was provided by domain experts which is very time-consuming.
Semantic Parsing: Semantic parsing is an important area of NLP research [19, 73, 91, 96, 97,
138, 159, 220, 226, 313]. However, semantic parsers do not tackle diagrams—a critical element
of the situated question answering. In addition, we assume that the overall number of available
situated questions is quite small compared to the size of typical NLP corpora. This makes it
challenging to learn semantic parsers directly from situated questions. Relation extraction is
another area of NLP that is related to our task [58, 60]. Again, these works do not handle
diagrams and small corpora size as in our setting brings in unique challenges for this body of
work.

Our work is part of grounded language acquisition research [6, 10, 22, 24, 46, 108, 120, 143,
151, 169, 281] that involves mapping text to a restricted formalism (instead of a full, domain
independent representation). In our work, we recover the entities (e.g., circles) from diagrams,
derive relations compatible with both text and diagram, and re-score relations derived from text
parsing using diagram information. Our approach of casting the interpretation problem as select-
ing the most likely subset of literals can be generalized to grounded semantic parsing domains
such as navigational instructions.
Multimodal learning for diagram and text understanding: Coupling images and the corre-
sponding text has attracted attention in both vision and NLP [79, 80, 99, 107, 155]. We build
on this powerful paradigm, but instead of generating captions we show how processing multi-
modal information help improve textual or visual interpretations for solving situated questions.
Most previous approaches differ from our method because they address the twin problems of di-
agram understanding and text understanding in isolation. Often, previous work relies on manual
identification of visual primitives, or on rule-based system for text analysis.

Diagram understanding has been explored since early days in AI (e.g., [87, 88, 113, 176, 205,
267]). We refer interested readers to [208]. Most previous work differ from our method because
they address two problems of diagram understanding and text understanding in isolation. Our
work is related to early work on coupling over textual and visual data [28, 206, 267], however
these methods assume that the visual primitives of diagrams are manually identified. P2P revisits
the problem of diagram understanding by coupling two tasks of visual understanding of diagrams
and detecting alignments between text and diagrams.

The most common approach to diagram understanding is a bottom up method where prim-
itives can be linked together [173] to form larger elements such as rectangles [165] or general
shapes [200]. Using Hough transform is another popular alternative in detecting visual ele-
ments [136, 315]. What is common among almost all conventional methods of visual element
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identification is thresholding of a scoring function that determines the existence of visual ele-
ments. Although being considered as a well studied subject, our experiments reveal that the
thresholding step hinders applications of such techniques on real-world situated questions. Our
data suggests that there is no single threshold that results in a reliable discovery of visual ele-
ments across different diagrams. In this paper, we propose a method that initially overestimates
the visual elements, but then benefits from submodular optimization coupled with textual infor-
mation to home in on the correct elements.

Coupling visual and textual information has recently attracted attention in both vision and
NLP [80, 107, 155]. We build on this powerful paradigm, but utilize it for the more manageable
task of understanding diagrams in situated questions. Understanding these diagrams is more
manageable because diagrams are less ambiguous, expose less visual variance, have smaller
vocabulary of elements than images typically studied in machine vision. This easier task allows
us to have more reliable estimates of visual elements and focus on interactions between textual
mentions and visual elements.
Knowledge representation and Reasoning: Knowledge representation (KR) is a large sub-field
of AI dedicated to representing knowledge about the world in a form that a computer system can
utilize to solve complex tasks. Some common knowledge representation paradigms that have
been used in literature include rules, relations of sets and subsets, ontologies, knowledge graphs
and logic. A thorough review of KR is beyond the scope of this paper so we point the interested
reader to [23, 63] – two comprehensive surveys on knowledge representation. In our work, we
represent knowledge as logic rules which is common in a lot of AI approaches [94, 171]. The
language of logic is well-suited to capture reasoning, due to its expressivity, its model-theoretic
semantics, and its inferential power.

One of the main purposes of explicitly representing knowledge is to be able to reason about
that knowledge, to make inferences and assert new knowledge. Thus, knowledge representation
goes hand in hand with automated reasoning methods. Indeed, most knowledge representation
languages have a reasoning or inference engine as part of the system. There has been a large
body of work on reasoning and a thorough review of reasoning approaches is beyond the scope
of this paper. There are two main methods of reasoning inference engines in literature: forward
chaining (or forward reasoning) and backward chaining (or backward reasoning) [81]. In theory,
we can use both forward as well as backward chaining in our implementation. However, in our
work, we use forward chaining, which is a popular inference strategy in expert systems. Forward
chaining uses modus ponens (if A then B, A, therefore B) to connect data to conclusions, starting
with the data and searching for provable conclusions until we arrive at the solution.
Information Extraction from Textbooks: Our model for extracting structured domain rules
from textbooks builds upon ideas from Information extraction (IE), which is the task of automat-
ically extracting structured information from unstructured and/or semi-structured documents.
While there has been a lot of work in IE on domains such as web documents [15, 32, 38, 39, 76,
77, 197] and scientific publication data [215, 246, 255], work on IE from educational material
is much more sparse. Most of the research in IE from educational material deals with extracting
simple educational concepts [33, 168, 181, 255, 286, 287, 295, 299] or binary relational tuples
[13, 52, 61] using existing IE techniques. On the other hand, our approach extracts axioms and
parses them to structured rules. This is much more challenging. Raw application of rule mining
or sequence labeling techniques used to extract information from web documents and scientific
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publications to educational material usually leads to poor results as the amount of redundancy
in educational material is lower and the amount of labeled data is sparse. Our approach tackles
these issues by making judicious use of typographical information, the redundancy of informa-
tion and ordering constraints to improve the harvesting and parsing of axioms. This has not been
attempted in previous work.
Language to Programs: After harvesting axioms from textbooks, we also parse the axiom
mentions to structured rules. This work is again related to semantic parsing [139, 311, 312, 313,
inter alia]. Semantic parsers typically map natural language to formal programs such as database
queries [20, 170, 297, inter alia], commands to robots [47, 190, 261, inter alia], or even general
purpose programs [161, 178, 179, 304]. More close to our work, Liu et al. [180] and Quirk et al.
[223] learn “If-Then” and “If-This-Then-That” rules, respectively. In theory, these works can
be adapted to parse axiom mentions to horn-clause rules. However, this would require a large
amount of supervision which would be expensive to obtain. We mitigated this issue by using
redundant axiom mention extractions from multiple textbooks and then combining the parses
obtained from various textbooks to achieve a better final parse for each axiom.

7.2 Methodology
We build a semi-automated solver that solves the two kinds of problems. First, we define a
typed logical language: a subset of typed first-order logic comprising of constants, variables,
and a hand-picked set of predicates for the specific domain. Then, we also define the structured
domain knowledge representing the axioms and theorems in the domain required to solve these
questions. These could be horn clause rules or more complex general purpose programs. The
domain knowledge can be manually provided by a domain expert or may be extracted from the
instructional material in an automated way.

Given this domain knowledge, our approach answers the questions in two stages: (1) Ques-
tion Parsing – which parses the question text and any associated diagram and represents it as a
(weighted) logical expression, and (2) Programmatic Solving – which applies the provided do-
main knowledge to answer the question given the logical expression representing the question.
The Question Parsing stage maps the question (question text as well as any associated diagram)
to a formal representation. This is achieved by generating weighted first-order logic formulas
(a set of literals) that correspond to the question text and associating a confidence score with
each literal. The Programmatic Solving stage takes this formal representation of the question
and solves it by performing (probabilistic) reasoning using the provided domain knowledge. A
flowchart of the procedure is shown in Figure 7.1. This can be percieved as a natural language
interface to expert systems [111] which were popular in early stages of AI for solving these kinds
of problems.
Problem Formulation: A situated question is a tuple (t,d,c) consisting of a text t in natural lan-
guage, optionally a diagram d in raster graphics, and optionally choice answers c = {c1, . . . ,cM}.
The task of answering the situated question is to find the correct answer for the question. For ease
of evaluation, we assume that all the questions are either multiple choice questions, or subjective
questions where the answer is a numeric quantity (e.g. 3 cm, 50◦, 5 m/s2, etc.) such that the
predicted answer can easily be compared to the correct answer.
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Figure 7.1: The framework of our Parsing to Programs approach. The approach solves the question
in two stages. The first stage, Question Parsing, parses the question text and any associated diagram
into an equivalent (weighted) logical expression in a typed first-order logic language. The second stage,
Programmatic Solving takes this formal representation of the question and solves it using the domain
specific theory provided to the system.
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Formal Language: We define our formal language Ω as a subset of typed first-order logic and
represent questions as logical expressions in the language. The language includes:
• constants, corresponding to known numbers (e.g., 4, 8 and 5 in Table 7.1a and 3.00 m,

5.00 N, 60◦ in Table 7.1b) or known geometrical or physical entities.
• variables, corresponding to unknown numbers or entities in the question (e.g., A, DE, ABC,

etc. in Table 7.1a and F1, θ , etc. in Table 7.1b).
• predicates, corresponding to relations (e.g., Equals, IsDiameter, IsTangent, etc. in

in geometry domain and Equals, isAtRest, etc. in the physics domain).
• functions, corresponding to properties of entities (e.g., LengthOf, AreaOf in the geom-

etry domain and mass, distance, force, speed, velocity, work, etc. in the physics domain)
or arithmetic operations (e.g., SumOf, RatioOf, etc.).

For both applications, element in the language have either boolean (e.g., true), numeric (e.g., 4),
or entity (e.g., line, circle, object, force, mass, velocity) type. We refer to all symbols
in the language Ω as concepts. We use the term literal to refer to the application of a predicate
to a sequence of arguments (e.g., IsTriangle(ABC)). Literals are possibly negated atomic
formulas in the language Ω. Logical formulas contain constants, variables, functions, existential
quantifiers and conjunctions over literals (e.g., ∃x, IsTriangle(x)∧IsIsosceles(x)).

Given this formal language, our Parsing to Programs method consists of three steps: (1)
interpreting a question by deriving a logical expression that represents the meaning of the text
and the diagram, (2) acquiring domain knowledge, and (3) solving the question by using the
parsed interpretations and the domain knowledge.

Interpretation is the task of mapping a new question (with each answer choice, if available),
(t,d,cm), into a logical formula γ in Ω. Hereafter, we will omit the argument cm for ease of
notation. More formally, the goal is to find γ∗ = argmaxγ∈Γ score(γ; t,d) where Γ is the set of
all logical formulas in Ω and score measures the interpretation score of the formula according
to both text and diagram. We show that the problem of deriving the best formula γ∗ can be
modeled as a combinatorial search in the space of literals L (note that each logical formula γ is
represented as a conjunction over literals li). When reasoning under uncertainity (for example in
a larger framwework such as our P2P framework), we instead represent questions as weighted
logic formulas where each literal is also associated with a weight corresponding to the confidence
of our method that the literal is correct.

Answering situated questions requires a method that interprets question text and diagrams in
concert. These questions have several distinctive characteristics.

1. First, diagrams provide essential information absent from question text. In Table 7.1 prob-
lem (a), the unstated facts that point D lies on line AB and point E lies on line BC are
necessary to solve the problem. Similarly, in Table 7.1 problem (b), we need to read off
the direction of the three forces and that θ is the angle between the horizontal and the
direction of force ~F2.

2. Second, the text often includes references to diagram elements. For example, in the sen-
tence “In the diagram, the longer line is tangent to the circle”, resolving the referent of the
phrase “longer line” is challenging. Similarly, in Table 7.1 problem (b), resolving that the
phrase “three forces” refers to forces ~F1, ~F2 and ~F3 is challenging.
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3. Third, the text often contains implicit relations. For example, in the sentence “AB is 5”,
the relations IsLine(AB) and length(AB)=5 are implicit. In the sentence “F1 = 5.00
N”, the relations IsForce(F1) and magnitude(F1)=5.00N are implicit (because of the
type/dimensionality constraint imposed by N (Newtons), F1 can only resolve to force).

4. Fourth, some terms can be ambiguous as well. For instance, radius can be a type identifier
in “the length of radius AO is 5”, or a predicate in “AO is the radius of circle O”.

5. Fifth, identifying the correct arguments for each relation is challenging. For example, in
sentence “Lines AB and CD are perpendicular to EF”, the parser has to determine what is
perpendicular to EF—line AB? line CD? Or both AB and CD?

6. Finally, it is hard to obtain large situated question answering datasets; Learning from a few
examples makes this a particularly challenging NLP problem.

We describe the P2P framework for answering geometry questions below:

7.3 Answering Geometry Questions

We first apply the Parsing to Programs approach described above to solve SAT style geometry
problems. First, we describe our approach on diagram and question text parsing. We write ax-
ioms of geometry in the form of horn-clause rules and show that we can use probabilistic logic
to solve these problems (see section 7.3.3). We also show that we can harvest this subject knowl-
edge from textbooks in the form of structured programs from textbooks using the typographical
and lexical information (see section 7.3.4). Finally, we show that we can learn to solve the SAT
geometry problems using demonstrative solutions to these problems. Such demonstrations are
common in textbooks as they help students learn how to solve geometry problems effectively.
See section 7.4.1 for details.

7.3.1 Diagram and Question Parsing

P2P parses geometry problems via a multi-stage approach. It first learns to parse the problem
text and the diagram to a formal problem description compatible with both of them. The problem
description is a first-order logic expression that includes known numbers or geometrical entities
(e.g. 4 cm) as constants, unknown numbers or geometrical entities (e.g. O) as variables, geo-
metric or arithmetic relations (e.g. isLine, isTriangle) as predicates and properties of geometrical
entities (e.g. measure, liesOn) as functions. The parser first learns a set of relations that poten-
tially correspond to the problem text (or diagram) along with confidence scores. Then, a subset
of relations that maximize the joint text and diagram score are picked as the problem description.

For diagram parsing, P2P obtains the set of all visual elements, their coordinates, their re-
lationships in the diagram, and their alignment with entity references in the question text. The
parser also provides confidence scores for each literal to be true in the diagram.

Text parsing is performed in three stages. The parser first maps words or phrases in the text to
their corresponding concepts. Then, it identifies relations between identified concepts. Finally,
it performs relation completion which handles implications and coordinating conjunctions.
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The figure shows three forces
applied to a trunk that moves
leftward by 3.00 m over a
frictionless floor. The force
magnitudes are F1 = 5.00N, F2 =
9.00N, and F3 = 3.00N, and the
indicated angle is θ = 60.0°.
During the displacement, what is
the net work done on the trunk
by the three forces?

θF1

F2

F3

Objects: {block, floor}
Relative Position: lie-above(block, floor)
Forces acting on block:{F1, F2, F3}
Forces acting on floor: {} 
Force Directions: {F1: left, F2: right θ above horizontal, F3: down}

Figure 7.2: Above: An example Newtonian physics problem. Below: Diagram parsed in formal language.

A key chellenge for us in building the diagram and text parsers is supervision. Most modern
machine learning approaches are very data hungry. Howver, we cannot have large datasets for
these kinds of domains. One possible remedy to the issue of data-hungriness is to incorporate
domain knowledge.

Thus, we rely on the classical approach of building pipelines. Pipelines decompose a com-
plex problem into a series of stages, where the local predictor at a particular stage depends on
predictions from previous stages. Pipelining is popular as it breaks down the task into easier-to-
handle sub-tasks which can be individually implemented. In contrast, pipelines [283] decompose
a complex task into a series of easier-to-handle sub-tasks (stages), where the local predictor at a
particular stage depends on predictions from previous stages. Pipelines can be tuned with small
amount of labeled data and it is easier to incorporate domain knowledge expressed as rules, exist-
ing software and pre-learnt components. However, pipelining suffers from propagation of local
errors [90].

Thus, we propose Nuts&Bolts: an approach for learning pipelines with labeled data, un-
labeled data, existing software and domain knowledge expressed as rules. By jointly learning
the pipeline, Nuts&Bolts retains the advantages of end-to-end learning (i.e. doesn’t suffer
from error propagation). Furthermore, it allows for easy incorporation of domain knowledge and
reduces the amount of supervision required, removing the two key shortcomings of end-to-end
learning.

We use this approach to parse our Geometry and Newtonian physics problems into the formal
language (see Figure 7.2 for an example). This is useful as it builds a computer ingestable rich
semantic representation of these problems. These problems are quite diverse, representing com-
plex physical and mathematical concepts which are not often present in natural text and images2

2For instance, in Figure 7.2, the visual concept of floor is represented as a solid horizontal line with many
small, same sized, parallel lines with their end points on the horizontal line (see Figure 7.4c). This concept can be
concisely expressed as a rule but is hard to learn.
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Figure 7.3: A pipeline for diagram parsing with various (possibly multiple) pre-trained functions, existing
software and rules. The pre-learnt components are shown in blue, the existing software are shown in red
and rule-based components are shown in green.

– understanding them itself requires substantial domain knowledge. Hence, traditional NLP and
Computer Vision methods cannot be directly ported to extract and represent the semantics of
these problems, and a richer integration of domain knowledge is needed.

The pipeline allows us to think of the task in a modular way, and to integrate stagewise
supervision and domain knowledge of physics into the model. It also allows us to supervise the
various sub-components to aid rapid learning. We begin by describing the parsing pipeline at a
high level. We break the parsing task into three phases. In the first phase, we parse the diagram
recognizing the various diagram elements and relationships between them, leading to a diagram
parse in formal language. In the second phase, we parse the problem text into the same formal
language. In the third and final phase, we reconcile the diagram and the text parse and achieve
the final parse of the problem

Diagram parsing is performed in the following stages: (a) We first identify low-level
diagram elements such as the lines and arcs, corners i.e intersecting points of various
low-level diagram elements, objects (e.g. block in Figure 7.2) and text elements, i.e.
labels such as ~F1,~F2, ~F3 and θ in Figure 7.2. (b) Then, we assemble the various low-level diagram
elements (such as lines and arcs) to higher level diagram elements (such as axes, blocks, wedges,
pulleys, etc.) by a set of human engineered grouping rules. (c) Then, we map the various text
elements to corresponding diagram elements detected in the previous stages. For example, the
text element ~F1 in Figure 7.2 refers to the leftward arrow in the diagram. (d) In the final step,
we use a set of human-engineered rules to maps the diagram to formal language. We show
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(a)

θ
θ

(b) (c) (d) (e) (f) (g)

Figure 7.4: Some example high-level diagram elements: (a) Arrow, (b) Dotted line, (c) Ground, (d)
Coordinate System, (e) Block, (f) Wedge, and (g) Pulley. We describe rules to form these elements in
Table 7.2.

the various stages in the diagram parsing pipeline and their corresponding inputs and outputs in
Figure 7.3.

Next, we describe the various components of the diagram parsing pipeline, pointing out the
pre-learnt functions, software and rules in each stage of the pipeline (see Table 7.2). Note that
every pre-learnt function can be treated as a software. We present this difference merely due to
philosophical reasons.

In the first stage, we detect low-level diagram elements (lines and arcs) using a number of
pre-learnt functions and software. For corner detection, we use Harris corner detectors [110].
Then we further assemble these low-level diagram elements to high level elements. High level
elements can be easily expressed by humans as rules given their knowledge of Physics (see
Figure 7.4). However, it is difficult to learn the input-output mapping for high-level elements
directly as this will require a very large amount of labelled data for each high-level element. We
introduce a set of manually curated grouping rules for grouping low-level diagram elements to
form high-level diagram elements. For example, the rule to form an arrow tests if there are three
detected lines which share an end-point which can be combined to form an arrow. The three
lines must also satisfy some additional conditions for the high-level element to be an arrow. The
central line (stem line) is the longest of the three lines, the two arrowhead lines are roughly of
the same length and the two angles subtended by the arrowhead lines with the arrow stem line
must be roughly equal.

This rule is incorporated as shown below:

C1 = isLine(line1)∧ isLine(line2)∧ isLine(line3)
C2 = length(line1)> length(line2)∧ length(line1)> length(line3) i.e. line1 is stem
C3 = roughly_equal(angle(line1, line2),angle(line1, line3))
C1∧C2∧C3→ Harrow

All our rules take the form of {IF:THEN} expressions, e.g. {IF condition THEN result},
where the condition tests if a set of detected low-level elements satisfy the requirements to
form the high-level element. In general, we write down a rule for high-level element detection
as ri : AND(li1, li2, . . . , liα ,ci1,ci2 , . . . ,ciβ )→ hi s.t. the rule preconditions Pi1 ,Pi2, . . . ,Piγ are all
satisfied. Here, li1 , li2, . . . , liα denote pre-requisite low-level elements and ci1,ci2, . . . ,ciβ denote
pre-requisite corner elements required for the application of rule ri leading to the formation of
high-level element hi. Then, we map textual element labels with diagram elements. Let Mte
represent a variable that takes values 1 if the detected element (high-level element or object) e is
matched with the detected text label t, and 0 otherwise. Here, we have a matching constraint that
∑e Mte = 1 which states that every text label must be matched to exactly one high-level element
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or object. Next, we build a set of candidate matching rules. These rules essentially capture fea-
tures accounting for type, shape, orientation, distance, etc. In the final stage, we again use a set
of rules to map diagrams to formal language. These rules, one for each predicate, decide if the
predicate holds for a set of diagram elements which are type consistent with the arguments of the
predicate. We have rules for listing objects, relative position of objects, forces acting on objects,
force directions, etc.

The text parsing pipeline works in two stages: (a) identifying concepts in the formal language
and then (b) relations between the detected concepts. We will describe this later in more detail.

Formulation: For each stage of the pipeline, we have choices for various pre-existing soft-
ware (such a various line or corner detectors), rules or pre-learnt functions that we additionally
wish to integrate. We also wish to minimize propagation of errors by learning the pipeline jointly.
Next, we formalize the problem of learning such a pipeline.

Let x ∈X and y ∈ Y represent members of the input and output domains of a data mining
task, respectively where we wish to learn a prediction function f : X → Y such that ŷ≈ f (x).

Pipeline. We formally define a pipeline P as a directed acyclic graph (DAG) G = (V,E)
where nodes V represent various computation modules in the pipeline and edges E represent
input/output relationships between the various modules. Given G, we can always derive a topo-
logical ordering of the computation modules, thus decomposing the prediction problem into S
stages. At each stage s, a predictor f (s) takes in as input the data instance x and predictions
from all previous stages f (s) : z(s)→ y(s) where z(s) = (x, ŷ(0), . . . , ŷ(s−1)). Given a model for each
stage of the pipeline, predictions are made locally and sequentially with the expressed goal of
maximizing performance on all the various stages, ŷ = f (x) = { f (s)(z(s))}S

s=1.
Extended Pipeline. Usually, a pipeline has a single predictor at each stage. However, system

engineers are often faced with many choices for every stage of the pipeline. For example, they
might have to choose between many different object detectors or many different part-of-speech
taggers. It will be useful to not have to make that choice but have an ensemble of these choices.
Hence, we extend our definition of the pipeline and assume that we are given multiple function
approximators { f (s)i }

Ks
i=1 for the pipeline stage s and we wish to use them to estimate the true

underlying function f (s). f (s)i could use a pre-existing software, encode a domain-specific rule
or a pre-learnt function.

Problem Definition: Given the pipeline P , multiple function approximators for each stage
{{ f (s)i }

Ks
i=1}S

s=1 and partial supervision S = {(xn,{y(t)n }t∈Ωn)}N
n=1 , we want to learn the global

prediction function f (x), Here, N denotes the total number of data instances and Ωn is a set of
stages for which supervision is available for the nth data instance xn. In general, at each stage, the
predictor f (s) may output a binary prediction y(s) ∈ {0,1} or a regression y(s) ∈ (0,1). We desire
a framework which can handle partial supervision, existing software and domain knowledge
expressed as rules in a feasible manner. To this end, we describe Nuts&Bolts, an approach
that integrates these inputs while minimizing a global objective defined over all stages.

Nuts&Bolts – Learning with Constraints: We use CCMs [42] to model the Nuts&Bolts
frakework. Our original goal is to minimize the overall loss function L defined on the final
function approximation f̂ . We assume that the pipeline factorizes as a Bayesian network and the
overall loss function factorizes as the following:
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Table 7.2: Various components of the diagram parsing pipeline. We denote the pre-learnt functions by •, software
by • and rules by • in each stage of the pipeline.

Apply a weak Gaussian blur on the raw image and then binarized it using a threshold selection
method proposed in [209]. Then using it, apply:
• Boundary detection and grouping method [150]
• Hough transforms [71]

Line • Detect parallel curved edge segments in a canny edge map.
• Recursively merge proposals that exhibit a low residual when fit to a 1st or a 2nd degree polynomial.
• A 2 class CNN resembling VGG-16 [263] with a fourth channel (which specifies the location of the

diagram element smoothed with a Gaussian kernel of width 5) appended to the standard 3 channel
RGB input.

Corner • Harris corner detector [110]

{IF:THEN} expressions, i.e. IF ’condition’ THEN ’result’ rules as described below:
• Arrow: The central line (stem line) is the longest of the three lines, the two arrowhead lines are

roughly of the same length, and the two angles subtended by the arrowhead lines with the arrow
stem line must be roughly equal

• Dotted line: The various lines should be in a straight line, roughly the same sized lines and equi-
spaced

High
Level

• Ground: The solid line is in contact with a number of smaller parallel lines which subtend roughly
the same angle with it, their end-point lies on the solid line and the smaller lines are on the same
side with respect to the solid line

• Coordinate System: Three arrows where the arrow tails are incident on the same point. Two lines
are mutually perpendicular (i.e. angle=90◦) and the third roughly bisects the complementary (270◦)
angle

• Block: Four lines which form a rectangle
• Wedge: Three lines where each two share a distinct end-point
• Pulley: A circle with two lines tangent to it. An end-point of the two lines lies on the circle

• An off-the-shelf OCR system – Tesseract3.
Text • Since many textual elements are heavily structured (these include elements in vector notation (e.g.

~F), greek alphabets (e.g. θ ), physical quantities (e.g. 2 m/s)) and are usually longer than a single
character, we trained a text localizer using a CNN having the same architecture as AlexNet [153].
We used the Chars74K dataset [65], a dataset obtained from vector PDFs of a number of physics
textbooks and a set of synthetic renderings of structured textual elements generated by us as training
data.

• Window classification [280] • Perceptual grouping [35, 105] • Cascaded ranking
svm [316]

• Objectness [3] • Selective search [277] • Global and local search [225] •
Edge boxes [319]

Object • A classifier with features capturing location, size, central and Hu moments, etc.
• A discriminatively trained part-based model [85] trained to focus on the detection of a manually

selected list of objects commonly seen in physics diagrams (blocks, pulleys, etc.).

Label
Associa-
tion

• Type Matching Rules: Type matching rules note that if the element is of type t1 and the text label is of
type t2, then the element should be matched to the text label. Thus, the rule can be written down as
type(e, t1)∧ type(t, tw)→Mto. We have type matching experts for the following element-object types:
(a) element is an arrow and the text label is one of F., v., a., g, x, d indicating physical vector quantities
such as forces, velocity, acceleration and displacement, (b) element is the coordinate system and
the text label is one of x, y or z indicating one of coordinate system axes, (c) element is a block or a
wedge and the text labels it as a block’ or ‘wedge’ (or one of their synonyms) respectively.

• Proximity Rules: The proximity rule notes that if the element and the text label are close to each
other (i.e. the closest pixels of the element and the text label are closer than a threshold) then the
element should be matched to the text label i.e. proximal(t,o)→Mto

• Orientation Rule: The orientation rule notes that if the element and the text label are in the same ori-
entation, they should be matched i.e. orientation_match(t,o)→Mto. The orientations are computed
using the first principal component of the grey scale pixels labeled as the element/text.

Formal
Lan-
guage

• Rules (one for each predicate) decide if the predicate holds for a set of diagram elements which are
type consistent with the arguments of the predicate.
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min
f

L( f̂ ,y) = min
{ fv}

∑
v

L( f̂v,yv)

We further regularize the above objective to incoroporate multiple function approximators
and any given prior domain knowledge. We describe this below:

A. Integrating multiple function approximators: We introduce a notion of ‘trustworthi-
ness’ model to integrate multiple function approximators. Let T (s)

i ∈ (0,1) denote how much we
can trust the function approximator f (s)i . In probabilistic logic, we introduce the following
rules which specify the relationship between various function approximators, the unknown true
underlying function and our trusts on the various function approximators. Thus, we have:

f (s)i (z(s))∧T (s)
i → f (s)(z(s)),¬ f (s)i (z(s))∧T (s)

i →¬ f (s)(z(s)) (7.1)

f (s)i (z(s))∧¬T (s)
i →¬ f (s)(z(s)),¬ f (s)i (z(s))∧¬T (s)

i → f (s)(z(s)) (7.2)

Intuitively, the first set of rules state that if a function approximator is trustworthy, its output
should match the output of the true function. The second set of rules state that if a function
approximator is not trustworthy, its output should not match the output of the true function. The
trust values are implicitly learnt based on the agreement between various function approximators
[218].

We make an additional assumption that most of the function approximators are better than
chance. With this assumption, we additionally add the following two rules: f (s)i (z(s))→ f (s)(z(s)),
¬ f (s)i (z(s))→¬ f (s)(z(s)). This helps alleviate the identifiability issues introduced by the above
rules (eq. 7.1 and 7.2). Note that flipping the values of trusts (i.e. setting them to one minus the
trust values) and the true functions leads to the rules evaluating to the same set of rules as before.
In probabilistic frameworks where all the rules are weighted with a real value in [0,1], we can
think of the weight of these prior belief rules as regularization weights which can be learnt from
data. Note that we estimate a single trust variable for every function approximator in the pipeline
stage – trust is shared across data instances. Thus, the trust variables implicitly couple various
function approximators by relating them to the true underlying function, aiding semi-supervised
learning.

B. Integrating domain knowledge: Pre-existing software or pre-learnt functions can be
incorporated as function approximators in our probabilistic logic framework. Next, we will
describe how we incorporate domain knowledge in the form of rules. We assume that the
rules are provided to us as conditional statements (or implications) which can be read as “if
Precondition then Postcondition”. Note that Precondition and Postcondition
can be arbitrary logical formulas (i.e. conjunctions of possibly negated predicates). In our case,
the rules relate the input at a stage z(s) to the output y(s). To incorporate these rules, we introduce
a function approximator for the stage f (s)j and a rule Precondition(z(s))→ f (s)(z(s)). Introducing
rules as function approximators allows us to combine domain knowledge expressed as rules with
arbitrary function approximators.

C. Multiple functions and domain knowledge as regularizers: We incorporate the above
multiple function approximator and domain knowledge constraints described above in our CCM
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model as regularizers. We re-write the constraints using Lukasiewicz soft logic [183] and in-
troduce the extent of violation of these constraints as additional regularizers. Lukasiewicz logic
[183]: A∧B = max{A+B−1,0}, A∨B = min{A+B,1}, ¬A = 1−A, and A→ B = min{1−
A+B,1}. We add these terms as additional regularizers and solve these using CCMs [].

D. Inference and Learning: As in CCMs, we pose inference as an optimization problem
and we use the structured perceptron algorithm for learning.

7.3.2 Combining Text and Diagram representations
Given the text and diagram representations, we combine the two to form a joint representation
of the entire question. This is similar to the previous work in diagram parsing by [253] when
they built GEOS, a solver for geometry problems. We model this as a combinatorial search in
the space of literals. P2P efficiently searches this combinatorial space taking advantage of a sub-
modular set function that scores a subset of literals using both text and diagram. We define the
best subset of literals is the one that has a high affinity with both text and diagram and is coherent
i.e., does not suffer from redundancy. More formally,

L∗ = argmax
L′⊂L

λ A (L′, t,d)︸ ︷︷ ︸
Affinity

+H (L′, t,d)︸ ︷︷ ︸
Coherence

, (7.3)

where A (L′, t,d) measures the affinity of the literals in L′ with both the text and the diagram,
H (L′, t,d) measures the coverage of the literals in L′ compared to the text and discourages
redundancies, and λ is a trade-off parameter between A and H .

The affinity A is decomposed into text-based affinity, Atext , and diagram-based affinity,
Adiagram. The text-based affinity closely mirrors the linguistic structure of the sentences as well
as type matches in the language Ω. For modeling the text score for each literal, we learn a log-
linear model. The diagram-based affinity Adiagram grounds literals into the diagram, and scores
literals according to the diagram parse. Atext and Adiagram are the “true” function values of the
trained final text and diagram parse pipelines.

Here, we describe the details of the objective function (Equation 7.3) and how to efficiently
maximize it. The integrated affinity score of a set of literals L′ (the first term in Equation 7.3) is
defined as:

A (L′, t,d) = ∑
l′j∈L′

[
Atext(l′j, t)+Adiagram(l′j,d)

]
where Atext and Adiagram are the text and diagram affinities of l′j, respectively.

To encourage P2P to pick a subset of literals that cover the concepts in the question text and,
at the same time, avoid redundancies, we define the coherence function as:

H (L′, t,d) = Ncovered(L′)−Rredundant(L′)

where Ncovered is the number of the concept nodes used by the literals in L′, and Nredundant is the
number of redundancies among the concept nodes of the literals. To account for the different
scales between A and H , we use the trade-off parameter λ in Equation 7.3 learned on the
validation dataset.
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Axiom Premise Conclusion
Midpoint Definition midpoint(M, AB) length(AM) = length(MB)

Angle Addition interior(D, ABC) angle(ABC) = angle(ABD) + angle(DBC)
Supplementary Angles perpendicular(AB,CD) ∧ liesOn(C,AB) angle(ACD) + angle(DCB) = 180◦

Vertically Opp. Angles intersectAt(AB, CD, M) angle(AMC) = angle(BMD)

Table 7.3: Examples of geometry theorems as horn clause rules.

Maximizing the objective function in Equation 7.3 is an NP-hard combinatorial optimization
problem. However, we show that our objective function is submodular (see appendix) for the
proof of submodularity). This means that there exists a greedy method that can provide a reliable
approximation. P2P greedily maximizes Equation 7.3 by starting from an empty set of literals
and adding the next literal l j that maximizes the gain of the objective function until the gain
becomes negative.

7.3.3 Probabilistic Logic for Geometry Question Answering

We build an axiomatic solver that performs logical inference with the domain knowledge of
geometry and the formal problem description obtained from our parser output. We represent
theorems as horn clause rules that map a premise in the logical language to a conclusion in the
same language. Table 7.3 gives some examples of geometry theorems written as horn clause
rules. The free variables in the theorems are universally quantified. The variables are also typed.
For example, ABC can be of type triangle or angle but not line. Let T be the set of theorems.
Formally, each theorem t ∈ T maps a logical formula l(pr)

t corresponding to the premise to a
logical formula l(co)

t corresponding to the conclusion.
A sample logical program (in prolog notation) that solves the problem in Figure 7.2 is given in

Figure 7.5. The logical program has a set of declarations from the GEOS text and diagram parsers
which describe the problem specification and the parsed horn clause rules describe the underlying
theory. Normalized confidence scores from question text, diagram and axiom extraction models
are used as probabilities in the program. Next, we describe how we harvest structured axiomatic
knowledge from textbooks.

7.3.4 Harvesting Axiomatic Knowledge from Textbooks

We present an automatic approach that can (a) harvest such subject knowledge from textbooks,
and (b) parse the extracted knowledge to structured programs that the solvers can use. Unlike
information extraction systems trained on domains such as web documents [38, 76, inter alia],
learning an information extraction system that can extract axiomatic knowledge from textbooks is
challenging because of the small amount of in-domain labeled data available for these tasks. We
tackle this challenge by (a) leveraging the redundancy and shared ordering of axiom mentions
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sort	point	=	{A,	B,	C,	D,	O,	M}	
sort	line	=	{AB,	BC,	CA,	BD,	DA,	OA,	OM}	//Symmetrically	define	BA,	CB,	…	
sort	angle	=	{ABC,	BCA,	CAB,	ABD,	BDA,	DAB,	AMO,	MOA,	OAM,	BMO}	//Symmetrically	define	CBA,	ACB,	…	
sort	triangle	=	{ABC,	ABD,	AMO}	//Symmetrically	define	CBA,	ACB,	…	
sort	circle	=	{O}	
	
0.4	perpendicular(OM,	AB)	
0.8	measure(ADB,	x)	
0.9	liesOn(A,	O)	
0.9	liesOn(B,	O)	
0.9	liesOn(C,	O)	
0.9	liesOn(D,	O)	
0.9	liesOn(M,	AB)	
0.9	liesInInterior(M,	AOB)	
	
0.9	measure(OAM,	30)	
0.9	measure(radius(O),	4	cm)	
0.9	query(x,	_)	
	
	
0.8	measure(ABC,	90.0)	:-	perpendicular(AB,	CD),	liesOn(B,	CD)	
0.8	measure(XAC,	180-t)	:-	liesOn(A,	BC),	measure(XAB,	t)	
0.7	equals(length(AX),	length(XB))	:-	liesOn(A,	O),	liesOn(B,	O),	perpendicular(OX,	AB),	liesOn(X,	AB)	
0.7	similar(ABC,	DEF)	:-	equals(length(BC),	length(EF)),	equals(measure(ABC),	measure(DEF)),	

equals(measure(BCA),	measure(EFD))	//	ASA	rule.	Similar	rules	for	SAS,	SSS,	RHS	rules	of	similarity	
0.7	equals(measure(CAB),	measure(FED))	:-	similar(ABC,	DEF)	//	Similar	rules	for	other	corresponding	angles	
0.7	equals(measure(ABC),	u+v))	:-	equals(measure(ABD),	u)),	equals(measure(DBC),	v)),	liesInInterior(D,	ABC)	
0.6	equals(measure(ADB),	t/2)	:-	equals(measure(AOB),	t),	liesOn(A,	O),	liesOn(B,	O)		
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Figure 7.5: A sample logical program (in prolog style) that solves the problem in Figure 7.2. The program
consists of a set of data structure declarations that correspond to types in the prolog program, a set of
declarations from the diagram and text parse and a subset of the geometry axioms written as horn clause
rules. The axioms are used as the underlying theory with the aforementioned declarations to yield the
solution upon logical inference. Normalized confidence weights from the diagram, text and axiom parses
are used as probabilities. For readers understanding, we list the axioms in the order (1 to 7) they are used
to solve the problem. However, this ordering is not required. Other (less probable) declarations and axiom
rules are not shown here for clarity but they can be assumed to be present.
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Figure 7.6: An excerpt of a textbook from our dataset that introduces the Pythagoras theorem. The text-
book has a lot of typographical features that can be used to harvest this theorem: The textbook explicitly la-
bels it as a “theorem”; there is a colored bounding box around it; an equation writes down the rule and there
is a supporting figure. Our models leverages such rich contextual and typographical information (when
available) to accurately harvest axioms and then parses them to horn-clause rules. The horn-clause rule
derived by our approach for the Pythagoras theorem is: isTriangle(ABC)∧ perpendicular(AC,BC) =⇒
BC2 +AC2 = AB2.

across multiple textbooks4, and (b) utilizing rich contextual and typographical features5 from
textbooks to effectively extract and parse axioms. Finally, we also provide an approach to parse
the extracted axiom mentions from various textbooks and reconcile them to achieve the best
program for each axiom.

While GEOS has its basis in coordinate geometry and indeed works, it has some key issues:
GEOS requires an explicit mapping of each predicate into a set of constraints over point coordi-
nates6. These constraints can be non-trivial to write, requiring significant manual engineering.
As a result, GEOS’s constraint set is incomplete and it cannot solve a number of SAT style ge-
ometry questions. Furthermore, this solver is not interpretable. As our user studies show, it is not
natural for a student to understand the solution of these geometry questions in terms of satisfia-
bility of constraints over coordinates. A more natural way for students to understand and reason
about these questions is through deductive reasoning using axioms of geometry7.

We use our model to extract and parse axiomatic knowledge from a novel dataset of 20
publicly available math textbooks. We use this structured axiomatic knowledge to build a new
axiomatic solver that performs logical inference to solve geometry problems. Our axiomatic
solver outperforms GEOS on all existing test sets introduced in [253] as well as a new test set of
geometry questions collected from these textbooks. We also performed user studies on a number
of school students studying geometry who found that our axiomatic solver is more interpretable

4The same axiom can be potentially mentioned in a number of textbooks in different ways. All textbooks typi-
cally introduce axioms in roughly the same order – for example, pythagorous theorem would typically be introduced
after introducing the notion of a right angled triangle.

5Textbooks contain rich context and typographical information (see Figure 7.6 for an illustrative example). We
use this rich information as features in our model.

6For example, the predicate isPerpendicular(AB, CD) is mapped to the constraint yB−yA
xB−xA

× yD−yC
xD−xC

=−1.
7For example, the deductive reasoning required to solve the question in Figure 7.2 is: (1) Use the axiom that the

sum of interior angles of a triangle is 180◦and the fact that ∠AMO is 90◦to conclude that ∠MOA is 60◦. (2)4MOA
∼ 4MOB (using a similar triangle axiom) and then, ∠MOB = ∠MOA = 60◦(using the axiom that corresponding
angles of similar triangles are equal). (3) Use angle sum rule to conclude that ∠AOB = ∠MOB + ∠MOA = 120◦.
(4) Use the axiom that the angle subtended by an arc of a circle at the centre is double the angle subtended by it at
any point on the circle to conclude that ∠ADB = 0.5×∠AOB = 60◦.
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and useful compared to GEOS.
We present a structured prediction model that identifies axioms in textbooks and then parses

them. Since harvesting axioms from a single textbook is a very hard problem, we use multiple
textbooks and leverage the redundancy of information to accurately extract and parse axioms.
We first define a joint model that identifies axiom mentions in each textbook and aligns repeated
mentions of the same axiom across textbooks. Then, given a set of axioms (with possibly, mul-
tiple mentions of each axiom), we define a parsing model that maps each axiom to a horn clause
rule by utilizing the various mentions of the axiom.

Given a set of textbooks B in machine readable form (XML in our experiments), we extract
chapters relevant for geometry in each of them to obtain a sequence of sentences (with associated
typographical information) from each textbook. Let Sb = {s

(b)
0 ,s(b)1 , . . .s(b)|Sb|

} denote the sequence
of sentences in textbook b. |Sb| denotes the number of sentences in textbook b.

Axiom Identification and Alignment

We decompose the problem of extracting axioms from textbooks into two tractable sub-problems:
(a) identification of axiom mentions in each textbook using a sequence labeling approach, and (b)
aligning repeated mentions of the same axiom across textbooks. Then, we combine the learned
models for these sub-problems into a joint optimization framework that simultaneously learns to
identify and align axiom mentions. Joint modeling of the axiom identification and alignment is
necessary as both sub-problems can help each other.
Axiom Identification: Linear-chain CRF formulation [160] can be used for the subproblem of
axiom identification. Given {Sb|b ∈B}, the model labels each sentence s(b)i as Before, Inside or
Outside an axiom. Hereon, a contiguous block of sentences labeled B or I will be considered as
an axiom mention. Let T = {B,I,O} denote the tag set. Let y(b)i be the tag assigned to s(b)i and
Yb be the tag sequence assigned to Sb. The CRF defines:

p(Yb|Sb;θθθ) ∝

|Sb|

∏
k=1

exp

(
∑

i, j∈T
θθθ

T
i jfi j(y

(b)
k−1,y

(b)
k ,Sb)

)

We find the parameters θθθ using maximum-likelihood estimation with L2 regularization:

θθθ
∗ = argmax

θθθ

∑
b∈B

log p(Yb|Sb;θθθ)−λ ||θθθ ||22

We use L-BFGS to optimize the objective and Viterbi decoding for inference.
Features: Features f look at a pair of adjacent tags y(b)k−1, y(b)k , the input sequence Sb, and

where we are in the sequence. The features (listed in Table 7.4) include various content based
features encoding various notions of similarity between pairs of sentences as well as various
typographical features such as whether the sentences are annotated as an axiom (or theorem or
corollary) in the textbook, contain equations, diagrams, text that is bold or italicized, are in the
same node of the xml hierarchy, are contained in a bounding box, etc. Some extracted axiom
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C
on

te
nt

Sentence
Overlap

Semantic Textual Similarity between the current and next sentence. We
include features that compute the proportion of common unigrams and
geometry entities (constants, predicates and functions) across the two sen-
tences. This feature is conjoined with the tag assigned to the current and
next sentence.

Geometry
entities

No. of geometry entities (normalized by the number of tokens) in this
sentence. This feature is conjoined with the tag assigned to the current
sentence.

Intra-
sentence
semantics

Indicator that the current sentence contains any one of the following
words: hence, if, equal, twice, proportion, ratio, product. This feature
is conjoined with the tag assigned to the current sentence.

Ty
po

gr
ap

hy

Axiom,
Theorem,
Corollary
Mention

(a) The current (or previous) sentence is mentioned as an Axiom, Theo-
rem or Corollary e.g. Similar Triangle Theorem or Corollary 2.1.
(b) The section or subsection in the textbook containing the current (or
previous) sentence mentions an Axiom, Theorem or Corollary.
This feature is conjoined with the tag assigned to the current (and previ-
ous) sentence.

Eqn. Tem-
plate

The current (or next) sentence contains an equation eg. PA×PB = PT 2.
This feature is conjoined with the tag assigned to the current (and next)
sentence.

Assoc. Di-
agram

The current sentence contains a pointer to a figure eg. “Figure 2.1”. This
feature is conjoined with the tag assigned to the current sentence.

RST edge Indicator for the RST relation between the current and next sentence. This
feature is conjoined with the tag assigned to the current and next sentence.

Bold/
Underline

The sentence (or previous) sentence contains text that is in bold font or
underlined. Conjoined with the tag assigned to the current (and previous)
sentence.

XML struc-
ture

Indicator that the current and previous sentence are in the same node of
the XML hierarchy. Conjoined with the tag assigned to the current and
previous sentence.

Bounding
box

Indicator that the current and previous sentence are bounded by a bound-
ing box in the textbook. Conjoined with the tag assigned to the current
and previous sentence.

Table 7.4: Feature set for our axiom identification model. The features are based on content and typogra-
phy.
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mentions contain pointers to a diagram eg. “Figure 2.1”. We consider the diagram to be a part of
the axiom mention.
Axiom Alignment: Next, we leverage the redundancy of information and the relatively fixed
ordering of axioms in various textbooks by aligning various mentions of the same axiom across
textbooks and introducing structural constraints on the alignment.

Let Ab =
(

A(b)
1 ,A(b)

2 , . . . ,A(b)
|Ab|

)
be the axiom mentions extracted from textbook b. Let A de-

note the collection of axiom mentions extracted from all textbooks. We assume a global ordering
of axioms A∗ = (A∗1,A

∗
2, . . . ,A

∗
U) where U is some pre-defined upper bound on the total num-

ber of axioms in geometry. Then, we emphasize that the axiom mentions extracted from each
textbooks (roughly) follow this ordering. Let Z(b)

i j be a random variable that denotes if axiom

A(b)
i extracted from book b refers to the global axiom A∗j . We introduce a log-linear model that

factorizes over alignment pairs:

P(Z|A;φφφ) =
1

Z(A;φφφ)
× exp

 ∑
b1,b2∈B

b1 6=b2

∑
1≤k≤U

∑
1≤i≤|Ab1 |
1≤ j≤|Ab2 |

Z(b1)
ik Z(b2)

jk φφφ
T g(A(b1)

i ,A(b2)
j )


Here, Z(A;φφφ) is the partition function of the log-linear model. g denotes the feature function

described later. We introduce the following constraints on the alignment structure:
C1: An axiom appears in one book at-most once
C2: An axiom refers to exactly one theorem in the global ordering
C3: Ordering Constraint: If ith axiom in a book refers to the jth axiom in the global ordering
then no axiom succeeding the ith axiom can refer to a global axiom preceding j.

Learning with Hard Constraints: We find the optimal parameters φφφ using maximum-likelihood
estimation with L2 regularization:

φφφ
∗ = argmax

φφφ

logP(Z|A;φφφ)−µ||φφφ ||22

We use L-BFGS to optimize the objective. To compute feature expectations appearing in the
gradient of the objective, we use a Gibbs sampler. The sampling equations for Zb

ik are:

P(Z(b)
ik |rest) ∝ exp(Tb(i,k)) (1)

Tb(i,k) = Z(b)
ik ∑

b′∈B
b′ 6=b

∑
1≤ j≤|Ab′ |

Z(b′)
jk φφφ

T g(A(b)
i ,A(b′)

j )

Note that the constraints C1 . . .3 define the feasible space of alignments. Our sampler always
samples the next Z(b)

ik in this feasible space.
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Learning with Soft Constraints: We might want to treat some constraints, in particular,
the ordering constraints C3 as soft constraints. We can write down the constraint C3 using the
alignment variables:

Z(b)
i j ≤ 1−Z(b)

kl
∀ 1≤ i < k ≤ |Ab|,1≤ l < j ≤U
∀ b ∈B

To model these constraints as soft constraints, we penalize the model for violating these
constraints. Let the penalty for violating the above constraint be exp

(
ν max

(
0,1−Z(b)

i j −Z(b)
kl

))
.

We introduce a new regularization term: R(Z) = ∑1≤i<k≤|Ab|
1≤l< j≤U

b∈B

exp
(

ν max
(

0,1−Z(b)
i j −Z(b)

kl

))
. Here ν

is a hyper-parameter to tune the cost of violating a constraint. We write down the following
regularized objective:

φφφ
∗ = argmax

φφφ

logP(Z|A;φφφ)−R(Z)−µ||φφφ ||22

We use L-BFGS to find the optimal parameters φφφ∗. We perform Gibbs sampling to compute
feature expectations. The sampling equation for Z(b)

ik is similar (eq 1), but:

Tb(i,k) = ∑
b′∈B
b′ 6=b

∑
1≤ j≤|Ab′ |

Z(b)
ik Z(b′)

jk φφφ
T g(A(b)

i ,A(b′)
j )

+ν ∑
b′∈B
b′ 6=b

∑
i< j≤|Ab′ |

∑
1≤l<k

(
1−Z(b)

ik −Z(b′)
jl

)

+ν ∑
b′∈B
b′ 6=b

∑
1≤ j<i|

∑
k<l≤U

(
1−Z(b)

ik −Z(b′)
jl

)

Features: Now, we describe the features g. These too include content based features encod-
ing various notions of similarity between pairs of axiom mentions as well as various typograph-
ical features. The features are listed in Table 7.5.
Joint Identification and Alignment: Joint modeling of axiom identification and alignment com-
ponents is useful as both problems potentially help each other. Let Y (b)

i j denote that the sentence

s(b)i from book b has tag j. We reuse the definitions of the alignment variables Z(b)
i j as before.

We further define Z(b)
i0 such that it denotes that the ith axiom in textbook b is not aligned to any

global axiom. We again define a log-linear model with factors that score axiom identification
and axiom alignments.

p(Y,Z|{Sb};θθθ ,φφφ) ∝ fAI(Y|{Sb};θθθ)× fAA(Z|Y,{Sb};φφφ)

Here, the factors:
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Unigram,
Bigram, De-
pendency
and Entity
Overlap

Real valued features that compute the proportion of common unigrams, bi-
grams, dependencies and geometry entities (constants, predicates and func-
tions) across the two axioms. When comparing geometric entities, we in-
clude geometric entities derived from the associated diagrams when avail-
able.

Longest
Common
Subse-
quence

Real valued feature that computes the length of longest common sub-
sequence of words between two axiom mentions normalized by the total
number of words in the two mentions.

Number of
sentences

Real valued feature that computes the absolute difference in the number of
sentences in the two mentions.

Alignment
Scores

We use an off-the-shelf monolingual word aligner – JACANA [300] pre-
trained on PPDB – and compute alignment score between axiom mentions
as the feature.

MT Metrics We use two common MT evaluation metrics METEOR [66] and MAXSIM
[37], and use the evaluation scores as features. While METEOR computes
n-gram overlaps controlling on precision and recall, MAXSIM performs bi-
partite graph matching and maps each word in one axiom to at most one
word in the other.

Summarization
Metrics

We also use Rouge-S [172], a text summarization metric, and use the evalu-
ation score as a feature. Rouge-S is based on skip-grams.

Equation
Template

Indicator feature that matches templates of equations detected in the axiom
mentions.

Image Cap-
tion

Proportion of common unigrams in the image captions of the diagrams as-
sociated with the axiom mentions. If both mentions do not have associated
diagrams, this feature doesn’t fire.

XML struc-
ture

Indicator matching the current (and parent) node of axiom mentions in re-
spective XML hierarchies.

Table 7.5: Feature set for our axiom alignment model. The features are based on content, structure and
typography.
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Figure 7.7: An illustration of the three operations to sample axiom blocks.

fAI = exp( ∑
b∈B

|Sb|

∑
k=1

∑
i, j∈T

Y (b)
k−1iY

(b)
k j θθθ

T
i jfi j(i, j,Sb))

fAA = exp( ∑
b1,b2∈B

b1 6=b2

∑
1≤k≤U

∑
1≤i≤|Ab1 |
1≤ j≤|Ab2 |

Z(b1)
ik Z(b2)

jk φφφ
T g(A(b1)

i ,A(b2)
j ))

We write down the model constraints below:
C1’: Every sentence has a unique label
C2’ Tag O cannot be followed by tag I
C3’ Consistency between Y ’s and Z’s i.e. axiom boundaries defined by Y ’s and Z’s must

agree.
C4’ = C3.
We use L-BFGS for learning. To compute feature expectations, we use a Metropolis Hastings

sampler that samples Y′s and Z′s alternatively. Sampling for Z′s reduces to Gibbs sampling and
the sampling equations are as same as before (Section 7.3.4). For better mixing, we sample Y in
blocks. Consider blocks of Y’s which denote axiom boundaries at time stamp t , we define three
operations to sample axiom blocks at the next time stamp. The operations (shown in Figure 7.7)
are:

1. Update axiom: The axiom boundary can be shrunk, expanded or moved. The new axiom,
however, cannot overlap with other axioms.

2. Delete axiom: The axiom can be deleted by labeling all its sentences as O.

3. Introduce axiom: Given a contiguous sequence of sentences labeled O, a new axiom can
be introduced.

Note that these three operations define an ergodic Markov chain. We use the axiom identifi-
cation part of the model as the proposal:

Q(Ȳ|Y) ∝ exp

(
∑

b∈B

|Sb|

∑
k=1

∑
i, j∈T

Ȳ (b)
k−1iȲ

(b)
k j θθθ

T
i jfi j(i, j,Sb)

)
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Hence, the acceptance ratio only depends on the alignment part of the model: R(Ȳ|Y)=min
(

1, U(Ȳ)
U(Y)

)
where U(Y) = fAA. We again have two variants, where we model the ordering constraints (C4′)
as soft or hard constraints.

Axiom Parsing

After harvesting axioms, we build a parser for these axioms that maps raw axioms to horn
clause rules. The axiom harvesting step provides us a multi-set of axiom extractions. Let
A = {A1,A2, . . . ,A|A |} represent the multi-set where each axiom Ai is mentioned at least once.

First, we describe a base parser that parses axiom mentions to horn clause rules. Then, we
utilize the redundancy of axiom extractions from various sources (textbooks) to improve our
parser.
Base Axiomatic Parser: Our base parser identifies the premise and conclusion portions of each
axiom and then uses GEOS’s text parser to parse the two portions into a logical formula. Then,
the two logical formulas are put together to form horn clause rules.

Axiom mentions (for example, the Pythagoras theorem mention in Figure 7.6) are often ac-
companied by equations or diagrams. When the mention has an equation, we simply treat the
equation as the conclusion and the rest of the mention as the premise. When the axiom has an
associated diagram, we always include the diagram in the premise. We learn a model to predict
the split of the axiom text into two parts forming the premise and the conclusion spans. Then, the
GEOS parser maps the premise and conclusion spans to premise and conclusion logical formulas,
respectively.

Let Zs represent the split that demarcates the premise and conclusion spans. We score the
axiom split as a log-linear model: p(Zs|a;w) ∝ exp

(
wT h(a,Zs)

)
. Here, h are feature functions

described later. We found that in most cases (>95%), the premise and conclusion are contiguous
spans in the axiom mention where the left span corresponds to the premise and the right span
corresponds to the conclusion. Hence, we search over the space of contiguous spans to infer Zs.
We use L-BGFGS for learning.
Features: We list the features h in Table 7.6. The features are defined over candidate spans
forming the text split, are strongly inspired from rhetorical structure theory [185] and previous
works on discourse parsing [187, 266]. Given a beam of Premise and Conclusion splits, we use
the GEOS parser to get Premise and Conclusion logical formulas for each split in the beam and
obtain a beam of axiom parses for each axiom in each textbook.
Multi-source Axiomatic Parser: Now, we describe a multi-source parser that utilizes the redun-
dancy of axiom extractions from various sources (textbooks). Given a beam of 10-best parses for
each axiom from each source, we use a number of heuristics to determine the best parse for the
axiom:
1. Majority Voting: For each axiom, pick the parse that occurs most frequently across beams.
2. Average Score: Pick the parse that has the highest average parse score (only counting top 5
parses for each source), for each axiom.
3. Learn Source Confidence: Learn a set of weights {µ1,µ2, . . . ,µS}, one for each source and
then picks the parse that has the highest average weighted parse score for each axiom.
4. Predicate Score: Instead of selecting from one of the top parses across various sources,
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Discourse
Markers

Discourse markers (connectives, cue-words or cue-phrases, etc) have been
shown to give good indications on discourse structure [187]. We build a list
of discourse markers using the training set, considering the first and last tokens
of each span, culled to top 100 by frequency. We use these 100 discourse mark-
ers as features. We repeat the same procedure by using part-of-speech (POS)
instead of words and use them as features.

Punctuation Punctuation at the segment border is an excellent cue. We include indicator
features whether there is a punctuation at the segment border.

Text Orga-
nization

Indicator that the two text spans are part of the same (a) sentence, (b) paragraph.

XML
Structure

Indicator that the two spans are in the same node in the XML hierarchy. Con-
joined with the indicator feature that the two spans are part of the same para-
graph.

RST Parse We use an off-the-shelf RST parser [86] and include an indicator feature that the
segmentation matches the parse segmentation. We also include the RST label as
a feature.

Span
Lengths

The distribution of the two text spans is typically dependent on their lengths.
We use the ratio of the length of the two spans as an additional feature.

Soricut
and Marcu
Segmenter

[266] (section 3.1) presented a statistical model for deciding elementary dis-
course unit boundaries. We use the probability given by this model retrained on
our training set as feature. This feature uses both lexical and syntactic informa-
tion.

Head/
Common
Ancestor/
Attach-
ment
Node

Head node is the word with the highest occurrence as a lexical head in the lex-
icalized tree among all the words in the text span. The attachment node is the
parent of the head node. We have features for the head words of the left and right
spans, the common ancestor (if any), the attachment node and the conjunction
of the two head node words. We repeat these features with part-of-speech (POS)
instead of words.

Syntax Distance to (a) root (b) common ancestor for the nodes spanning the respective
spans. We use these distances, and the difference in the distances as features.

Dominance Dominance [266] is a key idea in discourse which looks at syntax trees and
studies sub-trees for each span to infer a logical nesting order between the two.
We use the dominance relationship is a feature. See [266] for details.

Span Sim-
ilarity

Proportion of (a) words (b) geometry relations (c) relation-arguments shared by
the two spans.

No. of Re-
lations

Number of geometry relations represented in the two spans. We use the Lexicon
Map from GEOS to compute the number of expressed geometry relations.

Relative
Position

Relative position of the two lexical heads and the text split in sentence.

Table 7.6: Feature set for our axiom parsing model.
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Strict Comp. Relaxed Comp.
P R F P R F

Identification 64.3 69.3 66.7 84.3 87.9 86.1
Joint-Hard 68.0 68.1 68.0 85.4 87.1 86.2
Joint-Soft 69.7 71.1 70.4 86.9 88.4 87.6

Table 7.7: Test set Precision, Recall and F-measure scores for axiom identification when performed alone
and when performed jointly with axiom alignment. We show results for both strict as well as relaxed
comparison modes. For the joint model, we show results when we model ordering constraints as hard or
soft constraints.

treat each axiom parse as a bag of premise predicates and a bag of conclusion predicates. Then,
pick a subset of premise and conclusion predicates for the final parse using average scoring with
thresholding.

7.4 Experiments

Datasets: We use a collection of grade 6-10 Indian high school math textbooks by four publish-
ers/authors – NCERT, R S Aggarwal, R D Sharma and M L Aggarwal – a total of 5× 4 = 20
textbooks to validate our model. Millions of students in India study geometry from these books
every year and these books are readily available online. We manually marked chapters relevant
for geometry in these books and then parsed them using Adobe Acrobat’s pdf2xml parser and
AllenAI’s Science Parse project8. Then, we annotated geometry axioms, alignments and parses
for grade 6, 7 and 8 textbooks by the four publishers/authors. We use grade 6, 7 and 8 textbook
annotations for development, training, and testing, respectively. All the hyper-parameters in all
the models are tuned on the development set using grid search.

GEOS used 13 types of entities and 94 functions and predicates. We add some more enti-
ties, functions and predicates to cover other more complex concepts in geometry not covered in
GEOS. Thus, we obtain a final set of 19 entity types and 115 functions and predicates for our
parsing model. We use Stanford CoreNLP [186] for feature generation. We use two datasets for
evaluating our system: (a) practice and official SAT style geometry questions used in GEOS, and
(b) an additional dataset of geometry questions collected from the aforementioned textbooks.
This dataset consists of a total of 1406 SAT style questions across grades 6-10, and is approx-
imately 7.5 times the size of the dataset used in GEOS. We split the dataset into training (350
questions), development (150 questions) and test (906 questions) with equal proportion of grade
6-10 questions. We annotated the 500 training and development questions with ground-truth log-
ical forms. We use the training set to train another version of GEOS with expanded set of entity
types, functions and predicates. We call this system GEOS++.
Results: We first evaluate the axiom identification, alignment and parsing models individually.
For axiom identification, we compare the results of automatic identification with gold axiom
identifications and compute the precision, recall and F-measure on the test set. We use strict as

8https://github.com/allenai/science-parse
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P R F NMI
Alignment 71.8 74.8 73.3 0.60
Joint-Hard 75.0 76.4 75.7 0.65
Joint-Soft 79.3 81.4 80.3 0.69

Table 7.8: Test set Precision, Recall, F-measure and NMI scores for axiom alignment when performed
alone and when performed jointly with axiom identification. For the joint model, we show results when
we model ordering constraints as hard or soft constraints.

Literals Full Parse
P R F P R F

GEOS 86.7 70.9 78.0 64.2 56.6 60.2

G
E

O
S+

+

Single Src. 91.6 75.3 82.6 68.8 60.4 64.3
Maj. Voting 90.2 78.5 83.9 70.0 63.3 66.5
Avg. Score 90.8 79.6 84.9 71.7 66.4 69.0

Src. Confid. 91.0 79.9 85.1 73.3 68.1 70.6
Pred. Score 92.8 82.8 87.5 76.6 70.1 73.2

Table 7.9: Test set Precision, Recall and F-measure scores for axiom parsing. These scores are computed
over literals derived in axiom parses or full axiom parses. We show results for the old GEOS system, for
the improved GEOS++ system with expanded entity types, functions and predicates, and for the multi-
source parsers presented in this paper.

well as relaxed comparison. In strict comparison mode the automatically identified mentions and
gold mentions must match exactly to get credit, whereas, in the relaxed comparison mode only a
majority (>50%) of sentences in the automatically identified mentions and gold mentions must
match to get credit. Table 7.7 shows the results of axiom identification where we clearly see im-
provements in performance when we jointly model axiom identification and alignment. This is
due to the fact that both the components reinforce each other. We also observe that modeling the
ordering constraints as soft constraints leads to better performance than modeling them as hard
constraints. This is because the ordering of presentation of axioms is generally (yet not always)
consistent across textbooks.

To evaluate axiom alignment, we first view it as a series of decisions, one for each pair of ax-
iom mentions and compute precision, recall and F-score by comparing automatic decisions with
gold decisions. Then, we also use a standard clustering metric, Normalized Mutual Information
(NMI) [271] to measure the quality of axiom mention clustering. Table 7.8 shows the results
on the test set when gold axiom identifications are used. We observe improvements in axiom
alignment performance too when we jointly model axiom identification and alignment jointly
both in terms of F-score as well as NMI. Modeling ordering constraints as soft constraints again
leads to better performance than modeling them as hard constraints in terms of both metrics.

To evaluate axiom parsing, we compute precision, recall and F-score in (a) deriving literals
in axiom parses, as well as for (b) the final axiom parses on our test set. Table 7.9 shows the
results of axiom parsing for GEOS (trained on the training set) as well as various versions of our
best performing system (GEOS++ with our axiomatic solver) with various heuristics for multi-
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Practice Official Textbook
GEOS 61 49 32

Our System 64 55 51
Oracle 80 78 72

Table 7.10: Scores for solving geometry questions on the SAT practice and official datasets and a dataset
of questions from the 20 textbooks. We use SAT’s grading scheme that rewards a correct answer with a
score of 1.0 and penalizes a wrong answer with a negative score of 0.25. Oracle uses gold axioms but
automatic text and diagram interpretation in our logical solver. All differences between GEOS and our
system are significant (p<0.05 using the two-tailed paired t-test).

source parsing. The results show that our system (single source) performs better than GEOS as it
is trained with the expanded set of entity types, functions and predicates. The results also show
that the choice of heuristic is important for the multi-source parser – though all the heuristics
lead to improvements over the single source parser. The average score heuristic that chooses the
parse with the highest average score across sources performs better than majority voting which
chooses the best parse based on a voting heuristic. Learning the confidence of every source and
using a weighted average is an even better heuristic. Finally, predicate scoring which chooses
the parse by scoring predicates on the premise and conclusion sides performs the best leading to
87.5 F1 score (when computed over parse literals) and 73.2 F1 score (when computed on the full
parse). The high F1 score for axiom parsing on the test set shows that our approach works well
and we can accurately harvest axiomatic knowledge from textbooks.

Finally, we use the extracted horn clause rules in our axiomatic solver for solving geome-
try problems. For this, we over-generate a set of horn clause rules by generating 3 horn clause
parses for each axiom and use them as the underlying theory in prolog programs such as the one
shown in Figure 7.5. We use weighted logical expressions for the question description and the
diagram derived from GEOS++ as declarations, and the (normalized) score of the parsing model
multiplied by the score of the joint axiom identification and alignment model as weights for the
rules. Table 7.10 shows the results for our best end-to-end system and compares it to GEOS
on the practice and official SAT dataset from [253] as well as questions from the 20 textbooks.
On all the three datasets, our system outperforms GEOS. Especially on the dataset from the 20
textbooks (which is indeed a harder dataset and includes more problems which require com-
plex reasoning based on geometry), GEOS doesn’t perform very well whereas our system still
achieves a good score. Oracle shows the performance of our system when gold axioms (written
down by an expert) are used along with automatic text and diagram interpretations in GEOS++.
This shows that there is scope for further improvement in our approach.
Interpretability: Students around the world solve geometry problems through rigorous deduc-
tion whereas the numerical solver in GEOS does not provide such interpretability. One of the
key benefits of our axiomatic solver is that it provides an easy-to-understand student-friendly
deductive solution to geometry problems.

To test the interpretability of our axiomatic solver, we asked 50 grade 6-10 students (10 stu-
dents in each grade) to use GEOS and our system (GEOS++ with our axiomatic solver) as a
web-based assistive tool while learning geometry. They were each asked to rate how ‘inter-
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Interpretability Usefulness
GEOS O.S. GEOS O.S.

Grade 6 2.7 2.9 2.9 3.2
Grade 7 3.0 3.7 3.3 3.6
Grade 8 2.7 3.5 3.1 3.5
Grade 9 2.4 3.3 3.0 3.7
Grade 10 2.8 3.1 3.2 3.8
Overall 2.7 3.3 3.1 3.6

Table 7.11: User study ratings for GEOS and our system (O.S.) by students in grade 6-10. Ten students
in each grade were asked to rate the two systems on a scale of 1-5 on two facets: ‘interpretability’ and
‘usefulness’. Each cell shows the mean rating computed over ten students in that grade for that facet.

pretable’ and ‘useful’ the two systems were on a scale of 1-5. Table 7.16 shows the mean rating
by students in each grade on the two facets. We can observe that students of each grade found
our system to be more interpretable as well as more useful to them than GEOS. This study lends
support to our claims about the need of an interpretable deductive solver for geometry problems.

7.4.1 A Learning from Demonstrations Approach

Cognitive science emphasizes the importance of imitation or learning by example [191, 192] in
human learning. When a teacher signals a pedagogical intention, children tend to imitate the
teacher’s actions [27, 31]. Inspired by this phenomenon, the learning by demonstration view of
machine learning [9, 98, 250] assumes training data in the form of example demonstrations. A
task is demonstrated by a teacher and the learner generalizes from these demonstrations in order
to execute the task.

Research in question answering has traditionally focused on learning from question-answer
pairs [29]. However, it is well-established in the educational psychology literature [4, 83] that
children tend to learn better and faster from concrete illustrations and demonstrations. We show
that we can leverage demonstrative solutions for questions as provided by a teacher to improve
our question answering systems.

We solve the task of learning to solve SAT geometry problems (such as the one in Figure
7.2) using demonstrative solutions to these problems (such as the one in Figure 7.8). Such
demonstrations are common in textbooks as they help students learn how to solve geometry
problems effectively. We build a new dataset of demonstrative solutions of geometry problems
and show that it can be used to improve GEOS [253], the state-of-the-art in solving geometry
problems.

We also present a technique inspired from recent work in situated question answering [152]
that jointly learns how to interpret the demonstration and use this interpretation to solve geom-
etry problems. We model the interpretation task (the task of recognizing various states in the
demonstration) as a semantic parsing task. We model state transitions in the demonstration via
a deduction model that treats each application of a theorem of geometry as a state transition.
We describe techniques to learn the two models separately as well as jointly from various kinds
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2. Similar triangle theorem
=>   MOB ~    MOA
=>    MOB =    MOA = 60o

3.    AOB =     MOB +    MOA
=>    AOB = 120o

4. Angle subtended by a chord at the 
center is twice the angle subtended at 
the circumference
=>    ADB = 0.5 x     ADB

   = 60o

1.  Sum of interior angles of triangle is 
180o

=>     OAM+   AMO +   MOA = 180o

=>     MOA  = 60o

Figure 7.8: An example demonstration on how to solve the problem in Figure 1: (1) Use the theorem that
the sum of interior angles of a triangle is 180◦and additionally the fact that ∠AMO is 90◦to conclude that
∠MOA is 60◦. (2) Conclude that4MOA∼4MOB (using a similar triangle theorem) and then, conclude
that ∠MOB = ∠MOA = 60◦(using the theorem that corresponding angles of similar triangles are equal).
(3) Use angle sum rule to conclude that ∠AOB = ∠MOB + ∠MOA = 120◦. (4) Use the theorem that the
angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the
circle to conclude that ∠ADB = 0.5×∠AOB = 60◦.
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of supervision: (a) when we only have a set of question-answer pairs as supervision, (b) when
we have a set of questions and demonstrative solutions for them, and (c) when we have a set of
question-answer pairs and a set of demonstrations.

An important benefit of our approach is ‘interpretability’. While GEOS is uninterpretable,
our approach utilizes known theorems of geometry to deductively solve geometry problems. Our
approach also generates demonstrative solutions (like Figure 7.8) as a by-product which can be
provided to students on educational platforms such as MOOCs to assist in their learning.

We present an experimental evaluation of our approach on the two datasets previously in-
troduced in [253] and a new dataset collected by us from a number of math textbooks in India.
Our experiments show that our approach of leveraging demonstrations improves GEOS. We also
performed user studies with a number of school students studying geometry, who found that our
approach is more interpretable as well as more useful in comparison to GEOS.

In contrast to GEOS which uses supervised learning, our approach learns to solve geometry
problems by interpreting natural language demonstrations of the solution. These demonstrations
illustrate the process of solving the geometry problem via step-wise application of geometry
theorems. This part of the thesis is taken from our past work published as [237].

Demonstration as Sequence of Program Applications

The demonstration can be seen as a program – a sequence of horn clause rule applications that
lead to the solution of the geometry problem. Given a current state, theorem t can be applied
to the state if there exists an assignment to free variables in l(pr)

t that is true in the state. Each
theorem application also has a probability associated with it; in our case, these probabilities are
learned by a trained model. The state diagram for the demonstration in Figure 7.8 is shown in Fig-
ure 7.9. Now, we describe the various components of our learning from demonstrations approach
which involves the use of the semantic parser (described earlier) to interpret the demonstration
and a deductive solver that learns to chain theorems.

State and Axiom Identification

Given a demonstrative solution of a geometry problem in natural language such as the one shown
in Figure 7.8, we identify theorem applications by two simple heuristics. Often, theorem men-
tions in demonstrations collected from textbooks are labeled as references to theorems previously
introduced in the textbook (for example, “Theorem 3.1”). In this case, we simply label the the-
orem application as the referenced theorem. Sometimes, the theorems are mentioned verbosely
in the demonstration. To identify these mentions, we collect a set of theorem mentions from
textbooks. Each theorem is also represented as a set of theorem mentions. Then, we use an
off-the-shelf semantic text similarity system [282] and check if a contiguous sequence of sen-
tences in the demonstration is a paraphrase of any of the gold theorem mentions. If the degree
of similarity of a contiguous sequence of sentences in the demonstration with any of the gold
theorem mentions is above a threshold, our system labels the sequence of sentences as the theo-
rem. The text similarity system is tuned on the training dataset and the threshold is tuned on the
development set. This heuristic works well and has a small error (< 10%) on our development
set.
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Figure 7.9: State sequence corresponding to the demonstration in Figure 2. Theorems applied are marked
in green and the state information is marked in red. Here S0 corresponds to the state derived from ques-
tion interpretation and each theorem application subsequently adds new predicates to the logical formula
corresponding to S0. The final state contains the answer: measure(ADB, 60◦). This annotation of states
and theorem applications is provided only for illustrative purposes. It is not required by our model.
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For state identification, we use our semantic parser. The initial state corresponds to the logical
expression corresponding to the question. Subsequent states are derived by parsing sentences in
the demonstration. The identified state sequences are used to train our deductive solver.

Deductive Solver

Our deductive solver, inspired from [152], uses the parsed state and axiom information (when
provided) and learns to score the sequence of axiom applications which can lead to the solution
of the problem. Our solver uses a log-linear model over the space of possible axiom applications.
Given a set of theorems T and optionally demonstration d, we assume T = [t1, t2, . . . tk] to be a
sequence of theorem applications. Each theorem application leads to a change in state. Let s0 be
the initial state determined by the logical formula derived from the question text and the diagram.
Let s = [s1,s2, . . .sk] be the sequence of program states after corresponding theorem applications.
The final state sk contains the answer to the question. We define the model score of the deduction
as:

P(s|T,d;θθθ ex) =
1

Z(T,d;θθθ ex)

k

∏
i=1

exp
(
θθθ

T
exψψψ(si−1,si, ti,d)

)
Here, θθθ ex represents the model parameters and ψψψ represents the feature vector that depends on
the successive states si−1 and si, the demonstration d and the corresponding theorem application
ti. We find optimal parameters θθθ ex using maximum-likelihood estimation with L2 regularization:

θθθ
∗
ex = argmax

θθθ ex
∑

s∈Train
logP(s|T,d;θθθ ex)−µ||θθθ ex||22

We use beam search for inference and L-BFGS to optimize the objective.

Joint Semantic Parsing and Deduction

Finally, we describe a joint model for semantic parsing and problem solving that parses the
geometry problem text, the demonstration when available, and learns a sequence of theorem
applications that can solve the problem.

In this case, we use a joint log-linear model for semantic parsing and deduction. The model
comprises of factors that scores semantic parses of the question and the demonstration (when
provided) and the other that scores various possible theorem applications. The model predicts
the answer a given the question q (and possibly demonstration d) using two latent variables:
p represents the latent semantic parse of the question and the demonstration which involves
identifying the logical formula for the question (and for every state in the demonstration when
provided) and s represents the (possibly latent) program.

P(p,s|q,a,d;θθθ) ∝ fp(p|{q,a,d};θθθ p)× fs(s|T,d, ;θθθ s)

Here, θθθ = {θθθ p,θθθ ex}. fp and fs represent the factors for semantic parsing and deduction.
fp(p|{q,a,d};θθθ p) ∝ exp

(
θθθ T

pφφφ(p,{q,a,d})
)

was the semantic parsing model defined earlier and

fs(s|T,d, ;θθθ s) ∝
k
∏
i=1

exp
(
θθθ T

exψψψ(si−1,si, ti,d)
)

was defined in section 7.4.1. Next, we describe

approaches to learn the joint model with various kinds of supervision.
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Learning from Types of Supervision

Our joint model for parsing and deduction can be learned using various kinds of supervision. We
provide a learning algorithm when (a) we only have geometry question-answer pairs as supervi-
sion, (b) when we have geometry questions and demonstrations for solving them, and (c) mixed
supervision: when we have a set of geometry question-answer pairs in addition to some geom-
etry questions and demonstrations. To do this, we implement two supervision schemes [152].
The first supervision scheme only verifies the answer and treats other states in the supervision as
latent. The second scheme verifies every state in the program. We combine both kinds of super-
vision when provided. Given supervision {qi,ai}n

i=1 and {qi,ai.di}m
i=1, we define the following

L2 regularized objective:

J (θθθ) = ν

n

∑
i=1

log ∑
p,s

P(p,s|qi,ai;θθθ)×1exec(s)=ai

+(1−ν)
m

∑
i=1

log ∑
p,s

P(p,s|qi,ai,di;θθθ)×1s(di)=s

−λ ||θθθ p||22−µ||θθθ ex||22

For learning from answers, we set ν = 1. For learning from demonstrations, we set ν = 0. We
tune hyperparameters λ , µ and ν on a held out dev set. We use L-BFGS, using beam search
for inference for training all our models. To avoid repeated usage of unnecessary theorems in
the solution, we constrain the next theorem application to be distinct from previous theorem
applications during beam search.

Features

Next, we define our feature set: φφφ 1, φφφ 2 for learning the semantic parser and ψψψ for learning the
deduction model. Semantic parser features φφφ 1 and φφφ 2 are inspired from GEOS. The deduction
model features ψψψ score consecutive states in the deduction si−1, si and the theorem ti which when
applied to si−1 leads to si. ψψψ comprises of features that score if theorem ti is applicable on state
si−1 and if the application of ti on state si−1 leads to state si. Table 7.12 lists the feature set.

Experiments

We use three geometry question datasets for evaluating our system: practice and official SAT
style geometry questions used in GEOS, and an additional dataset of geometry questions col-
lected from the aforementioned textbooks. We selected a total of 1406 SAT style questions
across grades 6-10. This dataset is approximately 7.5 times the size of the datasets used in [253].
We split the dataset into training (350 questions), development (150 questions) and test (906
questions) with equal proportion of grade 6-10 questions. We also annotated the training and
development set questions with ground-truth logical forms. GEOS used 13 types of entities, 94
functions and predicates. We added some more entities, functions and predicates to cover other
more complex concepts in geometry not covered in GEOS. Thus, we obtained a final set of 19
entity types and 115 functions and predicates. We use the training set to train our semantic parser
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φφ φ
1

Lexicon Map Indicator that the word or phrase maps to a predicate in a lexicon created in GEOS.
GEOS derives correspondences between words/phrases and geometry keywords and
concepts in the geometry language using manual annotations in its training data.
For instance, the lexicon contains (“square”, square, IsSquare) including all possible
concepts for the phrase “square”.

Regex for num-
bers and explicit
variables

Indicator that the word or phrase satisfies a regular expression to detect numbers or
explicit variables (e.g. “5”, “AB”, “O”). These regular expressions were built as a
part of GEOS.

φφ φ
2

Dependency tree
distance

Shortest distance between the words of the concept nodes in the dependency tree.
We use indicator features for distances of -3 to 3. Positive distance shows if the child
word is at the right of the parentâĂŹs in the sentence, and negative otherwise.

Word distance Distance between the words of the concept nodes in the sentence.
Dependency edge Indicator functions for outgoing edges of the parent and child for the shortest path

between them.
Part of speech tag Indicator functions for the POS tags of the parent and the child
Relation type Indicator functions for unary / binary parent and child nodes.
Return type Indicator functions for the return types of the parent and the child nodes. For exam-

ple, return type of Equals is boolean, and that of LengthOf is numeric.

ψψ ψ

State and the-
orem premise
predicates

Treat the state si−1 and theorem premise l(pr)
ti as multi-sets of predicates. The feature

is given by div(si−1||l(pr)
ti ), the divergence between the two multi-sets. div(A,B), the

divergence between multi-sets A and B is given by ∑k
min(Ak,Bk)

Bk
which measures the

degree to which the elements in A satisfy the pre-condition in B.
State and the-
orem premise
predicate-
arguments

Now treat the state si−1 and theorem premise l(pr)
ti as two multi-sets over predicate-

arguments. The feature is given by div(si−1||l(pr)
ti ), the divergence between the two

multi-sets.

State and theorem
conclusion predi-
cates

Now treat the state si and theorem conclusion l(co)
ti as two multi-sets over predicate-

arguments. The feature is given by div(si||l(co)
ti ), the divergence between the two

multi-sets.
State and the-
orem conclu-
sion predicate-
arguments

Now treat the state si and theorem conclusion l(co)
ti as two multi-sets over predicate-

arguments. The feature is given by div(si||l(co)
ti ), the divergence between the two

multi-sets.

State and theorem
conclusion predi-
cates

Treat the state si and theorem conclusion l(co)
ti as two distributions over predicates.

The feature is the total variation distance between the two distributions.

State and the-
orem conclu-
sion predicate-
arguments

Now treat the state ei and theorem conclusion l(co)
ti as two distributions over

predicate-arguments. The feature is the total variation distance between the two
distributions.

Product Features We additionally use three product features: ψψψ1ψψψ3ψψψ5, ψψψ2ψψψ4ψψψ6 and
ψψψ1ψψψ2ψψψ3ψψψ4ψψψ5ψψψ6

Table 7.12: The feature set for our joint semantic-parsing and deduction model. Features φφφ 1 and φφφ 2 are
motivated from GEOS
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P O T
GEOS 61 49 32

GEOS++ 62 49 44
O.S. (QA Pairs) 63 52 47

O.S. (Demonstrations) 66 55 56
O.S. (QA + Demonstrations) 67 57 58

Table 7.13: Scores of various approaches on the SAT practice (P) and official (O) datasets and a dataset
of questions from the 20 textbooks (T). We use SAT’s grading scheme that rewards a correct answer with
a score of 1.0 and penalizes a wrong answer with a negative score of 0.25. O.S. represents our system
trained on question-answer (QA) pairs, demonstrations, or a combination of QA pairs and demonstrations.

with expanded set of entity types, functions and predicates. We used Stanford CoreNLP [186]
for linguistic pre-processing. We also adapted the GEOS solver to the expanded set of entities,
functions and predicates for comparison purposes. We call this system GEOS++.

Quantitative Results

We evaluated our joint model of semantic parsing and deduction with various settings for train-
ing: training on question-answer pairs or demonstrations alone, or with a combination of question-
answer pairs and demonstrations. We compare our joint semantic parsing and deduction models
against GEOS and GEOS++.

In the first setting, we only use question-answer pairs as supervision. We compare our se-
mantic parsing and deduction model to GEOS and GEOS++ on practice and official SAT style
geometry questions from [253] as well as the dataset of geometry questions collected from the
20 textbooks (see Table 7.24). On all the three datasets, our system outperforms GEOS and
GEOS++. Especially on the dataset from the 20 textbooks (which is a harder dataset and in-
cludes more problems which require complex reasoning supported by our deduction model),
GEOS and GEOS++ do not perform very well whereas our system achieves a very good score.

Next, we only use demonstrations to train our joint model (see Table 7.24). We test this model
on the aforementioned datasets and compare it to GEOS and GEOS++ trained on respective
datasets. Again, our system outperforms GEOS and GEOS++ on all three datasets. Especially
on the textbook dataset, this model trained on demonstrations has significant improvements as
our semantic parsing and deduction model trains the deduction model as well and learns to reason
about geometry using axiomatic knowledge.

Finally, we train our semantic parsing and deduction model on a combination of question
answer-pairs and demonstrations. This model trained on question-answer pairs and demonstra-
tions leads to further improvements over models trained only question-answer pairs or only on
demonstrations. These results (shown in Table 7.24) hold on all the three datasets.

We tested the correctness of the parses and the deductive programs induced by our models.
First, we compared the parses induced by our models with gold parses on the development set.
Table 7.23 reports the Precision, Recall and F1 scores of the parses induced by our models when
only the parsing model or when the joint model is used and compares it with GEOS. We conclude
that both our models perform better as compared to GEOS in parsing. Furthermore, our joint
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P R F1
GEOS 0.82 0.63 0.71

O.S. (Parser) 0.88 0.75 0.81
O.S. (Joint) 0.89 0.80 0.84

Table 7.14: Precision, Recall and F1 scores of the parses induced by GEOS and our models when only the
parsing model or the joint model is used.

Deduction Joint
QA Pairs 0.56 0.61

Demonstrations 0.64 0.68
QA + Demonstrations 0.68 0.70

Table 7.15: Accuracy of the programs induced by various versions of our joint model trained on question-
answer pairs, demonstrations or a combination of the two. We provide results when we use the deduction
model or the joint model.

model of parsing and deduction further improves the parsing accuracy. Then, we compared the
programs induced by the aforementioned models with gold program annotations on the textbook
dataset. Table 7.15 reports the accuracy of programs induced by various versions of our models.
Our models when trained on demonstrations induces more accurate programs as compared to
the semantic parsing and deduction model when trained on question-answer pairs. Moreover,
the semantic parsing and deduction model when trained on question-answer pairs as well as
demonstrations achieves an even better accuracy. Our joint model of parsing and deduction
induces more accurate programs as compared to the deduction model alone.

User Study on Interpretability

A key benefit of our axiomatic solver is that it provides an easy-to-understand student-friendly
demonstrative solution to geometry problems. This is important because students typically learn
geometry by rigorous deduction whereas numerical solvers do not provide such interpretability.

To test the interpretability of our axiomatic solver, we asked 50 grade 6-10 students (10
students in each grade) to use GEOS++ and our best performing system trained on question-
answer pairs and demonstrations as a web-based assistive tool. They were each asked to rate
how ‘interpretable’ and ‘useful’ the two systems were for their studies on a scale of 1-5. Table
7.16 shows the mean rating by students in each grade on the two facets. We can observe that
students of each grade found our system to be more interpretable as well as more useful to them
than GEOS++. This study supports the need and the efficacy of an interpretable solution for
geometry problems. Our solution can be used as an assistive tool for helping students learn
geometry on MOOCs.
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Interpretability Usefulness
GEOS++ O.S. GEOS++ O.S.

Grade 6 2.7 3.0 2.9 3.2
Grade 7 3.0 3.7 3.3 3.6
Grade 8 2.7 3.6 3.1 3.5
Grade 9 2.4 3.4 3.0 3.6

Grade 10 2.8 3.1 3.2 3.7
Overall 2.7 3.4 3.1 3.5

Table 7.16: User study ratings for GEOS++ and our system (O.S.) trained on question-answer pairs and
demonstrations by a number of grade 6-10 student subjects. Ten students in each grade were asked to rate
the two systems on a scale of 1-5 on two facets: ‘interpretability’ and ‘usefulness’. Each cell shows the
mean rating computed over ten students in that grade for that facet.

Axiom Identification F1 SAT Scores
Strict Comp. Relaxed Comp. Practice Official Textbook

C
on

te
nt Sentence Overlap 56.2 73.8 56 43 42

Geometry entities 64.0 80.4 61 49 46
Keywords 67.5 81.0 62 54 48

D
is

co
ur

se
(T

yp
og

ra
ph

y) RST edge 66.6 78.9 58 46 44
Axm, Thm, Corr. 62.6 77.8 57 47 43

Equation 66.2 78.6 57 46 42
Associated Diagram 68.5 84.4 61 52 49

Bold / Underline 68.2 82.0 62 52 48
Bounding box 59.7 75.5 55 47 40
XML structure 67.4 80.6 60 51 46

Unablated 70.4 87.6 64 55 51

Table 7.17: Ablation study results for the axiom identification component. We remove features of the
axiom identification component one by one as listed in Table 7.4 and observe the fall in performance in
terms of the axiom identification performance as well as the overall performance to gauge the value of the
various features.

7.4.2 Feature Ablation
In this section, we will measure the value of the various features in our axiom harvesting and
parsing pipeline. Note that we have described three set of features f, g and h corresponding
to the various steps in our pipeline: axiom identification, axiom alignment and axiom parsing
in Tables 7.4, 7.5 and 7.6. We will ablate each of the three features one by one via backward
selection, i.e. we will remove features and observe how that affects performance.

Ablating Axiom Identification Features

Table 7.17 shows the fall in performance in terms of the axiom identification performance as well
as the overall performance as we ablate various axiom identification features listed in Table 7.4.
We can observe that removal of any of the features results in a loss of performance. Thus, all
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SAT Scores
F1 NMI Practice Official Textbook

C
on

te
nt

Overlap 70.7 0.54 57 45 45
LCS 78.7 0.64 61 53 49

Number of Sentences 78.5 0.65 62 54 48
Alignment Scores 72.6 0.57 59 49 48

MT Metrics 74.8 0.60 62 52 49
Summarization Metrics 75.9 0.63 62 54 50

Ty
po

gr
ap

hy XML Structure 71.5 0.57 58 47 46
Equation Template 76.6 0.61 57 47 43

Image Caption 77.9 0.65 62 53 47
Unablated 80.3 0.69 64 55 51

Table 7.18: Ablation study results for the axiom alignment component. We remove features of the axiom
alignment component one by one as listed in Table 7.5 and observe the fall in performance in terms of
the axiom alignment performance as well as the overall performance to gauge the value of the various
features.

the content as well as typographical features are important for performance. We observe that the
content features such as sentence overlap, geometry entity sharing and keyword usage are clearly
important. At the same time, the various discourse features such as the RST relation, axiom,
theorem, corollary annotation, use of equations and diagrams, bold/underline, bounding box and
XML structure are all important. Most of these features depend on typographical information
which vital in performance of the axiom identification component as well as the overall model.
In particular, we can observe that the axiom, theorem, corollary annotation and the bounding
box features contribute most to the performance of the model as they are direct indicators of the
presence of an axiom mention.

Ablating Axiom Alignment Features

Table 7.18 shows the fall in performance in terms of the axiom alignment performance as well
as the overall performance as we ablate various axiom alignment features listed in Table 7.5.
We again observe that removal of any of the features results in a loss of performance. Thus, the
various content as well as typographical features are important for performance. We observe that
the content features such as unigram, bigram and entity overlap, length of the longest common
subsequence, number of sentences and various aligner, MT and summarization scores are clearly
important. At the same time, the various discourse features such as the XML structure, equation
template and image caption match are all important. Note that these features depend on typo-
graphical information which is again vital in performance. In particular, we can observe that the
overlap and the XML structure features contribute most to the performance of the model.

Ablating Axiom Parsing Features

Table 7.19 shows the fall in performance in terms of the axiom parsing performance as well as
the overall performance as we ablate various axiom parsing features listed in Table 7.6. We again
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F1 SAT Scores
Literals Full Parse Practice Official Textbook

Span Similarity 71.8 64.6 51 40 42
No. of Relations 82.3 70.5 60 51 49
Span Lengths 86.0 72.0 63 54 50

Relative Position 83.9 69.2 60 52 47
Discourse Markers 77.4 68.4 55 48 47

Punctuations 73.5 65.0 52 45 45
Text Organization 74.4 66.2 52 47 46

RST Parse 84.6 70.8 62 52 49
Soricut & Marcu 83.2 69.8 61 52 50
Head Node, etc. 85.3 71.6 62 54 49

Syntax 75.5 66.6 54 47 46
Dominance 73.9 66.1 53 47 44

XML Structure 77.6 68.0 59 51 46
Unablated 87.5 73.2 64 55 51

Table 7.19: Ablation study results for the axiom parsing component. We remove features of the axiom
parsing component one by one as listed in Table 7.6 and observe the fall in performance in terms of the
axiom parsing performance as well as the overall performance to gauge the value of the various features.

observe that removal of any of the features results in a loss of performance. The axiom parsing
component uses few content based features such as span similarity and no. of relations, span
lengths and relative position, and various discourse features such as discourse markers, punctu-
ations, text organization, RST parse, an existing discourse segmentor from Soricut and Marcu
[266], node attachment, syntax, dominance and XML structure, and all are clearly important. In
particular, we can observe that span similarity and punctuation features contribute most to the
performance of the model.

7.4.3 Axioms Harvested

We qualitatively analyze the structured axioms harvested by our method. We show few most
probable horn clause rules for some popular named theorems in geometry in Figure 7.10 along
with the confidence of our method on the rules being correct. Note that some horn clause parsed
rules can be incorrect. For example, the second most probable horn clause rule for the Pythagoras
theorem is partially incorrect (doesn’t state which angle is 90◦). Similarly, the second and third
most probable horn clause for the circle secant tangent theorem are also incorrect. Our problog
solver can use these redundant but weighted horn clause rules for solving geometry problems.

7.4.4 Example Solutions and Error Analysis

Next, we qualitatively describe some example solutions of geometry problems as well as perform
a qualitative error analysis. We first show some sample questions which our solver can answer
correctly in Table 7.20. We also show the explanations generated by our deductive solver for
these problems (constructed in the same way as described earlier). Note that these problems are
diverse in terms of question types as well as the reasoning required to answer them and our solver
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Figure 7.10: Horn clause rules for some popular named theorems in geometry harvested by our approach.
We also show the confidence our method has on the rule being correct (which is used in reasoning via the
problog solver).
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Table 7.20: Some correctly answered questions along with explanations generated by our deductive solver
for these problems.
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can handle them.
We also show some failure cases of our approach in Table 7.21. There are a number of

reasons that could lead to a failure of our approach to correctly answer a question. These include
an error in parsing the diagram, the text, or an incorrect or incomplete knowledge in the form of
geometry rules. As can be observed in the failure examples, and also evaluated by us in a small
error analysis of 100 textbook questions, our approach answered 52 questions correctly. Amongst
the 48 incorrectly answered questions, our diagram parse was incorrect for 12 questions, and the
text parse was incorrect for 15 questions. Our formal language was insufficiently defined to
handle 6 questions, i.e. the semantics of the question could not be adequately captured by the
formal language. 21 questions were incorrectly answered due to missing knowledge of geometry
in the form of rules. Note that several questions were incorrectly answered due to a failure of
multiple system components (for example, failure of both the text and the diagram parser).

7.5 Answering Newtonian Physics Questions
We propose to apply the Parsing to Programs approach to the task of answering Netwonian
Physics problems. An illustration of the same is given in Figure . Newtonian Phycics forms a
key component in the Physics curricula of a pre-university student. We collect a large dataset
of question-answer pairs from physics textbooks widely used by students in India. We evaluate
our trained systems on a held out dataset of questions from these textbooks and on practice and
actual questions from the AP physics C mechanics exam. Our system currently achieves an
overall accuracy of 68% on held-out questions from textbooks. In contrast, a small user study
conducted by us on 10 students studying physics found that the average student score was only
around 63%. On the AP Physics C mechanics practice and actual exams (1998 and 2012), our
system correctly answered 50%, 42% and 54% of the questions, respectively. These scores are
close to the average human performance on these exams.

The text parsing pipeline is the same as the one for solving geometry problems. We describe
the pipeline for diagram parsing below:

7.5.1 Diagram Parsing Pipeline
Pre-university physics questions are often accompanied by diagrams. For example, in our train-
ing dataset described in section 7.5.4, about 20 percent of the questions are accompanied by
diagrams. These diagrams are pretty complex and diverse. The diagrams typically have a large
number of object categories and depict complex higher-order physical phenomena related to
these objects (such as force, acceleration, velocity, etc.) which goes well beyond what natural
images usually convey. The diagrams typically include object elements (e.g. drawings of blocks,
wedges, etc.), textual elements (e.g. annotations of forces, acceleration, velocity, etc.), low-level
diagrammatic elements (e.g. arrows, lines, etc.), high-level diagrammatic elements (e.g. axes,
blocks, pulleys, etc.), plots and possibly other decorative elements. All these elements of the
diagram must be recognized and organized in context to achieve a complete logical representa-
tion of the diagram. Next, we describe our pipeline approach for recognizing various diagram
elements in diagrams.
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Table 7.21: Some example failure cases of our approach for solving SAT style geometry problems. In
(i) the axiom set contains an axiom that internal angle of a regular hexagon is 120◦and that each side
of a regular polygon is equal. But there’s no way to deduce that the angle CBO is half of the internal
angle ABC (by symmetry). The other hand, the coordinate geometry solver can exploit these three facts
as maximizing the satisfiability of the various constraints can answer the question. (ii) The solver does
not contain any knowledge about construction. The question cannot be correctly interpreted and the
coordinate geometry solver also gets it wrong. (iii) The solver does not contain any knowledge about
construction or prisms. The question cannot be correctly interpreted and the coordinate geometry solver
also gets it wrong. (iv) The question as well as the answer candidates cannot be correctly interpreted (as
the concept of perpendicular to plane is not in the vocabulary). Both solvers get it wrong. (v) The parser
cannot interpret that angle AC is indeed angle AEC. This needs to be understood by context as it defies
the standard type definition of an angle. Both solvers get it wrong. (vi) Both diagram and text parsers fail
here. Both solvers answer incorrectly.
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Figure 7-27 shows three forces applied to a 
trunk that moves leftward by 3.00 m over 
a frictionless floor. The force magnitudes 
are F1 = 5.00N, F2 = 9.00N, and F3 = 
3.00N, and the indicated angle is θ = 60.0°. 
During the displacement, what is the net 
work done on the trunk by the three 
forces?	

θ	F1	

F2	

F3	

distance(trunk) = 3.00 m	
direction(trunk) = left	
F1 = 5.00N	
F2 = 9.00N	
F3 = 3.00N	
θ = 60.0°	
(a) net-work(trunk, 3 forces) = ?	

Objects: {block, floor}	
Relative Position: 	

lie-above(block, floor)	
Forces acting on block:	

{F1, F2, F3}	
Forces acting on floor: {} 	
Force Directions:	

 {F1: left, F2: right θ 
above horizontal, F3: down}	

Q
uestion Parsing 

…	 … … …
Decide	the	
coordinate	
system.	

Compute	net	
force	on	the	trunk	
in	this	coordinate	
system	

Compute	work	
done	by	the	
theorem:	
									
						W	=	F	.	d	

…	 …	

Program
m

atic Solving 

Figure 7.11: An illustrative representation of our approach on a sample question from the Newtonian Physics
dataset. The approach solves the question in two stages. The first stage, Question Parsing, parses the question
text and any associated diagram into an equivalent (weighted) logical expression in a typed first-order logic lan-
guage. The logical expression for this example is shown in the two rectangular white boxes. Ideally, each literal
in this expression is weighted. However, the weights are not shown in this figure for simplicity. The second stage,
Programmatic Solving takes this formal representation of the question and solves it by performing a (probabilistic)
search over a set of pre-defined programs. One of the paths in the search (which corresponds to the process required
to solve the question) leads to the solution (shown in green), whereas others do not lead to any solution and are
rejected (shown in red).
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Detecting Low-level Diagrammatic Elements: Our physics diagrams have a number of
diagrammatic elements such as arrows, lines, arcs, etc. We detect diagrammatic elements in
three steps: In the first step, we apply a weak Gaussian blur on the raw image and then binarize it
using a threshold selection method proposed in [209]. Then, we over-generate a large number of
candidate diagrammatic element proposals using the boundary detection and grouping method
from [150], Hough transforms [71] and by detecting parallel curved edge segments in a canny
edge map. In the third step, we recursively merge proposals that exhibit a low residual when fit to
a 1st or a 2nd degree polynomial. We then train a 2 class CNN resembling VGG-16 [263], with
a fourth channel appended to the standard 3 channel RGB input. This fourth channel specifies
the location of the diagrammatic element smoothed with a Gaussian kernel of width 5.

Detecting High-level Diagrammatic Elements: Sometimes, we may have to further assem-
ble these low level diagrammatic elements (such as lines and arcs) to higher level diagrammatic
elements (such as axes, blocks, wedges, pulleys, etc.) For this, we use Harris corner detectors
[110] to identify possible locations of intersections of lines. Finally, we again merge lines that
form higher level diagrammatic elements using combinatorial grouping [219] with a set of man-
ually curated grouping rules for grouping each diagrammatic element.

Detecting Textual Elements: The problem of recognizing text in images is an old one and
has led to an entire research area of optical character recognition (OCR) [126]. Most existing
OCR systems are usually trained on character images, scanned documents, scenes and hence,
do not work well in our the setting of diagrams from textbooks. To detect text labellings in
diagrams, we use an off-the-shelf OCR system – Tesseract9 as a baseline model. However, since
many textual elements are heavily structured (these include elements in vector notation (e.g. ~F),
greek alphabets (e.g. θ ), physical quantities (e.g. 2 m/s)) and are usually longer than a single
character, we improve the detection by training a text localizer using a CNN having the same
architecture as AlexNet [153]. We used the Chars74K dataset [65], a dataset obtained from
vector PDFs of a number of physics textbooks and a set of synthetic renderings of structured
textual elements generated by us as training data.

Detecting Label associations: Often, diagram labels such as ~F1, ~F2, ~F3 refer to low-level
diagrammatic elements such as the three arrows in Figure 7.1b. As a final step in diagrammatic
element recognition, we map textual element labels with diagrammatic elements. Given the set
of textual elements and the set of diagrammatic elements, we solve a label association prob-
lem that maps textual elements with diagrammatic elements. We first build a binary logistic
regression classifier over pairs of textual elements and low-level diagrammatic elements. The
probability that a textual element ti maps to a low-level diagrammatic element d j is given by the

standard logistic form: pi j = P(yi j|ti,d j;w) =
(

1+ e−w.f(ti,d j)
)−1

. Finally, the textual element ti
is mapped to a low-level diagrammatic element d̂ j by solving the classic bipartite graph matching
ILP: max∑i, j pi jyi j s.t.∑ j yi j = 1 ∀i. We use a small set of hand engineered features based on
distance, shape, size and orientation of elements and labels.

Foreground Detection: Foreground detection [74] is an old computer vision technique
which extracts the foreground of an image for further processing. For foreground detection,
we classify every pixel in the diagram as a foreground vs background pixel. To achieve this, we

9https://github.com/tesseract-ocr/tesseract
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build nonparametric kernel density estimates [214, 230] in RGB, texture and entropy spaces. We
use these estimates as features for object detection.

Detecting Blobs and Objects: Blob detection [177] is another classical computer vision
problem of detecting regions or blobs in an image in which some properties such as brightness or
color are constant compared to surrounding regions. We tried several object proposal approaches
in the literature like window classification [280], perceptual grouping [35, 105], cascaded rank-
ing svm [316], objectness [3], selective search [277], global and local search [225] and edge
boxes [319]. However, as all these approaches were developed for object proposal generation for
natural images, we found that these did not work well for physics diagrams.

To tackle this, we used the foreground probability map described above to detect a set of
blob segments produced by a set of classifiers with features capturing location, size, central and
Hu moments, etc. These segment proposals were then combined with multi-scale combinatorial
grouping [219], a recent grouping strategy, to achieve a ranked list of object proposals with
corresponding confidence score from the model. Next, these object proposal scores are combined
(by learning a linear interpolant on the training set) with the scores from a discriminatively
trained part-based model [85] trained on physics questions for object detection that focus on
the detection of manually selected list of objects commonly seen in physics diagrams (blocks,
pulleys, etc.) to achieve a ranked list of object proposals and corresponding confidence scores.

Incorporating Question Text for Object Detection: Often, the corresponding question
texts provide important cues for detecting these visual elements. For example, the question in
Figure 7.2 mentions the object ‘trunk’. While it is unlikely that the object recognition component
will correctly recognize the object ‘trunk’ as ‘trunk’ doesn’t appear again in the training dataset
as an object, the mention of the noun phrase ‘trunk’ in the question text and the context in which
it appears is a very important cue for this object being ‘trunk’. Hence, we build a text based
object detector that uses logistic regression to classify each noun phrase in the question text as
an object or not. We use a small set of manually engineered features for the prediction problem:
(a) if the noun phrase is included in a list of objects manually build by us by looking at the dev
set, (b) if the noun phrase is an object category in ImageNet, and (c) if the noun phrase is the
agent/patient (determined using the Turbo dependency parser10) of a small list of actions taking
place in our dev set (e.g. pull, run, hit ...).

Mapping Blobs and Objects to Object Labels: Finally, our system maps an object category
detected by our diagram based blob/object detector to an object category detected by the text
based object detector. For this, we build a binary logistic regression classifier over pairs of
object categories and set of blobs/objects. The probability that an object category ci maps to a

blob/object o j is given by the standard logistic form: pi j = P(yi j|ci,o j;w) =
(

1+ e−w.f(ci,o j)
)−1

.
Finally, the object category ĉi is mapped to the most probable blob/object o j using the bipartite
graph matching ILP described before. We use a small set of hand engineered features based on
(a) cosine similarity of proposal label of the blob/object and the object category, (b) composition
of diagrammatic and textual elements recognized in the image which overlap with the object and
context words (we use a context of 2 words on the left and 5 words on the right), and (c) average
image similarity (we use mutual information) between top 10 images retrieved on Google by
querying for the object category and the blob/object.

10http://www.cs.cmu.edu/ ark/TurboParser/
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Detecting Plot elements: A significant proportion of diagrams are plots (graphs, charts, etc.).
Hence, to solve questions with plots, we need to be able to extract information from the plots
and associate the information with corresponding legend entries. These plots usually have high
variations and often are accompanied with heavy clutter and deformation. We use FigureSeer
[262] to parse the plots and generate a structured tabular representation of the plot information.

From Diagram Elements to Literals: Finally, we use all the aforementioned diagram el-
ement detectors along with corresponding detection scores to obtain the interpretation for the
question. We use a set of rules – one for every predicate. The rules decide if the predicate holds
for a set of diagram elements which are type consistent with the arguments of the predicate.

7.5.2 Domain Theory as Programs
Subject knowledge of Newtonian physics is a crucial component in our solver. We present the
domain knowledge to the system in the form of structured programs. Some example programs
are shown in Figure 7.12.

def vector_addition(Vectors vectors):
result = zero_vector()
for vector in vectors:

result = result + vector
return result

def angle_bw_vectors(Vector vec1, Vector vec2):
return cos_inv(dot(vec1, vec2)/(norm(vec1)*norm(vec2)))

def project_vector(Vector vec, Direction theta):
return (vec*cos(theta), vec*sin(theta))

def implicit_g_force(Mass m, Forces forces):
if not forces.contains((“-mg i + 0 j”)):

forces.append((“mg i + 0 j”))

def Newton_II_law(Mass m, Forces forces, Accelerations accs):
net_force = vector_additon(forces)
net_acceleration = vector_addition(accs)
return Constraint(net_force = m * net_acceleration)

def conservation_of_momentum(Mass m1, Velocity v1_initial, Mass m2, Velocity v2_initial, Velocity
v1_final, Velocity v2_final):

preconditions = [external_force_on_system() == None]
return Constraint(m1*v1_initial+m2*v2_initial = m1*v1_final+m2*v2_final)

Figure 7.12: Example programs used by our approach.

Some of these programs perform very basic functions such as vector addition, computing
angle between vectors, unit conversion, etc. Others, however, perform more complex functions

96



– such as applying Newton’s laws of motion or conservation of momentum, etc. A number of
axioms denote laws of physics as some mathematical expressions. For example, the Newton’s
second law is expressed simply as ~Fnet =m×~a. Here ~Fnet stands for the vector quantity represent-
ing the net force on a body. m stands for the mass of the body and ~a stands for the acceleration
of the body. These programs define a set of preconditions which must be satisfied for it to be
executed. When the preconditions are satisfied, the programs define the mathematical expression
as a constraint on the model. These constraints are then solved to obtain the answer. We wrote
a total of 237 such programs. Let P represent this set of programs. For any program p ∈P ,
let p(pr) denote the precondition required to execute the program. We use this set of programs to
answer the physics problems via the following deductive solver.

7.5.3 The Deductive Solver
Given access to the domain theory in the form of programs, we solve the physics problem by
searching for program applications that can lead to the problem solution. We use a forward
chaining search procedure exploring various possible program applications. Algorithm 2 de-
scribes the procedure.

Algorithm 1: Forward Chaining approach for solving physics problems
Data: Weighted set of literals L representing the question and Domain knowledge P .

1 Do
2 1. Match Programs: Match the pre-conditions of the programs against the set of

literals i.e. find all programs p ∈P s.t. the precondition ppr can be unified with
some set of literals L.

3 2. Select Program: Sample a program (randomly uniformly) among the matching
programs. Stop if no program can be applied.

4 3. Apply Program: Apply the chosen program by adding the result to the set of
literals/constraint set.

5 while #iterations < Nupperbound;

We score the program applications as a function of the scores of various literals in the pro-
gram’s precondition. The score of a literal is given by the confidence score from question parser.
In case it is a derived literal, its score is given by the function value of the program application
that derived the literal. We explored various scoring functions: minimum, arithmetic mean, ge-
ometric mean and harmonic mean of all literal scores. We found that taking the harmonic mean
performed the best. Hence, we use harmonic mean of precondition literals as the scoring function
in our system.

Finally, we used an off-the shelf library11 to solve the model constraints introduced by the
programs. Then, the following answering interface uses the search results to answer the question.

Answering Interface (Handling Various Question and Answer Types): The physics ex-
aminations in our datasets consists of a number of question and answer types. While a majority

11http://docs.sympy.org/dev/modules/solvers/solvers.html#sympy.solvers.
solvers.nsolve
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Edge Boxes O.S. - Text O.S.
24.66 52.23 68.32

Table 7.22: Jaccard similarity between detected diagram elements and gold elements for Edge Boxes and
two versions of our system’s (O.S.) diagram parser: our parser which does not use text information and
our full parser.

of questions directly ask about a particular physical quantity, there are a substantial number of
questions which do not fit in this paradigm. For example, there are some which of these are not
true, select the odd one out, match the following questions. To handle a variety of questions,
we build an answering interface. The interface calls the deductive solver described above and
answers the question based on the type of the question or the kind of answer sought.

7.5.4 Experiments

Datasets We validate our system on two types of datasets: a dataset of physics questions taken
from popular pre-university physics textbooks and few AP Physics C: Mechanics courses. We
train our model on physics questions taken from three popular pre-university physics textbooks:
Resnick Halliday Walker, D. B. Singh and NCERT. Millions of students in India study physics
from these books every year and these books are available online. We manually marked chap-
ters relevant for Newtonian physics in these books and then parsed them using Adobe Acrobat’s
pdf2xml parser. This resulted into a dataset of 4941 questions, out of which 1019 had associated
diagrams. We partitioned the dataset into a random split of 1000 training, 500 development and
3441 test questions. We also annotated ground truth logical forms for the training and develop-
ment question texts and diagrams. These logical forms are used for training our system. We also
evaluated our system on section 1 of three AP Physics C Mechanics tests12. Section 1 of the AP
Physics C Mechanics practice test comprised of 10 questions and the official tests for 1998 and
2012 comprised of 75 and 35 questions respectively.
Results: We now evaluate the question parsing models individually. For diagram parsing, we
compute the Jaccard similarity between the diagram elements detected by various versions of
our diagram parser and compare them to gold elements. We consider Edge Boxes [319] – the
best performing prior computer vision technique explored by us, and two variants of our diagram
parser: diagram parser excluding text information and our full diagram parser. Table 7.22 reports
the results on the development set. Our diagram parser achieves a score of 68.32 which is much
better than Edge Boxes. Prior computer vision techniques work on element and blob detection
for natural images and do not port well to diagrams. However, our carefully engineered element
detector works well. We also observe that mapping elements to element labels by incorporating
text information contributes to an improvement in the score.

Next, we evaluate our text based parser. We compare the parses induced by our models with
gold parses on the dev set. Table 7.23 reports Precision, Recall and F1 scores of the parses
induced. For comparison purposes, we build a rule-based parser baseline. A similar baseline
was proposed in [253] for comparing to their geometry solver. The baseline uses a set of man-

12The other sections of the tests are subjective which we leave as future work.
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P R F1
Rule-based 0.82 0.27 0.41

O.S. 0.63 0.75 0.68

Table 7.23: Precision, Recall and F1 scores of parses induced by our system’s text parser compared to a
rule based parser.

T P 1998 2012
Humans 63 52 44 48

O.S. 68 50 42 54

Table 7.24: Scores of our system compared to average score by 10 students on our dataset from physics
textbooks (T), AP Physics C Mechanics - Section 1 practice test (P) and official tests for two years: 1998
and 2012.

ually designed high-precision rules. Each rule compares the dependency tree of each sentence
to pre-defined templates, and if a template pattern is matched, the rule outputs the relation cor-
responding to that template. Our text-based parser achieves a F1 score of 0.68, a significant
improvement over the rule-based parser (0.41).

Finally, we report the performance of our overall system on the task of solving Newtonian
physics problems. We performed a user study with 10 students13 who were each asked to solve
questions from various datasets. For the AP Physics C exams, each student took the entire
test. Whereas, for the textbook dataset, each student was asked to answer a random selection
of 100 questions in the test split. We score the students as well as our model as the percentage
of correctly answered questions. We compare the results of our system with the average score
achieved by the students on the various datasets. On the textbook questions dataset, our system
achieves a score of 68% which is better than the average student score of 63%. On all the three
AP Physics exams as well, our system achieves close to the average student score, superseding it
in the 2012 exam.

7.6 Key Insights and Learnings from P2P systems
Our approach for parsing to programs is very general, and in principle, can be used to answer
a wide variety of standardized test problems given an accurate semantic parser and an accurate
reasoner which has access to the domain knowledge. However, this is almost always hard as both
the tasks of semantic parsing (i.e. mapping text and diagrams to accurate formal representations)
and program knowledge extraction (i.e. extracting subject knowledge from textbooks) is very
hard and must be performed with high accuracy to render this approach feasible. In our work,
we had the following key observations and learnings which allowed the framework to work well
for these hard problems:

(1) We showed how we can leverage the structure of the problem and build a simple shallow

13All the students selected for the user study scored atleast 4 (“well qualified to receive college credit”) or 5
(“extremely well qualified to earn college credit”) on the 2016 AP Physics C exam.
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semantic parser which is trained as a pipeline process by incorporating existing machine learning
models and software modules for parts of the problem. This lets us leverage unlabeled data and
build an accurate semantic parser with minimal supervision.

(ii) We also showed that we can tackle the hard problem of extracting programmatic knowl-
edge from textbooks by relying on rich discourse and formatting features in these textbooks.
Textbooks are meant to effectively convey the content to students in as easy a way as possible,
and in order to do so, they rely on a lot of rich formatting features. We show how we can use
these formatting features as cues which aid information extraction.

(iii) Despite the above ideas which make accurate semantic parsing and program extraction
work, we over generate the assertions (from our semantic parser) and the knowledge rules (from
our program extractor) in our logical program. While this does result in some loss of inter-
pretability, this is important to have a good performance on these problems.

(iv) In this chapter, we handled questions which were multimodal (they comprised of a piece
of question text as well as a diagram). We noticed that the diagram and the question text provide
cues for parsing and interpreting each other. Thus, we came up with a joint model for parsing
the question text and the diagram where we used the question text to help us parse the diagram
and we used the diagram to help us parse the question text by aligning diagram mentions to text
mentions.

(v) The overall system comprises of a number of learning objectives and subproblems. Each
of them are trained separately with different loss functions and objectives which are specific to
the problem piece at hand. In the future, it would be interesting to consider jointly learning all
these subproblems.

(vi) In this chapter, we took a symbolic approach to answering these reasoning problems.
While these approaches can work well for these problems, we have a number of keys issues
which require fresh supervision and domain knowledge for solving such problems. In the future,
we would like to tackle this issue by incorporating a combination of representation learning
methods with symbolic learning. This would be an interesting area of future research.

(vii) A key motivation for the parsing to programs framework is its interpretability and ex-
plainability. In the future, we would like to explore how we can use the model explanations
generated by such automatic problem solvers to teach students in an educational setting.

7.7 Conclusion
We described a framework called Parsing to Programs, combining ideas from parsing of natural
language and diagrams with probabilistic programming for situated question answering. We used
it to develop a system that can solve pre-university level Euclidean geometry and Newtonian
physics problems. Our system achieved a performance close the student average on questions
from various textbooks, geometry questions taken from previous SAT examinations and section
1 of Advanced Placement (AP) Physics C mechanics exams. As a key step in the parsing to
programs framework, we developed methods to parse diagrams to rich meaning representations
and also extract structured axiomatic knowledge from reading a number of textbooks. The formal
meaning representations along with the extracted structured axiomatic knowledge was used to
deeply reason about these problems and solve them.
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Chapter 8

Joint Question Answering and Question
Generation

So far in this thesis, we studied a number of novel question answering tasks which focuses
on answering questions from standardized tests such as reading comprehensions, elementary
science tests and advanced math and science examinations. All these approaches were data
intensive and required significant amount of supervision in the form of question answer pairs.
Some models such as the P2P framework also relied on annotations for meaning representations
and annotations of axiomatic information in textbooks. All this supervision is expensive to obtain
and forms a key bottleneck for scaling up these techniques to other tasks and domains. In order
to make these techniques more scalable and robust, we must tackle the key issue of supervision
and be able to build question answering models that require less supervision and annotation.

In this chapter, we explore self-training [318] as a way to bootstrap additional data and re-
duce the amount of supervision required to train question answering models. The self-training
approach is based on a key observation that question answering (QA) and question generation or
question asking (AQ) are closely related1 tasks. And we can use this relationship between these
two tasks as a way to carefully create additional training data that can further be used to improve
the question answering and question generation models.

There has been a lot of prior work in both question answering and question generation. How-
ever, the literature on QA and AQ views the two as entirely separate tasks. In this paper, we
explore this relationship among the two tasks by jointly learning to answer as well as ask ques-
tions. The close relationship between QA and AQ is useful for a number of reasons. – the most
important being that the two can be used in conjunction to generate novel questions from free
text and then answers for the generated questions. We can use this to perform self-training and
leverage unlabeled text to augment training of QA and AQ models.

QA and AQ models are typically trained on question answer pairs which are often expensive
to obtain in many domains. However, it is much cheaper to obtain large quantities of unlabeled
text. Our self-training (or self-labeling) procedure leverages unlabeled text to boost the quality of
our QA and AQ models. This is achieved by a careful data augmentation procedure which uses
existing pre-trained QA and AQ models to generate additional labeled question answer pairs.

1We can think of QA and AQ as inverse of each other.
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This additional data is then used to retrain our QA and AQ models and the procedure is repeated.
The addition of synthetic labeled data needs to be performed carefully. During self-training,

typically the most confident samples, along with their predicted labels, are added to the training
set [318]. The performance of our QA model can be used as a proxy for computing the confidence
value of the questions. In fact, we describe a suite of heuristics inspired from curriculum learning
[17] to select the unlabeled samples (sentences) to be labeled and added to the training set at
each epoch. Curriculum learning is inspired from the incremental nature of human learning
and orders training samples on the easiness scale so that easy samples can be introduced to
the learning algorithm first and harder samples can be introduced successively. We show that
selecting training samples in increasing order of easiness leads to improvements over a random
sample introduction baseline.

We focus on the non-factoid question answering task of machine comprehension2 [224, 227]
where the task is to answer a question q based on a passage p. We model the machine compre-
hension task as an answer sentence selection task i.e., given the set of sentences in the passage
p, the task is to select the sentence s ∈ p that contains the answer a. This treatment of QA as an
answer sentence selection task is quite common in literature (e.g. see [308]). We model the AQ
task as the task of transforming a sentence in the passage into a question. Previous literature has
often treated the AQ task as one of transforming text sentences into questions (e.g. see [115]) via
some set of manually engineered rules, etc. However, we take a completely end-to-end neural
approach for the same.

Formally, let D be a labeled dataset of (passage, question, answer) triples where the answer
is given by selecting a sentence in the passage. We use this as a labeled dataset for training our
QA as well as AQ model. Besides, we assume access to unlabeled text T which will be used to
augment the training of the two models.

8.1 The Question Answering Model

As described earlier, we model the QA task the task of selecting an answer sentence from the
passage. Hence, for every input question, we treat each sentence in the corresponding passage
as a candidate answer. We employ a neural network model inspired from the Attentive Reader
framework proposed in [44, 117]. Note that this choice of QA model is arbitrary and we can
replace it with any other successful model.

We first map all words in the vocabulary to corresponding d dimensional vector representa-
tions via an embedding matrix E ∈Rd×V . Thus, the input passage p can be denoted by the word
sequence {p1, p2, . . . p|p|} and the question q can similarly be denoted by the word sequence
{q1,q2, . . .q|q|} where each token pi ∈ Rd and qi ∈ Rd .

We use a bi-directional LSTM [103] with dropout regularization as in [310] to encode con-
textual embeddings of each word in the passage.

~ht = LSTM1

(
pt ,~ht−1

)
, ~ht = LSTM2

(
pt , ~ht+1

)
2Although, we note that our approach is fairly general and can be extended to general QA settings.
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The final contextual embeddings ht are given by concatenation of the forward and backward pass
embeddings: ht = [~ht ; ~ht ]. Similarly, we use another bi-directional LSTM and encode contextual
embeddings of each word in the question.

Then, we use attention mechanism [12] to compute the alignment distribution a based on the
relevance among passage words and and the question.

ai = softmax
(
qT Whi

)
The output vector o is a weighted combination of all contextual embeddings:

o = ∑
i

aihi

Finally, the correct answer a∗ among the set of candidate answers A is given by:

a∗ = argmax
a∈A

wT o

We learn this model by maximizing the log-likelihood of correct answers. Let {p(i),q(i),a(i)}N
i=1

be the training set.

LQA =
N

∑
i=1

logP
(

a(i)|p(i),p(i);θ

)
Here, θ represents all model parameters to be estimated. We use beam search for inference.

8.2 The Question Asking Model
We use a sequence to sequence model (seq2seq) [273] with soft attention [12] as our question
asking model. Sequence to sequence models have been shown to be successful in a number of
NLP tasks such as machine translation [12], speech recognition [48], caption generation [279],
dialog [278], etc. Infact, a similar seq2seq framework has also been used for question asking
previously. See [70, 274] for examples.

We assume that our question asking model transduces an input sequence x to an input se-
quence y. Here, the input sequence is a sentence in the passage and the output sequence is a
generated question. Let x = {x1,x2, . . . ,x|x|}, y = {y1,y2, . . . ,y|y|} and Y be the space of all
possible output questions. Thus, we can represent the AQ task as finding ŷ ∈ Y such that:

ŷ = argmax
y

P(y|x)

Here, P(y|x) is the conditional probability of a question sequence y given input sequence x.
The model is a seq2seq model with soft attention described below:

Decoder: Following [273], the conditional factorizes over token level predictions:

P(y|x) =
|y|

∏
t=1

P(yt |y<t ,x)
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y<t represents the subsequence of words generated prior to the time step t. For the decoder, we
again follow [273] and model P(yt |y<t ,x) as:

P(yt |y<t ,x) = softmax
(

Wtanh
(

Wt [h
(d)
t ;ct ]

))
Here, h(d)

t is the decoder RNN state at time step t, and ct is the attention based encoding of the
input sequence x at decoding time step t (described later). Also W and Wt are model parameters
to be learned. We use an LSTM with dropout [310] as the decoder RNN. The LSTM generates
the new decoder state h(d)

t given the representation of previously generated word yt1 obtained
using a look-up dictionary, and the previous decoder state h(d)

t−1.
Encoder: We use a bi-directional LSTM [103] with attention mechanism as our sentence

encoder. More specifically, we have two LSTM’s: one that makes a forward pass in the sequence
and another that makes a backward pass:

~h(e)
t = LSTM

(
xt ,~h

(e)
t−1

)
~h
(e)
t = LSTM

(
xt , ~h

(e)
t+1

)
We follow the LSTM modeling framework with dropout regularization [310] in our imple-

mentation. The final context dependent token representation h(e)
t is the concatenation of the

forward and backward pass token representations: h(e)
t = [~h(e)

t ; ~h
(e)
t ]. To obtain the final context

dependent token representation c j at the decoding time step j, we take a weighted average over
the token representations:

c(d)j =
|x|

∑
i=1

ai jh
(e)
i

Following [12], the attention weights ai j are calculated by bilinear scoring followed by soft-
max normalization:

ai j =

exp
(

h(e)
j

T
W h(d)

i

)
∑
i′

exp
(

h(e)
j

T
W h(d)

i′

)
Learning and Inference: We train the encoder decoder framework by maximizing data log-

likelihood on a large training set with respect to all the model parameters θ . Let {x(i),y(i)}N
i=1 be

the training set. The data log-likelihood can be written down as:

LAQ =
N

∑
i=1

logP
(

y(i)|x(i);θ

)
=

N

∑
i=1

|y(i)|

∑
j=1

logP
(

y(i)j |x
(i),y(i)< j;θ

)
We use beam search as in previous works on seq2seq [273] for inference. Also, as in previous
works, we introduce a <UNK> token to model rare words during decoding. These <UNK>
tokens are finally replaced by the token in the input sentence with the highest attention score.
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8.3 A Semi-supervised Framework for Joint Training of QA
and AQ models

Finally, we describe our semi-supervised framework for jointly training the QA and AQ models.
In this setting, we assume that we are given unlabeled text T in addition to the passages, question
and answer pairs.

Self-training [229, 302], also known as self-teaching, is one of the earliest techniques using
both labeled and unlabeled data to improve learning. During self-training, the learner keeps on
labeling unlabeled examples and retraining itself on an enlarged labeled training set. We extend
the self-training idea to jointly learn two models (namely, QA and AQ) iteratively. The QA and
AQ models are first trained on a labeled corpus. Then, the AQ model is used to create more
questions from a large unlabeled text corpus and the QA model is used to answer these newly
created questions. These new questions (carefully selected by an oracle – details later) are then
added to the training set and the two models are retrained. This procedure can be repeated as
long as the two models continue to improve. Algorithm 2 describes the procedure in detail.

Algorithm 2: Joint Semi-supervised Training of QA and AQ models
Input : Training set of passage, question, answer triples (p,q,a) ∈D , some additional

unlabeled text T , number of joint training iterations N, question selector oracle
QS , and hyper-parameters (initial sample size k and sample multiplier m).

Output: The question answering (QA) and question asking (AQ) models θqa and θaq,
respectively.

1 θ
(0)
qa ← Train initial question answering model.

2 θ
(0)
aq ← Train initial question asking model.

3 Initialize i=0
4 while i < N do
5 CQi← Set of candidate questions based on the unlabeled text T generated using our

question asking model θ
(i)
aq which are not in D .

6 Qi← k×mi questions drawn from CQi using our question selector oracle QS .
7 Ai← Set of answers to questions Qi obtained using our question answering model

θ
(i)
qa .

8 Let the new set of questions Qi and corresponding sentences Si and answers Ai be D ′.

9 θ
(i+1)
qa ← Update question answering model on D ′.

10 θ
(i+1)
aq ← Update question asking model on D ′.

11 Add D ′ to D .
12 i++
13 end
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SQUAD MS MARCO WikiQA
Train Dev Test Train Dev Test Train Dev Test

# Questions 82,326 4,806 5,241 87,341 5,273 5,279 1,040 140 293
# Question-Answer Pairs 676,193 39,510 42,850 440,573 26,442 26,604 20,360 2,733 6,165
# Answers per Question 8.2 8.2 8.2 5.0 5.0 5.0 19.6 19.5 21.0

Table 8.1: Statistics of the three machine comprehension datasets used in evaluating our QA and AQ
models.

The Question Selection Oracle

A key challenge in self-training is the selection of which unlabeled data samples to label. The
self-training process may erroneously label some unlabeled examples which can sidetrack the
learning process. Thus, we implement a question selection oracle which determines which ques-
tions to add among a potentially very large set of questions generated by the AQ model in each
iteration.

Traditional wisdom in self-training [229, 302] advises selecting a subset of questions on
which the models have the highest confidence. We experiment with this idea, introducing self-
training oracles which introduce questions in the order of how confident the QA and AQ models
are on the correctness of the question. This is calculated by computing the ratio of the score of
the question and the second highest scoring question in the beam during decoding in the AQ and
QA models and taking an average of the two.

We further explore some key ideas for question selection based on recent works in curriculum
learning and diversity and show that they can be used to further improve the standard self-training
oracle.

1. The first idea, curriculum learning [17], requires ordering data samples on the easiness
scale, so that easy samples can be introduced to the learning algorithm first and harder
samples can be introduced successively. The main challenge in learning this curriculum is
that it requires the identification of easy and hard samples. However, in our setting, such
a ranking of easy and hard questions is difficult to obtain. Moreover, a human judgement
of ‘easiness’ of a question might not correlate with what is easy for the algorithmS in
the feature and hypothesis space. We explore various heuristics that define a measure of
easiness and learn the ordering by selecting samples using this measure.

2. The second idea is that of diversity. A number of cognitive scientists [34] argue that along-
side curriculum learning, it is important to introduce diverse (even if sometimes hard) sam-
ples. Inspired by this, we introduce a measure of diversity and show that the curriculum
learning heuristics introduced by us coupled with diversity leads to further improvements.

Curriculum Learning

Studies in cognitive science [154, 217, 264] have shown that humans learn much better when
the training examples are not randomly presented but organized in increasing order of difficulty.
In the machine learning community, this idea was introduced in the nomenclature of curriculum
learning [17], where a curriculum is designed by ranking samples based on manually curated
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difficulty measures. A manifestation of that idea is self-paced learning (SPL) [134, 135, 157]
which selects questions based on the local loss term of the sample.

We explore the following heuristics for the our oracle:
1) Greedy Optimal (GO): The simplest and greedy optimal heuristic would be to pick a question
q which has the minimum expected effect on the QA and AQ models. The expected effect on
adding q can be written as:

∑
a∈A

p(a∗ = a)E[LQA/AQ]

p(a∗ = a) can be estimated by computing the scores of each of the answer candidates for q and
normalizing them. E[LQA/AQ] can be estimated by retraining the models after adding this ques-
tion.
2) Change in Objective (CiO): Choose the question q that causes the smallest increase in the
QA/AQ model objective. If there are multiple questions with the smallest increase in objective,
pick one of them randomly.
3) Mini-max (M2): Chooses question q that minimizes the regularized expected risk when in-
cluding the question with the answer candidate a that yields the maximum error.

q̂ = argmin
q

max
a∈A

LQA/AQ

4) Expected Change in Objective (ECiO): In this greedy heuristic, we pick a question q which
has the minimum expected effect on the model. The expected effect can be written as ∑

a
p(a∗ =

a)×E
[
LQA/AQ

]
. Here, p(a∗ = a) can again be achieved by computing the scores of each of

the answer candidates for q and normalizing them and E
[
LQA/AQ

]
can be estimated by running

inference.
5) Change in Objective-Expected Change in Objective (CiO - ECiO): We pick a question q
which has the minimum value of the difference between the change in objective and the expected
change in objective described above. Intuitively, the difference represents how much the model
is surprised to see this new question.

Diversity

The strategy of introducing easy questions first and then gradually introducing harder questions
is intuitive as it helps the learning process. Yet, it has one key deficiency. Under curriculum
learning, by focusing on easy questions first, our learning algorithm is usually not exposed to a
diverse set of questions. This is particularly a problem for deep-learning approaches that learn
representations during the process of learning. Hence, when a harder question arrives, it is
usually hard for the learner to adjust to this new question as the current representation may
not be appropriate for the new level of difficulty. We tackle this by introducing an explore and
exploit (E&E) strategy.

The explore and exploit strategy ensures that while we still select easy questions first, we also
want to make our selection as diverse as possible. We define a measure for diversity as the angle
between the question samples seen as vectors in a feature space: ∠qi,q j = Cosine−1

(
|qiq j|
||qi||||q j||

)
.
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The E&E solution picks the question which optimizes a convex combination of the curriculum
learning objective and the sum of angles between the candidate question pick and all the candi-
date questions. The convex combination is tuned on the dev set.

Ensembling

Finally, we introduce an ensembling strategy where we combine any given number of of the
above heuristics into an ensemble. The ensembling strategy is indeed very simple. It computes
the ratio of the score of the suggested question and the average score over remaining questions
for all the heuristics and picks the question with the highest ratio. As we will see in our results,
this ensembling strategy works well in practice.

8.4 Experiments
Implementation: We perform the same preprocessing on all the texts. We lower-case all texts
in the dataset and we use NLTK for word tokenization. For training our neural networks, we
only keep the most frequent 50k words (including entity and placeholder markers), and map all
other words to a special <UNK> token. We choose word embedding size d = 100, and use
the 100-dimensional pretrained GloVe word embeddings [216] for initialization. We set k and
m (hyperparameters for self-training) by grid search on a held-out development set. The deep
learning models are implemented using Keras with the Theano backend.

Datasets: We report our results on three public datasets: SQUAD [224], MS MARCO [204],
and Wiki QA [298].

SQUAD is a cloze-style reading comprehension dataset with questions posed by crowd work-
ers on a set of Wikipedia articles, where the answer to each question is a segment of text from
the corresponding reading passage. MS MARCO contains questions which are real anonymized
queries issued through Bing or Cortana and the documents are related web pages which may or
help answer the question. Finally, WikiQA is also a datset of queries taken from Bing query logs.
Based on user clicks, each query is associated with a Wikipedia page. Infact, the summary para-
graph of the page as is taken as candidate answer sentences, with labels on whether the sentence
is a correct answer to the question provided by crowd workers.

While WikiQA is directly an answer sentence selection task, the other two are not. Yet, we
treat the SQUAD and MS MARCO tasks as the answer sentence selection task assuming a one
to one correspondence between answer sentences and annotated correct answer spans3. Also,
SQUAD and MS MARCO have a hidden test set so we only use the training and development sets
for our evaluation purposes and we further split the provided development set into a dev and test
set. This is also the data analysis setting used in previous works [70, 274]. In fact, we use the
same setting as in [274] for comparison. The statistics of the three datasets and the respective
train, dev and test splits are given in Table 8.1. For WikiQA dataset, we use the standard data split
given in [298].

We use a large randomly subsampled corpus of English Wikipedia and use the first paragraph
of each document as unlabeled text for self-training. In our experiments, we describe various

3A very small proportion of answers (< 0.2% in training set) span two or more sentences.
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SQUAD MS MARCO
MAP MRR P@1 MAP MRR P@1

WordCnt 0.3956 0.4014 0.1789 0.8089 0.8168 0.6887
NormWordCnt 0.4223 0.4287 0.2030 0.8714 0.8787 0.7958
CDSSM 0.4425 0.4489 0.2284 0.7978 0.8041 0.6721
ABCNN 0.4691 0.4767 0.2629 0.8685 0.8750 0.7843
QA 0.4712 0.4783 0.2628 0.8580 0.8647 0.7740
QA-SelfTrain(100) 0.5236 0.4934 0.2734 0.8809 0.8904 0.7987
QA-SelfTrain(1000) 0.5372 0.5022 0.2842 0.8848 0.8946 0.8012
M2 0.4885 0.4896 0.2682 0.8603 0.8721 0.7852
ECiO 0.4979 0.4940 0.2725 0.8769 0.8856 0.7928
GO 0.5057 0.4950 0.2744 0.8786 0.8886 0.7932
CiO 0.5112 0.4983 0.2772 0.8788 0.8903 0.7950
CiO-ECiO 0.5166 0.5002 0.2803 0.8811 0.8919 0.7981
Ensemble 0.5386 0.5041 0.2837 0.8858 0.8954 0.8003
Ensemble+E&E(10000) 0.5393 0.5067 0.2887 0.8887 0.8961 0.8007

Table 8.2: Performance of our model variants and the four QA baselines on SQUAD and MS MARCO
datasets. The baseline numbers are taken from [274]. The grey part of the table shows the effect of
various question selection heuristics on our SelfTrain(10000) models.

models trained on varying amount of unlabeled data and report the implications of having more
unlabeled data.

Evaluation Metrics: Following [70, 274], we evaluate our QA system with three standard
evaluation metrics: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR) and Preci-
sion@1 (P@1). For question asking, we use some automatic evaluation metrics from machine
translation and summarization: BLEU-4 [212], METEOR [67] and RougeL [172] to measure the
overlap between the generated questions and ground truth questions.

Baselines: We use the following four baselines that have been used in previous works [274]
for our QA model. The first two baselines have been taken from [298, 305], and are based
on simple word overlap which have been shown to be very strong baselines. WordCnt and
NormWordCnt compute word co-occurrence between a question sentence and the candidate
answer sentence. While WordCnt uses unnormalized word co-occurrence, NormWordCnt uses
normalized word co-occurrence. The third and fourth baselines are CDSSM [258] and ABCNN
[305] which use a neural network approach to model semantic relatedness of sentence pairs.

For the WikiQA dataset, we follow [274] and compare to various accomplished baselines
on this answer sentence selection task namely, CNN [298], APCNN [248], NASM [193] and
ABCNN [305].

For AQ, we compare our model against the following four baselines which have also been
used in some previous works [70]. The first baseline is a simple IR baselines taken from [233]
which generates questions by memorizing them from the training set and uses edit distance [163]
to calculate distance between a question and the input sentence. The second baseline is a MT
system, MOSES [149] where the idea is to model question generation as a translation task where
raw sentences are treated as source language texts and questions are treated as target language
texts. Following [70], KenLM [112] is used as a tri-gram language model on target side texts,
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MAP MRR
CNN 0.6652 0.6520
APCNN 0.6957 0.6886
NASM 0.7069 0.6886
ABCNN 0.7018 0.6921
QA 0.6914 0.6747
QA-SelfTrain(100) 0.7133 0.7036
QA-SelfTrain(1000) 0.7185 0.7076
M2 0.6936 0.6786
ECiO 0.6957 0.6827
GO 0.6995 0.6850
CiO 0.7022 0.6938
CiO-ECiO 0.7094 0.6987
Ensemble 0.7178 0.7076
Ensemble+E&E(10000) 0.7194 0.7080

Table 8.3: Performance of our model variants and the four QA baselines on WikiQA. The baseline numbers
are taken from [274]. The grey part of the table shows the effect of various question selection heuristics
on our SelfTrain(10000) models.

the system is tuned with MERT on dev set. The third baseline, DirectIn, uses the longest sub-
sentence of the input sentence (using a set of simple sentence splitters) as the question. The
fourth and final baseline, H&S is a rule-based overgenerate-and-rank system proposed by [116].
Following [70], we take the top question in the ranked list for comparison.

Evaluating Question Answering: First, we evaluate the QA model. QA is the variant of
our model without self-training. QA/AQ-SelfTrain(K) is the variant where we perform self-
training using K Wikipedia paragraphs. For all the QA/AQ-SelfTrain(K) models, we use an
Ensemble+E&E as the question selection oracle, which performs the best. We vary K to see
the impact of the size of unlabeled Wikipedia paragraphs on the self-training model. For the
Self-training(10000) models (QA or AQ jointly trained with self-training using 10000 Wikipedia
paragraphs), we show results for various question selection oracles (in shaded grey). We will
discuss the implications of the question selection oracle later in our analysis.

Table 8.2 shows the results of the QA evaluations on the SQUAD and MS MARCO datasets.
We can observe that our QA model has competetive or better performance over all the four
baselines on both datasets in terms of all the three evaluation metrics. When we perform self-
training, learning both the QA and AQ models jointly using English Wikipedia as unlabeled data,
we see substantially better results. Similarly, Table 8.3 shows the results of the QA evaluations
on the WikiQA dataset. We can again observe that our QA model is competitive to the four strong
baselines. When we perform self-training while jointly learning the QA and AQ models, we see
improved performance.

Evaluating Question Asking: Table 8.4 shows the results of the AQ evaluations on the three
datasets on each of the three evaluation metrics: BLEU4, METEOR and ROUGE. We can observe
that the AQ model described in our paper performs much better than each of the four baselines.
We again observe that self-training while jointly training the QA and AQ models leads to even
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SQUAD MS MARCO WikiQA
BlEU4 METEOR ROUGE BlEU4 METEOR ROUGE BlEU4 METEOR ROUGE

IR 1.07 7.77 20.85 0.81 5.42 15.78 0.93 6.89 19.98
MOSES 0.31 10.49 17.88 0.27 9.74 15.82 0.32 10.26 17.27
DirectIn 11.25 14.91 22.51 10.82 13.35 20.38 10.94 14.18 22.01
H&S 11.23 16.00 31.03 10.16 15.07 30.00 10.35 15.30 30.72
AQ 12.31 16.67 39.78 11.14 15.60 37.26 11.38 16.08 38.42
AQ-SelfTrain(100) 14.14 18.70 42.46 13.25 17.10 40.28 13.10 17.00 40.93
AQ-SelfTrain(1000) 14.27 18.78 42.93 13.61 17.87 41.23 13.22 18.34 42.72
M2 12.46 16.95 40.27 11.56 15.93 38.32 11.83 16.84 39.26
ECiO 12.79 17.40 40.92 12.11 16.32 38.86 12.14 17.04 39.82
GO 13.12 17.73 41.24 12.75 16.66 39.47 12.56 17.62 40.31
CiO 13.59 17.94 41.57 13.00 16.83 40.02 12.88 18.13 40.97
CiO-ECiO 13.97 18.18 41.90 13.41 17.16 40.65 13.22 18.34 41.28
Ensemble 14.37 18.57 42.73 13.56 17.40 40.92 14.26 18.91 43.26
Ensemble+E&E(10000) 14.28 18.79 42.97 13.74 17.89 41.07 15.26 19.45 44.77

Table 8.4: Performance of our model variants and the four AQ baselines on the SQUAD, MS MARCO and
WikiQA datasets. The grey part of the table shows the effect of various question selection heuristics on
our SelfTrain(10000) models.

better performance. These results show that self-training and leveraging the relationship between
QA and AQ is very useful for boosting the performance of both models, while additionally only
using cheap unlabeled data.

Evaluating the Question Selection Oracle: As discussed earlier, the choice of which subset
of questions to add to our labeled dataset while self-training is important. To evaluate the various
heuristics proposed in our paper, we show the effect of the question selection oracle on the final
QA and AQ performance in Tables 8.2, 8.3 and 8.4. These comparisions are shown in the shaded
grey portions of the tables for the QA/AQ-SelfTrain(10000) model, i.e. self-training with 10,000
Wikipedia paragraphs as unlabeled data.

We can observe that all the proposed heuristics (and ensembling and diversity strategies)
lead to improvements in the final performance of both QA and AQ. The heuristics arranged in
increasing order of performance are: M2, ECiO, GO, CiO and CiO-ECiO. While the choice of
which heuristic to pick seems to make a lesser impact on the final performance, we do see a much
more significant performance gain by ensembling to combine the various heuristics and using
E&E to incorporate diversity. As described earlier, the incorporatation of diversity is important
because the neural network models which learnt latent representions of data usually find it hard to
adjust to new level of difficulty of questions as the current representation may not be appropriate
for the new level of difficulty.

Does more unsupervised text always help? An important question to ask is: Does more
unsupervised text always help our models? That is, will the performance always increase if we
add more and more unsupervised data during self-training. According to our results in Tables 8.2,
8.3 and 8.4, the answer is "perhaps yes". As we can observe from these tables, the performance
of the QA and AQ models improves as we increase K, the size of the unsupervised data during
training of the various QA+SelfTrain(K) models. Having said that, we do see a tapering effect
on the performance results, so it is also clear that the performance will be capped by some upper-
bound and we will need better ways of modeling semantics and natural language understanding
to make progress in QA and AQ thereafter.
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8.5 Conclusion
We described self-training algorithms for jointly learning to answer and ask questions while
leveraging unlabeled data. We experimented with neural models for question answering and
question generation and various careful strategies for question filtering based on curriculum
learning and diversity promotion. This led to improved performance for both question answer-
ing and question generation on multiple datasets and new state-ofthe-art results on WikiQA and
TrecQA datasets. In the future, we would like to extend this observation to reduce the amount of
supervision needed to model the other question answering tasks especially the other standardized
test problems tackled by us. We would also like to extend this idea to incorporate various redun-
dant question answering and question generation models thereby using consistency as a way to
estimate correctness.
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Chapter 9

Conclusion and Future Work

In this thesis, we proposed the task of teaching machines to automatically solve some standard-
ized tests such as reading comprehensions, and various elementary school math and science tests
as a way to benchmark AI. We proposed two broad set of techniques based on latent answer-
entailing structures when solving tests without any underlying domain theory and a parsing to
programs framework for solving tests with an underlying domain theory such a math and science
tests. We also laid out approaches to generate questions and how these automatically generated
noisy questions can further be used to improve the question answering models. We augment
training of these approaches with unlabelled data to handle the issue of lack of supervision. In
the future, we would like to generalize these two frameworks and release easy-to-use toolkits
for practitioners to build their own question answering systems in their domain of interest. We
would like to build more such systems for examinations in more advanced areas such as medical
diagnostics, accountancy, finance, etc. We would like to collaborate with various MOOCs and
standardized testing preparation firms such as ETS and explore the use of this technology as a
tool to assist students.

This thesis also raises more questions and there are many avenues for future exploration. In
particular, we are interested in the following questions:
• What is the limit of the proposition of using standardized tests as a benchmark for AI as a

driver towards developing AI? While a system that can answer a range of standardized test
problems is still far in the horizon and attempts to pass standardized tests can still help us
make progress towards machine intelligence, there are a number of human abilities such as
creativity, common sense, spatial reasoning, etc. that are not tested by standardized tests.
So do we need more another benchmark in addition to standardized tests?

• How do we better model and incorporate common sense knowledge in these models?
• How can we build solutions that can together solve a broader set of standardized test prob-

lems? How do we generalize across different tasks?
• How do we build these solutions with minimal task-specific supervision? Can we use prior

work in representation learning, active (perhaps interactive) learning, few shot learning,
weak supervision, domain transfer and multi-task learning to achieve this goal.

• A lot of prior knowledge required to solve these problems is present in symbolic form.
However, it is well known today that sub-symbolic representations work very well for
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many NLP problems. Can we combine these symbolic and sub-symbolic methods in order
to incoporate this prior knowledge and yet be able to leverage the ability to learn sub-
symbolic representations?

• Do we really even need to solve such hard problems in a completely end-to-end way? Can
we come up with human-in-the-loop solutions [240] to leverage the rich domain knowledge
that humans are very good at?
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