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Abstract
Scene perception is a fundamental aspect of vision. Humans are capable of an-

alyzing behaviorally-relevant scene properties such as spatial layouts or scene cate-
gories very quickly, even from low resolution versions of scenes. Although humans
perform these tasks effortlessly, they are very challenging for machines. Developing
methods that well capture the properties of the representation used by the visual sys-
tem will be useful for building computational models that are more consistent with
perception. While it is common to use hand-engineered features that extract infor-
mation from predefined dimensions, they require careful tuning of parameters and
do not generalize well to other tasks or larger datasets. This thesis is driven by the
hypothesis that the perceptual representations are adapted to the statistical properties
of natural visual scenes.

For developing statistical features for global-scale structures (low spatial fre-
quency information that encompasses entire scenes), I propose to train hierarchical
probabilistic models on whole scene images. I first investigate statistical clusters of
scene images by training a mixture model under the assumption that each image can
be decoded by sparse and independent coefficients. Each cluster discovered by the
unsupervised classifier is consistent with the high-level semantic categories (such as
indoor, outdoor-natural and outdoor-manmade) as well as perceptual layout proper-
ties (mean depth, openness and perspective). To address the limitation of mixture
models in their assumptions of a discrete number of underlying clusters, I further
investigate a continuous representation for the distributions of whole scenes. The
model parameters optimized for natural visual scenes reveal a compact representa-
tion that encodes their global-scale structures. I develop a probabilistic similarity
measure based on the model and demonstrate its consistency with the perceptual
similarities.

Lastly, to learn the representations that better encode the manifold structures in
general high-dimensional image space, I develop the image normalization process
to find a set of canonical images that anchors the probabilistic distributions around
the real data manifolds. The canonical images are employed as the centers of the
conditional multivariate Gaussian distributions. This approach allows to learn more
detailed structures of the local manifolds resulting in improved representation of the
high level properties of scene images.
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3.3 (a) Distribution of values of ŷj for scene images in the SUN database (blue solid
line) and the constraint I imposed on yj (Eq.5.3, red dashed line). (b) The log
likelihood computed using the most active ŷjs. The x-axis corresponds to the
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axis corresponds to the log likelihood of the data computed using the most active
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Chapter 1

Introduction

Understanding the holistic properties of scene images (pictures that depict spaces rather than
primarily describing objects in a scene) is a key process for scene perception. Such holistic
information gives rise to perceptual spatial layout properties of scene images such as depth,
openness, perspective and memorability [20, 27]. In addition, scene images that belong to the
same semantic categories tend to have similar global structures [44] suggesting that the global
information contributes to semantic properties of scenes.

As scene images are high-dimensional, developing a compact and efficient representation
designed for encoding the global properties is challenging. Previous studies have revealed that
hand-engineered features [6, 17, 32, 45] are capable of predicting the semantic properties of
scene images such as perceptual properties of the spatial layouts [56], categories, memorabil-
ity [26] and typicality [16]. Although these approaches have been successful, the features require
careful hand-tuning of parameters depending on the tasks. This requirement limits the generality
of what is learned based on such features in one dataset to others [70].

Another potential disadvantage of projecting scene images onto hand-designed feature spaces
is that they do not necessarily capture all relevant scene information. For instance, although
scene images have diverse local properties based on their contents (textures and objects within
the scenes, etc.), the global structures of scenes are highly constrained in spatial layout and 3D
structure. These constraints provide scene images with special regularities on the global scale.
Hand-designed representations which do not take these regularities into account are unlikely to
deal with the meaningful statistical structures of the scene images (which are potentially relevant
to the perceptual properties) [49].

Several algorithms have been developed for encoding the characteristic structures of images.
One approach is to build efficient representations that encode images with a small number of
coefficients by imposing sparsity constraints [25, 71]. Another method is to learn a representation
invariant to translations and rotations [30, 36, 55]. This method uses pooling algorithms that
feed the strongest responses of local filters over a fixed range to the higher level representations.
Although these methods have been successful for local textures and object recognition, they are
not well suited for scene images, which have entirely different properties from textures. Deep
learning algorithms are also a hot topic for learning from data [22]. The main difference between
our approach and the deep learning is mainly in the fact that deep learning algorithms start from
modeling the joint distribution of the data and hidden variables based on Restricted Boltzman
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Machines whereas I focus more on learning the conditional distribution of data given hidden
variables. Our approach allows to design prior distributions of hidden or latent variables easier
than the deep learning algorithms. This flexibility can be useful especially when combined with
sparse priors allowing the model parameters to efficiently represent the data [31].

This thesis addresses the challenge of developing scene descriptors that are sensitive to
behaviorablly-relevant holistic properties but yet invariant to noisy variations. I propose to train
probabilistic models on scene images and use the latent variables as features. This framework al-
lows to automatically learn features that can compactly represent scenes by optimizing the model
parameters to be aligned with main directions along which data is distributed. In Chapter 2, I first
show that the unsupervised clusters of scene images based solely on their statistical properties
are consistent with the semantic and perceptual properties of scene images [39]. Motivated by
this result, I train a conditional correlational model on whole scenes to further investigate the
holistic properties of scene images based on co-occurrences of local structures (Chapter 3) [40].
The model parameters reveal compact code for encoding global structures. In Chapter 4, I extend
the representation to larger scene images by learning the statistical properties of multiscale scene
representation. Lastly, in Chapter 5, I introduce an extended probabilistic model for arranging
the conditional multivariate Gaussian models closer to the data manifolds.
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Chapter 2

Unsupervised categories of scene images

2.1 Introduction
In this chapter, I develop a scene image representation that learns the compact code for repre-
senting subgroup of data based on the independent component analysis mixture model (ICAMM)
[37, 38] on full scene images. ICAMM trains a mixture of ICA components on a dataset allowing
us to learn specialized distributions for subpopulations of a dataset rather than training one set of
basis functions to fit the entire dataset. Our approach is distinct from previous studies on scene
images, first, in that I learn representations that capture scene image distributions. Second, that
the representations instead of being derived for local features from patches are derived for full
images.

Learning features from the data at a holistic level was not possible in the past because the
number of training examples required is proportional to the dimensionality of the data which is
inherently high for scene images. However, a recent study [68] shows that color scene images at
the spatial resolution of 32× 32 pixels contain sufficient information for identifying scene cate-
gories and to identify objects within scene images. In addition, the recent release of a large scene
image dataset [75] with a sufficient number of images for training ICA on 32× 32 color images
has further contributed to making learning adaptive representations of scene images achievable.

2.2 ICA Mixture model

2.2.1 Derivation
I adopt unsupervised classification algorithm derived by modeling data as a mixture of classes
that are each described by linear combinations of independent, non-Gaussian densities[38]. This
approach learns features for specific classes of the dataset by learning exclusive sets of basis
functions for the individual classes. Each data vector x (a concatenation of vectorized red,blue
and green channels of scene images) is generated by a mixture density

p(x|Θ) =
K∑
k=1

p(x|Ck, θk)p(Ck) (2.1)
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I assume that the number of mixtures, K, and the prior probabilities of the classes, p(Ck), (k =
1, · · ·K), are fixed and the prior probabilities sum up to 1. The data in each class is described by
the independent component model.

x = Aksk + bk, k = 1, · · · , K (2.2)

where Ak is a N ×M matrix (N : the dimensionality of x, M : the number of basis functions)
and bk ∈ RN is the bias vector for kth class. For simplicity, I assume that Ak is full rank for each
class (N = M ). To constrain individual elements sik (i = 1, · · · , N ) of the coefficient vector sk

to be independent and sparse, I design the distribution of sk as,

log p(sk) ∝ −
N∑
i=1

|sik| (2.3)

In this setting, the log likelihood of the data for each class is defined as

log p(x|Ck, θk) = log p(sk)− log det |Ak| (2.4)

where θk = {Ak,bk}. The conditional probability of each class given the data vector x is

p(Ck|x, θk) =
p(x|Ck, θk)p(Ck)∑
k p(x|Ck, θk)p(Ck)

(2.5)

A data vector x is classified into kth class that has the maximum value of p(Ck|x, θk), (k =
1, · · · , K). This is why I also refer to this model as the ICA classifier.

Ak is adapted using the gradient ascent method,

∆Ak ∝
δ log p(x|θk)

δAk

= p(Ck|x, θk)
δ log p(x|Ck, θk)

δAk
(2.6)

Each iteration, I sample a batch of data vectors and average ∆Ak over the multiple data vectors.
After updating Ak in each iteration with Eqn 2.6, and then calculating p(Ck|xt, θk=1:K) with the
updated Ak, the bias vector bk is updated as

bk =

∑
t xtp(Ck|xt, θk)∑
t p(Ck|xt, θk)

(2.7)

2.2.2 Model training
I first downsampled the scene images in the dataset to 32 × 32 color images. As most of the
images have longer width (height) than height (width), I sampled a few squares along the longer
axis with the square window to increase the number of samples in the dataset and then down-
sampled the samples. Before the training, I centered the dataset by subtracing the mean of the
dataset from each image and then whitened the dataset[25]. I initialized Ak=1:K to the identity
matrix and bk=1:K to random. Each iteration, I sampled batches of images and calculated the
gradient by Eqn.2.6 and updated Ak. I terminated the training procedure when the likelihood of
the model does not increase significantly.
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2.3 Properties of the basis functions

2.3.1 The emergence of global structures

Increasing the number of classes in ICAMM allows us to learn specialized distributions for sub-
populations of scene images. Thus, the basis functions that emerge as I increase the number of
classes unveil features for specific representations of the dataset. When I train ICAMM with
K = 1 on scene images (which is identical to standard ICA except for the bias term), most of
the basis functions have local structures which are similar to the basis functions trained on local
natural textures [72], as shown in Figure 2.1g. As I increase the number of classes, K, from one
to four, the structures of the basis functions become more diverse. While some basis functions
maintain local structures, basis functions with global structures also arise. Figures 2.1a–2.1f
show sample basis functions that encode the following structures of scene images: horizontal
lines, symmetric structures, volumetric structures, volumetric structures on the ground, conver-
gence, and light gradients. Note that the global features learned by the model begin to take on
forms that resemble physical properties of the scenes. As increasing the number of classes fur-
ther is computationally more expensive and the evolution of the basis function properties as I
increase the number of classes suggest that hierarchical representations would be able to capture
the subcategories better than the single layered representation with larger number of classes, I
limit the number of classes to four in this paper.

(a) Horizontal line

(b) Symmetric structures

(c) Volumetric structures

(d) Volumetric structures on the ground

(e) Convergence

(f) Lighting

(g) Local structures

Figure 2.1: (a)–(f) Basis functions with global structures emerge when I train ICAMM with
K = 4. (g) Basis functions with local structures are dominant when I train ICAMM with K = 1.

2.3.2 Types of basis functions

With regard to color, 98% of the basis functions can be organized into one of four types; gray
channels (Gray, Figure 2.2b), yellow and blue channels (YB, Figure 2.2c), red and cyan channels
(RC, Figure 2.2d) and purple and green channels (PG, Figure 2.2e). The percentages of Gray and
YB are quite similar in the four sets of basis functions; 44.8%–45.4% for Gray and 30.7%–31.0%
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for YB. However, RC appears only in the basis functions of Classes 1 and 2 (23.7% and 24.2%)
and PG appears only in the basis functions of Classes 3 and 4 (23.4% and 17.4%) (Figure 2.2a).
This result implies that natural clusters of images arise depending on their color components.
I will discuss how the color components of each class are related to the super-ordinate scene
categories discussed in section 2.4.1.

In terms of spatial configurations (Figure 2.2f), the basis functions can be categorized by
the spatial scales (global vs. local) and the dominant orientations of the structures (horizontal,
vertical, oblique and complex when more than one orientation of the structures are dominant)
(Figure 2.2g–2.2n). Figure 2.2f shows the fractions of the spatial configuration types (spatial
scale× dominant orientation) in each class. The basis functions corresponding to Class 4 contain
the highest percentages of global basis functions (81.2%) followed by Class 3 (61.0%), Class 2
(40.4%) and finally Class 1 (31.0%). In section 2.4.2, I will further discuss how the percentages
of the global and local basis functions are related to the spatial layout properties of scene images.

2.4 Unsupervised scene classification
Given a scene image x, ICAMM computes p(Ck|x, θ1:K) classifying x into the kth class with the
maximum value of p(Ck|x, θk). This unsupervised scene classification reveals natural categories
of scene images based solely on their statistics and not on their semantic labels. In this section, I
analyze the super-ordinate scene category and perceptual scene layout rating distributions among
scene images categorized into different classes by ICAMM. I use the model parameters that I
estimated when training the model on the SUN database.

2.4.1 Super-ordinate scene categories
The majority of the indoor scenes from the SUN database are categorized into Classes 1 and 2
while most of the outdoor-natural scenes are categorized into Classes 3 and 4. Outdoor-manmade
scenes, which have both artificial and natural components, are evenly distributed among the
Classes 1–4 (Figure 2.3a). Note that the dominance of indoor scenes in Classes 1 and 2 and
outdoor-natural scenes in Classes 3 and 4 is consistent with the distribution of color channels
among the basis functions that correspond to the four classes (Section 2.3.2). This result suggests
that while the gray channels and the yellow and blue channels encode common components
between indoor and natural scenes, the red and cyan channels and the purple and green channels
are specialized to encode artificial components that are prevalent in indoor scenes and natural
components that are dominant in natural scenes, respectively.

2.4.2 Perceptual properties of spatial layout
Ross and Oliva [56] collected perceptual ratings of mean depth, openness and perspective on a
continuous 1 to 6 scale for 7,138 images. The analysis of the relation between the perceptual
scene layout properties and the spatial configurations of the basis functions suggest that both the
global and local structures learned from the scene images are necessary for encoding the spatial
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(i) Global oblique (j) Global complex
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(m) Local oblique (n) Local complex

Figure 2.2: (a) Gray and YB channels appear in all of the sets of the basis functions while
RC channels are found only in Class 1 and 2 and PG in Class 3 and 4. (b)–(e) Sample basis
functions of each color channels. (f) The fractions of local basis functions decrease from Class
1 to 4 while those of the global basis functions increase. Black, dark gray, light gray and white
each correspond to horizontal, vertical, oblique and complex orientations. (g)–(j) Sample basis
functions of global shapes. (k)–(n) Sample basis functions of local shapes.

layout properties of the scenes. The average of mean depth ratings and openness ratings increase
and decrease, respectively, from Classes 1 through 4; two-sample t-tests show significant results
(p<0.01) except for that between the openness ratings of Classes 2 and 3.

2.5 Conclusion
Training ICAMM on color scene images reveals the basis functions that have diverse structures
directly learned from scene images in order to compactly represent them. The distribution pat-
terns of color channels and spatial configurations of basis functions in different classes imply that
the natural categories of scene images based on their inherent statistical properties are derived
from the content (natural and artificial components) and the spatial structures of scene images.
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Figure 2.3: (a) Distributions of indoor, manmade-outdoor and outdoor-natural scenes in Classes
1–4. All pairwise t-tests are significant (p<0.01) except for those between the fractions of the
indoor and manmade-outdoor scenes in Class 2, the fractions of manmade-outdoor scenes in
Classes 2 and 3 and the fractions of outdoor-natural scenes in Classes 3 and 4. (b)–(d) The
average and the standard error of spatial layout property ratings of scene images classified into
Classes 1–4.

Our results suggest that investigating natural categories of scene images might be beneficial for
organizing large scene image databases compactly in contrast to current scene categories defined
based on linguistic labels associated with scene images. In addition, the rich structures that pre-
serve the statistical properties of the scene images can be useful for complex scene understanding
models than scene categorizations which encode and predict high level semantics (the meaning
and functions) of scenes.
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Chapter 3

Learning global properties of scenes using
conditional correlational structure

3.1 Introduction
For learning regularities of scene images, one interesting objective would be to encode the co-
occurrences of local structures on global scales. For instance, horizontal lines, which are preva-
lently observed structures in scene images, are composed of horizontal structures over space
around similar vertical locations. A model which can encode such prevalent global structures
based on the co-occurrences of local structures would be able to represent global regularities of
scene images. To learn a representation which is more adequate for the purpose of learning the
global structures of the scene images, I train a hierarchical probabilistic model (which will be re-
ferred to hereafter as the distribution coding model) that infers the correlational structures of the
distributions from which specific types of scenes are drawn [29]. The distribution coding model
compactly represents the space of covariance matrices that best capture correlational structure
of the scene mages. Since the model encodes a scene image based on its distribution but not its
pixel values, it is invariant to image variability that is not aligned with the statistical regularities
of scene images.

3.2 Model training

3.2.1 Model description
To learn the global structures captured by the correlational relationships over space, I trained
the distribution coding model [29] on whole scene images. The distribution coding model as-
sumes that data, x, e.g., vectorized scene images in our setting, follows a conditional multivariate
gaussian distribution,

x|y ∼ N (0,C(y)) (3.1)

The zero mean assumption is valid because averaging a sufficient number of scene images
shows that the pixel values of the mean scene image have almost uniform values. To satisfy the
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positive definiteness constraint on covariance matrices, the model formulates the logarithm of
the covariance matrices as a function of the latent variable y as below,

log(C(y)) =
∑
j

yjAj =
∑
j

yj
∑
k

wj,kbkb
T
k (3.2)

where yj corresponds to the j th element of y. With this formulation, the distribution coding
model is capable of defining a continuum of covariance matrices that are defined by the contin-
uous latent variables y. Note that the model encodes x in terms of its distribution unlike other
scene descriptors. This approach makes the representation robust to noise which is not relevant
to the regularities present in the scene images.

Since Aj is symmetric, the distribution coding model formulates it as the weighted sum of
the outer products of vectors bks whose dimensionality is identical to that of the data. Each bk
corresponds to a direction along which the covariance matrices can vary. Rather than learning
separate sets of bk, (k = 1, · · · , K) for each Aj , the model lets them share the common dictio-
nary of bks and incorporate coefficients wj,k to reduce the dimensionality of the parameters; Aj

with a high value of wj,k strongly encodes the correlational structures present in bk. On the other
hand, a low value of wj,k corresponds to a suppressed variability along bk. I constrain bk and
wj = {wj,1, · · · , wj,K} on the unit norm ball to prevent degenerate solutions [1].

To enforce the model parameters to learn a compact representation of covariance matrices,
the model uses a laplacian prior on y,

log p(y) ∝ −
∑
j

|yj| (3.3)

For each sample x, the model infers y that maximizes its likelihood (Eq. 3.4). Since the
original likelihood function is intractable, the integral is approximated by the volume under the
maximum joint probability of x and ŷ, p(x, ŷ), where ŷ = arg max p(x,y):

p(x|θ) =

∫ ∞
−∞

p(x|y)p(y)dy = p(x|ŷ)p(ŷ) (3.4)

To avoid computing the eigen decomposition necessary for the matrix exponential, I use Taylor
series approximation for computing the likelihood and the gradients.

3.2.2 Learning and inference
To deal with the large size of the dataset required for estimating the high dimensional parameters,
I trained the model with the minibatch training method [33]. In each iteration, I randomly sample
a subset of the training data (a minibatch) on which I run the inference and learning steps until
convergence. I move on to the next minibatch starting from the current estimate of the model
parameters, but discard the gradients and the approximate second-order information obtained
from the previous minibatch. One benefit of this approach is that when new training samples are
introduced, one does not need to train the model parameters from scratch but rather only update
the model parameters on the new samples [76]. The size of a minibatch ranged from 650 to 900
in the experiments reported in this paper.
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The model parameters Θ = {bk,wj} were initialized randomly and optimized using the
maximum likelihood method. I first infer latent variables for each data point in the minibatch by
maximizing Eq. 3.4 with respect to y holding bk’s and wj’s fix. Then, with the latent variables
fixed, I learn the model parameters: I first maximize the likelihood of the data with respect to
bks with wjs fixed and then update wj with bks fixed. To ensure the model parameters have
converged with respect to each minibatch, I iterate the process three times per minibatch. In
most of the cases, after three iterations of inference and learning steps, the values of the objective
function (negative of log likelihood) saturates.

Once the training process is completed, I can use the model parameters bk’s and wj’s to infer
the latent variables for new scene images. I do so by using the same procedure that I used in
the inference step in the training process. Latent variables are initialized to small random values
drawn from the Laplacian distribution and updated to maximize the likelihood of a new sample.

The number of bk’s and the number of wj’s, K and J , are fixed beforehand (here, K = 450
and J = 25 for all layers). Note that manipulating the two parameters for DCM is not compa-
rable to tuning the parameters for hand-engineered features such as GIST and HOG, but rather
more analogous to choosing the number of principal components in PCA. As these parameters
increase, the model accounts for the noisier part of the distribution and thus the sensitivity of the
model tends to saturate after high enough values.

3.2.3 Fixed norm constraint and line search

Without constraints, the norms of wj and bk may increase to infinity. Even if they do not, the
range of bk norms can be considerably wide which results in ambiguous interpretation of the
impact of wj,k; if ||b1|| � ||b2||, then, even if their associated weights w1,j and w2,j are the
same, this does not imply that the covariance unit Aj is stretched by the same amount along the
two directions. Similarly, if ||w1|| � ||w2||, then y1 = y2 does not imply that the covariance
matrix C(y) (Eq. 5.2) is stretched along A1 and A2 by the same degree.

To prevent degenerate solutions, I constrained the L2-norm of bk and wj k = 1, · · · , K
,j = 1, · · · , J to have fixed norms. In each iteration t, given the current parameter estimate xt,
a step size α and a descent direction γt, I project xt + αγt onto the sphere that satisfies the fixed
norm constraint by the retraction function

Rxt(αγt) = c
xt + αγt
||xt + αγt||2

(3.5)

where c is a pre-defined sphere radius [1].
I evaluate the objective function (negative of the likelihood in Eq. 3.4) onRxt(αγt) and select

a stepsize α for which the decrease in the objective function value f(xt)− f(Rxt(αγt)) satisfies
the line search criterion.

3.2.4 Optimization methods

The original implementation of DCM [29] employed the stochastic gradient descent (SGD)
method for learning and inference. While SGD is easy to implement, the method requires careful
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tuning of the learning parameters such as step sizes. The manual tuning of parameters is espe-
cially difficult when there are more than one parameter to optimize (hence more than one step
size) and the objective function is of higher order. To stabilize and facilitate the training proce-
dure, I tested the conjugate gradient (CG) method [19] and the limited memory BFGS (L-BFGS)
method [42]. CG has been developed for efficient search of the solutions by enforcing the search
directions to be orthogonal to each other. L-BFGS approximates the second-order information
by storing the history of the first-order information for a fixed number of iterations. Therefore
it converges faster with greater stability than SGD. The two methods employ line search as a
subroutine, and thus there is no need to hand-tune step sizes.

For efficient line search, I estimate initial step lengths by assessing the objective function
values at preset step lengths and picking the one that returns the minimum objective function
value. Adaptively setting initial step sizes helps especially because different minibatches result
in different optimization landscapes and also since I were approximating the gradients and the
objective function values to avoid computing matrix exponentials.

Table 3.1 shows the average elapsed time per minibatch and the average decrease in the
objective function per minibatch. I fixed the step size for SGD beforehand. CG and L-BFGS take
longer to converge on each minibatch but also result in larger decrease in the objective function.
Although SGD is faster to run on each minibatch, it converges to different local minima from
CG or L-BFGS. Therefore running SGD for longer time does not guarantee that it would reach
as good solutions as CG or L-BFGS. The results I report in this paper are obtained by the L-
BFGS method which is a good compromise between the computation time and the decrease in
the objective function among the three techniques tested. Also, the model parameters obtained
by the L-BFGS method are robust; the optimization is insensitive to starting points.

Condition Optimization

SGD CG LBFGS

bk

Elapsed time (/minibatch) 0.04 115.85 28.32
Number of updates 1.00 8.89 5.92
Elapsed time (/update) 0.04 7.89 4.82
∆ Objective function 3.10 10.01 10.89

wj

Elapsed time (/minibatch) 0.03 38.05 42.52
Number of updates 1.00 4.24 4.00
Elapsed time (/update) 0.03 7.58 12.07
∆ Objective function 0.19 8.02 7.88

Table 3.1: Elapsed time in seconds. Elapsed time per minibatch varies between optimization
techniques since the number of update per minibatch and also the elapsed time per update vary.
The results were obtained on a GPGPU Tesla M2070 GPU and the dimensionality of bk and wj

were 186 and 450, respectively, and the number of units K and J were fixed to 450 and 25.

3.2.5 Training data and preprocessing
I trained the distribution coding model on 130,519 scene images (from 397 scene categories)
in the SUN database [75]. The dataset is hierarchically organized and covers wide varieties of
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scene images with diverse structures. Due to the technical constraints such as the number of
training examples required for avoiding overfitting and the computational cost, I downsampled
the original scene images to 32×32 grayscale images suitable for performance of object detection
and scene categorization tasks by human subjects [68]. Because the dataset has enough number
of scene images compared to the dimensionality of the model parameters, it is unlikely that the
results are overfitted to the training data. This is demonstrated when I apply the model parameters
trained on the SUN database to other scene image datasets [32, 56] and scene images downloaded
from the web, as the latent variables have similar properties.

3.3 Model representation

3.3.1 Model parameters

As discussed in Section 3.2.1, bk encodes a common direction along which the covariance units
Aj can vary. When trained on the 32×32 scene images, bks show gabor-like structures as shown
in Figure 4.2. Note that the formulation of the model did not constrain bks to have localized
structures; rather, the structures emerged while fitting the parameters to the scene image statistics.
If I generate sample images using a multivariate Gaussian distribution with the covariance matrix
exp(bkb

T
k ), the pixels located at the same positions as the elements of bk which have the same

signs will be correlated in the generated samples. On the other hand, if two elements of bk
have opposite signs, then the pixel values found at the same location with theses elements in the
generated samples will be anti-correlated.

(a) A subset of bks
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Figure 3.1: (a) 96 out of 576 randomly selected are shown. To visualize bks which are vectors,
I rearrange their elements into 32 × 32 matrix form. (b) The stacked histogram describing the
orientation and scale of bks. 0◦ corresponds to the horizontal orientation, 90◦ to the vertical
orientation. The bks are sorted from the most localized to the most global.The black, dark gray,
light gray and white parts of the bar graph correspond respectively to the group of the top 25%
localized structures, the groups of top 25–50% and 50–75% localized bks and the group of the
most global bks.
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When I categorize bks based on their orientation and scale, the horizontal and vertical orienta-
tions are dominant in light of the external physical structures. In terms of scale, horizontal units,
compared to other orientations, have a greater portion of the most global scales (Figure 3.1b). The
non-isotropic distribution of scale and orientation of bks, the common directions along which the
covariance units Ajs can vary, suggests the density component model invests more resources for
prevalent visual structures in scene images. This contrasts with most hand-designed visual fea-
tures in that they tend to allocate uniform bits of information for all orientations and scales.
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Figure 3.2: (a)–(h) Representative Aj on the left with corresponding color bars. The red corre-
sponds to positive values of wj,k while blue represents the negative values. On the right, top rows
show images generated from multivariate Gaussian distributions with exp(yjAj) as covariance
matrices (yj > 0). The bottom rows show scene images from the SUN database which have the
highest values of ŷj .

While bks showed localized properties, I find that wjs encode global information by incor-
porating the localized correlational structures encoded in the bks over space. To visualize each
wj , I first assign a bar to each bk which has the same location and orientation with that bk in the
image space. I then assign each bar a color value corresponding to the value of wj,k. I show eight
out of sixty wjs, equivalent to the Aj (Eq.5.2) in Figure 3.2; these wj reveal horizontal and ver-
tical line structures (Fig. 4.4a–4.4b), wall structures (Fig. 4.6a), depth contrasts between centers
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and sides (Fig. 4.6a), oblique lines (Fig. 3.2e), converging lines (Fig. 3.2f), contrasts between
top and bottom (Fig. 3.2g) and structures in upper part of images (Fig. 3.2h). I demonstrate the
global correlational structures encoded by wj by generating random samples from a multivariate
Gaussian distribution whose covariance matrices is exp(yjAj) (yj > 0). The generated samples
show visually similar structures as the corresponding covariance matrices. In addition, scene
images which have the highest values of yj among the SUN database contain visual structures
that resemble the visualization of correlational structures encoded in Aj .

3.3.2 Latent variables
Due to the sparsity constraint on the latent variables (Eq.5.3), the distribution of latent variables
ŷ peaks around zero (Figure 3.3a). Even though there exist 60 covariance units (Aj), only ap-
proximately 20 units are necessary for capturing the correlational structures of a scene image
(Figure 3.3b); when I order the elements of the latent variable ŷ of a scene image x according
to their magnitudes, and maintain the values of the most active elements, while setting others to
zero to compute the likelihood of x, the log likelihood is saturated when I use 20 most active
units. Note that this number corresponds to only less than 2% of the original dimensionality of
32× 32 grayscale images.
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Figure 3.3: (a) Distribution of values of ŷj for scene images in the SUN database (blue solid line)
and the constraint I imposed on yj (Eq.5.3, red dashed line). (b) The log likelihood computed
using the most active ŷjs. The x-axis corresponds to the number of most active units used (60
indicates using the original ŷ), while the y-axis corresponds to the log likelihood of the data com-
puted using the most active ŷjs. The blue line corresponds to the mean over the SUN database
and the red lines are the error bars.

When I visualize the covariance matrices determined by the latent variables, they are visually
similar to the salient visual features of the corresponding scene images (Figure 3.4). For each
sample scene image, I order its latent variables ŷ = {ŷ1, · · · , ŷJ} based on their magnitudes. I
show the logarithms of the cumulative covariance matrices,

∑k
i=1 ŷI(i)AI(i), in the first rows; I

corresponds to the order of ŷjs based on the absolute values in the descending order. The positive
and negative components of ŷI(k)AI(k) are separately displayed in the second and the third rows
separately for visual clarity. The second column corresponds to k = 1 and the right-most column
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corresponds to k = 6. Consistent with the sparse distribution of ŷ, the first few elements of the
ŷj encode the salient global structures of scene images.
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Figure 3.4: For each target image x, I infer its latent variable ŷ (Section 3.2.2) and order the
ŷjs according to their absolute values. The first rows show the cumulative sum of the logarithm
of the covariance matrix using the k most active ŷjs. The second and the third rows show the
positive and negative parts of ŷI(k)AI(k), respectively. I refers to the order of ŷjs based on their
magnitudes. This figure is best viewed in color.

I can also analyze the covariance matrices that best describes corresponding scene images by
spectral analysis. The spectral analysis reveals the directions along which the covariance matrices
are expanded or contracted. In Figure 3.5, I visualize the eigenvectors of the covariance matrices.
Note that the eigenvectors corresponding to the positive values of eigenvalues have similar global
structures to the scene images. Also, the structures encoded in the eigenvectors corresponding to
the negative values of the eigenvalues are absent in the corresponding scene images. Consistent
with the previous analysis, this results suggest that the directions along which the covariance
matrices are extracted encode the global structures of scene images.

Lastly, I show randomly generated samples drawn from multivariate Gaussian distributions
with covariance matrices parameterized by latent variables corresponding to target scenes, re-
spectively (Figure 3.6). It is interesting to note that the generated samples only preserve global
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structures corresponding to low frequency information. Note that the generated samples, how-
ever, do not preserve the edges present in the original images and suggests that the covariance
structures in images do not necessarily preserve contours.

Figure 3.5: For each target image x, I show eigenvectors corresponding to the positive values
(upper row) and the negative values (lower row) of the eigenvalues.

Figure 3.6: Generated random samples from multivariate Gaussian distributions with the covari-
ance matrices parameterized by latent variables corresponding to original images.
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3.4 Similarity measure based on the distribution coding model

In the previous section, I showed that the latent variables ŷ capture the correlational information
which is consistent with the visual structures of scene images and that this representation is
efficient in that it requires only a small number of variables to encode the salient properties of
scene images. In this section, I discuss how I can utilize the correlational structures encoded in
the latent variables as a scene similarity measure and show image retrieval results based on it.

Once I train the distribution coding model and infer the latent variables for scene images,
I can develop a metric for measuring the scene similarities in terms of correlational structures
using the joint probability of a target scene image xt and a latent variable ŷc of a candidate scene
image xc,

p(xt, ŷc) ∝ p(xt|ŷc)p(ŷc) (3.6)

The metric consists of two terms; the first term indicates the level of similarity between a
target scene image and a candidate scene image in terms of correlational structures. If two data
points, xt (a target point) and xc (a candidate point), have similar correlational structures, then
xt will be highly likely under the multivariate Gaussian distribution with the covariance matrix
determined by the latent variable for xc; thus the conditional probability of xt given ŷc, p(xt|ŷc)
(Eq. 3.1), will be high. Consider the two dimensional example illustrated in Figure 3.7. In the
figure, the ovals represent the distributions (characterized by the conditional covariance matrix)
that best explains the corresponding data points under the model.

x1

x2

x2

x3

xt

xs

x1

xo

Figure 3.7: Schematic representation of conditional normal distributions p(xt|ŷ). The blue and
red ovals represent the conditional covariance matrix C(ŷ1) (Eq.5.3) and C(ŷ2) each, where ŷi
indicates the latent variable optimized for xi. The red oval represents the conditional normal
distribution that captures anti-correlated x1 and x2. Under the conditional normal distribution
represented by this covariance matrix, xt will have low likelihood. The purple oval optimized
for x3 encodes positive correlations between x1 and x2, but to a different degree from the blue
oval. Thus, xt will have low conditional probability under the distribution optimized for x3.
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The two data points xt and xs show similar correlational structures to x1. Thus, xt and xs are
well captured by the covariance matrix defined by ŷ1, which is the latent variable for x1. On the
other hand, covariance matrices which are optimized for data points with different correlational
structures from those of xt and xs (for instance, x2 and x3 in Figure 3.7) return low conditional
probability values of xt and xs.

In image space, each axis would correspond to individual pixel values of images. Note that
the representation achieves invariance to the pixel values of images as illustrated in Figure 3.7)
in that the model considers xt to be more similar to x1 than x2 and x3 even though the two
are closer to xt in terms of the Euclidean distances based on pixel values. The analogy extends
to the high dimensional space. The reason I do not use p(x|ŷt) to find similar data points to a
target image xt is that data points near the origin (for instance, xo in Figure 3.7) will be well
captured by any multivariate Gaussian distributions regardless of their covariance information.
The second term in the metric, p(ŷc), favors the correlational structures that can be described by
sparse latent variables; in the case that two candidates return the same value of the conditional
probabilities of the target image given their latent variables, the metric prefers the one that results
in sparser representation, as it returns higher prior probability values (Eq. 5.3). I demonstrate the
usage of the joint probability described above using the image retrieval task; for a target image
xt, I retrieve candidate scene images from a large scene image pool (I used 108,754 images in
the SUN database as the pool), whose latent variable returns the highest joint probability value
with xt, or equivalently the lowest value of −p(xt, ŷ) . I call this the probabilistic correlational
distance (PCD) hereafter. In Figure 3.8, I show the five most similar candidate scene images
from 108,754 images retrieved with PCD, GIST, HOG, PHOG and spatial pyramid of SIFT. For
GIST and HOG, I tried three different spatial scales (1 × 1, 2 × 2 and 4 × 4) and show the
qualitatively best results. For all other representations than the distribution coding model, I used
the Euclidean distances as similarity measures. Even though the model representation requires
a small number of units to represent a scene image, the image retrieval results are qualitatively
satisfactory. The distribution coding model achieves the efficiency by projecting scene images
based on their characteristic features rather than representing scene images with fixed number
of scales and orientations. In addition, it takes approximately 0.1 seconds to retrieve the similar
images to targets using PCD which is fast enough for real-time image retrieval.

3.5 Quantitative evaluation of scene similarity measures
To investigate whether the global correlational information encoded by the distribution coding
model is consistent with the perceptual similarities between scene images, I conducted an ex-
periment in which subjects were asked to select candidate scene images that were most similar
to a target scene image in terms of spatial layout. In each trial, a target image from one of 397
semantic categories of the SUN database [75] was presented together with 25 randomly chosen
candidate scene images. Subjects were allowed to select more than one candidate images if they
were equally similar to the target images. I call the selected candidate images similar images.
In the trials when none of the candidate images were perceptually similar to the target images
or when the target images mainly consisted of objects and it was thus difficult to get a sense of
spatial layout of the scene, subjects could skip the trial. Subjects were specifically instructed
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: (a)–(h) Scene image retrieval results. The top left portion shows the target scene
images. The retrieved images are ordered so that the left-most columns shows the most similar
and the right-most columns show the 5 th similar candidate scene images to the targets. From the
top to the bottom rows correspond to PCD, GIST(4×4), HOG(2×2), PHOG (3 levels), spatial
pyramid of SIFT (3 levels). For (a)–(f) the target images are from the SUN database while the
target images shown in (g)–(h) are not.

to focus on the shape and spatial layout of the scenes and to ignore non-spatial attributes such
as color or types of objects in the scenes. Candidate images were chosen only from the same
semantic categories as the target images, in order to control the difficulty of the tasks. Without
such constraints, candidate images from different scene categories are too dissimilar to make
meaningful judgements. In addition, using candidate images from the same category prevents
subjects from depending on any semantic information to perform the task. Five subjects (one fe-
male; with normal or corrected to normal vision; 22-33 years old) participated in the experiment.
I collected 2597 trials and the subjects selected 1.39 candidate images per trial on average (the
number of candidate images selected per trial ranged from 0 to 13). Out of 2597 trials, subjects
selected more than one similar images in 834 trials and selected zero similar images in 825 trials.

I evaluate the performances of various representations based on two criteria. The first one is
the percentage of trials in which the similar images coincided with the closest candidate image to
the target in a feature representation, the closest image. If a feature representation is consistent
with the perceptual properties of images, the closest image will be perceived to be similar to the
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targets. The other criterion is the mean rank of the similar images when all the candidates in a trial
are sorted in the ascending order in terms of the distances to the target in each representation.
I assume that similar images will be more likely to have shorter distances to the targets than
others and thus will have lower mean ranks of similar images if the distance is consistent with
perception.

Feature Resolution Mean Ranks
Total In O-N O-M

DCM 32×32 7.01 5.91 7.16 6.93
GIST(4×4) 128×128 10.7 9.67 10.4 11.0

ICA 32×32 11.7 10.7 11.1 12.2
HOG(2×2) 128×128 10.9 9.70 10.9 10.9

PHOG(L=3) 128×128 11.0 11.0 10.9 11.0
SIFT(L=3) 128×128 9.78 9.35 9.88 9.72

Table 3.2: Performance evaluation of various representations for the perceptual experiment on
scene layout similarities. I show detailed performances for subcategories of scene images. In,
O-N and O-M correspond to Indoor, Outdoor natural and outdoor manmade scenes, respectively.
The percentage refers to the fraction of trials in which candidate images retrieved based on each
representation is reported to be similar to the targets. Mean Ranks refer to the average rank
of the selected candidate scene images based on the similarity between the candidates and the
corresponding targets based on each representation

I use PCD introduced in the previous section as the scene similarity measure for the distri-
bution coding model. For other representations, the Euclidean distances between the features
extracted from images were adopted as the similarity measures. As I trained the distribution
coding model and ICA on images of 32× 32 resolutions, I downsampled the original images to
32× 32 pixels and then extracted the corresponding features. For all other state-of-the-art repre-
sentations, I extracted the features from images of 128 × 128 resolutions. As reported in Table
3.2, PCD shows the most consistencies with the perceptual experiment in terms of both criteria.
Note that the percentage criterion only takes into account the closest images whereas the mean
ranks criteria considers all the similar images within a trial.

3.6 Conclusion
We trained the distribution coding model to learn the correlational information on the whole
scene images. The model parameters show global correlational structures reflecting the regu-
larities found in the scene images. Adaptive representation to the characteristic statistics allows
encoding of the data with a small number of latent variables. In addition, the experiment for
perceptual scene image similarities suggest that the model representation is a good scene image
descriptor with significantly greater consistency with perceptual properties of the global struc-
tures in scene images. The probabilistic correlational distance can be used for image retrieval
systems. Also the latent variable encoding the covariance information is significantly more pre-
dictive of perceptual spatial layouts (depth and openness) of scene images.
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Our approach can be extended to larger size images for encoding more detailed local infor-
mation by first learning the correlational structures on local patches and integrating the local
information over space. Also, the probabilistic distance measure introduced in this paper can be
utilized not only for whole image retrieval but also for finding local interest matching points be-
tween images. As the model represents images or patches based on their adaptive representation
rather than fixed number of scales and orientations, it could find match points more accurately
especially in natural scenes in which points and lines are not defined by as high contrasts as in-
door or manmade scenes. Extending the model training to images describing mainly of objects
can also be useful for understanding object invariances under diverse viewing angles or nonrigid
objects. Lastly, the analysis can be applied to face recognition system.
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Chapter 4

Adaptive scene representation based on
multiscale correlational patterns

4.1 Introduction

Automatic scene recognition is essential for many aspects of vision, including visual memory,
contextual cues for visual recognition, spatial memory for location, or navigation. Recently, the
vision community has invested tremendous effort towards solving it, by providing plentiful and
accurately labeled image datasets for intelligent systems to be trained on [10, 75] . However, the
growth in the size of scene databases challenges the development of visual features that are suited
for perceptual scene discrimination and at the same time can tolerate irrelevant variations. For
such large-scale datasets, visual features and algorithms that worked well for smaller datasets are
not as successful [11, 41]. This is because usually the large-scale databases contain much finer
scene categories, which may be more difficult to discriminate from each other especially when
differences between categories are subtle compared to irrelevant variations among scene images
belonging to the same category. Moreover, with finer scene categories often comes the issue of
having fewer positive examples for training. These are all serious challenges to the development
of optimal features for reliable scene classification.

Accurate registration of global structure is a key property of a scene descriptor that is sensi-
tive enough to discriminate densely sampled scene images but is robust to irrelevant variations.
Global structures of scene images give rise to perceptual spatial layout properties of scene images
such as depth [60], openness and perspective [20]. In addition, scene images that belong to the
same category tend to have similar global structures [44] suggesting that the global information
contributes to semantic properties of scenes. Also, contextual information driven from the global
structures facilitates object detection [46].

Global structures of scene images have been typically extracted from large images in a fine-
to-coarse fashion. Original images are first divided into small, regularly spaced patches. From
these, fine scale information is extracted and used for constructing the coarse scale information.
To that end, the most popular approach so far [6, 9, 45, 74] has been to concatenate local features
extracted from predefined locations. Therefore, global structure encoded in these representations
is heavily dependent on fine scale information; the underlying assumption here is that coarse
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Figure 4.1: LP and the patterns of their responses to linear filters. Left: I show two exemplar
scene images with distinct global properties; the upper row shows an open scene with relatively
far mean depth and not much gradient in depth whereas the one in the bottom describes a closed
scene with relatively uniform depth. The resolutions of L0, L1, L2 and L3 correspond to 128 ×
128, 64 × 64, 32 × 32 and 16 × 16, respectively. L3 is displayed in twice the size of its original
resolution for visualization purpose. Right: The plots show the filter responses of LP extracted
from 200 scene images with high openness ratings (top row) [56] and another 200 scene images
with low openness (bottom row). The corresponding linear filters are shown on each axis. The
black cross symbols in each panel corresponds to the sample image shown on the left. The color
code on the top left of each panel indicates the corresponding locations in the pyramid. The filter
responses are centered around zero and will be hard to be distinguished when the responses are
overlapped. However, two different populations of scene images with distinct global structures
reveal distinct correlational patterns.

scale representation is well approximated by local structure. A potential disadvantage of encod-
ing global structure by concatenating local structures is that the representation is highly sensitive
to the choice of parameters in terms of scales and orientations [56].

Another technique for encoding global structure based on local structure is computing the
mean or preserving the maximum responses of local responses over restricted regions [7, 32, 61].
These techniques have been actively developed for mid-level representations and the features de-
rived from them have been shown to be responsive to object parts [77]. However, when there are
competing structures, only the most dominating one among all local features over the restricted
region will be encoded and passed on to the coarse level representation. This limits the effec-
tiveness of such approaches for encoding the global structures, since sensitive representation of
global structures often requires registering attenuated long-range patterns.

Motivated by the need for more sophisticated encoding of global structures in scene images,
I propose a multiscale scene descriptor. To achieve this, I first decompose original images into
separate scales and extract features separately for each scale [4]. This approach allows to encode
the generic coarse scale information rather than building it based on fine scale information. I use
the Laplacian pyramids (LP) [8] as a means to disentangle original images into separate layers
of localized spatial frequencies. Since LP representation is overcomplete [64], extracting lower
dimensional features from the over-complete representation is necessary to take advantage of the
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separation among different scales. As it is not well understood what type of features are useful
for LP, I propose to learn adaptive representations [49, 53, 71] of LP rather than to use image
descriptors hand-tailored to the properties of original images.

Due to the high computational costs and the limited number of samples for training, adap-
tive representations are typically trained on relatively small size patches rather than on entire
images [28]. Similarly to the previously mentioned approaches, this method is limited by the
assumption that the long-range global properties of images are contained in the regularly spaced
patches; as a result, such representation is sensitive to the alignment of the local patches. Adap-
tive image representations on top of LP can handle this issue naturally. Highest level sub-bands
which contain the most coarse scale information are low-dimensional (in Fig. 4.1, L3 is of 16×16
pixels) and therefore I can train adaptive representations on them without further dividing them
into smaller size patches. For lower-level sub-bands, I still need to divide them into grids to
train the adaptive representations. However, as the lower-level sub-bands contain high spatial
frequency information, the potential information loss by dividing into grids is less drastic.

In this chapter, I automatically learn an appropriate feature representation for LP by directly
modeling their probability density. This is based on the observation that scene images of dis-
tinct perceptual properties demonstrate different correlational patterns of linear filter responses
for separate layers of the pyramids (Figure 4.1). The difference in correlational patterns of re-
sponses to pairs of linear filters accumulates as I consider more filters and regions in the pyra-
mids to distinguish scene images with distinct properties. These patterns motivated training the
density coding model (DCM) [29] discussed in Chapter 3 on LP since DCM essentially learns
the dictionary of filters that best encodes the population of data in terms of their correlational
structures. Directly modeling the statistical distributions of data leads to a representation that
achieves invariance to nonessential variations by characterizing each sample with respect to the
major directions along which the population of samples is aligned.

4.2 Related work

4.2.1 Laplacian pyramid

To decompose scene images into distinct scale sub-bands, I employ the Laplacian pyramid
(LP) [8]. It first approximates a signal with its low-pass filtered and down sampled version.
The higher resolution version is predicted by upsampling and filtering the low-pass filtered sig-
nal. The difference between the predicted version and the original version is stored and the
process repeats. Figure 4.1 illustrates LP of examplar images; here, I demonstrate 4-layers of
LP extracted from 128× 128 grayscale images. The coarse band (L3 in Figure 4.1) encodes the
global information in the original image while the finer bands (L0–L2) contain increasingly lo-
calized information. The benefit of this pyramidal representation is that features extracted from
each level bring new information; the information in the higher level bands is not attainable from
the lower level bands.
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4.3 Training data and preprocessing
I trained DCM on a large scale scene database, the SUN database [75]. I first converted the im-
ages into grayscale and then resized them so that the shorter dimension (either height or width) of
each image corresponds to 128 pixels. To increase the number of training examples, I randomly
sampled up to 10 subsamples of 128 × 128 pixels along the longer axis for each image in the
dataset. I extracted 4-layer LP (L0, L1, L2 and L3 are 128× 128, 64× 64, 32× 32 and 16× 16
pixels each) using “9-7” filters [12] and then divided each sub-band into equally spaced patches
so that each patch is of size 16× 16 (L0, L1, L2 and L3 results in 1× 1, 2× 2, 4× 4 and 16× 16
grids. I separately PCA-whitened 16× 16 patches from each layer to maintain 99% of variance
and avoid wasting resources modeling noisier parts.

4.4 Model parameters
As discussed in Chapter 3, bk encodes a common direction along which the covariance units
Aj’s can vary. When trained on different layers of LP of scene images, bk’s reveal localized
structures both in space and spatial frequencies (Fig. 4.2). Note that the model formulation did
not constrain bk’s to have localized structures; rather, these automatically emerged while fitting
the parameters to the scene image statistics.

(a) bk trained on L3 (b) bk trained on L0

Figure 4.2: Random subsets of bk optimized for each layer. I only show results trained on L3

and L0; bks trained on L1 and L2 have qualitatively similar structures to L0.

To estimate the distribution of scales and orientations of bks, I fit them with Gabor filters1.
1I used the routine developed in [13]. http://www.snl.salk.edu/˜edoi/resource.html
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The scale of bks are defined as
√
σ2
x + σ2

y . The bks trained on L0–L2 show similar distribution
of scales and orientations (Fig. 4.3); the bks with small receptive fields and the horizontal and
vertical orientations dominate. On the other hand, bks fitted to the low-pass filtered images, L3,
have higher fractions of units with larger receptive fields. Also, L3 show more evenly distributed
orientations. The non-isotropic distribution of scale and orientation of bks suggests that DCM
allocates more resources to prevalent visual structures in scene images. This contrasts with
most hand-designed visual features which tend to allocate uniform bits of information to all
orientations and scales.
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Figure 4.3: Distributions of scales and orientations of bks trained on separate layers. L3 reveals
the basis functions with larger receptive fields and more even distributions in terms of orientations
compared to other layers. bks trained on L0–L3 show similar distributions to each other.

To visualize wjs, I first assign a bar to each bk which has the same location and orientation
with that bk in the image space based on the Gabor filters fitted to it. I then assign a color
value corresponding to wj,k to each bar. In Figure 4.4, I show a subset of wj trained on L3. I
demonstrate the global correlational structures encoded by wj by generating random samples
from a multivariate Gaussian distribution centered around zero whose covariance matrices is
exp(yjAj) (yj > 0). The generated samples show qualitatively similar visual structures with the
corresponding covariance matrices. In addition, scene images which have the highest values of
ŷj among the samples in [56] contain visual structures that resemble the correlational structures
encoded in Aj . In contrast to L3, wj trained on L0–L2 reveal high frequency structures (Fig. 4.5).
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Figure 4.4: Representative wj trained on L3 with corresponding color bars. Red corresponds to
positive values of wj,k while blue represents the negative values. On the right, top rows show im-
ages generated from multivariate Gaussian distributions with exp(yjAj) as covariance matrices
(yj > 0, Eq. 5.2). The bottom rows show scene images from [56] which have the highest values
of ŷj . Note that the images in the top rows are of size 16 × 16 and the bottom rows 128 × 128.
Best viewed in color and in magnification.

Figure 4.5: Representative wj trained on L2 and the random samples generated using the corre-
sponding units. Some units have localized high spatial frequency structures (left) whereas others
show high spatial frequency structures over larger receptive field (right). L0–L2 show qualita-
tively similar structures. Best viewed in color and in magnification.

28



4.5 Experimental Results

For new scene images, I first convert them into 128×128 gray scale images, extract LP and infer
the latent variables using the model parameters as discussed in Section 4.4. I employ the latent
variables for each image to predict semantic categories (Section 4.5.1) and perceptual spatial
layout ratings (Section 4.5.2).

4.5.1 Scene categorization

In this section, I examine the latent variables of DCM as the visual features for encoding the scene
categories. I trained support vector machine classifier with radial basis function (RBF) kernels.
The σ values of RBF kernels were selected by cross validation. For individual categories in a
dataset, I train a 1-vs.-all classifier on a train set; for each scene category, I set the examples from
the scene category as positive and the rest as negative. As the baseline, I train SVM classifiers
using spatial pyramid (SP) [32], HOG [9], PHOG [6] and GIST [44].

Table 4.1 shows the AUCs of 1-vs.-all classifiers for scene categorization. For each dataset,
I report the average over all categories in the dataset (“Total”) and also the averages over cate-
gories that belong to indoor (In), outdoor natural (O-N) and outdoor manmade (O-M) scenes sep-
arately. For LabelMe dataset (60–410 color images of 256×256 pixels from 8 categories) [44],
the performance of DCM is on par with baseline features (PHOG). For a larger dataset, 15scene
dataset [17, 32], DCM shows significantly better performance over other baseline representations
overall. DCM is especially useful for 1-vs.-all classifiers for indoor scene categories (“bedroom”,
“kitchen”, “living room”, “office” and “store”).

For SUN database [75], I performed the scene categorization task at two levels of the hi-
erarchy; the highest level in which scene images are categorized into indoor, outdoor natural
and outdoor man-made scenes and the leaf level with 397 scene categories. DCM significantly
outperforms other baseline representations although by narrow margin. This is because the per-
formance of each feature varies depending on the property of the target categories. Figure 4.6
shows a few examples of leaf-level categories in SUN database for which the multiscale DCM
representation yields superior performance to others.

The performance gap between different methods is widened for finer-scale scene categoriza-
tion. For instance, for LabelMe and 15scene, the gap between the best and the worst performance
on each category is 0.04 (ranging from 0.01 to 0.09) and 0.06 (ranging from 0.01 to 0.13) on av-
erage whereas the leaf level scene categorization of SUN database has the average gap is 0.11
(ranging from 0.01 to 0.28). Also, the average range of each feature for LabelMe is 0.10, whereas
for the leaf-level categorization for SUN it is 0.40. This implies that for more challenging scene
categorization, which discriminates scene categories at finer-scales and inherently has smaller
number of positive examples, it is difficult to develop an optimal feature that works well for all
categories. The multiscale DCM provides a principled way to mitigate this challenge by encod-
ing scene structures over multiple scales and learning the optimal representation based on data
statistics.
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Condition DCM SP HOG PHOG GIST

LabelMe
O-N 0.95 0.93 0.93 0.95 0.93
O-M 0.97 0.95 0.93 0.97 0.96
Total 0.96 0.94 0.93 0.96 0.94

15Scene

In 0.93 0.87 0.86 0.88 0.91
O-N 0.96 0.94 0.93 0.95 0.95
O-M 0.93 0.90 0.88 0.92 0.91
Total 0.94 0.90 0.89 0.92 0.92

SUN

In 0.91 0.84 0.84 0.86 0.87
O-N 0.95 0.88 0.87 0.93 0.93
O-M 0.83 0.76 0.77 0.80 0.80
Total 0.89 0.83 0.83 0.87 0.87

SUN Leaf

In 0.85 0.78 0.79 0.81 0.84
O-N 0.90 0.83 0.84 0.87 0.89
O-M 0.85 0.78 0.80 0.83 0.84
Total 0.86 0.79 0.80 0.83 0.85

Table 4.1: Scene classification performance (AUC) of 1-vs-all nonlinear SVM classifiers applied
to Indoor (In), Outdoor Natural (O-N), and Outdoor Man-made (O-M) scenes. Bold-faced figures
indicate statistical significance (paired t-test; p < 0.05).
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Figure 4.6: ROC curves of 1-vs.-all classifiers trained on SUN database.

4.5.2 Perceptual spatial layout
In this section, I evaluate how well our proposed scene descriptor predicts the perceptual spatial
layouts of scene images using the human ratings collected in [56]. I use multilinear regression
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with stepwise method [14] for predicting the perceptual ratings of depth, openness and perspec-
tive collected on a 1-to-6 continuous scale. Mean depth [44] refers to depth in a global sense
related to the physical size of a scene (1= close to the camera, 6= far). Openness [20] of a scene
refers to the quantity and location of boundaries in a scene (1= large portion of unobstructed sky
and dominant horizontal lines; 6= closed scenes with limited spatial extent). Perspective [48]
of a scene describes the amount of depth expansion within the scene (1= strong convergence
between the parallel lines; 6= scenes with surfaces at fairly uniform distances from the camera).

Table 4.2 shows the mean error of predicting the perceptual ratings. The dataset consists of
urban scenes and natural scenes. I train and test on each category separately and also using both
categories (“Total” condition in Table 4.2). DCM outperforms other baseline features for pre-
dicting the perceptual ratings using both urban and natural scenes. DCM is especially accurate
at predicting openness ratings. For perspective ratings, GIST and PHOG results in accurate pre-
dictions using only natural and urban scenes respectively, but for more general task of predicting
perspective ratings irrespective of contents, DCM shows better performance. Overall, DCM out-
performs in predicting perceptual ratings in a scenario where the train and the test sets consist of
scene images with more diversity in terms of contents (“Total” condition).

Condition DCM SP HOG PHOG GIST

Openness
Natural 0.80 1.08 1.08 0.99 1.02
Urban 0.70 1.04 1.03 0.90 0.94
Total 0.77 1.06 1.09 0.99 1.00

Depth
Natural 0.69 0.74 0.75 0.72 0.69
Urban 0.60 0.70 0.66 0.63 0.62
Total 0.66 0.72 0.72 0.69 0.68

Perspective
Natural 1.21 1.28 1.20 1.20 1.17
Urban 1.18 1.36 1.24 1.15 1.20
Total 1.19 1.33 1.30 1.22 1.23

Table 4.2: Error of stepwise regression functions for predicting the perceptual spatial layout
ratings. Bold faced fonts indicate statistical significance (paired t-tests; p < 0.01).

4.6 Conclusion
I proposed an adaptive representation which encodes the global structure of scene images by
separating the input into different scales and extracting correlational structures separately from
each scales with DCM. To facilitate and stabilize the training procedure, I optimized the param-
eters by imposing constraints on their magnitudes (L2-norm), leading to a manifold algorithm.
The model affords intuitive visualization of statistical properties of scene images and this can be
applicable for developing future scene descriptors. I demonstrate that our approach is useful for
characterizing scene images in large scale databases which requires more sensitive encoding of
global properties informative of high-level properties such as semantic and perceptual proper-
ties. Future research will develop more compact representation of the global properties of scene
images by exploiting the conditional distribution of fine scale structures given the corresponding
coarse scale structures.
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Chapter 5

Learning image manifold structures with
canonical images and correlational
structure

5.1 Introduction

The space of scene images are inherently high dimensional and therefore it is difficult to study
their manifold structures. Previous studies have applied manifold learning techniques to images
and demonstrated the effect of lighting conditions and view points by projecting them onto lower
dimensional (2D) spaces [57, 59, 67, 73]. However, the datasets adopted in those studies consist
of very carefully curated images such as an object or a face viewed from many different angles
and under different lighting conditions or hand-written figures of a number collected from many
people. While these studies certainly shed light on the high-dimensional shapes of image mani-
folds, the results cannot be easily generalized since it is not practical to collect such well curated
datasets for several objets or scene types. To develop a more general framework for studying
high-dimensional image manifold structures, one should develop a more general model which
depends on less conservative assumptions. In this chapter, I introduce a way to to do so by as-
suming the high-dimensional manifolds as mixtures centered around a set of canonical points
and learn the covariances between samples and the canonical points to which they are close by.
To learn the detailed structures of the local manifolds, I learn the covariance matrices specialized
for each data point around its closest canonical point.

Subdividing a dataset into smaller groups and finding representatives of such small groups has
been actively studied in many domains such as images, biological and geological data[15, 18, 58,
58]. However, the previous methods often fail to extend to larger dataset with high-dimensional
data points such as images resulting in few clusters that are too general to encode the detailed
structures of the local manifolds. I develop an algorithm which discovers clusters of images
specialized enough to keep the local structures of the manifolds. I adopt the euclidean distances
between the data points as a criterion for assigning a sample to a cluster. When the dataset is
not sampled densely enough, however, the distance may fail to capture the true similarities or
dissimilarities between samples. To improve the accuracy of the euclidean distances, I introduce
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a procedure called image normalization in which I iteratively apply physically plausible transfor-
mations to a sample until the distance between the transformed samples and a canonical image
converges. The types of physically plausible transformations can vary according to the nature of
datasets; in this work, I considered a sample image as a 2-dimensional plane and projected the
plane onto other planes by varying the scale, translation and rotations (Figure 5.1). These trans-
formations approximately mimic the effects of different camera angles, positions and the focal
lengths. I then measure the minimum distances between the set of transformed samples based on
a real sample and a canonical point. This way, I am allowing images describing a same scene but
taken with small range of camera parameter perturbations to be taken into account when judging
a sample’s similarity to others. This procedure allows the system to be invariant to the camera
transformations, which is more general form of invariance to local translations covered in [3, 34].
Also, identical forms of transformations were applied to all the data points without any need to
approximating the transformations for each sample [63]. Inferring the camera parameters or spa-
tial layouts from a single picture has been well studied [24]. Some algorithms depend on finding
reliable vanishing points [66] and others are specialized for indoor scenes with walls, floors and
ceilings [21]. My approach was developed because the previous studies do not work well for
general cases when a certain reference structure cannot be reliably detected and the algorithms
are often computationally expensive to be applied to a large-scale dataset.

Once the clusters and the canonical points are discovered and the samples are concentrated
around them, I train the density component model discussed in Chapter 3 centered around the
canonical points using the tightened data points. Learning the latent models for multivariate
Gaussian distributions has been mostly approached with the assumption that the mean component
is a linear sum of a set of basis functions [54, 65]. The basis functions trained for the means are
inherently off from the actual data manifolds by definition, and it is difficult to read any structures
from them. My approach allows to anchor the datasets along the canonical images close to the
actual data points and reveals interesting patterns inherent in data.

5.2 Image normalization
In this section, I discuss the model I used for applying the physically plausible transformations
to input image.

5.2.1 Background

When a plane is projected onto another plane, a point a = (a, b, c) is projected onto a′ =
(a′, b′, c′). The relationship between the two is represented by a non-singular 3× 3 matrix:a′b′

c′

 = H

ab
c

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

ab
c


In other words, the projection of a = (a, b, c) onto another point would result in 2D α =

(α, β)
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α =
a′

c′
=
h11a+ h12b+ h13c

h31a+ h32b+ h33c
β =

b′

c′
=
h21a+ h22b+ h23c

h31a+ h32b+ h33c

Projection of a 3D object to a plane through a camera consist of rotation around x-axis θ,
y-axis φ and z-axis ψ, translation along x-, y-, z- axis, tx, ty, and tz, camera focal length fx, fy
and camera centers cx and cy.

H = MR

=

fx 0 cx
0 fy cy
0 0 1

 cos(θ) cos(φ) sin(θ) cos(ψ) + cos(θ) sin(φ) sin(ψ) tx
− sin(θ) cos(φ) cos(θ) cos(ψ)− sin(θ) sin(φ) sin(ψ) ty

sin(φ) − cos(φ) sin(ψ) tz


As it is expensive to extract the camera parameters of a picture [23], I consider each image as

a 2D plane and assume that the pictures has been a projection of the plane with the default camera
parameters where the focal length was set to 1 and all translations and rotations parameters to
zeros. To simplify our model, I assume the cameras are centered at zero (cx = cy = 0) and
the vertical and the horizontal focal lengths are equal to each other (fx = fy) resulting in the
simplified version of H:

H = MR

=

f 0 0
0 f 0
0 0 1

 cos(θ) cos(φ) sin(θ) cos(ψ) + cos(θ) sin(φ) sin(ψ) tx
− sin(θ) cos(φ) cos(θ) cos(ψ)− sin(θ) sin(φ) sin(ψ) ty

sin(φ) − cos(φ) sin(ψ) tz



(a) Rotation around x-axis (b) Rotation around y-axis (c) Rotation around z-axis

(d) Translation along x-axis (e) Translation along y-axis (f) Translation along z-axis

(g) Focal length

Figure 5.1: Types of transformations applied. In each panel, the center (3rd column) shows the
original images.
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5.2.2 Image projection as linear operation
When camera transformations are applied to an image, the projected images become of different
shape or resolution than the original image. For learning the probabilistic models on the whole
scene images, it is required that all the normalized images are of the same size. To tackle this
issue, I modeled the transformations as a matrix multiplication form. I assumed that the original
image is extended at its edges and corners by its mirrored form to avoid the boundary issues such
as some pixels of the projected images being blank.

Given a projection matrix H, I model the intensity of the projected image y′ as a weighted
sum of intensities of the original image y.

y′(α) ∼ N

(∑
a

sα,ay(a),Σα

)
or in the matrix form,

y′ ∼ N (Sy,Σ)

where y and y′ are an origin image and its projection in vector forms, y(a) corresponds to an
entry of y. The weight assigned to y(a) for y′(α), sα,a, which corresponds to is (α, a) th entry
of S, is formulated as

log(sα,a) ∝ − 1
2σ2

(
α− h11a+ h12b+ h13

h31a+ h32b+ h33

)2

− 1
2σ2

(
β − h21a+ h22b+ h23

h31a+ h32b+ h33

)2

∝ − 1
2σ2

(α(h31a+ h32b+ h33)− (h11a+ h12b+ h13))2

− 1
2σ2

(β(h31a+ h32b+ h33)− (h21a+ h22b+ h23))2

h.. are functions of the parameters f, θ, ψ, φ, tx, ty and tz. Figure 5.12 shows how manipu-
lating each parameter changes the way original images are projected. The above formulation
corresponds to applying Gaussian filters to the original image y to get its projected image y′. σ
determines the width of the Gaussian filters; if it is set to too small value each pixel in the pro-
jected image would be drawn from one pixel of the original image and may cause the projected
image to be blocky. On the other hand, high values of σ would return blurry projected images. I
fixed the σ as three pixels.

5.2.3 Image normalization algorithm
To find a set of representative points or canonical points and let the data points to be normalized
to them, I start with a random sample from the dataset as a canonical point. Then, I normalize
samples in the dataset so that the sample gets closer to one of the canonical points. If a normalized
sample is close enough to one of the canonical points, I update the canonical point as the weighted
linear sum of the canonical image and the normalized sample. If not, the sample is added as a
new canonical point. Here, I used the euclidean distances between points as the distance measure
d(x, a) and the distance between a sample and a set of points was defined as the minimum
distance between the sample and the elements of the canonical set.
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The set of physically plausible transformations may vary for different datasets and applica-
tions. In this work, the set of transformations consist of 70 types along seven types of camera
parameters (f, θ, ψ, φ, tx, ty and tz) illustrated in Figure 5.1 and ten values per each parameter.

Figure 5.2 demonstrates lines 7–9 of the Algorithm applied to scene images and their cor-
responding canonical images. While the euclidean distance is not the most accurate measure
of the dissimilarities between high-dimensional samples, searching for transformations which
projects the input onto another image with similar structures allows the overall pattern becomes
better matched to their corresponding canonical images. I run the algorithm several times and use
the set of canonical images and the corresponding normalized dataset which have the minimum
mean distance between the normalized images and the set of canonical images.

Algorithm 1 Data normalization
1: Input : X = {x1, · · · ,xN} and F = a set of physically plausible transformations
2: τ = a predefined threshold for distances by user
3: Output : a set of canonical points A, normalized dataset Y = {y1, · · · ,yN}
4: initialize A = {a1 = x1} and n1 = 1
5: for i := 2 to N do
6: yi = xi
7: while not converged do
8: fm = arg minf∈F d(f(yi),A)
9: yi = fm(yi)

10: end while
11: if (d(yi,A) < τ ) then
12: l = arg minl d(yi, al)

13: al ←
nlal + yi
nl + 1

14: nl ← nl + 1
15: else
16: A← A ∪ xi
17: end if
18: end for
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(a) Rotation around x-axis followed by rotation around z-axis

0.5 1 1.5 2 2.5 3 3.5

32
33
34
35
36
37
38

I i

D
is
ta
nc
e

Iterations

(b) Rotation around z-axis followed by translation along x-axis

Figure 5.2: Illustration of the image normalization. The first column shows the original images.
The scenes in the second column is the transformed version of the original images in the first col-
umn. The types of transformations and the degrees of such transformations were selected such
that the transformed scene image is closest to the corresponding canonical images shown in the
last columns. The images in the third column is the transformed version of the images in the sec-
ond column. The transformation which minimizes the distance between the transformed image
to the canonical point is selected until the distance converges. In both examples in (a) and (b),
they converged in two iterations but the number of iterations until convergence varies between
zero to seven in the dataset. Also note that a sample image can be closest to one canonical point
at an iterations but be closer to other at later iterations. The plots in the lower rows demonstrate
the decrease in the euclidean distances. The insets visualize the same transformations applied to
the images through a prototypical image.
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5.3 Canonical scene images
I applied the image normalization procedure to the SUN database [75]. I used grayscale scene
images with the resolution of 36 × 36 and measured the distance between the center 32 × 32
regions for boundary issues in applying the transformations. The number of canonical points
A is dependent on the threshold τ ; τ set to an extremely small value would result in all the
samples in the dataset as the canonical images and an extremely high value would result in one
canonical image which is not informative. I set the τ as 10 for 32× 32 scene images whose pixel
values ranged from 0 to one because this value results in perceptually similar scene images to be
assigned to the same canonical clusters and also return reasonable number of clusters. I exclude
the canonical points with few images assigned to them (nl) from further analysis. The resulting
146 canonical images covered 90% of data points and the rest were unassigned to any canonical
images. I assigned the rest to default category and assumed they were derived from a distribution
centered around zero.

Figures 5.3–5.4 show samples of canonical images emerged from the image normalization
process in the first column together with scene images assigned to the them. Note that the canoni-
cal images indeed capture the common structures shared in the assigned images; horizontal lines
located at multiple vertical positions (Figure 5.3a–5.3f), horizontal bands prominent in distant
scenes (Figure 5.3g – 5.3h), vertical structures (Figure 5.4a, 5.4c and 5.4d) and converging lines
(Figure 5.4n – 5.4q). As the canonical images are acquired by the weighed sum of scene images
(line 13 in Algorithm 1) the high frequency structures are canceled out and only the low spatial
frequency structures remain. The fact that some pairs of canonical images (Figures 5.3a and
5.3b, 5.3c and 5.3d, 5.3e and 5.3f) have similar structures in reversed phase suggests that even
the scenes with the similar overall layouts are centered around distinct canonical images forming
separate clusters.

As only the euclidean distance between images and canonical images was used in the im-
age normalization process, there were variations between the images assigned to a same cluster
around a canonical image. However, it is worth noting that the natural clusters formed by the im-
age normalization process reflects the hierarchical semantic scene categories in SUN database;
each cluster was dominated by scene images of certain semantic categories especially at the high
and mid level categories (Figure 5.5). The SUN database is hierarchically organized at three
levels; the high level categories subdivide the whole dataset into indoor, outdoor and outdoor-
manmade scenes (Semantic categories 1,2 and 3 in Figure 5.5a). The mid level categories are
based on the functions of scenes; cultural, industrial, forest or fields, home or hotel, etc. (Se-
mantic categories 1–16 in Figure 5.5b). The leaf level categories are selected by the Wordnet
terminology and search engine images [75] (Semantic categories 1–397 in Figure 5.5c).

Figure 5.6 shows subsets of canonical images dominated by one of the three high-level cat-
egories. Note that the canonical points well represent the prominent structures in each high
level category. The ones dominated by the indoor scenes capture the structures of indoor scenes
defined by walls and floors with foreground objects (Figure 5.6a); the ones dominated by the
outdoor natural scenes capture the horizontal line structures that are prominent among spacious
and open outdoor natural scenes (Figure 5.6b). Outdoor manmade scenes which consist of open
and spacious natural backgrounds and manmade elements such as buildings in the foreground are
clustered around the canonical images shown in Figure 5.6c. This pattern holds at the mid-level
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semantic categories as well (Figure 5.7). In Figure 5.6–5.8, the numbers above each canonical
scenes indicate the ratios of each semantic categories among the image assigned to each canoni-
cal image in the image normalization process.

At leaf level with 397 semantic categories, the correspondence between each semantic cate-
gory and natural clusters become more subtle (Figure 5.5c). Most of the clusters around canoni-
cal images consist of several leaf-level categories without any dominant categories. However, the
canonical scene images relatively dominated by certain leaf-level categories do show the com-
mon structures in the semantic categories (Figure 5.8). Another interesting observation is that
some pairs of distinct leaf level categories share very similar distribution of scene images along
the clusters around canonical scene images. The pairs of leaf-level scene categories which have
the most similar distributions are shown in Figure 5.9. Note that although the leaf level scene
categories are distinct at the leaf level, the scene categories share similar scene images at the
holistic level; church outside and castle, living room and bedroom, casino indoor and bar, stage
indoor and discotheque.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5.3: Canonical images in the first columns and normalized scene images to the corre-
sponding canonical images. See text for more detail.
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

(q) (r)

Figure 5.4: Canonical images in the first columns and normalized scene images to the corre-
sponding canonical images. See text for more detail.
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(c) Leaf level

Figure 5.5: Ratios of semantic categories assigned to each cluster around its canonical image.
In each panel, the rows correspond to each of 147 clusters around each canonical point and the
columns to categories at each level. The scale indicates the relative fraction of each semantic
category compared to the the categories of all the scenes assigned to a canonical cluster. For
example, in (b), a value of 0.2 for the canonical image 128 for mid-level semantic category 14
indicates that 20% of the scenes in that canonical cluster are examples of mid-level semantic
category 14, Industrial and construction scenes (Figure 5.7n)
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0.6 0.6 0.6 0.59 0.58 0.57 0.55 0.53 0.52 0.49

(a) Indoor

0.54 0.52 0.5 0.5 0.49 0.49 0.49 0.48 0.48 0.48

(b) Outdoor

0.71 0.54 0.53 0.5 0.5 0.49 0.49 0.49 0.49 0.48

(c) Outdoor-Manmade

(d) Common

Figure 5.6: Canonical images whose clusters are dominated by (a) Indoor (b) Outdoor and (c)
Outdoor-Manmade images. (d) shows canonical images whose clusters were assigned scene
images from all of the three categories. The numbers above each canonical image correspond
to the ratio of each high-level scene categories in the clusters centered around each canonical
images by the image normalization process. For instance, 60% of scene images assigned to the
first canonical scene in (a) were indoor scene images.
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0.12 0.12 0.12 0.12 0.12

(a) Shopping and dining : IN

0.12 0.11 0.1 0.1 0.1

(b) Workplace (office, building, factory, etc.) : IN

0.17 0.17 0.14 0.13 0.13

(c) Home or hotel : IN

0.2 0.13 0.13 0.13 0.12

(d) Transporation (vehicle interiors, stations) : IN

0.18 0.15 0.14 0.12 0.12

(e) Sports and leisure : IN

0.17 0.16 0.16 0.14 0.13

(f) Cultural (art, education, religion, etc.) : IN

0.22 0.2 0.18 0.17 0.17

(g) Water, ice, snow : ON

0.18 0.14 0.14 0.14 0.12

(h) Mountains, hills, desert, sky : ON

0.14 0.13 0.12 0.12 0.11

(i) Forest, field, jungle : ON

0.13 0.12 0.12 0.11 0.11

(j) Manmade-elements : ON

0.14 0.14 0.13 0.13 0.13

(k) Ttransportation (roads, bridges, airports) : OM

0.3 0.18 0.17 0.17 0.14

(l) Cultural or historical building/place : OM

0.2 0.19 0.18 0.17 0.16

(m) Sports fields, parks, leisure spaces : OM

0.2 0.19 0.19 0.15 0.13

(n) Industrial and construction : OM

0.15 0.11 0.11 0.11 0.11

(o) Houses, cabins, gardens, and farms : OM

0.24 0.15 0.13 0.13 0.13

(p) Commercial building : OM

Figure 5.7: Canonical images whose clusters are dominated by each of 16 mid-level semantic
categories. Acronyms stand for the high-level semantic categories; Indoor (IN), Outdoor-natural
(ON) and Outdoor-manmade (OM). 44
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Figure 5.8: Canonical images whose clusters are dominated by some of 397 leaf-level semantic
categories. The figures above the images indicate the ratio of each leaf-level category in the
cluster around the canonical image. The cluster around the canonical image shown in (a) included
high ratios of Tower and Temple (South Asia) scenes.
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(b) Living room and bedroom
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(c) Casino indoor and bar
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(d) Stage indoor and discoheque

Figure 5.9: The distributions among canonical clusters of distinct leaf level scene categories
whose scene images have common holistic properties are similar. For examples, Indoor Stage
and Discotheque are separate scene categories at the leaf level semantic scene categories but the
images belonging to each semantic category are similar especially at the holistic level. Their
distributions among canonical clusters also share similar patterns.
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5.4 Covariance units
I adopted the canonical images emerged in the image normalization process as means around
which scene images are drawn and trained the density coding model discussed in Chapter 3. The
extended model can be formulated as follows,

x|al,y ∼ N (al,C(y)) (5.1)

where the covariance matrix C(y) was formulated as

log(C(y)) =
∑
j

yjAj =
∑
j

yj
∑
k

wj,kbkb
T
k (5.2)

where yj corresponds to the j th element of y. Note that even though the conditional distributions
are centered around different canonical images, for reasons of learnability, bks and wj,k that
define the covariance are shared among all canonical clusters.

The prior probability of clusters centered around each canonical image al was assumed to
be uniform and to enforce the model parameters to learn a compact representation of covariance
matrices, the model uses a laplacian prior on y,

log p(y) ∝ −
∑
j

|yj| (5.3)

I used the same optimization techniques with those discussed in Chapter 3.
Figure 5.10 visualizes the covariance units learned with the canonical images from Section

5.3 incorporated into the model. For each unit Aj , the scene images which was most active to
the unit, i.e., which has the highest value of yj , and the synthetic images generated by using
each unit as a covariance matrix are displayed. The covariance units still capture the global
structures prominent in scene images. Note that even though certain images are active to the same
covariance unit such as the one shown in Figure 5.10e, they have reversed sign. For instance,
the second and the third most active scene images to the unit do share the vertical structures in
the upper part of the scenes but one describes a bright tower in a dark background and the other
a dark tower in a light background. The the pair of the second most active scene image and the
fifth most active scene image in Figure 5.10e also illustrates this. Also worth noting is that some
units encode patterns that were not captured by the density coding model with fixed zero mean
assumptions; the unit in Figure 5.10k encodes the high frequency structures in the upper side of
images and the opposite in the lower side. Figure 5.10l captures the opposite patterns to the unit
in Figure 5.10k.

One natural question would be to what extent do the means and the covariances each capture
the patterns in the data and how they are related. Even though the prior distributions of clusters
defined by each canonical image and the covariance latent variables are modeled as independent,
the empirical distribution of the latent variables in each cluster suggests covariance units are more
active in certain clusters than others. To illustrate this relationship, I present the canonical images
whose clusters show the most active responses to each covariance units in Figure 5.11. For this, I
pick clusters whose mean responses to a certain unit Aj , yj , is highest. The covariance units are
most active when the distributions are centered around canonical images which share the similar
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layout with them. For instance, the unit in Figure 5.11a is more active among scene images
centered around canonical images with horizontal lines located on a similar vertical position as
that in the covariance unit. While the canonical images share similar horizontal structures, the
phases of the horizontal lines varies. This suggests that the covariance units encode the contrast
whereas the canonical images gather scene images with similar overall light patterns.

Under this framework, an image x normalized to a canonical image al is more likely in the
cluster around the canonical image than any others; the conditional likelihood of the image in
the cluster around the canonical image is higher than the conditional likelihood in any other
canonical clusters. Based on this observation, once the canonical images and the clusters around
them were discovered, they were not further optimized while training the model parameters
governing the conditional covariance matrices. The model can be extended by incorporating
the probability of an image x to be assigned to a canonical image al into Eq.5.1. Under such
framework, the means and the covariance units can be alternatively estimated in an expectation-
maximization fashion. The iterative estimations could significantly change how certain image
properties are split between means and covariances.
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Figure 5.10: Covariance units Ajs. Scene images with the highest activity to the units (upper
rows). Synthetic scenes generated from the multivariate Gaussian distributions with each unit as
covariance matrices.
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Figure 5.11: Left: visualization of covariance units Aj . Right: scene images assigned to the
canonical points shown on the right columns have active responses to the corresponding covari-
ance units.
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5.5 Synthetic images with the extended model
In this section, I discuss the benefits of the extended model in terms of image synthesis. For
a new scene image, I assign it to one of the canonical images al by the image normalization
process and infer the latent variables ŷ for covariance matrices Cmean+cov(ŷ) as shown in Eq.
5.1. With the mean and the covariance matrix, I can draw random samples smean+cov from the
corresponding multivariate Gaussian distributions by

smean+cov = al + Lr (5.4)

where L corresponds to the Cholesky decomposition of Cmean+cov(ŷ) and r a random
Gaussian vector drawn from zero mean with the identity matrix as the covariance matrix.

I compare the synthesis performance of the extended model to the original density coding
model with zero mean assumption and the covariance matrices specialized for each image

scov = Lr (5.5)

where L refers to the Cholesky decomposition of Ccov(ŷ) whose parameters were learned
with the zero mean assumption in Chapter 3.

Lastly random samples by adding Gaussian noise (i.e., assuming that the covariance matrix
equals to an identity matrix) to the canonical images al corresponding to each new images were
considered.

smean = al + Ir (5.6)

where I refers to the identity matrix.
As shown in Figure 5.12, when a random sample is drawn around the corresponding canoni-

cal point, it fails to capture the intrinsic patterns when the covariance information is ignored. As
discussed in Chapter 3, the covariance only model sometimes fails to capture long-range struc-
tures and even when they do, they only capture the existence of contrasts. When the canonical
points are adopted, they anchor the synthetic images around canonical images which carries the
overall phase of a scene image, letting the synthetic images closer to the original images. Also,
the extended model results in significantly better mean squared error (p < 0.01) then both the the
covariance only and the mean only conditions. Among the covariance matrices and the means,
the covariances condition does significantly better in terms of MSE (p < 0.01). Note that the
dimensionality of the covariance latent variables y was 60, which is less than 6% of the dimen-
sionality of the resolution of input. A single cluster selected from 147 can be represented with
less than 8 bits which does not suffice to represent more than a pixel even after JPG compression.
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Condition MSE
mean + covariance 0.027
covariance 0.032
mean 0.035

Table 5.1: Mean squared error between the synthetic images generated with three different mod-
els and the original images. The result is obtained from synthesizing scene images of 5000
samples. mean + covariance conditions significantly outperforms the ones using only covariance
matrices or means. The covariance only condition does significantly better than the mean only
condition.

(a)

(b)

Figure 5.12: Synthetic images; mean + covariance (first row), covariance (second) and mean
(third). The top row and the first column; original images. The second column shows the means
of the multivariate Gaussian distributions for each condition.
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(c)

(d)

(e)

Figure 5.12: Synthetic images; mean + covariance (first row), covariance (second) and mean
(third). The top row and the first column; original images. The second column shows the means
of the multivariate Gaussian distributions for each condition.
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(f)

(g)

(h)

Figure 5.12: Synthetic images; mean + covariance (first row), covariance (second) and mean
(third). The top row and the first column; original images. The second column shows the means
of the multivariate Gaussian distributions for each condition.
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5.6 Image retrieval
The probabilistic framework of the extended model allows to retrieve images based on the follow-
ing similarity measure based on reciprocal likelihood of pairs of images; the sum of likelihood
of one of two images based on the other’s best distributions. For two samples, s and t, I estimate
the best multivariate Gaussian distributions optimized for each sample. When the set of mean
and covariance matrix optimized for s is {as,C(ŷs)} and {at,C(ŷt)} for t, I use

log p(t|as,C(ŷs)) + log p(s|at,C(ŷt)) (5.7)

as the similarity measure between s and t. This measure considers the likelihood of one of the
pair given the distributions optimized for the other and prevents the images near the canonical
points from dominating the retrieval results. For a query image s, I retrieved the scene images
with the highest values of this probabilistic similarity measure.

I show examples of the retrieved images using the extended model together with the retrieval
results based on the density coding model [29] and GIST features [47] in Figure 5.13. I used the
SUN database as the image pool from which I retrieved the most similar images using 32 × 32
grayscale scenes. The results are ordered such that the results with the highest similarity measure
values are shown in the first column and the fifth on the fifth column. For GIST, I retrieved images
whose GIST features are most closest to the features of a query image in terms of the euclidean
distance. Note that the extended model and the density coding model was trained on grayscale
32× 32 images and the examples in Figure 5.13 are shown in 128× 128 resolution only for the
visualization purpose.

The extended model and the original density component model often retrieves similar results
but the extended model returns images with better layout and semantic matches; in Figure 5.13a,
the third and the fifth most similar images of the two models coincide but the extended model’s
most similar and the second similar scenes are perceptually and semantically closer to the query.
As most of the training examples in SUN database describe scenes at the holistic level, the mod-
els adapt to their global structures and the local objects are naturally considered as noise since
they are not very common among the training examples. Also, as I trained the model on the
reduced resolutions of 32 × 32, the high-frequency structures that capture the characteristics of
local objects or textures tend to be discarded. For these reasons, the models fail to retrieve sim-
ilar scene images when the query images mainly consist of an object with the layout of scenes
obstructed by it. For instance, as demonstrated in Figure 5.13h, the model fails to recognize
the human in the middle and only captures its global layout retrieving scene images with verti-
cal structures pointed at the top. In Figure 5.13i, the first and the third retrieved scene images
describe waterfalls with similar layout to the query. However, the other retrieved scene images
suggest that the model captures the overall pattern of the bright vertical structures in the middle
of the images.
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(a)

(b)

(c)

Figure 5.13: Retrieval: mean+cov (top row), cov (second row) and GIST (third row). See text
for discussion. 55



(d)

(e)

(f)

Figure 5.13: Retrieval: mean+cov (top row), cov (second row) and GIST (third row). See text
for discussion. 56



(g)

(h)

(i)

Figure 5.13: Retrieval: mean+cov (top row), cov (second row) and GIST (third row). See text
for discussion. 57



5.7 Conclusion
We propose a general framework for manifold learning with canonical points and the covari-
ance structures. We developed a data normalization process for acquiring a representative set
of canonical points that are close enough to the manifolds. This approach allows to tighten the
original distributions of dataset around the canonical data points. When this model is applied to
the whole scene images, the model parameters reveal that the overall light patterns are encoded
by the canonical images and the covariance units the global contrast patterns. The new approach
inherently learns the local manifold structures more closely and with more flexible assumptions
and results in improved the image synthesis and the image retrieval.

58



Chapter 6

Conclusion

This thesis has explored learning the statistical properties of the whole scene images. This is
the first approach on training adaptive representations on the whole scene level as far as I am
aware of. Specifically, this thesis has focused on learning compact representations for encoding
the holistic properties of scene images. Our results suggest that the more flexible and the more
detailed models learn specialized structures with holistic properties that did not emerge with
simpler models with more conservative assumptions. In addition, these specialized structures
to the holistic structures of scene images predict the high level properties such as perceptual
layouts or semantic categories. Chapter 2 concludes that letting the independent component
model learn tailored representations for natural subcategories of scenes reveal the holistic basis
functions. Chapter 3 further explores when each scene image is assigned with one distribution
specialized for itself and discusses the efficient representations for their spatial layout properties.
Chapter 5 extends the previous approach and learns the local manifold structures by anchoring
the distributions around canonical scene images.

Learning from data by training adaptive representations has been very popular research topic
recently. The probabilistic distributions developed in such studies derive from Restricted Boltz-
mann Machines which model the joint distributions of the data and latent variables [5]. Other
popular approaches are to build layers of filters such that the reconstruction error in the bottom
layers is minimized. These studies are based on layers of filters either by reducing the dimen-
sionality of the input by pooling [77] or by training a lower dimensional filters adapted to the
latent or hidden variable from the lower layers [35]. The layer-based models allow to train prob-
abilistic models on high resolution images and have been successful for many applications from
document recognition [34] to object recognition [52].

My approach differs from the general deep learning research first in that the probabilistic
models I use directly constraint the latent or hidden variables to be sparse; the cores of the
models are based on the conditional distribution of data given the latent variables and therefore
I can directly apply sparse priors on the latent variables. This allows the model parameters to
represent the properties of the data much more efficiently and compactly. On the other hand,
most of the probabilistic models adopted in the deep learning literatures usually start with the
joint distributions of data and hidden variables and therefore the models require complicated
procedures if the sparse representations are desired. Another difference is that I train hierarchical
models whose parameters have layered structures based on weight sharing. This approach allows
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to dramatically reduce the dimensionality of the latent variables; the latent variables for encoding
an image of 32× 32 in Chapter 3 and 5 were of dimensionality which corresponds to 6% of the
input data. This contrasts with the fact that the size of the models in the deep learning literature
tends to be much larger. Lastly, the image normalization technique discussed in Chapter 5 covers
wider variety of invariances such as rotations, scaling and translations whereas the deep learning
models dependent on pooling algorithms are invariant to local translations.

The layer-based algorithms are inspired by the observation that the single layer algorithms
such as sparse coding end up learning localized edge-like structures [50, 52]. However, my obser-
vation suggests that when the dataset itself consists of underlying regularities like scene images
due to 3D shape of the world or when the dataset can be normalized such that the regularities
in the dataset is enhanced without destroying the contents of the dataset, the models which do
not build up by stacking up layers can reveal model parameters with holistic structures. This
is observation especially holds when the probabilistic models are allowed to learn specialized
distributions for natural clusters of datasets.

This thesis has its limitation in that it studies the properties of rather low resolution scene
images. However, as the previous psychophysics studies suggest [68], I observe that even the
information contained in 32 × 32 scene images is predictive of the high-level properties of the
scenes such as the spatial layouts or semantic categories. This may be because the holistic
structures can be captured by the low-spatial frequencies whereas the local information of scene
images are much more irregular and spread over space. However, for more detailed discrimi-
nations between semantic categories at the leaf levels, such as discriminating between church
outside and cathedrals, it is required to encode high-frequency information on top of the holistic
properties [51].

One of the future directions for studying the statistical properties of natural visual scenes
would be to extend the current framework to higher resolution images. Chapter 4 explored this
direction in terms of learning the statistical properties of separate bands of Laplacians. However,
encoding all the local structures of scene images and computing the probabilistic similarity using
all of them, especially for large size images, are computationally expensive. In addition, some
local regions of scene images, such as sky, are common between scene images and therefore are
not highly informative of a scene for discriminating it from others. The fact that humans saccade
only to informative regions of a scene rather than uniformly spreading their attention supports
the idea that encoding only such informative local regions is sufficient for subsequent processing
of a scene.

Objects within scenes with similar spatial layouts tend to be located approximately at sim-
ilar positions. For instance, as illustrated in Figure 6.1, in street scenes with converging lines,
salient objects are usually located on the streets, but it is less likely that objects are located in the
sky regions or on the side building walls. A representation that well captures the global struc-
tures of scene images among complex structures across multiple scales and locations should be
informative of locations of salient objects.

Motivated by these observations, we suggest the future direction for investigating the role
of global structures discussed in this thesis as the context for predicting the “informativeness”
of the local regions in a probabilistic framework. Examples of “informative” local regions are
illustrated in Figure 6.1. The regions in the red boxes in the first two examples do not add much
to the spatial layout properties of each scene; even though the first one does have strong edge
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structure, this edge aligns well with the global spatial layout of the scene. Therefore registering
the local structures of these regions will not be informative of the scenes. On the other hand, the
blue boxed regions contain local structures that cannot be inferred just from the scenes’ spatial
layout, and hence are informative. Encoding only the local structures from the informative local
regions has be reported to be useful for object priming [69], content based image retrieval [43, 62]
as well as image segmentation [2].

Figure 6.1: Street scenes with similar spatial layouts. Objects are located on similar positions
in different scenes but similar spatial layouts. Boxes in the first two examples illustrate non-
informative (red) and informative (blue) local regions.

As was demonstrated in this thesis, learning the compact and efficient representation reveals
the prominent and common patterns in the large-scale dataset. Another interesting future di-
rection of this thesis is to apply the frameworks to other image types such as face or objects
or even to other domains such as gene expressions or social network frameworks. This frame-
work is especially useful because it allows the high-dimensional data to be captured by much
lower dimensional latent variables. Also, the probabilistic framework is a great way of defining
a similarity measure based on their statistical properties which is often a very difficult task for
high-dimensional data.
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