

 On Learning from Collective Data

Liang Xiong

December 2013
CMU-ML-13-113

On Learning from Collective Data

Liang Xiong

December, 2013
CMU-ML-13-113

School of Computer Science
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Jeff Schneider, Chair

Aarti Singh
Eric Xing

Arthur Gretton, University College London

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright c© 2013 Liang Xiong

This research was sponsored by the Department of Energy under grant number DESC0002607; the Air Force Research
Laboratory under grant numbers FA865010C7059 and FA87501220324; the National Science Foundation under grant
number IIS0911032; the Association of Universities for Research in Astronomy, Inc. under award number C10625A;
and a grant from ECCO.

The views and conclusions contained in this document are those of the author and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

Keywords: Collective data; grouped data; point sets; low-rank decomposition; robust methods;
anomaly detection; novelty detection; group anomaly; hierarchical probabilistic models; topic
models; divergence estimation; distribution classification; efficient learning; distance completion;
embedding; scientific data analysis.

To my beloved parents and dearest wife.

iv

Abstract
In many machine learning problems and application domains, the data are naturally

organized by groups. For example, a video sequence is a group of images, an image is
a group of patches, a document is a group of paragraphs/words, and a community is a
group of people. We call them the collective data.

In this thesis, we study how and what we can learn from collective data. Usually,
machine learning focuses on individual objects, each of which is described by a feature
vector and studied as a point in some metric space. When approaching collective data,
researchers often reduce the groups into vectors to which traditional methods can be
applied. We, on the other hand, will try to develop machine learning methods that
respect the collective nature of data and learn from them directly.

Several different approaches were taken to address this learning problem. When
the groups consist of unordered discrete data points, it can naturally be characterized
by its sufficient statistics – the histogram. For this case we develop efficient methods
to address the outliers and temporal effects in the data based on matrix and tensor
factorization methods.

To learn from groups that contain multi-dimensional real-valued vectors, we de-
velop both generative methods based on hierarchical probabilistic models and discrim-
inative methods using group kernels based on new divergence estimators. With these
tools, we can accomplish various tasks such as classification, regression, clustering,
anomaly detection, and dimensionality reduction on collective data.

We further consider the practical side of the divergence based algorithms. To re-
duce their time and space requirements, we evaluate and find methods that can effec-
tively reduce the size of the groups with little impact on the accuracy. We also pro-
posed the conditional divergence along with an efficient estimator in order to correct
the sampling biases that might be present in the data. Finally, we develop methods
to learn in cases where some divergences are missing, caused by either insufficient
computational resources or extreme sampling biases.

In addition to designing new learning methods, we will use them to help the scien-
tific discovery process. In our collaboration with astronomers and physicists, we see
that the new techniques can indeed help scientists make the best of data.

vi

Acknowledgments
First and foremost, this thesis would not have been possible without the guidance

and support from my advisor Jeff Scheinder. In addition to his academic advices, Jeff’s
constant encouragement and humor have made my life as a PhD student as enjoyable
as I can imagine.

I am indebted to Aarti Singh, Eric Xing, and Arthur Gretton for serving on my
thesis committee and giving me helpful suggestions. I would like to thank Barnabás
Póczos for the insightful discussions and the help over the years. I also want to thank
my external collaborators: Andrew Connolly, Jake Vanderplas, Scott Daniel, and Lau-
ren Anderson from University of Washington; Alex Szalay and Charles Meneveau
from Johns Hopinks University.

Life at the Machine Learning Department and the AutonLab has been wonderful.
I want to show my deepest appreciation for my friends and those who have taught and
helped me: Tom Mitchell, Geoff Gordon, Carlos Guestrin, Christos Faloutsos, Larry
Wasserman, John Lafferty, Noah Smith, Ann Lee, Roni Rosenfeld, Artur Dubrawski,
Daniel Neill, Diane Stidle, Michelle Martin, Karen Widmaier, Michael Baysek, Daria
Sorokina, Madalina Fiterau, Roman Garnett, Tzu-Kuo Huang, Xuezhi Wang, Robin
Sabhnani, Dougal Sutherland, Junier Oliva, Donghan Wang, Karen Chen, Yifei Ma,
Brendan O’connor, Kumar Avinava Dubey, Xi Chen, Han Liu, Guang Xiang, Jieyue
Li, Min Xu, Yang Xu, Robert Fisher, Haijie Gu, Guangyu Xia, Bin Zhao, Chong
Wang, Jun Zhu, and more.

I thank my internship mentors and colleagues at Google and Yahoo! Labs: Max
Ishutin, Ari Wilson, Youssef Billawala, Sudarshan Lamkhede, Jie Luo, and Yi Chang.

Most of all, I thank my parents and my wife for everything they have done for me.
Without their love and care I would not have become who I am today.

Contents

1 Introduction 1
1.1 Notations . 3
1.2 Learning from Discrete Data . 5
1.3 Learning from Continuous, Multidimensional Data 7
1.4 Related Fields . 11
1.5 Challenges in Scientific Data . 12
1.6 Thesis Overview . 13

I Learning from Discrete Data 15

2 Modeling Temporal Effects by Tensor Factorizations 16
2.1 Introduction . 16
2.2 Preliminaries . 18
2.3 A Tensor Model for Temporal Data . 19
2.4 A Bayesian Treatment . 22
2.5 Related Work . 26
2.6 Experiments . 27
2.7 Summary . 32

3 Handling Outliers by Robust Factorization 37
3.1 Introduction . 37
3.2 Direct Robust Factorization . 40
3.3 Related Work . 43
3.4 Discussion . 44
3.5 Experiments . 46
3.6 Summary . 52
3.7 Automatic Novelty Discovery for Astronomy . 52

II Learning from Multidimensional Data 58

4 Generative Models for Collective Data 59

viii

4.1 Introduction . 59
4.2 Background . 61
4.3 Related Work . 62
4.4 Multinomial Genre Models . 63
4.5 Flexible Genre Models . 67
4.6 Nonparametric Genre models . 71
4.7 Discussion . 75
4.8 Experiments . 76
4.9 Summary . 82

5 Discriminative Methods for Collective Data 86
5.1 Introduction . 86
5.2 Related Work . 87
5.3 Problem Definition . 89
5.4 Nonparametric Kernel Estimation . 89
5.5 Constructing Mercer Kernels . 90
5.6 Experiments . 91
5.7 Summary . 98

6 Low-Rank Constructions of Mercer Kernels 100
6.1 Introduction . 100
6.2 Related Work . 101
6.3 Constructing Low-Rank Kernels . 102
6.4 Constructing Low-Rank Divergences . 103
6.5 Discussion . 104
6.6 Experiments . 105
6.7 Summary . 108

7 Accelerated Learning by Condensing 111
7.1 Introduction . 111
7.2 Background . 112
7.3 Related Work . 116
7.4 Condensing Methods . 117
7.5 Empirical Evaluation . 119
7.6 Discussion . 127
7.7 Summary . 128

8 Sampling Bias Correction by Conditional Divergences 129
8.1 Introduction . 129
8.2 Background and Related Work . 131
8.3 Conditional Divergences . 132
8.4 Choosing c(x) . 134
8.5 Discussion . 135

ix

8.6 Experiments . 136
8.7 Summary . 140

9 Conclusion and Future Directions 142

Bibliography 144

x

List of Figures

1.1 A galaxy observation from SDSS. 12
1.2 Local motion patterns in the JTDC simulation. Several 2D slices are presented. . . 13

2.1 CP decomposition of a three-way tensor X . 21
2.2 The graphical model for BPTF . 23
2.3 Performance comparison of PMF, BPMF, and BPTF on 6 seasons of ECCO’s sales

data. BPTF outperforms others by a large margin. See text for details. 28
2.4 Convergence curves of BPTF and BPMF on the full Netflix data. As the number of

samples increase, the RMSE of Bayesian methods drop monotonically. The RMSE
of the Netflix’s baseline and PMF are also presented. 30

2.5 Convergence curves of BPMF and BPTF with different number of factors on a
subset of Netflix data. The accuracy increases when more factors are used, and no
over-fitting is observed. Also, BPTF with 20 factors achieves similar performance
as BPMF with 100 factors. 31

2.6 RMSE of PMF, BPMF, and BPTF. (a) On a subset of Netflix data. (b) On Movie-
Lens data. Lower RMSE is better. 32

2.7 Prediction RMSE on the Yahoo Music data set using different methods and differ-
ent number of latent factors. 33

3.1 An example where DRMF with initial S = 0 would fail. Blue crosses are normal
points and the red circle is the outlier. Blue arrow shows the true principle subspace
and the red dashed arrow shows the wrong one DRMF would get starting from
S = 0. Note that when starting from an S that correctly indicates the circle as an
outlier, DRMF is able to achieve the correct blue subspace. 46

3.2 Performances on noiseless data with entry outliers. Note that the running time is
shown in log-scale. 48

3.3 Performances on noisy data with entry outliers. 48
3.4 Performances on noisy data with row outliers. 49
3.5 (a) Recovery RMSE of RPCA and DRMF versus the outliers’ magnitude. (b)

Recovery RMSE of DRMF versus the parameters K the rank and e the proportion
of allowed outliers. Darker color indicates smaller error. 50

3.6 Video activity detection performance . 51
3.7 USPS anomaly detection results. (a) the average precisions of detecting ‘7’s among

‘1’s. (b) images ranked by their anomaly scores in the descending order. 52

xi

3.8 Video activity detection result frames. In each sub-figure, the images from left to
right are: the original frame, background and foreground from DRMF, background
and foreground from RPCA. 56

3.9 The frontpage of the SDSS collaborative SDSS website. 57
3.10 The UI for finding similar objects in the SDSS collaborative SDSS website. 57

4.1 Graphical model for latent Dirichlet allocation (LDA). 61
4.2 The Multinomial Genre Model (MGM). 64
4.3 The Flexible Genre Model (FGM). 68
4.4 The nonparametric genre model (NGM). 72
4.5 Detection results on the synthetic data. Black boxes are normal groups. Green

dashed boxes are point-based anomalies. Red dashed boxes are distribution-based
anomalies. The method postfix “-D” means distribution-based scores, and “-P”
means point-based scores. 78

4.6 (a),(b),(c) show the density of the point-based anomaly estimated by LDA, MG-
M, and FGM respectively. In LDA and MGM, topics must be shared globally,
therefore their perform badly. (d) The genres in the synthetic data set learned by
FGM. 79

4.7 Performances on detecting out-of-category images. See text for details. 80
4.8 Images samples. Green boxes (first row) contain natural images, and yellow boxes

(second row) contain stitched anomalies. 81
4.9 Performances on detecting stitched images. 81
4.10 Detection results for the turbulence data. (a) & (b) FGM-DB anomaly score and

vorticity visualized on one slice of the cube. (c) Correlations of the anomaly scores
with the vorticity. 84

5.1 Densities of the two one-dimensional mixtures. 93
5.2 1D mixture classification accuracies. 94
5.3 Mean and standard deviation accuracies on the high-dimensional artificial data set. 95
5.4 Images of two objects from the ETH-80 data set. Each object has 5 different views. 96
5.5 Classification accuracies on ETH-80. 96
5.6 Classification accuracies on ETH-80 with Rényi-α for twenty α’s, as well as the

Hellinger distance. 97
5.7 Images from the 8 OT scene categories: coast, forest, highway, inside city, moun-

tain, open country, street, tall building. 98
5.8 Accuracies on the OT data set. The horizontal line shows the best previously re-

ported result. 99
5.9 Images from the 8 sports. 99
5.10 Accuracies on the Sport data set. The horizontal line shows the best previously

reported result. 99

xii

6.1 Recovery performances on the toy data set. LRDC-D and LRDC-K are for the
distance matrix and the kernel matrix obtained by LRDC respectively. LRKC-K is
for the kernel matrix obtained by LRKC. The X axis shows different values of the
parameter r in LRDC. The correlations of the raw distance matrix D and kernel
matrix K are also shown. 106

6.2 Example results from LRKC and LRDC. K? and D? are the groundtruths. K and
D are the noisy observations. K̂ and D̂ are the low-rank results produced by LRKC
and LRDC. 107

6.3 Recovery performances on the toy data set with missing data. LRDC-D and LRDC-
K are for the distance matrix and the kernel matrix obtained by LRDC respectively.
LRKC-K is for the kernel matrix obtained by LRKC. The X axis shows different
values of the parameter r in LRDC. The correlations of the raw distance matrix D
and kernel matrix K are also shown. 108

6.4 Classification accuracy on the ETH-80 data set. D is the baseline (green dashed
line) using PSD projection. The “-I” postfix means incomplete data. LRKC with
different λ’s and LRDC with different r’s are shown. 109

6.5 Classification accuracy on the Sports data set. 110
6.6 Classification accuracy on the OT data set. D is the baseline (green dashed line) us-

ing PSD projection. The “-I” postfix means incomplete data. LRKC with different
λ’s and LRDC with different r’s are shown. 110

7.1 Condensing results of a 2D standard Gaussian point set using different condensers. 117
7.2 Accuracies on the OT data set using the original sets and the condensed sets. Green

dashed lines are the accuracies of bag-of-words classifiers. 121
7.3 Performance of LNBNN on Scene-15 using the uniform covering condenser. 122
7.4 Scene-15 classification performances using different classifiers and condensers. . . 123
7.5 The impact of the number of checks in the NN search to different methods on the

Scene-15 data set. 124
7.6 UIUC-Sports classification performances using different classifiers and condensers. 125
7.7 (a) CalTech-101 classification accuracies using LNBNN with different condensers.

(b) CalTech-256 classification accuracies using LNBNN with different condensers. 126

8.1 The observation biases. 130
8.2 Estimated divergences on the synthetic data. 137
8.3 Divergences on the uneven sets. The goal is to recover the “Full D” given only the

biased sets. 138
8.4 Divergences on the partial sets. The goal is to recover the “Full D” result shown in

Figure 8.3. 138
8.5 Example temperature maps of the U.S. from the QCLCD. (a) and (c) are the origi-

nal data. (b) and (d) are the artificially created uneven data. 139
8.6 Season classification results on the QCLCD weather data. 140
8.7 Image classification results on OT. 141

xiii

List of Tables

1.1 Symbols . 4

2.1 RMSE of PMF, BPMF and BPTF on Netflix data. 29

3.1 Comparing the nuclear norm minimization (NNM) problem and DRMF. L is low-
rank; S is the sparse outlier. ‖·‖∗ is the nuclear norm; σ is the allowed approxima-
tion error. 44

3.2 AP of detecting SIMBAD objects using the normalized spectrum feature. 55

7.1 Accuracies and running time of LNBNN on ImageNet. The training time is mea-
sured by CPU*minute per class and the testing time is measured by CPU*second
per test image. 127

xiv

Chapter 1

Introduction

The current machine learning paradigms mostly focus on individual objects that have simple rep-
resentations. For example in the tasks of classification, regression, and clustering, an object of
interest is often described by a “feature vector”, and abstracted as a point in certain metric space.
The objective of learning is to estimate functions that map these points to target variables such
as the class labels or cluster memberships, with the goal of achieving both empirical accuracies
on the training data as well as the generalization power on unseen data. This “one point per ob-
ject” abstraction has led to very concise representations, elegant mathematical theories, and very
successful algorithms.

Nevertheless, we also realize that many of the interesting data in the real world can and should
be treated as a collection of constituent items. For instance, in the field of language modeling and
text processing, an article can be considered as a group of paragraph or sections, and further a
paragraph is a group of words. In computer vision and image processing, a prevailing assumption
is that a visual scene consists of a group of local image patches. In recommendation systems, a
user is mainly described by the group of products he/she bought. In social network a community
is a group of people. In these problems, the actual abstraction should be “one set of points per
object”. We call these kinds of data that are organized by groups as the collective data. In the
following, we shall call the basic constituent entities as “points”, and the aggregations of points as
“groups” (or equivalently “sets” or “bags”).

The task of learning from collective data arises in many application domains, yet our research
is largely motivated by the demands from the scientific community. Due to the advancement of
sensory systems and the ever increasing computation power, now the scientists are facing data that
are at unprecedented scales. For example in astronomy, modern telescope pipelines like the Sloan
Digital Sky Survey1 (SDSS) can produce observations for a vast amount of celestial objects. In
physics, large-scale simulation systems such as the JHU Turbulence Database Clusters2 (JTDC)
were implemented to study the dynamics of fluid and particles. In these problems, we have huge
amount of collective data that are impossible to be examined by experts. Therefore, computational
assistance is needed.

1http://www.sdss.org
2http://turbulence.pha.jhu.edu

1

http://www.sdss.org
http://turbulence.pha.jhu.edu

In this thesis, we try to answer the question: how and what can we learn from collective data?
We emphasize that it is important to look beyond the point-level behaviors of data when designing
learning algorithms for collective data. Consider doing the task of novelty detection on an article
that is represented as a bag (group) of words (points). While paragraphs talking about either
“machine learning” or “gummy bears” are not novel on their own, an article containing both of
the terms might be interesting. In computer vision, it is unreliable to classify a scene image just
by the presence of a single object (e.g. we cannot say with certainty that an image is an city scene
if it contains a building; it might also be a beach scene). Instead, we should consider the overall
composition of different objects in this image.

The most straightforward method, and indeed the mostly used one, to learn from collective data
is to treat the groups as single objects and transform them into vectors, so that the traditional point-
wise learning techniques can be applied. However, in many situations this conversion is essentially
a feature engineering process that can be domain specific and difficult. Moreover, it is likely that
during the conversion some useful information is lost. Therefore, we aim at developing learning
methods that inherently respect the collective nature of data and can learn from them directly.

We investigate several approaches to learn from different types of collective data. The first type
of collective data are groups of one-dimensional discrete points that are modeled by categorical
random variables. This kind of data are abundant in text processing and recommendation systems,
where each word or item is considered a discrete symbol. It is popular to make the assumption
that the points are exchangeable i.e. the order of the points within a group carries no information,
so that we can summarize the points in a group by the histogram which is the sufficient statistics
for any conceivable statistical methods. This approach provides a natural way of converting the
groups into vectors, to which many existing learning methods can be applied. In this work, we
learn from these data within the matrix factorization framework, where the matrices are formed
by stacking the vector representations of the groups. We develop two algorithms. The first one
introduces the extra “time” dimension to model the temporal effects of data using tensors. The
second one is a robust method that enables reliable factorization in the presence of outliers, and we
use it for anomaly detection purposes.

In more general and more common data sets, the groups contain points that are continuous,
multidimensional vectors. Intuitively, each group is a point cloud in a multidimensional space. In
this case, we no longer have a natural way of reducing the groups into the concise vector represen-
tations, and that raises more challenges into our learning tasks. To attack this problem, researchers
often “encode” each vector by a discrete point, and then use the approach described in the pre-
vious paragraph. Indeed, “encoding” itself is a big and interesting topic. But even though many
sophisticated algorithms have been proposed in the recent years, a significant amount of domain
knowledge and human effort may be required depending on the specific problem.

We, on the other hand, try to learn from these groups directly without any conversion. Both
generative and discriminative methods are studied. From the generative perspective, we can model
the generating process of the groups and points, and then use the insights from the models to
help us accomplish other learning tasks. Again assuming the exchangeability of points, we devise
models that can capture the multi-level characteristics of the groups based on topic modeling, and
then use them for group anomaly detection, clustering, and classification. These models consist of

2

different probabilistic component to achieve the balance between flexibility, speed, and robustness.
Discriminative methods are also considered to learn from collective data based on the sim-

ilarity or dissimilarity measures between groups. Assuming that the points within a group are
i.i.d. samples from some underlying distribution, we construct novel estimators of kernels between
the groups based on a class of new nonparametric divergence estimation methods. These kernel es-
timators are provably consistent and efficient to compute. Having them, we can take advantage of
the existing methods that solely depends on similarities (e.g. support vector machines (SVM) and
spectral clustering [122]) to accomplish various learning tasks including classifications, regression,
clustering, dimensionality reduction, and anomaly detection. In our experiments on both synthetic
and real-world data sets, these new methods has achieved the state-of-the-art performances.

These methods are further enhanced to cope with challenges we might face in real data sets. To
increase the speed of the algorithms, we examined possible ways of reducing the size of the groups
while preserving the learning performances. We also investigated the possibility of accomplishing
learning tasks using only partial similarity measures so that less group kernel computations are
needed. Finally, sampling biases in collective data are considered and we proposed novel diver-
gence between groups to solve the problem.

We want our research to be truly useful. In addition to designing new machine learning meth-
ods, we developed practical tools to assist the scientific researchers. We analyze the real-time as-
tronomy data generated by SDSS using the algorithms we developed. A website is built to present
interesting celestial objects to the astronomers and to collect their feedbacks. Similar tools could
be used to assist physicists in discovering and studying novel phenomena in large scale turbulence
simulations.

This thesis contains several of our published work:
• Chapter 2: [172]
• Chapter 3: [103]
• Chapter 4: [173, 174]
• Chapter 5: [130, 131]
• Chapter 7: [175]
The rest of this chapter is organized as follows. In Section 1.1, we describe some notations

that we use throughout this thesis. Section 1.2 and 1.3 introduce the background and literature on
learning from discrete and continuous collective data respectively. Finally in Section 1.6 we state
the purpose the our research and overview the structure of this thesis.

1.1 Notations
First, we list some symbols in Table 1.1 that we shall use through out this thesis. The common
format of the data sets in this thesis is as follows. We consider a data set that consists of M groups
of points {Gm}m=1,...,M , and each group Gm is a set of Nm points as Gm = {xmn}n=1,...,Nm

.
The numbers of points in each group can be different. Note that we only consider cases where
the groups are pre-defined, i.e. we are not addressing the clustering/partition problems of how to
divide the points into groups.

3

Table 1.1: Symbols

Symbol Definition and Description

M The number of groups.
Nm The number of points in group m.
D For discrete data, D is the total number of categorical values. For continuous data,

D is the dimensionality of the points.
xmn The nth point in group m. For discrete data, xmn is a categorical variable taking

values from {1, . . . , D}. For continuous data, xmn ∈ RD.
Gm Group/Set/Bag m. Gm = {xm,1, . . . , xm,Nm} contains the set of points in group m.
ym The label of Gm. In classification problems ym is the class label, while in clustering

problems ym is the cluster membership.
fm If we assume that the points in Gm are random samples, then fm is the distribution

that generates these samples. Usually fm is not observed.
gm The vector representation of group Gm for discrete data. gm ∈ RD is usually the

histogram of points in Gm.
X The data matrix for discrete data. X = [g1, . . . ,gM]T ∈ RM×D is constructed by

stacking the gm’s.
NNG(x) The nearest neighbor of point x in group G.
SK The K-dimensional probability simplex.
I The identity matrix.
I(c) The indicator function. I(true) = 1 and I(false) = 0.
� The element-wise multiplication between vectors or matrices of the same size.
< ·, · >, ◦ The inner and outer products of vectors.

The points in the groups can either be discrete or continuous and multidimensional. For discrete
points, xmn is a categorical variable taking values from {1, . . . , D}, where D is the number of
possible values. For continuous data, xmn is a D-dimensional vector as xmn ∈ RD, where D is the
dimensionality. For example, in text modeling, we can consider a document as a group of words.
In this case, Gm is a document, xmn is the nth word in Gm, and xmn can only take one of the
values/words from the vocabulary. In computer vision, we can consider an image as a group of
patches. In this case, Gm is an image, xmn is the feature of the nth patch in Gm, and xmn is a
D-dimensional feature vector extracted to described that patch.

We often assume that the points inGm are random samples from some distribution fm. Usually
fm is not observed and has to be either inferred or estimated. For instance, in text modeling, under
the bag-of-words (BoW) assumption which ignores the information carried by the order the words,
we can say that a document Gm has an underlying multinomial word distribution fm, and the
document is realized by randomly sample points/words from fm. Similar examples can also be
found in continuous data sets based on appropriate assumptions.

4

In classification, the objects of interest are associated with class labels. We use ym to denote
the class label of group Gm. Note that we care only about learning on groups, therefore the class
labels (as well as cluster memberships and other learning output) are only for groups and not for
points. This is different from multiple instance learning [184], where the data are organized by
groups but the learning is on points; see Section 1.4 for more details.

To denote the sub-matrices and sub-vectors, we use the Matlab R© notation. For example, X1:100,:

denotes the first 100 rows of the matrix X.
Nearest neighbors (NN) are also frequently used. We use NNG(x) to denote the NN of point x

in group G. If x is in G then it excludes itself during the search. Ties, if any, are broken arbitrarily.

1.2 Learning from Discrete Data
Many collective data sets contains discrete/categorical points. For example, in text processing doc-
uments comprises discrete words that take values from a vocabulary. In recommendation problems,
a user is characterized by the set of items he/she bought, which are discrete symbols.

If we assume that these discrete points are infinitely exchangeable, i.e. the order of the points
does not affect the nature of the groups, then we can succinctly represent the group by its sufficient
statistics: the histogram. Let a group of points be G = {x1, . . . , xN} with xn ∈ {1, . . . , D}.
Then G can be represented by a histogram g =

[∑N
n=1 I(xn = 1), . . . ,

∑N
n=1 I(xn = D)

]
∈ RD.

This approach reduces groups to vectors for which we have mature analysis tools and learning
techniques. Note that no information is lost during this reduction process under the exchangeability
assumption.

In some problems, even when the points are not discrete, researchers would still discretize them
using techniques like vector quantization [59] or sparse coding [94, 181], and then use aggrega-
tion methods that are similar to histogram reduction. A well-know example is the bag-of-words
representation used in image processing and computer vision (e.g. [19, 50, 136]). Inevitably, the
information carried by the original data might be compromised during this reduction. Neverthe-
less, the resulting vectorial representation is compact and familiar, and researchers can still develop
good learning methods based on this reduced representation. In fact, the problem of how to effec-
tively discretize the points makes its own field, but it is out of our focus.

Nevertheless, effectively algorithms to learn from groups with discrete points is very important,
and they can be also applied to many traditional problems with individual vectorial points. In the
later part of this thesis, we develop algorithms that can learn from collective data directly without
the discretization or other conversions.

1.2.1 Factorization Methods

In this research, the learning of discrete collective data that can be converted into vectors is done
under the factorization framework for its simplicity, speed, and wide applicability.

Matrices are very useful in representing data. Vectors can be stacked to form matrices such
as the design matrices in regression and classification, and the document-word matrix in language

5

modeling and text processing. Matrices are also used to describe networks and graphs, as well as
preference data in collaborative filtering [85, 138].

We denote the data matrix as X ∈ RM×D, where each row represents a groups and each
column represents one discrete value. One of the most common analysis for X is factoriza-
tion/decomposition, such as the principal component analysis (PCA). For design matrices, PCA
reveals the intrinsic linear structure of data. For text data, latent semantic indexing (LSI) [72] and
non-negative matrix factorization (NMF) [43] are often applied. The low-rank assumption is also
useful in matrix completion [23, 111] and collaborative filtering [138, 141].

To do a low-rank factorization, we assume that X has a low rank K and decomposes as

X ≈ UVT , U ∈ RM×K ,V ∈ RD×K . (1.1)

There are several ways to interpret the factor matrices U and V. They can be thought of as the
small number of bases and coefficients to reconstruct the matrix. They can be also interpreted as
the low-dimensional latent factors/features for the rows and columns of the matrix X, such that the
inner-products of the factors approximate the matrix’s entries. In terms of our learning problem,
the bases interpretation means that each group can be approximated by a linear combination of
“basis groups”; The factor interpretation means that each group and discrete value have a latent
feature, and the “compatibility” between the features of a group and a value determines how often
that value appears in the group.

1.2.2 Temporal Modeling

Successful as they are, one limitation of most existing factorization algorithms is that they are static
models in which groups are assumed to be stationary over time. However, real data is often evolv-
ing over time and exhibits strong temporal patterns, and traditional static methods are incapable
of learning the shift of a group’s composition of points. In other words, a group’s properties and
behavior may change over time, but it can only be represented one fixed latent factor in traditional
factorization models.

Another outstanding problem for many data set is that they are often very sparse. For example,
a document only contains a very small set of words compared to the whole vocabulary. Taking
the Netflix 3 data for instance, there are 17, 770 movies and 480, 189 users, but only 99, 072, 112
training ratings. This means that we are learning from a matrix with only 1.16% of its entries
given. This phenomenon presents two challenges for us. The first one is how to avoid over-fitting,
and the second is how to take advantage of this sparsity to accelerate computation.

To solve the problems, we propose a factorization method that is able to model time-evolving
data. In addition to the factors that are used to characterize groups and values, we introduce another
set of latent factors for time itself. Intuitively, these additional factors represent the population-level
modulation of latent features at each particular time. This kind of modeling allows us to introduce
flexibility into the time dimension without further sparsifying the data, which would happen if we
where to estimate different models at different time. We further enhance the method by Bayesian

3http://www.netflixprize.com/

6

techniques to avoid overfitting. Finally, the speed of the new algorithm is not much slower than
static methods.

1.2.3 Robust Factorization
Another aspect of data we are interested in is the outliers/anomalies. Real-world problems almost
always involve anomalies or outliers that do not conform to our assumptions. They can severely
degrade the models’ quality, or lead to novel discoveries. Thus we want robust methods that can
produce high-quality models as well as find the outliers. The definition of outlier varies depending
on specific problems, but in general outliers lie in the low-density regions of data distributions.
[26] surveyed outlier detection problems. In our factorization work, we consider subspace outliers
and assume that normal data reside in a low-dimensional linear subspace (the row/column space
of the low-rank matrix). For instance in signal processing, a normal signal can be reconstructed by
a few bases. If a signal cannot be well reconstructed, it is an outlier.

Factorization methods are often not robust due to the L2-norm used to measure approximation
errors [86, 176]. Many robust estimators has been proposed (e.g. [67, 79, 86, 88, 99]). A common
approach is to replace the L2-norm with robust norms are insensitive to outliers. For example L1

norm is widely used for robustness [15, 22]. Other measures like the Huber loss [74] and the
Geman-McClure function have also been employed [88, 123]. Another strategy is to exclude the
outliers: we first guess which data are outliers, and then reduce their influences [86, 176].

In this thesis, we took the approach of using robust norms. Specifically, we use the L0-norm,
which counts the number of outliers disregarding their magnitudes, to replace the L2-norm to
measure the errors. The resulting algorithm is simple, fast, and effective. It can also be shown that
the recently popular algorithms using the L1-norm and the nuclear norm [22, 177] are relaxations
of this method.

1.3 Learning from Continuous, Multidimensional Data
In many other problems, points are multi-dimensional vectors with continuous values. In this case,
it is not easy to summarize a group by a vector or get sufficient statistics. Current learning of these
data are often done by discretization. However, this conversion step may lose valuable information
and might need significant domain knowledge. Therefore, we want to attack this problem directly.
Our basic assumption is that the points in group Gm are infinitely exchangeable samples from an
underlying probability distribution fm. To learn from the groups, we learn the fm’s.

1.3.1 Generative Models
To motivate the characterization of groups we consider the problem of finding group anomalies.
We consider two types of group anomalies. A point-based group anomaly is a group that contains
individually anomalous points e.g. an image containing a two-headed wolf. A distribution-based
anomaly is a group where the points are relatively normal, but as a whole they are unusual e.g. an
image containing a pack of wolves and a flock of sheep together.

7

Most existing work on group anomaly detection focuses on point-based anomalies. They first
identify anomalous points and then find their aggregations. Clearly this paradigm will not work
for distribution-based anomalies. One solution is to design problem-specific features for groups.
However, it relies on feature engineering that is domain specific and can be difficult.

In this thesis, we design several probabilistic models to capture the generating process of the
collective data. By training these models, we can learn the “normality” of the data, and hence
detect unusual behaviors. We can also infer the important latent attributes of the groups that can
help us find both types of anomalies. The tools we use are developed based on topic modeling.

1.3.2 Topic models

We can learn the generating process of the groups using probabilistic models. For this purpose,
particular useful are the topic models, among which the probabilistic latent semantic analysis
(PLSA) [72] and latent Dirichlet allocation (LDA) [14] are the most well-known.

Topic models are originally proposed for text modeling, where we have words as points and
document as groups. They are hierarchical mixture models built upon the assumption of exchange-
able points i.e. the order of points/words does not matter. Essentially in LDA, a group Gm is mod-
eled by a mixture density fm =

∑K
k=1 θmkβk, where K is the number of mixture components.

We call the mixture components βk’s as the topics and the mixing weights θm ∈ SK as the topic
weights. LDA forces all groups to share the same topics {βk}Kk=1 so as to share information and
enhance the statistical power.

Topic models are often described by generative schemes. For example a LDA model with
topics {βk}Kk=1 and prior Dirichlet topic weight distributionDir(α) can be described by Algorithm
1, and the resulting complete likelihood is

p (Gm, θm, zm|α, β) = Dir(θm|α)
∏
n

M(zmn|θm)βzmn(xmn).

Algorithm 1 The generative process of LDA.
For group m = 1 to M :

1. Choose the topic weight θm ∈ SK , θm ∼ Dir(α).

2. For points n = 1 to Nm:

(a) Choose a topic zmn ∼M(θm), zmn ∈ {1, . . . , K}.
(b) Generate a point xmn ∼ βzmn .

Although topic models are proposed for discrete data like text, it is straightforward to use them
for continuous multi-dimensional points by using multivariate distributions such as Gaussians as
the topics {βk}. The idea stays the same: we approximate the underlying distribution fm with a
mixture model

∑
k θmkβk, and try to figure out how this mixture model was generated.

8

1.3.3 Enhanced Topic Models
The challenge we face in using generative models for group anomaly detection is how to devise
flexible models to fully characterize the data. In traditional topic models, the model parameters,
such as the topic weight distribution Dir(α), are considered “priors”, and their role is incorporate
prior knowledge to assist the estimation of latent variables. In our problem, however, we need
the model parameters to describe the detailed behaviors of data in ordered to differentiate what is
normal and what is not.

Since LDA, various improvements have been proposed. Many of them enhanced the flexibility
of generating mechanism of topic distributions [50, 80] or capture correlation between topics [13,
102]. On the other hand, [45] allow the topics to vary for different groups in order to account for the
burstiness of words. These ideas are helpful ingredients for creating a model that can thoroughly
capture how groups are generated.

We proposed several enhanced topic models for group anomaly detection. We study the mod-
els’ flexibility, robustness, learning and inference speed, etc, and present our findings. Based
on these models, we proposed several novel scoring functions to detect both the point-based and
distribution-based anomalies.

1.3.4 Discriminative Methods
Discriminative methods can also be used to learn from collective data, in which we circumvent the
need of the generating process of data and aim directly at what we want to learn, e.g. the class label
of a group. Here we focus on learning methods that are based on pairwise (dis)similarity measures,
such as the SVM.

Several methods has been proposed to measure the similarity between sets of vectors. [171]
used several traditional sets distances such as the Hausdorff distance for this purpose. [63, 64]
proposed the pyramid matching kernels between vector sets based on hierarchical approximate
matching of points. [170] measures group similarities based on the angles between the subspaces
spanned by the points from different groups. [151] proposed algebraic kernels between matrices
that represent sets of vectors.

[65, 155] tries to embed probability distributions into reproducing kernel Hilbert spaces (RKHS).
In these methods, a density f is mapped to a mean function µf in a RKHSHk induced by a kernel
k(·, ·) as µf (·) = Ex∼f [k(x, ·)]. Then the inner-product between densities is just the inner-product
of the mean functions inHk, which is equivalent to the average kernel values between each pair of
inter-group point pairs. The discrepancy between densities is defined as the distance between the
mean functions inHk.

Alternatively, we can measure the divergences between the underlying distribution fm’s. In
statistics, this question can be answered by the results from two-sample tests (e.g. the probability
of rejecting the null hypothesis) such as the Student t-test, the Kolmogorov-Smirnov test, and the
permutation test. However these methods either rely on parametric assumptions, use only limited
statistics, or have difficulties in high-dimensions.

Another approach is to first estimate densities fm first and then measure similarities. [140]
compute divergences by discretizing the continuous densities. [75] defines Fisher kernels between

9

parametric densities. [119] fits Gaussian mixture models (GMM) to compute the Kullback-Leiber
(KL) divergences. [76] fits exponential family densities, and then compute product kernels between
these densities in an RKHS. [42] defined a kernel on the level-sets of fitted densities. The problem
with these methods is that density estimation is itself notoriously difficult and parametric methods
often introduce biases.

We took the distributional approach in this work. Based on the work of [129], we propose
a nonparametric method to estimate a family of kernels between distributions based on observed
samples, while avoiding explicit density estimates. These estimators are both efficient and accu-
rate, and is able to achieve the state-of-the-art performance on real data sets.

1.3.5 Accelerated Learning

One major disadvantage of the algorithms that learn from collective data is their high computational
cost compared to those operate on vectors. For example, in computer vision, by discretizing the
local features and aggregating them by the “bag of visual words” method [50], typically a 256×256
image can be characterized by one 1, 000-dimensional vector, amounting to just 1KB of data. On
the other hand, to represent an image as a group of SIFT features, we typically need more than
1, 500 128-dimensional vectors, amounting to about 190KB of data. The further computation
needed to process such groups is likely to be also orders of magnitudes larger. In order to make
the learning algorithms in this work truly useful, this hurdle of computational efficiency must be
overcome.

We explore different ways to improve the speed of the group similarity based methods. In most
cases, the cost to train, store, and apply the model is determined by the sizes/cardinalities of the
groups. Therefore, one approach is to directly attack the crux of the problem by reducing the size
of groups while maintaining the learning performance, in an unsupervised way. We call such an
operation condensing. We analyze and evaluate several possible ways of decrease the size of a
group, and discover that distribution approximation via k-Means can successfully achieve the goal
of condensing.

Another way to improve the speed of similarity-based algorithms is to reduce the number of
similarity evaluations. In SVM or spectral clustering, we need a full kernel matrix or distance
matrix, which means that similarities are needed for every pair of groups. In many problems,
structures exist in the similarity/divergence matrices that allows us to infer the full matrix based
on only part of the entries. By exploiting such structures, we can compare only some pairs of
groups and “complete” the similarities between the other pairs. In this work, we study methods
to complete both the kernel matrices and the divergence matrices, and compare their empirical
performances.

1.3.6 Sampling Bias

One factor that can significantly affect the effectiveness of learning is the sampling bias. In realis-
tic situations, sampling bias alters the way we collect points from the underlying distribution, and
makes the observed sample not representative of the true distribution. In other words, even though

10

the group Gm has a underlying distribution fm, the actual points in Gm may not be faithful sam-
ples from fm, but rather drawn from some distorted version of fm. Therefore, it undermines the
fundamental validity of learning algorithms, including all the methods we proposed in this work.
Though been extensively studied in statistics, this key problem has been largely ignored by the
previous research on learning from collective data.

We propose conditional divergences to correct these distortions and learn from biased groups
effectively. Traditional divergences mainly compares the joint distribution of the random variables.
On the other hand, conditional divergences focus on the conditional distributions of some variables
given the rest, and is insensitive to the distribution of the variables that we are conditioning on. As
long as the conditional distributions are intact, the conditional divergences will be accurate. An
efficient estimator is also developed for the conditional divergences.

1.4 Related Fields

Several other research fields are closely related to learning from collective data. Statistical rela-
tional learning (SRL) [60] enhances point-centered machine learning by consider a group of point
and their relationships altogether. For example, SRL studies the collective classification problem,
where the goal is to simultaneously classify several objects based on their attributes and relations.
This problem is also studied under the name of structural prediction typically using Markov net-
works [158] or large-margin approaches [161]. Even though collective behaviors are considered,
SRL still tries to learn the labels of the points, whereas our research shall only focus on the groups.

Multiple instance learning (MIL) [184] also tries to classify groups of points. In MIL, a group
is positive if at least one of its point is positive; otherwise it is negative. Consequently, in MIL the
nature of a group is determined by a few of its points. By comparison, we assume that it is the
holistic behavior of all the points that characterizes a group. Nevertheless, sometimes the methods
for learning from collective data indeed overlap with methods for MIL. For example, some kernels
[12, 55] can be used to do MIL as well as learning from collective data.

Another related field is on graph kernels. Graph kernels studies the similarities between graphs,
which are defined by a set of nodes and edges. Graphs can also be considered as collective data.
But unlike before, graph data are structured and the elements in a graph can no longer be considered
i.i.d. or exchangeable. Graph kernels often count the intersection of sub-structures between graphs.
For example, the random walk kernel [54, 165] measures the path similarity of random walks in
different graphs. [6] designed kernels between groups based on graph kernels.

Finally, quantization/discretization/encoding has always been the traditional way of learning
from collective data. These methods first turns vectors into discrete points, and then reduce the
groups into vectors. When such conversion is done, our algorithms of learning from discrete data
can be applied. But our main focus of this thesis is to avoid such conversions and learn high-quality
results from collective data directly.

11

1.5 Challenges in Scientific Data
This research is motivated by the need of analyzing scientific data sets. The proposed algorithms
are intended to help the scientists learn about the data sets they observe. Here we describe two
projects that involves astronomical surveys and particle/fluid simulation systems. In these projects,
we want to conduct explorative study to obtain the overall data profile, and pick out potentially
interesting things using novelty detection.

Astronomical Surveys

Astronomical surveys provide a holistic view of the universe by imaging a large portion of the
sky. The Sloan Digital Sky Survey4 (SDSS) project has imaged more than 35% of the sky and
gives millions of observations for stars, galaxies, quasars, and other celestial objects. Astronomers
are also planning for even more powerful survey telescopes such as the Large Synoptic Survey
Telescope5 (LSST) that can scan the sky deeper and faster. The massive amount of data produced
by these surveys calls for the assistance of computational methods.

We focus on the spectroscopic observations in the SDSS data set. SDSS provides for each
object a 3700-dimensional spectrum as shown in Figure 1.1b, along with its 3D spatial location for
distant objects like galaxies and quasars. We directly take these spectra as the feature vectors for
these objects.

(a) Photometric (b) Spectroscopic

Figure 1.1: A galaxy observation from SDSS.

Two novelty detection tasks are currently considered on this data set. The first one is to find
individually anomalous objects such as planetary nebulae. This task is traditional in that we want
to find unusual vectorial points, yet it still poses unique challenges. For example, the spectra
have high-dimensionality which makes it difficult to use density-based methods, and they usually

4http://www.sdss.org
5http://www.lsst.org

12

http://www.sdss.org
http://www.lsst.org

contain emission lines (see the spikes in Figure 1.1b) that could easily distort models. We focus on
subspace outliers assuming that normal spectra can be reconstructed by a few bases, and develop
robust factorization methods to address the emission lines.

The second task is to detect special clusters of galaxies. Based on the 3D spatial locations,
we can find nearby galaxies and put them into clusters/groups. These clusters could shed light on
the development of the universe [166], and it will be valuable to find interesting clusters for the
astronomers. In this case, each cluster contains a set of spectrum vectors, and we shall address this
problem using group anomaly detection methods.

Particle/Fluid Simulation

(a) (b) (c)

Figure 1.2: Local motion patterns in the JTDC simulation. Several 2D slices are presented.

In physics, researchers often simulate particle or fluid systems at a very large scale. For ex-
ample, the JHU Turbulence Database Clusters6 (JTDC) provides open access to 10244 space-time
points in fluid simulations. At each points, the 3D velocity as well as other information including
pressure and temperature are recorded. See Figure 1.2 for some examples. Our task is again to
detect interesting phenomena in such massive data sets.

In these systems, a single particle is seldom interesting, but a group of particles can form
interesting phenomena like the vortices as in Figure 1.2c. This can again be framed as a group
anomaly detection problem. We treat points in a local region as a group, and aims at finding
interesting collective motion patterns characterized by the distribution of locations, velocities, and
other relevant features. In other scenarios, the researchers could give some examples of interesting
phenomena, and then our supervised methods will classify the local regions accordingly.

1.6 Thesis Overview
Motivated by numerous practical problems, we propose various algorithms and models that can
learn from collective data effectively, and present our answers to the question how and what we

6http://turbulence.pha.jhu.edu

13

http://turbulence.pha.jhu.edu

can learn from collective data. We study different data types (discrete and continuous), as well as
different learning approaches (generative and discriminative). Efforts are also made to improve the
practicality of the proposed methods from multiple angles.

The rest of this thesis is organized as follows. In Chapter 2 and 3 we describe two algorithms
to learn from discrete collective data focusing on modeling the temporal effects and the outliers.
Chapter 4 and 5 describe the generative and discriminative methods of learning from continuous
multi-dimensional data. Chapter 6 further studies how to construct Mercer kernels for collective
data. Then we describe how to accelerate the learning while maintaining accuracies in Chapter
7. Chapter 8 proposed conditional divergences to correct the sampling biases in collective data.
Finally in Chapter 9 we summarize the thesis and discuss future directions for this research.

14

Part I

Learning from Discrete Data

15

Chapter 2

Modeling Temporal Effects by Tensor
Factorizations

In the chapter and the next, we are learning from groups that contain discrete points and can be
converted into vectors. Specifically in this chapter, we shall discuss the recommendation a.k.a. col-
laborative filtering problems, in which a user rates a set of items, and the goal is to find out which
other items this user might like. But the proposed factorization algorithms can also be applied to
other problems of similar natures.

We consider the temporal dynamics in collaborative filtering problems. Real-world data are
seldom stationary, yet traditional collaborative filtering algorithms generally rely on this assump-
tion. Motivated by our sales prediction problem, we propose a factor-based algorithm that is able
to take time into account. By introducing additional factors for time, we formalize this problem as
a tensor factorization with a special constraint on the time dimension. Further, we provide a fully
Bayesian treatment to avoid fine-tuning the parameters and achieve automatic model complexity
control. To learn this model we develop an efficient sampling procedure that is capable of analyz-
ing large-scale data sets. This new algorithm, called Bayesian Probabilistic Tensor Factorization
(BPTF), is evaluated on several real-world problems including sales prediction, movie recommen-
dation, and music recommendation. Empirical results demonstrate the superiority of the temporal
model.

2.1 Introduction
Nowadays, recommendation a.k.a. collaborative filtering algorithms play a vital role in various
automatic recommendation systems and has been used in many online applications such as Ama-
zon.com, eBay, and Netflix. The set up of the problem is as follows. Different users rates different
items based on their preferences. Suppose that we have observed for each user the set of items
he/she has rated in the past. Then, collaborative filtering tries to predict the how a user would rate
a currently unrated item. Note that here rating can mean either the actual preference such as movie
ratings, or other indications such as the quantity of the consumed item.

Successful as they are, one limitation of most existing methods is that they are static models in

16

which the statistical properties of data are assumed to be the same at different time. However, real
data is often evolving over time and exhibits strong temporal patterns. To motivate our research,
let us consider the following problem. A shoe production company sells many types of shoes to its
retailers around the world. Now this company wants to predict the demand of different shoes by
different retailers for the ongoing season based on this season’s initial orders and historical sales
data. Having this prediction, the company can make more informed decisions on the marketing
strategy and inventory planning. Obviously, the behavior of the market and the retailers is changing
over time.

The traditional way to solve this problems is to use statistical regression models or time-series
forecasting techniques for each shoe-retailer pair. Ideally, regression models can predict the order
using the features of the retailers and the shoes. But the reality is that few retailer and product
attributes are available due to the complexity of the domain knowledge and policy issues. What we
have is only the transaction data recording the retailer, product, and quantity of each order. There-
fore, it is more convenient to treat the products as discrete symbols, and represent the retailers by
the sets of products they ordered. On the other hand, typical time-series models such as autoregres-
sive moving average (ARMA) and exponential smoothing [20] use past data to make predictions.
But they are not suitable for our problem neither because the data are extremely scarce and each
season many new products are introduced, for which no historical data exist. Moreover, both of
these two paradigms cannot exploit the “collaboration” between entities and hence are expected to
perform poorly when the data is sparse. For these reasons, we use collaborative filtering to make
the prediction.

Even if collaborative filtering is able to handle our data, traditional static methods are incapable
of learning the shift of product designs and customers’ preferences, especially considering that we
are facing the volatile and fast-moving fashion business. The preference of the market can change
from season to season and even within each season. In this case, trying to explain all the data with
one fixed global model would be ineffective. On the other hand, if we only use the recent data
or down-weigh the past, a lot of useful information would be lost, making the already very sparse
data set even worse.

To solve this problem, we propose a factorization based method that is able to model time-
evolving data. This method is based on probabilistic latent factor models [141, 142]. In addition
to the factors that are used to characterize retailers and shoes, we introduce another set of latent
features for each different time period. Intuitively, these additional factors represent the population-
level preference of different (latent) features of the shoes at each particular time, so that they are
able to capture concepts like “high-heeled shoes lost their popularity this fall” or “orders of golf
shoes tend to arrive late”. A special constraint is imposed on the time factors to ensure that the
evolution of factors is smooth. This model learns the features of the entities using all the available
data, while adapts these features to different time periods. It can be formulated as a probabilistic
tensor factorization problem, thus is widely applicable to other similar data sets.

The modeling of temporal effects is also useful in other collaborative filtering problems, since
often the preferences of users are subject to change. Remarkably, the remarkable progress in the
Netflix Prize contest is attributed to a temporal model [85]. The winner identifies strong temporal
patterns in the data, and exploits them to achieve a significant improvement leading to the best

17

performance attained by a single algorithm.
One outstanding problem for many data is that they are often very sparse. A retailer usually

only order a small subset of shoes from the whole product line. In the Netflix Prize1 data set, there
are 17, 770 movies and 480, 189 users, but only 99, 072, 112 training ratings. This means that on
average each user has only rated 1.16% of the movies. This phenomenon presents two challenges
for us. The first one is how to avoid over-fitting, and the second is how to take advantage of this
sparsity to accelerate computation. To address the first problem, we extend our approach using
Bayesian techniques. By introducing priors on the parameters, we can effectively average over
various models and ease the pain of tuning parameters. We call the resulting algorithm Bayesian
Probabilistic Tensor Factorization (BPTF). And for scalability, we develop an efficient Markov
Chain Monte Carlo (MCMC) procedure for the learning process so that this algorithm can be
scaled to problems like Netflix.

In our experiments we applied our BPTF model to the sales prediction problem as well as
movie and music recommendation problems. The empirical results show that using the temporal
modeling, consistent improvement of prediction accuracy can be achieved over static methods at
the cost of little extra complexity and computation.

The rest of this chapter is organized as follows. First we introduce some preliminaries about
factorization methods in Section 2.2. In Section 2.3 we describe the proposed model, which are
enhanced in Section 2.4 by Bayesian techniques. Some related work is discussed in Section 2.5.
Section 2.6 presents the empirical performance and efficiency of our method. Finally we make our
conclusions.

2.2 Preliminaries

First we introduce some background and notations. Our data is stored in a matrix X ∈ RM×D,
which can be considered as a rating matrix in collaborative filtering, or simply a data matrix formed
by stacking the vectors by row. Corresponding to the rows and columns of X, there are two types
of entities {ui} and {vj}. In collaborative filtering, we call them “user” and “item” respectively.
They can also be “group” and “value” in the context of learning from discrete collective data.
Obviously, there are M users and D items.

The (i, j)th element of X, denoted as xij , is the “rating” that user i gave to item j (or it could
mean the number of times value j appeared in group i). Note that in collaborative filtering a large
portion of the entries in X is not observed.

Typical collaborative filtering algorithms can be categorized into two classes: neighborhood
methods and factorization methods. Generally factor-based algorithms are considered more effec-
tive than those based on neighborhood. But these two class are often complementary and the best
performance is often obtained by blending them [9]. A practical survey of this field can be found
in [84].

One representative factor-based method for collaborative filtering is the probabilistic matrix
factorization (PMF) [141]. PMF assigns a Z-dimensional latent feature vector for each user and

1http://www.netflixprize.com/

18

item, denoted as ui,vj ∈ RZ , and model each rating as the inner-product of corresponding latent
features, i.e. xij ≈ uTi vj where uTi is the transpose of ui. Formally, the following conditional
distribution is assumed:

p(X|U,V, α) =
M∏
i=1

D∏
j=1

N
(
xij|uTi vj, α−1

)Iij
, (2.1)

where {ui}, {vj} are columns of U ∈ RZ×M and V ∈ RZ×D, α is the observation precision, and
Iij is the indicator that xij has been observed. Zero-mean Gaussian prior are imposed on ui and vj
as a regularization.

This model can be learned by estimating the value of U and V using the maximum a posteriori
(MAP) principle. It turns out that this learning procedure actually corresponds to the following
weighted regularized matrix factorization:

U,V = arg min
U,V

M∑
i=1

D∑
j=1

Iij
(
xij − uTi vj

)2
+ λU

M∑
i=1

‖ui‖2 + λV

D∑
j=1

‖vj‖2. (2.2)

These formulations reflect the basic ideas of factorization based collaborative filtering.
The optimization problem (2.2) can be done efficiently using gradient descent. This model

is very successful in the Netflix Prize contest in terms of speed-accuracy trade-off. The draw-
back though is that it requires fine tuning of both the model and the training procedure to predict
accurately. This process is computationally expensive on large data sets.

We present the proposed method in two parts. First we extend PMF to tensor factorization to
model temporal data, and formulate a maximum a posteriori (MAP) scheme for estimating the fac-
tors. Then we apply a fully Bayesian treatment to deal with the tuning of the prior parameters and
derive an almost parameter-free probabilistic tensor factorization algorithm. Finally an efficient
learning procedure is developed.

2.3 A Tensor Model for Temporal Data
In PMF each rating is determined by the inner product of the user feature and the item feature. To
model their time-evolving behavior, we make use of the tensor notation. We can denote a rating
as xkij where i, j index users and items as before, and k indexes the time slice when the rating was
given. Then similar to the static case, we can organize these ratings into a three-dimensional tensor
X ∈ RM×D×K , whose three dimensions correspond to user, item, and time respectively.

Based on the idea of PMF, we assume that each entry xkij can be expressed as the inner-product
of three Z-dimensional vectors:

xkij ≈< ui,vj, tk >≡
Z∑
z=1

uzivzjtzk, (2.3)

where ui, vj are the factors for users and items while tk is the additional latent feature vec-
tor/factors for the kth time slice. Using matrix representations U ≡ [u1, . . . ,uN],V ≡ [v1, . . . ,vM],

19

and T ≡ [t1, tK , . . . ,], we can also express Eq. (2.3) as a three-way tensor factorization of X:

X ≈
Z∑
z=1

Uz,: ◦Vz,: ◦Tz,:, (2.4)

where Uz,:,Vz,: and Tz,: represent the zth rows of U,V and T, and ◦ denotes the vector outer
product. This is an instance of the CANDECOMP/PARAFAC (CP) decomposition [82], for which
a illustration is in Figure 2.1. We prefer this model over the one that assigns a separate factor to
each entity at each time slice because it will increase the number of factors dramatically and does
not implement a tensor factorization.

An interpretation of the factorization (2.3) is that a rating depends not only on how well a
user’s preferences and an item’s features match, but also on how much these features match with
the “current trend” reflected in the time factors. For instance, if a user likes green shoes but the
overall trend of this year is that few people wears them on the street, then this user is probably not
going to buy them neither.

To account for the randomness in ratings, we consider the following probabilistic model:

xkij ∼ N
(
< ui,vj, tk >,α

−1
)
, (2.5)

i.e. the conditional distribution of xkij given U,V, and T is a Gaussian distribution with mean
< ui,vj, tk > and precision α. Note that if tk is an all-one vector then this model is equivalent to
PMF. Since many entries in X are missing, estimation based on the model (2.5) may over-fit the
observed entries and fail to predict the missing entries well. To deal with this issue, we place prior
distributions on U,V, and T to regularize. Specifically we impose zero-mean Gaussian priors on
user and item factors:

ui ∼ N
(
0, σ2

UI
)
, i = 1, . . . ,M, (2.6)

vj ∼ N
(
0, σ2

V I
)
, j = 1, . . . , D, (2.7)

where I is the D ×D identity matrix.
As for the time factors, since they account for the evolution of global trends, a reasonable prior

belief is that they change smoothly over time. We further assume that each time feature vector
depends only on its immediate predecessor. Therefore, we can use the following conditional prior
for factors T:

tk ∼ N
(
tk−1, σ

2
dT I
)
, k = 1, . . . , K. (2.8)

For the initial time feature vector t0, we assume

t0 ∼ N
(
µT , σ

2
0I
)
, (2.9)

where µT ∈ RZ is the prior mean. We call this model the Probabilistic Tensor Factorization (PTF).
Having the observational model (2.5) and the priors, we can estimate the latent features U,V,

and T by maximizing the logarithm of the posterior distribution, which takes the following form

20

Figure 2.1: CP decomposition of a three-way tensor X

assuming ratings are independent given the latent factors:

log p (U,V,T|X) ∝ log p (X|U,V,T) + log p (U,V,T)

=
K∑
k=1

M∑
i=1

D∑
j=1

Ikij log p
(
xkij|ui,vj, tk

)
+

M∑
i=1

log p(ui) +
D∑
j=1

log p(vj) +
K∑
k=1

log p(tk|tk−1) + log p(t0)

=−
K∑
k=1

M∑
i=1

D∑
j=1

Ikij(x
k
ij− < ui,vj, tk >)2

2α−1
+

(#nz) logα

2

−
M∑
i=1

‖ui‖2

2σ2
U

−N log σU −
D∑
j=1

‖vj‖2

2σ2
V

−M log σV −
K∑
k=1

‖tk − tk−1‖2

2σ2
dT

−K log σdT −
‖t0 − µT‖2

2σ2
0

− log σ0 + C,

where Iij indicates the presence of xkij , #nz is the total number of ratings, and C is a constant.
Under fixed values of α, σU , σV , σdT , σ0 and µT , which are usually referred to as hyper-parameters,
maximizing the log-posterior with respect to U,V,T is equivalent to minimizing the following
regularized sum of squared errors:

K∑
k=1

N∑
i=1

D∑
j=1

Ikij(x
k
ij− < ui,vj, tk >)2 +

N∑
i=1

λU‖ui‖2

2
+ (2.10)

+
D∑
j=1

λV ‖vj‖2

2
+

K∑
k=1

λdT‖tk − tk−1‖2

2
+
λ0‖t0 − µT‖2

2
,

where λU = (ασ2
U)−1, λV = (ασ2

V)−1, λdT = (ασ2
dT)−1, λ0 = (ασ2

0)−1.
This objective function (2.10) is non-convex, and we may only be able to find a local minimum.

To optimize it, common choices include stochastic gradient descent and block coordinate descent,
both of which update the latent feature vectors iteratively. The estimations U∗,V∗, and T∗ can be
used to predict an unobserved rating xkij by the distribution (2.5).

21

One issue with the aforementioned approach is the tuning of the hyper-parameters α, σU , σV , σdT ,
σ0 and µT . Since there are many, the usual approach of hyper-parameter selection, such as cross-
validation, is infeasible even for a modest problem size. We thus propose in the next section a
fully Bayesian treatment to integrate out the hyper-parameters in the model, leading to an almost
parameter-free estimation procedure.

2.4 A Bayesian Treatment

The performance of PTF depends the careful tuning of the hyper-parameters when model param-
eters are estimated by maximizing the posterior probability, as pointed out in [142]. The point
estimate obtained by MAP is often vulnerable to over-fitting when hyper-parameters are not prop-
erly tuned, and is more likely so when the data is sparse.

An alternative scheme that may help alleviate over-fitting is the Bayesian estimation, which
integrates out all model parameters, arriving at a predictive distribution of future observations
given observed data. Because this predictive distribution is obtained by averaging all models in the
model space specified by the priors, it is less likely to overfit a given set of observations.

However, when integrating over parameters one often cannot obtain an analytical solution,
thus we will need to apply sampling-based approximation methods, such as Markov Chain Monte
Carlo (MCMC). For large-scale problems, sampling-based methods are usually not preferred due
to their computational cost and convergence-related issues. Nevertheless, [142] devises an MCMC
procedure for PMF that can run efficiently on large data sets like Netflix. The main trick is choosing
proper distributions for hyper-parameters so that sampling can be carried out efficiently.

Inspired by the work of [142], we present in the following a fully Bayesian treatment to the
PTF model proposed in Section 2.3. We refer to the resulting method as BPTF for Bayesian
Probabilistic Tensor Factorization.

2.4.1 Model Specification for BPTF

A graphical overview of our entire model is in Figure 2.2, and each component is described below.
The model for generating ratings is the same as Eq. (2.5):

xkij|U,V,T ∼ N
(
< ui,vj, tk >,α

−1
)
. (2.11)

As before, the prior distributions for the user and the item feature vectors are assumed to be Gaus-
sian, but the mean and the precision matrix (inverse of the covariance matrix) may take arbitrary
values:

ui ∼ N
(
µU ,Λ

−1
U

)
, i = 1, . . . ,M,

vj ∼ N
(
µV ,Λ

−1
V

)
, j = 1, . . . , D.

22

1T 2T

1
ijR 2

ijR

KT

K
ijR

iU jV

UU V V

0 0,W 0 0,W0 0

0 0,W

T

T

e

Figure 2.2: The graphical model for BPTF

For the time factors, we make the same Markovian assumption as in Section 2.3 and consider the
priors:

t1 ∼ N
(
µT ,Λ

−1
T

)
,

tk ∼ N
(
tk−1,Λ

−1
T

)
, k = 2, . . . , K.

The key ingredient of our fully Bayesian treatment is to view the hyper-parameters α,ΘU ≡
{µU ,ΛU},ΘV ≡ {µV ,ΛV }, and ΘT ≡ {µT ,ΛT} also as random variables, leading to a predictive
distribution for an unobserved rating xkij ,

p
(
x̂kij|X

)
= (2.12)∫

p
(
x̂kij|ui,vj, tk, α

)
p (U,V,T, α,ΘU ,ΘV ,ΘT |X) d{U,V,T, α,ΘU ,ΘV ,ΘT}

that integrates over the parameters, as opposed to the scheme in Section 2.3 which simply plugs
the MAP estimates into Eq. (2.5).

23

We then need to choose prior distributions for the hyper-parameters (the so-called hyper-
priors). For the Gaussian parameters, we choose their conjugate priors that simplifies subsequent
computations:

p(α) =W(α|W̃0, ν̃0),

p(ΘU) = p(µU |ΛU)p(ΛU) = N
(
µ0, (β0ΛU)−1

)
W(ΛU |W0, ν0),

p(ΘV) = p(µV |ΛV)p(ΛV) = N
(
µ0, (β0ΛV)−1

)
W(ΛV |W0, ν0),

p(ΘT) = p(µT |ΛT)p(ΛT) = N
(
ρ0, (β0ΛT)−1

)
W(ΛT |W0, ν0).

HereW is the Wishart distribution over Z × Z random matrix Λ with ν0 degrees of freedom and
a Z × Z scale matrix W0:

W(Λ|W0, ν0) =
|Λ|(ν0−D−1)/2

B
exp(− tr(W−1

0 Λ)

2
), (2.13)

where B is the normalizing constant. There are several parameters in the hyper-priors: µ0, ρ0, β0,
W0, ν0, W̃0, and ν̃0; These parameters should reflect our prior knowledge about the specific prob-
lem and are treated as constants during training. Nevertheless, slightly varying their values usually
has little impact on the final prediction performance, as often observed in Bayesian learning. Note
that we use the same hyper-parameters for all the factors for convenience, while in fact differ-
ent priors can be used for different factors if appropriate or necessary. In our experiment we set
µ0 = 0, β0 = 1, W0 = I, ν0 = D, W̃0 = 1, ν̃0 = 1. For notational convenience, we aggregate the
parameters as Θ0 ≡ {µ0, β0,W0, ν0, W̃0 ν̃0} and Θ ≡ {ΘU ,ΘV ,ΘT ,Θ0}.

2.4.2 Learning by Markov Chain Monte Carlo
The predictive distribution (2.12) involves a multi-dimensional integral that cannot be computed
analytically. We thus resort to approximation techniques. The main idea is to view Eq. (2.12) as an
expectation of p

(
x̂kij|ui,vj, tk, α

)
over the posterior distribution p (U,V,T, α,ΘU ,ΘV ,ΘT |X),

and approximate the expectation by an average of samples drawn from the posterior distribution.
Since the posterior is too complex to directly sample from, we apply a widely-used indirect sam-
pling technique, Markov Chain Monte Carlo (MCMC) [66, 116, 117]. The method works by
drawing a sequence of samples from some proposal distribution such that each sample depend-
s only on the previous one, thus forming a Markov chain. When the sampling step obeys certain
properties, the most notably being detailed balance, the chain converges to the desired distribution.
Then we collect a number of samples and approximate the integral in Eq. (2.12) by

p(x̂kij|X) ≈
L∑
l=1

p(x̂kij|u
(l)
i ,v

(l)
j , t

(l)
k , α

(l)), (2.14)

where L denotes the number of samples collected and u
(l)
i ,v

(l)
j , t

(l)
k , and α(l) are the lth samples.

A detailed description of MCMC can be found in [139].
There are quite a few different flavors of MCMC. Here we choose to use the Gibbs sampling

paradigm [56]. In Gibbs sampling, the target random variables are decomposed into several disjoint

24

subsets or blocks, and at each iteration a block of random variables is sampled while all the others
are fixed. All the blocks are iteratively sampled until convergence. Such a scheme is very similar to
the nonlinear Gauss-Seidel method (Chapter 2.7, [10]) for nonlinear optimization, which optimizes
iteratively over blocks of variables.

As indicated by its parametrization, our target distribution p (U,V,T, α,ΘU ,ΘV ,ΘT |X) has
an inherent block structure of the random variables. In the appendix of this chapter we show
that such a block structure, together with our choice of model components in Section 2.4.1, gives
rise to conditional distributions that are easy to sample from, leading to an efficient Gibbs sampling
procedure as outlined in Algorithm 2. It has two notable features: 1) the only distributions that need
to be sampled are multivariate Gaussian distributions and the Wishart distribution; 2) individual
user feature vectors can be sampled in parallel, and so can individual item vectors.

Algorithm 2 Gibbs sampling for BPTF
Initialize model parameters {U(1),V(1),T(1)}.
For l=1, . . . , L,
• Sample the hyper-parameters α(l),Θ

(l)
U ,Θ

(l)
V ,Θ

(l)
T according to (2.16), (2.17), (2.18) and

(2.19), respectively.
• For i = 1, . . . ,M , sample the user factors {ui} (in parallel) according to (2.20).
• For j = 1, . . . , D, sample the item factors {vj} (in parallel) according to (2.21).
• For k = 1, . . . , K, sample the time factors {tk} according to (2.22).

2.4.3 Scalability and Practical Issues
In our implementation, the PTF model is optimized using alternating least squares, which is a
block coordinate descent algorithm that optimizes one user or one item at each time. The BPTF
model is learned using Gibbs sampling as described in Algorithm 2. Both of them are efficient and
scalable for large data sets.

Let #nz be the number of observed ratings in the training data. For each iteration, the time
complexity for both PTF and BPTF is O(#nz × Z2 + (M + D + K) × Z3). Typically, the
term (#nz × Z2) is much larger than the others so the complexity grows linearly with respect to
the number of observations. For the choice of Z, in our experience using tens of latent features
usually achieves a good balance between speed and accuracy. Inevitably, the running time of
BPTF is slower than the non-Bayesian PMF, which has a complexity of O(#nz × Z) for each
iteration using stochastic gradient descent. But using PMF involves a model selection problem.
Typically parameters λU and λV have to be tuned along with the early-stopping strategy. This
process can be prohibitive for large data sets. On the other hand, BPTF eliminates the existence of
hyper-parameters by introducing priors for them. Therefore, we can set the priors according to our
knowledge and let the algorithm adapt them to the data. Empirically, good results can be obtained
without any tuning.

When using MCMC, a typical issue is the convergence of sampling. Theoretically, the results
generated are only accurate when the chain has reached its equilibrium. This however would usual-

25

ly take a long time and there is no effective way to diagnose the convergence. To alleviate this, we
use the MAP result from PMF to initialize the sampling. Then the chain usually converges within
a few hundreds samples from our experience. Moreover, we found that the accuracy increases
monotonically as the number of samples increases. Therefore in practice we can just monitor the
performance on validation sets and stop sampling when the improvement from more samples is
diminishing.

2.5 Related Work
There is a lot of work on factorization methods for collaborative filtering, among which the most
well-known one is Singular Value Decomposition (SVD), which is also called Latent Semantic
Analysis (LSA) in the language and information retrieval communities. Based on the LSA, prob-
abilistic LSA [72] was proposed to provide the probabilistic modeling, and further latent Dirichlet
allocation (LDA) [14] provides a Bayesian treatment of the generative process. Along another
direction, methods like [28, 138, 142] improve the SVD using more sophisticated factorization.

Bayesian PMF (BPMF) [142] provides a Bayesian treatment for PMF to achieve automatic
model complexity control. It demonstrates the effectiveness and efficiency of Bayesian methods
and MCMC in real-world large-scale data mining tasks, and inspired our research. However, as
mentioned before, BPMF is a static model that cannot handle evolving data. BPTF enhance it
by adapting the latent features to include the time information. From the algorithmic perspective,
BPTF extends BPMF so that it can deal with multi-dimensional tensor data and the time dimension
is specially taken care of. Although BPTF gives more flexibility over BPMF, the increase of
parameters is negligible considering that the number of time slices are often much smaller than
the number of entities. Another difference is that BPMF leaves the observation precision α as a
tuning parameter while our Bayesian treatment covers all the parameters. There are also other
probabilistic tensor factorizations such as Multi-HDP [132], Probabilistic Non-negative Tensor
Factorization [144], and Probabilistic polyadic factorization [30]. Yet they are neither designed for
prediction purpose nor modeling temporal effects.

Temporal modeling has been largely neglected in the collaborative filtering community until
Koren [85] proposed their award winning algorithm timeSVD++. The timeSVD++ method as-
sumes that the latent features consist of some components that are evolving linearly over time and
some others that are dedicated bias for each user at each specific time period. This model can
effectively capture local changes of user preferences (i.e. each user is involving independently)
which the authors claim to be vital for improving the performance. On the other hand, BPTF tries
to capture the global effect of time that are shared among all users and items. For our sales predic-
tion purpose we argue that modeling the evolution of the overall market would be more effective
since the behavior of retailers are not very localized and the data is very sparse.

Real data sets are rarely stationary. Recently, several algorithms aimed at learning the evolution
of data were proposed. Tong et al. [160] proposed an online algorithm to efficiently compute the
proximity in a series of evolving bipartite graphs. Ahmed and Xing [2] added dynamic components
to the LDA to track the evolution of topics in a text corpus. Sarkar et al. [143] considers the
dynamic graph embedding problem and uses Kalman Filter to track the embedding coordinates

26

through time. All these works reveal the dynamic nature of various problems.

2.6 Experiments
We conducted several experiments on three real world data sets to test the effectiveness of BPTF.
In these data sets, a timestamp is available for each rating, which can thus be denoted by the tuple
(ui, vj, tk, x

k
ij). The experimental domains include sales prediction and online movie recommen-

dation.
For comparison, we also implemented and report the performance of PMF and BPMF. When

training the non-temporal models, the time information is dropped so the actual tuple used is
(ui, vj, x

k
ij). For PMF, stochastic gradient descent with a fixed learning rate (lrate) is adopted for

training, and its parameters are obtained by hand tuning to achieve the best accuracy. For BPMF
and BPTF, Gibbs sampling is used for training and the results from PMF are used to initialize the
sampling. Similar to [142], parameters for Bayesian methods are set according to prior knowledge
without tuning. Unless indicated otherwise, parameters used for priors are µ0 = 0, ν0 = D, β0 =
1,W0 = I, ρ0 = 1, ν̃0 = 1, where 1 ∈ RZ is a vector of 1’s.

The algorithms are implemented in MATLAB with embedded C functions.

2.6.1 Sales Prediction
In this section we evaluate the performance of BPTF on a sales prediction task for ECCO R©, a shoe
company selling thousands of kinds of shoes to thousands of retailer customers from all over the
world. For the consistency of expression we still use “user” to represent “customer” and “item” to
represent ECCO’s product: shoes.

ECCO sells its shoes in two seasons each year. Here we use “2008.1” to denote the spring
season of 2008 and “2006.2” for the fall season of 2006. For each season there is a period for
accepting orders. Suppose we are in the middle of current ordering period, our problem is: in the
following part of this season, how many orders of an item can be expected from a particular user?
The data we have is only the existing sales record. No attributes for the items or users are available.
As mentioned in section 2.1, this is a data set characterized by changing preferences and the fast
emergence and disappearance of entities. On average we have thousands of items and users with
only 2% of the possible entries observed. Moreover, in each season 75 − 80% of the items and
around 20% of the users are new arrivals compared to the last corresponding season. All these
characteristics render it a particular challenging problem for collaborative filtering.

The data specification is as follows. We have the sales record from years 2005 to 2008 so there
are 4 spring seasons and 4 fall seasons, which are handled separately. For each season, we select
a week as the cut-off point so that orders before this week will be used for training and the rest
are for testing. For example, if we want to predict for orders of season 2008.1 after week 40 of
2007 (the cut-off point), then the training data will be orders in seasons {2005.1, 2006.1, 2007.1,
2008.1} that happened before the cut-off and the testing data are orders of 2008.1 after the cut-off.
We use a single cut-off point for all spring seasons and another one for fall seasons. The resulting
test set contains 15 − 20% of the orders. Note that this choice is arbitrary in the sense that the

27

2008.1 2007.1 2006.1 2008.2 2007.2 2006.2
0

5

10

15

20

25

30

35

40

Season

M
A

E

PMF
BPMF
BPTF

Figure 2.3: Performance comparison of PMF, BPMF, and BPTF on 6 seasons of ECCO’s sales
data. BPTF outperforms others by a large margin. See text for details.

progress of the sales varies from season to season. We measure the performance of algorithms
using mean absolute error (MAE) for each order since it is the most relevant quantity for ECCO.

We observed that the within-season variability of data is much larger than the cross-season one.
This means that trends like “Customers tend to order formal shoes early and golf shoes late” are
strong. Therefore, we assign the timestamp of each order according to the cut-off week so that the
latent factors can evolve within seasons. Concretely, every season is divided into early season and
late season by the cut-off week, resulting in two time slices. Note that the data are not grouped by
seasons, and all the test data are in the late season slice. For each test tuple, we use the time factor
for the late season to make the prediction.

We test the performance of three algorithms on all the seasons except 2005.1 and 2005.2 since
they do not have previous seasons. The parameters are λU = λV = 0.1, lrate = 1×10−5 for PMF,
α = 0.04 for BPMF, and W̃0 = 0.04 for BPTF. BPMF and BPTF both use the same initialization
from PMF. 50 samples are generated in sampling when the accuracy stabilizes.

The prediction accuracies are reported in Figure 2.3. We conclude that our prediction has an
average error of 20 pairs for each order, and the accuracy for spring seasons are much lower than
fall. For all the seasons BPTF consistently outperforms the static methods by a fairly large margin.
Note that PMF appears better than BPMF here. The reason may be that for this moderately sized
problem we are able tune the PMF parameters to get the best results, while for BPMF and BPTF
we assign the parameters by prior knowledge. The results verify that we can enhance the prediction
by modeling the temporal effects of data using BPTF.

28

PMF BPMF BPTF
RMSE 0.9166 0.9083 0.9044

Table 2.1: RMSE of PMF, BPMF and BPTF on Netflix data.

2.6.2 Movie Rating Prediction

To make the comparison more transparent, we also did experiments on benchmark movie rating
problems: Netflix2 and MovieLens3. These large-scale data sets consist of users’ ratings to various
movies on a 5-star scale, and our task is to predict the rating for new user-movie pairs.

To measure the accuracy, we adopt the root mean squared error (RMSE) criterion as commonly
used in collaborative filtering literature and the Netflix Prize. For all models, raw user ratings are
used as the input. Prediction results are clipped to fit between [1, 5].

Netflix

The Netflix data set contains 100, 480, 507 ratings from M = 480, 189 users to D = 17, 770
movies between 1999 and 2005. Among these ratings, 1, 408, 395 are selected uniformly over the
users as the probe set for validation. Time information is provided in days. The ratio of observed
ratings to all entries of the rating matrix is 1.16%. As a baseline, the score of Netflix’s Cinematch
system is RMSE = 0.9514.

Basically the timestamps we used for BPTF correspond to calendar months. However, since
the ratings in the early months are much more scarce than that in the later months, we aggregated
several earlier months together so that every time slice contains an approximately equal number
of ratings. In practice we found that in a fairly large range, the slicing of time does not affect the
performance much. In the end, we have K = 27 time slices for the entire data set.

Following the settings in the BPMF paper [142], we use Z = 30 latent features to model each
entity and set λU = λV = 0.015, lrate = 0.001 for PMF, α = 2 for BPMF, and W̃0 = 2 for
BPTF. These parameters for Bayesian methods are set as constant based on prior knowledge and
not tuned for best accuracy. 100 samples are used to generate the final prediction.

The prediction accuracies of PMF, BPMF, and BPTF on the probe set are presented in Table
2.1. Figure 2.4 shows the change of accuracies as the number of sample increases. BPMF shows
a large improvement over its non-Bayesian ancestor PMF, and BPTF further provides a steady
increment in accuracy. However, BPTF does not beat the RMSE = 0.8891 result of 20-dimensional
timeSVD++ (quoted from their paper), which is the state-of-the-art temporal model for the Netflix.
As pointed out by the authors of timeSVD++, the most important trait of the Netflix data is that
there are many local changes of preference which could just affect one user in one day. BPTF on
the other hand aims at learning the global evolution thus cannot capture these changes. However,
modeling the global changes still gives us improved performance.

To generate one sample, BPTF with Z = 30 latent features took about 9 minutes using about

2http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
3http://www.grouplens.org/node/73

29

0 20 40 60 80 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Number of Samples

R
M

S
E

Baseline
PMF
BPMF
BPTF

Figure 2.4: Convergence curves of BPTF and BPMF on the full Netflix data. As the number of
samples increase, the RMSE of Bayesian methods drop monotonically. The RMSE of the Netflix’s
baseline and PMF are also presented.

5GB RAM. For comparison, BPMF uses 6 minutes for one sample. We ran our experiments in a
single-threaded MATLAB process on a 2.4 GHz AMD Opteron CPU with 64 GB RAM. We did
not use the parallel implementation because it involves distributing a large amount of data and the
computational model provided by MATLAB does not handle it well. However, since each user and
movie latent feature vector can be sampled independently, we believe that on more sophisticated
platforms, BPTF can work nicely with MapReduce-style parallel processing.

We also did a group of experiments on a subset of the Netflix data constructed by randomly
selecting 20% of the users and 20% of the movies. It consists of M = 95, 992 users, D = 3, 565
movies, and 4, 167, 600 ratings. This subset is further divided into training and testing sets by
randomly selecting 10 ratings (or 1/3 of the total ratings, whichever is smaller) from each user as
the testing set. This sampling strategy is similar to the way that the Netflix Prize did it. Finally the
new data set contains about 4% of the original data set and is thus suitable for detailed experimental
analysis. In the training process, parameters are λU = λV = 0.03, lrate = 0.001 for PMF, and for
Bayesian methods the same parameters as for full data are adopted.

Firstly, we investigate the performance of algorithms as the number of factors varies. For
dimensions 10, 20, 50, and 100, the curves of convergence are shown in Figure 2.5. The RMSE
steadily decreases as the number of factors increase, and no over-fitting is observed. When using
100 factors, there are on average two parameters for a single rating. This clearly shows the effect
of model averaging using Bayesian technique. Also by comparing the curves of BPTF and BPMF,
we see that BPTF with 20 factors performs similarly to BPMF with 100 factors. This demonstrates
the advantage of temporal modeling considering that the number of parameters in BPMF is about
5 times more than BPTF.

30

0 50 100 150
0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

Number of Samples

R
M

SE

BPMF Z=10
BPMF Z=20
BPMF Z=50
BPMF Z=100
BPTF Z=10
BPTF Z=20
BPTF Z=50
BPTF Z=100

Figure 2.5: Convergence curves of BPMF and BPTF with different number of factors on a subset
of Netflix data. The accuracy increases when more factors are used, and no over-fitting is observed.
Also, BPTF with 20 factors achieves similar performance as BPMF with 100 factors.

We further examine the significance of the improvement of BPTF over the BPMF by repeating
the prediction tasks 20 times using different random test sets. The resulting box plot of RMSEs
are shown in figure 2.6a. The p-value of paired t-test between the results of BPMF and BPTF is
1.3× 10−22. In fact, in all runs, BPTF always produce better results than BPMF.

MovieLens

The MovieLens data set contains 1, 000, 209 movie ratings from M = 6, 040 users and D = 3, 706
movies between April, 2000 and February, 2003, with the restriction that each user has at least 20
ratings. The ratio of observed ratings is round 4.5%. Time information is provided in seconds. We
randomly select 10 ratings from each user as the test set, which is roughly 6.5% as large as the
training set. The timestamp used for BPTF corresponds to calendar months. We also use Z = 30
latent features here. The parameters for PMF are λU = λV = 0.05, lrate = 0.001 as in [31], and
the parameters for Bayesian methods are the same as for Netflix.

Figure 2.6b shows the performance of three algorithms from 20 random runs. This result is
similar to what we have for the Netflix data. BPTF still consistently outperforms BPMF, and the
p-value of paired t-test between them is 8.9× 10−15.

31

PMF BPMF BPTF

0.898

0.9

0.902

0.904

0.906

0.908

0.91

0.912

0.914

0.916

0.918
R

M
S

E

(a)
PMF BPMF BPTF

0.858

0.86

0.862

0.864

0.866

0.868

0.87

0.872

R
M

S
E

(b)

Figure 2.6: RMSE of PMF, BPMF, and BPTF. (a) On a subset of Netflix data. (b) On MovieLens
data. Lower RMSE is better.

2.6.3 Music Recommendation
We also test the algorithms’ performances on the recently released Yahoo Music4 data sets. This
data set is very similar to the previous movie rating data sets, except that instead of movies we are
dealing with music records. It contains 1, 000, 990 users, 624, 961 music records, and 252, 800, 275
ratings on 3, 974 different days. The ratings are given on the scale between 0 and 100.

A subset of this data set is used. As in the Netflix experiment, we first randomly sample 20%
users and music from the data set, and then remove users that has less than 50 ratings. The resulting
data set contains 38, 685 users, 24, 502 music, and 6, 798, 119 ratings. In this subset, only 0.7% of
the ratings are observed. The time index of ratings are discretized into 30 equally sized bins. The
ratings are scaled to the range [1, 5], the same as the movie recommendation problems.

To evaluate the performance, in each round we randomly select 10 ratings from each user to
construct the training set. Performances of 20 random runs are reported in Figure 2.7. BPTF still
consistently performs the best, showing the advantage of temporal models. We can also see that
the non-Bayesian PMF model exhibits clear over-fitting behaviors when the number of factors is
large.

2.7 Summary
We present the Bayesian Probabilistic Tensor Factorization (BPTF) algorithm for modeling tem-
porally evolving data. By introducing a set of additional time features to traditional factorization
algorithms, and imposing a smoothness constraint on those factors, BPTF is able to learn the global
evolution of latent factors. An efficient MCMC procedure is proposed to realize automatic mod-
el averaging and largely eliminates the need for tuning parameters on large-scale data. We show

4http://kddcup.yahoo.com/datasets.php

32

5 10 15 20 25 30 35 40 45 50
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1
Performance on Yahoo Music data

R
M

S
E

Number of factors

PMF
BPMF
BPTF

Figure 2.7: Prediction RMSE on the Yahoo Music data set using different methods and different
number of latent factors.

extensive empirical results on several real-world data sets to illustrate the advantage of temporal
model over static models.

In future works, we may adopt other types of observational models such as the exponential
family distributions. Gaussian model has been extensively used for rating data and proved to be
very effective. However, it might be better to use transformations [141] or other distributions to
handle the ratings that are discrete and have limited support. Similarly for the sale prediction
problem, a Poisson model might be better suited. However, these changes may lead to more
complicated posterior distributions. We can then consider the more general Metropolis-Hastings
sampling techniques such as [134].

Detailed Derivation
In this section we give explicit forms for the conditional distributions used in Algorithm 2. Ac-
cording to our model assumption in Figure 2.2, the joint posterior distribution can be factorized
as

p(U,V,T, α,ΘU ,ΘV ,ΘT |X) (2.15)
∝ p(X|U,V,T, α)p(U|ΘU)p(V|ΘV)p(T|ΘT)p(ΘU)p(ΘV)p(ΘT)p(α).

By plugging into Eq. (2.15) all the model components described in Section 2.4.1 and carrying
out proper marginalization, we derive the desired conditional distributions in the following two
subsections.

33

2.7.1 Hyper-parameters
By using the conjugate prior for the rating precision α, we have that the conditional distribution of
α given X, U, V and T follows the Wishart distribution:

p(α|X,U,V,T) =W(α|W ∗
0 , ν

∗
0), (2.16)

ν∗0 = ν̃0 +
K∑
k=1

M∑
i=1

D∑
j=1

Ikij,

(W̃ ∗
0)−1 = W̃−1

0 +
K∑
k=1

M∑
i=1

D∑
j=1

Ikij
(
xkij− < ui,vj, tk >

)2
.

For ΘU ≡ {µU ,ΛU}, our graphical model assumption in Figure 2.2 suggests that it is con-
ditionally independent of all the other parameters given U. We thus integrate out all the random
variables in Eq. (2.15) except U and obtain the Gaussian-Wishart distribution:

p(ΘU |U) = N (µU |µ∗0, (β∗0ΛU)−1)W(ΛU |W ∗
0 , ν

∗
0), (2.17)

µ∗0 =
β0µ0 +MŪ

β0 +M
, β∗0 = β0 +M, ν∗0 = ν0 +M ;

(W ∗
0)−1 = W−1

0 +MS̄ +
β0M

β0 +M
(µ0 − Ū)(µ0 − Ū)T ,

Ū =
1

M

M∑
i=1

ui, S̄ =
1

M

M∑
i=1

(ui − Ū)(ui − Ū)T .

Similarly, ΘV ≡ {µV ,ΛV } is conditionally independent of all the other parameters given V, and
its conditional distribution has the same form:

p(ΘV |V) = N (µV |µ∗0, (β∗0ΛV)−1)W(ΛV |W ∗
0 , ν

∗
0), (2.18)

µ∗0 =
β0µ0 +DV̄

β0 +D
, β∗0 = β0 +D, ν∗0 = ν0 +D;

(W ∗
0)−1 = W−1

0 +DS̄ +
β0D

β0 +D
(µ0 − V̄)(µ0 − V̄)T ,

V̄ =
1

D

D∑
j=1

vj, S̄ =
1

D

D∑
j=1

(vj − V̄)(vj − V̄)T .

Finally, ΘT ≡ {µT ,ΛT} is conditionally independent of all other parameters given T, and its
conditional distribution also follows Gaussian-Wishart distributions:

p(ΘT |T) = N (µT |µ∗0, (β∗0ΛU)−1)W(ΛT |W ∗
0 , ν

∗
0), (2.19)

µ∗0 =
t1 + β0ρ0

β0 + 1
, β∗0 = β0 + 1, ν∗0 = ν0 +K;

(W ∗
0)−1 = W−1

0 +
K∑
k=2

(tk − tk−1)(tk − tk−1)T +
β0

1 + β0

(t1 − ρ0)(t1 − ρ0)T .

34

2.7.2 Model parameters
We first consider the user features U. According to the graphical model in Figure 2.2, its condi-
tional distribution factorizes with respect to individual users:

p(U|X,V,T, α,Θ) =
N∏
i=1

p(ui|X,V,T, α,ΘU).

We then have, for each user feature vector,

p(ui|X,V,T, α,ΘU) = N (ui|µ∗i , (Λ∗i)−1), (2.20)

µ∗i ≡ (Λ∗i)
−1
(

ΛUµU + α

K∑
k=1

D∑
j=1

Ikijx
k
ijQjk

)
,

Λ∗i ≡ ΛU + α

K∑
k=1

D∑
j=1

IkijQjkQ
T
jk,

where Qjk ≡ vj � tk is the element-wise product of vj and tk. For the item features V the
conditional distribution factorizes with respect to individual items, and for each item feature vector
we have

p(vj|X,U,T, α,ΘV) = N (vj|µ∗j , (Λ∗j)−1), (2.21)

µ∗j ≡ (Λ∗j)
−1
(

ΛV µV + α
K∑
k=1

M∑
i=1

Ikijx
k
ijPik

)
,

Λ∗j ≡ ΛV + α
K∑
k=1

M∑
i=1

IkijPikP
T
ik,

where Pik ≡ ui � tk.
Regarding the time features, the conditional distribution of tk is also a Gaussian distribution:

p(tk|X,U,V,T−k, α,ΘT) = N (tk|µ∗k, (Λ∗k)−1), (2.22)

where T−k denotes all the time feature vectors except tk. The mean vectors and the precision
matrices depend on k in the following way:
For k = 1,

µ∗1 =
t2 + µT

2
, Λ∗1 = 2ΛT + α

M∑
i=1

D∑
j=1

I1
ijOijO

T
ij,

where Oij ≡ ui � vj (the same for the following).
For 2 6 k 6 K − 1,

µ∗k = (Λ∗k)
−1

(
ΛT (tk−1 + tk+1) + α

M∑
i=1

D∑
j=1

Ikijx
k
ijOij

)
,

Λ∗k = 2ΛT + α
M∑
i=1

D∑
j=1

IkijOijO
T
ij.

35

For k = K,

µ∗K = (Λ∗K)−1

(
ΛT tK−1 + α

M∑
i=1

D∑
j=1

IKij x
K
ijOij

)
,

Λ∗K = ΛT + α
M∑
i=1

D∑
j=1

IKij OijO
T
ij.

36

Chapter 3

Handling Outliers by Robust Factorization

This chapter focuses on the outliers/anomalies in the data and proposes an algorithm to improves
robustness of factorization methods.

Matrix factorization methods are extremely useful in many data mining tasks, yet their perfor-
mances are often degraded by outliers. In order to alleviate the influence of outliers, we directly
formulate the robust factorization problem as a matrix approximation problem with constraints on
the rank of the matrix and the cardinality of the outlier set. Then, unlike existing methods that re-
sort to relaxations, we solve this problem directly and efficiently. In addition, structural knowledge
about the outliers can be incorporated to find outliers more effectively. We applied this method
in anomaly detection tasks on various data sets. Empirical results show that this new algorithm
is effective in robust modeling and anomaly detection, and our direct solution achieves superi-
or performance over the state-of-the-art methods based on the L1-norm and the nuclear norm of
matrices.

3.1 Introduction

Real world problems almost always involve data that do not conform to the assumptions we made
in our models. These data are called outliers or anomalies. These outliers can severely degrade
the models’ quality and performances, therefore we want robust methods to reduce the impact of
outliers. In novelty detection problems, we are also interested in finding and studying these outliers
since they might lead to discoveries. To do this, we also need reliable models that are not distorted
by outliers.

The definition of outlier varies depending on the application and the behavior of data we want to
capture. A popular assumption is that the normal data are close together, and consequently outliers
are far away from the others i.e. lie in the low-density region of the data distribution [21, 182]. For
a survey of the outlier detection field readers can refer to [26]. In this work, we consider another
common definition called the subspace outlier, which comes from the assumptions that the normal
data reside in a low-dimensional linear subspace, which the outliers lie outside of. This means,
for example in signal processing, that a normal signal can be reconstructed by a few bases. If a
signal cannot be well reconstructed by these bases, it is an outlier. This subspace-based modeling is

37

widely used in various problems such as dimensionality reduction, signal/image processing, time
series analysis, and collaborative filtering.

Matrix factorization techniques, such as principal component analysis (PCA) and non-negative
matrix factorization (NMF) [93], are extremely useful in learning subspace structures from data.
However, traditional methods are prone to be distorted by outliers [86]. Since factorizations are
usually done by minimizing the error made by the model, a popular way of achieving robustness
is to use error measurements that are insensitive to outliers. Though being pervasively used, the
mean squared error or the L2 error measure is known to be vulnerable to outliers [176]. In machine
learning and statistics, the L1 error measure (mean absolute error) is widely used for the purpose
of robustness [15, 22]. Other measures like the Huber loss [74] and the Geman-McClure function
have also been employed [88, 123]. These robust measurements usually increase the algorithms’
complexities significantly. Another strategy is to exclude the outliers: we can first guess which
data are outliers, and then reduce their influences to the model [86, 176].

The contribution of this work is to propose a novel algorithm for learning robust subspace
models based on matrix factorization. For a data matrix X, we assume that it is approximately
low-rank, and a small portion of this matrix has been corrupted by some arbitrary outliers. The
goal of the proposed algorithm is to get a reliable estimation of the true low-rank structure of
this matrix. To achieve this, our basic idea is to exclude the outliers from the model estimation.
Specifically, the proposed algorithm directly answers the question: if you are allowed to ignore
some data (outliers), what is the best low-rank model you can get?

We formulate this problem as a constrained optimization problem. This formulation aims at
minimizing the L2 error of the low-rank approximation subject to that the number of ignored out-
liers is small, without any further assumptions. This formulation reflects our direct understanding
of outliers and robust estimation. Thus we call it direct robust matrix factorization (DRMF).

It can be shown that DRMF is the original problem that the recently popular nuclear norm
based methods (e.g. [22, 177]) are trying to solve. However, unlike these methods that resort
to relaxation techniques, we directly form these constraints in terms of the matrix rank and the
cardinality of the outlier set. Despite that matrix rank and set cardinality are often very difficult to
handle in optimization, we are able to solve this problem directly in its original form. We observe
that better quality results are produced by this direct solution compared to the relaxed methods.

We adopt block coordinate descent to solve the DRMF problem. The resulting algorithm is
based on existing factorization routines such as the singular value decomposition (SVD), and ef-
ficient thresholding procedures. Therefore DRMF is simple to implement, efficient, and easy to
use. DRMF is also very flexible: we can impose additional constraints on both the factorization
(e.g. nonnegative factors [93]) and the outliers (e.g. outlier columns instead of entries [177]) to
incorporate knowledge for better performance.

We applied DRMF to both synthetic and real-world data sets for the purpose of robust modeling
and anomaly detection. We compare DRMF to its state-of-the-art competitors based on the nuclear
norm and the L1 error measurement. Based on extensive empirical results we conclude that DRMF
is able get better performance than these relaxed methods. In addition, the parameters of DRMF
are intuitive and easy to tune, making it a practical tool for robust analysis.

The rest of this chapter is structured as follows. We introduce background and notations in

38

Section 3.1.1. Section 3.2 describes the proposed algorithm. Related work and discussions are in
Section 3.3 and 3.4. Experiments are presented in section 3.5. Finally our conclusions are made.

3.1.1 Background and Notation
Matrices are very useful in representing data. For example, in regression and classification, sam-
ples are often organized into a design matrix in which each row represents a sample and each
column represents a feature. The document-word matrix is often used for text data. In recom-
mendation systems we have the rating matrix. Connectivity matrices are widely used to express
network and graph data. We denote a data matrix as X ∈ RM×D. xi,j denotes the (i, j)th entry of
X. We also use the operator Dl(·) to return an l × l diagonal matrix whose diagonal is the input
vector.

One of the most common analysis we can do on X is factorization, as in principal component
analysis (PCA). We assume that X has a low rank and can be factorized as

X ≈ UVT ,U ∈ RM×K ,V ∈ RD×K , (3.1)

where K is the rank of the factorization. For design matrices, factors given by PCA/SVD reveals
the linear structure and intrinsic dimensionality of the data. For text data, latent semantic indexing
(LSI) [72] and nonnegative matrix factorization (NMF) [43] is often applied. The low-rank as-
sumption is also useful in matrix completion [23, 111] and collaborative filtering [138, 141] (See
Chapter 2).

In a more general form, low-rank matrix factorization can be written as the following optimiza-
tion problem

min
L

‖X− L‖F (3.2)

s.t. rank(L) ≤ K,

where ‖·‖F is the Frobenius norm, L is the low-rank approximation of X, and K is the maximal
rank of L.

Singular value decomposition (SVD) is perhaps the most commonly used tool for low-rank
analysis. SVD decomposes a matrix into three factors:

X = UD(s)VT =
l∑

i=1

siuiv
T
i , (3.3)

where l = min(M,D), s = [s1, . . . , sl] is the vector of X’s singular values in descending order,
columns of U = [u1, . . . ,ul] ∈ RM×l and V = [v1, . . . ,vl] ∈ RD×l are the left and right singular
vectors. The significance of SVD is reflected in the following theorem [48]:
Theorem 1 (Eckart-Young). Let the SVD of X be (3.3). For any K with 0 ≤ K ≤ rank(X), let

L̂K = U:,1:KD(s1:K)VT
:,1:K =

K∑
i=1

siuiv
T
i , (3.4)

39

then
‖X− L̂K‖F = min

rank(L)≤K
‖X− L‖F .

In other words, the rank-K truncated SVD approximation L̂K is a globally optimal solution to
problem (3.2).

From SVD we can derive the nuclear norm of matrices. The nuclear norm of matrix X is
defined as ‖X‖∗ =

∑l
i=1 si i.e. the sum of X’s singular values. The nuclear norm can serve as a

convex relaxation of the matrix rank, and has attracted much research interest recently. We shall
discuss more in Section 3.3.

Next we consider robust error measurement. Let the error matrix be E = X− L. In (3.2), we
used the Frobenius norm, ‖E‖F =

√∑
i,j E

2
i,j a.k.a. the L2-norm, to measure E. The L2-norm

is pervasively used but is known to be sensitive to outliers [86]. A common robust alternative is
the L1-norm ‖E‖1 =

∑
i,j |Ei,j| [15, 22], in which the errors are not squared so the impact of

large errors is reduced. A more aggressive choice is the L0-norm1 ‖E‖0 =
∑

i,j I(Ei,j 6= 0). The
L0-norm only counts the number of errors disregarding their magnitudes.

Recently, structured norms become popular in handling problems such as group lasso [180] and
multitask learning [104] with structural knowledge. These norms can also be used to incorporate
knowledge about the structure of outliers (e.g. when outlier entries in the same row is correlated)
[177]. Here we introduce the L2,1-norm and L2,0-norm. The L2,1-norm ‖E‖1,2 =

∑
i=1 ‖Ei,:‖2

is the sum of the L2-norm of rows of E (i.e. the sum of the lengths of the row vectors), and L2,0-
norm ‖E‖2,0 =

∑
i=1 I(‖Ei,:‖2 6= 0) is the number of non-zero rows in E. These two norms

compare similarly as the L1 and L2 norms except that errors are measured in groups according to
the assumed structure.

3.2 Direct Robust Factorization
We adopt the common assumption that there is only a small amount of outliers in the data matrix
X. Then, we define the robust low-rank approximation of X as the answer to the question: if you
are allowed to ignore some data as outliers, what is the best low-rank approximation?

A directly formulation of the above question is the following problem direct robust matrix
factorization (DRMF):

min
L,S

‖(X− S)− L‖F (3.5)

s.t. rank(L) ≤ K

‖S‖0 ≤ e,

where L is the low-rank approximation as before, K is the rank, S is the matrix of outliers, and
e is the maximal number of non-zeros entries in S i.e. the maximal number of entries that can
be ignored as outliers. Comparing DRMF to the regular problem (3.2), we can see that the only
difference is that we allow the outliers S to be excluded from the low-rank approximation, as long

1Rigorously this L0 measurement is not a norm.

40

as the number of outliers is not too large i.e. S is sufficiently sparse. Note that we do not need the
actual number of outliers. Instead, we only use e to put an upper limit on it.

By excluding the outliers from the low-rank approximation, we can ensure the reliability of the
estimated low-rank structure. On the other hand, the number of outliers is constrained so that the
estimation is still faithful to the data. DRMF is advantageous over existing methods in its simplicity
and directness: no special robust error measurement is introduced, nor do we make assumptions
about the outliers beyond necessity. In fact, several state-of-the-art methods are relaxed versions
of DRMF, as we shall discuss in section 3.3.

3.2.1 DRMF Algorithm

Usually, optimization problems involving the rank or the L0-norm i.e. set cardinality are difficult to
solve. Nevertheless, the DRMF problem admits a simple solution due to its decomposable structure
w.r.t. variables L and S. To take advantage of this property, we adopt the block coordinate descent
strategy, and the resulting algorithm is described in Algorithm 3: We first fix S the current estimate
of outliers, exclude them from X to get the “clean” data C, and fit L based on C. Then, we update
the outliers S based on the error E = X− L.

Algorithm 3 Direct Robust Matrix Factorization (DRMF)

1. Input:
• X the data matrix.
• K the maximal rank of the factorization.
• e the maximal number of outliers.
• S the initial outliers.

2. While not converged:

(a) Solve the factorization problem:

L = arg min
L
‖C− L‖F ,C = X− S (3.6)

s.t. rank(L) ≤ K

(b) Solve the outlier detection problem:

S = arg min
S
‖E− S‖F ,E = X− L (3.7)

s.t. ‖S‖0 ≤ e

3. Output:
• L the robust low-rank approximation.
• S the outliers.

41

It is easy to see that the solution to the low-rank approximation problem (3.6) is directly given
by SVD according to Theorem 1. Therefore, the solution to L is simply the truncated SVD ap-
proximation to C given in (3.4), which can be obtained efficiently. Since only the first K singular
vectors are required, we can further accelerate the computation using partial SVD algorithms such
as PROPACK [91].

The outlier detection problem (3.7) can also be solved efficiently. To solve the general problems
of L0-norm constrained minimization of decomposable objectives, we give the following theorem
which extends the work of [107]:
Theorem 2. Let A be a domain with 0 ∈ A; A = {a1, . . . , an} ∈ An; {fi|fi : A → R, i =
1, . . . , n} be a set of n functions mapping from A’s elements to real numbers. Also, let âi =
arg minai fi(ai); bi = fi(0) − fi(âi) ≥ 0; ‖A‖0 be the number of non-zero elements in A; e be a
positive integer. Then for the following problem

min
A

f(A) =
n∑
i=1

fi(ai) (3.8)

s.t. ‖A‖0 ≤ e,

an optimal solutions is given by A∗ = {a∗1, . . . , a∗n} with

a∗i =

{
âi bi ≥ b(e)

0 otherwise

where b(e) is the eth largest element in {bi}i=1,...,n.

Proof. This theorem is a slight generalization of [107] and can be derived similarly. Denote index
set J = {j|bj ≥ b(e)}. Clearly, A∗ is a feasible solution to (3.8) since ‖A∗‖0 ≤ |J | = e. For any
other feasible A′ with ‖A′‖0 ≤ e and A′ 6= A∗, we denote index set J ′ = {j|a′j 6= 0}, |J ′| ≤ e, and
J̄ be the complement of J . Then

f(A′)− f(A∗)

=
∑

j∈J ′∩J

fj(a
′
j)− fj(a∗j) +

∑
j∈J̄ ′∩J̄

fj(a
′
j)− fj(a∗j) +

∑
j∈J̄ ′∩J

fj(a
′
j)− fj(a∗j) +

∑
j∈J ′∩J̄

fj(a
′
j)− fj(a∗j)

≥
∑

j∈J ′∩J

fj(a
∗
j)− fj(a∗j) +

∑
j∈J̄ ′∩J̄

fj(0)− fj(0) +
∑

j∈J̄ ′∩J

fj(0)− fj(a∗j) +
∑

j∈J ′∩J̄

fj(a
′
j)− fj(0)

≥
∑

j∈J̄ ′∩J

fj(0)− fj(âj)−
∑

j∈J ′∩J̄

fj(0)− fj(âj)

≥
∑

j∈J̄ ′∩J

bj −
∑

j∈J ′∩J̄

bj ≥ |J̄ ′ ∩ J |b(e) − |J ′ ∩ J̄ |b(e)

= ((|J | − |J ′ ∩ J |)− (|J ′| − |J ′ ∩ J |)) b(e)

≥0

Therefore, for any feasible A′, we havef(A′) ≥ f(A∗).

42

Based on Theorem 2, problem (3.7) can easily be solved by letting ai,j = Si,j and fi,j(Si,j) =
(Si,j − Ei,j)2. Specifically, the solution is

Si,j =

{
Ei,j bi,j ≥ b(e)

0 otherwise.
(3.9)

where bi,j = E2
i,j and b(e) is the eth largest value in {bi,j}i=1,...,M,j=1,...,D. This result is very

intuitive: in each round, large errors are considered outliers, and are put into S to be excluded from
the low-rank fitting in the next round.

The above results give the global optima to step (a) and (b) in Algorithm 3. They are guaran-
teed to improve the objective value within the feasible region, and thus the algorithm is going to
converge. In each iteration, we do one rank-K partial SVD plus one e

MD
quantile computation, so

the total complexity is O(MD(K + log(e))). Since K and e are usually fixed and small, DRMF
can handle large-scale problems.

The DRMF problem (3.5) is not convex due to the constraints on the rank of L and the L0-norm
of S. Therefore, local minima exist depending on the starting point. This fact is reflected in that the
algorithm starts with an initial guess of outliers. However, in experiments we found that DRMF is
quite stable w.r.t. starting point, and good initialization methods exist. More details can be found
in Section 3.4.

DRMF has two parametersK and e that need the user’s attention. Yet, their clear meanings (the
rank and the maximally allowed number of outliers) help the user select their values. Particularly,
we emphasize that the value of e does not need to match the actual number of outliers. It is only
used as a safeguard to ensure that not too many data are regarded as outliers. For this purpose we
can easily set e to be say 5% of the whole data set. From Eq. (3.9) we can see that normal data
with small factorization errors will not be thrown as outliers. On the other hand, if there are more
than 5% outliers, the ones with largest errors will be taken care of. We will show that this default
behavior gives us good performance in various situations in Section 3.5.

3.3 Related Work
Matrix factorization is widely used in data mining and machine learning, and robust subspace anal-
ysis methods are of great value in practical situations. Many robust estimators has been proposed
(e.g. [67, 79, 86, 88, 99]). They usually involves alternative error measurements, complex estima-
tion procedures, or problem specific heuristics. On the other hand, the DRMF algorithm is both
conceptually and computationally simple: it excludes some data and fit the rest, and the solution is
obtained by iteratively applying SVD and thresholding the errors.

Another limitation of traditional robust methods is that performance cannot be guaranteed in
high dimensions [44, 177]. Recently, constraining the nuclear norm [23, 111] of the matrix instead
of its rank becomes a popular strategy for overcoming this problem [22, 177, 185], and has been
shown to outperform traditional algorithms. These methods can be summarized as the nuclear
norm minimization (NNM) problem. To compare, we also rewrite DRMF to one of its equivalent
lagrangian form, and show them in Table 3.1.

43

NNM
min
L,S

‖L‖∗ + λ‖S‖1

s.t. ‖X− L− S‖F ≤ σ

DRMF
min
L,S

rank(L) + λ‖S‖0

s.t. ‖X− L− S‖F ≤ σ

Table 3.1: Comparing the nuclear norm minimization (NNM) problem and DRMF. L is low-rank;
S is the sparse outlier. ‖·‖∗ is the nuclear norm; σ is the allowed approximation error.

We can immediately see the relationship between DRMF and the NNM methods: DRMF min-
imizes the rank, while NNM minimizes the nuclear norm; DRMF measures outliers by the L0-
norm, while NNM uses the L1-norm. In fact, the nuclear norm and the L1-norm in the NNM
problem are proposed as convex relaxations of the rank and the L0-norm in the first place. In this
sense, DRMF is the “original problem” that NNM is trying to solve.

By using the relaxations, NNM is convex and the globally optimal solutions can be found.
In addition, theories have been provided for choosing λ to guarantee the correct recovery of the
principal subspace under certain conditions [22, 177]. Yet, it is unknown how well these relaxations
approximate the original problem in general. On the other hand, the original DRMF problem is
non-convex and has the local-minima problem. As a remedy, we can initialize DRMF with the
NNM results to obtain results that are better than using either NNM or DRMF alone. We expand
this point further in Section 3.4. The theoretical properties of DRMF are difficult to analyze due to
the non-continuous and non-convex nature of the L0-norm and the matrix rank. Yet we shall show
that DRMF can achieve better empirical performance than the relaxed NNM methods.

The NNM methods often set σ = 0 for exact recovery [22, 177]. Yet real-world noisy da-
ta invalidate this choice and make the algorithm inefficient. When NNM uses σ > 0 (e.g. in
[177, 185]), it needs more assumptions to ensure the theoretical soundness and introduces extra
parameters (e.g. the amount of Gaussian noise) that need careful tuning. On the other hand, DRM-
F can be applied in both situations, thanks to the fact that it solves the problem in the constrained
form (3.5) the only difference between noisy and noiseless data is that the former will have non-
zero objective values.

3.4 Discussion

3.4.1 Extensions to Incorporating Prior Knowledge
In many situations, additional knowledge is available for us to find outliers. For example, in a
design matrix, if one sample point has been corrupted, then it is very likely that most of the entries
in its corresponding row are outliers. In collective data, we may also face the situation where if

44

the observation of a group is disrupted, then all of its points are affected. In this case, we should
look for outlier rows so that evidences of anomalies can aggregated to enhance the performance.
DRMF can easily be extended to handle this situation. Here, we consider the outlier patterns to
be groups of entries that are anomalous. Instead of counting the number of outlier entries, we can
count the number of outlier patterns using structured norms such as the L2,0-norm. Concretely, the
following DRMF-Row (DRMF-R) problem handles row outliers:

min
L,S

‖(X− S)− L‖F (3.10)

s.t. rank(L) ≤ K

‖S‖2,0 ≤ e,

where e is the maximal number of outlier rows allowed. DRMF-R can be solved by replacing step
(b) in Algorithm 3 with the following problem:

S = arg min
S
‖E− S‖F ,E = X− L (3.11)

s.t. ‖S‖2,0 ≤ e.

Row-wise outliers has also been considered in outlier pursuit (OP) [177]. OP extends the NNM
algorithm by using the L2,1-norm to capture outlier rows. Not surprisingly, OP is the convex
relaxation of the DRMF-R problem (3.10).

Problem (3.11) can also be solved based on Theorem 2 by treating each row of S as an element.
Without giving details, we show that the solutions is:

Si,: =

{
Ei,: li ≥ l(e)

0 otherwise,
(3.12)

where li = ‖Ei,:‖F and l(e) is the eth largest value among {li}i=1,...,M . Again, the solution is
obtained efficiently by thresholding. In fact, it is very easy to capture arbitrarily shaped outlier
patterns to accommodate specific problems.

Finally, the low-rank component of DRMF can also be extended. For example, we can require
the factor matrices in (3.1) to be non-negativity as in non-negative matrix factorization (NMF)
[43]. To do this, we replace the constraint rank(L) ≤ K in (3.5) by the explicit factorization
form L = UVT and then impose non-negativity constraints on U and V. DRMF can also easily
be extended to handle missing values in collaborative filtering. Fast and pass-efficient algorithms
such as [124] can also be integrated into DRMF to do robust analysis on massive data sets.

3.4.2 Implementation
When applying DRMF, we need to answer several important practical questions: how to choose
the parameters e the maximal number of outliers allowed, K the rank of the factorization, and the
starting point i.e. the initial guess of outliers S. As discussed in Section 3.2, we can set e to be
e.g. 5% of the whole data set so that the algorithm is not ignoring to much data.

45

Like most matrix factorization methods, in DRMF the rank of the factorization K is selected
according to prior knowledge, cross-validation, or other heuristics. For example, we can observe
the singular values of the data matrix, and choose aK to preserve certain amount of data variability.
In some situations, the value of K is constrained by available computational resources, so we have
to make trade-offs between accuracy and running time.

The initial guess of outliers S affects the final solution, since DRMF is non-convex and can be
trapped in local minima. For many moderate situations we found that the simple choice of S = 0
works well. But in extreme cases where the regular SVD is completely disrupted by outliers, this
simple heuristic would lead DRMF into irrecoverable local minima. One such example is shown
in Figure 3.1.

Figure 3.1: An example where DRMF with initial S = 0 would fail. Blue crosses are normal
points and the red circle is the outlier. Blue arrow shows the true principle subspace and the red
dashed arrow shows the wrong one DRMF would get starting from S = 0. Note that when starting
from an S that correctly indicates the circle as an outlier, DRMF is able to achieve the correct blue
subspace.

We found that an effective way is to solve this problem is to leverage the convexity of nu-
clear norm minimization (NNM) methods. Since NNM is a convex relaxation of DRMF, we can
first compute the NNM solution of S, and then use it to initialize DRMF. This strategy is similar
to the case where the linear programming relaxation is used to approximate the original integer
programming problems. In practice, we can run NNM for a few iterations and terminate before
convergence. This is usually enough to guide DRMF to a good convergence region. In this way, we
can get results that are better than using either NNM of DRMF alone. Other methods (e.g. [176])
can also be used to initialize DRMF. Using these initialization schemes, DRMF is able to overcome
the problem posed in Figure 3.1 and get higher quality results than NNM.

Very recently we noticed a parallel work GoDec [183] that shares the same idea with DRMF.
By comparison, DRMF extends to structured outliers as discussed in Section 3.4.1. In addition, the
non-convexity of DRMF/GoDec is not addressed in [183] and the GoDec algorithm in its original
form would likely get stuck in the extreme case in Figure 3.1.

3.5 Experiments
In this section we show the empirical effectiveness of DRMF on both simulation and real-world
data sets. We compare DRMF to the following state-of-the-art competitors:
• Robust PCA (RPCA) [22] We use the code from http://perception.csl.uiuc.
edu/matrix-rank. The efficient “inexact augmented Lagrange multiplier” implementa-
tion is used.

46

http://perception.csl.uiuc.edu/matrix-rank
http://perception.csl.uiuc.edu/matrix-rank

• Stable principal component pursuit (SPCP) [185] We implemented SPCA in Matlab using
the proximal gradient method according to [52].

• Outlier Pursuit (OP) [177] We implemented OP in Matlab using the proximal gradient
method according to [177].

In terms of Table 3.1, RPCA and SPCP solve the NNM problem with σ = 0 and σ > 0 respectively;
OP solves NNM when the outlier is measured by ‖S‖2,1 and σ = 0. The truncated SVD results
(3.4) are also provided as a baseline.

DRMF and DRMF-R are implemented in Matlab. Partial SVD is done using PROPACK [91].
We terminate the iteration when the relative change of the objective value is diminishing.

DRMF, SPCP, and OP are all initialized by the solution produced by 10 iterations of RPCA.
For DRMF, we always set the maximal number of allowed outliers to be e = 0.05MD without
tuning unless indicated otherwise.

3.5.1 Simulation Data

First, we study the performances of different methods on simulated data sets. We follow the set up
in [22] to create the data matrix. Let N (µ, σ2) denote the Gaussian distribution with mean µ and
variance σ2, and U(a, b) denote the uniform distribution on the interval [a, b]. We generate the rank-
K matrix as L = UVT ∈ RM×M , where entries of the factor matrices U and V are i.i.d. samples
from Gaussian distributions as U ∈ RM×K ∼ N (0, 1/K) ,V ∈ RM×K ∼ N (0, 1/K). To
generate the outlier matrix S, we first select γM2 entries from S and then draw their values from
the uniform distribution U(−σo,+σo), where σo is the magnitude of outliers. Finally, we put them
together and add i.i.d. Gaussian noise for each entry to get X = L + S + N (0, σ2

n), where σn is
the level of the Gaussian observation noise.

Recovery Quality and Detection Rate

In this part we test how well the methods can detect the outliers and recover the underlying low-
rank L accurately. We compare the performances on three different indices. To measure the
accuracy of robust modeling, we compute the root mean squared error (RMSE) of the recovered
L̂ w.r.t. the true L. NNM results are “debiased” as in [110] to compensate the shrunken singu-
lar values. Outlier scores are computed as the absolute difference between the estimated L̂ and
observation X, and average precision (AP) is used to measure the detection performance. The
simulation parameters we use are K = 0.05n, γ = 0.05, σo = 1. Finally, the running time is also
compared.

First we examine the entry outliers, noiseless observation case by selecting uniformly random
entries in S to be outliers and setting σn = 0. This situation satisfies the assumption made by
RPCA. We compare the performances of SVD, RPCA, and DRMF. Note that SPCP and OP cannot
be applied to this data set. For RPCA, we use parameter λ = 1/

√
M as suggested in [22]. For

SVD and DRMF, the true K is used for factorization. Matrices with sizes M between [100, 2000]
are used. Mean performances of 20 random runs are reported in Figure 3.2. We see that both
RPCA and DRMF achieved much better performances than plain SVD, showing the necessity

47

10
2

10
3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Size

R
M

S

SVD
RPCA
DRMF

10
2

10
3

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Size

A
P

SVD
RPCA
DRMF

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Size

T
im

e

SVD
RPCA
DRMF

Figure 3.2: Performances on noiseless data with entry outliers. Note that the running time is shown
in log-scale.

10
2

10
3

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Size

R
M

S

SVD
RPCA
SPCP
DRMF

10
2

10
3

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Size

A
P

SVD
RPCA
SPCP
DRMF

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Size
T

im
e

SVD
RPCA
SPCP
DRMF

Figure 3.3: Performances on noisy data with entry outliers.

and effectiveness of robust factorization. Further, even in this noiseless case, DRMF is able to
outperform RPCA consistently, using much less running time (only slightly slower than partial
SVD).

Next we examine the entry outliers, noisy observation case. Compared to the previous simu-
lation, we use σn = 0.1 and other settings remain the same. Note that this situation violates the
assumption made by RPCA. We compare SVD, RPCA, SPCP, and DRMF here. The same settings
for SVD, RPCA, and DRMF are used as before. For SPCP, the parameter regarding the level of
regular Gaussian noise is set as suggested by [185]. Mean performances of 20 random runs are
reported in Figure 3.3. On this data set, we see DRMF achieves the best performance again. RPCA
performs poorly because of the noise, which inflates the estimated rank dramatically. SPCP, which
is essentially an extended version of RPCA to handle noisy data, shows much better accuracy here,
but is still worse than DRMF. Based on these two experiments, we conclude that DRMF can handle
both noisy or noiseless data sets, and is able to achieve better results than RPCA and SPCP.

Further we examine the row outliers, noisy observation case. Unlike the entry outlier case,
here we randomly select γM (γ = 0.05) rows in S and fill them with outliers from U(−1, 1). Note
that this situation violates the assumptions made by RPCA and SPCP. We compare SVD, RPCA,
SPCP, OP, DRMF, and DRMF-R here. For OP, we use parameter λ = 0.4/

√
γM as suggested by

[177]. For DRMF-R, we directly specify that there can be γM outlier rows. Mean performances

48

10
2

10
3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Size

R
M

S

SVD
RPCA
SPCP
DRMF
OP
DRMF−R

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Size

A
P

SVD
RPCA
SPCP
DRMF
OP
DRMF−R

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Size

T
im

e

SVD
RPCA
SPCP
DRMF
OP
DRMF−R

Figure 3.4: Performances on noisy data with row outliers.

of 20 random runs are reported in Figure 3.4. In the presence of row outliers, SVD and SPCP
failed to work for large matrices. By contrast, OP performs poorly for small matrices, but then
catches up asM grows larger. The reason could be that OP’s suggested settings are not suitable for
small problems, where tuning the parameters by cross-validation might give better results. RPCA,
DRMF, and DRMF-R show stable performances and DRMF-R beats the others by a large margin.
This verifies that utilizing additional knowledge about outlier patterns helps robust modeling and
finding outliers. It is also interesting to see even though DRMF is design to handle entry outliers,
its recovery quality is not affected by row outliers as SPCP is.

Based on these results, we conclude that DRMF outperforms the NNM methods in various
cases, including noiseless and noisy cases as well as different outlier patterns.

Sensitivity

In this section, we study the sensitivity of DRMF’s performance w.r.t. the magnitude of outliers
and values of parameters.

First we examine how the magnitude of outliers affects the recovery quality. We simulate
noiseless matrices with entry outliers, using M = 400, K = 20, and γ = 0.05. Then we change
σo the magnitude of outliers from 1 to 105, and calculate the RMSE between the recovered L̂ and
L. Results produced by RPCA and DRMF are shown in Figure 3.5a. We can see that the recovery
quality of DRMF is not affected by the magnitude of outliers at all. This is expected: the L0-norm
used in DRMF totally disregards the magnitude of outliers and only counts the number of them.
On the other hand, though being robust, the L1-norm used in RPCA is still influenced by large
outliers, and we observe that this influence grows linearly with the magnitude of outliers.

We also examine how the recovery quality of DRMF is affected by the choice of parameters
K the rank and e the number (or equivalently the proportion) of allowed outliers. The matrices
are generated in the same way as the previous experiment with σo = 1. Then we run DRMF
with different Ks between [14, 60] and different e’s between [0, 0.2]. Recovery RMSE are shown
in Figure 3.5b. We can see that in a large range of parameters the performance is stable. It is
especially interesting to see that moderately larger values of e actually produces better results.
This behavior verifies the role of e in DRMF: it is only a safeguard to prevent excessive data being
regarded as outliers, and it does not need to be same as the true number of outliers. We also observe

49

10
5

10
10

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Outlier Amplitude

R
M

S

RPCA
DRMF

(a)

K

e

RMS vs (e, K)

16 19 20 21 24 27 29 32 35 37 40

0.20

0.18

0.16

0.13

0.11

0.09

0.07

0.05

0.04

0.02

0.00
0.04

0.05

0.06

0.07

0.08

0.09

(b)

Figure 3.5: (a) Recovery RMSE of RPCA and DRMF versus the outliers’ magnitude. (b) Recovery
RMSE of DRMF versus the parametersK the rank and e the proportion of allowed outliers. Darker
color indicates smaller error.

that performance can be degraded when using too small Ks and too large e’s (≥ 20%). This is
expected: when e is too large, a large portion of data can be treated as outliers (this actually violates
our definition of outliers) and thus the results become unfaithful. When K is too small, the model
lacks the capability to capture the normal variability of data.

3.5.2 Video Background Modeling and Activity Detection

In this experiment we consider the problem of modeling the background of videos. Estimating the
background in videos is important for many computer vision tasks such as activity detection, yet
also difficult because of the variability of the background (e.g. due to lighting conditions) and the
presence of foreground objects such as moving people.

Here we apply robust matrix factorization methods to solve this problem. We assume that the
background variations in videos are of low-rank (i.e. the background scenes can be approximated
by linear combinations of several “basis” images), and the foreground objets are sparse outliers. By
applying robust factorization methods to these video data, we want that the low-rank component
will capture the background and its variations, while the foreground activities will be recognized
as outliers so that they will not interfere the estimation of background.

Video sequences “Hall” (size 128× 160, frames 2100-2400), “Lobby” (size 144× 176, frames
1300-1700), “Restaurant” (size 120 × 160, frames 2500-3000), and “Shopping Mall” (size 128 ×
160, frames 1500-2000) from [101] are used. “Hall” contains a relatively static background and
many foreground activities. “Lobby” contains few foreground activities and large background
variations. “Restaurant” and “Shopping Mall” are noisier and contain much more foreground
activities. Sample images are shown in Figure 3.8.

50

Hall Lobby Restaurant Mall
SVD 0.669 0.695 0.547 0.721
RPCA 0.768 0.754 0.596 0.713
SPCA 0.746 0.770 0.549 0.753
DRMF 0.805 0.792 0.666 0.774

(a) Average Precision

Hall Lobby Restaurant Mall
4.9 1.54 2.00 3.24

405.9 451.97 618.08 572.74
18.6 17.40 25.06 42.34

23.76 16.92 29.60 57.41

(b) Running Time (seconds)

Figure 3.6: Video activity detection performance

We flatten and stack the video frames into a matrix, with one row corresponds to a frame. Then
we use SVD, RPCA, SPCA, DRMF to estimate the background. The anomaly scores of pixels
are computed as the absolute difference between the estimated background and the observation,
so our hope is that pixels corresponding to foreground activities will receive high scores. The
performance is measured by the average precision of detecting foreground pixels on the ground
truth frames. We use the suggested parameters for RPCA and SPCA (For SPCA, the median of
pixels’ standard deviation is used to estimate the Gaussian noise level). For SVD and DRMF, rank-
5 models are used for “Hall”, “Lobby” and rank-7 models are used for “Restaurant”, “Shopping
Mall” to capture the background variations.

Detection results on some ground-truth frames using DRMF and RPCA are shown in Figure
3.8. Both methods are able to separate the foreground and background and produce good results.
By more detailed examination, we can see that the backgrounds images captured by DRMF are
smoother and contains less artifacts than RPCA. Figure 3.6 shows the detection performance and
running time of different methods. Again, we see that DRMF consistently gives better detection
performance than RPCA and SPCP.

3.5.3 Hand-written Digit Modeling
In the last experiment, we use these factorization methods to find anomalous digit images. The
assumption is that images of the same digits have a low-rank structure (i.e. these images reside in a
low-dimensional subspace), and if we inject in a small amount of different digits, these injections
will violate the low-rank structure and stand out as outliers.

We use digits ‘1’ and ‘7’ from the USPS data set as in [177]. The image size is 16 × 16. We
select a data set that is a mixture of 220 images of ‘1’ and 11 images of ‘7’. The goal is to detect all
the ‘7’s in an unsupervised way. To do this, we flatten all images as row vectors and stack them into
a 231 × 256 matrix X. Then, factorization methods are applied to estimate low-rank matrices L̂
which are expected to capture the ‘1’s. Finally, each image (a row of X) is scored by the L2-norm
of its corresponding row in the error matrix X− L. Ideally, ‘7’s should receive higher scores than
‘1’s.

We compare SVD, RPCA, SPCP, DRMF, OP, DRMF-R on this task. for SVD and DRMF
methods, rank K = 3 is used. For NNM methods, suggested parameters are used as before.
Performances are measured by the average precision of detecting ‘7’s. In each run, we randomly

51

re-select the images. Results of 20 random runs are shown in Figure 3.7a.

SVD RPCA SPCP DRMF OP DRMF−R
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Av
er

ag
e

Pr
ec

isi
on

(a) (b)

Figure 3.7: USPS anomaly detection results. (a) the average precisions of detecting ‘7’s among
‘1’s. (b) images ranked by their anomaly scores in the descending order.

We can see that DRMF-R gives the best results, showing the advantage of our direct solution,
and the benefit from incorporating knowledge about the outliers’ structure. On the other hand,
RPCA and SPCP failed in this case, since the non-uniform and non-random outliers in this data set
violate their basic assumptions. The difference between OP and DRMF-R is significant: a paired
t-test gives a p-value of 0.95 × 10−6. Figure 3.7b shows a list of images ranked by their anomaly
scores. We conclude that the ‘1’s are clearly captured by the low-rank structure in DRMF, and it is
interesting to observe the behavior of the (1, 2)th and the (2, 5)th image.

3.6 Summary
We proposed the direct robust matrix factorization (DRMF) algorithm as a simple and effective
way for robust low-rank factorizations and outlier detection. We start from the fundamental notion
of outliers and use a direct formulation to address this problem. DRMF is conceptually simple
(SVD + error thresholding), easy to implement (about 10 lines of Matlab code), efficient (linear
complexity w.r.t. number of entries), and flexible to incorporate prior knowledge about both the
outliers and the low-rank structure.

DRMF is compared to the recently proposed nuclear norm minimization (NNM) family meth-
ods. We show that NNM methods are in fact convex relaxations of DRMF. In extensive empirical
evaluations we find that the solutions given by DRMF achieve better performances over the state-
of-the-art competitors that use relaxations, showing the advantage of our direct formulation.

The factorization algorithms proposed in this Chapter and Chapter 2 are widely useful when
learning from discrete collective data as well as other vector or matrix based data format.

3.7 Automatic Novelty Discovery for Astronomy
Using the factorization techniques, we have developed an automatic system for real-time novel-
ty discovery in astronomical survey data described in Section 1.5. From the ongoing SDSS III

52

project2, we can get daily updates of the new objects observed by the telescope. The goal is to
develop a system that can examine these new objects in real-time, and automatically pick out the
potentially interesting ones to present them to the astronomers for further examination. Then we
collect feedback from the astronomers to support further studies.

One of the goals of this system is to find objects with unusual spectra. For this purpose we
detect subspace outliers as mentioned in Section 3.1. The assumption behind this choice is that
normal spectra lie in a low-dimensional linear subspace. In other words, we can find a small
number of bases whose linear combinations can approximate normal spectra. On the contrary,
anomalous spectra contain unusual spectral patterns that cannot be reconstructed by these bases.
For example, if a spectrum has an unusual emission line that the normal bases do no have, then
this spectrum cannot be approximated by the bases and thus will be detected. Many subspace
approaches has been proposed to study spectra in astronomy. [37] provides a brief survey of
researches that used PCA to accomplish tasks including spectra classification, visualization, and
physical property extraction. [113, 178, 179] analyzed the quasars, galaxies, and stars in SDSS
using PCA. [33] uses PCA to repair corrupted pixels in spectra. These researches indicate that
low-dimensional subspace can indeed capture the main characteristics of the SDSS spectra.

Subspace outliers can be detected by first modeling the normal subspace and then finding points
outside of it. We can use factorization algorithms to accomplish this goal. In this process, robust-
ness is a desirable property of the low-rank model because of the severe challenges presented by
outliers, especially for our automatic detection purpose. First of all, the survey observations usually
have limited quality. There are plenty of bad pixels, interference from the sky, and other sources of
noise such as galaxies mislabeled as stars. Second, the emission lines (Figure 1.1b) in the spectra
may vary dramatically and cause problems to regular algorithms. As analyzed by [163], emission
features form a main source of the inadequacy of linear subspaces given by PCA. Finally and most
importantly, in our automated pipeline, the potentially novel objects are hidden among all the other
regular ones. These novel objects are usually also outliers that can bend the model towards their
side and thus make themselves harder to detect. Therefore, the low-rank models need to be robust,
so that when they remain reliable when trained from a set of “dirty” spectra including potential
novelties, bad pixels, large emission features, and other corruptions.

To answer these challenges, we use the DRMF algorithm to find robust normal subspaces.
DRMF is able to alleviate the impact of emission lines in the spectra and obtain reliable subspace
models. It is also efficient enough to process the large amount of data. We can use the existing data
to learn a reliable subspace that contains most of the normal spectra. Once we have this subspace
model, anomalous spectra can be found outside of this subspace.

In order to find the anomalies, we propose to use the following scoring function:

fp(xi) = ‖xi − x̂i‖p =

(
D∑
j=1

|xij − x̂ij|p
)1/p

. (3.13)

where x̂i is the projection of xi in the normal subspace, or equivalently the low-rank reconstruction
of xi. Therefore, fp(·) is calculating the Lp distance from a point to its projection in the normal

2http://www.sdss3.org

53

subspace. The parameter p controls weather the scoring function should focus on a few badly
reconstructed pixels or the mismatch of the overall shape of the spectrum. To apply the scoring
function (3.13) with DRMF, we just have to train a DRMF model on the data and obtain the robust
low-rank approximation L. Then, we can use the ith row of L as x̂i.

3.7.1 Results on SIMBAD Objects
In order to test he performance of our proposed detector, we looked up in the SIMBAD3 database to
find stars that have been assigned class labels. We test the detector’s ability to find objects that are
labeled by SIMBAD. Even if these SIMBAD-labeled objects are only a small portion of the whole
data set, and that they might not correspond to the true novelties in the whole data set precisely, we
trust that on average these labeled objects are more interesting than the rest of the data set, and we
would want the detector to find them out.

Our data set contains 49, 529 stars from SDSS. These stars are selected to have a high enough
signal-to-noise ratio. We normalize the stars’ spectra so that each spectrum vector sums to 1,
therefore only the shape of a spectrum matters. We found that 6, 454 out these stars have been
assigned a label from one of the 42 SIMBAD classes, which are listed at http://simbad.
u-strasbg.fr/guide/chF.htx. For the ease of presentation and analysis, we collapse
these 42 classes into 15 according to the class hierarchy specified by SIMBAD.

We compare the performance of DRMF to PCA and RPCA as in Section 3.5. The parame-
ters of different algorithms are hand tuned to achieve their respective optima. We found that the
rank-5 DRMF combined with scoring function f10(·) produces the best results. This indicate that
the spectra indeed have a low rank, and the scoring function should focus on a few erroneously
reconstructed pixels instead of counting small errors on all pixels.

Table 3.2 shows the labeled the classes and the APs of different methods on detecting these
classes. We can see that the DRMF based detector achieved that best result, and the RPCA based
detector is only slightly worse. Both robust methods are significantly between than the plain PCA,
showing the necessity of robust modeling. The achieved AP of 56.72 also shows that the proposed
detection scheme is very effective in finding interesting objects. Concretely, about 80 of the top
100, or 3000 of the top 5000, detection results are interesting enough to be labeled by SIMBAD.

3.7.2 Collaborative System
Anomaly detection is just the first step in analyzing the astronomical data. It is vital for learning
systems to get supervision from experts in the forms of class labels, etc. Therefore, we present
the detection results to the astronomers and let them provide feedbacks. After the astronomers
have examined and labeled these anomalies, we shall have the “seed” label information to support
further learning tasks such as active learning and classification.

To facilitate this process, We developed a real-time detection system as well as a website to
detect anomalies from the real-time data provided by SDSS-III and present the detection results
and to collect feedbacks. The backend system receives new data from the SDSS-III data source

3http://simbad.u-strasbg.fr/simbad

54

http://simbad.u-strasbg.fr/guide/chF.htx
http://simbad.u-strasbg.fr/guide/chF.htx

Class Description Class Size PCA RPCA DRMF

All All labeled objects 5611 31.01 54.39 56.72
? Unknown object 46 0.80 1.11 1.09

IR Infra-Red source 35 0.07 0.06 0.06
LM* Low-Mass 71 2.96 0.89 0.69
PM* High proper-motion 85 1.34 1.38 1.33

UV UV-emission source 44 0.11 1.18 1.18
blu Blue object 140 0.50 1.54 1.73

CLU Cluster 45 0.60 0.96 0.90
G Galaxy 316 7.18 9.96 9.83

CV Cataclysmic Variable 96 21.04 27.46 26.50
PEC Peculiar star 800 2.94 9.70 9.52
NEB Nebula 24 59.25 75.79 75.66

V Variable star 172 0.59 0.54 0.70
WD White dwarf 3617 25.69 52.48 56.46

RAD Radio source 105 1.27 1.17 1.13
X X-ray source 15 0.07 0.34 0.32

Table 3.2: AP of detecting SIMBAD objects using the normalized spectrum feature.

daily. It then update the robust low-rank model and detection results to reflect the recent change.
Various features and detection methods are implemented for diversity and evaluation purposes.

A snapshot of the website4 is shown in Figure 3.9. The goal of the website is to easy communi-
cation and collaboration. Through it, we can inform the astronomers of the latest detection results
and they can give us feedbacks on what these results means and how good they are. The users is
able to select detection results based on different object types, features, and detection algorithms.
Each detected object has a block showing the essential information and useful links for easy la-
beling. Comments and feedbacks can be collected from multiple users to enable discussion and
collaboration. We also provide other functionalities such as finding look-alike objects based on
spectrum similarity, as shown in Figure 3.10. In the future, this website can be enhanced to facil-
itate other learning tasks such as classification, clustering, finding group anomalies (See Chapter
4), and so on.

4Currently hosted at http://www.autonlab.org/sdss

55

http://www.autonlab.org/sdss

INPUT BG-DRMF FG-DRMF BG-RPCA FG-RPCA

(a) Hall

(b) Lobby

(c) Restaurant

(d) Shopping Mall

Figure 3.8: Video activity detection result frames. In each sub-figure, the images from left to right
are: the original frame, background and foreground from DRMF, background and foreground from
RPCA.

56

Figure 3.9: The frontpage of the SDSS collaborative SDSS website.

Figure 3.10: The UI for finding similar objects in the SDSS collaborative SDSS website.

57

Part II

Learning from Multidimensional Data

58

Chapter 4

Generative Models for Collective Data

From now on, we consider groups of real-valued, multi-dimensional points. For these groups, there
is no easy way to reduce them into vectorial representations. In this chapter, we describe parametric
generative models to directly capture the generating process of the groups. These models can
then facilitate us to do classification, clustering, anomaly detection, and so on. In the following,
however, our models will be motivated by the group anomaly detection problem.

4.1 Introduction

Given a data set, anomaly/novelty detection aims at finding things that “surprise” us. These things
can either interfere with the learning process, in which case they should be removed, or they
may have values for being novel. Section 3.1 gave a brief introduction on anomaly detection.
Traditional anomaly detection typically focuses on finding individual point anomalies. But often
the most interesting or unusual things in a data set are not odd individual points, but rather larger
scale phenomena that only become apparent when groups of points are considered. We call these
unusual groups the group anomalies.

Group anomalies exist in many real-world problems. For example, as mentioned in Chapter 1,
astronomy surveys such as the Sloan Digital Sky Survey (SDSS) produce descriptions for a vast
amount of celestial objects. We not only want to pick out the scientifically valuable objects like
planetary nebulae, but also special clusters of galaxies that could shed light on the development of
the universe [166]. Also in the particle simulation systems in physics, a single particle is seldom
interesting, but a group of particles can exhibit interesting motion patterns like the interweaving
vortices. In computer vision, an unusual image can be a strange group of local patches, and an
anomalous video sequence can be thought of as an odd group of image frames. Other examples
are abundant in the fields of text processing, time series, and spatial data analysis.

Two types of group anomalies are considered. A point-based group anomaly is a group of
individually anomalous points. A distribution-based anomaly is a group where the points are
relatively normal, but as a whole they are unusual. Most existing work on group anomaly detection
focuses on point-based anomalies. A common way to detect point-based anomalies is to first
identify anomalous points and then find their aggregations using scanning or segmentation methods

59

[38, 39, 68]. This paradigm clearly does not work well for distribution-based anomalies, where the
individual points are normal. To handle distribution-based anomalies, we can design features for
groups and then treat them as points [25, 81]. However, this approach relies on feature engineering
that is domain specific and can be difficult.

We take a generative approach to address the group anomaly detection problem. If we have a
probabilistic model that generates the normal data, then we can mark the groups that have small
probabilities under this model as anomalies. The “bag-of-points” assumption is made, i.e. , points
in the same group are unordered and infinitely exchangeable. Under this assumption, mixture
models are often used to model the data due to De Finetti’s theorem [40]. The most famous class
of generative models for modeling group data is the family of topic models [14, 72]. In topic
models, distributions of points in different groups are mixtures of simple components called the
“topics”, which are shared among all the groups.

We propose the genre models based on topic models. Genre models are specifically designed
for the purposes of detailed characterization of the groups and detecting distribution-based group
anomalies. Flexible probabilistic structures based on the mixture of “genres” is employed to de-
scribe how the topic weights are generated for each group so that complex normal behaviors can be
modeled. These genres capture the high-level distributional behavior of the groups, and therefore
are ideal for detecting distribution-based anomalies.

In order to achieve more precise modeling of the groups, we further add the flexibility to
allow each group to have their own topics in order to accommodate the variations of the points’
distributions in different groups. Meanwhile, information is still shared among groups via a global
mechanism called the “topic generators” to help estimate the topics. Topic generators can also
capture the behavior of the topics and detect the presence of unusual topics that cause point-based
anomalies.

Having the genre models, we can examine if a test group conforms to the normal behavior
defined by the learned genres and topic generators. We show that straightforward scoring func-
tions have their limitations and may lead to unstable results. Instead, several specifically designed
scoring functions are used to detect both the point-based and distribution-based group anomalies.
These scoring function are also developed to be robust against noise, and be able to ameliorate the
weaknesses of the simpler models to achieve a good balance between the speed and flexibility.

Exact inference and learning for the genre models are generally intractable, so we resort to
approximate methods. Both variational inference or Gibbs sampling [58] methods are developed
to learn the genre models. We test the performance of the genre models along with the scoring
functions on both synthetic and on real-world data sets including scene images, astronomical sur-
veys, and turbulence simulations. Empirical results show that the proposed methods are effective
in modeling collective data and finding group anomalies.

The chapter is structured as follows. We introduce some background and define the problem
set-up Section 4.2. In Section 4.3 we describe some related work. The proposed models and
scoring functions are described in Section 4.4, 4.5, and 4.6. In Section 4.7, we then make de-
tailed discussion about the models and the scoring functions. Experimental results are shown in
Section 4.8. We finish with a short discussion and conclusions (Section 4.9).

60

4.2 Background

In this section, we provide background about topic models and define our group anomaly detection
problem. For intuition, we introduce the problem in the context of detecting anomalous images,
rare galaxy clusters, and unusual motion in a dynamic fluid simulation, but the methods can be
used for other collective data.

We consider a data set with M groups G1, . . . , GM (e.g. spatial clusters of galaxies, patches in
an image, or fluid motions in a local region). GroupGm containsNm points (galaxies, image patch-
es, simulation grid points) as Gm = {xm,1, . . . ,xm,Nm} ,xn ∈ RD, where D is the dimensionality
of the points. We further assume that points in the same group are unordered and exchangeable.

Topic models such as the latent dirichlet allocation (LDA) [14] are widely used to model data
having this kind of group structure. The original LDA model was proposed for text processing. It
represents the distribution of points (words) in a group (document) as a mixture of K global topics
p(x; β1), . . . , p(x; βK), where βk is the parameter of the kth topic. When the points are discrete
(e.g. words in text documents), p(x; βk) can be the multinomial distributionM(βk) with βi ∈ SD,
where SD is the D-dimensional probability simplex. Let M(θ) be the multinomial distribution
parameterized by θ ∈ SK and Dir(α) be the prior Dirichlet distribution with parameter α ∈ RK

+ .
LDA generates the mth group by first drawing its topic weight θm from the prior distribution
Dir(α). Then for each point xmn it draws one of the K topics fromM(θm) (i.e. , zmn ∼M(θm))
and then generates the point according to this topic (xmn ∼ M(βzmn)). A description of the LDA
model can also be found in Figure 1. Figure 4.1 shows the graphical model of LDA.

xmnzmnα

βk

θm

NmM

K

Figure 4.1: Graphical model for latent Dirichlet allocation (LDA).

Essentially, topic models capture each group by a mixture model. The key to successful model-
ing is that the topics (mixture components) {p(x; βk)}k=1,...,K are shared among all groups, there-
fore all the information are used to learn them. The shared topics also provide a common basis
to compare the groups. Another important ingredient is that the mixing weights are governed by
the global distribution p(θ;α) = Dir(α), which is use to convey prior information to help the
estimation of the topics and the topic weights in each group.

The topic models can also help us model groups of real-valued, multidimensional points with a
slight change. In our examples, we want the topics to represent concepts such as the galaxy types
(e.g. “blue”,“red”, or “emissive”, with K = 3 topics), objects in the images, or common motion
patterns in the fluid (go left, go right, etc), each of which can be captured by a distribution of the

61

points. To do this, we can choose to model the topics by Gaussian distributions (i.e. p(x; βk) =
N (βk) where βk contains both the mean vector and the covariance matrix), so that each point is
generated from one of the K Gaussian distributions.

Now we ask the question whether the distribution of points in group Gm is normal. At a higher
level, a group is characterized by the topic weight θm, i.e. , the proportion of different topics in
the group Gm. At a lower level, we should also look at how the actual points are generated from
the topics. This two-level characterization can help us define the group anomalies: a point-based
group anomaly contains points that are unlikely to be from any of the topics, and a distribution-
based group anomaly has a topic weight θm that is anomalous. For example, when detecting group
anomalies the astronomy data, we are looking for galaxy clusters containing galaxies that do not
fall into the common types (red, blue, and emissive), or clusters in which the proportion of different
types of galaxy is strange.

Although topic models are very useful in estimating the topics and topic weights in the groups,
the existing methods are incapable of detecting group anomalies comprehensively. In order to
detect anomalies, the model should be flexible enough to capture complex normal behaviors. For
example, it should be able to model complex and multi-modal distributions of the topic weight
θ. LDA, however, only uses a single Dirichlet distribution to generate topic weights, and cannot
define what is the normal and what is not with precision. It also uses the same K topics for all
groups, which might makes groups indifferentiable when looking at their topics. Moreover, these
shared topics are not adapted to each group either.

The genre models and the their corresponding scoring functions are developed to address these
problems. Based on latent Dirichlet allocation (LDA) [14], we progressively propose three proba-
bilistic hierarchical models designed specifically for the purpose of detecting group anomalies. The
first model is simple and focuses on distribution-based anomalies and enriches LDA by allowing a
flexible way of generating topic weights. The second model further takes both distribution-based
and point-based anomalies into account, forming a very elastic topic model and a comprehensive
anomaly detector. The third one finds the trade-off between model flexility and learning speed to
make the most practical model.

4.3 Related Work
Typically, the notion of “anomaly” depends heavily on the specific problem, and various algorithms
have been developed for their own purposes. Quite often they are based only on the simple idea
that a data point is anomalous if it falls in a low density region of the feature space. For example,
[182] uses the distances to nearest neighbors as an anomaly score. [21] consider the case of non-
uniform density of the normal data, and propose a local outlier factor for detecting anomalous
instances. We can also explicitly estimate the underlying density function and use statistical tests
to find anomalies. To see a comprehensive summary, readers can refer to the survey by [26].

Detecting group anomalies is not a new problem, but only a few results have been published
on it. One idea is to represent each group as a point, and then apply point anomaly detectors for
these groups. To do this, we need to define a feature vector for the groups [25, 81]. A problem
with this approach is that it relies heavily on feature engineering, which can be domain specific

62

and difficult. We believe that directly modeling the generative process of the data is more natural,
and can help us explore the data sets.

Another approach is to first identify the individual anomaly points, and then try to find aggre-
gations of these points. Scan and segmentation methods are often used for this purpose. On image
data, [68] applied a point anomaly detector to find anomalous pixels, and then segment the image
to find the anomalous group of pixels. [38] first detects interesting points, and then find subsets
of the data with a high ratio of anomalous points. [39] proposed a scan statistic-based method to
find anomalous subsets of points. In these approaches the anomalousness of a group is determined
by the anomalousness of its member points, therefore they cannot find anomalous groups that are
unusual only at the group level i.e. the distribution-based anomalies.

The proposed genre models belongs to the family of topic models. The goal of traditional topic
models is to estimate the topics and the topic weights in each group, and the model parameters are
used to facilitate the estimations. They lack the ability to do group anomaly detection because we
need models that capture the details of how the groups are generated, so that they can differen-
tiate unusual behaviors from the normality. Many enhanced topic models have been proposed to
increase the modeling power. [13] and [102] enhanced the prior distribution of the topic weights to
model the correlations between topics. [80] and [50] use mixture models to generate topic weights
to do clustering on the groups. These ideas are useful for modeling group-level behaviors but fails
to capture anomalous point behaviors. On the other hand, [45] proposed to use different topics
for different groups in order to account for the burstiness of the points. These adaptive topics are
useful in recognizing point-level anomalies, but cannot be used to detect anomalous behavior at the
group level. Finally, it was unclear how topic modeling should be used to find group anomalies. To
address the above problems, we use ingredients from the topic modeling research and propose new
models to characterize groups both at the group-level and the point-level. Corresponding scoring
functions are also designed to be sensitive to anomalies but also robust against insignificant noise.
We demonstrate that they are able to solve the issues above and performs better than the existing
algorithms.

4.4 Multinomial Genre Models
We extend LDA to address several of its weakness in detailed modeling of complex collective
data. To address the problem of simplistic distribution of topic weights in LDA, we introduce
the concept “genres” to characterize the topic weights so that complex normal behaviors can be
recognized. A genre, intuitively, is a type of typical/normal topic weight, and we allow a group
to derive its topic weight from one of the many genres. The combination of these genres is very
flexible and thus can accurately describe what normal topic weights should be like in the data set.
In the next sections, the assumption that topics are shared globally in topic models will also be
relaxed to further enhance the modeling power.

To start, we let the genres be the typical topic weights themselves. In other words, we construct
a dictionary of typical topic weights (i.e. multinomial distributions), and each group can select one
of them as its own topic weight. We call this model the Multinomial Genre Model (MGM).

We assume that there are K topics {p(x; βk)}k=1,...,K , and the points are generated from one of

63

the K Gaussian topics as p(x; βk) = {N (µk,Σk)}, where βk = µk,Σk is the mean and covariance
of the Gaussian. But we shall still use the general notation to cope with other types of topics. Also
let the tth genre be αt ∈ SK denoting a typical topic weight vector, and α = {α1, . . . , αT}Tt=1

denote the set of T genres. ρ ∈ ST is a distribution over the genres (weights of the genres). The
generative process of MGM is described in Algorithm 4, and the corresponding graphical model
is shown in Figure 4.2.

Algorithm 4 The generative process of MGM.
for groups m = 1 to M do
• Choose a genre ym ∈ {1, . . . , T} , ym ∼M(ρ). Let the topic weight θm = αym ∈ SK .
for n = 1 to Nm do
• Choose a topic zmn ∈ {1, . . . , K}, zmn ∼M(θm).
• Generate a point xmn ∈ RD, xmn ∼ P (xmn|β, zmn).

xmnzmn

β

NM

ymρ

α

KT

Figure 4.2: The Multinomial Genre Model (MGM).

Our strategy for group anomaly detection is as follows. Using the training set, we first learn
the model parameters Θ = {ρ, α, β}. If a test group G is not compatible with our model, then it
will lead to a small likelihood P (G|Θ) compared to normal groups like those in the training data.
Hence we can detect it as an anomalous group.

Under MGM, the complete and marginal likelihood of group Gm are

P (ym, zm, Gm|Θ) =M(ym|ρ)
Nm∏
n=1

M(zmn|ym, α)P (xmn|zmn, β), (4.1)

P (Gm|Θ) =
T∑
t=1

ρt

Nm∏
n=1

K∑
k=1

αtkP (xmn|βk). (4.2)

To learn the parameters using maximum likelihood estimation, we want

Θ = arg max
ρ,α,β

log
M∏
m=1

P (Gm|ρ, α, β).

64

Unlike the LDA model, direct maximization of the likelihood function is possible. We can use the
Expectation-Maximization (EM) method. However in practice we found that the variational EM
[77] method was able to learn high quality models faster than EM. Therefore in the following we
shall describe the variational method.

4.4.1 Inference and Learning
According to the Jensen’s inequality, for any variational distribution qm(y, z) we have that∑

m

logP (Gm|Θ) ≥
∑
m

∫
d(y, z)qm(y, z) log

P (y, z,Gm|Θ)

qm(y, z)

=
∑
m

Eqm [logP (y, z,Gm|Θ)]− Eqm [log qm(y, z)] , (4.3)

with equality iff qm(y, z) = P (y, z|Gm,Θ), and Eq [·] denotes the expected value w.r.t. the distri-
bution q. The posterior distribution P (Gm|Θ) might difficult to compute, thus instead of directly
attacking of logP (Gm|Θ), we will maximize its lower bound as

Θ = arg max
Θ,{qm}

∑
m

Eqm [logP (y, z,Gm|Θ)]− Eqm [log qm] , (4.4)

where we look for the variational distributions qm in the parametric form:

q(ym, zm|γm, φm) = q(ym|γm)
Nm∏
n=1

q(zmn|φmn). (4.5)

Here γm ∈ ST and φmn ∈ SK are the variational parameters, and q(ym|γm) =M(γm), q(zmn|φmn) =
M(φmn) are multinomial distributions. Combining Eq. (4.1),(4.4) and (4.5), we have that the vari-
ational learning problem

Θ = arg max
{γm},{φm},Θ

M∑
m=1

Lm (γm, φm,Θ) , (4.6)

where Lm is

Lm(γm, φm; ρ, α, β) = Eq [logP (ym, zm, Gm|ρ, α, β)]− Eq [log q(ym, zm)] (4.7)

= Eq [logP (ym|ρ)] +
Nm∑
n=1

Eq [logP (zmn|ym, α)]

+
Nm∑
n=1

Eq [logP (xmn|zmn, β)]− Eq [log q(ym|γm)]

−
Nm∑
n=1

Eq [log q (zmn|φmn)] .

65

We omit the derivation and show that each of the solutions below maximizes Lm when the
other variables are fixed:

φ∗mnk ∝ exp

(
T∑
t=1

γmt logαtk + logP (xmn|βk)

)
(4.8)

γ∗mt ∝ exp

(
log ρt +

Nm∑
n=1

K∑
k=1

φmnk logαtk

)
(4.9)

α∗tk ∝
M∑
m=1

γmt

Nm∑
n=1

φm,n,k. (4.10)

Note that the multinomial parameters need to be normalized to sum to one. Finally, to calculate
{βk}, we need to solve

βk = arg max
βk

M∑
m=1

Nm∑
n=1

K∑
k=1

φmnk logP (xmn|βk). (4.11)

Specially, when P (xmn|βk) = N (xmn|µk,Σk), then learning {µk,Σk} is the same as fitting Gaus-
sians in a mixture of Gaussians model with φ being the weights of the samples [114].

In inference, we seek for the variational posterior distributions q(γ) and q(φ). We can fix the
value of the parameters ρ, α, β and update the values of γ, φ using Eq. (4.9) and (4.8) iteratively
until convergence. When learning the MGM model, we iteratively update all the model parameters
together with the variational parameters until convergence.

In order to use the MGM model we need to determine T the number of genres and K the num-
ber of topics. To automatically determine their values, we can either use model scoring methods
such as BIC [149], or AIC [3], or we can resort to cross-validation to find the best parameter val-
ues that can maximize the specific learning performances. The definition of BIC score is given by
BIC(X,Θ) = lnL(X,Θ)− 1

2
ln(|Θ|), where | · | stands for the number of free parameters. Sim-

ilarly, the AIC score is given by AIC(X,Θ) = lnL(X,Θ) − |Θ|. We can then use these criteria
to search for the best T and K values. In practice, we first determine K using T = 1, and then
determine T fixing K.

4.4.2 Scoring Functions
In this section we discuss how to define scoring functions that can detect group anomalies based
on MGM. Having learned the parameters Θ, a natural choice is to score a group by its likelihood
− lnP (G|Θ). In theory, this likelihood score is able to find anomalous groups that either contain
anomalous points or have strange topic weights. However, directly using (4.2) may produce dubi-
ous results. In fact, the likelihood is problematic even when used to find point-based anomalies.
First, if a group only contains points from the centers of the topics, then it would receive a low
score, even if such a behavior never appeared in the training data. Second, if there is a single point
not belonging the any of the topics, then the score of the whole group will be inflated to infinity. It

66

is debatable that this behavior is correct, but we argue that such anomalies can easily be found by
other much simpler methods, and will overshadow the truly anomalous collective behaviors.

To find the distribution-based anomalies, we propose to score only the topic weights in each
group: we first infer the posterior distributions of the topics given the data, and then compute the
expected likelihood of the topic weights. Unlike LDA, MGM does not give each group a topic
weight variable θm, so we use the collection of topic variables zm = {zm,1, . . . , zm,Nm} instead.
Formally, for the MGM model the distribution-based score χd(Gm) is defined as

χd(Gm) = Ezm [− logP (zm|Θ)] = −
∑
zm

P (zm|Θ, Gm) logP (zm|Θ), (4.12)

P (zm|Θ) =
∑
t

ρtM(hm;αt)

where hm is obtained by aggregating the values in zm in to a histogram. This score finds groups
whose topic variables zm are not compatible with any of the genres (stereotypical topic weights)
in α learned by MGM.

To simplify the computation, we use the variational distributions qm(zm|φm) to approximate
the corresponding posterior distributions P (zm|Θ, Gm) in (4.12). The integrations then can be
done by Monte Carlo method using samples drawn from the approximate posteriors. Similarly, the
point-based score χp can also be approximated by the variational lower-bound.

4.5 Flexible Genre Models
In the previous section, MGM enhances the LDA model by allowing groups to select their topic
weights from the dictionary of genres. With enough number of genres, complex normal behaviors
of the topic weights can be captured, and topic weights that deviate from the learned genres will
be marked as anomalies.

Although MGM addressed some flexibility issues of LDA, it is still inadequate for group
anomaly detection. By modeling the genres by a dictionary of multinomial distributions, MGM
does not take the uncertainty of topic weights into account. MGM also inherits the assumption that
the topics are shared globally, therefore it cannot capture the point level behaviors. In this section
we further improve our model to form a comprehensive model for detecting both distribution-based
and point-based anomalies.

At the group level, “genres” are still used to model the topic distributions. Instead of multi-
nomials, we use one Dirichlet distributions for each genre to model a typical distribution of topic
weights. At the point level, each group has its own topics to accommodate the variations of its
points, and these topics are generated by the global topic generator. We call this model the Flex-
ible Genre Model (FGM). Given a group of points, we can examine whether or not it conforms
to the normal behavior defined by the learned genres and topics; A point-based anomaly contains
points from unusual topics are unlikely given the normal topic generators, while a distribution-
based anomaly has a unusual topic weight θm given the normal genres.

The generative process of FGM is presented in Algorithm 5. A graphical representation of FG-
M is given in Figure 4.3. We letM(ρ) be distribution of genres. Each genre is a Dirichlet distribu-

67

Algorithm 5 The generative process of FGM.
for groups m = 1 to M do
• Choose a genre ym ∈ {1, . . . , T}, ym ∼M(ρ).
• Choose a topic weight from the genre ym: θm ∈ SK , θm ∼ Dir(αym).
• Choose K topics {βm,k ∼ P (βm,k|ηk)}k=1,...,K .
for points n = 1 to Nm do
• Choose a topic zmn ∈ {1, . . . , K}, zmn ∼M(θm).
• Generate a vector xmn ∼ P (xmn|βm,zmn).

xmn

zmn

βm

NM

ym θm

η
K

T

K

ρ

α

Figure 4.3: The Flexible Genre Model (FGM).

tion P (θ|αt) for generating the topic weights θm, and α = {αt}t=1,...,T is the set of genre parame-
ters. Each group has K topics βm = {βm,k}k=1,...,K . The topic generators, {P (βk|ηk)}k=1,...,K , are
the global distributions for generating the topics for each group. Having the topic distribution θm
and the topics {βm,k}, points are generated as in LDA.

By comparing FGM to LDA, we can observe that: (i) in FGM, each group has a latent genre
ym, which determines how its topic weight should look like (Dir(αym)), and (ii) each group has its
own topics {βm,k}k=1,...,K , but they are still tied through the generators P (β|η). Thus, the topics
can adapted to local group data, but information is still shared globally to enhance estimation
results. Moreover, the topic generators P (β|η) determine how the topics {βm,k} should look like.
If a group uses unusual topics to generate its points, it can be identified.

For computational convenience, the topic generators are chosen to be Gaussian-Inverse-Wishart
(GIW) distributions parameterized by ηk = {µ0k, κ0k,Ψ0k, ν0k} [57]. The GIW distribution are
conjugate to the Gaussian topics. Let Θ = {ρ, α, η} denote the model parameters. The complete
likelihood of data and latent variables in group Gm under FGM is:

P (Gm, ym, θm, zm, βm|Θ) (4.13)

=M(ym|ρ)Dir(θm|αym)
∏
k

GIW (βm,k|ηk)
∏
n

M(zmn|θm)N (xmn|βm,zmn).

By integrating out θm, βm and summing out ym, z, we get the marginal likelihood of Gm:

P (Gm|Θ) =
∑
t

ρt

∫
θm,βm

Dir(θm|αt)
∏
k

GIW (βm,k|ηk)
∏
n

∑
k

θmkN (xmn|βm,k)dβmdθm.

(4.14)

68

4.5.1 Inference and Learning
The parameters of FGM can be learned via the maximum-likelihood method. The inferred val-
ues for the latent variables θm, βm can be used for detecting anomalies and exploring the data.
Nonetheless, the inference and learning under FGM are intractable, so we develop approximate
method described below.

Inference Similar to the MGM model, approximate inference in FGM can also be done via
variational EM. Yet due to the use of the GIW distributions, the formulae become very complicated.
Alternatively, we can use Gibbs sampling [58] to learn FGM. In Gibbs sampling, we iteratively
update one variable at a time by drawing samples from its conditional distribution when all the
other parameters are fixed. Thanks to the use of conjugate distributions, Gibbs sampling in FGM
is simple and easy to implement. The sampling distributions of the latent variables in group m
are given below. We use P (·| · · ·) to denote the distribution of one variable conditioned on all the
others.

For the genre membership ym we have that:

P (ym = t| · · ·) ∝ P (θm|αt)P (ym = t|ρ) = ρtDir(θm|αt). (4.15)

For the topic distribution θm:

P (θm| · · ·) ∝ P (zm|θm)P (θm|α, ym) =M(zm|θm)Dir(θm|αym) = Dir(αym + hm), (4.16)

where hm denotes the histogram of the K values in vector zm. The last equation follows from the
Dirichlet-Multinomial conjugacy.

For βm,k, the kth topic in group m, one can find that:

P (βm,k| · · ·) ∝ P (Gmk|βm,k)P (βm,k|ηk) = N (Gmk|βm,k)GIW (βm,k|ηk) = GIW (βm,k|η′k),
(4.17)

where Gmk are the points in group Gm from the kth topic according to zm. The last equation fol-
lows from the Gaussian-Inverse-Wishart-Gaussian conjugacy. η′k is the parameter of the posterior
GIW distribution given the prior parameters η and Gmk; its form can be found in standard statistics
textbooks e.g. [57].

For zmn, the topic membership of point n in group m is sampled follows:

P (zmn = k| · · ·) ∝ P (xmn|zmn = k, βm)P (zmn = k|θm) = θm,kN (xmn|βm,k). (4.18)

Note that the multinomial parameters should be normalized to sum to 1.

Learning Learning the parameters of FGM helps us identify the groups’ and points’ normal
behaviors. Each of the genres α = {αt}t=1,...,T captures one typical distribution of topic weights
as θ ∼ Dir(αt). The topic generators η = {ηk}k=1,...,K determine how the normal topics {βm,k}
should look like. We use single-sample Monte Carlo EM [24] to learn parameters from the samples
provided by the Gibbs sampler. Given sampled latent variables, we update the parameters to their
maximum likelihood estimations: we learn α from y and θ; η from β; and ρ from y.

69

ρ can easily be estimated from the histogram of y’s. αt is learned by the MLE of a Dirichlet
distribution given the topic weights of groups in genre t i.e. {θm|ym = t,m = 1, . . . ,M}. The
MLE of Dirichlet can be solved using the Newton–Raphson method [118].

The kth topic-generator’s parameter ηk = {µ0k, κ0k,Ψ0k, ν0k} is the MLE of a GIW distribu-
tion given the parameters {βm,k = (µm,k,Σm,k)}m=1,...,M (the kth topics of all groups). We have
derived an efficient solution for this MLE problem. The details can be found at the end of this
chapter.

The overall learning algorithm works by repeating the following procedure until convergence
or equilibrium: (1) do Gibbs sampling to infer the states of the latent variables; (2) update the
model parameters using the estimators above. If we only want to infer the posterior distributions
of the latent variables, we can only repeat step (1) until enough samples are gathered to form the
approximate empirical distribution.

Like for MGM, to select appropriate values for the parameters T and K (the number of genres
and topics), we can apply the Bayesian information criterion (BIC) [149], or use cross-validation
to find values that maximize the learning performances.

4.5.2 Scoring Functions

FGM can easily be used for group anomaly detection. We can first infer a group’s latent states
including the topics β and the topic weight θ, and then examine if they are compatible with the
topic generators and genres in the model.

Point-based anomalies can be found by examining the topics. If a group contains anomalous
points, then the topics that generated these points will deviate from the topic generators η. Let
P (βm|Θ) =

∏K
k=1 GIW (βm,k|ηk). We define the point-based anomaly score as

fp(Gm) = Eβm [− logP (βm|Θ)] = −
∫
βm

P (βm|Θ, Gm) logP (βm|Θ)dβm. (4.19)

The posterior distribution P (βm|Θ, Gm) can again be approximated by the samples from Gibbs
sampling, and the expectation can be done by Monte Carlo integration. Compared to the finding
point-based anomalies using the point-wise likelihood as in Section 4.4.2, this scoring function
examines the topic instead of the points. The topics are used as a summarization of the points as a
whole, so that problems raised in Section 4.4.2 can be solved.

Distribution-based anomalies can be detected by examining the topic weights like in MGM.
The genres {αt}t=1,...,M capture the typical distribution of topic weights. If a group’s topic weight
θm is unlikely under these genres, we call it anomalous. Let P (θm|Θ) =

∑T
t=1 ρtDir(θm|αt). The

distribution-based anomaly score is

fd(Gm) = Eθm [− logP (θm|Θ)] = −
∫
θm

P (θm|Θ, Gm) logP (θm|Θ)dθm. (4.20)

Again, this expectation can be approximated using Gibbs sampling and Monte Carlo integration.

70

4.6 Nonparametric Genre models

FGM provides us with great flexibility to model the group-level and point-level behaviors of the
groups. It also inspires us to design effective scoring function to find different types of group
anomalies. However, such flexibility comes with the a price. First, the inference and learning of
FGM is slower than MGM. Specifically, the use of the multivariate Gaussian-Wishart distribution
greatly increases the computation needed for both inference and learning. Second, the conjugate
priors are chosen merely for the computational convenience rather than correctness. Thirdly, the
conjugate priors involves a large number of free parameters that needs to be set or learned, causing
volatile performance and difficulties in practical use. Therefore, we want other prior distributions
that can implement similar flexibilities as in FGM, but runs much simpler and faster.

The nonparametric empirical Bayes (NPEB) method can be used to solve this problem. Instead
of methods that use parametric conjugate priors, NPEB does not assume the form of the prior
distribution to allow for minimum prior knowledge and restrictions. Applying NPEB to FGM,
we can replace the mixture of Dirichlet distribution for topic weights P (θ|ρ, α) and the Gaussian-
Wishart distributions for the topics {P (βk|ηk)}k with simpler P (θ|Fθ) and P (β|Fβ) respectively,
where Fθ, Fβ are the nonparametric distributions for θ and β without further assumptions.

We use the nonparametric maximum likelihood (NPML) technique proposed by [89, 90]. It
can be proved that the maximum likelihood estimates (MLE) of F are step functions in the pa-
rameter space i.e. the probability mass of F̂ only exists at a finite number of discrete points in the
parameters space, and number of steps in F grows as the data become more complex.

The above result means that, for a given data set, the MLE F̂θ contains a number of values
for θ. To simplify the computational, we specify the number of steps in F̂θ to a relatively large
value beforehand, instead of computing it from the data. Similar modeling can also be applied to
the topic generators. In this case, this NPML becomes very similar to the mechanism we used in
MGM.

We use the simplified NPML method above to improve the FGM and get the nonparametric
genre model (NGM). Suppose that F̂θ the prior of the topic weights has T elements, F̂βk the prior
of the kth topic has S elements. The generative process of NGM can be described in Algorithm 6,
and its graphical representation is shown in Figure 4.4.

Algorithm 6 The generative process of NGM.
for groups m = 1 to M do
• Choose a genre ym ∈ {1, . . . , T} , ym ∼M(ρ). Let the topic weight θm = αym ∈ SK .
for topics k = 1 to K do
• Choose an rmk ∈ {1, . . . , S} , rmk ∼M(πk), πk ∈ SS . Let the kth topic be βk = ηk,rmk

.
for n = 1 to Nm do
• Choose a topic zmn ∈ {1, . . . , K}, zmn ∼M(θm).
• Generate a point xmn ∈ RD, xmn ∼ P (xmn|βzmn).

71

xmnzmnymρ

αt

M N

K
ηk

πkrmk

T

Figure 4.4: The nonparametric genre model (NGM).

The complete and marginal likelihood of data under NGM are:

p(ym, rm, zm, Gm|ρ, α, π, η) = p(ym|ρ)
∏
k

p(rmk|πk)
∏
n

p(zmn|ym, α)p(xmn|zmn, rm, η) (4.21)

= ρym
∏
k

πk,rmk

∏
n

αym,zmnp(xmn|ηzmn,rm,zmn
)

p(Gm|ρ, α, π, η) =
∑
ym

ρym
∑
rm

∏
k

πk,rmk

∏
n

∑
zmn

αym,zmnp(xmn|ηzmn,rm,zmn
). (4.22)

NGM does not assume the specific forms of the prior distributions for topic eights θ and the
topics β, therefore with a suitable choice of T and S it can model complex behaviors the data
represent. The model only involves simple distributions such as Gaussians, and therefore is easy
and fast to learn.

4.6.1 Inference and Learning
When NGM is learned from the data, the nonparametric priors embodied in the parameters {ρ, α}
and {πk, ηk}k will contain the typical topic weights as well as topics in the training set. These
priors can then help the inference of the topic weights θ and topics {βk}k=1,...,K .

Like other genre models, the NGM model can be learned via the variational EM algorithm. We
define for P (ym, rm, zm|Gm,Θ) the posterior marginal distribution of latent variables a factorized
variational distribution

q(ym, rmk, znk|γm, τm, φm) = q(ym|γm)
∏
k

q(rmk|τmk)
∏
n

q(znk|φmn) (4.23)

=M(ym|γm)
∏
k

M(rmk|τmk)
∏
n

M(znk|φmn)

where variational distributions q(y|γ) models the genre y, q(r|τ) models how the topic was sam-
pled from the nonparametric topic generators, and q(z|φ) models which topic generated a point.

The model and variational parameters can be obtained by maximizing the variational lower-
bound to the marginal likelihood of data as described in Section 4.4.1. The actual derivation is

72

similar to the one used in MGM. In the following we only show the update formulae for the
iterative solution.

φmnk ∝ exp

(∑
t

γmt logαtk +
∑
s

τmks log p(xmn|ηks)

)
(4.24)

γmt ∝ exp

(
log ρt +

∑
n,k

φmnk logαtk

)
(4.25)

τmks ∝ exp

(
log πks +

∑
n

φmnk log p(xmn|ηks)

)
(4.26)

αtk ∝
∑
m

γmt
∑
n

φmnk (4.27)

ρ =
1

M

∑
m

γm (4.28)

πk =
1

M

∑
m

τmk (4.29)

To learn the topic generators, we need to maximize the following objective function:

ηks = arg min
ηks

∑
m,n

τmksφmnk log p(xmn|ηks). (4.30)

Therefore, estimating ηks is the same as fitting a Gaussian distribution using samples weighted by
τmksφmnk.

4.6.2 Scoring Functions
Finding anomalies based on the inferred latent variables is not straightforward under the NGM.
Due to the use of nonparametric priors, we do not have explicit latent variables such as the topic
weight θ and the topics β for each group. So instead of scoring the latent variables, we find ways
to score the data directly.

Point-based Anomaly Similar as before, we can find point-based anomalies by looking for
groups that use unusual topics to generate the points. Since there is no explicit latent variable
for the topics, we can use the following scoring function to score the points:

χp(Gm) = −
∑
zm

p(zm|Gm,Θ) log p(Gm|zm,Θ) ≈ −
∑
zm

q(zm|φm) log p(Gm|zm, π, η) (4.31)

= −
∑
zm

q(zm|φm)
∑
k

log p(Gmk|πk, ηk)

= −
∑
zm

q(zm|φm)
∑
k

log
∑
s

πksp(Gmk|ηks).

73

where Gmk contains all the points from topic k according to zm. The above equations used the
variational distributions to approximate the actual posterior distributions.

The key quantity in χp is how to compute p(Gmk|ηks), which means how likely the set of
points Gmk were generated by the Gaussian distribution N (ηks). The most intuitive option is the
likelihood of i.i.d. points as p(G|η) =

∏
n p(xn|η), but it is flawed. For example, if the test group

contains points that are only at the centers of the Gaussians, then the likelihood will be mistakenly
high, because the distribution of the points is not normal. This problem can only be addressed by
considering the points Gmk as a whole. This is also why in Eq. (4.12) we have to score the topic
variables zm as a whole instead of individually.

Essentially, we need p(Gmk|ηks) to be a goodness-of-fit (GoF) measurement. Unfortunately,
GoF tests in high-dimensions are notoriously difficult. Here we take a parametric approach. First,
we construct a prior distribution for η, denoted as Ω(η). Then, we estimate a distribution for Gmk

that has the same parametric form as η using Ω(η) as the Bayesian prior, denoted as f(Gmk,Ω(η)).
Finally, we use p(f(Gmk,Ω(η))|Ω(η)) as a surrogate of p(Gmk|η). Intuitively, this approach us-
es the parametric distribution f(Gmk,Ω(η)) to summarize Gmk, and then evaluate how probable
f(Gmk,Ω(η)) is generated from the model. We call this approach the pseudo-prior method.

We choose Ω to be the conjugate prior of η, and set the mode of Ω(η) to η so that Ω(η) can
reflect what eta should be like. Since Ω(η) is conjugate to η, estimating f(Gmk,Ω(η)) and eval-
uate its likelihood under Ω(η) is straightforward. Another advantage of this approach is that, the
conjugate prior distributions usually have a degrees-of-freedom parameter to specify how strong
the prior is. With a suitable strength, the Bayesian estimate f(Gmk,Ω(η)) can be robust against
random individual points and focus more on the collective behavior. In addition, if two groups
have the same amount of anomalous points, then the larger group would receive a higher score.

Concretely for our NGM model where each ηks is a Gaussian distributions, we let Ω(ηks, λ)
be the GIW distribution whose mode is at ηks, where λ is a parameter specifying its degrees-of-
freedom. λ acts as the “pseudo counts” in the prior distribution, and larger λ makes the score more
insensitive to individual points or smaller groups. To evaluate p(Gmk|ηks), we first estimate the
Gaussian distribution f(Gmk,Ω(η, λ)) based on the data Gmk and the prior Ω(ηks, λ), and then
calculate the GIW likelihood p (f(Gmk,Ω(η, λ))|Ω(ηks, λ)).

Note the resemblance between the pseudo-prior scoring function and the point-based scoring
function fp (4.19) for FGM. They are very simpler in that they both use adaptive topics to sum-
marize the points and then score the topics. FGM explicitly learns the adaptive topics during
training. On the other hand, NGM construct the adaptive topics only during detection time using
pseudo-priors, making the training much simpler while achieving similar results.

Distribution-based Anomaly The above pseudo-prior approach can also be used to find distri-
bution based anomalies using the topic variables zm. The pseudo-prior scoring function to find
distribution-based anomalies is

χd(Gm) = −
∑
zm

p(zm|Gm,Θ) log p(zm|Θ) ≈ −
∑
zm

q(zm) log
∑
t

πtp(zm|αt) (4.32)

To evaluate p(zm|αt), we first construct the pseudo-prior Ω(αt, λ) = Dir(αt, λ) where λ is the
pseudo-counts in the Dirichlet, then estimate the posterior topic weights θm = f(zm,Ω(αt, λ)),

74

and finally evaluate the Dirichlet likelihood p (f(zm,Ω(αt, λ))|Ω(αt, λ)) = Dir(θm|αt, λ).
Note the scoring function based on multinomial likelihood (4.12) can still work well in NGM.

In fact, (4.12) is simpler and more natural to score the discrete variables zm. The pseudo-prior
approach was only proposed as a remedy to the difficulty of evaluating the goodness-of-fit for
continuous multidimensional data.

4.7 Discussion

In the previous sections, we progressively proposed three models: the multinomial genre models
(MGM), the flexible genre models (FGM), and the nonparametric genre models (NGM). MGM is a
basic model that introduces the concept of genre and use it the enhance LDA’s modeling capability
of topic weights. FGM enhances MGM by using more flexible probabilistic components and
allowing the groups to have different topics. Inspired by FGM, NGM uses nonparametric priors to
further remove modeling assumptions and enable faster learning.

The computational cost of the genre models mainly comes from the inference procedures,
where we have to compute the point likelihood given the topic/topic generator i.e. p(x|β) or p(x|η).
For the D-dimensional Gaussians used in this chapter, computing the likelihood for N points
w.r.t. to all topics costs O(NKD2) time (or O(NKSD2) for NGM). To make it faster, we can first
reduce D the dimensionality of the points using reduction algorithms such as PCA. Alternatively,
we can use Gaussians with diagonal covariances so that the time complexity can be reduced to
O(NKD). Further, when there are many groups or the groups are very large, we can use a subset
of the groups/points to get initial estimates of the models that can be refined later.

The parameters T and K are needed to specify the genre models. Usually these values can be
selected by AIC/BIC scores or cross-validation. Theoretically, all the parameters of the prior dis-
tributions in FGM (specifically the Dirichlet parameters α and GIW parameters η) can be learned
via the empirical Bayes methods. When these parameter are learned correctly good performance
can be achieved. However, in practice we found that such an approach is usually unstable and may
lead to bad local minima. On the other hand, finding a good fixed value for them involves much
tuning. NGM partly solves this problem by controlling the prior complexity via the number steps
in the prior distribution, which is more intuitive and easier to tune.

Multiple scoring functions were proposed for each model to find both the point-based and
distribution-based anomalies. Although it is tempting to find a ubiquitous scoring function, such
attempts are usually futile as the definition of anomalies depends on specific problem e.g. the im-
portance of point-based and distribution-based anomalousness are different in different problems
or for different users. In practice, we suggest try multiple scoring functions to find the anomalies
that are particularly interesting.

Apparently, when S = 1 NGM is equivalent to MGM. To further see their relationship, note
that the marginal likelihood of NGM (4.22) can also be written as

p(Gm|ρ, α, π, η) =
∑
rm

(∏
k

πk,rmk

)∑
ym

ρym
∏
n

∑
zmn

αym,zmnp(xmn|ηzmn,rm,zmn
). (4.33)

75

Comparing (4.33) to the MGM marginal likelihood (4.2), we see that NGM can be considered as a
mixture ofK×S dependent MGM models (using onlyK×S independent Gaussian components),
with structured mixing weights specified by π. We found that NGM behaves like an MGM model
with K × S topics. Further, note that the pseudo-prior scores for NGM described in Section 4.6.2
can also be applied to MGM. Considering all their similarities, we conclude that when simplicity
and efficiency are important, NGM can be replaced by MGM when the number of topics is large.
Indeed in practice we found that the difference between MGM and NGM are insignificant, which
makes the simpler MGM a more cost-effective choice.

The genre models are able to learn from groups with different numbers of points effectively.
In training, the smaller groups have less influence on the likelihood of the data. In prediction,
the scoring functions assume that a group is normal unless some evidence of anomaly is observed,
and the anomalousness increases as the group size becomes larger (between two anomalous groups
with the same distribution of points, the larger group has a higher anomaly score). These behaviors
help us ignore the noises and focus on the real anomalies.

In addition to detecting group anomalies, the genre models can also be used to accomplish
other learning tasks. For example, as in [50] the genres can be used to cluster the groups together.
Using techniques similar to naı̈ve Bayes, we can use genre models to classify groups. In addition,
the genres and topic generators provides a natural summary of the data that can help us explore the
data sets.

Finally, the generative methods can also be used learn structured groups, where a point might
depend on other points in the same group. The idea is that, first for each group we find a generative
model to generate the points in it, then we find a global mechanism to generate those generative
models. In genre models, the generative models are mixtures of topics, while the global mech-
anism is realized by the genres and the topic generators. To handle structured groups, we can
use generative models such as the hidden Markov models (HMM) and the random Markov field
(MRF), and then try to design suitable mechanism to generate the HMMs and MRFs .

4.8 Experiments
In this section we provide empirical results produced by the genre models on both synthetic and real
data. We demonstrate the behaviors of different models, and show their effectiveness in detecting
various group anomalies.

4.8.1 Synthetic Data
First, we demonstrate the behaviors of the genre models and the scoring functions on a synthetic
data set. The data set is described below. We generated the data using 2-dimensional Gaussian
mixture models (GMM). Each group has a GMM to generate its points. All GMMs share three
Gaussian components with covariance 0.2 × I2 and centered at points (−1.7,−1), (1.7,−1), and
(0, 2), respectively. A group’s mixing weights are randomly chosen from w1 = [0.33, 0.33, 0.33]
or w2 = [0.84, 0.08, 0.08]. Thus, a group is normal if its points are sampled from these three
Gaussians, and their mixing weights are close to either w1 or w2. To test the detectors, we injected

76

both point-based and distribution-based anomalies. point-based anomalies were groups of points
sampled from N ((0, 0), I). Distribution-based anomalies were generated by GMMs consisting
of normal Gaussian components but with mixing weights [0.33, 0.64, 0.03] and [0.08, 0.84, 0.08],
which were different from w1 and w2. We generated M = 100 groups, each of which had Nm ∼
Poisson(100) points. One point-based anomalous group and two distribution-based anomalous
groups were injected into the data set.

The detection results of MGM, FGM, NGM, as well as LDA are shown in Fig. 4.5. For LDA,
we use FGM’s point-based score (4.20). We show 12 out of the 100 groups. Normal groups are
surrounded by black solid boxes, point-based anomalies have green dashed boxes, and distribution-
based anomalies have red dashed boxes. Points are colored by the anomaly scores of the groups
(darker color means more anomalous). An ideal detector would make dashed boxes’ points dark
and solid boxes’ points light gray. The method postfix “-D” means distribution-based scores, and
“-P” means point-based scores.

We can see that the genre models can all find the distribution-based anomalies since they are
able to learn the complex distribution of the topic weights. But LDA lacks the flexibility to capture
the simple yet multi-modal distribution of the topic weights in this data set. When we merge the
results of the point-based and distribution-based scores, all the injected group anomalies can be
found by the genre models. We notice that MGM is less sensitive to the point-based anomaly. The
explanation is simple; the anomalous points are distributed in the middle of the topics, thus the
inferred topic weight is around [0.33, 0.33, 0.33], which is exactly w1. As a result, MGM infers
this group to be normal, although it is not. This example shows one possible problem of scoring
groups based on topic weights only. On the other hand, with adaptive topics, FGM and NGM
managed to identify the point-based anomaly even with the distribution-based scoring function.
We also observed that the MGM-P score is slightly more noisy than FGM-P and NGM-P, probably
because MGM is scoring individual points while FGM and NGM are scoring topics that are more
stable.

Figures 4.6b – 4.6c show the density estimations produced by LDA, MGM, and FGM, respec-
tively, for the point-based anomalous group. We can see that FGM gives a better estimation due
to its adaptive topics, while LDA and MGM are limited to use their global topics. Figure 4.6d
shows the learned genres visualized as the distribution

∑
t ρtDir(·|αt) on the topic simplex. This

distribution summarizes the normal topic weights in this data set. Observe that the two peaks in
the probability simplex are very close to w1 and w2 indeed.

4.8.2 Image Data
In this experiment we test the performances of the genre models on detecting anomalous scene
images. We use the OT data set from [126], which contains 8 outdoor scene categories. There are
2, 688 images in total, each having about 256×256 pixels. A more detailed description of this data
set can be found in Section 5.6.3.

We use the first 100 images from each category in our experiments. The images are represented
as in [50]: we treat each image as a group of local patches. We densely sample about 400 patches
on a regular grid from each image, and on each patch extract the 128-dimensional SIFT [106]
feature vector, and then reduce its dimension to 10 using PCA.

77

MGM−D MGM−P

FGM−D FGM−P

NGM−D NGM−P

LDA−D

Figure 4.5: Detection results on the synthetic data. Black boxes are normal groups. Green dashed
boxes are point-based anomalies. Red dashed boxes are distribution-based anomalies. The method
postfix “-D” means distribution-based scores, and “-P” means point-based scores.

In addition to the genre models, we also test several other simple detector to compare. A
Gaussian mixture models (GMM) based method is implemented to detect point-based anomalies.
This method flatten the groups and fits a GMM to all the training data points. Then it computes
the points’ likelihood in the test groups under the GMM as their anomaly scores, and finally scores
a group by averaging the points’ scores. In other words, the GMM method finds groups with
the most points in the low-density regions. To be able to detect distribution-based anomalies,
we also implemented another competitor called LDA-KNN. LDA-KNN uses LDA to estimate the
topic weights in the groups and treats these topic weights (parameter vectors of the multinomials)
as the groups’ features. Then, a KNN based point anomaly detector [182] is used to score the
groups’ feature vectors. Finally, we examine an adaptation of the Theme Model (ThM) [50]. The
original ThM handles only discrete data and was proposed for clustering. To handle continuous
data, we modified ThM by using Gaussian topics. Essentially, ThM is a simplified version of FGM

78

(a) (b) (c) (d)

Figure 4.6: (a),(b),(c) show the density of the point-based anomaly estimated by LDA, MGM, and
FGM respectively. In LDA and MGM, topics must be shared globally, therefore their perform
badly. (d) The genres in the synthetic data set learned by FGM.

without the adaptive topics. We can then apply the scoring function (4.20) to find distribution-
based anomalies, and the data likelihood to find the point-based anomalies. The following list
summarizes the detectors:
• P: point-based detector using GMM.
• MGM-P: point-based detector using the MGM likelihood.
• MGM-PP: point-based detector using MGM with the pseudo-prior scorer (4.31).
• ThM-P: point-based detector using the ThM likelihood.
• NGM-P: point-based detector using NGM with the pseudo-prior scorer (4.31).
• FGM-P: point-based detector using FGM with the scorer (4.19).
• LDA-KNN: distribution-based detector using KNN and the topic weights learned by LDA.
• MGM-D: distribution-based detector using MGM with scorer (4.12).
• ThM-D: distribution-based detector using ThM with scorer (4.20).
• NGM-D: distribution-based detector using NGM with scorer (4.12).
• FGM-D: distribution-based detector using FGM with scorer (4.20).
For all the models we used K = 8 topics and T = 6 genres as suggested by BIC searches. For

FGM, we set κ0 = ν0 = N̄ where N̄ is the average size of the groups (hence the topic generators in
FGM have low variances). For NGM, we set S = 3 so that each topic generator contains 3 possible
elements. The performance is measured by the area under the ROC curve (AUC) of retrieving the
anomalies from the test set.

Finding Out-of-Category Anomalies

The first type of image anomalies we test are out-of-category anomalies. In each run, we randomly
select one category as the normal class and use its images to train the genre models. At test time,
we mix images from another category into some normal images as anomalies, and ask the models
to find them. The anomalies in this experiment are not controlled and can be of any type. Note that
the training and testing images do not overlap. In each run, we select one normal category and one

79

abnormal category. Then, we use 80% of the images in the normal category for training, and use
the rest 20% combined with the images in the abnormal category for testing.

The results of 56 random runs are reported in Figure 4.7. In general, point-based detectors
did better than the distribution-based detectors, which is expected since different scene images are
likely to have distinctive patches. Our method MGM-PP, NGM-P, and FGM-P did significantly
better than others. Note that the point-based detector MGM-PP performed better than the MGM-P,
showing the advantage of the pseudo-prior approach. FGM-P performed the best. Though not
apparent in the boxplot due to the high variance of data, the advantage of FGM-P is significant:
between FGM-P and the next best NGM-P, the p-value of the Wilcoxon signed rank test is 0.035
(the signed rank test was used because the distribution of the accuracies were highly skewed. For
reference the paired t-test has a p-value of 0.028). On the other hand, several distribution-based
detectors also did well, but ThM-D and FGM-D failed this task because in this complex data set
the estimation of Dirichlet genres became unstable. Finally, we observe that MGM and NGM
performed very similarly.

0

0.2

0.4

0.6

0.8

1

P M
G
M
−P

M
G
M
−P

P

Th
M
−P

N
G
M
−P

FG
M
−P

LD
A−

KN
N

M
G
M
−D

Th
M
−D

N
G
M
−D

FG
M
−D

AU
C

Figure 4.7: Performances on detecting out-of-category images. See text for details.

Finding Stitched Images

The second type of image anomalies are stitched images. The purpose here is to find unnatural
images. In each run, we select two categories as the normal classes, and then divide the images in
these two classes into training and testing sets. We create anomalies by stitching random pairs of
images (horizontally half-by-half) from different categories in the testing set. The stitched images
are then added to the testing set, and the goal is to find these unnatural synthesized images. Note
that unlike the previous experiment, the anomalies here are controlled; the normal test images and
the anomalies consist of exactly the same patches, and none of them overlap with the training
images. For instance, an anomaly may be a picture that is half mountain and half city street. Some
examples are shown in Figure 4.8. When extracting the SIFT features, points near the stitching
boundaries are discarded to avoid boundary artifacts.

80

Figure 4.8: Images samples. Green boxes (first row) contain natural images, and yellow boxes
(second row) contain stitched anomalies.

We use the same data as the previous experiment. In each run, we randomly select two cate-
gories and use 80% of the images in both categories for training. The rest 20%, combined with the
synthesized stitched images, are used for testing. The number of normal testing images and the
number of anomalies are equal.

The performances from 56 random runs are shown in Figure 4.9. As expected, in contrary to the
previous experiment, the distribution based methods are much better than the point-based methods
since by construction there is no point-based anomalies. Particularly, the methods that are based
on Dirichlet genres, including ThM-D and FGM-D, lead the performance by a large margin. The
difference between ThM-D and FGM-D are negligible, meaning that the adaptive topics of FGM
had little use since there are no point anomalies. Again, MGM and NGM performed similarly.

0

0.2

0.4

0.6

0.8

1

P M
G
M
−P

M
G
M
−P

P

Th
M
−P

N
G
M
−P

FG
M
−P

LD
A−

KN
N

M
G
M
−D

Th
M
−D

N
G
M
−D

FG
M
−D

AU
C

Figure 4.9: Performances on detecting stitched images.

81

4.8.3 Turbulence Data
We present an explorative study of detecting group anomalies on turbulence data from the JHU
Turbulence Database Cluster1 (TDC) [127]. TDC simulates fluid motion through time on a 3-
dimensional grid, and here we perform our experiment on a continuous 1283 sub-grid. In each
time step and each vertex of the grid, TDC records the 3-dimensional velocity of the fluid. We
consider the vertices in a local cubic region as a group, and the goal is to find groups of vertices
whose velocity distributions (i.e. moving patterns) are unusual and potentially interesting. The
following steps were used to extract the groups: (1) We chose the {(8i, 8j, 8k)}i,j,k grid points as
centers of our groups. Around these centers, the points in 73 sized cubes formed our groups. (2)
The feature of a point in the cube was its velocity relative to the velocity at its cube’s center point.
After these pre-processing steps, we had M = 4 096 groups, each of which had 342 3-dimensional
feature vectors.

We applied MGM-D, ThM-D, and FGM-D to find anomalies in this group data. T = 4 genres
and K = 6 topics were used for all methods. We do not have a groundtruth for anomalies in this
data set. However, we can compute the “vorticity score” [115] for each vertex that indicates the
tendency of the fluid to “spin”. Vortices and especially their interactions are uncommon and of
great interest in the field of fluid dynamics. This vorticity can be considered as a hand crafted
anomaly score based on expert knowledge of this fluid data. We do not want an anomaly detector
to match this score perfectly because there are other “non-vortex” anomalous events it should find
as well. However, we do think higher correlation with this score indicates better anomaly detection
performance.

Figure 4.10 visualizes the anomaly scores of FGM and the vorticity. We can see that these
pictures are highly correlated, which implies that FGM was able to find interesting turbulence
activities based on velocity only and without using the definition of vorticity or any other expert
knowledge. Correlation values between vorticity and the MGM, ThM, and FGM scores from 20
random runs are displayed in Fig. 4.10c, showing that FGM is better at finding regions with high
vorticity.

4.9 Summary
We presented an parametric, generative approach to model collective data, and use it for the group
anomaly detection problem. Using topic modeling techniques, we proposed the Multinomial genre
models (MGM), the flexible genre models (FGM), and the nonparametric genre models (NGM)
that are able to capture complex group behaviors at multiple levels, while archiving a better bal-
ance between the model flexibility and learning efficiency progressively. Several scoring function
are also proposed specifically to exploit the capability of the models to detect group anomalies.
Empirical results show that genre models can model the generating process of the collective data
and detect various group anomalies well. However, since the anomalies vary a lot depending on
the data sets, we need to choose the best model and scoring function in order to achieve the best
results.

1http://turbulence.pha.jhu.edu

82

In the future, we would like to make the genre models robust. So far we have used the genre
models to find outliers in the testing set. However, when the training set is contaminated by out-
liers, the learned model might be distorted towards the outliers. Therefore, we want the model
to only learn normal behaviors even if it was trained on a data set that contains a few outlier-
s. Initial attempt has been made in this direction using long-tail distributions (e.g. the student-t’s
distribution) as the model parameters, yet the resulting model is overly complex, involving many
free parameters, and unstable during practice. We shall continue to investigate more reliable ap-
proaches. Using techniques from Gaussian processes [137], we can also extend the genre models
to functional observations where each point is a noisy observation of a function.

83

(a) FGM-DB Score (b) Vorticity

MGM-D ThM-D FGM−D

0.42

0.44

0.46

0.48

0.5

0.52

0.54

C
or

re
la

tio
n

w
ith

 V
or

tic
ity

(c)

Figure 4.10: Detection results for the turbulence data. (a) & (b) FGM-DB anomaly score and
vorticity visualized on one slice of the cube. (c) Correlations of the anomaly scores with the
vorticity.

84

MLE of the Gaussian-Inverse-Wishart Distribution
We present the MLE for a Gaussian-Inverse-Wishart (GIW) distribution GIW (µ0, κ0,Ψ0, ν0) giv-
en a set of Gaussian distributions with parameters β = {βm = (µm,Σm)}m=1,...,M . By it-
eratively updating the parameters, we converge to a stationary point of the likelihood function
LGIW (β;µ0, κ0,Ψ0, ν0). For µ0k, κ0k, and Ψ0k, we can derive direct solutions by setting the partial
derivatives of the log-likelihood to zero:

µ0 =

{∑
m

Σ−1
m

}−1∑
m

Σ−1
m µm (4.34)

κ0 =
MD∑

m (µm − µ0)TΣ−1
m (µm − µ0)

, (4.35)

Ψ0 = ν0

{
1

M

∑
m

Σ−1
m

}−1

, (4.36)

where D denotes the feature dimension.
The partial derivative w.r.t. ν0 is given as follows:

∂L

∂ν0

=
1

2

{
M log

|Ψ0|
2D
−
∑
m

log |Σm| − ψD(ν0/2)

}
, (4.37)

where ψD(·) =
Γ′D(·)
ΓD(·) stands for the first order derivative of the multivariate log-gamma function.

ν0 does not have an analytical solution. To address this issue, observe that ν0 is a scalar, and Ψ0

has a simple linear dependency on ν0. Thus, we can apply a one dimensional search to find the
optimal ν0, e.g. , using numerical differentiation. Having ν0 we can compute Ψ0.

85

Chapter 5

Discriminative Methods for Collective Data

We introduce a new discriminative learning method for classification on collective data. Unlike
generative models, discriminative methods tries to learn target concepts directly regardless of the
generating mechanism of data. In this chapter we describe discriminative ways of learning from
collective data based on similarity or dissimilarity measures between groups. The advantage of
this approach is its great flexibility, since we can take advantage of the existing tools that rely
on similarities to accomplish a vast variety of tasks on groups. We use consistent nonparametric
divergence estimators to define new kernels over the groups/sets, and then apply them in kernel
classifiers. Our results on image classification demonstrate that in many cases this approach can
outperform state-of-the-art competitors on both simulated and challenging real-world datasets.

5.1 Introduction

We propose new methods for the classification of distributions. In the classification problem our
goal is to find a map from the space of distributions to the space of class, while in the anoma-
ly detection problem we want to find distributions that are unlike others. Note that only finite
i.i.d. samples are observed from these distributions. For this purpose we extend the support vector
machines (SVM) to the space of distributions. In our framework, some of the distributions in the
training data will play the role of support vectors.

We consider this problem in the context of image classification. There are numerous exam-
ples in computer vision where images are represented by unordered sets of feature vectors. For
example, the shapes of an object can be represented by sets of local descriptors at edges and corner
points [63]. Human faces can also be described by sets of local image patches containing cer-
tain facial parts. The SIFT [106], HOG [36], and PHOG [8] features extractors find stable image
representations by detecting sets of local-affine invariant regions and other regions of interest.

To compare images represented by feature sets, a straightforward approach is to treat the sets
as if they contained instances sampled from an unknown and possibly high-dimensional distribu-
tion. A common way to handle these distributions is to use (high-dimensional) histograms through
discretization, and compare these histograms. The popular “Bag-of-words” (BoW) algorithms use
this approach: they treat each image as a set of visual words, where the words are obtained by

86

clustering local image patches [50, 97].
Histogram-based representations have been used in many state-of-the-art computer vision algo-

rithms. However, they have some obvious limitations. When we discretize continuous distributions
into bins, we might lose valuable information. This problem is especially severe in high dimen-
sions, where the curse of dimensionality makes histogram-based density estimators unreliable.
Selecting the bin sizes (or number of bins) for the histograms are also difficult model selection
problems.

In this chapter we propose new classification algorithms that operate directly on the set-of-
vectors representation of the images. We assume that the elements of these sets are i.i.d. sample
points from unknown distributions that characterize the images. In order to classify the images,
we classify these distributions based on their i.i.d. sample set representations. The kernel-based
approach is adopted: we introduce and estimate the kernel functions between these distributions.
Having the estimated kernel matrix, we then apply kernel classifiers such as SVM for classification.
The proposed kernels avoid the traditional clustering, quantization, or histogram building steps that
could lead to loss of information.

These kernel functions on sets will be defined in terms of divergences/distances, just as the
Euclidean distance is used to define Gaussian/RBF kernels on vectors. To this end, we will need
to estimate the divergences between distributions. A straightforward approach would be to esti-
mate the underlying densities and plug them into the corresponding divergence formulae. In fact,
histogram and BoW approaches follow this paradigm. Density estimation, however, is among the
most difficult problems in statistics due to the curse of dimensionality. To avoid this problem, we
develop our kernels based on a direct (no density estimation required) and nonparametric (minimal
assumptions about the true distributions) approach. We show how to estimate a large family of
divergences that includes the Rényi, Tsallis, Hellinger, Bhattacharyya, KL, L2, and many other
divergences. The estimator is provably consistent, nonparametric, and does not use histogram-
s, kernel density estimators (KDE), or any other density estimators. It depends on only simple
k-nearest neighbor (KNN) statistics.

We evaluate the empirical performance of the proposed kernels on both simulated and real-
world datasets, and compare them to alternatives based on density estimation or parametric ap-
proximations. We show that our kernels achieve performances that match or beat the state of the
art in several image classification tasks.

The chapter is organized as follows. In the next section we review some related work. We
formally introduce the distribution classification problem and show how to define kernels on dis-
tributions in Section 5.3. Section 5.4 and 5.5 describes how to estimate the kernels on distributions
when the densities are unknown. Section 5.6 presents the results of numerical experiments. We
conclude with a discussion in Section 5.7.

5.2 Related Work
Although several methods exist to measure the distance between sample sets, and kernels have also
been defined on sets, all of these previous methods have their shortcomings. We will now review
the most popular methods.

87

Nguyen et al. recently proposed a method for f -divergence estimation using its so-called “vari-
ational characterization properties” [125]. This approach involves an intractable optimization over
an infinite-dimensional function space. When this function space is chosen to be a reproduc-
ing kernel Hilbert space (RKHS), this optimization problem reduces to an N -dimensional convex
problem, where N is the sample size. This can be very demanding in practice for a only few
thousand sample points, which is quite common in computer vision applications.

There are RKHS based approaches for defining kernels on unordered sets as well. The method
proposed by Smola et al. [155] uses the interaction between pairs in the sample set, and hence its
computation time is O(m2). The divergence estimator we propose, by contrast, uses only KNN
distances in the sample set, a well-studied problem with efficient solutions such as k-d trees. Note
also that choosing an appropriate kernel function for the RKHS can be a difficult model selection
problem, a challenge not faced by our proposed divergence estimator.

Sricharan et al. [157] developed k-nearest-neighbor based methods similar to our method for
estimating non-linear functionals of the density, of which divergences are a special case. In contrast
to our approach, however, their method requires k to increase with the sample size N and diverge
to infinity. KNN computations for large k values can be very computationally demanding. In our
approach we fix k on a small number (typically between 1 and 5), and are still able to prove that
the divergence estimator is consistent.

Jebara and Kondor [76] have also studied the question of how to define kernels on distributions.
Their approach fits a parametric family (e.g. exponential family) density to each set of points, and
then using these fitted parameters estimates the inner products between the densities. Moreno et
al. [119] also fit a parametric density to the data and use it to define a KL divergence-based kernel.
Parametric approaches can work better than nonparametric methods when the sample size N is
small, or if we know from prior knowledge that the true densities belong to these parametric fami-
lies. When the assumptions do not hold, however, parametric methods introduce bias in estimating
the inner products between densities. In contrast, our proposed method is completely nonparamet-
ric and provides provably asymptotically unbiased kernel estimations for certain kernels.

Kondor and Jebara [83] earlier introduced a kernel between distributions defined as Bhat-
tacharyya’s measure of affinity between finite dimensional Gaussians in a Hilbert space. This
approach fits a Gaussian distribution to the features in a Hilbert space, but it can lead to a large
bias when the data in the Hilbert spaces is not Gaussian. Furthermore, the approach is developed
only for Bhattacharyya’s measure. Our proposed method is asymptotically unbiased and can be
used for many other divergences.

The Pyramid Matching Kernel [63], which also operates over unordered sets, has recently be-
come popular in computer vision. In this approach each feature set is mapped to a multi-resolution
histogram. These histogram pyramids are compared using a so-called “weighted histogram inter-
section computation.” A shortcoming of this approach is that it needs to calculate D-dimensional
histograms, which can become very inefficient for large D due to the curse of dimensionality. Se-
lecting appropriate bin sizes is also a difficult problem for which only heuristics are known [150].

Póczos et al. [130] used a slightly less general version of our nonparametric divergence esti-
mator similar to solve certain machine learning problems in the space of distributions. That work
studied only simple KNN based classifiers, however. Here we use kernel methods that are more

88

discriminative in classification tasks, and evaluate their performance on various image datasets.

5.3 Problem Definition
In this section we formally define our set classification problem and show how kernel classifiers
can be generalized to sample sets of distributions. Assume we have M inputs {G1, . . . , GM} each
representing one image, where the mth input Gm contains i.i.d. samples from some underlying
density fm. That is, Gm is a set of sample points, and xm,j ∼ fm for j = 1, . . . , Nm. Let G denote
the set of all such sample sets i.e. Gm ∈ G, m = 1, . . . ,M .

Further assume we are given M labels for these inputs {(Gm, ym)}Mm=1. Here ym ∈ Y
.
=

{y1, . . . , yc} denotes the class label of the mth set. We seek a function h : G → Y such that for
a new input and output pair (G, y) ∈ G × Y we ideally have that h(G) = y. For simplicity, we
discuss only binary classification. The ideas below can be extended to c-class classification in the
standard ways.

SVM is one the most successful methods in estimating such functions. In order to use SVM,
we need to be able to evaluate the kernel between the inputs. In our case, we need a kernel function
on G × G that returns real values. Once we evaluated such kernels and obtained the kernel matrix
a.k.a. Gram matrix, existing SVM algorithm can be used for classification. Having the kernel
matrix, we can also accomplish many other learning tasks on sets such as clustering using spectral
clustering[122], dimensionality reduction using kernel PCA [147], anomaly detection using one-
class SVM [148], and so on. All of these urge us to find a good kernel matrix for the groups.

5.4 Nonparametric Kernel Estimation
Having two finite i.i.d. sample sets from densities f1 and f2, we need to estimate k(f1, f2), the
kernel value between them. Many kernels, i.e. positive semi-definite (PSD) functionals of f1 and
f2 can be constructed from

Dα,β(f1‖f2) =

∫
fα1 (x) fβ2 (x) f1(x) dx, (5.1)

where α, β ∈ R. For example, we can use Eq. (5.1) to construct Linear
(
k(f1, f2) =

∫
f1f2

)
, poly-

nomial
(
k(f1, q) =

(∫
f1f2 + c

))s), and Gaussian
(
k(f1, f2) = exp(−1

2
µ2(f1, f2)/σ2), µ(f1, f2) =∫

f 2
1 + f 2

2 − 2f1f2

)
kernels.

For the Gaussian kernel, which we primarily use in this chapter, one can also use other “dis-
tances”. For example, we can use the Hellinger distance with µ(f1, f2) = 1 −

∫ √
f1f2. Another

important family of divergences is the Rényi-α divergence, where

µ(f1, f2) =
1

α− 1
log

∫
fα1 f

1−α
2 .

Note that the KL-divergence is a special case of the Rényi divergence when α → 1. These diver-
gences are nonnegative and vanish iff p = q almost surely. Nonetheless, the divergences are usually

89

not symmetric, do not satisfy the triangle inequality, and do not lead to PSD kernel matrices. In
Section 5.5 we will show how to address this problem.

To estimateDα,β(f1‖f2) for some α, β values, we use the tools that have been applied for Rényi
entropy [96], Shannon entropy [61], KL divergence [168], and Rényi divergence estimation [129].
We show how to estimate Dα,β(f1‖f2) in an efficient, nonparametric, and consistent way.

Let G1
.
= {x1, . . . , xN1} be an i.i.d. sample from f1, and similarly let G2

.
= {z1, . . . , zN2} be

an i.i.d. sample from f2. Let ρk(i) denote the Euclidean distance between xi and its kth nearest
neighbor in G1, and similarly let νk(i) denote the distance between xi and its the kth nearest
neighbor in G2. Based on [130], we can use the following estimate

D̂α,β =
Bk,α,β

N1(N1 − 1)αNβ
2

N1∑
i=1

ρ−dαk (i) ν−dβk (i), (5.2)

where Bk,α,β
.
= c̄−α−β Γ(k)2

Γ(k−α)Γ(k−β)
. Under certain conditions, we can prove that D̂α,β is a con-

sistent estimator of Dα,β , and thus by plugging these estimators into kernels we get consistent
estimators for those kernels. It means that the more sample points we have the better the quality of
the kernel estimation is, and eventually it is converging to the correct value.

To compute the estimate (5.2), all we need are the KNN distances ρk(i) and νk(i) for every
point xi in group G1. In low dimensions, nearest neighbors can be found in logarithm time using
tree structures such as the KD-Tree, resulting in a time complexity ofO

(
N̄ log(N̄)

)
for one pair of

groups, where N̄ is around the average size of the groups. In high dimensions, however, efficient
search for neighbors becomes difficult and generally we can only examine the points one by one
using linear time, resulting in a quadratic time complexity O(N̄2). Since we have to compute for
each pair of groups the estimated kernel to use kernel machines, the overall complexity becomes
O(M2N̄2). As a remedy, we can parallelize the computations of different pairs of groups. Another
solution is to use approximate nearest-neighbor search algorithms such as [121]. More discussions
and solutions to the efficiency problem can be found in Chapter 7.

This estimator can also work on groups with different sizes and the consistency result still
holds. However, since larger sample size tends to give more accurate estimate, in theory working
with groups of different sizes might give estimates of different qualities in the same kernel matrix.
Nevertheless, in practice we found this is usually not a problem; We show empirical results in
Section 5.6 on groups of similar sizes as well as groups of very different sizes.

5.5 Constructing Mercer Kernels

Kernels constructed from D̂α,β are not ready to be plugged into kernel machines like SVM. Even
though the estimation is consistent, any particular estimated kernel/Gram matrix might not be
positive semi-definite (PSD), which is required by SVM. There are two reasons for this problem:
1) the divergences themselves might not be Hilbertian metrics which is a necessary condition of
producing PSD kernels [145]; 2) Estimation errors exist given the finite sample size. We therefore
need to transform the raw estimated kernel matrix into a PSD matrix so that the underlying kernel
is a valid Mercer kernel.

90

Here we project the raw kernel matrix to the cone of PSD matrices, and use that projected
image, which is a PSD matrix, as the input to SVM. In other words, we are seeking for the PSD
matrix that can best approximate the raw kernel matrix. To do this, we first symmetrize the esti-
mated kernel matrix by taking half the sum of it and its transpose, and then project it to the cone of
PSD matrices by discarding any negative eigenvalues (i.e. setting them to zeros) from its spectrum
[71].

Rather than projecting the estimated kernel matrix and then solving an SVM, one can actually
combine these two steps into a single convex problem [108]. We do not pursue this approach in
this work, however.

When structures exist in the kernel matrix (e.g. the kernel matrix has a low rank), we can find
better ways to construct PSD/Mercer kernels based on the raw estimations. This direction is further
studied in Chapter 6.

We could also estimate distribution divergences that are Hilbertian metrics, and then use them
to construct kernels. By doing this, we only have to deal with the estimation errors, and may
obtain higher quality kernel matrices. [69, 70] proposed a family of Hilbertian metrics between
probability distributions. These metrics can also be estimated using similar techniques as in (5.2).
The consistency of such a family of estimates is yet to be studied, but several interesting special
cases of this family, notably the Jensen-Shannon divergence, either coincide with the divergences
mentioned in the previous section, or can be derived from (5.2) and [168]. We shall leave this
possibility for the future work.

5.6 Experiments
In this section, we show the empirical performance of the proposed kernels in both simulation
studies and real-world image classification tasks. Code and datasets used here are available at
autonlab.org/autonweb/20680.html.

In all these tasks, the objects of interest are represented as “bags of vectors” (BoV), i.e. un-
ordered sets of feature vectors. The proposed kernel estimators as well as several other kernels
between sets of points are used to calculate kernel matrices for these sets. The full kernel ma-
trices are projected to be symmetric positive semi-definite and given to a multi-class SVM for
classification.

Nonparametric divergence kernels These kernels are based on the proposed nonparametric
Rényi-α divergence estimators (NPR-α) and Hellinger distance estimators (NPH). We use the
k = 5th nearest neighbors in these estimators, except in Section 5.6.1, where small sample sizes
necessitate k = 1. For NPR, we test the performance with α ∈ {0.5, 0.7, 0.9, 0.99}. Note that
when α = 0.99 the Rényi-divergence approximates the KL divergence, and when α = 0.5 it is
twice the Bhattacharyya distance.

Parametric kernels These kernels are based on a Gaussian or Gaussian Mixture Model (GMM)
assumption. We first fit the density to each group, and then compute the KL-divergence (G-KL,

91

autonlab.org/autonweb/20680.html

GMM-KL) [119] and product probability kernels (G-PPK, GMM-PPK) [76] with α = 0.5 be-
tween the groups (therefore they are actually the Bhattacharyya Coefficients between Gaussians).
Tuning the number of GMM components for each group is not feasible, so we always use 3 com-
ponents. GMM-KL has no analytic form, so we use the Monte Carlo approximation with 500
samples.

BoW kernels To convert BoV to BoW, we quantize the feature to “visual words,” and then
compute the histogram of words for each group. The chi-square distance between these BoW
histograms is used to construct the Gaussian kernel. The histograms can be further processed by
PLSA [72] and then used in kernels based on Euclidean distance.

Pyramid matching kernel (PMK) We also use the vocabulary-guided pyramid matching kernel
[64]; this variant performs better for high-dimensional data. We use the authors’ implementation
libpmk1 with the suggested parameters.

Mean map kernel (MMK) We also consider the mean map kernel [155], also known as the mean
match kernel [109] to the computer vision community. The MMK between two groups of vectors
G1 = {x1, . . . , xN1} andG2 = {z1, . . . , zN2} is defined as kMM(G1, G2) = 1

N1N2

∑N1,N2

i=1,j=1 k(xi, zj).
In other words, MMK is the average kernel matching score between every pair of points be-
tween the two groups. We let the point-wise matching kernel be the Gaussian kernel k(x, y) =
exp (−‖x− y‖2

2/σ
2), where the kernel width σ is tuned in the same way as other parameters us-

ing cross-validation. To avoid the high computational cost of MMK (O(N1N2) for each pair of
groups), we randomly choose at most 500 points from each group to compute the MMK, so that
the computation is affordable while the approximation error is small.

We use LibSVM [27]’s multi-class SVM for classification. All kernel matrices are projected
to be symmetric PSD as in Section 5.5 before use. The penalty to points within the margin C is
chosen from {2−9, 2−6, · · · , 218}. For PPK and PMK, we use their kernel values directly. For other
kernels, we use Gaussian kernels exp

(
−1

2
µ2/σ2

)
, where µ is the divergence/distance. The kernel

width σ is chosen from σ0×{2−4, 2−2, · · · , 210}, where σ0 is the mean of the pairwise divergences.
C and (when used) σ are chosen through joint 3-fold cross-validation on the training set.

For the image experiments, we extract features as follows unless indicated otherwise. The BoV
representation we use is based on the dense SIFT descriptors. We put a regular 2D grid with step
size 10 on each image, and compute SIFT descriptors on each grid node. These descriptors are
128-dimensional. In an attempt for scale invariance, we usually compute three SIFT descriptors
with bin sizes of {6, 9, 12} pixels at each point. After the feature extraction, each image is rep-
resented by a variable number of 128-dimensional feature vectors. Following [19], we can also
include color information in the SIFT features by converting the images to HSV color space and
separately extracting SIFT features from each color channel. Then SIFT features with the same
location and bin size are concatenated together to construct the more descriptive “color SIFT” fea-
ture with dimensionality 384. Finally, we use PCA to reduce the feature vectors’ dimensionality.
Our implementation uses the PHOW function of the VLFeat package [164] for feature extraction.

1people.csail.mit.edu/jjl/libpmk

92

people.csail.mit.edu/jjl/libpmk

−2 −1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

Figure 5.1: Densities of the two one-dimensional mixtures.

For BoW, these SIFT vectors are quantized by k-means into visual words, for which the vo-
cabulary size (number of clusters) is 1000 for color images and 500 for grayscale images. The
number of PLSA topics is 25, as in [19]. Following common practice in computer vision, the vi-
sual words are based on the original (uncompressed) feature vectors. Therefore the BoW methods
do not compare to BoV kernels directly, as they are based on different features. In comparison,
BoW loses information in the discretization step, while BoV kernels lose information when the
feature dimension is reduced. We will show that our non-parametric kernels outperform BoW in
most cases, perhaps indicating that less information is lost in PCA than in quantization.

We report kernel matrix construction times using 40 cores of a machine with four 12-core
2.3 GHz Opteron K10.5 processors. In this high-dimensional setting, k-d trees are ineffective, so
we use simple brute-force search. Established techniques for approximate KNN should result in
significant speedups with limited loss of performance. In each case, we estimated divergences for
the Hellinger distance and Rényi-α divergence with 20 values of α: -1, -.5, -.2, .1, .2, .3, . . . , .9,
.99, 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, and 2.

5.6.1 Artificial Gaussian Mixture Classification

We first compare the proposed kernels to others on artificial problems, to demonstrate two ad-
vantages of our kernel: its relatively few parameters requiring fine-tuning and its effectiveness in
high-dimensional problems.

Consider the problem of distinguishing between the two Gaussian mixtures illustrated in Fig-
ure 5.1. The two mixtures each have a standard normal distribution with mixture coefficient 10

11
; the

two classes are distinguished by the variance of the other component, which can be either .005 or
.0005. Our task is to learn a classifier which can distinguish samples of size 30 from these two mix-
tures. (Although most feature sets will have substantially more than 30 data points for a real-world
image, having a low number of sample points parallels having a moderate number of sample points
in a high-dimensional space.) Note that this problem is quite difficult, as the expected number of
samples from the distinguishing mixture is below 3.

Figure 5.2 shows accuracies from 8 runs of 10-fold cross-validation accuracies for several ker-

93

BoW
-2

5

BoW
-5

0

BoW
-1

00

BoW
-2

50

BoW
-5

00

BoW
-7

50

GM
M
-K

L

GM
M
-P

PK NPH

NPR
-.9

9

0.50

0.55

0.60

0.65

0.70

Figure 5.2: 1D mixture classification accuracies.

nels on a data set consisting of 200 samples from each mixture. The BoW method with codebook
size K is denoted by BoW-K. The classification performance obtained by the Bayes-optimal clas-
sifier that chooses which mixture had a higher likelihood of generating the sample is 75%. The
BoW kernel performs at its best only for codebook size 50; smaller and larger sizes both perform
worse, some of them considerably so. In contrast, the proposed NPR and NPH methods perfor-
m well with minimal parameter selection, though it seems the Rényi divergence is better for this
problem than the Hellinger.

We also show that our proposed kernel is capable of scaling up to higher-dimensional problems
with small sample sets. This problem is similar, but the samples are of size 15 in RD. The common
Gaussian has diagonal components 1 and off-diagonal components 0.2, while the distinguishing
Gaussian has covariance matrix equal to either Id or Id/2, where Id stands for the d-dimensional
identity matrix. Each component has mean zero and mixture coefficient 1/2. The distributions are
more distinguishable in higher dimensions, as the components overlap less.

The results of 16 runs of 10-fold cross-validation for several kernels, as well as that of the
Bayes-optimal classifier, are shown in Figure 5.3. The proposed NPR method outperformed its
competitors in this experiment, and indeed achieved near-optimal results for all ds. BoW − 500
is the only BoW method shown, but other codebook sizes performed similarly. The dimensional-
ity at which performance peaked varied with the codebook size, so that e.g. BoW-100 peaked at
dimension 8, and BoW-1000 at 14.

5.6.2 Object Classification

In the following sections we compare the performances of various kernels on real-world image
datasets. We first examine object classification in the ETH-80 [95] data set. This data set contains
8 categories of objects; each category has 10 different objects, and each object has 41 images
from different view angles. Following [63], we use a subset of 400 images for the experiment,
selecting 5 images per object that capture its appearance from different angles. Sample images of
two objects are shown in Figure 5.4. Our goal is to classify these objects into the 8 categories.

For this data set, we extract the color SIFT features with bin size fixed at 6 pixels, as scale
invariance is not necessary for this problem. We then reduce the SIFT features to 18 dimensions

94

0 2 4 6 8 10 12 14 16
Dimension

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

Bayes Optimal
GMM-PPK
NPR-.99
GMM-KL
NPH
BoW-500

Figure 5.3: Mean and standard deviation accuracies on the high-dimensional artificial data set.

using PCA, preserving 50% of variance. Each image is then represented by 576 18-dimensional
points. Constructing our proposed kernels took 47 seconds.

We report the performance of 16 random runs of 2-fold cross-validation in Figure 5.5. We
can see that our Rényi-divergence kernels perform better than BoW, and much better than the
other methods. We note that BoW achieved impressive results only when properly tuned, as in
the simulation study of Section 5.6.1. The improvement of NPR-0.9 (mean accuracy 90.9%) over
BoW (88.3%) is statistically significant: a paired t-test shows a p-value below 10−3. It is also
interesting to see that GMM-based methods perform worse than simple Gaussian-based methods.
This may be because it is harder to choose the parameters of a GMM, or because divergences
between GMMs could not be obtained precisely; both of those problems are infeasible to remedy.
PMK is not very accurate here, though fast to compute.

Figure 5.6 shows the performance of the Rényi-α kernel for many values of α, along with
the Hellinger performance for context. The best α values are clearly near 1, i.e. near the KL
divergence, though performance seems to degrade faster when greater than 1 than when below.

5.6.3 Scene Classification

Scene classification using BoV/BoW representations is a well-studied problem for which many
methods have been proposed (e.g. [19, 50, 135]). Here we test the performance of our non-
parametric kernels against state-of-the-art methods.

We use the OT data set from [126], which contains 8 outdoor scene categories: coast, forest,

95

Figure 5.4: Images of two objects from the ETH-80 data set. Each object has 5 different views.

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

B
oW

P
LS

A

G
−

K
L

G
−

P
P

K

G
M

M
−

K
L

P
M

K

M
M

K

N
P

H

N
P

R
−

0.
5

N
P

R
−

0.
7

N
P

R
−

0.
9

N
P

R
−

0.
99

A
cc

ur
ac

y

Figure 5.5: Classification accuracies on ETH-80.

highway, inside city, mountain, open country, street, and tall building. There are 2688 images in
total, each about 256× 256 pixels. Sample images are shown in Figure 5.7. The goal is to classify
test images into one of the 8 categories.

We used the color SIFT features, and also append the relative y location of each patch (0
meaning the top of the image and 1 the bottom) onto the local feature vectors, allowing the use
of some information about objects locations in the images in classification. (We chose not to
include x coordinates, because horizontal locations of objects generally carry little information in
these scene images). We used bin sizes of {6, 12, 18, 24, 30}. The larger patches are used so that
more global information, such as the co-occurrences of local objects, can be captured. Using the
above features, a typical image contains 1, 815 SIFT vectors, each of dimensionality 384; these
are reduced by PCA to 53 dimensions preserving 70% of the variance, and then y coordinates are
appended. Each dimension of the feature vectors was finally normalized to have zero mean and
unit variance. Computing the nonparametric kernels on these larger, higher-dimensional points
took 283, 599 seconds (about 3 days).

The accuracies of 16 random runs are shown in Figure 5.8. Here results of 10-fold cross-
validations are used so that we can directly compare to other published results. GMM-PPK is not
shown because it is too low. NPR-0.99 achieved the best average accuracy of 92.11%, which is

96

0.6

0.65

0.7

0.75

0.8

0.85

0.9

B
oW

−
1

−
0.

5

−
0.

2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
99

1.
01

1.
1

1.
2

1.
3

1.
4

1.
5

2

A
cc

ur
ac

y

Figure 5.6: Classification accuracies on ETH-80 with Rényi-α for twenty α’s, as well as the
Hellinger distance.

much better than BOW’s 90.26%. Notably, this 92.11% accuracy (std dev 0.18%) surpasses the best
previous result of which we are aware, 91.57% [48]. For comparison, in 2-fold cross-validations
the mean accuracies of NPR-0.99 and BOW are 90.85% and 88.21% respectively.

5.6.4 Sport Event Classification
The BoV kernels can also be used for visual event classification [100] in the same manner as for
scene classification. We use the data set from [100], which contains Internet images of 8 sport event
categories: badminton, bocce, croquet, polo, rock climbing, rowing, sailing, and snowboarding.
This data set is considered more difficult than traditional scene classification, as it involves much
more widely varying foreground activity than does e.g. the OT data set.

We use the first 130 images from each category, as in [100]. We use color SIFT features
with dimensionality reduced to 57, and add spatial information in the form the patches’ x and y
coordinates. As image sizes vary, each BoV group contains 295 to 1, 542 vectors. Constructing
our proposed kernels took 9, 327 seconds (2.5 hours).

Figure 5.10 shows the accuracies of 16 random 2-fold cross-validations. We again see the
kernel based on the Rényi-.9 divergence achieve the best accuracy of 87.1% (std dev .4%). This
performance is at the same level as state-of-the-art methods such as [181], which attained 86.7%.
It is worth noting that we used only PCA SIFT without further feature learning, as opposed to
other methods which achieved significant performance increases by learning features. Compared
to previous results, we can see that the performance of PPK methods decreased; we did not show
GMM-PPK here because its accuracy is too low. The BoW method, though worse than Rényi-.9
with 83.5%, again performs reasonably well, showing its wide applicability.

Another interesting observation based on all the above results is that the nonparametric esti-
mates of the Rényi divergences usually perform the best when α is close to 1 i.e. when it is close to
the KL divergence. This can be viewed as an empirical support for the theoretical soundness of the
KL divergences. On the other hand, in many cases the optimal α is usually slightly smaller than 1,

97

Figure 5.7: Images from the 8 OT scene categories: coast, forest, highway, inside city, mountain,
open country, street, tall building.

showing that flexibility of the Rényi divergence can be rewarding.

5.7 Summary
In this work we proposed a novel discriminative method for set and distribution classification. We
defined new kernels on sets of vectors and used consistent nonparametric divergence estimators
for estimating the kernel values. Our goal was not to introduce new features; instead we were
interested in improving the performance of bag of vectors image representations through better
dissimilarity measures.

Parametric methods for divergence estimation are usually biased, since the true distributions
may not belong to assumed parametric families. Our nonparametric divergence estimator, however,
is asymptotically unbiased. It is also easy to compute, requiring only certain k-NN distances.

For bag-of-words methods, setting the appropriate codebook size is a difficult model selection
problem. It is similarly unknown how to choose the bin sizes for histogram-based methods. Our
algorithm has comparably fewer parameters to tune, and avoids the inherent approximations of
histograms, quantization, and clustering, which can lead to loss of information and decreased
performance.

In our experiments, we demonstrated that the proposed method can outperform its state-of-the-
art competitors on several challenging datasets, both artificial and real.

98

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

B
oW

P
LS

A

G
−

K
L

G
−

P
P

K

G
M

M
−

K
L

P
M

K

M
M

K

N
P

H

N
P

R
−

0.
5

N
P

R
−

0.
7

N
P

R
−

0.
9

N
P

R
−

0.
99

A
cc

ur
ac

y

Figure 5.8: Accuracies on the OT data set. The horizontal line shows the best previously reported
result.

Figure 5.9: Images from the 8 sports.

0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

B
oW

P
LS

A

G
−

K
L

G
−

P
P

K

G
M

M
−

K
L

P
M

K

M
M

K

N
P

H

N
P

R
−

0.
5

N
P

R
−

0.
7

N
P

R
−

0.
9

N
P

R
−

0.
99

A
cc

ur
ac

y

Figure 5.10: Accuracies on the Sport data set. The horizontal line shows the best previously
reported result.

99

Chapter 6

Low-Rank Constructions of Mercer Kernels

In this chapter we describe more ways of constructing Mercer kernels based on estimated set
kernels. Unlike the approach used in Chapter 5 which simply seeks best approximations, methods
in this Chapter further exploit the low-rank structures that might exist in the divergence/kernel
matrices. By using these structures, we are able to construct higher-quality kernel matrices, make
the subsequent SVM training faster, cope with missing/unreliable kernel values, and make the
computation faster.

6.1 Introduction
Many learning algorithms for collective data is based on pairwise similarities between groups. The
advantage of this approach is evident: once we have the similarities, many excellent off-the-shelf
algorithms such as the k-nearest-neighbors, SVM, spectral clustering, and so on can be used to
accomplish various learning tasks. In this chapter, we focus on the kernel methods.

In Chapter 5, we described a large class of divergences that can be used to measure the dis-
similarity between groups of points. Traditional set distances such as the Hausdorff distance can
also be used for learning purposes. For a brief survey refer to Section 5.2. One shortcoming for
many of these divergences is that they do not behave like Euclidean distances; they do not satisfy
the triangle inequality, and they even do not provide symmetry. Moreover, these similarities might
have been estimated as in Chapter 5, and thus are mixed with estimation errors. Consequently,
the kernels (most commonly Gaussian kernels) based on these divergences are not valid Mercer
kernels, and thus cannot be directly applied in many kernel methods such as the SVM.

To address this problem, we take the approach of replacing the raw kernel matrix construct-
ed from the divergences by a refined kernel matrix that is positive semi-definite (PSD) and thus
corresponding to a valid Mercer kernel. Chapter 5 did this by using the PSD projection method,
in which the refined kernel matrix is the best L2 approximation to the raw kernel matrix. That
method is purely based on numerical approximation. In the following, we shall show that when
structures exist in the kernel matrix, more effective methods can be used to construct the refined
kernel matrix.

The structure we exploit in this Chapter is that the kernel matrices are often approximately

100

low-rank. A low-rank matrix can be reconstructed by the linear combination of a few row/column
basis vectors. Another useful interpretation is that the objects can be embedded as points in some
low-dimensional Hilbert space, so that the inner-products between the points equals the kernels
between the objects. In machine learning, the low-rank structure of kernel matrices has been used
to accelerate the training of SVM, or enhance the kernels’ discriminative power when combined
with supervision. In our work, we use the low-rank technique to construct valid kernels from
raw estimations. With a low-rank, the refined matrix can be more robust against errors in the raw
matrix, and make the subsequent SVM training more efficient.

In addition to construct the refined kernel matrices directly, we can also construct refined di-
vergence matrices that will lead to valid kernel matrices when converted to the Gaussian kernels.
Again this can be achieved by embedding the objects into some low-dimensional Euclidean space,
so that the distances between the points are close to the divergences between the objects.

The low-rank methods are also useful in dealing with missing data and accelerating the com-
putations. In low-rank methods, the degrees-of-freedom in the matrices are limited, and thus the
entries become redundant and the missing ones can be inferred based on the observed ones. This
method can also be used to speed up the computation of kernel matrices for collective data; in-
stead of computing the kernel between every pair of groups, we can skip some pairs and still get a
high-quality kernel matrix.

In the experiments, we examined the performance of the refined kernels constructed from the
raw kernel and the raw divergence matrices on image classification tasks. They may both provide
superior results than the PSD projection method in Chapter 5 depending on the data. We also
tested their effectiveness in the presence of missing entries in the kernel/divergence matrices, and
find that the kernel matrix based method can achieve good classification accuracies using a small
number of kernel evaluations.

The rest of this chapter is organized as follows. Related work on described in Section 6.2. In
Section 6.3 we describe how to complete a kernel matrix, and Section 6.4 shows how to complete
a divergence matrix. In Section 6.6 we examine the performances of different approaches, and
finally we make our conclusion in Section 6.7.

6.2 Related Work
The low-rank structure of kernel matrices has been frequently assumed and used in machine learn-
ing. A number of papers have used low-rank approximations of the kernel matrix to accelerate the
training of SVM. [51] described how to train SVMs efficient when given low-rank kernel matrices.
[47] proposed and analyzed sampling based method that can construct low-rank approximation-
s efficiently. [87] proposed an alternative way to optimize low-rank approximations efficiently.
These methods operate on valid kernel matrices already and the goal was to accelerate the training
of SVMs. On the other hand we are constructing kernels from noisy non-PSD matrices. But indeed
common techniques can be used, and the low-rank matrices we construct can also be used to train
SVMs efficiently.

Other works were also proposed to learn the low-rank kernel matrix using heuristics or super-
vised information enhance the kernels. [169] learns a PSD matrix under neighborhood constraints

101

while maximizing the embedding’s variance. By doing this, the data can be “spreaded out” to
create clear visualizations. [7] incorporated class labels to increase the discriminative power of the
kernels. These enhancements can also be used for our purposes of constructing valid kernels.

The classical technique of creating Euclidean embeddings based on given distances is the met-
ric multidimensional scaling (MDS) [35]. MDS has been studied for decades and many variations
has been created to deal with different problems. The method we use in this chapter is based on
metric MDS, and specifically tuned for the divergences proposed in Chapter 5. The effectiveness
of different settings are also empirically evaluated.

Several papers have been proposed to learn the kernel matrices given missing data. [62] used
semi-definite programming (SDP) to learn the complete PSD matrix based on partially observed
kernel matrix, and [4] used an alternative constrained optimization to obtain sparse PSD matrices.
Both methods can not handle noisy and non-PSD raw matrices, which are what we are facing in
this chapter. [1] described a way to ignore some entries in the kernel matrix, but their method need
to know the full kernel matrix beforehand.

6.3 Constructing Low-Rank Kernels

First we define our problem. Suppose that we have observed a kernel matrix K ∈ RM×M , where
each entry kij = k(Gi, Gj) is the kernel value for the (i, j)th pair of groups. We mainly consider
the kernels constructed from estimated divergences defined in Section 5.4, but the techniques below
are applicable to general kernel matrices. This raw kernel matrix K might have been derived from
non-metric divergences, and the kernel values might be inaccurate due to estimation errors. As a
result, K is not PSD and hence not a valid Mercer kernel to be used in kernel machines. Our goal
is to find a refined kernel matrix K̃ ∈ RM×M so that K̃ is close to K and is PSD.

By definition, K̃ is PSD iff it can be decomposed as K̃ = UUT ,U ∈ Rl×M , where U is the
factor matrix and l is the rank of K̃. A brief introduction of matrix factorizations can be find in
Section 3.1.1. The columns of U, which are denoted as {ui}i=1,...,M , can be interpreted as points
in a l-dimensional space, where the points are the embeddings of the groups. The inner-product
between two points equals their corresponding groups’ kernel value as uTi uj = k(Gi, Gj).

A good K̃ should be close to K, so we want to minimize the element-wise difference between
K̃ and K. To cope with missing or unreliable entries, we further weigh the errors on different
entries differently by a weight matrix W = {wij}i,j=1,...,M ∈ RM×M . To reduce the degrees-of-

freedom, we constrain the rank l of K̃, as well as minimize the norm of U. All these terms can be
summarized by the following optimization problem which we call the low-rank kernel construction
(LRKC) problem:

U = arg max
U∈Rl×M

∑
i,j

wij
(
uTi uj −Kij

)2
+ λ‖U‖2

F (6.1)

where ‖·‖F is the Frobenius norm, λ is the penalty on the norm of U, and U is the factor matrix for
K̃. The weight matrix W controls the importance of the entries in K. Entries with zero weight are
ignored in the optimization and are thus regarded as missing. This problem can easily be solved

102

by local descend algorithms such as gradient descend and L-BFGS. Upon convergence, the refined
kernel matrix can be obtained by K̃ = UTU.

We choose to minimize ‖U‖2
F because it equals the nuclear norm of X̃ (the sum of singular

values of X) , which is a good surrogate of the its rank [138]. Therefore, we can gain more control
over K̃’s complexity by penalizing ‖U‖2

F . Usually, we let the rank l be a relatively large value and
control the complexity of K̃ by varying λ.

6.4 Constructing Low-Rank Divergences
The refined kernel matrices are based on the raw kernel matrices, which are derived from diver-
gences. Therefore, once the kernel parameters (e.g. the width of the Gaussian kernel) change, we
have to refine the kernel matrix again. This problem can be solved by constructing low-rank dis-
tance matrices instead. In addition, refined distances behave different from refined kernels, and
may lead to better learning performances.

Formally, given a raw divergence matrix D ∈ RM×M for M groups, we want to find a refined
distance matrix D̃ ∈ RM×M , so that D̃ can lead to a PSD Gaussian kernel matrix. The following
Lemma 1 reveals a way of satisfying this requirement. That is, any distance function that leads to
PSD Gaussian kernels can be realized in some real Hilbert space. Another way of arriving at this
is that, since the a distance d is conditional negative definite (CND) iff e−λd, λ > 0 is PSD [146],
and any non-negative symmetric CND matrix with a zero diagonal must be a squared Euclidean
distance matrix [145], therefore e−λd, λ > 0 is PSD iff d is a Euclidean distance. In short, the
refined distance matrix D̃ should be a Euclidean distance matrix.
Lemma 1 (Embeddability and PSD Functions [145]). A necessary and sufficient condition that
a separable space with a distance function that is non-negative, symmetric, and discernible, be
isometrically embeddable in the real Hilbert space, is that the family of functions e−λt

2
, λ > 0 be

positive definite, where t corresponds to the distances.
Meanwhile, the rank of the Euclidean distance matrix is constrained by Lemma 2. It shows that

to find a low-rank Euclidean distance matrix D̃ we only need to find a low-dimensional embedding
of the groups.
Lemma 2 (Rank of the Euclidean Distance Matrix [46]). Let D be a squared Euclidean distance
matrix for l-dimensional points. Then the rank of D is at most l + 2.

The above reasonings lead us to a formulation of finding low-rank distance matrices that is sim-
ilar to finding low-rank kernel matrices in the previous section. Concretely, we seek for U ∈ Rl×M

the low-dimensional embedding of the groups via the following low-rank distance construction
(LRDC) problem

U = arg max
U∈Rl×M

∑
ij

wij
(
Dr
ij − ‖ui − uj‖r2

)2
. (6.2)

Similar to finding low-rank kernel matrices, the weight matrix W = {wij}i,j=1,...,M gives the
importance/presence of the entries, and ui the ith column of U is the embedding of the ith group.
Again, this problem can be solved by gradient descend algorithms. Once having the embedding
U, we can calculate the refined distance matrix D̃ that gives a PSD kernel matrix.

103

Note the presence of the power parameter r, which transforms the elements of the matrices be-
fore computing their differences. This is important because Euclidean distances and the divergence
estimates may behave very differently (e.g. the KL-divergence can go to infinity easily; in practice
we found that the estimators in Chapter 5 tend to underestimate large divergences), and it may
be difficult to match them directly even when using high-dimensional embeddings. Intuitively, a
small r < 1 emphasizes the approximation for small divergences, while a large r > 1 emphasizes
large divergences.

Problem (6.2) essentially solves the metric multidimensional scaling (MDS) [35] problem.
Indeed, if r = 1 then (6.2) is MDS with the stress objective, and if r = 2 it is MDS with the
s-stress objective. It is interesting to note that we arrive at MDS from the initial motivation of
finding a low-rank divergence matrix that leads to PSD Gaussian kernels. Compared to traditional
MDS, our formulation uses the parameter r to accommodate different divergences.

6.5 Discussion
Section 6.3 and 6.4 described ways of finding low-rank kernel and distance matrices as the refine-
ment of the raw kernel and divergence matrices. These refined matrices will given us PSD kernel
matrices that can be used in various kernel machines.

Both problems (6.1) and (6.2) are non-convex and local minima might exist. Therefore, finding
a good starting point is important. For the kernel matrix construction problem (6.1), note that when
W = 1, λ = 0 the global optimum can be obtained by either SVD or eigen-decompositions. In
this work we shall use this particular solution to initialize the optimization. For the distance matrix
construction problem (6.2), we can use the solutions of the classical MDS, which also admits
global optima, as the initializations.

Missing entries can easily be handled by setting the corresponding entries in the weight matrix
W to zero. By doing this, the missing entries will be effectively ignored in the objective function
and the embedding U is derived only based on the observed entries. When initializing the opti-
mization using eigen-decomposition or classical MDS, we set the missing entries to the average
kernel/divergence value.

The ability to cope with missing entries provides us with a way of speed up the construction of
the kernel matrix. Even though the divergence computation only needs KNN statistics, comparing
two groups is still slow relative to comparing two vectors. Instead of computing every entry in the
divergence matrix, we can intentionally skip some of them and let the low-rank construction infer
them. This is possible because the low-rank-ness greatly reduces the degrees-of-freedom in the
divergence/kernel matrices, hence the information carried by the entries become redundant and we
can impute the missing entries. The nature of this imputation is the same as that of Chapter 2.

We can use different ways to determine the suitable rank l in order to balance the approximation
accuracy and the ability to filter out the noisy and infer the missing entries. For the kernel matrix,
we can directly use the number of dominant eigenvalues to guess the rank as in PCA, while using λ
to further control the model complexity. As for the divergence matrix, according to Lemma 2, we
can look at the singular values of D2 to determine a sensible rank. The above indications can be
used as guidelines to guess the rank of the refined matrices, but in general cross-validation should

104

be used to determine the best choice of parameters.

6.6 Experiments
In this section, we shall evaluate the empirical performances of the refined kernel matrices con-
structed by the low-rank methods. First we use synthetic data sets to demonstrate them, and then
test their effectiveness in image classification tasks.

6.6.1 Synthetic Data
We synthesize a toy data set using the following steps. We randomly choose M = 100 points in
the 2D space half from the Gaussian distribution N (−3, 1) and half from N (3, 1), and use them
calculate the groundtruth distance matrix D∗ and kernel matrix K∗ = exp

(
−D∗2

2σ2

)
where σ is

the kernel width. Then we impose independent Gaussian noise on the entries of D∗ to get the
noisy raw distance matrix D as Dij = D∗ij + βN (0, D∗2ij) where β controls the noise level. We
let the noise level increase as the distance become larger in order to emulate the behavior of the
divergence estimators. The raw kernel matrix hence is K = exp

(
−D2

2σ2

)
. β = 0.3, σ = 2 is used.

Note that the noise level is very high here, and the noise can make D asymmetric.
Our goal is to obtain refined kernel matrix K̃ from the noisy observation D and K, so that K̃

is close to the groundtruth K∗. We do this in two ways: 1) get refined distance matrix D̃ from
D using LRDC (6.1), and then derive K̃ from D̃; 2) directly get refined K̃ from K using LRKC
(6.2). For LRDC, we set the rank l = 2. For LRKC, we use the rank that preserves 95% data
variance using SVD (usually l = 9), and set the penalty λ = 0. All the weights are set to one.
Different settings of the divergence transformation r are tested. To measure the quality of recovery,
we compute the element-wise correlation between K̃ and K∗ since scaling the kernel matrix will
not affect learning.

The result of 20 random runs are shown in Figure 6.1. We can see that the quality of the
recoveries are very high, with correlations above 0.99. Examples of the matrices are shown in
Figure 6.2. For LRDC, we include the results of different r values to show the importance of
transforming the divergences. Indeed, r being to small or too large will produce bad results. The
optimal range for r seems to be within [0.2, 1], with a weak peak at r = 0.7. We can also see that
the results LRDC can outperform the results of LRKC given proper r values.

Next, we test how the methods perform given missing entries. We randomly pick a portion p of
entries (diagonal entries are always picked to help bound the LRKC problem) in the weight matrix
and set the rest to zero. Then we do the same test as above. Figure 6.3a and 6.3b show the results
of picking p = 50% and p = 20% entries. We can see that both methods still produce satisfactory
results even if a majority of the data are missing. We observe that in this test the LRDC results are
significantly better than the LRKC results. The reason might be that the Gaussian kernel matrix
are inherently full rank, and with the presence missing entries it becomes more difficult to guess a
good rank for LRKC. On the other hand, we know that the optimal rank for the distance matrix is
2. It should also be noted that better result might be available if we tune the λ parameter for LRKC.

105

10
−2

10
−1

10
0

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

r for LRDC

C
or

re
la

tio
n

w
ith

 T
ru

th

LRDC−D
LRDC−K
LRKC−K
K
D

Figure 6.1: Recovery performances on the toy data set. LRDC-D and LRDC-K are for the distance
matrix and the kernel matrix obtained by LRDC respectively. LRKC-K is for the kernel matrix ob-
tained by LRKC. The X axis shows different values of the parameter r in LRDC. The correlations
of the raw distance matrix D and kernel matrix K are also shown.

The optimal r values for these two cases are 0.5 and 0.4 respectively, showing a very consistent
behavior.

6.6.2 Image Classification

In this section, we test the refined kernels’ performances in real-world image classification tasks.
The data and the setup of experiments here are the same as in Section 5.6, therefore we omit the
details here. Instead of using the PSD projection method to get the valid PSD kernels as in Section
5.5, we use LRDC and LRKC to accomplish the same task.

Since the number of possible settings is too large (e.g. divergence types, divergence estima-
tors, kernel width, rank of the refined matrices, and so on), we shall use heuristics and limit our
attention to the most interesting ones. We only use the raw estimated KL-divergences and the re-
sulting Gaussian kernels given in Chapter 5 since it is the most common choice and often leads to
near-optimal results. For LRKC, we avoid using cross-validation to select the kernel width, which
is computationally demanding, by heuristically setting the kernel width to 2σ0, where σ0 is the
average divergence from a group to its 3rd nearest neighbor group. In these data sets, finding a
good guess of the rank l becomes increasingly difficult because the spectra of the matrices become
highly concentrated. Instead, we found that l = 100 works well for smaller data sets with less
than M = 1, 000 groups, and the l = 150 works well for larger data sets. To generate incom-
plete divergence/kernel matrices, we randomly mark 50% of their entries as missing and set the
corresponding weights to zero.

In each run, we use half of the groups for training and the other half for testing. SVM parame-

106

D
⋆

D D̂

K
⋆

K K̂ from LRDC K̂ from LRKC

Figure 6.2: Example results from LRKC and LRDC. K? and D? are the groundtruths. K and D
are the noisy observations. K̂ and D̂ are the low-rank results produced by LRKC and LRDC.

ters (the slack penalty C and the kernel width σ when the input is a distance matrix) are tuned by
3-fold cross-validation on the training set. We report the results of LRKC with different λ’s and
LRDC with different r’s. Accuracies from 10 random runs are reported. In the figures, the method
label “D” denotes the results from the PSD projection method which is used as our baseline, and
method labels with a “-I” postfix means incomplete data.

ETH-80 First, we report the results on the ETH-80 [95] object recognition data set. The results
with both full and incomplete divergences/kernels are shown in Figure 6.4. We can see that LRKC
causes a slight degradation to the accuracies, while LRDC is able to slightly outperform the base-
line using much less degrees-of-freedom. On the other hand, LRKC is more robust against missing
entries, showing a decrease of only about 2% to the accuracy. The sensitivities to the parameters
are generally small. LRKC prefers a smaller λ while the performance of LRDC slightly peaks
around r = 0.8.

Sports Results on the Sports scene [100] data set are shown in Figure 6.5. On this more complex
data set, the low-rank methods LRKC and LRDC can both outperform the baseline. The optimal
performance of LRDC is achieved with around r = 0.5 or r = 2. Notably, the incomplete LRKC
method achieved the same performance as the baseline method using only half of the entries,
and is again only 2% worse than itself with full data. The incomplete LRDC, however, failed to
maintain its effectiveness facing missing entries. Observe that on the data set the performance of
the incomplete LRKC is sensitive to the parameter λ, meaning that its ability to cope with missing
entries depends on a proper model complexity.

107

10
−2

10
−1

10
0

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

r for LRDC

C
or

re
la

tio
n

w
ith

 T
ru

th

LRDC−D
LRDC−K
LRKC−K
K
D

(a) Observe 50% entries.

10
−2

10
−1

10
0

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

r for LRDC

C
or

re
la

tio
n

w
ith

 T
ru

th

LRDC−D
LRDC−K
LRKC−K
K
D

(b) Observe 20% entries.

Figure 6.3: Recovery performances on the toy data set with missing data. LRDC-D and LRDC-
K are for the distance matrix and the kernel matrix obtained by LRDC respectively. LRKC-K is
for the kernel matrix obtained by LRKC. The X axis shows different values of the parameter r in
LRDC. The correlations of the raw distance matrix D and kernel matrix K are also shown.

OT Finally, results on the OT [126] data set, which contains natural scene images, are shown
in Figure 6.6. Again, we see that LRDC is able to significantly outperform the baseline, and
incomplete LRKC achieved high accuracies that are less than 1% worse than the baseline. The
optimal performance of LRDC is achieved with around r = 0.5 and r = 2.

Based on the above results, we conclude that LRDC can achieve better performance than L-
RKC and the PSD projection method on the full matrices given suitable parameters. On the other
hand, the incomplete LRKC is robust against missing values, usually being able to save half of
the computation while only losing 2% accuracy. LRKC usually performs similarly as the PSD
projection on full matrices, and LRDC can have difficulties handling missing data.

6.7 Summary

In this chapter we investigated more ways of constructing Mercer kernels based on the kernels esti-
mators in Chapter 5. Exploiting the low-rank structures of the raw kernel and divergence matrices,
we are able to derive better kernels for kernel machines.

Both kernel-based and divergence-based approaches are proposed based on the low-dimensional
embedding of the groups. The performances vary depending on the specific data set, but in gen-
eral both can produce better results than the PSD projection method in Chapter 5, thanks to their
robustness against errors and the discrepancy between the PSD kernels and the divergences.

We also tested the performance of using the methods to speed up the learning by skipping
divergence computations. We found that the kernel-based approach is very robust against missing

108

0.82

0.84

0.86

0.88

0.9

0.92

0.94

D LR
K

C
 L

am
=

0

LR
K

C
 L

am
=

0.
23

LR
K

C
 L

am
=

0.
27

LR
K

C
 L

am
=

0.
32

LR
K

C
 L

am
=

0.
5

LR
K

C
−

I L
am

=
0.

05

LR
K

C
−

I L
am

=
0.

09

LR
K

C
−

I L
am

=
0.

14

LR
K

C
−

I L
am

=
0.

18

LR
K

C
−

I L
am

=
0.

32

LR
K

C
−

I L
am

=
0.

5

LR
D

C
 r

=
0.

4

LR
D

C
 r

=
0.

6

LR
D

C
 r

=
0.

8

LR
D

C
 r

=
1

LR
D

C
 r

=
1.

5

LR
D

C
 r

=
2

LR
D

C
 r

=
4

LR
D

C
−

I r
=

0.
8

LR
D

C
−

I r
=

1

LR
D

C
−

I r
=

1.
5

LR
D

C
−

I r
=

2

LR
D

C
−

I r
=

4

Figure 6.4: Classification accuracy on the ETH-80 data set. D is the baseline (green dashed line)
using PSD projection. The “-I” postfix means incomplete data. LRKC with different λ’s and
LRDC with different r’s are shown.

kernel values, so that we can skip a large portion of the kernel computations while preserving
the learning performances. Meanwhile, the divergence based approach is less effective in this
case. Another interesting direction to explore is that we can borrow the ideas of active learning
and purposefully choose which kernel values to observe, so that we can recover a good low-rank
kernel matrix using as less observations as possible.

109

0.6

0.65

0.7

0.75

0.8

0.85

D LR
K

C
 L

am
=

0

LR
K

C
 L

am
=

0.
1

LR
K

C
 L

am
=

0.
18

LR
K

C
 L

am
=

0.
27

LR
K

C
 L

am
=

0.
5

LR
K

C
−

I L
am

=
0.

05

LR
K

C
−

I L
am

=
0.

09

LR
K

C
−

I L
am

=
0.

14

LR
K

C
−

I L
am

=
0.

18

LR
K

C
−

I L
am

=
0.

32

LR
K

C
−

I L
am

=
0.

5

LR
D

C
 r

=
0.

2

LR
D

C
 r

=
0.

4

LR
D

C
 r

=
0.

6

LR
D

C
 r

=
0.

8

LR
D

C
 r

=
1

LR
D

C
 r

=
2

LR
D

C
 r

=
4

LR
D

C
−

I r
=

0.
2

LR
D

C
−

I r
=

0.
4

LR
D

C
−

I r
=

0.
6

LR
D

C
−

I r
=

0.
8

LR
D

C
−

I r
=

1

Figure 6.5: Classification accuracy on the Sports data set.

0.86

0.87

0.88

0.89

0.9

0.91

D LR
K

C
 L

am
=

0

LR
K

C
 L

am
=

0.
1

LR
K

C
 L

am
=

0.
18

LR
K

C
 L

am
=

0.
27

LR
K

C
 L

am
=

0.
5

LR
K

C
−

I L
am

=
0.

05

LR
K

C
−

I L
am

=
0.

09

LR
K

C
−

I L
am

=
0.

14

LR
K

C
−

I L
am

=
0.

18

LR
K

C
−

I L
am

=
0.

32

LR
K

C
−

I L
am

=
0.

5

LR
D

C
 r

=
0.

2

LR
D

C
 r

=
0.

6

LR
D

C
 r

=
1

LR
D

C
 r

=
1.

5

LR
D

C
 r

=
2

LR
D

C
 r

=
3

LR
D

C
 r

=
4

LR
D

C
−

I r
=

0.
6

LR
D

C
−

I r
=

0.
8

LR
D

C
−

I r
=

1

LR
D

C
−

I r
=

1.
5

LR
D

C
−

I r
=

2

Figure 6.6: Classification accuracy on the OT data set. D is the baseline (green dashed line) using
PSD projection. The “-I” postfix means incomplete data. LRKC with different λ’s and LRDC with
different r’s are shown.

110

Chapter 7

Accelerated Learning by Condensing

In addition to methods proposed in this thesis, recently several other algorithms have been proposed
to learn from data that are represented as sets/groups of vectorial points. Such algorithms usually
suffer from the high demand of computational resources, making them impractical on large-scale
problems. We propose to solve this problem by condensing i.e. reducing the sizes of the sets
while maintaining the learning performance. Three methods are examined and evaluated with a
wide spectrum of set learning algorithms on several large-scale image data sets. We discover that
k-Means can successfully achieve the goal of condensing. In many cases, k-Means condensing
can improve the algorithms’ speed, space requirements, and surprisingly, learning performances
simultaneously.

7.1 Introduction

In many problems the object of interest can be represented by a set of multidimensional vectors.
For instance, in computer vision an image is often treated as a set of patches [50]. In text processing
and retrieval, we can also think of a document as a set of sections/paragraphs to cope with its
structure. A convenient and indeed frequently used way to deal with point sets is to discretize
the points and construct a feature vector for each set. However, the conversion process is often
problem-specific, sometimes complicated, and involves much human effort. More importantly,
this set-to-vector reduction can cause loss of information.

On the other hand, the development of algorithms that handle sets directly has been largely left
behind. One major disadvantage of such algorithms is their high computational cost compared to
those that operate on vectors. Despite the difficulties, recently several methods have been proposed
to deal with point sets directly. They learn from the sets without the set-to-vector reduction, so that
the researchers do not have to design the feature vector for a set, and the loss of information caused
by the reduction can be avoided. For example, our Chapter 5 design a novel kernel between point
sets based on consistent estimators of divergences between distributions, and achieved the state-
of-the-art classification performance on a couple of datasets. [17] proposed an extremely simple
classifier for point sets based on group-to-class matching, and showed that it could compete with
classifiers based on very sophisticated set features on images. These successes demonstrate the

111

advantage of learning directly from point sets over the reduction approach.
Early set learning algorithms (more specifically set similarities), such as the Hausdorff distance

and the mean map kernels by [65], rely on the similarities between every pair of points and are thus
computationally expensive. Recent improvements such as Chapter 5 and [17, 112, 131] gained
efficiency by designing algorithms based on information from the points’ local neighborhoods,
which can be obtained via efficient search algorithms. [17, 112] proposed a new classification
paradigm by comparing images to classes and significantly accelerated the prediction. Details
of these methods are described in Section 7.2. Nevertheless, they still demand much time and
storage space, making them not suitable for large-scale problems and less likely to be adopted by
practitioners.

In this work, we aim to further improve the computational efficiency of set learning algorithms.
In most set learning algorithms, the cost to train, store, and apply the model is determined by the
sizes/cardinalities of the sets. Therefore, our approach is to directly attack the crux of the problem
by reducing the size of sets while maintaining the learning performance in an unsupervised way.
We call such an operation condensing.

To achieve this goal, we analyze and evaluate three possible ways of decrease the size of a
set: random sampling, uniform covering, and distribution approximation using k-Means. These
three methods are chosen because they are easy to implement and efficient to run in large data
scenarios. Our discovery is that distribution approximation via k-Means is the only method that
can successfully achieve the goal of condensing.

In our experiments, we apply the k-Means condensing as a pre-processing step to various
point-set learning methods on several image classification tasks, and find that the performance is
surprisingly good and consistent. In most problems, we do not have to make a speed-accuracy
tradeoff; condensing can actually improve both speed and accuracy simultaneously. In addition,
this condensing step can be easily implemented and parallelized for large-scale problems. We
believe this discovery is useful to practitioners that have large-scale point-set data.

The rest of this chapter is organized as follows. In Section 7.2 we introduce the notation and
common learning algorithms on point sets to provide a context to this study. Section 7.3 briefly
reviews related work. Section 7.4 describes in detail the condensing methods we are examining.
In Section 7.5, we thoroughly evaluate the performance of different methods on different data sets
and discuss our findings. Finally, we discuss and conclude this chapter in Section 7.6 and Section
7.7.

7.2 Background
Most learning tasks can easily be accomplished if we know the similarities between the point sets.
Many set learning algorithms assume that a set has an unknown underlying distribution, and the
points in the set are i.i.d. samples from that distribution. Then the similarity measures between
point sets can be designed based on the divergences between their underlying distributions. For
example, [65, 155] proposed the mean map set kernel to test if two point sets have the same
underlying distribution. The same technique has been used by multiple-instance learning [55] and
computer vision [109]. [17] uses a simplified kernel density estimator to estimate the divergence

112

between a set and the classes, and assign the set to the class with the most similar distribution.
[130, 131] and Chapter 5 use a consistent nonparametric estimator to get the divergences between
the point sets and use these dissimilarities to construct Gaussian kernels so that SVM can be used
for classification.

From the computational perspective, many of the set similarity measures can be considered
as aggregations of the similarities between the individual points of the sets. We will discuss in
more details how these similarities are measured and aggregated in Section 7.2.1. The key point
is that these point-level pairwise comparisons make the speed of the algorithms crucially depend
on the sizes of the sets. This is why reducing the sets’ sizes by condensing would greatly improve
their computational efficiency. Generative methods such as [173, 174] and Chapter 4 have also
been developed to model point sets. Condensing the sets will also benefit these methods. In this
Chapter we will focus on the similarity based approaches and their applications in set classification
problems.

We again consider a data set with M point sets {Gm}m=1,...,M , Gm = {xmn}n=1,...,Nm , xmn ∈
RD. We also assume that each Gm has an unknown underlying distribution fm, and the points
{xmn} are i.i.d. samples from fm. For instance, in the context of image classification, each Gm is
an image, and vector xmn is the feature of the nth patch in this image.

Nearest neighbors (NN) are frequently used in set learning algorithms. We use NNG(x) to
denote the NN of x in point set G. If x is in G then it excludes itself during the search. Ties, if any,
are broken arbitrarily.

7.2.1 Set Similarities
Set Kernels [65, 155] proposed the following kernel (similarity) for two sets of points G1 and
G2:

K(G1, G2) =
1

N1N2

N1∑
i=1

N2∑
j=1

k(x1i, x2j) (7.1)

where k(x, y) is a kernel between points x and y. One particularly popular example is the Gaussian
kernel k(x, y) = exp(−‖x − y‖2

2/σ
2). The underlying principle for this kernel is that if the

point-level kernel k(x, ·) induces a feature map φ(x) for x in a reproducing kernel Hilbert space
(RKHS), then this corresponding set-level kernel K(G, ·) will induce the feature map Φ(G) =
1
N

∑N
n=1 φ(xn) for G in the same RKHS. Since Φ(G) is the empirical mean of the mapped features

of the points, K is called the mean map kernel (MMK).
We can see that MMK essentially is a way of aggregating the point-level similarities between

two sets. It possesses many nice theoretical properties such as positive definiteness [65, 120]. The
same idea has also been used in computer vision [109] and multiple-instance learning [55]. Yet
since it averages the similarities between every pair of points, MMK will slow down quadratically
w.r.t. the sets’ sizes, and become infeasible for even moderately sized problems.

[167] used a variation of MMK that only considers the most similar pairs of points:

K(G1, G2) =
1

N1

N1∑
i=1

k(x1i,NNG2(x1i)) +
1

N2

N2∑
j=1

k(x2j,NNG1(x2j)). (7.2)

113

Computationally it improves MMK by only using the points’ NNs instead of dealing with all
pairs. Unfortunately, this kernel is no longer a proper Mercer kernel, but it still serves well as a
similarity measure. Other related methods include [63], which uses multi-resolution histograms to
approximates MMK, and [16], which constructs explicit approximate feature maps for the MMK
so that linear classifiers can used to achieve faster computation.

Set Divergences Another class of dissimilarity measures is defined based on the statistical diver-
gences between two distributions. In [130, 131, 168], the authors provided consistent NN based
estimators for various divergences including the Kullback-Leibler (KL), Rényi, and the L2 diver-
gences. They have been successfully applied to image classification problems when used in SVMs;
See Chapter 5.

For example, the KL divergence between two point sets can be estimated by [168]

K̂L(G1||G2) =
D

N1

N1∑
i=1

ln
‖x1i − NNG2(x1i)‖2

‖x1i − NNG1(x1i)‖2

+ ln
N2

N1 − 1
(7.3)

where D is the dimensionality of x1i. It was proved that these estimators are consistent, i.e. un-
der regularity conditions, (7.3) converges to KL(f1||f2) as the sample sizes N1 and N2 approach
infinity.

[17] proposed an alternative estimate of the KL divergences. Consider kernel density estimation
at point x1i given the points in G2 with a Gaussian kernel of width σ:

f̂(x1i;G2) ∝ 1

σN2

N2∑
j=1

exp

(
−‖x1i − x2j

σ
‖2

2

)
. (7.4)

This estimator is computationally demanding since we have to consider every pair of points. In
[17], the authors let the width σ be small enough, so that the summation will be dominated by its
largest term i.e. the nearest neighbor, and the estimator becomes

ln f̂(x1i;G2) ≈ −‖x1i − NNG2(x1i)‖2
2/σ

2 − lnN2σ + const, (7.5)

which again is based on NNs. The corresponding estimated KL divergence is

K̂L(G1||G2) ∝
N1∑
i=1

‖x1i − NNG2(x1i)‖2
2 −

N1∑
i=1

‖x1i − NNG1(x1i)‖2
2 (7.6)

up to a constant. Note the resemblance between (7.6) and (7.3). Unlike (7.3), this estimator is not
consistent even with infinite points, but in practice it can still produce good results.

These set similarities follow a similar pattern. They generally use nearest neighbor statistics
and can be efficient in low dimensions where various search trees work well. However, in high
dimensions (as few as 10) the computational speed of the estimators will deteriorate rapidly.

114

7.2.2 Set Classification Schemes
Having the similarities between the sets, we can easily apply SVM, KNN, or other techniques to
accomplish tasks like classification, ranking, and clustering as in e.g. [120, 130, 131]. For example,
the KL divergences estimated using (7.3) can be used construct Gaussian kernels e.g.

KKL(G1||G2) = exp
(
−K̂L(G1||G2)/σ2

)
, (7.7)

where σ is the width of the kernel. Due to the properties of the KL divergence, this kernel is neither
symmetric nor positive definite. Therefore in Chapter 5 proposed to approximate this “pseudo”
kernel matrix by the closest positive definite matrix, and then use this approximation as the input
to SVMs.

The drawback of this set-vs-set approach is that the training cost grows quadratically and the
prediction cost grows linearly with the number of sets for training. Considering that comparing
a pair of sets already requires significant work, this scheme quickly becomes infeasible in larger
problems. To solve this problem, [17] proposed a set-vs-class paradigm for set classification.
Assume that there are C classes indexed by c, and class c is represented by the merged set

Hc =
⋃
Gm∈c

Gm,

which contains all the points in the sets that belong to class c. The classification rule is to assign a
test set G to the class with the smallest divergence

c(G) = arg min
c

K̂L(G||Hc), (7.8)

where the KL-divergence is estimated by (7.6). The assumption under this scheme is that all the
sets in the same class c have the same distribution fc, from whichHc are the i.i.d. samples. Though
it is debatable if this assumption is valid in real-world problems, the resulting algorithm called the
Naive Bayes nearest neighbor (NBNN) [17] is extremely simple and performs well empirically.

More importantly, NBNN discards the training phase and makes the prediction cost of (7.8)
only proportional to the number of classes asO(NCζHc), whereN is the size of the test set and ζHc

denotes the complexity of one NN search in Hc. Local NBNN (LNBNN) [112] further improves
NBNN by merging all classes into one large set H =

⋃
cHc and decreases the complexity to

O(NζH). As a result, LNBNN can classify many classes very efficiently. Interested readers are
encouraged to see [112] for more details. Yet in large, high-dimensional problems, {Hc} andH can
easily become huge, making ζHc and ζH unaffordable. Another problem is thatH might become so
large that it cannot be held in memory, making even the approximate NN search methods infeasible.

7.2.3 Computational Issues
Looking at the above algorithms, we realize that one would face severe challenges due to both
computational time and space demand if one were to apply these algorithms to large-scale prob-
lems. These computational requirements are determined by the sizes of the sets. If we could reduce

115

them by half, the space complexity would drop by half, and ideally the running time would drop
to only a quarter. Therefore, our approach to make the “learning on sets” problem more efficient is
to directly reduce the size of the sets, condensing the information into a much smaller amount of
data while preserving the learning performance.

Even though NBNN and LNBNN have successfully made the complexity linear w.r.t. the num-
ber of sets, they create huge point sets {Hc} for each class that are difficult to store and use. To put
it in context, suppose we have 1, 000 images for training. Typically each image is characterized
by around 2, 000 densely sampled 128-dimensional single precision SIFT vectors. Using Local
NBNN, this relatively small training set would result in a model consisting of 2 × 106 points and
1GB of data. Additionally, in high dimensions searching for nearest neighbors in such a large set
can be very slow.

In practice one could also consider using the approximate NN search algorithms. One popular
method, for example, is the randomized KDTree [154] algorithm implemented in the FLANN1

[121] package. It checks in multiple KDTrees for a fixed number of leaf nodes, which is the budget
set by the user, and then returns the best results it can find. Its exact approximation accuracy and
time complexity is unclear and dependent on the data. When using such approximate methods, it
is rare to achieve quadratic improvement of speed by reducing the size, yet condensing can still
greatly help the construction, use, and storage of models. When the data is too large to fit into
memory, then even approximate search is infeasible, but condensing can make it possible.

7.3 Related Work

As far as we know, there is little previous work that thoroughly studies how to reduce the sets’ sizes
in set-based learning. One reason might be that set-based learning itself is rather new. Random
sampling is a common practice. In [162], the authors used an asymmetric approach for image
classification. The reasoning is that we can find good matching patches between two similar images
as long as one of them is densely sampled. This approach is actually subsampling the set on
one side of the similarity/divergence computation. It can speed up the computation but will also
deteriorate the classification performance. In the following sections we show that by using more
carefully chosen condensing methods, we can improve both the speed and the accuracy of their
algorithm. Recently, the kernel herding [29] algorithm was proposed to accelerate MMK (7.1) by
selecting a small number points to represent the group. Essentially, herding is letting the selected
points to approximate the original distribution of the group. It is similar to the k-Means condenser
described in our next Section, but it is much more complex and less practical in large data scenarios.

In point-based learning, condensing point sets is embodied in the prototype selection (PS) prob-
lem [53]. In prototype selection, we are given one training set of labeled points, and the goal is to
reduce the size of the training set while maximizing the performance of the resulting classifier. We
can see that PS is very different from condensing in the context of set-based learning. PS handles
one set and focuses on the behavior of individual points. In contrast, set-based learning handles
multiple sets and focuses on the set as a whole. PS methods usually focus on discriminating the

1http://www.cs.ubc.ca/˜mariusm/index.php/FLANN

116

http://www.cs.ubc.ca/~mariusm/index.php/FLANN

points instead of preserving the statistical properties of the sets that are needed in set-based learn-
ing. Several underlying techniques are shared between PS and condensing in set-based learning.
Below we will comprehensively evaluate the techniques that are suitable for set-based learning.
Our contribution is the discovery of a good condensing method for set-based learning algorithms
that can improve their speed, space requirement, and accuracy all at the same time.

7.4 Condensing Methods
We examine three potential ways of condensing a point set G of size N to a smaller point set G̃ of
size K, so that the properties of G that are useful to set learning are preserved in G̃. These three
methods are selected for the following reasons:
• They have sound theoretical bases.
• They are easy and efficient to use in large-scale problems.
• They are universal i.e. not coupled with the subsequent learning algorithms, and thus widely

applicable.

(a) All points (b) Random sampling (c) Uniform covering (d) k-Means

Figure 7.1: Condensing results of a 2D standard Gaussian point set using different condensers.

7.4.1 Random Sampling
Statistically, random subsampling can create smaller point sets G̃ with the same statistical proper-
ties as the original set G. This is the common method used to make trade-offs between speed and
accuracy [133], and it is essentially the asymmetric approach used in [162]. It is easy to implement
with little computational cost. However, when given only one chance to subsample, the result is
random with possibly high variance, and might lead to poor results. Figure 7.1b shows an example
in which the subsampled set is far from an ideal representation of the original set. We will use this
method as our baseline.

7.4.2 Uniform Covering
We can also control the condensing quality at the point level. Since many learning algorithms
are based on NNs, we require for any point x, the change of distance to its NN in G is bounded

117

individually after condensing. Formally, we are looking for a G̃ such that

|‖x− NNG̃(x)‖2 − ‖x− NNG(x)‖2| ≤ r,∀x,

where r is the error threshold.
To find such a G̃ with minimal size is NP-hard [11]. [159] proposed kernel vector quantization

which used the l1 relaxation and provided an approximate solution using linear programming, but
it can be too slow when condensing large sets. Instead, we adopt the following simple solution.
Starting from an empty G̃, a) pick a point x from G and move x into G̃; b) Remove points in
G whose distance to x is less than r; Repeat a) and b) until G is empty. The points in G̃ form
the centers of radius-r spheres that uniformly cover the support of G’s underlying distribution.
Therefore, we call this uniform covering condensing. An illustration is given in Figure 7.1c.

To minimize the size G̃, a heuristic is to pick points in denser regions early so that more points
can be removed. [78] implemented such a heuristic. It runs Mean Shift [32] to find a local peak of
the density, and then picks a point from the peak. The complexity is O(N2) for a suitable r.

Though it seems well motivated, this approach is flawed. First, we cannot control the number
of points to cover the support. To find a proper r we would need trial runs and tuning. Secondly, it
only captures the support of the underlying distribution and ignores the actual density levels. The
most severe problem, however, is the curse of dimensionality. In high dimensions, the neighbor-
hood of a point becomes so large that we need a very large r to effectively trim the size down.
Sometimes r is not much smaller than the diameter of the support, making the bound useless. We
shall demonstrate this effect in the experiments.

7.4.3 k-Means
As a clustering algorithm, k-Means can also serve our condensing purposes well. We can run k-
Means on the set G, and then use the set of cluster centers as G̃. Recall that k-Means minimizes
the following objective

G̃ = {x̃k}k=1,...,K = arg min
G̃

N∑
i=1

‖x− NNG̃(x)‖2
2. (7.9)

In other words, it is trying to find a point set G̃ to best reconstruct G using the nearest neighbor
method given the budget of K points.

We can prove that the k-Means condensing is actually maximizing the performance of NBNN.
Recall that NBNN assumes that sets from the same class c share the same distribution fc that
is characterized by the merged class representation Hc, as described in Section 7.2.2. Then we
assign a test set G to the class with the smallest KL-divergence according to (7.8). Hence, to
find a condensed set H̃c for Hc that can maximize the classification performance of class c, we
should minimize KL(G||H̃c) for any G with the distribution fc. Since fc is characterized by Hc,
the objective should be

H̃c = arg min
H̃c

KL(Hc||H̃c). (7.10)

118

We can see that H̃c should approximate the distribution of Hc. Further, by plugging (7.6) – the
KL-divergence estimator used by NBNN – into (7.10), we see that (7.10) is indeed equivalent to
the k-Means objective (7.9). In this sense, k-Means is the ideal condenser for NBNN classifiers.
In the experiments we show that it is also generally good for other set learning algorithms.

Another advantage of k-Means is its efficiency. Being an extensively used and studied method,
k-Means can be implemented with highly efficient algorithms for even massive data sets (e.g. [49,
153]). In practice, we also found that the exact solutions or even the local minima of k-Means
is not required. Usually running k-Means for only tens of iterations is enough to achieve good
condensing performance.

To sum up, k-Means provides a well-justified and efficient way to condense point sets. Fig-
ure 7.1d shows the visually appealing result of k-Means compared to other condensers. In the
experiments, we will also show that it performs surprising well in classification tasks.

7.5 Empirical Evaluation
In this section we evaluate the performances of the above condensing methods when applied to
various set learning algorithms in different image classification tasks. The three condensing meth-
ods described in Section 7.4 are tested. They are denoted as Rand:K, Unif:K, and KMeans:K
respectively, where K is the condensed size. All is used to denoted the original set. We only eval-
uate the uniform covering condenser on a small problem to demonstrate its deficiencies. For the
k-Means condenser, we run k-Means once using the random initialization for 20 iterations.

Five image data sets of different scales and natures are used for evaluation. For classification,
as described in Section 7.2.2, we consider both the set-to-set scheme using the MMK (7.1) and the
KL divergence based Gaussian kernel (7.7) (KLK), and the set-to-class scheme using NBNN [17],
LNBNN [112], and NPKL which is the NBNN classifier paired with the divergence estimator
(7.3).

For MMK and KLK, we use the condenser to reduce the size of every training and testing
point set separately. For NBNN, LNBNN, and NPKL, the condensers are used to reduce the class
representations {Hc}. When using KLK with SVM, the resulting kernel matrices are projected to
the closest positive definite matrix as in [131]. For MMK and SVMs, the kernel width σ and slack
parameter C are tuned on the training data using 3-fold cross-validation.

MMK, KLK, and Uniform Covering is only applied to small problems because they are slow
compared to other methods. Only LNBNN is used for very large scale problems, since it is the
only one that is fast enough.

We extract multiscale dense SIFT features called PHOW [18] for images. Images are resized
so that the longest side is no larger than 256 pixels. The step size 10 is used to sample patches and
the patch sizes are [24, 36, 48]. This setting will produce about 1, 500 128-dimensional points for a
256× 256 image. We also append the patches’ spatial position in the image to the feature vectors
to enable spatial matching, making the points 130 dimensional. The weight of the coordinates
in distance calculation is roughly tuned on a small subset and kept the same throughout all the
algorithms and runs.

The VlFeat [164] software is used for k-Means and dense SIFT feature extraction. The FLANN

119

[121] software is used for NN search. Exact NNs are used for KLK on small scale data sets. In
large experiments of NBNN, LNBNN, and NPKL, we use approximate NNs with four randomized
KDTrees. The number of leaf node checks, which controls the precision of the approximate NN
search, is stated in each experiment and figures. Experiments are done on Opteron K10 2.3 GHz
CPUs.

7.5.1 Scene-15
The first data set we consider is the Scene-15 data set [92], which is a widely used benchmark for
scene classification. This data set contains 4, 485 images from 15 classes. In general a scene image
is characterized by the distribution of features e.g. the proportion of sky, water, flat surfaces, etc.
This is quite different from images for object recognition that we will present later. For this data
set, the weight of the spatial coordinates is set to 3. In each run, we randomly choose 100 images
for training and 100 images for testing unless stated otherwise.

Set-to-Set Classification To use MMK and KLK for classification, we first calculate the kernel
values between every pair of sets by (7.1) and (7.7), and then given them to SVM and KNN for
classification. For KNN the number of neighbors is tuned based on the training data. Because this
approach is very computationally expensive, we test it only on the first 8 classes, known as the OT
data set [5]. Each image is a set of 1, 542 points, and the condensers Rand:100 and KMeans:100
are compared, meaning that we use subsampling and k-Means to reduce the sets’ sizes from 1, 542
to 100. In each run, we randomly choose 50 images for training and 50 for testing.

The performance of 10 runs are reported in Figure 7.2. We can see that random sampling sig-
nificantly decreased the accuracies of the classifiers. However, using the KMeans:100 condensing,
the performances of SVMs are very close to using the original sets. For MMK, the decrease of
mean accuracies is around than 0.8% and the Wilcoxon signed rank test shows a p-value of 0.07.
For KLK, the difference is slightly larger at about 2%. This is a very good performance consid-
ering that only 1/15 of the data is kept. It is interesting to see that KNN’s accuracy using the
k-Means condensed sets is significantly better than the uncondensed result. We shall see later this
is not a random effect. As a reference, we also provide the results based on the distance between
bag-of-words representations (500 visual words) using the same features and classifiers.

The time to compute both MMK and KLK using all the points is about 6, 700 CPU×minutes.
After condensing it took about 26 CPU×minutes to compute MMK and 33 CPU×minutes to com-
pute KLK, which are 200 – 250 times faster. k-Means condensing only took about 0.1 CPU×second
for each set.

The Uniform Covering Condenser Here we test the performance of uniform covering con-
denser paired with LNBNN classification on the full Scene-15 data set. The original H in LNBNN
contains about 2 × 106 points. Note that with this condenser we cannot specify the size but only
the radius r.

As mentioned in Section 7.4, this condenser is problematic in high dimensional spaces. Figure
7.3b shows the relationship between the condensed size and the radius r. To reduce the size to

120

0.8

0.82

0.84

0.86

0.88

0.9

0.92

All:1542 Random:100 KMeans:100
Condenser

A
cc

ur
ac

y
MMK+SVM Accuracies on OT

0.8

0.82

0.84

0.86

0.88

0.9

0.92

All:1542 Random:100 KMeans:100
Condenser

A
cc

ur
ac

y

KLK+SVM Accuracies on OT

0.6

0.65

0.7

0.75

0.8

All:1542 Random:100 KMeans:100
Condenser

A
cc

ur
ac

y

KLK+KNN Accuracies on OT

Figure 7.2: Accuracies on the OT data set using the original sets and the condensed sets. Green
dashed lines are the accuracies of bag-of-words classifiers.

e.g. 3, 000, we need r ≈ 400 which is very large. Either increasing or decreasing r would result in
a dramatic change of size. This phenomenon is a natural result of the curse of dimensionality. In
practice, it is very hard to get a good sense of how large the radius should be in high dimensions.

Figure 7.3a shows the relationship between the accuracy and the radius from 10 runs. Different
number of checks in the approximate NN search is tried. We can see that the decreases of accuracy
is unacceptable when the sets are condensed to a reasonable size. In fact, as we will show later, its
performance is even worse than random sampling.

This experiment confirms that the uniform covering condenser has ill-formed behavior and bad
performance. Moreover, it is also slower than other condensers. Therefore, we shall exclude it
from the subsequent experiments.

The Random and k-Means Condenser Now we evaluate the sampling and k-Means condensers
with the NBNN, LNBNN, and NPKL classifiers. Again the original classifiers contain about 2 ×

121

340 360 380 400 420 440 460 480 500

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Condensing Radii

A
cc

ur
ac

y
Accuracy VS Condensing Radius

#Checks=128

#Checks=256

#Checks=512

#Checks=1024

All Points, #Checks=256

All Points, #Checks=1024

(a)

340 360 380 400 420 440 460 480 500
0

2000

4000

6000

8000

10000

12000

14000

Condensing Radii

S
iz

e

Condensed Size VS Condensing Radius

(b)

Figure 7.3: Performance of LNBNN on Scene-15 using the uniform covering condenser.

106 points. 512 checks are used in NN search. Figure 7.4 shows the accuracies from 5 random
runs using different condensers and different classifiers. We can see that k-Means condensing
is much better than random sampling. More surprisingly, classifiers using data condensed by k-
Means consistently and significantly outperform those using the original uncondensed data. In
other words, we improved the speed and the accuracy simultaneously, as opposed to make trade-
offs between them. The explanation might be that the condenser removes some of the noisy and
outlier points in the original sets. In Figure 7.4a we can observe that the accuracy decreases a little
when the condensed size is very large. We shall see that this behavior is consistent throughout
most of our experiments.

We also examine the impact of the number of checks in NN search in Figure 7.5. The approxi-
mate search algorithm performs very well. The impact of the number of checks is minimum, and
the performance usually saturates with 512 checks.

7.5.2 UIUC-Sports
The UIUC-Sports data set [100] contains 1, 030 images from 8 sport events. In order to test the
performance in higher dimensions, we use the color version of the PHOW feature which is 384
dimensional. The image sizes vary so that each one contains 295 to 1, 542 points. In each run 70
images are used for training and 60 for testing. As a result, the original classifiers contain about
6 × 105 points. The weight of spatial coordinates is 0.6. Other settings remain the same as the
Scene-15 experiment.

Accuracies of 5 random runs are reported in Figure 7.6. We can observe again that the k-Means
condensing is better than both sampling and no-condensing. This verifies again the benefit of re-
moving noise brought by condensing. We also noticed that using all the points, the accuracy of
NPKL is worse than NBNN and LNBNN. But after condensing, these three algorithms perform-
s almost the same. This shows that k-Means condensing could make the data less sensitive to

122

1000 2000 3000 4000 5000 6000 7000 8000 9000
0.55

0.6

0.65

0.7

0.75

0.8

Size of Condensed Sets

A
cc

ur
ac

y
Accuracy VS Condensed Size

Random

KMeans

All: 256 checks

All: 1024 checks

(a) NBNN

1000 2000 3000 4000 5000 6000 7000 8000 9000
0.55

0.6

0.65

0.7

0.75

0.8

Size of Condensed Sets

A
cc

ur
ac

y

Accuracy VS Condensed Size

Random

KMeans

All: 256 checks

All: 1024 checks

(b) LNBNN

1000 2000 3000 4000 5000 6000 7000 8000 9000
0.55

0.6

0.65

0.7

0.75

0.8

Size of Condensed Sets

A
cc

ur
ac

y

Accuracy VS Condensed Size

Random

KMeans

All: 256 checks

All: 1024 checks

(c) NPKL

Figure 7.4: Scene-15 classification performances using different classifiers and condensers.

different algorithms.

7.5.3 CalTech-101
The CalTech-101 data set [98] is a standard benchmark for object recognition. This data set con-
tains 9, 144 images of 102 different object classes. Unlike the Scene-15 and UIUC-Sports data set,
the class of an object’s image is more determined by the presence of a few distinctive local features
(intuitively the object parts) than the distribution of features.

We follow the standard protocol and use 10, 15, 30 images per class for training and the rest
for testing. We only test the performance of LNBNN using different condensers as it is the only
classifier that scales well with this problem. We compare the accuracies of Rand:4000 and K-
Means:4000 condensers to the accuracy without condensing. Without condensing, the classifier

123

0 200 400 600 800 1000 1200
0.55

0.6

0.65

0.7

0.75

0.8

#Checks

A
cc

ur
ac

y
Accuracy VS Num of KDTree Checks

Random:2000

KMeans:2000

All

(a) NBNN

0 200 400 600 800 1000 1200
0.55

0.6

0.65

0.7

0.75

0.8

#Checks

A
cc

ur
ac

y

Accuracy VS Num of KDTree Checks

Random:2000

KMeans:2000

All

(b) LNBNN

0 200 400 600 800 1000 1200
0.55

0.6

0.65

0.7

0.75

0.8

#Checks

A
cc

ur
ac

y

Accuracy VS Num of KDTree Checks

Random:2000

KMeans:2000

All

(c) NPKL

Figure 7.5: The impact of the number of checks in the NN search to different methods on the
Scene-15 data set.

contains 6× 106 points taking about 3GB memory given 30 training images, while the condensed
classifier only takes 202MB memory irrespective of the number of training images. Note that we
use a larger condensed size of 4, 000 expecting that more points are needed to accurately capture
the distinctive features of the objects. The weight of spatial coordinates is 1.5.

Figure 7.7a shows the performance of 10 random runs. We can see that k-Means is much better
than the random condensing. k-Means slightly outperforms the uncondensed results again, even
though the difference is insignificant. Observe that the improvement of k-Means condensing over
using the all points is becoming smaller as more training images are used. This may be because
as more images are added, 4, 000 points is becoming insufficient to capture all the information
contained in the training set. The time used for k-Means condensing is 4 CPU*minutes per class
with 30 training images. The prediction takes 100 CPU*minutes using the condensed classifier,
while without condensing it takes 161 CPU*minutes. The acceleration is not much here because
the highly efficient approximate NN search is used. Yet reducing the space requirement by 93% is
still a significant benefit.

124

1000 2000 3000 4000 5000 6000 7000 8000 9000
0.6

0.65

0.7

0.75

0.8

0.85

Size of Condensed Sets

A
cc

ur
ac

y
Accuracy VS Condensed Size

Random

KMeans

All: 256 checks

All: 1024 checks

(a) NBNN

1000 2000 3000 4000 5000 6000 7000 8000 9000
0.6

0.65

0.7

0.75

0.8

0.85

Size of Condensed Sets

A
cc

ur
ac

y

Accuracy VS Condensed Size

Random

KMeans

All: 256 checks

All: 1024 checks

(b) LNBNN

1000 2000 3000 4000 5000 6000 7000 8000 9000
0.6

0.65

0.7

0.75

0.8

0.85

Size of Condensed Sets

A
cc

ur
ac

y

Accuracy VS Condensed Size

Random

KMeans

All: 256 checks

All: 1024 checks

(c) NPKL

Figure 7.6: UIUC-Sports classification performances using different classifiers and condensers.

7.5.4 CalTech-256

CalTech-256 is an enlarged version of the previous CalTech-101 data set, containing 30, 607 im-
ages from 257 object classes. The same settings are used as for CalTech-101 except that the weight
of spatial coordinates is 0.6. Note that without condensing, the LNBNN classifier contains 1.4×107

points taking 7GB memory, which is approaching the limit of readily available machines. After
the condensing, the classifier takes only 500MB memory, irrespective of the number of training
images.

Figure 7.7b shows the performance of 5 random runs. The behaviors of the condensers are
basically the same as in the CalTech-101 experiment, showing the consistency of the condensers.
Notably, when 30 training images are used, the condenser seems to have reached the limit and
causes a slight decrease of accuracy. It shows that the information carried by the training set is

125

10 15 20 25 30

0.6

0.65

0.7

0.75

Training Images

A
cc

ur
ac

y
Accuracy VS Num of Training Images

Random:4000

KMeans:4000

All

(a)

10 15 20 25 30
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Training Images

A
cc

ur
ac

y

Accuracy VS Num of Training Images

Random:4000

KMeans:4000

All

(b)

Figure 7.7: (a) CalTech-101 classification accuracies using LNBNN with different condensers. (b)
CalTech-256 classification accuracies using LNBNN with different condensers.

finally exceeding the capacity of the KMeans:4000 condenser and more points are needed to main-
tain performance. The time used for k-Means condensing is again 4 CPU×minutes per class with
30 training images. The prediction takes 440 CPU×minutes using the condensed classifier, while
without condensing it takes 791 CPU×minutes. In this larger problem the condenser’s acceleration
effect is becoming more prominent, even if the approximate NN searcher is used.

7.5.5 ImageNet Challenge 2012

The ImageNet Challenge 20122 [41] provides a massive object image classification task, containing
1, 261, 406 images from 1, 000 object classes retrieved by crawling the Internet. The large amount
of variations in the perspective, object appearance, and background clutter make it a extremely
challenging task. Because of the large number of classes and possible ambiguities, 5 guesses are
allowed when predicting an image’s label.

We use the dense SIFT features provided by the organizer3, which provides about 800 SIFT
vectors per image. We apply LNBNN to this classification task with 500 images per class for
training and 500 images per class for testing, resulting in an experiment that involves 1 million
images. This experiment is too large to be feasible on reasonable machines without condensing;
the training set alone would take 140GB memory.

Rand:2000 and KMeans:2000 condensers are used in this task. The size of the classifier after
condensing is about 1GB. Since we are not able to complete the task with all the training points,
the condensed result by Rand:20000 is used as a surrogate, which is feasible but already runs very

2http://www.image-net.org/challenges/LSVRC/2012/index
3http://www.image-net.org/download-features

126

http://www.image-net.org/challenges/LSVRC/2012/index
http://www.image-net.org/download-features

slow. For the k-Means condensing, we first use random sampling to reduce the input sets’ sizes
to 105 and then run k-Means. 256 checks are used in the NN search, and the weight of spatial
coordinates is 0.9.

The results from 5 runs of KMeans:2000, Rand:2000 and 2 runs of Rand:20000 are shown in
Table 7.1. We can see that k-Means condenser performs around 70% better than the sampling con-
denser using the same amount of data, and also 11% better than the sampling condenser that uses 10
times more data, showing the effectiveness of k-Means condensing in optimizing the classification
performance.

The running time for different condensers are also reported. Note that here “Training” is just
the condensing step. We see that even if the approximate NN searcher is used, condensing can still
make the prediction speed 6 times faster, and this improvement will become significantly larger if
more accurate NN search is needed. The sampling condenser basically costs no time except for the
disk IO. On the other hand, the k-Means condensing takes less than 4 minutes per class. In large-
scale parallel computation, this extra cost is acceptable, and the improvement to the prediction
speed and accuracy is significant. In all, again, condensing makes the classifier smaller, faster, and
more accurate.

Note that our results here are mainly to show the effectiveness of the k-Means condenser and
not comparable to the ImageNet Challenge’s top performers. We used the provided features in-
stead of doing feature engineering/learning, and the algorithm used here is extremely simple and
efficient.

Condenser Rand:2000 Rand:20000 KMeans:2000
Accuracy (%) 14.04± 0.05 21.18± 0.07 23.7± 0.55

Training Time 0.07 0.17 3.7

Testing Time 0.52 2.91 0.53

Table 7.1: Accuracies and running time of LNBNN on ImageNet. The training time is measured
by CPU*minute per class and the testing time is measured by CPU*second per test image.

7.6 Discussion
Typically when facing large point sets, a popular approach is to subsample them to make a trade-off
between accuracy and speed [133]. Our experiments show that this approach often compromises
too much accuracy. However, when we use the k-Means condenser, we can often improve the
speed, space requirement, and the accuracy all at the same time.

Depending on the data set, the k-Means condensing can have different impact on the perfor-
mance. When the sets are mainly characterized by the holistic characteristics of its points, k-Means
condensing can not only reduce the size significantly while retaining the information, but it can al-
so possibly remove noise and outliers to enhance the accuracy. Examples of such data sets include
the Scene-15 and the UIUC-Sports. If the sets are mainly characterized by a few distinctive points,
like in the CalTech data sets, approximation error on the individual points plays a bigger role and

127

condensing is usually less effective. Nonetheless, even in those data sets, we see that k-Means can
still at least maintain the accuracy while greatly improve the time and space efficiency.

To use the condensing algorithms, we need to choose the size of the condensed set. A general
guideline is to set the budget of time and space and use the largest number of points allowed. Our
experience shows that 1, 000 – 5, 000 points usually works well for set-vs-class classifiers, and 100
– 500 points should work for set-vs-set classifiers. If the purpose is to use condensing to remove
the noise and improve the accuracy, then we can use cross-validation to determine the appropriate
size.

The cost of k-Means is not trivial but very manageable. The condensing of different sets are
independent. In our experiments, we used Elkan’s algorithm [49] in VLFeat [164], which is not the
fastest algorithm like [153] but can still condense 105 points to 2, 000 points in less than 4 minutes.
In a large-scale parallel computation environment like MapReduce, this is very acceptable. We
believe that, given the budget of time and space, it is almost always beneficial to apply k-Means
condensing before a learning algorithm on point sets. Compared to random sampling, it will result
in a much better accuracy within acceptable time.

For algorithms that need all point-wise similarities or exact NNs in high dimensions, con-
densing can easily provide quadratic improvement for speed and linear improvement for space
requirement. In this latter case, condensing can turn impossible tasks into possibilities. When
approximate NN search is used and we have a small data set, the improvement for speed is not sig-
nificant, such as in the Scene-15 and UIUC-Sports data set. However, when the data set becomes
as big as the CalTech-256 or even the ImageNet datasets, then condensing can provide substantial
improvement on top of the approximate NN search.

7.7 Summary
Efficient algorithms for learning from point sets are important and useful, yet existing methods
suffer from high time and space demand. In this work we tried to condense the point sets (reduce
the size of the sets) in order to make these methods faster and better. We found that condensing is
in general a better strategy than imputing the kernels as described in Chapter 6. Particularly, we
discovered that the k-Means algorithm does this job very well.

On a wide range of classification methods and image data sets, we evaluated three different
practical condensing strategies and found the k-Means is the only one that can successfully reduce
the size of point sets without much loss of accuracy. In many cases it even improves the accuracy
by removing the noise and outliers. This success seems to be universal despite the differences
across various classifiers and data sets. We hope our discovery could help the adoption of the
point-set based methods by the practitioners in large scale problems.

128

Chapter 8

Sampling Bias Correction by Conditional
Divergences

Many objects can be represented as sets of multi-dimensional points. A common approach to
learning from these point sets is to assume that each set is an i.i.d. sample from an unknown un-
derlying distribution, and then estimate the similarities between these distributions. In realistic
situations, however, the point sets are often subject to sampling biases. These biases can funda-
mentally change the distributions and distort the results of estimation and learning. In this work
we propose to use conditional divergences to correct these distortions and learn from biased point
sets effectively. Our empirical study shows that the proposed method can successfully correct the
biases and achieve satisfactory learning performance.

8.1 Introduction

Traditional learning algorithms deal with vectors/points, but many real objects are actually sets of
points that are multi-dimensional, real-valued vectors. For instance, in monitoring problems, each
sensor produces one set of measurements for a particular region within a time period. A traditional
way to deal with point sets is to construct feature vectors for the sets through discretization so that
standard learning techniques can be applied. However, this conversion process often relies on hu-
man effort and is prone to information loss. Recently, several algorithms were proposed to directly
learn from point sets based on the assumption that each point set is a sample from an unknown
distribution, including methods proposed in this thesis. [130, 131] proposed novel kernels between
point sets based on efficient and consistent divergence estimators. [65, 120] took a similar ap-
proach and designed a kernel based on the kernel embedding of distributions. [17, 112] developed
extremely simple classifiers for point sets based on divergences between sets and classes. These
methods achieved impressive empirical successes, showing the advantage of learning directly from
point sets.

One factor that can significantly affect the effectiveness of learning is sampling bias. Sampling
bias comes from the way we collect points from the underlying distributions, and makes the ob-
served sample not representative of the true distribution. It undermines the fundamental validity

129

of learning because the points are no longer i.i.d. samples from a distribution conditioned only on
the object’s type. Though it has been extensively studied in statistics, this key problem has been
largely ignored by the previous research on learning from sets. The goal of this paper is to alleviate
the impact of sampling bias when measuring similarities between point sets.

We consider point sets with the following structure. Let each point be described by two groups
of random variables: the independent variables (i.v.) and dependent variables (d.v.). A point is
collected by first specifying the value of the i.v., and then observing a sample from the distribution
of the d.v. conditioned on the given i.v. Figure 8.1 shows a synthetic example where the i.v. is
sampled uniformly, and the d.v. is from the Gaussian distribution whose mean is proportional to
the value of i.v., forming the black line-shaped point set. Many real world situations, including
surveys and mobile sensing, produce point sets of this type. In patch-based image analysis, we
first specify the location of the patches as the i.v. and then extract their features as the d.v. In traffic
monitoring, a helicopter is sent to specific locations at specific times (i.v.) and measures the traffic
volume (d.v.).

0.2 0.4 0.6 0.8

−0.2
0

0.2
0.4
0.6

i.v.

d.
v.

Unbiased

0.2 0.4 0.6 0.8

−0.2
0

0.2
0.4
0.6

i.v.

d.
v.

Biased

0.2 0.4 0.6 0.8

−0.2
0

0.2
0.4
0.6

i.v.

d.
v.

Biased

Figure 8.1: The observation biases.

We assume that the sampling bias affects the way we observe i.v. , yet the observation of
d.v. given i.v. remains intact. This assumption is compatible with the covariate shift model [73,
152]. As shown in Figure 8.1, an unbiased observer will sample i.v. uniformly and get the black
set. Biased observers might focus more on the smaller or larger values of the i.v. and create the
biased red and blue sets, where the curves show the observed marginal densities of the i.v. The
joint and marginal distributions of the biased sets now look very different from each other and the
unbiased set. Nevertheless, no matter what the distribution of i.v. is, the distribution of d.v. given
i.v. is always the same Gaussian that does not change with the observer. In traffic monitoring, the
helicopter may be tasked with other, non-traffic, jobs that create different patrol schedules each
day, thus creating an uneven profile of the city’s traffic. But the measured traffic volumes at the
patrolled locations are still accurate.

130

To correct sampling biases of this kind, we propose to use conditional divergences. Existing
divergence-based methods use the joint distribution of the i.v. and the d.v. to measure the differ-
ences between point sets. On the other hand, conditional divergences focus on the conditional
distributions of d.v. given i.v. and are insensitive to the distribution of i.v., which is distorted by
the sampling bias in our setting. As long as the conditional distributions are intact, the conditional
divergences will be reliable. Moreover, it can be shown that the divergence between joint distribu-
tions is a special case of the conditional divergence. A fast and consistent estimator is developed
for the conditional divergences. We also discuss specific examples of correcting sampling biases,
including some extreme cases.

We evaluate the effectiveness of conditional divergences on both synthetic and real world data
sets. On synthetic data sets, we show that the proposed estimator is accurate and the conditional
divergences are capable of correcting sampling biases. We also demonstrate their performance on
real-world climate and image classification problems.

The rest of this paper is organized as follows. The background and some related work is intro-
duced in Section 8.2. Section 8.3 defines the conditional divergence and describes its properties
and estimation. Section 8.4 describes how to use conditional divergence to correct various sam-
pling biases. In Section 8.5 we make a discussion about the conditional divergences. In Section
8.6, we evaluate the effectiveness of the proposed methods on both synthetic and real data sets. We
conclude the paper in Section 8.7.

8.2 Background and Related Work
We consider a data set that consists of M point sets {Gm}m=1,...,M , and each point set Gm is a
set of d-dimensional vectors, Gm = {zmn}n=1,...,Nm , zmn ∈ Rd. Each point zmn = [xmn; ymn] is
a concatenation of two shorter vectors xmn ∈ Rdx and ymn ∈ Rdy representing the independent
variables i.v. and the dependent variables d.v. respectively. We assume that each Gm has an under-
lying distribution fm(z) = fm(x, y), and the points {zmn} are i.i.d. samples from fm(z). fm can
be written as fm(z) = fm(y|x)fm(x). In the context of image classification, each Gm is an image,
and xmn is the location of the nth patch and ymn is the feature of that patch.

We can learn from these sets by estimating the divergence between the fm’s as the dissimilarity
between the Gm’s. Having the dissimilarities, various problems can be solved by using similarity
based learning algorithms, including k-nearest neighbors (KNN), spectral clustering [122], and
support vector machines (SVM). In this direction, several divergence-based methods have been
proposed [17, 120, 131], and both empirical and theoretical successes were achieved.

In the presence of sampling bias that affects the distribution of i.v., fm(x) is transformed
into f ′m(x). Consequently the observed Gms represent the biased joint distribution f ′m(z) =
fm(y|x)f ′m(x). Therefore naı̈vely learning from the point sets using joint distributions will lead us
to the distorted f ′m’s instead of the true fm’s. To correct the sampling bias, we need to either 1)
modify the point sets to restore f(z), or 2) use similarity measures that are insensitive to f(x).

Existing correction methods often reweigh the points in the training set so that its effective
distribution matches the distribution in the test set [34, 73, 152]. Our proposed conditional di-
vergences are insensitive to the biased distributions of the independent variables and thus robust

131

against sampling biases.
Traditionally in statistics and machine learning, sampling bias is considered between the train-

ing set and the test set. In contrast, we consider problems consisting of a large number of point
sets, and our goal is to learn from the sets themselves. This extension raises many important chal-
lenges, including how to find a common basis to compare all pairs of distributions, how to deal
with unobserved segments of distributions, and how to design efficient algorithms.

To our knowledge, this is first time sampling bias is addressed in the context of learning from
sets of points. Algorithms such as [17, 65, 76, 112, 120, 130, 131] all directly compare the joint
distributions of the observed points, making them susceptible to sample bias. [128] proposed the
use of conditional divergence, yet sampling bias was still not considered.

8.3 Conditional Divergences
We propose to measure the dissimilarity between two distributions p(z) = p(x, y) and q(z) =
q(x, y) using the conditional divergence (CD) based on the Kullback-Leibler (KL) divergence:

CDc(x) (p(z)||q(z)) = Ec(x) [KL (p(y|x)||q(y|x))] (8.1)

where c(x) is a user-specified distribution over which the expectation is taken. CD is the average
KL divergence between the conditional distributions p(y|x) and q(y|x) over possible values of x,
and c(x) can be considered as the importance of the divergences at different x’s. CD’s definition is
free of the i.v. distributions p(x) and q(x), which are vulnerable to sampling biases. By definition,
CD has a lot in common with the KL divergence: it is non-negative, and equals zero if and only
if p(y|x) = q(y|x) for every x within the support of c(x). CD is also not a metric and not even
symmetric.

In the form of (8.1), CD is hard to compute because the divergences KL (p(y|x)||q(y|x)) are
not available for arbitrary continuous distributions. Also note that c(x) is a distribution specified
by the user. To make CD more accessible, we can rewrite it as

CDc(x) (p(z)||q(z)) = Ep(z)
[
c(x)

p(x)

(
ln
p(z)

q(z)
− ln

p(x)

q(x)

)]
. (8.2)

Now, CD is defined in terms of the density ratios of the input distributions and the expectation over
p(z).

An interesting case of (8.2) occurs when we choose c(x) = p(x), which gives the result

CDp(x) (p(z)||q(z)) = KL(p(z)||q(z))− KL(p(x)||q(x)). (8.3)

We can see this special CD is equal to the joint divergence (divergence between joint distributions)
minus the divergence between the marginal distributions of x. Intuitively, CD is removing the effect
of p(x) and q(x) from the joint divergence, so that the net results are free from the sampling bias.
Moreover, when p(x) and q(x) are the same, KL(p(x)||q(x)) vanishes and this CD equals the joint
divergence. In other words, when there is no sampling bias, CDp(x) (p(z)||q(z)) = KL(p(z)||q(z)).

132

8.3.1 Estimation
In this section we give an estimator for CD (8.2). Suppose we have two sets Gp and Gq with
underlying distributions p(z) and q(z) respectively. We can approximate the expectation (8.2) with
the empirical mean and estimated densities:

ĈDc(x) (p(z)||q(z)) =
1

Np

Np∑
n=1

c(xp,n)

p̂(xp,n)

(
ln
p̂(zp,n)

q̂(zp,n)
− ln

p̂(xp,n)

q̂(xp,n)

)
, (8.4)

where Np is the size of Gp, p̂, q̂ are the estimates of p, q.
c(t) is an arbitrary input from the user and we can see that its role is to reweight the log-density-

ratios at different points in Gp. To generalize this notion, we define the generalized conditional
divergence (GCD) and its estimator as the weighted average of the log-density-ratios:

GCDw (p(z)||q(z)) =

Np∑
n=1

w(xp,n)

(
ln
p(zp,n)

q(zp,n)
− ln

p(xp,n)

q(xp,n)

)
(8.5)

ĜCDw (p(z)||q(z)) =

Np∑
n=1

w(xp,n)

(
ln
p̂(zp,n)

q̂(zp,n)
− ln

p̂(xp,n)

q̂(xp,n)

)
(8.6)

Np∑
n=1

w(xp,n) = 1, w(xp,n) ≥ 0,

where w(x) is the weight function and the constraint
∑

nw(xn) = 1 is induced by the fact that

lim
Np→∞

Np∑
n=1

w(xp,n) = lim
Np→∞

1

Np

Np∑
n=1

c(xp,n)

p(xp,n)
= Ep(x)

[
c(x)

p(x)

]
=

∫
c(x)

p(x)
p(x)dx = 1.

To obtain the density estimates p̂, q̂, we use the k-nearest-neighbor (KNN) based estima-
tor [105]. Let the f(z) be the d-dimensional density function to be estimated andZ = {zn}n=1,...,N ∈
Rd be samples from f(z). Then the density estimate at the point z′ is

f̂(z′) =
k

Nc1(d)φdZ,k(z
′)
, (8.7)

where c1(d) is the volume of the unit ball in the d-dimensional space, and φZ,k(z′) denotes the
distance from z′ to its kth nearest neighbor in Z (if z′ is already in Z then it is excluded). This
estimator is chosen over other options such as the kernel density estimation because it is simple,
fast, and leads to a provably convergent estimator as shown below.

By plugging in (8.7) into (8.6), we can get the following estimator for GCD:

ĜCDw (p(z)||q(z)) =

Np∑
n=1

w(xp,n)

(
d ln

φGq ,k(zp,n)

φGp,k(zp,n)
− dx ln

φGq ,k(xp,n)

φGp,k(xp,n)

)
, (8.8)

133

where dx is the dimensionality of the x. We can see that the resulting estimator has a simple form
and can be calculated based only on the KNN statistics φ, which are efficient to compute using
space-dividing trees or even approximate KNN algorithms such as [121]. Also note that even
though the estimator (8.8) is obtained using the density estimator (8.7), its final form only involves
simple combinations of the log-KNN-statistics lnφ. Thus, this GCD estimator effectively avoids
explicit density estimation which is notoriously difficult, especially in high dimensions.

More importantly, the GCD estimator (8.8) has stronger convergence properties than the densi-
ty estimator from which it is derived. Standard convergence results have that the density estimator
(8.7) is statistically consistent only if k/n → 0, k → ∞ simultaneously. However, for estimator
(8.8) convergence can be achieved even for a fixed finite k. This means that we can always use a
small k to keep the nearest neighbor search fast and still get good estimates. Specifically, following
the work of [129, 168], the following theorem can be proved:
Theorem 3. Suppose the density function pairs (p(z), q(z)) and (p(x), q(x)) are both 2-regular
(as defined in [168]). Also suppose that the weight function satisfies limNp→∞w(xp,n) = 0,∀n.
Then the estimator (8.8) is L2 consistent for any fixed k. That is

lim
Np,Nq→∞

E
[
ĜCDw(p(z)||q(z))− GCDw(p(z)||q(z))

]2

= 0 (8.9)

The proof of Theorem 3 is similar to what was used in [168]. The condition lim
Np→∞

w(xp,n) = 0

ensures that the weight function does not concentrate on only a few points. We omit the detailed
proof here. Note that the convergence of GCD does not carry to CD (8.4) because the weight
function w(xp,n) = c(xp,n)

p̂(xp,n)
is no longer deterministic. However, empirically we found that (8.4)

exhibits the behavior of a consistent estimator and produces satisfactory results.

8.4 Choosing c(x)
To use CD, we have to choose the appropriate c(x) or w(x). When learning from point sets, it is
preferable to use the same c(x) to compute the CDs between all pairs of sets, so that they have a
common basis to compare. However, this is not always necessary or possible. Even though the
choice of c(x) and w(x) can be arbitrary, we consider 3 options below.

First, we can let c(x) ∝ 1 so that w(xp,n) ∝ p−1(xp,n) to treat every value of x equally.
The disadvantage is that p−1(xp,n) has to be estimated, which is error prone. We can also use
c(x) = p(x) andw(xp,n) ∝ 1, leading to (8.3). In this case, different pairs of sets can have different
c(x)’s. When the sampling bias is small, these differences might be acceptable considering the
possible errors in w(x) otherwise. Thirdly, c(x) ∝ p(x)q(x) and w(xp,n) ∝ q(xp,n) puts the focus
on regions where both p(x) and q(x) are high. It means that we should put larger weights in dense
regions and avoid scarce regions to get reliable estimates.

One caveat is that the weight function and the log-density-ratios in CD should not use the
same density estimate, otherwise the estimation errors will correlate and cause systematic over-
estimations. Using different estimators can help decouple the errors and avoid accumulation. In
practice, we use the estimator (8.7) with a different k.

134

Some extreme cases of sampling bias are when whole segments of the distribution are missing
from the sample and therefore unobserved. Two sets can even have disjoint supports of x. With
the CD, we can choose c(x) ∝ p(x)q(x) or c(x) ∝ I(p(x)q(x) > 0), where I(·) is the indicator
function, and only compare two sets in their overlapping regions. The result may not be accurate
with respect to the true divergence, but it is still a valid measurement of the differences between
conditional distributions. When f(y|x) only weakly depends on x, this estimate can be an adequate
approximation to the original divergence. If f(y|x) varies drastically for different x’s without any
regularity then only comparing the overlapping regions might be the best we can do.

When two sets have disjoint supports in x, no useful information can be extracted and the
corresponding divergence has to be regarded as missing without further assumptions. Nevertheless,
in our settings where a large number of point sets are available, it is likely that each set will share
its support in x with at least some others to provide a few reliable divergence estimates. We might
be able to infer the divergence between disjoint sets using the idea of triangulation. We shall leave
this possibility for future investigation.

8.5 Discussion
In CD, c(x) conveys prior knowledge about the importance of different x’s. It should be carefully
chosen based on the data, and poor results can happen when the assumptions made in c(x) are not
valid. For example, c(x) ∝ 1 assumes that all the x’s are equally important. This could be a bad
assumption when the supports of two sets do not overlap, because at some x’s one of the densities
will be zero, making the conditional densities f(y|x) not well-defined. Similar problems might
occur in regions where one of the densities is very low. Numerically the estimator can still work
but usually produces poor results. In this scenario, c(x) ∝ p(x)q(x) suits the data better.

The CD estimator (8.8) relies on the KNN statistics φ which is the distance between nearest
neighbors. Usually we use Euclidean distance to measure the difference between points and find
nearest neighbors. However, the estimator does not prevent the use of other distances. In fact,
[105] shows that alternative distances can be used and the consistency results will generally still
hold. A common choice of adaptive distance measure is the Mahalanobis distance [156], which is
equivalent to applying a linear transformation to the random variables. It is even possible to learn
the distance metric for φ in a supervised way to maximize the learning performance. We leave this
possibility as future work.

The estimated conditional divergences can be used in many learning algorithms to accomplish
various tasks. In this paper, we use kernel machines to classify point sets as in [130, 131]. Having
the divergence estimates, we convert them into Gaussian kernels and then use SVM for classi-
fication. When constructing kernels, all the divergences are symmetrized by taking the average
µ(p, q) = d(p||q)+d(q||p)

2
. The symmetrized divergences µ are then exponentiated to get the Gaus-

sian kernel k(p, q) = exp (−γµ(p, q)) and the kernel matrix K, where γ is the width parameter.
Unfortunately, K usually does not represent a valid Mercer kernel because the divergence is not a
metric and random estimation errors exist. As a remedy, we discard the negative eigenvalues from
the kernel matrix K to convert it to its closest positive semi-definite (PSD) matrix K̃. This K̃ then
is a valid kernel matrix and can be used in an SVM for learning.

135

8.6 Experiments

We examine the empirical properties of the conditional divergences and their estimators. The tested
divergences are listed below.
• Full D: Divergence between full unbiased sets as the groundtruth.
• D: Divergence between biased sets.
• D-DV: Divergence between biased sets while ignoring the i.v..
• CD-P,CD-U,CD-PQ: conditional divergences with c(x) ∝ p(x), c(x) ∝ 1, c(x) ∝ p(x)q(x)

respectively between biased sets.
Full D, D, D-DV are estimated using the KL divergence estimator proposed by [168]. Unless
stated otherwise, we use k = 3 for GCD estimation using (8.8), and use k values between 30 and
50 to compute the weight function.

We consider two types of sampling biases. The first type creates different f(x)’s for different
sets, yet they still share the same support of x as the original unbiased data. Based on the first
type, the second type of sampling bias is more extreme and can hide certain segments of the true
distributions, and thus causes different sets to have different supports of x. We call the resulting
test sets from these two sampling biases uneven sets and partial sets respectively.

In order to evaluate the quality of the bias correction by the CDs, we use controlled sampling
biases in our experiments. The original point set data are collected from real problems without any
sampling bias. Then we resample each set to create artificial sampling biases. By doing this, we
can compare the results using the biased sets to the divergences using the unbiased data which is
the groundtruth.

An SVM is used to classify the point sets using the method described in Section 8.5. When
using the SVM, we tune the width parameter γ and the slack penalty C by 3-fold cross-validation
on the training set.

8.6.1 Synthetic Data

Estimation Accuracy

We generate synthetic data to test the accuracy of the proposed conditional divergence estimators.
The data set consists of 2-dimensional (one as i.v. and one as d.v.) Gaussian noise along two
horizontal lines as the two classes, as shown in Figure 8.2a and 8.2b. The Gaussians have fixed
spherical covariance, and the mean of the blue class is slightly higher than the red class, resulting
in an analytical KL divergence of 0.5. Then the i.v. (x axis) is resampled to create sampling bias
and the red and blue curves show the resulting marginal densities fred(x), fblue(x). The task is to
recover the true divergence value 0.5 from this biased sample. We vary the sample size to see
the empirical convergence, and the results of 10 random runs are reported. The shortcut for this
problem is to ignore the i.v., but we do not let the estimators take it and force them to recover from
the sampling bias.

Figure 8.2a shows the results on the uneven sets. As expected, the joint divergences are cor-
rupted by the sampling bias and are far from the truth. The three CDs all converge to the true

136

value. Figure 8.2b shows the results on the partial sets. The joint divergence diverges in this case.
CD-P and CD-U are closer but not converging to the correct value, and the reason is that the non-
overlapping supports violate the assumptions made by them. CD-PQ successfully achieved the
true value. This shows the advantage of only measuring CD within the overlapping region in this
example. Overall, the CDs are effective against sampling bias and the estimators converge to the
true values.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.1

−0.05

0

0.05

i.v.

d.
v.

10
2

10
3

10
4

10
5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample Size

E
st

im
at

es

Truth
D
CD−P
CD−U
CD−PQ

(a) Uneven

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.1

−0.05

0

0.05

i.v.

d.
v.

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

7

8

Sample Size

E
st

im
at

es

Truth
D
CD−P
CD−U
CD−PQ

(b) Partial

Figure 8.2: Estimated divergences on the synthetic data.

Handling Point Sets

Here we test the estimators using a large number of point sets. The full data of two classes are
shown in Figure 8.4a. To create partial sets, we use a sliding window, whose width is half of the
data’s span, to scan the full data and at each position put the points within the window together as a
set. The uneven sets are then created by combining the partial sets with a small number of random
samples from the original data. 100 sets are created for each class and each set contains 200− 300
points.

This data set is more challenging: the marginal distribution of d.v. cannot differentiate the two
classes; the conditional distributions f(y|x) are dependent on x; near the center of the data the
conditional distributions of the two classes are very close. The different divergence matrices on
the uneven sets are shown in Figure 8.3, in which we sorted the sets according to their classes and

137

window positions to show the structures. We see that the joint divergence is severely affected by
the sampling bias, while the CDs are quite insensitive. The result of CD-U is especially impressive:
the similarity structure of the original data is perfectly recovered. Figure 8.4 shows the results on
the partial sets. The joint divergence is now dominated by the sampling bias. CDs again are able
to recover from this severe disruption and achieve reasonable results. The result of CD-PQ is the
cleanest on this data set.

Full D D−DV D CD−P CD−U CD−PQ

Figure 8.3: Divergences on the uneven sets. The goal is to recover the “Full D” given only the
biased sets.

(a) Original data.

D CD−P CD−U CD−PQ CD−P−C CD−U−C CD−PQ−C CD−PQ−SSC

(b) Divergences

Figure 8.4: Divergences on the partial sets. The goal is to recover the “Full D” result shown in
Figure 8.3.

8.6.2 Season Classification
In this section we use the divergences in SVM to classify real world point sets generated by sensor
networks. We gathered the data from the QCLCD climate database at NCDC 1. We use a subset
of QCLCD that contains daily climatological data from May 2007 to May 2013 measured by
1, 164 weather stations in the continental U.S. Each of these weather station produces various
measurements such as the temperature, humidity, precipitation, etc, at its location. We aggregate
these data into point sets, so that each set contains the measurements from all stations in one week.

We consider the problem of predicting the season of a set based on the average temperature
measurement. Specifically, we want to know if a set corresponds to Spring or Fall based on the
average temperatures over the U.S. Note that classifying Summer and Winter would be too easy,
while differentiating Spring and Fall can be challenging since they have similar average tempera-
tures. Nevertheless, it is still possible based on the geographical distribution of the temperatures.
Figure 8.5 shows the temperature maps in a first week of March and a first week of November.

1http://www.ncdc.noaa.gov

138

http://www.ncdc.noaa.gov

Again, we create uneven and partial sets based on the original data by randomly positioning
a full-width window whose height is 20% of the data’s vertical span, as shown in Figure 8.5.
This injection of sampling bias is simulating the scenario where we only have a sensoring satellite
orbiting parallel to the equator. In this problem, the location is the i.v. and the temperature is the
d.v.. This procedure gives us 160 3-dimensional (latitude, longitude, temperature) point sets with
sizes around 2, 000.

(a) Mar (b) Mar - Uneven

(c) Nov (d) Nov - Uneven

Figure 8.5: Example temperature maps of the U.S. from the QCLCD. (a) and (c) are the original
data. (b) and (d) are the artificially created uneven data.

In each run, 20% of the random point sets are used for training and the rest are used for testing.
Classification results of 10 runs are reported in Figure 8.6. On the uneven sets, we see that both CD-
U and CD-PQ are able to recover from the sampling bias and achieve results that are only 3% worse
than the full divergence. On the partial sets, however, the performance CD-U dropped significantly.
This indicates that it can be risky to apply CD in regions where two sets do not overlap. It is
interesting to see that D-DV, which ignores the locations, barely does better than random since
Spring and Fall indeed have similar temperatures. Yet by considering the geographical distribution
of temperatures we can achieve 70% accuracy.

8.6.3 Image Classification

We can also use CDs to classify scene images. We construct one point set for each image, where
each point describes one patch including its location (i.v.) and the feature (d.v.). The OT [5] scene
images are used, which contain 2, 688 grayscale images of size 256× 256 from 8 categories. The
patches are sampled densely on a grid and multiscale SIFT features are extracted using VLFeat
[164]. The points are reduced to 20-dimensions using PCA, preserving 70% of variance.

139

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Full D D−DV D CD−P CD−U CD−PQ

A
cc

ur
ac

y

(a) QCLCD, uneven.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Full D D−DV D CD−P CD−U CD−PQ

A
cc

ur
ac

y

(b) QCLCD, partial.

Figure 8.6: Season classification results on the QCLCD weather data.

Again, we create both uneven and partial point sets by randomly positioning a full-width win-
dow whose height is 60% of the image. By doing this, the injected sampling bias forces a set to
focus on a specific horizontal part of the scene. For instance in a beach scene, the biased observer
focuses either on the sky or the sand, and only see a small part of the rest of the scene. After the
above processing, the full data set contains 2, 688 sets of 20-dimensional points, and the sets’ sizes
are around 1, 600. In the biased data, each partial set has about 950 points and each uneven set has
about 1, 100. In each run, we randomly select 50 images per class for training and another 50 for
testing.

Results of 10 random runs are shown in Figure 8.7. In these results, CDs again successfully
restore the accuracies to a high level even in the face of harsh sampling biases. We see that CD-U
impressively beats the other methods by a large margin on the uneven sets, and is only 1% worse
than the full divergence. CD-PQ is the best on partial sets. These results show the CDs’ corrective
power when the correct assumptions are made about the sampling biases.

We also observe that CD-U and CD-P did not perform well on the partial sets, which is expected
since their assumptions were invalid on the data. In general, the impact of sampling bias on this
data set is small (less than 10% decrease in accuracies) because the patch features (d.v.) only
weakly depend on the patch locations (i.v.). In fact, many patch-based image analyses such as [50]
do not include the locations. This might explain why both D-DV and D-P did reasonably well in
this task and the corrected results by CD-PQ are only slightly better.

8.7 Summary
In this paper we described various aspects of dealing with sampling bias when learning from point
sets. We proposed the conditional divergence (CD) to measure the difference between point sets
and alleviate the impact of sampling bias. An efficient and convergent estimator of CD was pro-
vided. We then discussed how to deal with various types of sampling biases using CD. In the
experiments we show that these methods are effective against sampling bias on both synthetic and

140

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Full−D D−DV D−P CD−P CD−U CD−PQ

A
cc

ur
ac

y

(a) Image, uneven.

0.75

0.8

0.85

0.9

Full−D D−DV D−P CD−P CD−U CD−PQ

A
cc

ur
ac

y

(b) Image, partial.

Figure 8.7: Image classification results on OT.

real data.
Several directions can be explored in the future. We can extend the definition of conditional di-

vergence from KL divergence to the more general Rényi divergences. The generalized conditional
divergences provide the possibility of learning the weights of the density ratios in a supervised
ways in order to maximize the discriminative power of the resulting divergences. The distance
between points used in estimating the CDs could also be learned. Finally for extreme cases that
cause missing divergences, we may infer them by exploiting the relationships among the sets using
low-rank matrix completion techniques described in Chapter 6.

141

Chapter 9

Conclusion and Future Directions

Many real world problems generate a large amount collective data that are organized by groups.
To effectively learn from them we need new tools from machine learning. How and what we can
learn from collective data? In this thesis, we describe the research we have conducted in answering
this question.

We considered different types of collective data and different ways to approach them. The first
type consists of groups of discrete points. These groups can naturally be reduced to vectors and
we proposed two novel factorization models to learn from them. The first model, called Bayesian
probabilistic tensor factorizations, is able to capture the temporal dynamics of the data, and uses
Bayesian techniques to avoid overfitting and parameter tuning. The second model direct robust
matrix factorization addresses the outliers in the data, and seek to find robust factors/subspaces as
well as identify the outliers. Both of these methods are simple and efficient for practical usages.

The main focus of this thesis, however, is on the more commonly encountered collective data:
groups of real-valued multidimensional points. We developed both generative and discriminative
methods to learn from them. From the generative perspective, we can first learn the generating
process of the data and then use it to accomplish various learning tasks. Motivated by the group
anomaly problem, and facilitated by the topic modeling techniques, we developed two flexible
genre models to characterize how a collective data set was generated. We further designed several
scoring functions based on these models to find different types of group anomalies.

We also took the kernel approach to learn from collective data discriminatively. Thanks to
the newly proposed non-parametric divergence estimators, we can derive a new class of consis-
tent and efficient kernel estimators for collective data. These kernels achieved the state-of-the-art
performances in image classification task. Further efforts were made to study different ways of
constructing Mercer kernels from the raw divergences in order to exploit the information in the
divergence matrices.

We then addressed several practical problems in the kernel methods. The kernel estimators in
this work, though relatively efficient, are still slow in practice. In order to accelerate, we studied
different ways of reducing sizes of the groups, and discovered that k-Means was able to condense
the information in the original groups into much smaller ones. As a result, the computation can be
orders-of-magnitude faster and the learning performance can be preserved. The second practical
issue we considered was the sampling bias. In the presence of sampling bias, the observed groups

142

of points are not representative of the groups’ underlying attributes. To solve this problem, we im-
proved the traditional divergences and proposed the conditional divergences, for which an efficient
estimator was also developed. Under certain assumptions, conditional divergences are insensitive
to common sampling biases in data.

The methods we proposed are widely applicable in many real-world problems. In this thesis our
attention is paid primarily to the scientific discovery process. We developed automatic discovery
and learning systems for data sets from astronomy and physics based on the research in this thesis.
This system facilitates the collaboration between us and the scientists by presenting the learning
results to and collecting feedbacks from the experts. We believe this is the first step in building
more powerful systems in the future.

The majority of the research in this thesis depends on the assumption that the points in a group
are either exchangeable or i.i.d. samples from the underlying distribution. As of now this assump-
tion has been prevailing in various areas including text modeling and computer vision, and has
achieved great successes. Nevertheless, in the future we would like study the particularly inter-
esting case of structured groups, in which points dependent on other points. For example, we can
consider the Markovian dependencies between words in the same document, or between patches
in the same image. With these additional characterizations of data, better results on learning from
collective data can be expected.

There are a lot of other problems that remain to be studied based on this work. For exam-
ple, considering that real-world data sets almost always contains outliers, we wish to make our
methods robust so that the results are more reliable. This requires the development of robust top-
ic models and kernel estimators. We also want to expanded the research to situations where the
points are functions. This is quite common in astronomy where a spectrum is considered as a noisy
observations of the object’s underlying characteristic spectral function within a certain wavelength
range. Finally, continuous effort has to be made in improving the algorithms’ speed to gain actual
practicality.

We believe that our current work is just a beginning and much remains to be done in the future.
Learning from collective data directly has been a less active topic in machine learning probably be-
cause it requires a large amount of computational resources and the mathematical representations
of the problems are less concise and elegant than the point-wise learning. However, the vast ad-
vancements of computer hardware and parallel computing tools have largely cleared the obstacles
and it is interesting and useful and further explore this realm.

143

Bibliography

[1] Dimitris Achlioptas, Frank Mcsherry, and Bernhard Schölkopf. Sampling techniques for
kernel methods. In Advances in Neural Information Processing Systems (NIPS), 2002. 6.2

[2] Amr Ahmed and Eric P. Xing. Dynamic non-parametric mixture models and the recurrent
chinese restaurant process. In Proceedings of SDM 2008, 2008. 2.5

[3] Hirotugu Akaike. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 1974. 4.4.1

[4] Martin S. Andersen and Lieven Vandenberghe. Support vector machine training using ma-
trix completion techniques. Technical report, University of California, Los Angeles, 2010.
6.2

[5] A.Oliva and A. Torralba. Modmodel the shape of the scene: a holistic representation of
spatial envelope. International Journal of Computer Vision (IJCV), 42, 2001. 7.5.1, 8.6.3

[6] Francis R. Bach. Graph kernels between point clouds. In ICML, 2008. 1.4

[7] Francis R. Bach and Michael I. Jordan. Predictive low-rank decomposition for kernel meth-
ods. In International Conference on Machine Learing (ICML), 2005. 6.2

[8] Y. Bai, L. Guo, L. Jin, and Q. Huang. A novel feature extraction method using pyramid
histogram of orientation gradients for smile recognition. In ICIP, 2009. 5.1

[9] Robert Bell, Yehuda Koren, and Chris Volinsky. The bellkor 2008 solution to the netflix
prize, 2008. Available at www.research.att.com/˜volinsky/netflix/. 2.2

[10] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA 02178-
9998, second edition, 1999. 2.4.2

[11] Jacob Bien and Robert Tibshirani. Prototype selection for interpretable classification. The
Annals of Applied Statistics, 2011. 7.4.2

[12] M.B. Blaschko and T. Hofmann. Conformal multi-instance kernels. In NIPS Workshop on
Learning to Compare Examples, 2006. 1.4

[13] David M. Blei and John D. Lafferty. Correlated topic models. In NIPS, 2006. 1.3.3, 4.3

[14] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. JMLR, 3:
993–1022, 2003. 1.3.2, 2.5, 4.1, 4.2, 4.2

[15] P. Bloomfield and W. L. Steiger. Least Absolute Deviations: Theory, Applications, and
Algorithms (Progress in Probability). Birkh’́auser Boston, Mass, USA, 1983. 1.2.3, 3.1,

144

3.1.1

[16] Liefeng Bo and Cristian Sminchisescu. Efficient matching kernels between sets of features
for visual recognition. In Neural Information Processing Systems (NIPS), 2009. 7.2.1

[17] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest neighbor based image
classification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2008. 7.1, 7.2, 7.2.1, 7.2.1, 7.2.2, 7.2.2, 7.5, 8.1, 8.2

[18] A. Bosch and and X. Munoz A. Zisserman. Image classifcation using random forests and
ferns. In International Conference on Computer Vision, 2007. 7.5

[19] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Scene classification using a hybrid
generative/discriminative approach. IEEE Trans. PAMI, 30(4), 2008. 1.2, 5.6, 5.6.3

[20] George Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series Analysis: Forecast-
ing and Control. Pretice-Hall, 1994. 2.1

[21] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and J’́org Sander. Lof: Identify-
ing density-based local outliers. In ACM SIGMOD Record, 2000. 3.1, 4.3

[22] E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? preprint,
2009. 1.2.3, 3.1, 3.1.1, 3.3, 3.3, 3.5, 3.5.1, 3.5.1

[23] Emmanuel J. Candès and Terence Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Trans. Information Theory, 56(5):2053–2080, 2009. 1.2.1, 3.1.1,
3.3

[24] Gilles Celeux, Didier Chaveau, and Jean Diebolt. Stochastic version of the em algorithm:
An experimental study in the mixture case. J. of Statistical Computation and Simulation,
55, 1996. 4.5.1

[25] Philip K. Chan and Matthew V. Mahoney. Modeling multiple time series for anomaly de-
tection. In IEEE International Conference on Data Mining, 2005. 4.1, 4.3

[26] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Computing Surveys, 41(3):1–72, 2009. 1.2.3, 3.1, 4.3

[27] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm. 5.6

[28] Gang Chen, Fei Wang, and Changshui Zhang. Collaborative filtering using orthogonal non-
negative matrix tri-factorization. Information Processing & Management, 42:2863–2875,
2009. 2.5

[29] Yutian Chen, Max Welling, and Alex J. Smola. Super-samples from kernel herding. In
Uncertainty in Artificial Intelligence (UAI), 2010. 7.3

[30] Yun Chi, Shenghuo Zhu Yihong Gong, and Yi Zhang. Probabilistic polyadic factorization
and its application to personalized recommendation. In CIKM, 2008. 2.5

[31] Ma Chih-Chao. Large-scale collaborative filtering algorithms. Master’s thesis, National
Taiwan University, 2008. 2.6.2

145

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[32] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Trans. PAMI, 24, 2002. 7.4.2

[33] ANDREW J. CONNOLLY and Alex S. SZALAY. A robust classification of galaxy spectra:
Dealing with noisy and incomplete data. THE ASTRONOMICAL JOURNAL, 117:2052 –
2062, 1999. 3.7

[34] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin Rostamizadeh. Sample selec-
tion bias correction theory. In Algorithmic Learning Theory, 2008. 8.2

[35] Trevor F. Cox and M. A. A. Cox. Mulitidimensional Scaling. Chapman and Hall, 2000. 6.2,
6.4

[36] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR,
pages 886–893, 2005. 5.1

[37] Scott F. Daniel, Andrew Connolly, Jeff Schneider, Jake VanderPlas, and Laing Xiong. Clas-
sification of stellar spectra with local linear embedding. Astronomical Journal, 142:203,
2011. 3.7

[38] Kaustav Das, Jeff Schneider, and Daniel Neill. Anomaly pattern detection in categorical
datasets. In Knowledge Discovery and Data Mining (KDD), 2008. 4.1, 4.3

[39] Kaustav Das, Jeff Schneider, and Daniel Neill. Detecting anomalous groups in categorical
datasets. Technical Report 09-104, CMU-ML, 2009. 4.1, 4.3

[40] B. de Finetti. Funzione caratteristica di un fenomeno aleatorio. Atti della R. Academia
Nazionale dei Lincei, Serie 6. Memorie, Classe di Scienze Fisiche, Mathematice e Naturale,
4:251–299, 1931. 4.1

[41] J. Deng, W. Dong, R. Socher, Li-Jia Li, and Fei-Fei Li. Imagenet: A large-scale hierarchical
image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009. 7.5.5

[42] Frd́éric Desobry, Manuel Davy, and William J. Fitzgerald. A class of kernels for sets of
vectors. In Proceedings of the 13th European Symposium on Artificial Neural Networks,
2005. 1.3.4

[43] Chris Ding, Tao Li, and Michael I. Jordan. Convex and semi-nonnegative matrix factoriza-
tions. IEEE T-PAMI, 32(1):45–55, 2010. 1.2.1, 3.1.1, 3.4.1

[44] David L. Donoho. Breakdown Properties of Multivariate Location Estimators. PhD thesis,
Harvard University, 1982. 3.3

[45] Gabriel Doyle and Charles Elkan. Accounting for burstiness in topic models. In Interna-
tional Conference on Machine Learning, 2009. 1.3.3, 4.3

[46] P. Drineas, A. Javed, M. Magdon-Ismail, G. Pandurangan, R. Virrankoski, and A. Savvides.
Distance matrix reconstruction from incomplete distance information for sensor network
localization. In Sensor and Ad Hoc Communications and Networks, 2006. 2

[47] Petros Drineas and Michael W. Mahoney. On the nyström method for apprxoimating a gram
matrix for improved kernel-based learning. journal of Machine Learning Research (JMLR),

146

6:2153–2175, 2005. 6.2

[48] C. Eckart and G Young. The approximation of one matrix by another of lower rank. Psy-
chometrika, 1:211–218, 1936. 3.1.1

[49] Charles Elkan. Using the triangle inequality to accelerate k-means. In International Con-
ference on Machine Learning (ICML), 2003. 7.4.3, 7.6

[50] Li Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene cate-
gories. IEEE Conf. CVPR, pages 524–531, 2005. 1.2, 1.3.3, 1.3.5, 4.3, 4.7, 4.8.2, 5.1, 5.6.3,
7.1, 8.6.3

[51] Shai Fine and Katya Scheinberg. Efficient svm training using low-rank kernel representa-
tions. Journal of Machine Learning Research (JMLR), 2:243–264, 2001. 6.2

[52] Arvind Ganesh, Zhouchen Lin, John Wright, Leqin Wu, Minming Chen, and Yi Ma. Fast
algorithms for recovering a corrupted low-rank matrix. In International Workshop on Com-
putational Advances in Multi-Sensor Adaptive Processing, 2009. 3.5

[53] Salvador Garcı́a, Joaquı́n Derrac, José Ramón Cano, and Francisco Herrera. Prototype
selection for nearest neighbor classification: Taxonomy nd empirical study. IEEE Trans.
PAMI, 34, 2012. 7.3

[54] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alter-
natives. In CoLT, 2003. 1.4

[55] Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, and Alex J. Smola. Multi-instance
kernels. In ICML, 2002. 1.4, 7.2, 7.2.1

[56] Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85(410):398–409, 1990.
2.4.2

[57] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Anal-
ysis. Chapman and Hall/CRC, 2003. 4.5, 4.5.1

[58] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Trans. PAMI, 6:721 – 741, 1984. 4.1, 4.5.1

[59] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression. Springer,
1991. 1.2

[60] Lise Getoor and Ben Taskar, editors. Introduction to statistical relational learning. MIT
Press, 2007. 1.4

[61] M. Goria, N. Leonenko, V. Mergel, and N. Inverardi. A new class of random vector entropy
estimators and its applications in testing statistical hypotheses. Journal of Nonparametric
Statistics, 17:277–297, 2005. 5.4

[62] Thore Graepel. Kernel matrix completion by semidefinite programming. In International
Conference on Neural Networks, 2002. 6.2

[63] Kristen Grauman and Trevor Darrell. The pyramid matching kernel: Discriminative classi-
fication with sets of image features. In Internation Conference on Computer Vision (ICCV),

147

2005. 1.3.4, 5.1, 5.2, 5.6.2, 7.2.1

[64] Kristen Grauman and Trevor Darrell. Approximate correspondences in high dimensions. In
NIPS, 2006. 1.3.4, 5.6

[65] Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernard Schölkopf, and Alex J. Smola.
A kernel method for the two sample problem. In Neural Information Processing Systems
(NIPS), 2007. 1.3.4, 7.1, 7.2, 7.2.1, 7.2.1, 8.1, 8.2

[66] W. Keith Hastings. Monte carlo sampling methods using markov chains and their applica-
tions. Biometrika, 57:97–109, 1970. 2.4.2

[67] Douglas M Hawkins, Li Liu, and S. Stanley Young. Robust singular value decomposition.
Technical report, National Institute of Statistical Sciences, 2001. 1.2.3, 3.3

[68] Geoffrey G. Hazel. Multivariate gaussian MRF for multispectral scene segmentation and
anomaly detection. IEEE Trans. Geoscience and Remote Sensing, 38-3:1199 – 1211, 2000.
4.1, 4.3

[69] Matthias Hein and Olivier Bousquet. Hilbertian metrics and positive definite kernels on
probability measures. In AI and Statistics (AISTATS), 2005. 5.5

[70] Matthias Hein, Thomas Navin Lal, and Olivier Bousquet. Hilbertian metrics on probability
measures and their application in svms. In Proceedings of the 26th DAGM Symposium,
2004. 5.5

[71] Nicholas J. Higham. Computing the Nearest Correlation Matrix a Problem From Finance.
IMA Journal of Nummerical Analysis, pages 329–343, 2002. 5.5

[72] Thomas Hofmann. Unsupervised learning with probabilistic latent semantic analysis. Ma-
chine Learning Journal, 2001. 1.2.1, 1.3.2, 2.5, 3.1.1, 4.1, 5.6

[73] Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, and Bernhard
Schölkopf. Correcting sample selection bias by unlabeled data. In NIPS, 2007. 8.1, 8.2

[74] Huber and Peter J. Robust estimation of a location parameter. Annals of Statistics, 53:
73–101, 1964. 1.2.3, 3.1

[75] Tommi Jaakkola and David Haussler. Exploiting generative models in discriminative clas-
sifiers. In NIPS, 1998. 1.3.4

[76] T. Jebara, R. Kondor, A. Howard, K. Bennett, and N. Cesa-bianchi. Probability product
kernels. Journal of Machine Learning Research, 5:819–844, 2004. 1.3.4, 5.2, 5.6, 8.2

[77] Michael I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge, MA,
1999. 4.4

[78] Frederic Jurie and Bill Triggs. Creating efficient codebooks for visual recognition. In
International Conference on Computer Vision (ICCV), 2005. 7.4.2

[79] Qifa Ke and Takeo Kanade. Robust l1 norm factorization in the presence of outliers and
missing data by alternative convex programming. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2005. 1.2.3, 3.3

[80] Mikaela Keller and Samy Bengio. Theme-topic mixture model for document representation.

148

In Learning Methods for Text Understanding and Mining, 2004. 1.3.3, 4.3

[81] Eamonn Keogh, Jessica Lin, and Ada Fu. Hot sax: Efficiently finding the most unusual time
series subsequence. In IEEE International Conference on Data Mining, 2005. 4.1, 4.3

[82] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3), September 2009 (to appear). 2.3

[83] R. Kondor and T. Jebara. A kernel between sets of vectors. In ICML, 2003. 5.2

[84] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering
model. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2008. 2.2

[85] Yehuda Koren. Collaborative filtering with temporal dynamics. In KDD-09, 2009. 1.2.1,
2.1, 2.5

[86] Hans-Peter Kriegel, Peer Kroger, Erich Schubert, and Arthur Zimek. A general framework
for increasing the robustness of pca-based correlation clustering algorithms. In Scientific
and Statistical Database Management Conference (SSDBM), 2008. 1.2.3, 3.1, 3.1.1, 3.3

[87] Brain Kulis, Mátyás Sustik, and Inderjit Dhillon. Learning low-rank kernel matrices. In
International Conference on Machine Learing (ICML), 2006. 6.2

[88] Fernando De la Torre and Michael J. Black. A framework for robust subspace learning.
International Journal of Computer Vision, 54:117–142, 2003. 1.2.3, 3.1, 3.3

[89] Nan Laird. Nonparametric maximum likelihood estimation of a mixing distribution. Journal
of American Statistical Association, 73:805–811, 1978. 4.6

[90] Nan Laird. Empirical bayes estimates using the nonparametric maximum likelihood esti-
mate for the prior. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 55:
211–220, 1982. 4.6

[91] R. M. Larsen. Propack - software for large and sparse svd calculations, 2001. URL http:
//soi.stanford.edu/˜rmunk/PROPACK. 3.2.1, 3.5

[92] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2006. 7.5.1

[93] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401:788–791, 1999. 3.1

[94] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding algo-
rithms. In NIPS, 2006. 1.2

[95] Bastian Leibe and Bernt Schiele. Analyzing appearance and contour based methods for
object categorization. In CVPR, 2003. 5.6.2, 6.6.2

[96] Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Rényi information estima-
tors for multidimensional densities. Annals of Statistics, 36(5):2153–2182, 2008. 5.4

[97] Thomas Leung and Jitendra Malik. Representing and recognizing the visual appearance of
materials using three-dimensional textons. IJCV, 43:29–44, 2001. 5.1

149

http://soi.stanford.edu/~rmunk/PROPACK
http://soi.stanford.edu/~rmunk/PROPACK

[98] Fei-Fei Li, R. Fergus, and P. Perona. Learning generative visual models from few training
examples: an incremental bayesian approach tested on 101 object categories. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Workshop on Generative-
Model based Vision, 2004. 7.5.3

[99] Guoying Li and Zhonglian Chen. Projection-pursuit approach to robust dispersion matri-
ces and principal components: Primary theory and monte carlo. J. of American Statistical
Association, 80(391):759 – 766, 1985. 1.2.3, 3.3

[100] Li-Jia Li and Fei-Fei Li. What, where and who? classifying events by scene and object
recognition. In International Conference on Computer Vision, 2007. 5.6.4, 5.6.4, 6.6.2,
7.5.2

[101] Liyuan Li, Weimin Huang, Irene Yu-Hua Gu, and Qi Tian. Statistical modeling of complex
backgrounds. IEEE Trans. Image Processing, 13(11):1459–1472, 2004. 3.5.2

[102] Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured mixture models of
topic correlations. In ICML, 2006. 1.3.3, 4.3

[103] Jeff Schneider Liang Xiong, Xi Chen. Direct robust matrix factorization for anomaly detec-
tion. In IEEE International Conference on Data Mining (ICDM), 2011. 1

[104] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via efficient l2,1-norm
minimization. In The Twenty-fifth Conference on Uncertainty in Artificial Intelligence
(UAI), 2009. 3.1.1

[105] D. O. Loftsgaarden and C. P. Quesenberry. A nonparametric estimate of a multivariate
density function. The Annals of Mathematical Statistics, 36(3), 1965. 8.3.1, 8.5

[106] David G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91 – 110, 2004. 4.8.2, 5.1

[107] Zhaosong Lu and Yong Zhang. Penalty decomposition methods for l0-norm minimization.
Technical report, Department of Mathematics, Simon Fraser University, 2010. 3.2.1, 3.2.1

[108] R. Luss and A. d’Aspremont. Support vector machine classification with indefinite kernels.
Mathematical Programming Computation, 1(2-3):97–118, 2009. 5.5

[109] Siwei Lyu. Mercer kernels for object recognition with local features. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2005. 5.6, 7.2, 7.2.1

[110] Shiqian Ma, Donald Goldfarb, and Lifeng Chen. Fixed point and bregman iterative methods
for matrix rank minimization. Math. Program., Ser. A, to appear. 3.5.1

[111] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms
for learning large incomplete matrices. Journal of Machine Learning Research, 2009. 1.2.1,
3.1.1, 3.3

[112] Sancho McCann and David G. Lowe. Local naive bayes nearest neighbor for image classi-
fication. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
7.1, 7.2.2, 7.5, 8.1, 8.2

[113] Rosalie C. McGurk, Amy E. Kimball, and Zeljko Ivezic. Principal component analysis of

150

sloan digital sky survey stellar spectra. The Astronomical Journal, 139:1261, 2010. 3.7

[114] Geoffrey J. Mclachlan and Thriyambakam Krishnan. The EM Algorithm and Extensions.
John Wiley and Sons, 1996. 4.4.1

[115] Charles Meneveau. Lagrangian dynamics and models of the velocity gradient tensor in
turbulent flows. Annual Review of Fluid Mechanics, 43:219–45, 2011. 4.8.3

[116] Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949. 2.4.2

[117] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,
and Edward Teller. Equations of state calculations by fast computing machines. Journal of
Chemical Physics, 21:1087–1091, 1953. 2.4.2

[118] Thomas P. Minka. Estimating a dirichlet distribution. http://research.
microsoft.com/en-us/um/people/minka/papers/dirichlet, 2009. 4.5.1

[119] Pedro J. Moreno, Purdy P. Ho, and Nuno Vasconcelos. A kullback-leibler divergence based
kernel for svm classification in multimedia applications. Technical report, HP Lab Cam-
bridge, 2004. 1.3.4, 5.2, 5.6

[120] Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, and Bernhard Schölkopf. Learn-
ing from distributions via support measure machines. In Neural Information Processing
Systems (NIPS), 2013. 7.2.1, 7.2.2, 8.1, 8.2

[121] Marius Muja and David G. Lowe. Fast approximate nearest nneighbor with automatic algo-
rithms configuration. In International Conference on Computer Vision THeory and Appli-
cations (VISAPP), 2009. 5.4, 7.2.3, 7.5, 8.3.1

[122] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In NIPS, 2001. 1, 5.3, 8.2

[123] Minh Hoai Nguyen and Fernando De la Torre. Robust kernel principal components analysis.
In NIPS, 2009. 1.2.3, 3.1

[124] Nam H. Nguyen, Thong T. Do, and Trac D. Tran. A fast and efficient algorithm for low-rank
approximation of a matrix. In STOC, 2009. 3.4.1

[125] X. Nguyen, M.J. Wainwright, and M.I. Jordan. Estimating divergence functionals and the
likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory, To
appear., 2010. 5.2

[126] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: a holistic representation
of the spatial envelope. International Journal of Computer Vision, 42(3), 2001. 4.8.2, 5.6.3,
6.6.2

[127] E. Perlman, R. Burns, Y. Li, and C. Meneveau. Data exploration of turbulence simulations
using a database cluster. In Supercomputing SC, 2007. 4.8.3

[128] Barnabás Póczos. Nonparametric estimation of conditional information and divergences. In
AI and Statistics (AISTATS), 2012. 8.2

[129] Barnabás Póczos and Jeff Schneider. On the estimation of alpha divergence. In AI and

151

http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet
http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet

Statistics (AISTATS), 2011. 1.3.4, 5.4, 8.3.1

[130] Barnabás Póczos, Liang Xiong, and Jeff Schneider. Nonparametric divergence estimation
with applications to machine learning on distributions. In Uncertainty in Artificial Intelli-
gence (UAI), 2011. 1, 5.2, 5.4, 7.2, 7.2.1, 7.2.2, 8.1, 8.2, 8.5

[131] Barnabás Póczos, Liang Xiong, Dougal Sutherland, and Jeff Schneider. Nonparametric
kernel estimators for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012. 1, 7.1, 7.2, 7.2.1, 7.2.2, 7.5, 8.1, 8.2, 8.5

[132] Ian Porteous, Evgeniy Bart, and Max Welling. Multi-hdp: A non-parametric bayesian model
for tensor factorization. In AAAI, 2008. 2.5

[133] Foster Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In International
Conference on Knowledge Discovery and Data Mining (KDD), 2009. 7.4.1, 7.6

[134] Yuan Qi and Thomas P. Minka. Hessian-based markov chain monte-carlo algorithms. In
First Cape Cod Workshop on Monte Carlo Methods, 2002. 2.7

[135] Jianzhao Qin and Nelson H.C. Yung. Scene categorization via contextual visual words.
Pattern Recognition, 43, 2010. 5.6.3

[136] Guoping Qiu. ”indexing chromatic and achromatic patterns for content-based colour image
retrieval. Pattern Recognition, 35, 2002. 1.2

[137] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006. 4.9

[138] Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix factorization for
collaborative prediction. In ICML, 2005. 1.2.1, 2.5, 3.1.1, 6.3

[139] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer-Verlag
New York, LLC, 2nd edition, 2004. 2.4.2

[140] Yasushi Sakurai and Rosalynn Chong. Efficient distribution mining and classification. In
SIAM Data Mining, 2008. 1.3.4

[141] Ruslan Salakhutdinov and Andriy Minh. Probabilistic matrix factorization. In NIPS, 2007.
1.2.1, 2.1, 2.2, 2.7, 3.1.1

[142] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using
markov chain monte carlo. In ICML, 2008. 2.1, 2.4, 2.5, 2.6, 2.6.2

[143] Purnamrita Sarkar, Sajid M. Siddiqi, and Geoffrey J. Gordon. A latent space approach to
dynamic embedding of co-occurrence data. In AISTAT-07, 2007. 2.5

[144] Mikkel N. Schmidt and Shakir Mohamed. Probabilistic non-negative tensor factorization
using markov chain monte carlo. In European Signal Processing Conference (EUSIPCO),
2009. 2.5

[145] I. J. Schoenberg. Metric spaces and positive definite functions. Transactions of the American
Mathematical Society, 44:522–536, 1938. 5.5, 6.4, 1

[146] B. Schölkopf and A. Smola. Learning with kernels : support vector machines, regulariza-
tion, optimization, and beyond. The MIT Press, 2002. 6.4

152

[147] Bernhard Scholkopf, Alexander Smola, and Klaus-Robert Ml̈ler. Kernel principal compo-
nent analysis. In ADVANCES IN KERNEL METHODS - SUPPORT VECTOR LEARNING,
1999. 5.3

[148] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Compu-
tation, 13:1443–1471, 2001. 5.3

[149] Gideon E. Schwarz. Estimating the dimension of a model. Annals of Statistics, 1974. 4.4.1,
4.5.1

[150] D. Scott. On optimal and data-based histograms. Biometrika, 66:605–610, 1979. 5.2

[151] Amnon Shashua and Tamir Hazan. Algebraic set kernels with application to inference over
local image representations. In NIPS, 2004. 1.3.4

[152] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of Statistical Planning and Inference, 90(2), 2000. 8.1,
8.2

[153] Michael Shindler, Alex Wong, and Adam Meyerson. Fast and accurate k-means for large
datasets. In Neural Information Processing Systems (NIPS), 2011. 7.4.3, 7.6

[154] Chanop SilpaAnan and Richard Hartley. Optimized kd-trees for fast image descriptor
matching. In IEEE Conference on Computer Vision and Pattern Recognition, 2008. 7.2.3

[155] Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A hilbert space embedding
for distributions. In Algorithmic Learning Theory (ALT), 2007. 1.3.4, 5.2, 5.6, 7.2, 7.2.1

[156] Springer. Pattern Recognition and Machine Learning. Springer, 2007. 8.5

[157] K. Sricharan, R. Raich, and A. Hero. Empirical estimation of entropy functionals with
confidence. Technical Report, arxiv.org/abs/1012.4188, 2010. 5.2

[158] Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models for
relational data. In Uncertainty in Artificial Intelligence, 2002. 1.4

[159] Michael E. Tipping and Bernhard Schölkopf. A kernel approach for vector quantization
with guaranteed distortion bounds. In AI and Statistics (AISTATS), 2001. 7.4.2

[160] Hanghang Tong, Spiros Papadimitriou, Philip s. Yu, and Christos Faloutsos. Proximity
tracking on time-evolving bipartite graphs. In SDM-08, 2008. 2.5

[161] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning
for interdependent and structured output spaces. In Proceedings of the 21st International
Conference on Machine Learning, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5.
1.4

[162] Tinne Tuytelssars, Mario Fritz, Kate Saenko, and Trevor Darrell. The nbnn kernel. In
International Conference on Computer Vision (ICCV), 2011. 7.3, 7.4.1

[163] Jake VanderPlas and Andrew J. Connolly. Reducing the dimensionality of data: Locally
linear embedding of sloan galaxy spectra. Astronomical Journal, 138:1365, 2009. 3.7

[164] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision

153

arxiv.org/abs/1012.4188

algorithms. http://www.vlfeat.org, 2008. 5.6, 7.5, 7.6, 8.6.3

[165] S.V.N. Vishwanathan, Karsten M. Borgwardt, Imre Risi Kondor, and Nicol N. Schraudolph.
Graph kernels. JMLR, 2004. 1.4

[166] G. Mark Voit. Tracing cosmic evolution with clusters of galaxies. Reviews of Modern
Physics, 77(1):207 – 258, 2005. 1.5, 4.1

[167] C. Wallraven, B. Caputo, and A. Graf. Recognition with local features: the kernel recipe.
In International Conference on Computer Vision (ICCV), 2003. 7.2.1

[168] Qing Wang, Sanjeev R. Kulkarni, and Sergio Verdú. Divergence estimation for multidimen-
sional densities via k-nearest-neighbor distances. IEEE Trans. on Information Theory, 55,
2009. 5.4, 5.5, 7.2.1, 8.3.1, 3, 8.3.1, 8.6

[169] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite
programming. International Journal of Computer Vision (IJCV), 70:77–90, 2004. 6.2

[170] Lior Wolf and Amnon Shashu. Kernel principal angles for classification machines with
applications to image sequence interpretation. Technical report, Hebrew University, School
of CSE, 2002. 1.3.4

[171] Adam Wońica, Alexandros Kalousis, and Melanie Hilario. Distances and (indefinite) kernels
for sets of objects. In IEEE International Conference on Data Mining, 2006. 1.3.4

[172] Liang Xiong, Xi Chen, Tzu kuo Huang, Jeff Schneider, and Jaime Carbonell. Temporal col-
laborative filtering with bayesian probabilistic tensor factorization. In SIAM Data Mining,
2010. 1

[173] Liang Xiong, Barnabás Póczos, and Jeff Schneider. Group anomaly detection using flexible
genre models. In Neural Information Processing Systems (NIPS), 2011. 1, 7.2

[174] Liang Xiong, Barnabás Póczos, and Jeff Schneider. Hierarchical probabilistic models for
group anomaly detection. In AI and Statistics (AISTATS), 2011. 1, 7.2

[175] Liang Xiong, Barnabás Póczos, and Jeff Schneider. Efficient learning from point sets. In
IEEE International Conference on Data Mining (ICDM), 2013. 1

[176] Huan Xu, Constantine Caramanis, and Shie Mannor. Principal component analysis with
contaminated data: The high dimensional case. In Annual Conference on Learning Theory
(CoLT), 2010. 1.2.3, 3.1, 3.4.2

[177] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust pca via outlier pursuit. In
NIPS, 2010. 1.2.3, 3.1, 3.1.1, 3.3, 3.3, 3.4.1, 3.5, 3.5.1, 3.5.3

[178] C. W. Yip, A. J. Connolly, A. S. Szalay, T. Budavari, M. SubbaRao, J. A. Frieman, R. C.
Nichol, A. M. Hopkins, D. G. York, S. Okamura, J. Brinkmann, I. Csabai, A. R. Thakar,
M. Fukugita, and Z. Ivezic. Distributions of galaxy spectral types in the sloan digital sky
survey. The Astronomical Journal, 128:585, 2004. 3.7

[179] C. W. Yip, A. J. Connolly, D. E. Vanden Berk, Z. Ma, J. A. Frieman, M. SubbaRao,
A. S. Szalay, G. T. Richards, P. B. Hall, D. P. Schneider, A. M. Hopkins, J. Trump, and
J. Brinkmann. Spectral classification of quasars in the sloan digital sky survey: Eigenspec-

154

http://www.vlfeat.org

tra, redshift, and luminosity effects. The Astronomical Journal, 128:2603, 2004. 3.7

[180] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society, Series B, 68:49–67, 2006. 3.1.1

[181] Chunjie Zhang, Jing Liu, Qi Tian, Changsheng Xu, Hanqing Lu, and Songde Ma. Image
classification by non-negative sparse coding, low-rank and sparse decomposition. In CVPR,
2011. 1.2, 5.6.4

[182] Manqi Zhao and Venkatesh Saligrama. Anomaly detection with score functions based on
nearest neighbor graphs. In NIPS, 2009. 3.1, 4.3, 4.8.2

[183] Tianyi Zhou and Dacheng Tao. Godec: Randomized low-rank & sparse matrix decomposi-
tion in noisy case. In International Conference on Machine Learning, 2011. 3.4.2

[184] Zhihua Zhou. Multi-instance learning: A survey. Technical report, Department of Computer
Science & Technology, Nanjing University, 2004. 1.1, 1.4

[185] Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candès, and Yi Ma. Stable principal
component pursuit. In International Symposium on Information Theory, 2010. 3.3, 3.3, 3.5,
3.5.1

155

Carnegie Mellon University does not discriminate in admission, employment, or administration of its programs
or activities on the basis of race, color, national origin, sex, handicap or disability, age, sexual orientation,
gender identity, religion, creed, ancestry, belief, veteran status, or genetic information. Futhermore,
Carnegie Mellon University does not discriminate and if required not to discriminate in violation of
federal, state, or local laws or executive orders.

Inquiries concerning the application of and compliance with this statement
should be directed to the vice president for campus affairs,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
telephone, 412-268-2056

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

	1 Introduction
	1.1 Notations
	1.2 Learning from Discrete Data
	1.3 Learning from Continuous, Multidimensional Data
	1.4 Related Fields
	1.5 Challenges in Scientific Data
	1.6 Thesis Overview

	I Learning from Discrete Data
	2 Modeling Temporal Effects by Tensor Factorizations
	2.1 Introduction
	2.2 Preliminaries
	2.3 A Tensor Model for Temporal Data
	2.4 A Bayesian Treatment
	2.5 Related Work
	2.6 Experiments
	2.7 Summary

	3 Handling Outliers by Robust Factorization
	3.1 Introduction
	3.2 Direct Robust Factorization
	3.3 Related Work
	3.4 Discussion
	3.5 Experiments
	3.6 Summary
	3.7 Automatic Novelty Discovery for Astronomy

	II Learning from Multidimensional Data
	4 Generative Models for Collective Data
	4.1 Introduction
	4.2 Background
	4.3 Related Work
	4.4 Multinomial Genre Models
	4.5 Flexible Genre Models
	4.6 Nonparametric Genre models
	4.7 Discussion
	4.8 Experiments
	4.9 Summary

	5 Discriminative Methods for Collective Data
	5.1 Introduction
	5.2 Related Work
	5.3 Problem Definition
	5.4 Nonparametric Kernel Estimation
	5.5 Constructing Mercer Kernels
	5.6 Experiments
	5.7 Summary

	6 Low-Rank Constructions of Mercer Kernels
	6.1 Introduction
	6.2 Related Work
	6.3 Constructing Low-Rank Kernels
	6.4 Constructing Low-Rank Divergences
	6.5 Discussion
	6.6 Experiments
	6.7 Summary

	7 Accelerated Learning by Condensing
	7.1 Introduction
	7.2 Background
	7.3 Related Work
	7.4 Condensing Methods
	7.5 Empirical Evaluation
	7.6 Discussion
	7.7 Summary

	8 Sampling Bias Correction by Conditional Divergences
	8.1 Introduction
	8.2 Background and Related Work
	8.3 Conditional Divergences
	8.4 Choosing c(x)
	8.5 Discussion
	8.6 Experiments
	8.7 Summary

	9 Conclusion and Future Directions
	Bibliography

