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Abstract
In many real-world applications of supervised learning, only a limited number of

labeled examples are available because the cost of obtaining high-quality examples is
high. Even with a relatively large number of labeled examples, the learning problem
may still suffer from limited supervision as the complexity of the prediction function
increases. Therefore, learning with limited supervision presents a major challenge
to machine learning. With the goal of supervision reduction, this thesis studies the
representation, discovery and incorporation of extra input and output information in
learning.

Information about the input space can be encoded by regularization. We first de-
sign a semi-supervised learning method for text classification that encodes the corre-
lation of words inferred from seemingly irrelevant unlabeled text. We then propose
a multi-task learning framework with a matrix-normal penalty, which compactly en-
codes the covariance structure of the joint input space of multiple tasks. To capture
structure information that is more general than covariance and correlation, we study
a class of regularization penalties on model compressibility. Then we design the pro-
jection penalty, which encodes the structure information from a dimension reduction
while controlling the risk of information loss.

Information about the output space can be exploited by error correcting output
codes. Using the composite likelihood view, we propose an improved pairwise coding
for multi-label classification, which encodes pairwise label density (as opposed to label
comparisons) and decodes using variational methods. We then investigate problem-
dependent codes, where the encoding is learned from data instead of being predefined.
We first propose a multi-label output code using canonical correlation analysis, where
predictability of the code is optimized. We then argue that both discriminability and
predictability are critical for output coding, and propose a max-margin formulation
that promotes both discriminative and predictable codes.

We empirically study our methods in a wide spectrum of applications, including
document categorization, landmine detection, face recognition, brain signal classifica-
tion, handwritten digit recognition, house price forecasting, music emotion prediction,
medical decision, email analysis, gene function classification, outdoor scene recogni-
tion, and so forth. In all these applications, our proposed methods for encoding input
and output information lead to significantly improved prediction performance.
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Chapter 1

Introduction

1.1 Motivation

With several decades of development, machine learning has become a fundamental tool in a wide
range of computer-based applications and industrial problems, e.g., natural language processing,
computer vision, computational biology, human-computer interaction, clinical and medical deci-
sions. In all these applications, machine learning enables computers to learn from past experience
to achieve high-quality decision making. In a supervised learning setting, past experience is rep-
resented by a set of labeled training examples, and learning to predict from training examples and
generalizing well on unseen samples is the central goal of learning.

In many real-world situations, there are only a limited number of labeled examples because the
cost of obtaining high-quality labeled examples is high, or because the prediction task is very spe-
cific. Even with a relatively large number of labeled examples, the learning problem may still suffer
from limited supervision as the dimensionality of the input space or the complexity of the predic-
tion function increases. This presents a major challenge to modern machine learning systems:
how to learn effectively from limited supervision. Fortunately, for learning unknown prediction
functions, labeled examples are far from the only source of information: extra information may
be available from a variety of other sources such as unlabeled examples, other related prediction
problems, and domain knowledge. Such extra information can characterize important structural
properties of the input and output space, and when used appropriately, can significantly enhance
the learning process, control overfitting, and improve the prediction performance.

In order to motivate the representation, discovery and incorporation of extra input and output
information in learning, we consider a few examples as follows:
• The Web is an almost unlimited source of unlabeled text. But for a specific text classification

problem, most text available from the Web seems irrelevant, i.e., does not belong to any
target class or follow the distribution of the labeled examples. In this case, can we still learn
some information about the input space from seemingly irrelevant unlabeled text and use it to
improve text classification? Humans can definitely learn a lot about a language by reading a
large amount of text, but what are people actually learning from reading unlabeled text?
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• In many situations we have multiple similar but different tasks to learn, e.g., detecting land-
mines in different landmine fields or face recognition for different subjects. In this case, tasks
usually share the same type of input space due to their commonality, e.g., the basic principle
of landmines or the layout of human faces, and as a result, jointly learning multiple tasks may
be more effective than learning each task independently. When each task has only a limited
number of training examples, can we find a compact way to characterize the joint input space
of multiple tasks so that we can share knowledge among tasks to improve multi-task learning?

• Consider building a classifier on images. Image compression has been studied for decades
and provides us domain knowledge about images, and for example, the energy of real-world
images can be compressed by transforming them to a frequency domain where most of their
energy is concentrated in a few frequencies. Naturally, a model that classifies those images
may only need to operate on a few relevant frequencies and thus also has compacted energy in
the same frequency domain. How can we encode this information into the learning process?

• Dimension reduction techniques are intensively studied and widely used in many applications.
A dimension reduction transforms the original input space into a reduced space, and more
importantly, reveals structure information about the input space by highlighting certain parts
of it. However, directly performing a reduction has the risk of losing relevant information
for a prediction task. Indeed, it is usually hard to know in advance whether the information
discarded by a reduction is relevant to a prediction task. In this case, can we encode the
information conveyed by a dimension reduction but still control the risk of information loss?

• In real-world applications, we often want to predict multiple outputs. For example, an image
can be associated with multiple scenes, and as in a multi-label classification setting, we want
to predict the appearance of different scenes in an image. A common observation here is
that the appearance of different scenes are not independent, e.g., rivers are likely to appear
together with forests but highly unlikely to co-occur with deserts. This is recognized as the
label dependency in multi-label classification. Facing a multi-label classification problem,
will label dependency play an active role in improving classification performance? How can
we extract and incorporate the hidden label dependency structure in the learning process?

1.2 Thesis Overview

With the goal of learning with limited supervision, this thesis studies the representation, discovery
and incorporation of extra input and output information in learning. The organization of this thesis
is summarized in Fig. 1.1 and discussed as follows. In Chapter 1, we present the motivation and
overview of this thesis. In Chapter 2, we provide background material for related research areas.

In Part I (Chapter 3 - Chapter 6), we focus on encoding input information into the learning
process, mainly by regularization. This part consists of the following four chapters:
• In Chapter 3, we start with encoding the covariance and correlation structure of the input

space and propose a semi-supervised learning method for text classification: the semantic
correlation of words, as an intrinsic structure of the language, can be inferred from unlabeled
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Figure 1.1: Organization of the thesis

text and provides strong structure information that can be incorporated into the regularization
of any specific text learning task. As a result, even seemingly irrelevant unlabeled text, such
as text downloaded from the Internet, can be used as an important source of extra information
and encoded into learning to significantly improve the performance of text classification.

• In Chapter 4, we consider encoding the covariance structure of the joint input space when
learning multiple related tasks. In multi-task learning, the joint input space (as well as the
corresponding model parameters) can be represented as a matrix, where rows correspond to
tasks and columns correspond to feature dimensions. Therefore, we design a matrix-normal
regularization penalty that decomposes the full covariance of matrix entries into the Kro-
necker product of row covariance and column covariance, which characterize task relations
and feature representations, respectively. Sparse covariance selection is applied on the in-
verse of both task and feature covariances in order to automatically select task and feature
structures.
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• In Chapter 5, we study how to encode input information that is more general than just the
covariance and correlation structure. We consider learning compressible models, where cer-
tain structure information about the input space is available from domain knowledge and can
be encoded as a compression operation in the regularization penalty to promote model com-
pressibility. Examples of such model compressibility include local smoothness in brain signal
classification and frequency-domain compacted energy in image recognition.

• In Chapter 6, we investigate another common scenario in which the structure information
about the input space is highlighted by a dimension reduction, e.g., a subset of features, a
clustering of low-level features, or a subspace (or manifold) of the input space. In this case,
we want to encode this information (conveyed by the reduction) into learning while control-
ling the risk of losing relevant information during the reduction. We propose the projection
penalty: a reduction of the input space can be viewed as a restriction of the model search to
a certain model subspace, and instead of directly imposing this restriction, we can still search
in the full model space but penalize the projection distance to the model subspace.

Empirical studies in Part I include a broad array of real-world applications such as document
classification, landmine detection, face recognition, brain signal classification, handwritten digit
recognition and house price forecasting, where certain structure information about the input space
can be gained from unlabeled data, related tasks, and domain knowledge. In all these experiments,
our proposed methods for encoding input information significantly outperform a wide range of
semi-supervised learning, multi-task learning, regularization and dimension reduction methods.

In Part II (Chapter 7 - Chapter 9), we focus on encoding output information into the learning
process, mainly by error-correcting output codes. This part contains the following three chapters:
• In Chapter 7, we start by providing a composite likelihood view for a class of multi-label

classification algorithms and then propose an improved pairwise output coding scheme. In
existing pairwise decomposition methods, pairwise label comparisons are widely used as the
subproblems to learn, and prediction for a testing sample is made by voting from all label
comparisons. Inspired by the composite likelihood view, we instead choose pairwise label
density estimations as the subproblems in our coding, and for combining subproblem deci-
sions (i.e., decoding), we design a mean-field approximation that minimizes the notion of
composite divergence and is potentially more robust to inaccurate estimation in subproblems.

• In Chapter 8, we begin to study problem-dependent output coding for multi-label classifica-
tion, where the label encoding is learned from data instead of being predefined (as in pairwise
decomposition). We propose multi-label output coding via canonical correlation analysis:
the label dependency is characterized by the most predictable directions in the label space
and extracted by canonical correlation analysis, and the output code is designed to include
these predictable label directions as the redundant information to correct prediction errors.
Predictions for the output code define a graphical model of labels with both Bernoulli poten-
tials (from classifiers on the original labels) and Gaussian potentials (from regression on the
predictable label directions). Decoding is performed by mean-field approximation.

• In Chapter 9, we first argue that, in addition to predictability, discriminability is also an im-
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Table 1.1: Common Notation

Symbol Definition
D The set of training examples
n The number of training examples
p The number of input variables (i.e., features)
q The number of output variables (i.e., classes or labels)
m The number of tasks
x The vector of input variables
X The n× p input matrix of training examples
y The output variable
y The vector of output variables
Y The n× q output matrix of training examples
w The vector of model parameters
W The matrix of model parameters (usually defined in multi-task learning)
b The intercept term for the model

portant property for multi-label output codes: encodings for different label vectors should be
significantly different from each other, so that the codeword for the correct output will not
be confused with incorrect ones, even under noisy predictions. To this end, we propose a
max-margin formulation for output coding, which promotes both discriminability and pre-
dictability of the generated codewords. We then convert this formulation to a metric learning
problem in the label space, but with an exponentially large number of constraints as encoun-
tered in structured prediction problems. Without a label structure for tractable inference, we
use overgenerating techniques combined with the cutting plane method for optimization.

Empirical studies in Part II include a variety of multi-label prediction problems for music emo-
tion identification, outdoor scene recognition, gene function classification, medical text catego-
rization and email analysis, where certain hidden label dependency structure can be discovered
and exploited. In all these experiments, our proposed multi-label output coding schemes lead to
substantial improvements over a large collection of multi-label prediction algorithms.

Finally, in Chapter 10, we conclude the thesis and discuss future directions.

1.3 Common Notation

In Table 1.1 we show a list of common symbols in this thesis. Symbols that are not specifically
defined in each chapter follow the definition in this table.
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Chapter 2

Background

The work presented in this thesis is based on a broad array of techniques developed in machine
learning and statistics. In this chapter, by reviewing related research areas, we provide background
to understand key concepts in this thesis. For each research area, we first give an introduction and
then present a survey of related work and highlight the connection to this thesis.

2.1 Regularization

2.1.1 Introduction

In supervised learning, our goal is to learn a prediction model (function) using a set of training
examples. This is usually achieved by minimizing an empirical loss function on training examples,
which measures the discrepancy between model predictions and observations in the training set.

Unfortunately, minimizing an empirical loss on training examples may lead to overfitting. Con-
sider the example shown in Fig. 2.1. In Fig. 2.1a, the blue curve represents a function y = f1(x)
and black circles are training examples generated from this function (with random noise added).
The vertical blue lines connecting training examples and the blue curve indicate the distance from
examples to the curve. Our goal is to estimate this unknown function y = f1(x) from observations.
If we define the empirical loss as the sum of squared (vertical) distance to all training examples,
the blue curve y = f1(x) actually has a low empirical loss on the training set, as it is close to all
examples. In this sense, it seems reasonable to minimize the empirical loss to find the true curve.

However, in Fig. 2.1b we show a red curve, representing another function y = f2(x). Surpris-
ingly, this new function f2(x) perfectly passes through every training example and fits the training
set even better than the true function y = f1(x). Note that the true function f1(x) does not fit
training examples perfectly due to the existence of random noise. As a result, if we search for a
curve by minimizing the sum of squared errors, we will choose y = f2(x) as represented by the
red curve. This function is quite different from the true function y = f1(x), and thus if we use it to
predict y on new samples generated from the true function, we will have high prediction errors.

6



(a) The true function and generated samples

(b) The true function and a function that overfits

Figure 2.1: Overfitting

As discussed above, overfitting describes the situation that minimizing the empirical loss on
training samples leads to an estimated function that is significantly different from the true function
and thus predicts poorly on new samples. How can we avoid overfitting? Intuitively, in Fig. 2.1b,
function f2(x) is much more complicated than function f1(x), and according to the principle of
Occam’s razor, one should choose the simplest hypothesis when multiple hypotheses explain the
observations similarly well. Formally, both f1(x) and f2(x) in Fig. 2.1b can be represented by
polynomials, and a function like f2(x) generally has larger coefficients in its polynomial represen-
tation than a function like f1(x). As a result, controlling the complexity of the function (or more
specifically the magnitude of the coefficients) can potentially rule out functions like f2(x).
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Regularization formalizes this idea for preventing overfitting, in which we minimize the em-
pirical loss on the training set plus a regularization penalty that measures the complexity of the
model. Consider a set of n training examples {xi, yi}ni=1, where each xi ∈ Rp is a p-dimensional
feature vector and each yi is a scalar response variable. In regression we have yi ∈ R and in binary
classification we have yi ∈ {0, 1}. A general formulation for regularization is:

argmin
w

n∑
i=1

L(yi,xi,w) + λJ(w) (2.1)

where L() is the empirical loss measuring the discrepancy of model prediction on each training
example (xi, yi), and J() is a regularization penalty on the model parameters w. A classical
example of regularization is ridge regression [TA77], which fits a linear regression model:

argmin
w∈Rp,b

n∑
i=1

(yi −wTxi − b)2 + λ||w||22 (2.2)

where w is the p-dimensional vector of model coefficients, b is the intercept term, ||w||2 is the `2-
norm penalty on w, and λ is the regularization parameter controlling the strength of regularization.
In this equation, we minimize the sum of squared errors on training examples plus the regulariza-
tion penalty ||w||22 that measures the magnitude of coefficients (in terms of `2 norm). As a result,
ridge regression as (2.2) will control the empirical loss as well as shrink the model coefficients.

Both the empirical loss and the penalty term in (2.2) can be replaced by other functions. For
example, if the `2 norm penalty is replaced by the `1 norm, we have the lasso problem [Tib96]:

argmin
w∈Rp,b

n∑
i=1

(yi −wTxi − b)2 + λ||w||1 (2.3)

Penalizing the `1 norm ||w||1 will also shrink the model coefficients as penalizing ||w||22 does,
but penalizing ||w||1 also leads to sparse estimation: some coefficients of the estimated w will be
shrunk to exactly zeros. Similarly, the sum of squared errors in (2.2) and (2.3) can be replaced by
other empirical loss functions such as the hinge loss in SVM [BGV92, CV95] for classification.

2.1.2 Survey

Initially proposed to solve ill-posed problems [TA77], regularization is a principled way to con-
trol model complexity and prevent overfitting in learning and has been the focus of statistics and
machine learning for decades [HTF01]. Regularization seeks a trade-off between fitting the obser-
vations and reducing the model complexity, which is justified by the minimum description length
(MDL) principle in information theory [Ris78] and the bias-variance dilemma in statistics [Sul86].
Classical examples of regularization include ridge regression [TA77] in statistics and support vec-
tor machines [BGV92, CV95] in machine learning, which correspond to minimizing either squared
loss or hinge loss with `2 regularization. Since the introduction of lasso [Tib96], `1 regularization
has become very popular for learning in high-dimensional spaces. A fundamental assumption of
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(a) Channel coding

(b) Error-correcting output codes

Figure 2.2: Channel coding and error-correcting output codes

`1 regularization is model sparsity. Penalizing the `1 norm of model coefficients leads to sparse
estimation, which corresponds to selecting relevant features and have the advantage of being easy
to interpret and good generalization ability in high-dimensional problems.

Recently, designing informative regularization has been one of the main approaches for multi-
task learning [AEP07], transfer learning [RNK06] and semi-supervised learning [BNS06]. The
key idea is to encode information from related tasks, source domains and unlabeled data into
the regularization penalty. Also, additional structure assumptions on model coefficients can be
imposed via `1 regularization. Fused lasso [TSR+05] includes an `1 penalty on the differences
of successive model coefficients and leads to piecewise constant estimations. Elastic net [ZH05]
combines `1 and `2 norms to address the issue of correlated coefficients, which is also the focus
of OSCAR [BR08]. Group lasso [YL06] defines group structures and adds further restrictions on
the model sparsity: model coefficients in the same group tend to be set to zero together. Structured
sparsity [HZM09] generalizes the group lasso to allow other structured assumptions on model
sparsity, i.e., not all sparse patterns are equally likely and we prefer some of them to others.

Regularization is the primary methodology used in Part I (Chapter 3-Chapter 6) of this thesis:
we encode information about the input space by designing a variety of regularization penalties.

2.2 Error-Correcting Output Codes

2.2.1 Introduction

The idea of error-correcting output codes comes from channel coding [CT91, CF07]. In chan-
nel coding, our goal is to reliably transmit a message y through a noisy channel that can alter
the message. In order to achieve reliable communication, as shown in Fig. 2.2a, we encode the
message y into a redundant codeword z, which is sent through the noisy channel. The received
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codeword ẑ may be contaminated during transmission, but it is possible to correctly infer the mes-
sage ŷ using the redundancy encoded in the codeword. Consider a message y = (0, 1, 0) and a
very simple channel coding scheme, for illustration purpose, to repeat each bit in the message, e.g.,
z = (0, 0, 0, 1, 1, 1, 0, 0, 0). Suppose we transmit z through a noisy channel that will only alter up
to one bit, e.g., ẑ = (0, 0, 0, 1, 1, 1, 0, 0,1). Upon receiving ẑ, the receiver can correctly infer the
message ŷ = (0, 1, 0) given the coding scheme and the fact that the channel will not alter more
than one bit. Real-world channel codes are usually much more sophisticated than simply repeating
the message, but the idea of using the encoded redundancy for error correction remains.

In error-correcting output codes (ECOCs), as shown in Fig. 2.2b, predicting an output variable
(or a set of output variables) y is viewed as transmitting a message through a noisy channel, and
the prediction error corresponds to the transmission error. As a result, to correct prediction errors,
we encode the output variable into a redundant codeword z, learn to predict the codeword, and
for a testing example x, we predict its codeword as ẑ and decode the prediction to recover the
output variable. ECOCs are mainly designed for multi-class classification problems. For example,
consider a 4-class problem and a set of n training example {xi, yi}ni=1 where xi ∈ Rp is a feature
vector and yi ∈ {c1, c2, c3, c4} is the class assignment for example i. For illustration, consider
one-vs-one decomposition, which is one of the most popular ECOCs. In a 4-class problem, the
encoded codeword z is defined as the collection of simpler one-vs-one decision subproblems:

z = (c1 vs c2, c1 vs c3, c1 vs c4, c2 vs c3, c2 vs c4, c3 vs c4) (2.4)

For a class y ∈ {c1, c2, c3, c4}, the subproblem ci vs cj takes value 1 if y = ci, takes value −1 if
y = cj , and takes value 0 otherwise. Therefore, the encodings for the four classes are:

z(c1) = (1, 1, 1, 0, 0, 0)

z(c2) = (−1, 0, 0, 1, 1, 0)

z(c3) = (0,−1, 0,−1, 0, 1)

z(c4) = (0, 0,−1, 0,−1,−1)

For predicting the codeword, a binary classifier is learned for each subproblem ci vs cj using the
given training examples {xi, yi}ni=1, but only those belonging to ci or cj are used. The classifier
can only output 1 (if ci is predicted) or −1 (if cj is predicted), but not 0. For a new example x, all
classifiers together predict a codeword ẑ, which only contains 1 and−1, e.g, ẑ = (1, 1, 1, 1,−1, 1).

For decoding a predicted codeword ẑ, one can compare it to the codeword of each class and
use certain criterion to decide the class, e.g., choosing the class whose codeword is closest to ẑ in
terms of Hamming distance. For example, given ẑ = (1, 1, 1, 1,−1, 1), the closest class codeword
is z(c1) = (1, 1, 1, 0, 0, 0), with a Hamming distance 3. Therefore, the class assignment is c1.

2.2.2 Survey

Error-correcting output codes (ECOCs) offer a general framework for decomposing a multiclass
classification problem into a number of binary classification problems [DB95]. Via ECOCs, a
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multiclass problem can be solved using binary classifiers. More importantly, the binary problems
provide a redundant representation of the multiclass problem. As a result, prediction errors can be
corrected using such redundancy, as studied in channel coding and error-correcting codes [CT91].

The encoding of ECOCs decomposes the multiclass problem into a set of binary problems,
and defines the codeword as the composition of the outcomes of the binary problems. Popular
ECOC decomposition strategies include one-versus-all [DB95], one-versus-one [HT97], random
partitions [ASS01], and partitions obtained by problem-dependent heuristic search [CS02, PRV06].
The decoding of ECOCs decides the class of an example given the prediction on its codeword.
This is achieved by examining all the q candidate classes (for a q-class problem) and choosing the
class that minimizes a distance function [DB95], minimizes a loss function [ASS01], maximizes a
probability function [HT97, PPF04] or optimizes certain other criteria [EPR10] w.r.t. the predicted
codeword.

Error-correcting output codes are the primary methodology used in Part II (Chapter 7-Chapter 9)
of this thesis: we design error-correcting output codes to improve the prediction performance of
multi-label classification, by encoding information about the output space.

2.3 Multi-Label Classification

2.3.1 Introduction

In multi-label classification problems, an object can be associated with a predefined set of multiple
labels, and we want to simultaneously perform classification for all the labels. For example, an im-
age can be associated with multiple scenes (such as rivers, forest, desert, beach, sunset, mountain,
and urban), and in scene recognition we want to detect the appearance of different scenes in an
image. The key difference between this problem and a multiclass classification problem is that any
subset of labels can be true, instead of only one class being true. In this sense, a q-label problem
has 2q possible outputs, as opposed to q possible outcomes in a q-class problem. A key concept in
multi-label classification is label dependency: assignments to labels are usually not independent.
For example, in scene recognition, rivers are likely to appear together with a forest but highly un-
likely to co-occur with a desert. This is one of the main motivations for research in multi-label
classification: independently learning and predicting each label may not be optimal.

In the last decade a wide variety of multi-label classification algorithms have been designed.
For illustration, we review pairwise label ranking [HFCB08] based on one-vs-one decomposition,
which is similar to the one-vs-one decomposition for multiclass ECOCs discussed in Section 2.2.1.
By introducing this method, we can highlight the difference between multi-label and multiclass
problems. As in the multiclass case, we consider a 4-label problem and a set of n training examples
{xi,yi}ni=1 where xi ∈ Rp is a feature vector and yi = (li1, l

i
2, l

i
3, l

i
4)T ∈ {0, 1}4 is the label vector.

For a label vector y = (l1, l2, l3, l4)T , we consider the following one-vs-one subproblems:

z = (l1 vs l2, l1 vs l3, l1 vs l4, l2 vs l3, l2 vs l4, l3 vs l4) (2.5)

The subproblem li vs lj takes value 1 if li = 1 and lj = 0, and takes value −1 if li = 0 and
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lj = 1. Examples that li and lj are both 1 or both 0 are excluded from this subproblem, because
the subproblem is designed to compare two labels. For prediction, a binary classifier is learned for
each subproblem li vs lj using training examples where either li = 1 or lj = 1 (but not both). For
a new example x, the classifier for li vs lj will output a preference order: either li > lj or lj > li.

Now we need to combine subproblem decisions to make a multi-label classification. For a q-
label problem, it is considered computationally intractable to compare classifier outputs to each of
2q possible label vectors. As a result, certain heuristics are usually used. In pairwise label ranking,
the classifier for each subproblem li vs lj contributes a vote to the wining label in the pair. A total
ranking order among labels is obtained by counting how many votes each label obtains.

For a new example, pairwise label ranking is only designed to output a total order over labels.
To obtain classification for labels, a simple strategy is to use a threshold, e.g., labels that win
more than 50% of its comparisons are assigned 1. There are also adaptive calibration techniques,
e.g., [FHMB08], which we will study and empirically compare to in Part II of this thesis.

2.3.2 Survey

Multi-label classification, in which each example is associated with a set of multiple labels, has
received considerable attention from the machine learning community [TKV10]. Problem decom-
position techniques decompose the multi-label classification problem into a set of simpler and
easier-to-learn subproblems, estimate prediction models for the subproblems, and then combine
the predictions from subproblems to make the final classification. Popular choices of subproblems
include one-vs-all decomposition (i.e., the relevance of each individual label) [RK04], one-vs-one
decomposition (i.e., the pairwise comparison between any two labels) [Fur02, HFCB08], a com-
bination of both one-vs-all and one-vs-one decompositions [FHMB08], and conditional relevance
of one label given other labels (e.g., classifier chain methods) [RPHF09, DCH10].

Loosely speaking, problem decomposition methods can be viewed as error-correcting output
codes for multi-label prediction, although encoding and decoding might not be well defined in these
methods. To our knowledge, multi-label compressed sensing [HKLZ09] is perhaps the first output
code formally defined for multi-label prediction, where encoding is based on random projections,
and decoding relies on sparse reconstruction techniques in compressed sensing [Can06, Don06].

Instead of decomposing and learning subproblems individually, another way to handle multi-
label prediction is to jointly model the dependency among all the labels and features using a single
graphical model. Research along this direction includes specifying a conditionally trained undi-
rected graphical model (i.e., CRF) [GM05] or learning the structure of Bayesian networks from
data [ZZ10, ZSM+11] to capture the joint label relation (conditioned on features). In addition,
researchers have also concentrated on adapting specific models (such as decision trees, SVMs,
KNNs, neural networks, and boosting) to directly produce multi-label predictions. An overview
on a variety of methods for adapting specific models can be found in [TKV10].

A related area to multi-label classification is label ranking [TKV10, GV10, DMS04, HFCB08],
where the goal is to predict the total order of labels given an example. Multi-label classification
and label ranking are closely related tasks: a ranking order of labels can be turned into a classi-
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fication if an additional threshold is obtained [FHMB08], and on the other hand, a classification
model can provide a ranking order if it can offer continuous outputs on label relevance. Also, both
multi-label classification and label ranking can benefit from capturing the label dependency. As
a result, methods and models proposed for label ranking can be adapted to perform multi-label
classification, and vice versa.

In Part II (Chapter 7-Chapter 9) of this thesis we design output codes for multi-label classifica-
tion. Many existing multi-label prediction methods, such as those in [HFCB08, FHMB08, ZZ10,
HKLZ09, RPHF09, TV07], are studied as competitors in our experiments.

2.4 Semi-Supervised Learning

Motivated by the limited number of labeled examples and wide availability of unlabeled data in
many applications, semi-supervised learning studies the use of unlabeled data in supervised learn-
ing problems and has recently become a very active research area in machine learning [Zhu06,
CSZ06]. The key question in semi-supervised learning is what can we gain from unlabeled data
and under what assumptions and conditions this information can help supervised learning. For
example, a very straightforward method for semi-supervised learning based on “change of repre-
sentation” [Zhu06, CSZ06] is to apply an unsupervised learning algorithm (e.g., principal compo-
nent analysis) on unlabeled data to learn an alternative representation (e.g., principal components),
and then perform supervised learning with labeled examples using the new representation. This
method is effective if the representation obtained by unsupervised learning contains information
needed for the prediction problem, which, however, is not always guaranteed.

During the last decade, many semi-supervised learning methods have been proposed in the
following directions: 1) co-training [BM98] and related methods try to iteratively label unlabeled
samples to augment labeled examples; 2) generative methods [NMTM00] are designed to model
the generative distribution of data, for which unlabeled data can provide important information;
3) methods based on low-density separation [Joa99, SK06] assume that the decision boundary
should lie close to low-density regions, and unlabeled data can be used to estimate the density of
the input space; 4) graph-based methods [BC01, ZGL03] connect labeled examples and unlabeled
samples into a single graph and apply regularization on the graph; and 5) change of representation
methods [CSZ06] learn a new representation from unlabeled data and use it for supervised learning.

In most of the above methods, we assume that the unlabeled data belong to the same tar-
get classes or share the same generative distribution with the labeled examples. As indicated in
[RBLN07], however, unlabeled data in real-world applications do not necessarily follow this as-
sumption, and methods based on this assumption may have limited applicability in practice. As
a result, some algorithms avoid directly using unlabeled examples in model training and instead
focus on finding a useful representation from unlabeled data even when the unlabeled data are not
from the target classes or generative distribution of labeled examples [RBLN07, AZ05].

In Chapter 3, we propose a semi-supervised learning method for text classification, where even
seemingly irrelevant unlabeled text can be used to improve any specific prediction task.
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2.5 Multi-Task Learning

In many situations we need to learn multiple different but similar tasks, e.g., detecting landmines
in different landmine fields or recognizing faces for different subjects. Notice that multiple tasks
usually share the same input space, e.g., the input for landmine detection has a unified format,
and images for face recognition have all been properly sized, scaled and transformed. Also, tasks
usually have some underlying commonality, e.g., the basic principle of landmines or the layout of
human faces. As a result, learning multiple tasks jointly may be more effective than learning each
task independently, especially if each task has only a limited number of training examples.

In multi-task learning, the key question is how to share knowledge among tasks. A brute force
approach for knowledge sharing is to pool the training examples from all tasks together and learn
them as one single task. Depending on the situation, this method may perform very poorly. In
landmine detection, different landmine fields can present different geographical conditions or may
even have different type of landmines. In face recognition, pooling training examples together we
may learn a model for detecting a general human face but not detectors for individual subjects.

Multi-task learning has been an active research area for more than a decade [Bax95, TO96,
Car97]. For joint learning of multiple tasks, connections need to be established to couple re-
lated tasks. One approach is to find the feature structure shared by tasks. Along this direction,
researchers propose to infer the feature structure by performing covariance estimation [AEP07,
AMPY07], principal components [AZ05, CTLY09] and independent components [ZGY06] on the
model parameters, to select a common subset of features [BV98, OTJ09], as well as to use shared
hidden nodes in neural networks [Bax95, Car97]. On the other hand, assuming all tasks are equally
similar is risky. Researchers recently began to directly infer the relatedness of tasks and use this
structure to couple the prediction models of different tasks. Efforts towards this direction include
using mixtures of Gaussians [BH03] or Dirichlet processes [XLCK07] to model task groups, en-
couraging clustering of tasks via a convex regularization penalty [JBV08], identifying “outlier”
tasks by robust t-processes [YTY07], and inferring a task similarity matrix [BCW08, YCY+07,
ZY10].

In Chapter 4 of this thesis, we propose a matrix-normal regularization penalty for multi-task
learning to systematically discover and encode both feature structures and task relations.

2.6 Matrix Normal Distributions

The matrix-variate normal distribution is one of the most widely studied matrix-variate distribu-
tions [GN99, Daw81, Dut99]. Consider an m × p matrix W. Since we can vectorize W to be a
mp× 1 vector, the normal distribution on a matrix W can be considered as a multivariate normal
distribution on a vector of mp dimensions. However, such an ordinary multivariate distribution
ignores the special structure of W as an m × p matrix, and as a result, the covariance character-
izing the elements of W is of size mp × mp. This size is usually prohibitive for modeling and
estimation. To utilize the structure of W, matrix normal distributions assume that the mp × mp
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covariance can be decomposed as the Kronecker product Σ⊗Ω, and elements of W follow:

V ec(W) ∼ N(V ec(M),Σ⊗Ω) (2.6)

where Ω is a m ×m positive definite matrix indicating the covariance between rows of W, Σ is
a p × p positive definite matrix indicating the covariance between columns of W, Σ ⊗ Ω is the
Kronecker product of Σ and Ω, M is a m×p matrix containing the expectation of each element of
W, and V ec is the vectorization operation which maps am×pmatrix into amp×1 vector. Due to
the decomposition of the full covariance as the Kronecker product Σ⊗Ω, the number of entries in
the covariance structure is dramatically reduced to m2 + p2 from m2p2. The matrix-variate normal
distribution of an m× p matrix W, parameterized by the mean M, row covariance Ω and column
covariance Σ, has a compact log-density [GN99]:

logP (W) = −mp
2

log(2π)− p

2
log(|Ω|)− m

2
log(|Σ|)− 1

2
tr{Ω−1(W −M)Σ−1(W −M)T}(2.7)

where | | is the determinant of a square matrix, and tr{} is the trace of a square matrix.
Consider a set of n samples {Wi}ni=1 where each Wi is a m× p matrix generated by a matrix-

variate normal distribution as eq. (2.7). The maximum likelihood estimation (MLE) of mean M
is [Dut99]:

M̂ =
1

n

n∑
i=1

Wi (2.8)

The MLE estimators of Ω and Σ are solutions to the following system:

{ Ω̂ = 1
np

∑n
i=1(Wi − M̂)Σ̂−1(Wi − M̂)T

Σ̂ = 1
nm

∑n
i=1(Wi − M̂)T Ω̂−1(Wi − M̂)

(2.9)

It is efficient to iteratively solve (2.9) until convergence, known as the “flip-flop” algorithm [Dut99].
Also, Ω̂ and Σ̂ are not identifiable and solutions for maximizing the log density in eq. (2.7) are

not unique. If (Ω∗,Σ∗) is an MLE estimate for the row and column covariances, for any α > 0,
(αΩ∗, 1

α
Σ∗) will lead to the same log density and thus is also an MLE estimate. This can be seen

from the definition in eq. (2.6), where only the Kronecker product Σ⊗Ω is identifiable. In practice,
the flip-flop algorithm (2.9) is usually used to find a stationary solution.

Matrix normal distributions have also been studied in the Bayesian literature. For example,
it can serve as a prior for Bayesian variable selection in multivariate regression [BV98], where
MCMC is used for sampling from the resulting posterior. Recently, matrix normal distribu-
tions have also been used in nonparametric Bayesian approaches, especially in learning Gaus-
sian Processes (GPs) for multi-output prediction [BCW08] and collaborative filtering [YCY+07,
YLZG09].

In Chapter 4 of this thesis, we use the matrix-normal distribution as a building block to design
our multi-task regularization framework.
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2.7 Compressed Sensing

Compressive sampling [Can06] or compressed sensing [Don06] was recently developed for signal
acquisition and reconstruction, and has received considerable attention [BCNV08]. According to
research in this direction, one can successfully acquire a signal (e.g., an image) from many fewer
measurements than required by the Nyquist-Shannon sampling theory. The key assumption is that
signals like natural images are compressible, i.e., nearly sparse in a compression domain. Under
this assumption, signal acquisition given a few linear measurements on the unknown signal can be
achieved by optimizing the sparsity (via a convex relaxation using `1 norm) of the reconstructed
signal in a compression domain while satisfying the measurement constraints:

min
β
||Wβ||1 (2.10)

subject to Φβ = y

Here β is a p× 1 vector representing the candidate signal. W is a known compression operation.
The n× p matrix Φ = [φ1, . . . ,φn]T is the sensing (projection) matrix [CW08, Don06], whose n
rows correspond to n linear measuring or sensing operations conducted on the unknown signal. A
common choice of Φ is random projections. The n × 1 vector y contains n measurements of the
unknown signal. The idea is to find a compressible signal that is consistent with the measurements.

Recently, compressive sampling has attracted increasing interest in the machine learning com-
munity. In [JC07], researchers use sparse Bayesian regression and active learning to solve the
CS problem in eq. (2.10) and “learn” the optimal projection matrix Φ. Authors in [CJS, ZLW07]
consider classification and regression problems, respectively, where data are compressed and not
directly observable, e.g., only random projections of the data are available.

Chapter 5 of this thesis is an application of the compressed sensing idea in machine learning:
model coefficients can be compressed before being penalized, and model sparsity is only required
in a compressed domain rather than the original space. The focus of this chapter is to study the
use of different compression operations in `1 regularized learning, which incorporates domain
knowledge about the input space and imposes more appropriate inductive bias in the learning
process.

2.8 Canonical Correlation Analysis

Canonical correlation analysis [Hot35, Hot36] is a classical tool for modeling linear associations
between two sets of variables. Consider a set of p variables x ∈ X ⊆ Rp and another set of
q variables y ∈ Y ⊆ Rq. In addition, we have a set of n training samples: D = (X,Y) =
{(x(i),y(i))}ni=1, where X and Y are matrices of size n × p and n × q, respectively. Canonical
correlation analysis finds a pair of projection directions u ∈ Rp and v ∈ Rq such that the cor-
relation between the pair of projected variables uTx and vTy (also called canonical variates) is
maximized. Given the training samples (X,Y) = {(x(i),y(i))}ni=1, this maximization problem can
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be expressed as the following1:

argmax
u∈Rp,v∈Rq

uTXTYv√
(uTXTXu)(vTYTYv)

(2.11)

Since a rescaling of u and v will not change the objective value, two constraints can be added:

uTXTXu = 1 (2.12)
vTYTYv = 1 (2.13)

As a result, maximizing the correlation between the canonical variates can be rewritten as the
following constrained optimization problem:

argmax
u∈Rp,v∈Rq

uTXTYv (2.14)

s.t. uTXTXu = 1

vTYTYv = 1

By formulating the Lagrangian of the above convex optimization problem, the KKT conditions
lead to the following generalized eigenproblems [HSSt04] on u and v:

XTY(YTY)−1YTXu = λXTXu (2.15)
YTX(XTX)−1XTYv = λYTYv (2.16)

The formulations (2.15) and (2.16) provide more than one pair of projection vectors (u,v). By
solving the first d principal eigenvectors (d ≤ min(p,q)), we can obtain d pairs of projection vec-
tors: {(uk,vk)}dk=1. These projection vectors successively maximize the correlation between the
resulting canonical variates, with generalized orthogonality constraints satisfied:

uTkXTXuj = 0, ∀k 6= j

vTk YTYvj = 0, ∀k 6= j

To summarize, given a set of observations (X,Y) = {(x(i),y(i))}ni=1, canonical correlation
analysis will find pairs of projection directions {(uk,vk)}dk=1 to maximize the correlation between
projected variables. We denote this process as:

{(uk,vk)}dk=1 ← CCA(X,Y) (2.17)

A recent overview of CCA with application to learning problems is given in [HSSt04]. Several
variants of CCA have been recently proposed: sparse CCA [WTH09, HST09] enforces the sparsity
of projection vectors and leads to interpretable models; kernel CCA [FL01, HSSt04] handles non-
linear associations between variables; a nonparametric Bayesian extension of CCA, sparse infinite
CCA [RD09], shows good predictive power.

In Chapter 8 of this thesis, CCA is used as a building block to design a multi-label output code,
where predictability of the generated codewords is optimized by CCA-based encoding.

1For simplicity, one usually assumes that data have been centralized such that columns of X and Y have zero
means.

17



Part I

Encoding Input Information
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Chapter 3

Learning with Word Correlation from
Irrelevant Unlabeled Text

3.1 Overview

In this chapter [ZSD08], we consider encoding the covariance and correlation structure of the
input space into learning and propose a semi-supervised learning method for text classification.
We show that the semantic correlation of words, as an intrinsic structure of the language, can be
inferred from unlabeled text and provides structure information that can be incorporated into the
regularization of any specific text learning task. As a result, even seemingly irrelevant unlabeled
text, such as text downloaded from the Internet, can be used to improve text classification.

To start, we first identify the semantic correlation of words1 as a structure of the input space
that can be transferred from unlabeled text. Consider a document classification problem, where we
have only one positive example containing two words {gasoline, truck} and one negative example
containing two words {vote, election}. Most people will agree that a new document with words
{gallon, vehicle} should be classified as positive, although gallon and vehicle have never been
observed in the training set. The key reason is that gallon is the unit of gasoline, and truck is a
type of vehicle. Since the classifier should have positive weights on gasoline and truck (as they
appear in the only positive example), gallon and vehicle are likely to receive positive weights, too.
The semantic correlation of words corresponds to a correlation structure of the model coefficients
and provides a strong inductive bias in the model space. Also, this is an intrinsic structure of the
language and thus will not change dramatically even in irrelevant unlabeled text.

We propose a method to infer the semantic word correlation from seemingly irrelevant unla-
beled text and incorporate it into learning of any specific task. We first extract a large number of
latent topics from unlabeled text, by repeatedly applying bootstrapping and topic modeling. We
then infer the word correlation from the word composition of the extracted topics. The resulting
semantic correlation structure is used in `2-regularization for learning any specific task (as the

1We consider the bag-of-word feature space for simplicity. The proposed method can also be applied to n-gram
feature spaces, and in this case, the semantic correlation of words is replaced by the semantic correlation of n-grams.
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correlation in the Gaussian prior), and helps to control the joint shrinkage of model parameters
in a semantically meaningful way. In an empirical study, we construct 190 different text classi-
fication tasks from a real-world benchmark, and the unlabeled documents are a mixture from all
these tasks. We test the ability of various algorithms to use the mixed unlabeled text to enhance all
classification tasks. Empirical results show that the proposed approach is a reliable and scalable
method for semi-supervised learning, regardless of the fact that for any specific prediction task, the
majority of the unlabeled data is irrelevant.

3.2 Semantic Correlation: Transferable Structure from Unla-
beled Text

3.2.1 Latent Topics and Semantic Structure

Latent topics extracted from unlabeled text might be irrelevant to a particular classification task,
but the composition of these topics in terms of word distribution reveals information about the
semantic structure of the language. Assume a latent topic model [Hof99, BNJ03] of the word
space X, or more generally, a latent variable model characterizing the input space X:

x = Az (3.1)

where x = [x1,x2, . . . ,xp]
T is the p-dimensional vector of input variables, and z = [z1, z2, . . . , zk]

T

represents latent variables in the k-dimensional latent space Z. A is a p × k matrix, representing
a generative process of words from a probabilistic view or a set of linear projections from a deter-
ministic view. For a latent topic model, x corresponds to the bag-of-words vector of a document
divided by the document length, z is the distribution of k latent topics in the document, and A is
the distribution of p words in k latent topics. Various models can be represented by this formula,
including principal component analysis, independent component analysis, sparse coding, and non-
negative matrix factorization. Note that eq. (3.1) does not uniquely identify the decomposition
A and z, and additional constraints and assumptions are usually added in a specific model. For
example, the orthogonality constraint and unit-length constraint are applied to columns of A in
principal component analysis to enforce that each column of A is a basis of the transformed space,
and the non-negativity constraint and sum-to-one constraint are added to columns of A in latent
topics models so that each column represents the distribution of words in one latent topic.

Different documents have different topic distributions, z, and thus different word distributions,
x, but A can be considered an invariant structure of the language. Each p-dimensional column
vector of A denotes the word distribution in a latent topic and serves as an “observation” in the p
dimensional word space, indicating the semantic roles of p words in this topic. Given a large set
of k latent topics represented by k p-dimensional vectors {a(,1), a(,2), . . . , a(,k)}, we can define the
semantic covariance of pwords as follows. Let A denote the matrix formed by treating each vector
a(,t), t = 1, 2, . . . , k as a column, and let a(i,) and a(i,t) denote a row vector and an element of this
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matrix, respectively. The semantic covariance of word i and word j is defined as:

covs(xi,xj) =
1

k

k∑
t=1

(ait − a(i,))(ajt − a(j,)) =
1

k

k∑
t=1

aitajt − a(i,)a(j,) (3.2)

where a(i,) is the mean of the ith row in A. Naturally, the semantic correlation is:

corrs(xi,xj) =
covs(xi,xj)√

covs(xi,xi)covs(xj,xj)
(3.3)

Intuitively, the semantic correlation of two words represents the correlation of their contributions
to the composition of different latent topics.

3.2.2 Comparing Semantic Correlation and Data Correlation

Suppose we observe a set of n documents in the word space X, denoted by an n × p data matrix
DX where each document corresponds to a p-dimensional vector of counts in the bag-of-words
representation. We refer to the correlation between words computed directly from the data matrix
DX as the data correlation. According to eq. (3.1), documents from different sources may have
distinct topic distributions z and thus different word distributions x in the observation space, and
this will lead to different word correlations calculated from observation matrix DX . As a result,
data correlation inferred from unlabeled text may not be useful if the unlabeled text is irrelevant to
the prediction task we want to improve.

Here we show why we expect the data correlation to have limited use across distinct sources,
while we expect the semantic correlation to be transferable. Consider the latent variable model in
eq. (3.1), which relates A to data space X. We focus on semantic covariance and data covariance,
and assume that the bag-of-words vector is divided by the length of the document so that it corre-
sponds to x in eq. (3.1). From eq. (3.1), an input variable xi can be written as xi =

∑k
t=1 aitzt,

and therefore, the data covariance of word i and word j can be expressed as:

cov(xi,xj) = E[(xi − Exi)(xj − Exj)] (3.4)

= E[
k∑
t=1

ait(zt − Ezt)
k∑
t=1

ajt(zt − Ezt)]

=
k∑
t=1

k∑
t′=1

aitajt′E[(zt − Ezt)(zt′ − Ezt′)]

=
k∑
t=1

k∑
t′=1

aitajt′cov(zt, zt′)

From this expression we can see that data covariance is directly related to the covariance among
latent topics. Documents from different sources have different topic distributions and thus different
covariance terms cov(zt, zt′) in latent topic space. As a result, the data covariance learned from
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one source of documents may not be transferable to another class of documents. On the other hand,
the semantic covariance in eq. (3.2) is completely determined by the structure of A.

Note that the data covariance among words still depends on A and thus still contains certain in-
formation about the semantic relationship of words. This can also be observed from eq. (3.4). If we
ignore the effect of the covariance among topics by assuming that latent topics are independently
distributed and have the same variance (denoted as σ2), eq. (3.4) can be written as:

cov(xi,xj) = σ2

k∑
t=1

aitajt (3.5)

Comparing this to the last form in eq. (3.2), we see the similarity between data covariance and
semantic covariance (and also between data correlation and semantic correlation). In fact, our
empirical study shows that data correlation from unlabeled text does contain useful information,
but is not as informative as semantic correlation.

3.3 Semantic Structure and Informative Regularization

In this section we introduce a semi-supervised learning framework to transfer knowledge from
unlabeled text. Consider a set of nl labeled documents Dl = {(xli, yli) ∈ X × Yl, i = 1, · · ·nl},
whereX ⊆ Rp is the p-dimensional word space, and Yl = {−1, 1} for classification and Yl ⊆ R for
regression. Also assume that a large set of nu unlabeled documents Du = {xui ∈ X, i = 1, · · ·nu}
is available. The goal is to learn a good function fl : X → Yl, which is a classifier or a regressor.

Our semi-supervised learning framework contains two steps. In section 3.3.1, we propose an
approach to learning the semantic structure of the word space from a set of unlabeled text. In
section 3.3.2, we discuss how to effectively and efficiently incorporate this semantic structure to a
specific prediction task through regularization.

3.3.1 Learning the Semantic Correlation

The semantic correlation among words can be estimated using eq. (3.3) by observing a large num-
ber of different latent topics. However, obtaining a large set of diverse but meaningful topics is
hard, since the number of meaningful topics extracted by a latent topic model is usually not very
large. To solve this problem, resampling techniques such as bootstrapping [Efr79] can be com-
bined with a chosen latent variable model. The procedure is given in Algorithm 1, which uses
all the available data D = Du ∪ Dl and a latent variable model M as the input. The algorithm
repeats N iterations. In each iteration it draws an α percentage sample2 from the data and extracts
k latent topics from the sample by applying the model M . After N iterations, the p × p semantic
correlation matrix Σs is estimated from the observations of word distribution in kN latent topics.

2In this chapter, we use α = 50% sampling without replacement. Other choices can be made.
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Algorithm 1 Estimation of semantic correlation structure
Input: data D = Du ∪Dl, latent variable model M
Output: semantic correlation matrix Σs

Parameters: α, k, N
Initialize V← ∅
repeat
Dsamp ← Sampling(D,α)
{(z1, a(,1)), (z2, a(,2)), . . . , (zk, a(,k))} ←M(k,Dsamp)
V← V ∪ {a(,1), a(,2), . . . , a(,k)}

until |V| ≥ kN
Compute Σs: Σs(i, j)← corrs(xi,xj)

The algorithm requires an appropriate latent variable model M (e.g., latent dirichlet allocation for
text data), which will extract k latent topics in each iteration. The number of iterations N is set as
large as necessary to obtain a reliable estimation of semantic word correlation.

3.3.2 Knowledge Transfer by Informative Regularization

This section discusses how to use the semantic structure Σs to improve the learning of a specific
prediction task defined on the input space X . For the prediction model, we mainly consider reg-
ularized linear models with an l-2 norm penalty, e.g., support vector machines, ridge regression,
logistic regression with a Gaussian prior, etc. The model is represented by a p-dimensional weight
vector w and an intercept b. The prediction is computed as wTx + b for regression or by setting a
threshold θ (usually θ = 0) on wTx + b for classification. To learn w and b, we minimize a loss
function L on the training examples plus a regularization term on w:

argmin
w,b

nl∑
i=1

L(yli,w
Txli + b) + λwTw (3.6)

Different models correspond to different loss functions [HTF01], e.g., SVMs use hinge loss, lo-
gistic regression uses log-likelihood loss, and ridge regression uses squared error loss. The regu-
larization term λwTw = λwT I−1w is well known to be equivalent to the Bayesian approach that
imposes a Gaussian prior with zero mean and an identity covariance matrix. The covariance matrix
is often set to an identity matrix due to lack of knowledge about the input space. If a covariance or
correlation structure is known, e.g., the semantic structure of the word space, the regularization or
the Gaussian prior can be much more informative [RNK06]. Incorporating Σs into the Gaussian
prior leads to a new regularization term and the resulting optimization formulation is:

argmin
w,b

nl∑
i=1

L(yli,w
Txli + b) + λwTΣ−1

s w (3.7)

Extending the discussion on SVMs in [KT07], all regularized linear models in the form of
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eq. (3.7) can be easily solved by three steps. First, transform the training examples by

x̃li = Σ
1
2
s xli (3.8)

Second, learn the standard linear model in the transformed space:

argmin
w̃,b

nl∑
i=1

L(yli, w̃
T x̃li + b) + λw̃T w̃ (3.9)

Finally, the optimal solution for (3.7) is obtained by:

w = Σ
1
2
s w̃ (3.10)

This equivalence is derived from wTxli = w̃T x̃li and wTΣ−1
s w = w̃T w̃.

Given a large collection of unlabeled text, the semantic correlation structure Σs can be com-
puted offline. We consider the semantic word correlation Σs as an intrinsic structure of the lan-
guage and thus transferable to any specific prediction task. With the pre-computed Σs, semi-
supervised learning for any prediction task simply requires the linear transformation in eq. (3.8)
before training on labeled examples, which is very scalable.

3.4 Experiments

In this section, we present our empirical study on semi-supervised learning using seemingly irrel-
evant unlabeled text.

Data. We use the by-date version of the 20-NewsGroups data set3, where 11314 training and
7532 testing documents are divided by date and denoted as Dtr and Dts here. Documents are
represented by bag-of-words vectors. The vocabulary is built to include the most frequent 200
words in each of the 20 newsgroups, while the 20 most frequent words over all 20 newsgroups are
removed. This yields an input space X with p = 1443 features (words).

Prediction tasks. Documents come from 20 newsgroups, so we construct 190 binary classifica-
tion tasks, one for each pair of newsgroups. For each task, a few documents in the two newsgroups
are selected from Dtr as the labeled examples, denoted as Dl in section 3.3. The rest of the doc-
uments in Dtr are used as the unlabeled data, denoted by Du. Note that Du is a mixture from all
the 20 newsgroups. In this sense, for any prediction task, the majority of the unlabeled data is
irrelevant. As a result, semi-supervised learning algorithms that assume the unlabeled data come
from the target task or the same generative distribution are unlikely to work very well. The test
data for each binary classification task are all the relevant documents in Dts, i.e., documents in Dts

that belong to the two chosen newsgroups. Note that for any task we always have Du ∪Dl = Dtr,
so Algorithm 1 is run only once on Dtr to learn the semantic correlation structure Σs, which is
then used for semi-supervised learning of all 190 tasks.

3http://people.csail.mit.edu/jrennie/20Newsgroups/
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Experiment settings. There are large numbers of training documents in Dtr for each news-
group. To limit the number of labeled examples for each binary classification task, in each random
run we sample 5%, 10%, 20% of the relevant documents from Dtr as the labeled examples Dl,
and the rest of the relevant documents as well as all irrelevant documents in Dtr are used as the
unlabeled data Du. We denote different tests as 5%-Test, 10%-Test, and 20%-Test, indicating the
number of labeled examples we sample from the entire training set Dtr. The result of each test is
averaged over 10 random runs, with Dl randomly selected from Dtr. The testing data for each task
are fixed to be all relevant documents in Dts, which is invariant among different tests and random
runs.

Methods for comparison are as follows.
• SVM /LGR/RR: SVM, L-2 regularized logistic regression or ridge regression directly trained

on labeled examples Dl. For ridge regression, examples are labeled as +1 and −1, and the
classification decision is made by wTx + b > 0.

• SVMLDA/LGRLDA/RRLDA: SVM, L-2 regularized logistic regression or ridge regression
trained on Dl in the latent topic space extracted by latent dirichlet allocation on Dl ∪ Du

[BNJ03].
• SVMPCA/LGRPCA/RRPCA: SVM, L-2 regularized logistic regression or ridge regression

trained on Dl in principal component space extracted by PCA on Dl ∪Du.
• SVMIR/LGRIR/RRIR: SVM, L-2 regularized logistic regression or ridge regression trained

on Dl using our proposed informative regularization, where the penalty includes the semantic
correlation structure Σs inferred from Dl ∪Du using Algorithm 1.

• SVMIR(data)/LGRIR(data)/RRIR(data): SVM, L-2 regularized logistic regression or ridge re-
gression trained on Dl using our proposed informative regularization, where the penalty in-
cludes the data correlation structure Σ directly estimated from the bag-of-words representa-
tion of documents in Dl ∪Du.

Recently a fast semi-supervised SVM using L-2 loss was proposed [SK06], which makes it
possible to handle large-scale unlabeled data. We also test the following methods:
• L2-SVM : L-2 loss SVM directly trained on labeled examples Dl.
• L2-S3VM : L-2 loss semi-supervised SVM [SK06] trained on Dl ∪Du.
• L2-SVMIR: L-2 loss SVM trained on Dl using our informative regularization, where the

penalty includes the semantic correlation Σs inferred from Dl ∪Du using Algorithm 1.
• L2-S3VMoracle: the semi-supervised SVM (L2-S3VM ) may not work very well since the

unlabeled data is a mixture from all tasks. Therefore, we also test an “oracle” version of
the semi-supervised SVM, where unlabeled examples for each task come from only the two
relevant newsgroups. In other words, we handpick unlabeled data for each prediction task.

Here are additional implementation details. The regularization parameter λ for each model is
determined by 5-fold cross-validation in the range 10−6 to 106. LibSVM 2.85 is used for SVM.
For PCA, we tried 10, 20, 30, 50, 100, 200, 400 principal components and report PCA using 200
principal components as the best result. For latent dirichlet allocation, we use the implementation
at http://chasen.org/∼daiti-m/dist/lda/. We tried k = 10, 20, 30, 50, 100, 200 latent topics with 30
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Table 3.1: Classification errors over 190 tasks, based on SVMs

5%-Test 10%-Test 20%-Test
SVM 14.22% 10.34% 7.88%

SVMLDA(30) 9.76% (179/11) 8.01% (171/19) 6.90% (161/29)
SVMPCA(200) 13.32% (123/67) 10.31% (104/86) 8.29% (89/101)
SVMIR 7.58% (190/0) 6.11% (190/0) 5.13% (183/7)

SVMIR(data) 9.40% (185/5) 7.14% (183/7) 5.70% (180/10)

Table 3.2: Classification errors over 190 tasks, based on regularized logistic regression

5%-Test 10%-Test 20%-Test
LGR 11.70% 8.43% 6.67%

LGRLDA(30) 8.21% (171/19) 7.38% (156/34) 6.79% (134/56)
LGRPCA(200) 11.43% (105/85) 8.95% (65/125) 7.28% (64/122)
LGRIR 6.70% (189/1) 5.78% (181/9) 5.19% (169/21)

LGRIR(data) 8.46% (172/18) 7.21% (157/33) 6.46% (132/58)

Table 3.3: Classification errors over 190 tasks, based on ridge regression

5%-Test 10%-Test 20%-Test
RR 14.13% 10.73% 8.90%

RRLDA(30) 14.08% (111/101) 11.98% (67/102) 11.34% (42/148)
RRPCA(200) 15.50% (56/132) 12.80% (33/157) 11.53% (17/173)
RRIR 10.55% (182/8) 8.88% (161/29) 8.01% (134/56)

RRIR(data) 10.68% (176/14) 8.94% (157/33) 7.99% (139/51)

topics performing best. For the proposed method, Algorithm 1 uses latent dirichlet allocation with
k = 30 topics per sampling, repeatsN = 100 iterations, and Σs is estimated from these 3000 latent
topics. L2-S3VM (code available as SVMlin [SK06]) has a second parameter λu for unlabeled
examples, which is set to 1 as in [SK06]. Unlabeled data for L2-S3VM is downsampled to 3000
documents for each run to make training (and cross-validation) feasible.

Evaluation measures. For each semi-supervised learning algorithm, we report two perfor-
mance measures: 1) the average classification error over all 190 tasks, and 2) the number of
winning/losing tasks when compared to the corresponding supervised learning method (SVM ,
LGR, RR, or L2-SVM ). Note that the first measure indicates the overall effectiveness of a semi-
supervised learning method, while the second measure shows the reliability of the knowledge
transfer from unlabeled data (i.e., how often does a semi-supervised learning method help?).

Empirical results are shown in Tables 3.1- 3.4. From Tables 3.1 - 3.3, IR based methods with
semantic correlation significantly outperform standard supervised learning, LDA based methods,
PCA based methods, and is also generally more effective than IR with data correlation. The LDA
based algorithms slightly improve the prediction performance when using SVM or logistic regres-
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Table 3.4: Classification errors compared to semi-supervised SVMs over 190 tasks, based on L2-
SVM

5%-Test 10%-Test 20%-Test
L2-SVM 11.18% 8.41% 6.65%
L2-S3VM 14.14% (14/176) 11.64% (5/185) 10.04% (1/189)

L2-S3VMoracle 8.22% (189/1) 6.95% (185/5) 6.00% (164/24)
L2-SVMIR 6.87% (188/2) 5.73% (180/10) 4.98% (177/13)

Table 3.5: Top 10 word pairs in terms of the ratio: semantic correlation / data correlation

gaza, lebanes biker, yamaha motorcycl, yamaha batter, clemen yanke, catcher
0.956/0.007 0.937/−0.004 0.970/0.030 0.932/−0.002 0.934/0.002

palestin, lebanes cage, ama toyota, mileag mileag, mustang brave, batter
0.946/0.181 0.921/−0.005 0.934/0.009 0.923/−0.002 0.950/0.025

sion as the base classifier, while decreasing the performance when using ridge regression. This is
possibly because the loss function of ridge regression is not a good approximation to the 0/1 classi-
fication error, and therefore, ridge regression is more sensitive to irrelevant latent features extracted
from mixed unlabeled documents. The PCA based methods are generally worse than standard su-
pervised learning, which indicates they are sensitive to the mixed unlabeled data. In Table 3.4,
the L2-S3VM performs worse than standard L2-SVM , showing that traditional semi-supervised
learning cannot handle unlabeled data outside the target task. We can also see that the L2-SVMIR

even outperforms the oracle version of semi-supervised SVM (L2-S3VMoracle) by achieving simi-
lar winning/losing ratio but better average classification error. This is a pleasantly surprising result:
the improvement achieved by using the proposed method on a mixture of seemingly irrelevant un-
labeled text even exceeds the improvement obtained by running a state-of-the-art semi-supervised
learning method on handpicked unlabeled data. In conclusion, the empirical results show that the
proposed approach is an effective and reliable method for semi-supervised learning, regardless of
the source of unlabeled data.

It is also interesting to directly compare the semantic correlation matrix Σs and the data corre-
lation matrix Σ learned from unlabeled data. We make three observations: 1) The average value
of entries is 0.0147 in the semantic correlation matrix Σs and 0.0341 in the data correlation matrix
Σ. We have 1617834 entries with higher data correlation and 462972 entries with higher semantic
correlation. Thus overall speaking, words tend to have higher values in the data correlation. 2)
Interestingly, if we list the top 1000 pairs of words with the largest (absolute) difference between
semantic correlation and data correlation, they all have higher semantic correlation and lower data
correlation. In other words, there are many word pairs with significant semantic correlation but
no significant data correlation. 3) We list the top 10 such word pairs and their semantic and data
correlation in Table 3.5. Each of these word pairs is indeed semantically related, and therefore
semantic correlation helps to discover meaningful word pairs that are ignored by data correlation.
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3.5 Related Work

In this work, we explore the possibility of extracting transferable knowledge about the input space
from seemingly irrelevant unlabeled text. This knowledge is represented as the semantic correla-
tion structure of words. The covariance or correlation structure of the input space has been studied
in transfer learning [RNK06, KT07] settings. A covariance structure can be transferred from a few
related tasks to a target task [RNK06] or inferred from meta-features [KT07]. In fact, one way to
view our proposed semi-supervised learning method is: 1) we automatically construct a large num-
ber of diverse but meaningful “tasks” from unlabeled text without using external knowledge, where
each “task” corresponds to the composition of a latent topic; 2) we learn the semantic correlation
structure of the word space from these “tasks” and show that the learned structure is generally
transferable regardless of the source of unlabeled data; 3) this semantic correlation structure can
be efficiently incorporated into the learning of any prediction task via regularization, which leads
to an effective, reliable and scalable way for semi-supervised learning.

3.6 Conclusion and Discussion

In this chapter, we encode the covariance and correlation structure of the input space into learning
and propose a semi-supervised learning method for text classification. We first ask the question:
what kind of knowledge is generally transferable from unlabeled text? We suggest and analyze
the semantic correlation of words as a generally transferable structure of the language and propose
a new method to learn this structure from unlabeled text using latent topic models. This semantic
correlation contains structural information of the language and can be used to control the joint
shrinkage of model parameters for any text classification task in the same language space. In our
empirical study, we construct 190 different text classification tasks from a real-world benchmark,
and the unlabeled documents are a mixture from all these tasks. We test the ability of various algo-
rithms to use the mixed unlabeled text to enhance all classification tasks. Empirical results show
that the proposed approach is a reliable and scalable method for semi-supervised learning, regard-
less of fact that for any specific prediction task, the majority of the unlabeled data is irrelevant.

In semi-supervised learning, unlabeled data can contribute to learning either P (X) (usually in
a generative model) or P (Y |X) (usually in a discriminative model). In Section 3.4, we empirically
compare the semantic correlation matrix Σs and the data correlation matrix Σ learned from unla-
beled data, where using semantic correlation matrix Σs in regularization leads to more effective
learning. One way to think about this observation is that the data correlation of words Σ is directly
estimated from data and thus mainly describes the properties of P (X). On the other hand, the
semantic correlation of words Σs is estimated using latent topic models and represents the cor-
relation of words in contributing to composition of latent topics, and more generally, in forming
other discriminative functions. Therefore, Σs can convey information about P (Y |X) and is more
effective when used in regularization of model coefficients.

Although in this chapter we focus on inferring the semantic correlation of “words” and use it
to improve text learning on bag-of-words representations, the proposed method can be extended
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in a variety of ways. First, it is straightforward to apply the proposed method to text learning
problems using n-gram representations [CT94], and in this case, the dimensionality of the input
space will dramatically increase and therefore estimation of the semantic correlation matrix is more
challenging. More interestingly, the proposed method can potentially be applied to image learning
problems, and the key issue is to define the bag-of-words representation of images. Luckily, the
bag-of-visual-word representation [YJHN07] has been intensively studied and considered very
effective for recognition and classification tasks on images. In this sense, the proposed method in
this chapter can also be extended to learning problems on images.
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Chapter 4

A Sparse Matrix-Normal Penalty for
Learning Multiple Tasks

4.1 Overview

In this chapter [ZS10b], we consider encoding the covariance structure of the joint input space
when learning multiple related tasks. In multi-task learning, the joint input space can be viewed
as a matrix, where rows correspond to tasks and columns correspond to feature dimensions1. As a
result, learning multiple (parametric) models can be viewed as estimating a parameter matrix.

Matrix-variate normal distributions are powerful tools to characterize the structure of a ma-
trix. Following the matrix normal density, we design a matrix-normal regularization penalty that
decomposes the full covariance of matrix entries into the Kronecker product of row covariance
and column covariance, which characterize task relations and feature representations, respectively.
To prevent overfitting and automatically select meaningful task and feature structures, we perform
sparse covariance selection via `1 penalties on the inverse of task and feature covariances.

Recent research on multi-task learning has been focused on two major directions: learning
a common feature representation across tasks, or directly inferring the relatedness of tasks. If
we view learning multiple tasks as estimating a matrix of model parameters, learning the feature
structure corresponds to discovering the structure of columns, and modeling the task relations
corresponds to finding the relations among rows. As a result, several recently proposed methods
for multi-task learning can be viewed as variants of special cases of our formulation.

In our empirical study, we compare the proposed method to several related multi-task learn-
ing methods in two real-world problems: detecting landmines in multiple fields and recognizing
faces between different subjects. Experimental results show that the proposed method provides an
effective and flexible way to model various different structures of multiple tasks.

1As most work in multi-task learning, we assume that tasks share the same input feature space.
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4.2 A Sparse Matrix-Normal Penalty for Multi-Task Learning

In this section, we propose a matrix-normal penalty with sparse inverse covariances for learning
multiple related tasks. In Section 4.2.1 we start with learning multiple tasks with a matrix-normal
penalty. In Section 4.2.2 we study how to incorporate sparse covariance selection into our frame-
work by further imposing `1 penalties on task and feature inverse covariances. In Section 4.2.3 we
outline the algorithm, and in Section 4.2.4 we discuss other useful constraints in our framework.

4.2.1 Learning with a Matrix Normal Penalty

Consider a multi-task learning problem withm tasks in a p-dimensional feature space. The training
sets are {Dt}mt=1, where each set Dt contains nt examples {(x(t)

i , y
(t)
i )}nt

i=1. We want to learn m
models for the m tasks but appropriately share knowledge among tasks. Model parameters are
represented by an m× p matrix W, where parameters for a task correspond to a row.

In Section 2.6 we have presented a review on matrix-variate normal distribution. The last term
in the matrix-variate normal density (2.7) provides a structure to couple the parameters of multiple
tasks as a matrix W: 1) we set M = 0, indicating a preference for simple models; 2) the m ×m
row covariance Ω describes the similarity among tasks; 3) the p × p column covariance matrix Σ
represents a shared feature structure. This yields the following total loss L:

L =
m∑
t=1

nt∑
i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ tr{Ω−1WΣ−1WT} (4.1)

where λ controls the strength of the regularization, (y
(t)
i ,x

(t)
i ) is the ith example in the training

set of the tth task, W(t, :) is the parameter vector of the tth task, and L() is a convex empirical
loss function depending on the specific model we use, e.g., squared loss for linear regression, log-
likelihood loss for logistic regression, hinge loss for SVMs, and so forth. When Ω and Σ are
known and positive definite, eq. (4.1) is convex w.r.t. W and can be optimized efficiently [NW00].

Now we discuss a few special cases of (4.1) and how is previous work related to them.
• When we fix Ω = Im and Σ = Ip, the penalty term can be decomposed into standard `2-

norm penalties on the m rows of W. In this case, the m tasks in (4.1) can be learned almost
independently using single-task `2 regularization (but they are still tied by the shared λ).

• When we fix Ω = Im, tasks are linked only by a shared feature covariance Σ. This corresponds
to multi-task feature learning [AEP06, AMPY07] which optimizes eq. (4.1) w.r.t. W and Σ,
with an additional constraint tr{Σ} ≤ 1 on the trace of Σ to avoid setting Σ to infinity.

• When we fix Σ = Ip, tasks are coupled only by a task similarity matrix Ω. This is used in a
recent clustered multi-task learning formulation [JBV08], which optimizes eq. (4.1) w.r.t. W
and Ω, with additional constraints on the singular values of Ω that are motivated and derived
from task clustering. A more recent multi-label classification model [HVV10] essentially op-
timizes W in eq. (4.1) with a label correlation Ω given as prior knowledge and empirical loss
L as the max-margin hinge loss.

31



We usually do not know task and feature structures in advance. Therefore, we would like to
infer Ω and Σ in eq. (4.1). Note that if we jointly optimize W, Ω and Σ in eq. (4.1), we will
always set Ω and Σ to be infinity matrices. We can impose constraints on Ω and Σ to avoid this,
but a more natural way is to further expand eq. (4.1) to include all relevant terms w.r.t. Ω and Σ
from the matrix normal log-density (2.7). As a result, the total loss L is:

L =
m∑
t=1

nt∑
i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ [p log |Ω|+m log |Σ|+ tr{Ω−1WΣ−1WT}] (4.2)

Based on this formula, we can infer task structure Ω and feature structure Σ given the model
parameters W, as the following problem:

min
Ω,Σ

p log |Ω|+m log |Σ|+ tr{Ω−1WΣ−1WT} (4.3)

This problem is equivalent to maximizing the log-likelihood of a matrix normal distribution as in
eq. (2.7), given W as observations and expectation M fixed at 0. Following Section 2.6, the MLE
of Ω and Σ can be obtained by the “flip-flop” algorithm:{ Ω̂ = 1

p
WΣ̂−1WT + εIm

Σ̂ = 1
m

WT Ω̂−1W + εIp
(4.4)

where ε is a small positive constant to improve numerical stability. As discussed in Section 2.6,
only the optimal Σ ⊗ Ω is uniquely defined, and Ω̂ and Σ̂ are only identifiable up to an multi-
plicative constant. However, this will not affect the optimization of W using eq. (4.1), since only
Σ⊗Ω matters for finding the optimal W in eq. (4.1).

4.2.2 Sparse Covariance Selection in the Matrix-Normal Penalty

Consider the sparsity of Ω−1 and Σ−1. When Ω has a sparse inverse, task pairs corresponding to
zero entries in Ω−1 will not be explicitly coupled in the penalty of (4.2). Similarly, a zero entry
in Σ−1 indicates no direct interaction between the two corresponding feature dimensions in the
penalty (4.2). Also note that a clustering of tasks can be expressed by block-wise sparsity of Ω−1.

Covariance selection aims to select nonzero entries in the Gaussian inverse covariance and
discover conditional independence between variables (indicated by zero entries in the inverse co-
variance) [Dem72, BGd08, FHT07, DGK08]. The matrix-normal density in eq. (4.2) enables us to
perform sparse covariance selection to regularize and select task and feature structures.

Formally, we rewrite (4.2) to include two additional `1 penalty terms on inverse covariances:

L =
m∑
t=1

nt∑
i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ[p log |Ω|+m log |Σ|+ tr{Ω−1WΣ−1WT}]

+ λΩ||Ω−1||`1 + λΣ||Σ−1||`1 (4.5)

where || ||`1 is the `1-norm of a matrix, and λΩ and λΣ control the strength of `1 penalties and
therefore the sparsity of task and feature structures.
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Based on the new regularization formula (4.5), estimating W given Ω and Σ as in (4.1) is not
affected, while inferring Ω and Σ given W, previously shown as (4.3), becomes a new problem:

min
Ω,Σ

p log |Ω|+m log |Σ|+ tr{Ω−1WΣ−1WT}+
λΩ

λ
||Ω−1||`1 +

λΣ

λ
||Σ−1||`1 (4.6)

As in (4.4), we can iteratively optimize Ω and Σ until convergence, as follows:{ Ω̂ = argminΩ p log |Ω|+ tr{Ω−1(WΣ−1WT )}+ λΩ

λ
||Ω−1||`1

Σ̂ = argminΣ m log |Σ|+ tr{Σ−1(WT Ω̂−1W)}+ λΣ

λ
||Σ−1||`1

(4.7)

Note that both equations in (4.7) are `1 regularized covariance selection problems, for which effi-
cient optimization has been intensively studied [BGd08, FHT07, DGK08]. For example, we can
use graphical lasso [FHT07] as a basic solver and consider (4.7) as an `1 regularized “flip-flop”
algorithm: { Ω̂ = glasso(1

p
WΣ̂−1WT , λΩ

λ
)

Σ̂ = glasso( 1
m

WT Ω̂−1W, λΣ

λ
)

Finally, an annoying part of eq. (4.5) is the presence of two additional regularization parameters
λΩ and λΣ. Due to the property of matrix normal distributions that only Σ⊗Ω is identifiable, we
can reduce the complexity of choosing regularization parameters by considering the restriction:

λΩ = λΣ (4.8)

The following lemma proves that restricting λΩ and λΣ to be equal in eq. (4.5) will not reduce the
space of optimal models W we can obtain. As a result, we eliminate one regularization parameter.

Lemma 1. Suppose W∗ belongs to a minimizer (W∗,Ω∗,Σ∗) for eq. (4.5) with some arbitrary
choice of λ, λΩ and λΣ > 0. Then, W∗ must also belong to a minimizer for eq. (4.5) with certain
choice of λ′, λ′Ω and λ′Σ such that λ′Ω = λ′Σ. Proof of lemma 1 is provided in Appendix A.

4.2.3 The Algorithm

Based on the regularization formula (4.5), we study the following algorithm for multi-task learning:
1) Estimate W by solving (4.1), using Ω = Im and Σ = Ip;
2) Given the estimated W from 1), infer Ω and Σ in (4.5) by solving (4.7) until convergence;
3) Estimate W by solving (4.1), using the inferred Ω and Σ from step 2).
One can iterate over steps 2) and 3) and converge to a local minimum of eq. (4.5). However,

we observed that a single pass yields good results: further iterations over step 2) and 3) will not
dramatically change model estimation, and also, early stopping as regularization might lead to
better generalizability. Note that steps 1) and 3) are linear in the number of data points and step
2) is independent of it, so the method scales well with the number of training samples. Step 2)
needs to solve `1 regularized covariance selection problems as (4.7). We use the state of the art
technique [FHT07], but more efficient optimization for large covariances is still desirable.
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4.2.4 Additional Constraints

We can have additional structure assumptions in the matrix-normal penalty. For example, consider:

Ωii = 1 i = 1, 2, . . . ,m (4.9)
Σjj = 1 j = 1, 2, . . . , p (4.10)

In this case, we ignore variances and restrict our attention to correlation structures. For example,
off-diagonal entries of task covariance Ω characterize the task similarity; diagonal entries indicate
different amounts of regularization on tasks, which may be fixed as a constant if we prefer tasks
to be equally regularized. Similar arguments apply to feature covariance Σ. We include these
restrictions by converting inferred covariance(s) into correlation(s) in step 2) of the algorithm in
Section 4.2.3. In other words, the restrictions are enforced by a projection step.

If one wants to iterative over steps 2) and 3) of the algorithm in Section 4.2.3 until convergence,
we may consider the constraints

Ωii = c1 i = 1, 2, . . . ,m (4.11)
Σjj = c2 j = 1, 2, . . . , p (4.12)

with unknown quantities c1 and c2, and consider eq. (4.5) in step 2) as a constrained optimization
problem w.r.t. W, Ω, Σ, c1 and c2, instead of using a projection step. As a result, the “flip-flop”
algorithm in (4.7) needs to solve `1 penalized covariance selection with equality constraints (4.11)
or (4.12), where the dual block coordinate descent [BGd08] and graphical lasso [FHT07] are no
longer directly applicable. In this case, one can solve the two steps of (4.7) as determinant maxi-
mization problems with linear constraints [VBW96], but this is inefficient.

4.3 Empirical Studies

In this section, we present our empirical studies on a landmine detection problem and a face recog-
nition problem, where multiple tasks correspond to detecting landmines at different landmine fields
and classifying faces between different subjects, respectively.

4.3.1 Data Sets and Experimental Settings

The landmine detection data set [XLCK07] contains examples collected from different landmine
fields. Each example is represented by a 9-dimensional feature vector extracted from radar imag-
ing, which includes moment-based features, correlation-based features, an energy ratio feature and
a spatial variance feature. As a binary classification problem, the goal is to predict landmines
(positive class) or clutter (negative class). Following [XLCK07], we jointly learn 19 tasks from
landmine fields 1−10 and 19−24 in the data set. As a result, model parameters can be represented
by a 19× 10 matrix W, corresponding to 19 tasks and 10 dimensions (including the intercept).

34



The distribution of examples is imbalanced in each task, with a few dozen positive examples
and several hundred negative examples. Therefore, we use the average AUC (Area Under the ROC
Curve) over 19 tasks as the performance measure. We vary the size of the training set for each
task as 30, 40, 80 and 160. Note that we intentionally keep the training sets small because the
need for cross-task learning diminishes as the training set becomes large relative to the number of
parameters being learned. For each training size, we randomly select training examples for each
task and the rest is used as the testing set. This is repeated 30 times. Task-average AUC scores
are collected over 30 runs, and mean and standard errors are reported. Note that for small training
sizes (e.g., 30 per task) we often have some task(s) that do not have any positive training sample.
It is interesting to see how well multi-task learning handles this case.

The Yale face recognition data set contains 165 images of 15 subjects. The 11 images per
subject correspond to different configurations in terms of expression, emotion, illumination, and
wearing glasses (or not), etc. Each image is scaled to 32 × 32 pixels. We use the first 8 subjects
to construct 8×7

2
= 28 binary classification tasks, each to classify two subjects. We vary the size

of the training set as 3, 5 and 7 images per subject. We have 30 random runs for each training
size. In each run, we randomly select the training set and use the rest as the testing set. We collect
task-average classification errors over 30 runs, and report mean and standard errors.

Choice of features is important for face recognition problems. In our experiments, we use
orthogonal Laplacianfaces [CHHZ06], which have been shown to provide better discriminative
power than Eigenfaces (PCA), fisherfaces (LDA) and Laplacianfaces on several benchmarks. In
each random run, we extract 30 orthogonal Laplacianfaces using the selected training set of all 8
subjects2, and conduct experiments of all 28 classification tasks in the extracted feature space.

4.3.2 Models and Implementation Details

We use the logistic regression loss as the empirical loss L in (4.5) and compare following methods.
• STL: learn `2 regularized logistic regression for each task separately.
• MTL-C: clustered multi-task learning [JBV08], which encourages task clustering in regular-

ization. As discussed in Section 4.2.1, this formulation is related to the special case of eq. (4.1)
with only a task structure Ω.

• MTL-F: multi-task feature learning [AEP06], which corresponds to fixing the task covariance
Ω as Im and optimizing (4.2) with only the feature covariance Σ.

• MTL(Im&Ip): learn W using (4.5) with Ω and Σ fixed as identity matrices Im and Ip.
• MTL(Ω&Ip): learn W and task covariance Ω using (4.5), with feature covariance Σ as Ip.
• MTL(Im&Σ): learn W and feature covariance Σ using (4.5), with task covariance Ω as Im.
• MTL(Ω&Σ): learn W, Ω and Σ using (4.5), inferring both task and feature structures.
• MTL(Ω&Σ)Ωii=Σjj=1: learn W, Ω and Σ using (4.5), with additional restrictions on Ω and

Σ as (4.9) and (4.10).

2For experiments with 3 images per subject, we can only extract 23 Laplacianfaces, which is limited by the size of
training examples (3× 8 = 24) [CHHZ06].
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Avg AUC Score 30 samples 40 samples 80 samples 160 samples
STL 64.85(0.52) 67.62(0.64) 71.86(0.38) 76.22(0.25)

MTL-C [JBV08] 67.09(0.44) 68.95(0.40) 72.89(0.31) 76.64(0.17)
MTL-F [AEP06] 72.39(0.79) 74.75(0.63) 77.12(0.18) 78.13(0.12)

MTL(Im&Ip) 66.10(0.65) 69.91(0.40) 73.34(0.28) 76.17(0.22)
MTL(Ω&Ip) 74.88(0.29) 75.83(0.28) 76.93(0.15) 77.95(0.17)
MTL(Im&Σ) 72.71(0.65) 74.98(0.32) 77.35(0.14) 78.13(0.14)
MTL(Ω&Σ) 75.10(0.27) 76.16(0.15) 77.32(0.24) 78.21(0.17)∗

MTL(Ω&Σ)Ωii=Σjj=1 75.31(0.26)∗ 76.64(0.13)∗ 77.56(0.16)∗ 78.01(0.12)
MTL(Ω&Σ)Ωii=1 75.19(0.22) 76.25(0.14) 77.22(0.15) 78.03(0.15)

Table 4.1: Average AUC scores (%) on landmine detection: means (and standard errors) over 30
random runs. For each column, the best model is marked with ∗ and competitive models (by paired
t-tests) are shown in bold.

• MTL(Ω&Σ)Ωii=1: learn W, Ω and Σ using (4.5), with restricted Ω as (4.9) but no restriction
on Σ. Intuitively, free diagonal entries in Σ are useful when features are of different impor-
tance, e.g, a sequence of components extracted by orthogonal Laplacianfaces usually capture
decreasing amounts of discriminative information [CHHZ06].
We use the conjugate gradient method [NW00] to optimize W in (4.1), and infer Ω and Σ

in (4.7) using graphical lasso [FHT07] as the basic solver. Regularization parameters λ and λΩ =
λΣ are chosen by 3-fold cross validation within the range [10−7, 103]. The model in [JBV08] has
four regularization parameters, and we consider three values for each parameter, leading to 34 = 64
combinations chosen by cross validation.

4.3.3 Results on Landmine Detection

The results on landmine detection are shown in Table 4.1. Each row of the table corresponds to
a model in our experiments. Each column is a training sample size. We have 30 random runs
for each sample size. We use task-average AUC score as the performance measure and report the
mean and standard error of this measure over 30 random runs. The best model is marked with
∗, and models displayed in bold fonts are statistically competitive models (i.e. not significantly
inferior to the best model in a one-sided paired t-test with α = 0.05).

Overall speaking, MTL(Ω&Σ) and MTL(Ω&Σ)Ωii=Σjj=1 lead to the best prediction perfor-
mance. For small training sizes, restricted Ω and Σ (Ωii = Σjj = 1) offer better prediction; for
large training size (160 per task), free Ω and Σ give the best performance. The best model performs
better than MTL-F [AEP06] and much better than MTL-C [JBV08] with small training sets.

MTL(Im&Ip) performs better than STL, i.e., even the simplest coupling among tasks (by
sharing λ) can be helpful when the size of training data is small. Consider the performance of
MTL(Ω&Ip) and MTL(Im&Σ), which learn either a task structure or a feature structure. When the
size of training samples is small (i.e., 30 or 40), coupling by task similarity is more effective, and as
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Avg Classification Errors 3 samples per class 5 samples per class 7 samples per class
STL 10.97(0.46) 7.62(0.30) 4.75(0.35)

MTL-C [JBV08] 11.09(0.49) 7.87(0.34) 5.33(0.34)
MTL-F [AEP06] 10.78(0.60) 6.86(0.27) 4.20(0.31)

MTL(Im&Ip) 10.88(0.48) 7.51(0.28) 5.00(0.35)
MTL(Ω&Ip) 9.98(0.55) 6.68(0.30) 4.12(0.38)
MTL(Im&Σ) 9.87(0.59) 6.25(0.27) 4.06(0.34)
MTL(Ω&Σ) 9.81(0.49) 6.23(0.29) 4.11(0.36)

MTL(Ω&Σ)Ωii=Σjj=1 9.67(0.57)∗ 6.21(0.28) 4.02(0.32)
MTL(Ω&Σ)Ωii=1 9.67(0.51)∗ 5.98(0.29)∗ 3.53(0.34)∗

Table 4.2: Average classification errors (%) on face recognition: means (and standard errors) over
30 random runs. For each column, the best model is marked with ∗ and competitive models (by
paired t-tests) are shown in bold.

the training size increases, learning a common feature representation is more helpful. Finally, con-
sider MTL(Ω&Σ), MTL(Ω&Σ)Ωii=Σjj=1 and MTL(Ω&Σ)Ωii=1. MTL(Ω&Σ)Ωii=Σjj=1 imposes
a strong restriction and leads to better performance when the training size is small. MTL(Ω&Σ) is
more flexible and performs well given large numbers of training samples. MTL(Ω&Σ)Ωii=1 per-
forms similarly to MTL(Ω&Σ)Ωii=Σjj=1, indicating no significant variation of feature importance
and thus no evident effect of the restriction Σjj = 1 on the feature covariance.

4.3.4 Results on Face Recognition

Empirical results on face recognition are shown in Table 4.2, with the best model in each column
marked with ∗ and competitive models displayed in bold. MTL-C [JBV08] performs even worse
than STL. One possible explanation is that, each prediction task is to classify faces between a pair
of two subjects, and there may not be a clear clustered structure among those pairwise classifica-
tion tasks, and therefore, a cluster norm will be ineffective. In this case, using a task similarity
matrix may be more appropriate than clustering over tasks. It is also interesting to notice that
MTL(Ω&Σ)Ωii=1 achieves the best performance and shows advantages over other models, espe-
cially if given relatively sufficient training data (5 or 7 per subject). Compared to MTL(Ω&Σ),
MTL(Ω&Σ)Ωii=1 imposes restrictions on diagonal entries of task covariance Ω: all tasks seem to
be similarly difficult and should be equally regularized. Compared to MTL(Ω&Σ)Ωii=Σjj=1, on
the other hand, MTL(Ω&Σ)Ωii=1 frees the diagonal entries of feature covariance Σ and therefore
is able to capture varying degrees of importance of multiple Laplacianfaces.

4.4 Conclusion

In this chapter, we propose a matrix-variate normal penalty with sparse inverse covariances for
learning multiple tasks. Learning multiple (parametric) models can be viewed as estimating a pa-
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rameter matrix, whose rows and columns correspond to tasks and features. Matrix-variate normal
distributions are powerful tools for characterizing the structure of a matrix. We follow the matrix
normal density and design a penalty that decomposes the full covariance of matrix elements into
the Kronecker product of row covariance and column covariance, which characterize task rela-
tions and feature representations, respectively. We then perform sparse covariance selection (via `1

penalties) on the inverse of task and feature covariances in order to automatically select meaning-
ful task and feature structures. Recent methods on discovering common feature structures among
tasks and directly inferring task similarity are variants of the special cases of our formulation.

4.5 Appendix A

Proof of Lemma 1.
We prove lemma 1 by construction. Given an arbitrary choice of λ, λΩ and λΣ > 0 in eq. (4.5)

and an optimal solution (W∗,Ω∗,Σ∗), we want to prove that W∗ also belongs to an optimal
solution for eq. (4.5) with certain λ′, λ′Ω and λ′Σ s.t. λ′Ω = λ′Σ. Let’s construct λ′, λ′Ω and λ′Σ as
follows:

(λ′, λ′Ω, λ
′
Σ) = (λ,

√
λΩλΣ,

√
λΩλΣ) (4.13)

We denote the objective function in eq. (4.5) with λ, λΩ and λΣ as Objλ,λΩ,λΣ(W,Ω,Σ). Also, we
denote the objective function with our constructed parameters λ′, λ′Ω and λ′Σ asObjλ′,λ′Ω,λ′Σ(W,Ω,Σ).

For any (W,Ω,Σ), we further construct an invertible (i.e., one-to-one) transform as follows:

(W′,Ω′,Σ′) = (W,

√
λΣ

λΩ

Ω,

√
λΩ

λΣ

Σ) (4.14)

The key step in our proof is that, by construction, the following equality always holds:

Objλ,λΩ,λΣ(W,Ω,Σ) = Objλ
′,λ′Ω,λ

′
Σ(W′,Ω′,Σ′) (4.15)

To see this, notice that eq. (4.5) consists of three parts. The first part is the empirical loss on
training examples, depending only on W (and training data). The second part is the log-density of
matrix normal distributions, which depends on W and Σ ⊗ Ω. The third part is the sum of two
`1 penalties. The equality in eq. (4.15) stems from the fact that all three parts of eq. (4.5) are not
changed: 1) W′ = W so the first part remains unchanged; 2) Σ′⊗Ω′ = Σ⊗Ω so the second part
of the matrix normal log-density is the same; 3) by our construction, the third part is not changed.

Based on this equality, if (W∗,Ω∗,Σ∗) minimizesObjλ,λΩ,λΣ(), we have that (W∗,
√

λΣ

λΩ
Ω∗,

√
λΩ

λΣ
Σ∗)

minimizes Objλ′,λ′Ω,λ′Σ(), where λ′ = λ and λ′Ω = λ′Σ =
√
λΩλΣ.
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Chapter 5

Learning Compressible Models

5.1 Overview

In this chapter [ZS10a], we study how to encode input information that is more general than just
the covariance and correlation structure. We propose and study learning compressible models,
which is based on the combination of compression and `1-norm regularization.

Since the introduction of lasso [Tib96], `1-regularization has become very popular for learning
in high-dimensional spaces. A fundamental assumption of `1-regularization is model sparsity, i.e.,
a large fraction of model coefficients are zeros. Sparse models have the advantage of being easy
to interpret and having good generalization ability in high-dimensional problems. However, the
sparsity assumption might be too restrictive and not necessarily appropriate in many application
domains. Indeed, many signals in the real world (e.g., images, audio, videos, time series) are
found to be compressible (i.e., sparse in certain compressed domain) but not directly sparse in the
observed space. Naturally, the sparsity assumption can be relaxed to compressibility.

Inspired by the recent development of compressive sampling (or compressed sensing) [Can06,
Don06], we propose and study learning compressible models: certain structure information about
the input space is available from domain knowledge and can be encoded as a compression opera-
tion, and by including this compression operation into the `1 regularization, model coefficients are
compressed before being penalized and model sparsity is achieved in a compressed domain rather
than in the original space. In this sense, the assumption on model sparsity is relaxed to model
compressibility. We investigate the design of different compression operations, by which we can
encode various compressibility assumptions and inductive biases, e.g., piecewise local smooth-
ness, and compacted energy in the frequency domain. We conduct experiments on brain-computer
interfacing and handwritten character recognition. Empirical results show clear improvements in
prediction performance by including compression in `1 regularization. We also analyze the learned
model coefficients under appropriate compressibility assumptions, which further demonstrate the
advantages of learning compressible models instead of sparse models.
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5.2 Learning Compressible Models

5.2.1 Lasso and Learning Sparse Models

Lasso [Tib96] is a specific example of `1-norm regularization, which is formulated as:

min
b,w
||y − 1b−Xw||22 + λ||w||1 (5.1)

where the n× p matrix X contains n examples and p explanatory variables (i.e., features), and the
n × 1 vector y is the response variable (or 0/1 labels) of training examples. The sum of squares
error || ||22 is an instantiation of the empirical loss function on observations. Also, 1 is a column of
1s, and the intercept b and p×1 vector w are model parameters. The intercept b is usually separated
from w and not penalized in regularization. The parameter λ is a balance between minimizing the
empirical loss and controlling the model complexity, and is usually chosen by cross-validation.

A notable part of lasso is the use of `1 norm ||w||1 as the regularization term. As the closest
convex relaxation of `0-norm, `1-norm in regularization not only controls model complexity but
also leads to sparse estimation [Tib96]. This provides both generalization ability and interpretable
model coefficients. Analytical results also show that `1 regularization can consistently recover the
true signal from noisy measurements [Tro06, ZY06], given that the true signal is sufficienly sparse.

5.2.2 Learning Compressible Models

To relax the sparsity assumption used by lasso to a more appropriate assumption, we consider the
problem of learning compressible models as follows:

min
b,w

L(y,1b+ Xw) + λ||P(w)||1 (5.2)

The loss functionL depends on the prediction model, e.g., sum of squares loss for linear regression,
log-likelihood loss for logistic regression, hinge loss for SVMs, and so forth. The compression
operation P() encodes our assumption on compressibility: model coefficients are compressed by
P() before being penalized, and thus tend to follow the compression pattern (i.e., sparse in the
compressed domain) rather than simply shrink to zero.

For simplicity, we restrict our attention to linear compression. Given that the compression
operation is a linear and invertible1 transform, learning compressible models is represented by:

min
b,w

L(y,1b+ Xw) + λ||Pw||1 (5.3)

The p × p matrix P denotes the linear and invertible compression transform, where p is the di-
mensionality of model coefficients as in (5.1). The optimization of eq. (5.3) can be achieved by
applying the inverse compression transform (i.e., the decompression operation) to the input space

1A compression transform needs to be invertible, so that the compressed signal can be decompressed.
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and then solving a standard `1 regularization [KKL+08]. First, transform the training examples by

X̃ = XP−1 (5.4)

Second, solve a standard `1-regularized problem (e.g., lasso or sparse logistic regression):

min
b,w̃

L(y,1b+ X̃w̃) + λ||w̃||1 (5.5)

Finally, the solution for eq. (5.3) is obtained by:

w = P−1w̃ (5.6)
b = b (5.7)

This equivalence is derived from Xw = XP−1w̃ = X̃w̃ and ||Pw||1 = ||PP−1w̃||1 = ||w̃||1.
Why do we want to learn compressible models, which are not necessarily sparse in the original

space? Compressible models are useful in several aspects. The first is model fitting and predic-
tion accuracy. The inductive bias of model compressibility might be more appropriate than model
sparsity, especially if an informative compression operation is specified based on additional in-
formation from domain knowledge, unlabeled data or related problems. The second reason, as
claimed for standard sparse models, is interpretability. Model coefficients that are sparse in a com-
pressed domain can still be insightful in the original space in many problems, as later shown by our
empirical studies on brain-computer interface (in Section 5.5) and handwritten digit recognition (in
Section 5.6). The third reason is that, when the compression operation is known in advance, com-
pressible models are very efficient for storage and transmission in the compressed domain. This
advantage has been widely recognized in compressive sensing [Can06, Don06] for general signals.

5.3 Model Compression: Local Smoothness

5.3.1 Order-1 Smoothness

Suppose we have a natural order over model coefficients {wj}pj=1, e.g., in temporal domains where
each dimension corresponds to a time point, or spectral domains where each dimension corre-
sponds to a frequency. Order-1 smoothness assumes the coefficients “do not change very often”
along the natural order. Such an assumption characterizes the first-order derivatives. It has been
studied in fused lasso [TSR+05] where absolute values of the difference of successive coefficients,
i.e.,

∑p
j=2 |wj −wj−1|, are penalized2. This idea was also explored in total variation minimization

for noise removal and image enhancement [ROF92]. As a motivating example, we show that the
fused lasso penalty can be approximated by a linear and invertible compression in the `1 penalty.

2In fused lasso, standard `1-norm
∑p

j=1 |wj | and
∑p

j=2 |wj−wj−1| are penalized together to pursue both sparsity
and smoothness. We focus on smoothness part (

∑p
j=2 |wj − wj−1|) as a specific case of compressibility.

41



The p× p matrix P for model compression based on order-1 smoothness can be defined as:

P = S1
p =


1
p

1
p

. . . . . . . . . 1
p

1 −1 0 . . . . . . 0
0 1 −1 0 . . . 0
...

... . . . . . . . . .
...

0 0 . . . . . . 1 −1

 (5.8)

Model coefficients in the compressed domain Pw = [w,w1−w2, . . . , wp−1−wp] tend to be sparse
due to `1 regularization, which achieves the order-1 smoothness. The averaging operation in the
first row of P makes the transform invertible. Note that if the first row of P is multiplied by a
small constant (e.g., 0.00001), ||Pw||1 approximates the fused lasso penalty. In our study, we use
the compression in eq. (5.8) without scaling the averaging operation. We want the compression
operation to be invertible so that the optimization is efficient as discussed in eq. (5.4) - eq. (5.6).

5.3.2 Order-2 Smoothness and Higher-Order Smoothness

Smoothness of higher orders is also common. For example, a piecewise linear function has piece-
wise constant first-order derivatives, indicating zero second-order derivatives at most locations.
This is defined as order-2 smoothness. In this case, the p× p compression transform P can be:

P = S2
p =

[
1 0T

0 S1
p−1

]
· S1

p (5.9)

where 0 is a (p − 1) × 1 column vector. By this definition, model coefficients in the compressed
domain are Pw = [w,∆w,∆w1,2 − ∆w2,3,∆w2,3 − ∆w3,4, . . . ,∆wp−2,p−1 − ∆wp−1,p], where
∆wi,i+1 = wi−wi+1. In this sense, sparsity of Pw corresponds to order-2 smoothness assumption
in the original space. Note that S2

p is invertible since both S1
p−1 and S1

p are invertible.
Also, model compression for higher-order smoothness can be defined recursively.

5.3.3 Hybrid Smoothness

Sometimes features under consideration do not follow an universal order, but can be divided into
groups, where each group of features has an order or at least some groups of features are ordered.
The compression operation can be defined as a block matrix to handle the use of different groups
of features. For example, suppose features can be divided into three groups. We assume p1 model
coefficients on the first group of features satisfy order-1 smoothness, p2 coefficients on the second
group of features satisfy order-2 smoothness, and we have no knowledge about the third group of
p3 features. In this case, model compression is defined as:

P =

 S1
p1

0 0
0 S2

p2
0

0 0 Ip3

 (5.10)
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5.4 Model Compression: Energy Compaction

Another compressibility assumption is energy compaction in the frequency domain. The energy of
many real-world signals can be compacted by transforming signals to a frequency domain where
most of their energy is concentrated in a few frequencies, e.g., image compression [Wal92, CSE00].
If the target model is applied to classify objects (e.g., images) with compacted energy in a fre-
quency domain, it is reasonable to assume that the model only needs to operate on a few relevant
frequencies and thus also has compacted energy in the same frequency domain. Otherwise, most
energy of the model is wasted. Naturally, we can include an appropriate compression operation on
w within the `1 penalty to emphasize energy compaction in a frequency domain.

The discrete cosine transform (DCT) is used in the JPEG standard [Wal92], which compresses
an image by representing it as a sum of cosine functions at various frequencies, and as a result,
small coefficients after compression can be discarded. The 2D DCT for an m× n object is:

(5.11)

G′(u, v) =
2√
mn

Λ(u)Λ(v)
m−1∑
y=0

n−1∑
x=0

G(x, y) cos
(2x+ 1)uπ

2n
cos

(2y + 1)vπ

2m
where u = 0, 1, . . . , n− 1

v = 0, 1, . . . ,m− 1

Λ(t) =
{

2−
1
2 if t = 0

1 otherwise

The above formula is a linear operation onm×nmatrices, and can be rewritten as a linear operation
on p × 1 vectors, where p = mn is the dimension of linear models on images. This gives a p × p
matrix P. Combining such a compression operation with `1-norm regularization leads to sparse
models in an appropriate frequency domain, representing the compacted energy assumption on
model coefficients. Note that real-world image compression operations are more sophisticated
[Wal92, CSE00], but studying sophisticated image codings is not the focus of our work.

5.5 Empirical Study: Brain-Computer Interface

In this section, we report our empirical study on brain-computer interface data [B+04]: classifying
single-trial Electroencephalography (EEG) signals. The EEG signals contain important informa-
tion from human brains, and being able to read and understand those signals is a critical step for
human-computer interaction. An EEG signal contains multiple channels (i.e., multiple scalp posi-
tions), and each channel is sampled over time to produce sequential measurements. As a result, an
EEG signal is a multivariate time series. If we assume local smoothness over time on a univariate
time series, the hybrid smoothness assumption in Section 5.3.3 is useful for EEG signals.
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Table 5.1: Classification errors on EEG brain signals: means (standard errors) over 50 random runs

means (standard errors) over 50 runs
Lasso 30.22%(0.34%)

LassoCP 25.98%(0.29%)
SLgr 30.00%(0%)

SLgrCP 20.92%(0.16%)

Descriptions of the Data Set. We use data set IV, self-paced tapping, of BCI Competition 2003
[B+04], which is a binary classification task. The task contains a training set of 316 examples and
a testing set of 100 examples. Each example has 1400 features, corresponding to 28 channels and
50 measurements from each channel. The number of features is much larger than the number of
training examples, indicating the importance of regularization. Each example is measured when
a healthy subject, sitting in a chair with fingers in the standard typing position, tries to press the
keys using either the left hand or right hand. The objective is to classify an EEG signal to either a
left-hand movement or right-hand movement.

Models for Comparison and Implementation Details. We consider lasso with labels as
{+1,−1} (denoted as Lasso in our discussions), sparse logistic regression (denoted as SLgr), com-
pressible lasso (denoted as lassoCP), and compressible logistic regression (denoted as SLgrCP).
Following eq. (5.10), the compression operation P for learning two compressible models is a
1400 × 1400 block matrix, with 28 blocks and each block is an order-1 smoothness matrix S1

50

defined as in eq. (5.8). Lasso is implemented using the spgl1 Matlab solver3, and `1-regularized lo-
gistic regression is implemented as [LLAN06] using lasso. The regularization parameter is chosen
from 10−7 to 107 (step 100.5) by 5-fold cross-validation.

Experimental Procedures. The data set contains a fixed training and testing set for the com-
petition. For standard `1 regularized models, we train lasso and sparse logistic regression. For
compressible models, we train compressible lasso and compressible logistic regression. We learn
the four models from the training set and measure their classification errors on the testing set. Note
that there is still randomness in the procedure: cross-validation is used to determine the optimal
regularization parameter λ. Therefore, we have 50 random runs on each model.

Experimental Results and Analysis. Classification errors are shown in Table 5.1, with both
means and standard errors (of means) over 50 random runs. By learning compressible models
instead of learning sparse models, the testing error is reduced from 30.22% to 25.98% for lasso
(Lasso vs. LassoCP), and from 30% to 20.92% for logistic regression (SLgr vs. SLgrCP). During
the competition, 15 submissions were received [B+04]. The best submission achieves 16% error,
using features “based on Bereitschaftspotential and event-related desynchronization” [W+04]. The
2nd best submission achieved 19% using 188 time-based, frequency-based, and correlational fea-
tures “compiled by hand” [B+04]. For the other 13 submissions, six attained errors between 23%
and 29%, and the other seven were worse. In our study, compressible logistic regression using
1400 raw features are comparable to the two best submissions with domain-specific features.

3http://www.cs.ubc.ca/labs/scl/spgl1/
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(a) Sparse LGR coefficients
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(b) Compressible LGR coefficients

Figure 5.1: Model coefficients of sparse and compressible (i.e., piecewise smooth) logistic regres-
sion on brain-computer interfacing (EEG signal classification)

We also plot the model coefficients learned by a sparse logistic regression and a compressible
logistic regression in Figure 5.1. From the plot we have several interesting observations. 1) Sparse
logistic regression learns sparse coefficients, and compressible LGR leads to (piecewise) smooth
coefficients. These two different patterns represent the inductive biases we incorporate into the
learning process (via different regularization penalties). 2) Although in the compressible logistic
regression we mainly penalize the difference of successive coefficients, most learned coefficients
are actually close to zero. The proposed regularization (piecewise local smoothness) effectively
controls the model complexity not only in terms of smoothness but also in terms of the norm
of coefficients. 3) In the compressible logistic regression, there still exist a few large coefficient
jumps over successive dimensions (within the same channel): we plot in Fig. 5.1b the boundaries
(vertical dashed lines) of three selected channels that contain large coefficient jumps. These jumps
correspond to large coefficients in the compressed domain (recall that the compressed domain
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Table 5.2: Classification errors over 45 tasks on MNIST, 10/20/50 training examples per class:
means (and standard errors) over tasks

10 examples per class 20 examples per class 50 examples per class
Lasso 9.96% 6.94% 4.91%

LassoCP 7.80% 5.30% 3.45%
SLgr 9.79% 6.24% 3.91%

SLgrCP 7.46% 4.99% 3.26%

(Lasso - LassoCP) 2.16%(0.23%) 1.64%(0.18%) 1.46%(0.12%)
(SLgr - SLgrCP) 2.33%(0.21%) 1.25%(0.16%) 0.65%(0.09%)

Table 5.3: Performance comparison on individual tasks between compressible and sparse models
on MNIST, 10/20/50 training examples per class: #win/#loss over 45 tasks

10 examples per class 20 examples per class 50 examples per class
LassoCP vs. Lasso 41/4 42/3 44/1
SLgrCP vs. SLgr 43/2 42/3 40/5

defined by our compression operation is composed of the difference of successive coefficients
within the same channel in the original space). The existence of a few large coefficients in the
compressed domain is consistent with the notation of compressibility: most information of the
original signal is concentrated on a few components after being compressed. This is achieved by
performing `1 regularization4 in the compressed domain rather than the original domain.

5.6 Empirical Study: Handwritten Character Recognition

In this section, we study handwritten character recognition on images. As discussed in Section 5.4,
compacted energy in the frequency domain can be used as the inductive bias for regularization,
assuming that the model only needs to operate on a few frequencies to classify images.

Descriptions of the Data Set. We use the MNIST handwritten digits data set5, which has
70000 images for 10 digits (from 0 to 9). Images are represented by pixels (in grayscale). The
number of features is p = 784, corresponding to 28× 28 pixels of an image.

Experimental Procedures. We construct 45 binary classification tasks, each to classify two
digits. For each task, a few labeled examples of the two digits are selected from the training set
(e.g., 10, 20, or 50 images per class in our experiments). As a result, we aim to learn classifiers in
a high-dimensional space (784 dimensions) using only a few training examples. Performance for
each task is averaged from 20 random runs, with training data randomly selected. For each task,
the testing data are fixed as all the images of the two target digits in the testing set.

Model and Implementation Details. The standard `1 regularized models: lasso and sparse
4Ideally, `0 norm is the best for allowing a few large coefficients, while `1 norm is the closest convex relaxation.
5http://yann.lecun.com/exdb/mnist/
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(b) Compressible model coefficients as a 28×28 image (the
intercept b omitted)

Figure 5.2: Model coefficients of a compressible logistic regression on MNIST. Task: classifying
“1” vs. “8”.

logistic regression are the same as in Section 5.5. The model compression operation used for
learning compressible lasso and compressible logistic regression is the DCT operation in eq. (5.11).
By using a DCT operation in the `1 penalty, we impose the assumption that model coefficients
should be sparse in the DCT frequency domain, implying that the model only needs to operate in
a few frequencies. Others implementation details are the same as in Section 5.5.

Experimental Results and Analysis. Results are shown in Table 5.2–Table 5.3 and Figure 5.2.
Table 5.2 has two parts. The first part shows average classification errors over 45 tasks of lasso
(Lasso), compressible Lasso (LassoCP), sparse logistic regression (SLgr) and compressible logis-
tic regression (SLgrCP), where models are learned using 10, 20 and 50 training examples per class
in each task. We omit standard errors (of classification errors) over 45 tasks since they correspond
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to the variation of the difficulty of different tasks, which is not of interest. The second part (the
last two rows) of Table 5.2 are means (and also standard errors) over 45 tasks for the difference of
classification errors between a sparse and a compressible model. From Table 5.2 we can see that
compressible lasso and compressible logistic regression generally outperform their sparse coun-
terparts. The less the training examples available for learning, the more obvious the advantage
of compressible models over sparse models. We also compare the classification performance of
compressible and sparse models on each individual task in Table 5.3. The results shows that the
majority of tasks benefit from learning compressible models instead of learning sparse models.

In addition, we plot in Figure 5.2 the model coefficients of a compressible logistic regression
from a random run, where the task is to classify “1” (negative class) and “8” (positive class). As
shown in Fig. 5.2a, model coefficients in the original space (which correspond to image pixels) are
not sparse, but they are mainly changing in a few frequencies, indicating sparsity in the compressed
(DCT) space, i.e., has compacted energy in the frequency domain. Interestingly, when we plot the
model coefficients as a 28×28 image in Fig. 5.2b, the difference between the negative class “1” and
the positive class “8” is well emphasized. The model coefficients, although only sparse in the DCT
frequency domain, can actually represent a meaningful pattern in the original input space. This
should not be a surprise: DCT is the compression operation in the JPEG standard for compressing
images, and most useful information in an image tends to be sparse in the DCT domain.

5.7 Conclusion

In this chapter, we study how to encode input information that is more general than just the co-
variance and correlation structure. We propose learning compressible models: certain structure
information about the input space can be encoded as a compression operation, and by including a
compression operation into `1 regularized learning, model coefficients are compressed before being
penalized and sparsity is achieved in a compressed domain. This relaxes the assumption on model
sparsity to model compressibility, and provides an opportunity encode more appropriate inductive
biases, e.g., piecewise local smoothness, and compacted energy in the frequency domain. We con-
duct experiments on brain-computer interfacing and handwritten character recognition. Empirical
results show significant improvements in prediction performance by including compression in the
`1-norm penalty. We also analyze the learned model coefficients under different compressibility
assumptions, which further demonstrate the advantages of learning compressible models instead
of sparse models.
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Chapter 6

Projection Penalties: Learning Safely with
Dimension Reduction

6.1 Overview

In this chapter [ZS10c], we study the scenario that certain structure information about the input
space is highlighted by a dimension reduction, e.g., a subset of features, a clustering of low-level
features, or a subspace (or manifold) of the input space. In this case, we want to encode this di-
mension reduction into learning while controlling the risk of information loss during the reduction.

Learning in high-dimensional spaces with limited training examples is difficult. As a result,
researchers have invented various dimension reduction techniques to reduce the feature space. A
dimension reduction method may focus on feature selection or feature extraction, can be linear
or nonlinear, and may utilize the target variable (supervised) or not (unsupervised). Despite the
wide variety of approaches, dimension reduction is useful for learning predictive models because
it can discover and highlight the relevant part of the feature space in fewer dimensions. However,
performing dimension reduction and then learning in the reduced space can also degrade the pre-
diction performance, because any reduction discards information, and it is hard to tell whether the
information lost by a dimension reduction procedure is relevant to a prediction task or not.

We propose the projection penalty framework to encode the input information from a dimen-
sion reduction while controlling the risk of losing relevant information during the reduction. The
idea is shown in Fig 6.1. Reducing the feature space from Rp to Rd (d < p) using a dimension
reduction P before learning predictive models can be viewed as restricting the model search in full
model spaceM to certain model subspaceMP . The idea of projection penalties is that instead of
completely restricting model search to the model subspaceMP , we can still search the model w in
the full model spaceM but penalize the projection distance toMP . In this sense, the dimension
reduction P is used to guide the model search, rather than to restrict the model search.

We first introduce projection penalties for linear dimension reduction, and then generalize to
kernel-based reduction and other nonlinear methods. We test projection penalties with various di-
mension reduction techniques in different prediction tasks, including principal component regres-
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Figure 6.1: The idea of projection penalties

sion and partial least squares in regression tasks, kernel dimension reduction in face recognition,
and latent topic modeling in text classification. Experimental results show that projection penalties
offer a more effective and reliable way to make use of dimension reduction techniques.

6.2 Projection Penalties

6.2.1 Dimension reduction and parameter subspace

Consider learning a linear prediction model (w, b) in a p-dimensional space by minimizing an
empirical loss L given a set of n training examples {xi, yi}ni=1:

argmin
w∈Rp,b

n∑
i=1

L(yi,w
Txi + b) (6.1)

where the parameter vector w ∈ Rp and the intercept b represent the prediction model, and xi
and yi are the p-dimensional feature vector and the response variable of the ith example, respec-
tively. The empirical loss L depends on the choice of prediction models, e.g., squared error loss,
logistic log-likelihood loss or hinge loss. If the dimension of the feature space is high, a penalty
term J(w) may be added to control the model complexity, such as an `2-norm penalty in ridge
regression [TA77] and support vector machines [Vap95] and an `1-norm penalty in lasso [Tib96].

A linear reduction of a p-dimensional feature space can be represented as a d × p matrix P
where d < p is the dimension of the reduced feature space. For an example x in the original
feature space, Px is the representation in the reduced space. In this sense, performing a linear
dimension reduction and then learning predictive models in the reduced space can be written as:

argmin
v∈Rd,b

n∑
i=1

L(yi,v
T (Pxi) + b) (6.2)

where v ∈ Rd is the parameter vector learned in the reduced feature space. Eq. (6.2) can be
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rewritten as:

argmin
v∈Rd,b

n∑
i=1

L(yi, (P
Tv)Txi + b) (6.3)

Comparing eq. (6.3) with eq. (6.1), we see the connection between a linear reduction of the feature
space and the restriction on the model parameter space. Specifically, performing a linear reduction
P in the feature space simply corresponds to confining the p-dimensional parameter vector w to
the following subspace:

MP = {w ∈ Rp | w = P Tv, ∃v ∈ Rd} (6.4)

In this sense, eq. (6.2) is equivalent to:

argmin
w∈MP ,b

n∑
i=1

L(yi,w
Txi + b) (6.5)

6.2.2 Projection penalties for linear reduction

In eq. (6.5) we see that performing a linear dimension reduction P in the feature space is equivalent
to restricting the model search to a parameter subspace MP as defined in eq. (6.4). From the
perspective of model search, we eliminate all candidates that are not inMP . However, there is no
guarantee that, for a prediction task, the optimal model in Rp must belong to the subspaceMP .

We propose to search models in the full parameter space and penalize the projection distance
toMP . This leads to the formulation of a projection penalty for a linear dimension reduction P :

argmin
w∈Rp,b

n∑
i=1

L(yi,w
Txi + b) + min

w∗∈MP

λJ(w −w∗)

or using the definition ofMP in (6.4), we have:

argmin
w∈Rp,b

n∑
i=1

L(yi,w
Txi + b) + min

v∈Rd
λJ(w − P Tv) (6.6)

where λ is a regularization parameter usually chosen by cross validation, J() is a penalty function
such as ‖‖2

2 or ‖‖1, v ∈ Rd is a parameter vector on the reduced feature space and w∗ = P Tv
defines a member in the parameter subspaceMP . Eq. (6.6) allows us to learn the parameter vector
w in the full parameter space Rp and penalize the part of w that can not be interpreted by models
inMP . This is different from directly performing a dimension reduction P , as shown in eq. (6.5),
where model search is completely restricted to the parameter subspaceMP .

It is straightforward to solve eq. (6.6) by a change of notation w̃ = w − P Tv:

argmin
w̃∈Rp,v∈Rd,b

n∑
i=1

L(yi, w̃
Txi + vT (Pxi) + b) + λJ(w̃) (6.7)
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This can viewed as redefining the representation for each training example xi as a (p + d)-
dimensional vector [xi; (Pxi)], and solving the regularized linear model ([w̃; v], b) on the new
representation. The specific algorithm for solving eq. (6.7) depends on the choice of empirical loss
L and penalty function J , e.g., conjugate gradient methods, subgradient methods, or methods for
constrained optimization [BV04]. The parameter vector w can be computed as:

w = w̃ + P Tv

6.2.3 Projection penalties for kernel-based reduction

Section 6.2.2 shows that a linear dimension reduction can be used to penalize a linear model via
a projection penalty, as in eq. (6.6). A limitation of eq. (6.6) is that the resulting model is still a
linear model. Recently, SVMs and other kernel-based learning algorithms have drawn considerable
interest in machine learning [MMR+01]. In this section, we generalize projection penalties to
dimension reduction and predictive modeling in kernel feature spaces.

Consider learning a prediction model w given a set of n training examples {xi, yi}ni=1 and
a dimension reduction operator P , where both the prediction model and the reduction operator
are designed to operate on a kernel feature space F . Each training example is represented as
Φ(xi) ∈ F ⊆ Rp using the kernel feature mapping Φ. The feature mapping Φ is characterized by
its inner product via a Mercer kernel k(·, ·):

(Φ(xi) · Φ(xj)) = k(xi,xj)

Depending on the choice of kernel functions, the kernel feature space is usually a very high (or
infinite) dimensional space and thus p is large or infinite.

Analogously to eq. (6.6), the projection penalty is:

argmin
w∈Rp,b

n∑
i=1

L(yi,w
TΦ(xi) + b) + min

v∈Rd
λJ(w − P Tv) (6.8)

where w, v and P are of size p × 1, d × 1 and d × p, respectively. The reduction operator P
is provided by a kernel-based dimension reduction such as kernel PCA [SSM98] or generalized
discriminant analysis [BA00]. Thus, each p × 1 column basis of P T is represented by a weighted
combination of examples in kernel feature space F .

To solve w in eq. (6.8), we consider classification problems and use the hinge loss of SVMs as
the empirical loss L() and the `2-norm penalty as J(). By introducing slack variables {ξi}ni=1 for
hinge loss [Bur98], we have the following quadratic program:

argmin
w∈Rp,v∈Rd,b,{ξi}ni=1

1

2
‖ w − P Tv ‖2

2 + C

n∑
i=1

ξi (6.9)

s.t. yi(w
TΦ(xi) + b) ≥ 1− ξi, ∀i
ξi ≥ 0, ∀i
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where we use C ∝ 1
λ

to replace λ in eq. (6.8). Also by changing to w̃ = w − P Tv, we have:

argmin
w̃∈Rp,v∈Rd,b,{ξi}ni=1

1

2
‖ w̃ ‖2

2 + C
n∑
i=1

ξi (6.10)

s.t. yi(w̃
TΦ(xi) + vTPΦ(xi) + b) ≥ 1− ξi,∀i
ξi ≥ 0, ∀i

Note that the reduction of examples from F into d-dimensional space, i.e., PΦ(xi), is actually
performed via kernel tricks [MMR+01].

Since the primal problem (6.10) is convex, the KKT conditions are sufficient and necessary
for optimal primal and dual solutions [BV04]. To derive KKT conditions and the dual, we add
Lagrangian multipliers {αi}ni=1 and {µi}ni=1 for the constraints in the primal (6.10), which gives
the Lagrangian:

L =
1

2
‖ w̃ ‖2

2 +C
n∑
i=1

ξi

−
n∑
i=1

αiyi(w̃
TΦ(xi) + vTPΦ(xi) + b)

−
n∑
i=1

αi(ξi − 1)−
n∑
i=1

µiξi

s.t. αi ≥ 0, µi ≥ 0, ∀i

The KKT optimality conditions include:

∂L
∂w̃

= w̃ −
n∑
i=1

αiyiΦ(xi) = 0 (6.11)

∂L
∂v

= −
n∑
i=1

αiyiPΦ(xi) = 0 (6.12)

∂L
∂b

= −
n∑
i=1

αiyi = 0

∂L
∂ξi

= C − αi − µi = 0

yi(w̃
TΦ(xi) + vTPΦ(xi) + b)− 1 + ξi ≥ 0

ξi ≥ 0

αi ≥ 0

µi ≥ 0

αi[yi(w̃
TΦ(xi) + vTPΦ(xi) + b)− 1 + ξi] = 0

µiξi = 0

53



Using the above conditions to eliminate primal variables in the Lagrangian, we have the following
dual problem:

argmax
{αi}ni=1

∑
i

αi −
1

2

∑
i,j

αiαjyiyjk(xi,xj) (6.13)

s.t. 0 ≤ αi ≤ C, ∀i
n∑
i=1

αiyi = 0 (6.14)

n∑
i=1

αiyiPΦ(xi) = 0 (6.15)

where the kernel k(xi,xj) computes Φ(xi)
TΦ(xj). This dual can be solved as a quadratic pro-

gramming problem, and w̃, according to condition (6.11), is:

w̃ =
n∑
i=1

αiyiΦ(xi) (6.16)

Note that the dual form (6.13) is similar to the dual form of SVMs [Bur98], with one key differ-
ence: the SVM dual form has only one equality constraint (6.14), while the above dual form has
additional d equality constraints (6.15). These d additional constraints basically say that dual so-
lutions {αi}ni=1 and the resulting w̃ do not operate on the reduced feature space (w.r.t. the training
examples). This is very intuitive: w̃ in the primal form (6.10) is defined by a change of variable:
w̃ = w − P Tv. Thus, w̃ refers to the part of w that can not be replaced by operating on the
reduced feature space. This also coincides with the fact that the constraints (6.15) result from the
KKT condition (6.12), which says the derivative of the Lagrangian w.r.t. v ∈ Rd is zero. Indeed, if
w̃ is still operating on the reduced space, then v ∈ Rd should be changed to take the responsibility
of w̃ since v is not penalized in the primal form (6.10).

To solve for v and b, we plug the solution to w̃ (solved as (6.16)) into the primal form (6.10).
The quadratic term becomes a constant, and therefore, v and b (and slack variables {ξi}ni=1) can be
solved efficiently in (6.10) as a linear programming problem. Note that both w̃TΦ(xi) and PΦ(xi)
in the constraints are computed via kernel tricks and treated as known. Finally, given w̃, v and b,
the prediction on a new example x is:

w̃TΦ(x) + vTPΦ(xi) + b

6.2.4 Regularization in the parameter subspace

Section 6.2.2 and 6.2.3 propose projection penalties for linear dimension reduction and kernel-
based dimension reduction. In both cases, there is no penalty on the the parameter vector v ∈ Rd

that operates on the reduced feature space. In some applications where the number of training
examples is very small or the dimensionality of the reduced space is relatively high, a small penalty
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on v ∈ Rd will be helpful for both the generalization of the model and the numerical stability for
optimization. Including a small penalty on v ∈ Rd into eq. (6.6) or eq. (6.7) is straightforward
and will not affect the optimization algorithm. But for projection penalties in kernel feature space,
such as in eq. (6.10), including another penalty will change the dual form in a non-trivial way, and
thus is the focus of this section.

We start from eq. (6.10) and add a new penalty on v:

argmin
w̃∈Rp,v∈Rd,b,{ξi}ni=1

1

2
‖ w̃ ‖2

2 +
γ

2
‖ v ‖2

2 + C

n∑
i=1

ξi (6.17)

s.t. yi(w̃
TΦ(xi) + vTPΦ(xi) + b) ≥ 1− ξi,∀i
ξi ≥ 0, ∀i

where 0 ≤ γ ≤ 1 is a new regularization parameter. Adding Lagrangian multipliers {αi}ni=1 and
{µi}ni=1 for the two sets of constraints, the Lagrangian is:

L =
1

2
‖ w̃ ‖2

2 +
γ

2
‖ v ‖2

2 +C
n∑
i=1

ξi

−
n∑
i=1

αiyi(w̃
TΦ(xi) + vTPΦ(xi) + b)

−
n∑
i=1

αi(ξi − 1)−
n∑
i=1

µiξi

s.t. αi ≥ 0, µi ≥ 0, ∀i

Most KKT conditions remain the same as in Section 6.2.3, except condition (6.12), which is now:

∂L
∂v

= γv −
n∑
i=1

αiyiPΦ(xi) = 0 (6.18)

Given the new Lagrangian and the new set of KKT conditions, the dual becomes:

argmax
{αi}ni=1

∑
i

αi −
1

2

∑
i,j

αiαjyiyjk(xi,xj) (6.19)

− 1

2γ

∑
i,j

αiαjyiyj(PΦ(xi))
T (PΦ(xj))

s.t. 0 ≤ αi ≤ C, ∀i
n∑
i=1

αiyi = 0

Comparing this dual form to the dual (6.13), the constraints (6.15) are removed, and instead, the
quadratic term in the objective now includes a new part: − 1

2γ

∑
i,j αiαjyiyj(PΦ(xi))

T (PΦ(xj)).
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We can see the connection between the dual problems (6.19) and (6.13) by setting γ → 0. In this
case, the new dual problem has an infinite weight on −

∑
i,j αiαjyiyj(PΦ(xi))

T (PΦ(xj)). The
matrix of inner products is positive semidefinite. Therefore, to maximize objective (6.19), the so-
lution {αi}ni=1 must satisfy the constraints (6.15) to keep the infinitely weighted non-positive term
−
∑

i,j αiαjyiyj(PΦ(xi))
T (PΦ(xj)) as zero. In this sense, the dual problem (6.19) is equivalent

to the duel problem (6.13) when γ → 0.
Given the solution {αi}ni=1 to (6.19), w̃ and v are obtained via KKT conditions (6.11) and (6.18):

w̃ =
n∑
i=1

αiyiΦ(xi)

v =
1

γ

n∑
i=1

αiyiPΦ(xi)

Finally, b can be obtained similarly as in SVMs [Bur98] via examples that lie on the margin (i.e.,
examples with 0 < αi < C).

6.2.5 Adaption to other nonlinear reduction

In this section, we extend projection penalties to work with an arbitrary reduction operation. Recall
that projection penalties proposed in Section 6.2.2 and 6.2.3 requires the reduction operator P to
be either linear in the input space or at least “linear” in the kernel feature space. This requirement
is the basis for defining the parameter subspaceMP in eq. (6.4), which is then used to formulate
eq. (6.6) and eq. (6.8). However, when we proceed to eq. (6.7) and eq. (6.10), the parts that involve
the reduction operator P are just Pxi in (6.7) and PΦ(xi) in (6.10). Therefore, a simple trick is
to replace these two terms by an arbitrary reduction function Ψ(xi). Note that eq. (6.7) and (6.10)
with this trick are no longer connected to eq. (6.6) and (6.8), but they can still be solved as discussed
in Section 6.2.2 and 6.2.3. In prediction time, we can handle any new example x as long as we can
calculate the reduced feature representation Ψ(x) using the reduction function Ψ.

This trick may be very useful for some application domains. Consider a fully probabilistic topic
model such as latent Dirichlet allocation [BNJ03]. The reduction operation is neither linear in the
input space nor linear in any kernel space. In fact, extracting a topic distribution (e.g., performing
the dimension reduction) for a given document via latent Dirichlet allocation involves intractable
inference of posterior distribution. In this sense, the trick discussed above allows us to encode
information from a probabilistic topic model when learning predictive models on text.

For learning a prediction model in a kernel space, this trick also enables us to use a different
kernel or the same kernel with different kernel parameters for the dimension reduction operation.
This is not allowed in Section 6.2.3, since the kernel-based reduction P in eq. (6.8) was assumed
to operate on exactly the same kernel feature space as the prediction model w.
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Table 6.1: R2 for predicting Boston housing prices: means and standard errors over 500 random
runs.

R2: Mean R2: Standard Error
Ridge 49.53% 0.98%

PCR(d = 11) 52.93% 0.96%
PLS(d = 11) 52.58% 0.97%

Proj-PCR(d = 4) 53.55% 0.68%
Proj-PLS(d = 1) 53.63% 0.72%

6.3 Empirical Studies

In this section, we present our empirical studies on applying projection penalties to different di-
mension reduction techniques for housing price prediction, text classification, and face recognition.

6.3.1 Linear Reduction in Regression

Experiment Settings. We use the Boston Housing data set from the UCI Machine Learning
Repository1 as an example regression task. The data set contains 506 examples, each correspond-
ing to a U.S. census tract in the Boston area. The target variable is the median value of owner-
occupied homes and the 13 input variables include crime rate, student-teacher ratio, tax rate, and
so forth. We conducted 500 random runs in our experiments. In each run, we randomly sample
50 training examples and the remaining 456 records are used as testing examples. We use R2, one
minus the proportion of unexplained variance, as the performance measure for this regression task.

Competing Methods. We study the following methods. 1) Ridge regression (Ridge) trained on
the original 13 variables. 2) Principal component regression (PCR), which first performs dimension
reduction using PCA and then fits a least squares model on the principal components. 3) Partial
least squares (PLS), which can be viewed as sequentially extracting a number of components using
both input variables and the response variable and fitting a least squares model on the extracted
components. 4) Projection penalty (Proj-PCR) in eq. (6.6) with PCA as the dimension reduction
P and least squares as the loss function L. 5) Projection penalty (Proj-PLS) in eq. (6.6) using a
trained partial least squares model to provide dimension reduction and least squares as the loss
function. For ridge regression and the projection penalty models, the regularization parameter λ is
chosen by 5-fold cross-validation from the range [10−8, 10−6, . . . , 1010]. Also, for the projection
penalty models, λ

1000
||β||22 is added to penalize the model in the reduced space, as discussed in

Section 6.2.4. The dimension of the reduced space d is chosen for each model to optimize the
performance.

Results. The experimental results are shown in Table 6.1. For each model, we report the
average R2 over 500 random runs as well as the standard errors. The optimal dimension of the
reduced space is also displayed with each model (if applicable). From the results we can see

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Table 6.2: Text classification error averaged over tasks (2% train data): mean and standard error
over 20 random runs

Mean Standard Error
L2-LGR 17.78% 0.082%

LGR-Topic(d = 30) 12.51% 0.059%
Proj-Topic(d = 30) 10.36% 0.067%

Table 6.3: Text classification error averaged over tasks (5% train data): mean and standard error
over 20 random runs

Mean Standard Error
L2-LGR 11.08% 0.039%

LGR-Topic(d = 30) 10.45% 0.049%
Proj-Topic(d = 30) 7.87% 0.042%

Table 6.4: Text classification error averaged over tasks (10% train data): mean and standard error
over 20 random runs

Mean Standard Error
L2-LGR 8.30% 0.029%

LGR-Topic(d = 30) 9.39% 0.027%
Proj-Topic(d = 30) 6.77% 0.029%

that dimension reduction techniques are helpful for predicting the house prices. Both principal
component regression (PCR) and partial least squares (PLS) perform better than ridge regression.
Projection penalty models (Proj-PCR and Proj-PLS) further improve the predictions.

6.3.2 Topic Modeling in Text Classification

Experiment Settings. We use the 20-Newsgroups data set2, which contains 11314 training and
7532 testing documents collected from 20 newsgroups. We denote training and testing sets as
Dtr and Dts, respectively. Documents are represented as bags of words. We select the most
frequent 200 words in each newsgroup except the 20 most frequent common words across all
newsgroups. This leads to p = 1443 words (i.e., features) in the vocabulary. Several latent Dirichlet
allocation [BNJ03] models are estimated from Dtr and used as dimension reduction models, with
the number of topics d specified as 10, 20, 30, 50, and 100. We construct 190 binary classification
tasks using all pairs of newsgroups. For each task, we randomly sample 2%, 5% and 10% of the
relevant documents in Dtr as training examples for classifiers. We use the average classification
error over 190 tasks as the performance measure. This procedure is repeated for 20 random runs.
The testing documents for each task are fixed as all relevant documents in Dts.

2http://people.csail.mit.edu/jrennie/20newsgroups
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Competing Methods. We consider three methods. 1) `2-regularized logistic regression (L2-
LGR) in the original feature space: we directly train a logistic regression classifier for each task,
and use `2 regularization to prevent overfitting in the high-dimensional feature (word) space. 2)
Logistic regression in the topic space (LGR-Topic): we use latent Dirichlet allocation to reduce the
feature space (into topic space), and then train a logistic regression for each task in the topic space.
3) Projection penalty (Proj-Topic) as in eq. (6.7) with latent Dirichlet allocation as the dimension
reduction operator. Note that the trick discussed in Section 6.2.5 is needed since extracting the topic
distribution is not a linear reduction of the word space. The parameter λ in the `2 regularization
is chosen via 5-fold stratified cross-validation from the range [10−8, 10−6, . . . , 1010]. For methods
using dimension reduction, d = 30 topics gives the best performance.

Results. Empirical results on average classification errors over tasks are shown in Tables 6.2, 6.3
and 6.4, with 2%, 5% and 10% training examples used. Means and standard errors over 20 ran-
dom runs are reported. Using a projection penalty with a topic model (Proj-Topic) achieves the
best performance in all sizes of training sets. The performance is better than both directly fit-
ting regularized models in the word space (L2-LGR) and fitting models in the reduced topic space
(LGR-Topic). It is interesting to compare the performance of L2-LGR and LGR-Topic when the
training size varies. Using 2% of the training examples, learning classifiers on topics performs
significantly better than fitting models in the original word space, as the topic space highlights
important information in a lower dimensionality. However, when the training size is increased to
10%, directly fitting a model on the word distribution is superior to learning models in the reduced
topic space. This confirms that the dimension reduction also loses valuable information. Finally,
the projection penalty with a topic model dominates the other two methods for all training sizes,
which indicates the projection penalty effectively encodes the information from the topic model
but also controls the loss of information from the reduction.

6.3.3 Kernel Methods in Face Recognition

Experiment Settings. We use the Yale face data set3, which contains face images of 15 subjects.
There are 11 images per subject, corresponding to different configurations in terms of expression,
emotion, illumination, and wearing glasses (or not), etc. Each image is scaled to 32 × 32 pixels.
We vary the size of the training set as 3, 5 and 7 images per subject. We have 50 random runs for
each size of training sets. In each run, we randomly select training examples and the rest is used
as the testing set. Training examples of all subjects are used to learn dimension reduction models
(discussed later). We consider all 105 binary classification tasks, each classifying between two
subjects. The average classification error over tasks is the performance measure, and aggregated
results over 50 runs are reported.

In this experiment, we study dimension reduction and predictive modeling in a kernel fea-
ture space. We use the degree-2 polynomial kernel to define our kernel feature space. We con-
sider three dimension reduction methods: kernel PCA [SSM98], generalized discriminant analysis
(GDA) [BA00] and orthogonal Laplacian faces (OLap) [CHHZ06].

3http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Table 6.5: Face classification error averaged over tasks (3 training images per subject): mean and
standard error over 50 random runs

Mean Standard Error
SVM-Kernel 16.17% 0.26%

SVM-KPCA(d = 45) 16.22% 0.25%
Proj-KPCA(d = 45) 15.33% 0.26%
SVM-GDA(d = 14) 11.21% 0.25%
Proj-GDA(d = 14) 10.38% 0.24%
SVM-OLap(d = 14) 8.58% 0.26%
Proj-OLap(d = 14) 7.93% 0.22%

Table 6.6: Face classification error averaged over tasks (5 training images per subject): mean and
standard error over 50 random runs

Mean Standard Error
SVM-Kernel 12.68% 0.30%

SVM-KPCA(d = 75) 12.72% 0.30%
Proj-KPCA(d = 75) 12.47% 0.29%
SVM-GDA(d = 14) 9.32% 0.23%
Proj-GDA(d = 14) 7.13% 0.20%
SVM-OLap(d = 14) 4.74% 0.21%
Proj-OLap(d = 14) 4.57% 0.20%

Table 6.7: Face classification error averaged over tasks (7 training images per subject): mean and
standard error over 50 random runs

Mean Standard Error
SVM-Kernel 11.43% 0.28%

SVM-KPCA(d = 105) 11.37% 0.29%
Proj-KPCA(d = 105) 11.19% 0.28%
SVM-GDA(d = 14) 7.59% 0.23%
Proj-GDA(d = 14) 6.37% 0.23%
SVM-OLap(d = 14) 3.43% 0.17%
Proj-OLap(d = 14) 3.40% 0.17%

Competing Methods. We compare the following methods. 1) SVM in the kernel feature space
(SVM-Kernel): train an SVM classifier for each task with a polynomial kernel. This can be viewed
as fitting a linear model directly in the high-dimensional kernel feature space. 2) SVM in the re-
duced feature space (SVM-KPCA, SVM-GDA, SVM-OLap): perform KPCA, GDA or OLap, and
then fit a linear SVM in the reduced space. KPCA and GDA are used with polynomial kernels.
Thus, SVM-KPCA and SVM-GDA can be viewed as a reduction of the high-dimensional ker-
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nel feature space followed by a linear model fit in the reduced space. 3) Projection penalty as in
eq. (6.17) with KPCA, GDA and OLap (Proj-KPCA, Proj-GDA, Proj-OLap). Note that OLap is
not a kernel-based reduction technique, so the trick in Section 6.2.5 is used. The regularization pa-
rameter C for SVMs is chosen by stratified cross-validation from the range [10−8, 10−6, . . . , 1010].
For the projection penalty in eq. (6.17), we set γ = 10−5.

Results. Experimental results are shown in Table 6.5, Table 6.6 and Table 6.7. These three
tables present results for 3, 5 and 7 training images per subject, respectively. The optimal di-
mension d of the reduced feature space is reported with each method. In each table, SVM-Kernel
corresponds to learning a linear SVM in the kernel feature space and serves as the baseline. We ob-
serve the following results. 1) SVM-KPCA vs Proj-KPCA: KPCA is not a very effective dimension
reduction tool for classification, mainly because it does not use the information from labels. SVM-
KPCA performs similarly or even worse than the baseline model. Proj-KPCA performs better than
SVM-KPCA and the baseline SVM-Kernel, showing that the projection penalty is safe and reliable
when used with an ineffective reduction. 2) SVM-GDA vs Proj-GDA: GDA is significantly more
effective than KPCA for dimension reduction. SVM-GDA’s performance is superior to the base-
line, and Proj-GDA further improves the performance. 3) SVM-OLap vs Proj-OLap: orthogonal
Laplacian faces is a powerful reduction technique for supervised learning. All OLap-based meth-
ods predict better than KPCA- and GDA-based methods. Performance of our Proj-OLap is slightly
better than SVM-OLap: OLap provides very high-quality dimension reduction for classification,
and thus there may not be a significant loss of predictive information. As a result, our proposed
Proj-OLap only slightly outperforms SVM-OLap (i.e., directly performing the reduction).

6.4 Conclusion

In this chapter, we investigate a common scenario in which the structure information about the
input space is highlighted by a dimension reduction. We propose the projection penalty framework
to encode a dimension reduction while controlling the risk of information loss during the reduction:
reducing the input space and learning in the reduced space can be viewed as restricting the model
search to some parameter subspace, and instead of restricting the search to a parameter subspace,
we can still search in the full space but penalize the projection distance to the parameter subspace.
We design projection penalties for linear dimension reduction, then generalize to kernel-based
reduction and other nonlinear reduction methods. We empirically study projection penalties with
various dimension reduction techniques in regression, text classification, and face recognition.
Experimental results show that the projection penalty framework is an effective and reliable way
to gain from dimension reduction techniques without losing important predictive information.
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Chapter 7

A Composite Likelihood Method for
Multi-Label Classification

7.1 Overview

In this chapter [ZS12a], we provide a composite likelihood view for many recent multi-label clas-
sification algorithms, and then we show a simple modification of the existing pairwise decompo-
sition methods using the composite likelihood view. The composite likelihood view also provides
the framework for the more advanced output coding schemes presented in Chapter 8 and 9.

Multi-label classification has recently received considerable attention from the machine learn-
ing community [TKV10]. As reviewed in Section 2.3, in multi-label classification we aim to
simultaneously classify a set of multiple labels for each example, and a key assumption is the exis-
tence of certain label dependency structures, i.e., label assignments are usually not independent. A
very popular class of multi-label classification algorithms are based on problem decomposition, in
which the multi-label classification problem is decomposed into a set of subproblems, prediction
models are learned for the subproblems, and then the final classification is made by combining
subproblem predictions. Subproblems are usually chosen to be simple decision problems that can
capture certain dependencies among labels. Popular choices of subproblems include one-vs-all de-
composition (i.e., the relevance of each individual label) [RK04], one-vs-one decomposition (i.e.,
the pairwise comparison between any two labels) [Fur02, HFCB08], a combination of both one-vs-
all and one-vs-one decompositions [FHMB08], and conditional relevance of one label given other
labels (e.g., classifier chain methods) [RPHF09, DCH10].

Despite having some empirical success, the choice of subproblems in many decomposition
methods seems arbitrary, and the combination of subproblem predictions in the final decision mak-
ing is usually based on heuristics (e.g., voting). To address these issues, we first show the connec-
tion between multi-label decomposition algorithms and composite likelihood [VRF11, LYS11], a
technique based on partial specification of the likelihood as the product of simple component like-
lihoods to efficiently model complex dependencies. We believe that this connection holds great
promise for improving the design of multi-label decomposition methods, especially in the choice
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of subproblems and the combination of subproblem predictions in decision making.
As an attempt to exploit this connection, we design a composite marginal method that improves

the popular pairwise decomposition approaches. In existing pairwise decomposition methods, pair-
wise label comparisons are widely used as the subproblems to learn, and prediction for a testing
sample is made by voting from all label comparisons. Inspired by the composite likelihood view,
we instead choose pairwise label density estimations as the subproblems to learn, and for combin-
ing subproblem decisions (i.e., decoding), we design a mean-field approximation procedure based
on the composite likelihood view, which minimizes the notion of composite divergence and is
potentially more robust to inaccurate estimation in subproblems.

On five real-world data sets, we compare our method with several multi-label decomposition
methods and a joint learning approach that captures label dependency using a graphical model.
Empirical results show that, given limited training samples, the proposed method outperforms
alternatives and provides superior predictions under a variety of evaluation criteria.

7.2 Composite Likelihood Methods

In this section we first give an overview of commonly used forms of composite likelihoods, and
then we briefly motivate and discuss parameter estimation via composite likelihoods.

7.2.1 Overview

Composite likelihood is a partial specification of the full likelihood function by multiplying a
set of simple component likelihoods, where each component likelihood is in the form of either
a marginal or a conditional density. Composite likelihood can be viewed as an oversimplified
form of the full likelihood, but such an approximation can provide certain benefits in parameter
estimation, notably in computation, statistical efficiency (with limited samples), and robustness (to
model misspecification). Research on composite likelihood methods can be dated back to Besag’s
pseudolikelihood [Bes74] and Cox’s partial likelihood [CR75]. Lindsay [Lin88] formalizes the
term composite likelihood for “product of likelihoods”. Some excellent overviews and discussion
on this subject have been recently published [VRF11, LYS11].

Formally, consider q random variables Y = (Y1, . . . , Yq), the parameter vector θ ∈ Θ and the
full likelihood function L(θ; y) with one observation y. Following the notation in [Lin88, VRF11],
we denote by {A1, . . . ,AK} a collection of K marginal or conditional events, with corresponding
component likelihoods {Lk(θ; y) ∝ f(y ∈ Ak; θ)}Kk=1. A composite likelihood approximates the
likelihood function L(θ; y) by:

LC(θ; y) =
K∏
k=1

Lk(θ; y)wk (7.1)

where {Lk(θ; y)}Kk=1 are marginal or conditional densities, and {wk}Kk=1 are (optional) nonnegative
weights on components. In this chapter we mainly considerwk = 1, k = 1, 2, . . . , K for simplicity.
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Composite marginal likelihoods make up a large class of composite likelihoods that use low-
dimensional marginal densities as component likelihoods. The simplest example of composite
marginal likelihood is the so-called independence likelihood. For q variables y = (y1, . . . , yq), we
have:

Lind(θ; y) =

q∏
i=1

f(yi; θ) (7.2)

Naturally this specification does not capture interactions between different variables. Another
well studied class of likelihoods, which considers small blocks of variables, is the pairwise likeli-
hood [Kuk00, Cox04, VRF11, LYS11]:

Lpair(θ; y) =

q−1∏
i=1

q∏
j=i+1

f(yi, yj; θ) (7.3)

which includes interactions between pairs of variables into the likelihood function.
Composite conditional likelihoods is another popular class of composite likelihoods based

on conditional densities, which date back to pseudolikelihood [Bes74]. Its general form is the
following:

Lcond(θ; y) =
K∏
k=1

f(yBk
|yN (Bk); θ) (7.4)

where each Bk indexes a block of variables, and N (Bk) indexes neighbors of the variables in
Bk. Two widely used composite conditional likelihoods in both longitudinal studies [MV05] and
bioinformatics [MHTS08] are the pairwise conditional likelihood:

Lpcl(θ; y) =

q∏
i=1

q∏
j=1

f(yi|yj; θ) (7.5)

and the full conditional likelihood:

Lfcl(θ; y) =

q∏
i=1

f(yi|y(−i); θ) (7.6)

where y(−i) denotes all variables but yi.

7.2.2 Computation, robustness, and statistical efficiency of estimation

Composite likelihood methods provide an approximation to the full likelihood function that has
been widely used in parameter estimation. Research on composite likelihood estimation has been
focused on computational efficiency, robustness to model misspecification, and statistical effi-
ciency. Parameter estimation via composite likelihoods is computationally more efficient than
optimizing the joint likelihood function, especially when parameters in component likelihoods
are decoupled and estimated separately, e.g., as in [FV06, MV05]. Also, it has been argued by
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many researchers that composite likelihood estimation is more robust to model misspecification
since only model assumptions on low-dimensional conditional or marginal densities, instead of
the detailed specification of the full joint density, are required [VRF11, LYS11]. The statistical
efficiency of the estimation has also been intensively studied [MKHT09, HV08, VRF11, LYS11],
e.g., in [MKHT09], composite conditional estimators are shown to be fully efficient (and identical
to maximum likelihood estimators in terms of efficiency) in the multivariate normal distribution.

7.3 A Composite Likelihood View of Multi-Label Problem De-
composition

In this section, we show the connection between composite likelihoods and many recent multi-label
decomposition methods.

7.3.1 The Full Multi-Label Model

One way to capture the full dependency of q labels is to treat each of the 2q label combinations as
a separate class. This is usually called the label powerset method (LP) [TKV10]. In the statistics
literature, this method is linked to directly modeling the joint probability of all 2q entries in a q-
dimensional contingency table [Cox72]. The drawback of this approach is obvious. Large numbers
of observations are needed to estimate this full model well, and the computational complexity of the
training algorithm usually scales exponentially in q. This is what motivates composite likelihoods:
the full likelihood is too difficult to estimate and perform inference on.

7.3.2 Multi-Label Problem Decomposition and Composite Likelihoods

Multi-label decomposition methods transform the original problem into a set of subproblems, learn
each subproblem, and combine subproblem predictions to make the final classification. In general,
the choice of subproblems in a decomposition method corresponds to a certain instantiation of the
composite likelihood:

LC(θ; y|x) =
K∏
k=1

Lk(θ; y|x) (7.7)

where y = (y1, . . . , yq) ∈ {0, 1}q denotes the label vector and x denotes the feature vector. Learn-
ing the subproblems corresponds to assuming the parameters inside different Lk(θ; y|x) are inde-
pendent and estimating them separately. Combining subproblem predictions is usually based on
heuristics or exhaustive search, without leveraging properties of the composite likelihood.

One-vs-all decomposition. The simplest way to decompose multi-label classification is one-vs-
all decomposition, or the binary relevance method (BR), which has been empirically justified in
the context of multi-class classification [RK04]. For q labels, we consider q subproblems, each to
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model the relevance of one label independently. This method corresponds to a composite likelihood
of the form:

LBR(θ; y|x) =

q∏
i=1

f(yi|x; θi) (7.8)

where θi denotes the parameters used to model label i. For prediction, each subproblem provides
the conditional probability of one label, and prediction can be done by thresholding (e.g., at 0.5)
and there is no need to combine subproblem decisions. Since this method ignores the dependency
among labels, suboptimal performance will be obtained if the evaluation criterion calls for captur-
ing the label dependency [DCH10]. For example, this method might predict each label reasonably
well, but rarely get all the labels classified correctly.

Pairwise label ranking. Another popular strategy is one-vs-one decomposition [Fur02], which
is used in pairwise label ranking (PLR) [HFCB08]. For q labels, this method captures label de-
pendency by formulating q(q−1)

2
subproblems, each learning a classifier to compare two labels. In

this sense, the choice of subproblems in pairwise label ranking indicates the following composite
likelihood:

LPLR(θ; y|x) =

q−1∏
i=1

q∏
j=i+1

f(yi ≥ yj|x; θij) (7.9)

where θij is the vector of parameters for label pair (i, j), and the component form f(yi ≥ yj|x; θi)
comes from the fact that in one-vs-one decomposition, subproblems are pairwise comparisons. For
prediction, votes are collected from all pairwise classifiers, and labels are ranked by the number
of winning votes they receive, e.g., the label receiving q − 1 winning votes, if there is one, will be
ranked first as it wins all the comparisons against other q − 1 labels. Note that this method is only
a label ranking method: a rank order does not give a classification, and one has to find a threshold
for classification.

Calibrated Label Ranking. Calibrated label ranking (CLR) is a strategy that combines both
one-vs-one and one-vs-all decompositions for multi-label classification [FHMB08]. The key idea
is to introduce a virtual label that is always ranked between the relevant set and the irrelevant
set of labels. As a result, all we need for classifying q labels is to obtain a rank order of q + 1
labels (q labels plus one virtual label) by pairwise label ranking. The difficulty, however, is how
to learn the pairwise classifier between each actual label and the virtual label. In [FHMB08],
this is solved by noticing that the pairwise comparison between label i and the virtual label is
semantically equivalent to the one-vs-all decision for label i. As CLR uses both one-vs-one and
one-vs-all subproblems, it corresponds to the composite likelihood:

LCLR(θ; y|x) = [

q∏
i=1

f(yi|x; θi)] · [
q−1∏
i=1

q∏
j=i+1

f(yi ≥ yj|x; θij)] (7.10)
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Classifier chains. Classifier chains (CC) [RPHF09] and probabilistic classifier chains (PCC) [DCH10]
use subproblems that describe the conditional relation of labels. Both methods start with a ran-
domly chosen label order. CC learns a function to predict each label, conditional on the input
features and antecedent labels along the chosen order. In PCC, each prediction function is prob-
abilistic, and all functions together define the joint label probability as in a Bayesian network. In
this sense, given a label order ((1), (2), . . . , (q)), CC and PCC are linked to:

LCC(θ; y|x) =

q∏
i=1

f(y(i)|x, y(1), . . . , y(i−1); θ(i)) (7.11)

For classification using CC, labels are predicted in the chosen order, based on the input features
and predicted antecedent labels. For classification using PCC, however, efficient inference is not
provided and exhaustive search is used to find label assignments [DCH10]. Indeed, if we con-
sider (7.11) as a Bayesian network, the largest conditional table contains all the labels.

Labelset methods. The label powerset method considers all the 2q label combinations as 2q

classes. This corresponds to the full likelihood approach with 2q configurations. Along this direc-
tion, the pruned labelset method considers only label combinations that are sufficiently frequent
in the data [RPH08], and the random k-labelsets focuses on label combinations that only involve
k labels [TV07]. These methods generate multi-class classification problems with less than 2q

classes, and it corresponds to specifying a single component likelihood, but with less entries than
in the full likelihood.

7.3.3 Other Multi-Label Classification Methods

All the decomposition methods discussed in Section 7.3.2 can be enhanced using randomization
and ensemble learning. A committee of experts can be constructed by launching a given method
multiple times with certain randomization, such as sampling training examples, label orders or
label subsets. Ensemble-based extensions that have been specifically studied include ensemble
classifier chains [RPHF09], ensemble probabilistic classifier chains [DCH10], ensemble pruned
labelsets [RPH08] and random K-labelsets [TV07]. It is generally recognized that the ensemble
version of an algorithm tends to outperform the original non-ensemble algorithm, although this
benefit usually comes at the cost of much more intensive computation.

Instead of decomposing and learning subproblems individually, another direction is to jointly
model the dependency among all the labels and features via a single graphical model. Research
along this direction includes specifying a conditionally trained undirected graphical model (i.e.,
CRF) [GM05] or learning the structure of Bayesian networks from data [ZZ10, ZSM+11] to cap-
ture the joint label relation (conditioned on features). Joint modeling via a single graphical model
provides an elegant method of multi-label learning, but potential challenges include: 1) learning
the graphical model (such as training an undirected graphical model or learning the structure of a
Bayesian network) is usually intractable, unless certain approximation is made (e.g., greedy search
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for learning the structure of a Bayesian network); 2) joint modeling is likely to demand more
training samples than learning simpler subproblems.

As an alternative to model-independent problem decomposition methods, researchers have also
concentrated on adapting specific models (such as decision trees, SVMs, KNNs, neural networks,
boosting) to directly produce multi-label predictions.

An recent overview on a variety of multi-label learning methods can be found in [TKV10].

7.4 A Composite Marginal Model for Multi-Label Classifica-
tion

Exploiting the composite likelihood view of problem decomposition, we propose a composite
marginal method for multi-label classification. We consider the subproblems of estimating the
univariate and bivariate label densities as components in a composite likelihood, and based on this
composite likelihood, we develop a new mean-field approximation procedure that minimizes the
notion of composite divergence to perform efficient inference for combining subproblem decisions.
This procedure is potentially more robust to certain common estimation errors in subproblems.

7.4.1 Implications of Composite Likelihood to Multi-Label Problem Decom-
position

Subproblem design. A primary implication of the composite likelihood perspective to multi-label
classification is on the design of subproblems. For example, consider the composite marginal
likelihood of pairwise label ranking in (7.9) and that of calibrated label ranking in (7.10). Both
composite likelihoods contain pairwise comparison events {f(yi ≥ yj|x; θij)} as component like-
lihoods. However, is the component likelihood in the form of f(yi ≥ yj|x; θij) the most informa-
tive description of the pairwise label relationship? This issue will be addressed in Section 7.4.2.
Combination of subproblem decisions. Combining subproblem predictions to make a final clas-
sification is critical to multi-label decomposition methods. However, most existing decomposition
methods combine subproblem decisions using heuristics such as voting. The composite likelihood
function approximates the joint label probability in a composite form of subproblem predictions,
and this form enables the design of efficient inference procedures that are particularly suitable for
multi-label classification. In Section 7.4.3, we develop a new robust mean-field approximation by
exploiting the composite form of the likelihood.

7.4.2 Composite Marginal Modeling: Specification and Estimation

As raised in Section 7.4.1, one issue in (7.10) is the use of likelihood components of the form
{f(yi ≥ yj|x; θij)}. Although pairwise comparison between two labels is a very natural sub-
problem to consider from the algorithm perspective, it is not the most informative component in
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a likelihood function. Knowing “yi ≥ yj” only rules out one scenario (yi = 0, yj = 1) and still
leaves three possibilities: (yi = 0, yj = 0), (yi = 1, yj = 0), or (yi = 1, yj = 1). In this sense, the
bivariate marginal density fully describes the pairwise relation of two labels and thus provides more
information to the composite likelihood. Also, bivariate densities of the form f(yi, yj|x; θij) are
more natural than {f(yi ≥ yj|x; θij)} when considered as part of a likelihood function. Therefore,
we consider univariate and bivariate density estimation as subproblems, which give the following
composite likelihood:

LCMM(θ; y|x) = [

q∏
i=1

f(yi|x; θi)] · [
q−1∏
i=1

q∏
j=i+1

f(yi, yj|x; θij)]
λ (7.12)

where {f(yi|x; θi)} and {f(yi, yj|x; θij)} are univariate and bivariate marginal densities of labels
conditional on the feature vector x, {θi} and {θij} are two sets of parameter vectors for univariate
and bivariate densities, and λ is the nonnegative weight of bivariate densities, which we set to 1.

Given a set of N training examples D = {yn,xn}Nn=1, the overall composite likelihood func-
tion is:

LCMM(θ; D) =
N∏
n=1

LCMM(θ; yn|xn) (7.13)

Since we assume parameters in different components are independent, maximum composite
likelihood estimation (MCLE) can be performed separately:

θ̂i = argmax
θi

N∏
n=1

f(yni |xn; θi), i = 1, 2, . . . , q (7.14)

θ̂ij = argmax
θij

N∏
n=1

f(yni , y
n
j |xn; θij), i = 1, 2, . . . , q − 1 and j = i+ 1, . . . , q (7.15)

Note that problem (7.14) is essentially to estimate a probabilistic binary classifier for each label i,
and problem (7.15) is essentially to estimate a probabilistic 4-class classifier (for the four possible
configurations 00, 01, 10 and 11 of two labels i and j).

7.4.3 Composite Marginal Modeling: Inference via Robust Mean-Field Ap-
proximation

Given ({θ̂i}, {θ̂ij}), the composite likelihood provides a joint conditional probability of labels:

P̂ (y|x) =
1

Z
· [

q∏
i=1

f(yi|x; θ̂i)] · [
q−1∏
i=1

q∏
j=i+1

f(yi, yj|x; θ̂ij)]
λ (7.16)

where f(yi|x; θ̂i) and f(yi, yj|x; θ̂ij) are discrete potentials, and Z is the partition function.
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For a testing example x, exact inference on y ∈ {0, 1}q using P̂ (y|x) has a time complexity
exponential in q. For efficient classification, we may consider the classical mean-field approxima-
tion [JGJS99, KF09]:

Q(y) =

q∏
i=1

Qi(yi) (7.17)

which is the fully factorized distribution on y, with each Qi(yi) a Bernoulli distribution on la-
bel yi. Traditionally, we would use fixed point equations to minimize the following KL diver-
gence [KF09]:

Q̂ = argmin
Q

KL(Q||P̂ ) = argmin
Q

∑
y∈{0,1}q

Q(y) log
Q(y)

P̂ (y|x)
(7.18)

However, KL(Q||P̂ ) is highly sensitive to a specific type of estimation error that happens fre-
quently in multi-label classification: underestimating the probability of rare label combinations.
When a label combination y is rare, maximum likelihood estimation as in (7.14) and (7.15) will
produce model parameters that further underestimate P̂ (y|x), thus pushing P̂ (y|x) to zero. This
is known as the class imbalance problem [CJK04]. Unfortunately, since Q is the base distribution,
KL(Q||P̂ ) is sensitive to regions where Q is non-zero but P̂ is close to zero. This is also evident
in (7.18) as P̂ appears in the denominator. Thus, minimizing KL(Q||P̂ ) reacts dramatically to
underestimation errors in P̂ , i.e., Q is forced to be zero wherever P̂ approaches zero.

As a result, we need a new divergence measure D(Q||P̂ ) which, as KL(Q||P̂ ), can be op-
timized efficiently by fixed point equations (to reach a stationary point), and more importantly,
D(Q||P̂ ) needs to be robust to underestimation errors in P̂ . A convenient way to define a di-
vergence measure for a composite likelihood is to use composite divergence [VRF11], which is
the linear weighted combination of divergences to all the component distributions. Since P̂ is the
normalized LCMM in (7.12), we propose the following quadratic divergence:

D(Q||P̂ ) =
q∑
i=1

D(Q||f(·|x; θ̂i)) + λ

q−1∑
i=1

q∑
j=i+1

D(Q||f(·, ·|x; θ̂ij)) (7.19)

in which the divergence between Q and each univariate discrete distribution f(·|x; θ̂i) is:

D(Q||f(·|x; θ̂i)) =
1∑

yi=0

(Qi(yi)− f(yi|x; θ̂i))
2 (7.20)

and the divergence between Q and each bivariate discrete distribution f(·, ·|x; θ̂ij) is:

D(Q||f(·, ·|x; θ̂ij)) =
1∑

yi=0

1∑
yj=0

(Qi(yi)Qj(yj)− f(yi, yj|x; θ̂ij))
2 (7.21)
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Table 7.1: Results on Medical data: means (and standard errors) over 30 random runs. The best
model is marked with *, and all competitive models (by paired t-tests with the best model, α =
0.05) are shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error
BR 0.0325 (0.0007) 0.2608 (0.0048) 0.3627 (0.0075) 0.0787 (0.0033)

PLR 0.3721 (0.0011) 1.0000 (0.0000) 0.3678 (0.0050) 0.0978 (0.0029)
CLR 0.0338 (0.0006) 0.2708 (0.0043) 0.3687 (0.0054) 0.0888 (0.0025)
CC 0.0358 (0.0007) 0.2707 (0.0061) 0.3888 (0.0018) 0.1606 (0.0047)
RK 0.0329 (0.0007) 0.2610 (0.0055) 0.3863 (0.0016) 0.1109 (0.0030)

LEAD 0.0331 (0.0006) 0.2563 (0.0046) 0.3400 (0.0113) 0.0770 (0.0029)
CMM 0.0313*(0.0005) 0.2524*(0.0043) 0.3276*(0.0082) 0.0706*(0.0027)

which are the sum of squared differences of the probability mass over possible events in f(·|x; θ̂i)
and f(·, ·|x; θ̂ij), respectively. Note that Q reduces to Qi and Qi · Qj in the two equations as Q is
fully factorized. Compared to the KL divergence in (7.18), the new divergences in (7.20) and (7.21)
are more robust to the underestimation cases f(yi|x; θ̂i)→ 0 and f(yi, yj|x; θ̂ij)→ 0, and thus so
is the linear combination D(Q||P̂ ) in (7.19).

Minimizing D(Q||P̂ ) in (7.19) w.r.t. a single Bernoulli Qi with all other {Qj}j 6=i fixed can be
solved in closed form. Thus, we can iteratively apply fixed point equations and converge quickly
to a stationary point. Since the solution Q(y) =

∏q
i=1 Qi(yi) is a fully factorized distribution over

labels, inference on Q(y) (such as assigning 0/1 value to each label) can be performed efficiently.

7.5 Empirical Studies

Data. We perform our experiments on five real-world multi-label data sets: Enron, Medical, Yeast,
Scene, and Emotion1. Enron and Medical are text data with labels related to email analysis and
medical decision. Yeast is a biological data set where genes are labeled by functions. Scene is an
image data set where labels denote different scenes. Emotion is a collections of songs labeled by
emotions. We select the top ten labels if the data set has more than ten labels.

Methods. We compare our proposed method to several popular multi-label decomposition
methods as well as a joint modeling approach that captures the label dependency using graphical
models [ZZ10]. See Section 7.3 for a review of decomposition methods.
• Binary relevance (BR): classify each label independently (i.e., one-vs-all decomposition).
• Pairwise label ranking (PLR): perform pairwise label comparison to rank all the labels.
• Calibrated label ranking (CLR): combine both pairwise comparison and one-vs-all classifiers.
• Classifier chain (CC): a classifier chain to model conditional label relation given a label order.
• Random k-labelsets (RK): an ensemble algorithm combines classifiers for label sets of size K.

1http://mulan.sourceforge.net/

72



Table 7.2: Results on Yeast data: means (and standard errors) over 30 random runs. The best model
is marked with *, and all competitive models (by paired t-tests with the best model, α = 0.05) are
shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error
BR 0.3137 (0.0020) 0.9140 (0.0033) 0.4531 (0.0017) 0.4823 (0.0058)

PLR 0.3050 (0.0011) 0.9588 (0.0026) 0.3833*(0.0009) 0.2401*(0.0008)
CLR 0.2963 (0.0014) 0.9147 (0.0042) 0.3839 (0.0008) 0.2412 (0.0008)
CC 0.3225 (0.0022) 0.8598 (0.0034) 0.4290 (0.0013) 0.2452 (0.0013)
RK 0.2664 (0.0008) 0.8631 (0.0053) 0.4097 (0.0031) 0.2711 (0.0075)

LEAD 0.2684 (0.0010) 0.8811 (0.0051) 0.3886 (0.0007) 0.2413 (0.0010)
CMM 0.2651*(0.0009) 0.8594*(0.0043) 0.3916 (0.0008) 0.2418 (0.0012)

Table 7.3: Results on Emotion data: means (and standard errors) over 30 random runs. The best
model is marked with *, and all competitive models (by paired t-tests with the best model, α =
0.05) are shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error
BR 0.2354 (0.0027) 0.7863 (0.0045) 0.4937 (0.0030) 0.3394 (0.0074)

PLR 0.2681 (0.0018) 0.8645 (0.0021) 0.4859 (0.0028) 0.2954 (0.0042)
CLR 0.2294 (0.0024) 0.7810 (0.0057) 0.4877 (0.0019) 0.2914 (0.0049)
CC 0.2431 (0.0033) 0.7818 (0.0067) 0.5134 (0.0026) 0.4285 (0.0069)
RK 0.2155*(0.0019) 0.7465*(0.0051) 0.5238 (0.0029) 0.3109 (0.0066)

LEAD 0.2600 (0.0025) 0.8713 (0.0052) 0.4845 (0.0034) 0.3281 (0.0060)
CMM 0.2163 (0.0018) 0.7599 (0.0044) 0.4787*(0.0018) 0.2884*(0.0044)

• Multi-label learning by exploiting label dependency (LEAD): a joint modeling approach which
learns and incorporates a Bayesian network to capture the label dependency.

• Composite marginal model (CMM): the proposed method described in Section 7.4, which ex-
ploits the composite likelihood view to improve subproblem choice and prediction combination.
All the methods need base learners to solve the subproblems. We use linear SVMs for binary

decisions, multi-class SVMs (based on one-vs-one decomposition) for multi-class cases. If prob-
abilistic estimates are required for binary problems, logistic regression is used instead of SVMs,
and for multi-class probabilistic estimates, we use the method in [WLW04]. All these learners
are available in the LIBSVM2 and LIBLINEAR packages3. Structure learning of Bayesian net-
works is performed using the Bayesian Net Toolbox (BNT)4 and its structure learning extension
(BNT-SLP)5.

All problem decomposition methods can be extended to randomized ensemble versions by

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
3http://www.csie.ntu.edu.tw/ cjlin/liblinear/
4http://code.google.com/p/bnt/
5http://ofrancois.tuxfamily.org/slp.html
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Table 7.4: Results on Scene data: means (and standard errors) over 30 random runs. The best model
is marked with *, and all competitive models (by paired t-tests with the best model, α = 0.05) are
shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error
BR 0.1439 (0.0015) 0.6118 (0.0039) 0.5072 (0.0058) 0.3669 (0.0040)

PLR 0.3356 (0.0009) 0.9968 (0.0005) 0.4753 (0.0053) 0.3265 (0.0062)
CLR 0.1397 (0.0012) 0.6181 (0.0046) 0.4733*(0.0057) 0.3237 (0.0052)
CC 0.1491 (0.0015) 0.5410 (0.0053) 0.5030 (0.0030) 0.4162 (0.0039)
RK 0.1223 (0.0010) 0.5724 (0.0063) 0.5057 (0.0038) 0.3339 (0.0039)

LEAD 0.1291 (0.0011) 0.5739 (0.0048) 0.4749 (0.0064) 0.3494 (0.0040)
CMM 0.1138*(0.0008) 0.5250*(0.0037) 0.4862 (0.0057) 0.2872*(0.0027)

Table 7.5: Results on Enron data: means (and standard errors) over 30 random runs. The best
model is marked with *, and all competitive models (by paired t-tests with the best model, α =
0.05) are shown in bold.

Methods Hamming Loss Subset 0/1 Loss Ranking Loss One Error
BR 0.1958 (0.0016) 0.8653 (0.0067) 0.2911 (0.0025) 0.2753 (0.0043)

PLR 0.3121 (0.0016) 0.9921 (0.0005) 0.3058 (0.0039) 0.2356 (0.0024)
CLR 0.1897 (0.0015) 0.8505 (0.0053) 0.3026 (0.0033) 0.2341*(0.0030)
CC 0.1960 (0.0019) 0.8417 (0.0046) 0.3730 (0.0038) 0.2622 (0.0042)
RK 0.1811 (0.0007) 0.8269*(0.0022) 0.3554 (0.0031) 0.2945 (0.0076)

LEAD 0.1932 (0.0007) 0.8614 (0.0036) 0.2887 (0.0028) 0.2898 (0.0038)
CMM 0.1796*(0.0008) 0.8269*(0.0026) 0.2854*(0.0020) 0.2450 (0.0036)

sampling examples, label orders or label sets. However, in this chapter we limit our attention to
the methods themselves (except RK, which is already the ensemble version). Random k-labelsets
is tested in its ensemble form (of size 30) since the raw version is not a complete multi-label
classifier. All methods except CLR need a threshold to assign 0/1 values to labels. We simply
use 0.5. One can also search for an optimal threshold in [0, 1]. The regularization parameters of
the base learners are chosen by cross validation. We use K=2 for RK since most rivals focus on
pairwise label relations.

Evaluation. We report on four evaluation measures. 1) Hamming loss: the percentage of
misclassified labels; 2) subset 0-1 loss: the percentage of examples that at least one label is mis-
classified, which tests the ability to capture label dependency; 3) ranking loss: the probability that
an irrelevant label is ranked higher than a relevant label, which measures the ability to capture the
relative order between labels. 4) One error: the percentage of examples for which the top ranked
label turns out to be irrelevant.

Experimental settings. We perform 30 random runs and report means and standard errors of
each evaluation measure. Data sets come with more than enough training examples (several of
them contain thousands of training samples). As we are interested in performance with limited
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training data, in each random run we sample 200 training examples.
Results are shown in Table 7.1 to Table 7.5. We summarize the results as follows:

• PLR and CLR perform well on ranking loss and one error, because their decisions are mainly
based on pairwise comparison of labels and focus more on obtaining the correct rank order
of labels. PLR has terrible performance on hamming loss and subset 0/1 loss because PLR is
designed as a ranking algorithm and is incapable of deciding the relevance/irrelevance of labels.
CLR is designed to improve PLR by introducing a virtual label (which serves as an adaptive
threshold between relevant and irrelevant labels) and thus CLR obtains average performance on
hamming loss and subset 0/1 loss.

• CC attains average performance on hamming loss and subset 0/1 loss, but falls behind on ranking
loss and one error. The conditional relation of labels captures certain label dependencies, but is
not well suited for label ranking. It has been reported that ensemble CC has better performance,
and interesting future work is to compare the ensemble versions of different methods.

• RK: as the only method coupled with a randomized ensemble technique, RK achieves decent
performance on hamming and subset 0/1 loss but below-average scores on ranking loss and
one error. One potential reason for the unsatisfactory ranking performance is the use of simple
voting to combine predictions from subproblems, which may lose information that is critical for
accurate ranking.

• LEAD offers above-average performance on Medical and Yeast data sets but is not very compet-
itive on other data sets. Jointly modeling the label dependency using a single graphical model is
promising, but it also tends to require more training samples than learning simple subproblems
in decomposition methods. Also, structure learning of Bayesian nets (or parameter estimation
in undirected graphical models) are still computationally intractable.

• CMM delivers the top performance on all four evaluation criteria (in terms of the number of
wining data sets). This is the only method competitive for both classification and ranking. Sub-
problems of estimating univariate and bivariate label densities convey more information than
pairwise label comparisons, and the robust mean-field procedure provides a decent approxima-
tion to the composite likelihood without losing critical information for classification and ranking.

7.6 Conclusion

In this chapter we show the connection between multi-label problem decomposition methods and
composite likelihoods. We believe this connection holds great promise for improving the design
of multi-label problem decomposition in both the choice of subproblems and the combination of
subproblem decisions. As an attempt to exploit this connection, we design a composite marginal
method that improves existing pairwise decomposition algorithms. Pairwise label comparisons
are replaced by pairwise label density estimations, which offer more informative and natural com-
ponents in the composite likelihood. For combining subproblem decisions, we propose a new
mean-field approximation procedure that minimizes the notion of composite divergence and is po-
tentially more robust to inaccurate estimation in subproblems. Empirical studies show that the
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proposed method outperforms many alternatives under a variety of evaluation criteria.
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Chapter 8

Multi-Label Output Codes using Canonical
Correlation Analysis

8.1 Introduction

In this chapter [ZS11], we study problem-dependent output coding for multi-label classification,
where the label encoding (i.e., the choice of subproblems) is adaptively learned from data instead
of being predefined (as in pairwise decomposition). We propose an output coding scheme using
label projections, and more specifically, the most predictable directions in the label space found
by canonical correlation analysis. These predictable label projections, as part of the new output
code, will be predicted by regression models. From the composite likelihood view, we no longer
use pre-defined pairwise label densities as in Chapter 7, but instead we define Gaussian densities
on the adaptively learned label projections. This new coding scheme emphasizes the predictability
of the generated output codes and thus can effectively improve the performance of multi-label
classification. In the rest of this section, we first review error-correcting output codes (ECOCs)
designed for multi-class classification problems and a few important issues when applying ECOCs
to multi-label prediction, and then we give an overview of our new multi-label output codes.

8.1.1 From Multi-class Output Codes to Multi-label Output Codes

Error-correcting output codes (ECOCs) are traditionally designed to decompose a multiclass clas-
sification problem into many binary subproblems [DB95]. Using ECOCs, the multiclass problem
can be solved using only binary classifiers for subproblems, and more importantly, since the binary
subproblems also provide a redundant representation for the original multiclass classification prob-
lem, certain prediction errors can be corrected during the decoding process. Two key components
of an output coding scheme are encoding and decoding. The encoding maps each class to a code-
word, which contains the outcomes of all decomposed binary subproblems on that class. Models
are learned from training examples to predict the codewords of new examples, and the class of a
new example is obtained by decoding the predicted codeword.
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Unlike classes, labels in multi-label classification are not mutually exclusive. In a q-label
problem, the cardinality of the output spaceY = {0, 1}q is 2q instead of q in a q-class problem. This
change of output space brings up a few issues when applying ECOCs to multi-label problems:
• Validity of the encoding. Many multi-class ECOCs encode the output into a number of binary

decision subproblems, each differentiating two subsets of classes. In multi-label cases, two
subsets of labels can be simultaneously satisfied, which makes the binary outcome ill-defined.
For example, in pairwise decomposition, the comparison between label i and label j is not well-
defined on examples where both labels are true. We may ignore all such training examples when
training the binary classifier, but in the testing phase we will not know if a test example should
be ignored by this classifier. Ideally, we want the encoding to be well-defined for all examples.

• Efficiency of the decoding. An ECOC usually decodes a predicted codeword either by simple
heuristics such as voting, or by exhaustively searching over all classes to optimize certain criteria
(e.g., the Hamming loss to the predicted codeword). For an q-label problem, searching over all
2q label vectors in {0, 1}q is inefficient, and effective yet efficient decoding is desirable. One
observation we notice is that if the encoding is nonlinear (e.g., decomposition into pairwise
comparisons of labels), the decoding has to solve a nonlinear system.

• Predictability of the codeword. Given an ECOC, classification is performed by predicting
the codeword and then decoding. In this sense, predictability of the codeword is an important
concern for code design, i.e., the subproblems should be easy to learn. In multi-label classifica-
tion, encoding via decomposing into binary subproblems is not always easy to solve, and a new
encoding protocol that produces predictable codewords is needed. Note that the predictability
issue also exists in multi-class ECOCs, but in multi-label problems, we have new opportunities
to address this issue by exploiting the label dependency.

• Dependency among labels. A key difference between multi-label classification and multi-class
classification is the existence of rich label dependency structures. In multiclass classification,
mutual exclusion of classes (i.e., one class is true and all other classes are false) eliminates most
dependency structures. In multi-label classification problems, however, a variety of co-occurring
patterns can exist among labels, which provides critical information and new opportunities for
finding predictable codewords and thus effective error-correcting output codes.

8.1.2 Overview: Coding with Canonical Correlation Analysis

In this chapter, we propose an error-correcting output code for multi-label classification, which of-
fers valid encoding, efficient decoding, and predictable codewords which exploit label dependency.
In our coding scheme, label dependency is characterized as the most predictable directions in the
label space and extracted as the canonical output variates in canonical correlation analysis. The
codeword encodes these most predictable variates as well as the original labels. Predictions for the
codeword define a graphical model of labels with both Bernoulli potentials (from binary classifiers
on the labels) and Gaussian potentials (from regression on the canonical variates). The decoding is
performed by mean-field approximation, which offers a tractable predictive distribution on labels
and improves the prediction performance in multi-label classification.

78



We establish connections between our work and compressed sensing [Don06, HKLZ09] and
ensemble learning [Bre96, FS96, BS01]. Our coding scheme can be viewed as an advanced sens-
ing protocol, where random projection directions in compressed sensing are replaced by the most
predictable directions in the label space, and noninformative sparsity priors are replaced by infor-
mative Bernoulli priors from trained classifiers. Also, we view ensemble learning in a prediction
system as simulating the behavior of repetition codes in channel coding [CT91]. As a result, the
successful use of repetition codes in concatenated coding [CF07] suggests the concatenation of
ensemble learning with our coding scheme to produce more powerful output codes.

In our empirical study, the proposed output coding scheme leads to substantial improvements
on multi-label prediction accuracy compared to a variety of state-of-the-art competitors in music
emotion classification and outdoor scene recognition.

8.2 Related Work

Multi-label compressed sensing [HKLZ09] is perhaps the first output code defined for multi-label
prediction. Our work is fundamentally different from this prior work. First, the goal of [HKLZ09]
is to reduce the number of predictions by applying source coding (i.e., compression) to labels,
while our work aims to introduce additional redundancy and improve prediction by applying chan-
nel coding (error-correcting codes). Second, the encoding in [HKLZ09] uses random projections
as in compressed sensing [Don06, Can06], while our encoding includes the most predictable direc-
tions in the label space for error correction. Third, the decoding in [HKLZ09] recovers real-valued
signals as in compressed sensing, while our decoding addresses the difficulty of inferring label
assignments. We will study this prior work in our empirical study.

“Problem transformation” methods for mining multi-label data [TKV10] transform the multi-
label classification problem into a set of subproblems and essentially adapt multi-class ECOCs
to multi-label classification. Calibrated pairwise label ranking [FHMB08] is based on one-vs-
one decomposition plus an adaptive calibration technique. For the validity of the encoding, a
pairwise comparison may not be well-defined on certain examples (where the pair of labels are
both true or both false), and the solution is to ignore all such training examples in learning, and
apply the learned pairwise model to every testing example regardless of the issue. This may lead
to ineffective use of training examples and unavoidable errors on certain testing examples. For
decoding, voting from all pairwise models is used. We will study this method in our experiments.

Ensemble methods such as bagging [Bre96], boosting [FS96] and random forests [BS01] are
also related to output coding in the sense that they simulate repetition codes [CT91, CF07].

8.3 Multi-Label Output Codes using Canonical Correlation Anal-
ysis
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Algorithm 2 The encoding and training algorithm

Input: training data (X,Y) = {(x(i),y(i))}ni=1

Parameters: d, the number of canonical variates
Output: q classifiers and d regression models

{(uk,vk)}dk=1 ← CCA(X,Y)

z(i) = (y
(i)
1 , . . . , y

(i)
q ,vT1 y(i), . . . ,vTd y(i))T , ∀i

for j = 1 to q do
p̂j ← learn classifier({(x(i), z

(i)
j )}ni=1)

end for
for k = 1 to d do
m̂k ← learn regression({(x(i), z

(i)
q+k)}ni=1)

end for

8.3.1 Encoding

Channel coding [CT91, CF07] studies reliable communication through noisy channels. To reliably
transmit a message y through a noisy channel, we encode it into a redundant codeword z. When
the corrupted ẑ is received at the other end of the channel, the encoded redundancy can be used
to correct the transmission error and recover the true message. In multi-label prediction, the label
vector y ∈ {0, 1}q of an example x is the message. The learning-and-prediction process is viewed
as transmission through a noisy channel, and prediction errors correspond to transmission errors
from the channel. As in channel coding, the goal of encoding the label vector y into a redundant
codeword z is to recover y accurately given our noisy predictions from x.

It is critical to realize a key difference between a noisy channel and a prediction system: trans-
mission errors of a noisy channel are usually independent of the information being transmitted,
while prediction errors of a trained system often depend on the signal being predicted. In other
words, some signals are easier to predict than others. As a result, it is highly desirable that the
codeword z generated by an output coding scheme is predictable from the input.

Consider a set of p variables x ∈ X ⊆ Rp and another set of q variables y ∈ Y = {0, 1}q.
For a multi-label classification problem, x will denote the feature vector and y will denote the
label vector. In addition, we have a set of n training examples: D = (X,Y) = {(x(i),y(i))}ni=1,
where X and Y are matrices of size n × p and n × q, respectively. As introduced in Section 2.8,
canonical correlation analysis finds pairs of projection directions {(uk ∈ Rp,vk ∈ Rq)}dk=1 to
successively maximize the correlation between the pair of projected variables uTk x and vTk y for k =
1, 2, . . . , d. The canonical output variates {vTk y}dk=1 found by CCA as in (2.17) are known as the
most predictable variates [Hot35]. To see this, we can rewrite the original CCA formulation (2.14)
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Figure 8.1: Factor graph representation of the undirected graphical model for decoding.

into the following equivalent problem:

argmin
u∈Rp,v∈Rq

||Xu−Yv||2 (8.1)

s.t. uTXTXu = 1

vTYTYv = 1

which simply minimizes the sum of squared errors over examples (X,Y) = {(x(i),y(i))}ni=1 when
using u as a linear model to predict the variate vTy from x.

Thus, canonical output variates are ideal to be included in the codeword z as they will invoke
minimal prediction errors. For a label vector y = (y1, . . . , yq)

T and its canonical output variates
{vTk y}dk=1, the codeword z ∈ Rq+d is defined by the following encoding:

z = (y1, . . . , yq,v
T
1 y, . . . ,vTd y)T (8.2)

Note that this defines a systematic code [CT91], where the codeword contains the original mes-
sage (the label vector y = (y1, . . . , yq)

T in this case) as a subcomponent. The intuition is that the
message always contains high information about itself. Given a set of training examples (X,Y) =
{(x(i),y(i))}ni=1, we will learn q classifiers {p̂1, . . . , p̂q} to predict the q labels {y1, . . . , yq}, and d
regression models {m̂1, . . . , m̂d} to predict the d canonical variates {vT1 y, . . . ,vTd y}. The encod-
ing and training procedure is summarized in Algorithm 2.

Note that the challenges discussed in Section 8.1.1 are being addressed: 1) the encoding in (8.2)
is well-defined for any label vector y ∈ {0, 1}q; 2) the encoding is linear, which enables us
to develop efficient decoding (in the next section); 3) {vTk y}dk=1 included in the codeword z are
the most (linearly) predictable variates; 4) the label dependency in y is exploited (via projection
vectors {vk}dk=1) to produce predictable codewords1.

1Note that vTy represents the label combination that is most predictable from x, so the projection vector v mainly
captures the conditional label dependency given x.
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Algorithm 3 The decoding and prediction algorithm

Input: a testing point x, q classifiers {p̂j}qj=1, d regression models {(m̂k, σ̂
2
k)}dk=1

Parameters: λ
Output: a fully factorized predictive distribution Q(y) =

∏q
j=1Qj(yj) for y

{Qj(yj)}qj=1 ← mean-field-approximation(x, {p̂j}qj=1, {(m̂k, σ̂
2
k)}dk=1, λ)

Use Qj(yj) as a predictive distribution on label yj, j = 1, 2, . . . , q

8.3.2 Decoding

For a testing example x, classification and regression models learned in Algorithm 2 provide a
predictive distribution on the codeword z. Each classifier p̂j predicts a Bernoulli distribution φj(yj)
for a label yj:

φj(yj) = p̂j(x)yj(1− p̂j(x))(1−yj), j = 1, 2, . . . , q (8.3)

and each regression model m̂k predicts a Gaussian distribution ψk(y) for a canonical output variate
vTk y:

ψk(y) ∝ exp−(vTk y − m̂k(x))2

2σ̂2
k

, k = 1, 2, . . . , d (8.4)

where the variance σ̂2
k can be estimated by cross validation on the training examples in Algorithm 2.

For decoding, predictive distributions (8.3) and (8.4) can be viewed as the factor graph in
Figure 8.1, which defines the following joint probability for the label vector y given x:

logP (y) = − logZ +
d∑

k=1

logψk(y) + λ

q∑
j=1

log φj(yj) (8.5)

where Z is the partition function, log is natural logarithm, and λ balances two types of potentials.
Unfortunately, exact inference over y ∈ {0, 1}q in (8.5) has a time complexity exponential in

q, due to the fact that each Gaussian potential ψk in (8.4) usually involves all the q labels. We
consider a mean-field approximation to P (y) in (8.5), as the following:

Q(y) =

q∏
j=1

Qj(yj) (8.6)

which is the class of fully factorized distributions of y that allows tractable inference over labels.
Note that each Qj(yj) is a Bernoulli distribution on the label yj .

To find the best approximation Q(y) in the fully factorized class, we need to minimize the KL
divergence KL(Q||P ), or equivalently, to maximize the energy functional [JGJS99]. Based on the
definition of P (y) in (8.5), the fixed-point equation for updating each Bernoulli factor Qj(yj) in Q
can be written as [KF09]:

Qj(yj)←
1

Zj
exp{ λ log φj(yj) +

d∑
k=1

Ey∼Q[logψk(y)|yj] } (8.7)
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where Zj is the normalization constant that makes Qj a valid Bernoulli distribution. Note that
each term Ey∼Q[logψk(y)|yj] can be computed with a time complexity polynomial in q (or more
specifically, in O(q2)), due to the fact that Q is fully factorized over labels and the Gaussian
log density logψk involves only second order interactions between labels. Thus, the mean-field
approximation Q(y) can be obtained by iterating the fixed-point update over j until convergence.

For each testing example x, mean-field approximation provides a factorized distributionQ(y) =∏q
j=1Qj(yj) on labels, where factors {Qj(yj)}qj=1 can be directly used for various prediction tasks,

e.g., classification, ranking, probabilistic inference. The decoding and prediction procedure is sum-
marized in Algorithm 3.

8.4 Connections to Other Research Areas

In this section, we establish and analyze connections between the proposed code and other research
areas such as compressed sensing and ensemble learning.

8.4.1 Multi-label Compressed Sensing

Encoding. Multi-label compressed sensing [HKLZ09] is perhaps the earliest work that formally
defines an output code for multi-label prediction. Given a label vector y ∈ {0, 1}q, the encoding is
defined as the following:

z = (vT1 y, . . . ,vTd y)T (8.8)

where each vk ∈ Rq, k = 1, 2, . . . , d is a random projection vector, e.g., with i.i.d. Gaussian or
Bernoulli entries. The codeword is shorter than the original label vector, i.e., d < q, since the
design goal of multi-label compressed sensing is to reduce the number of prediction models. How-
ever, this encoding can produce highly redundant codewords by using a large number of projections
(d >> q), which we will study as an error-correcting output code in our experiments.

Decoding. For a test example x, its codeword is predicted as ẑ = (m̂1(x), . . . , m̂d(x))T by
trained regression models {m̂k}dk=1. The decoding assumes the sparsity of the true label vector
y and reconstructs y using sparse approximation techniques. Popular choices include `1 penal-
ized convex optimization [Tro06] and iterative methods such as CoSaMP [NT08]. To analyze
the link between compressed sensing and our coding scheme, we focus on `1 penalized convex
relaxation [Tro06]:

argmin
y∈Rq

1

2

d∑
k=1

(vTk y − m̂k(x))2 + λ

q∑
j=1

|yj| (8.9)

which minimizes approximation errors on the d projection (i.e., “sensing”) measurements plus a
sparsity-inducing `1 penalty

∑q
j=1 |yj| = ||y||1 on labels. Note that the optimization is performed

over the continuous domain y ∈ Rq for computational tractability.
Connection. To see the connection between our proposed code and the compressed sensing

above, we consider optimization of the joint probability in (8.5) over labels y ∈ {0, 1}q. Plugging
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Bernoulli potentials (8.3) and Gaussian potentials (8.4) into the joint probability and ignoring the
log partition term, maximizing (8.5) is equivalent to the following minimization problem:

argmin
y∈{0,1}q

1

2

d∑
k=1

(vTk y − m̂k(x))2

σ̂2
k

+ λ

q∑
j=1

yj log(
1− p̂j(x)

p̂j(x)
) (8.10)

where the objective contains d squared error terms and q linear terms, from the d Gaussian poten-
tials and q Bernoulli potentials in (8.5), respectively. We can see that optimizing the joint label
probability as in (8.10) is similar to reconstructing signals in compressed sensing as in (8.9), but
with the following key differences:
• Projection vectors {vk}dk=1 are canonical output directions from CCA instead of random projec-

tions as in compressed sensing.
• Each error term (vTk y − m̂k(x))2 is weighted by 1/σ̂2

k.
• An informative penalty

∑q
j=1 yj log(

1−p̂j(x)

p̂j(x)
) (derived from the trained classifiers {p̂j}qj=1 on q

labels) replaces the noninformative `1 penalty
∑q

j=1 |yj|.
• Optimization is performed in the label space y ∈ {0, 1}q instead of a relaxed domain Rq.

Note that our decoding uses mean-field approximation to solve the intractable optimization
problem.

8.4.2 Ensemble Learning as Repetition Codes

Repetition codes are a class of error-correcting codes where the message is simply encoded by
repetition, e.g., y = (y1, y2, . . . , yq)

T ∈ {0, 1}q will be encoded as:

z = (y1
1 . . . y

r
1, y

1
2 . . . y

r
2, . . . , y

1
q . . . y

r
q)
T ∈ {0, 1}rq (8.11)

where r is the number of repetitions. If the channel randomly flips each bit in z with a probability
p < 0.5, decoding for yj can take a majority voting from received bits {y1

j . . . y
r
j}. If the channel

is making independent flipping errors (with p < 0.5), we can achieve error-free communication
using a sufficiently large r.

Ensemble learning imitates repetition codes in a prediction system by learning multiple mod-
els for the same label. However, if we simply repeat a label, predictions from repeatedly trained
models will be identical. If the “channel” makes identical (instead of independent) errors, major-
ity voting will not correct any of them. Therefore, ensemble learning aims to create a diverse set
of models whose prediction errors are as independent as possible [KHDM98] via perturbation on
training samples [Bre96], sample weights [FS96], features [BS01], etc2.

Concatenated coding. Repetition codes, although not efficient when used alone due to their
high redundancy, play an active role in concatenated coding. A concatenated code involves the
cascade of an outer code and an inner code. The message is first encoded by the outer encoder
and the resulting codeword is further encoded by the inner encoder. An efficient decoding can be

2Bagging and random forests fit this view better than boosting, as boosting is not a simple random repetition.
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Table 8.1: Subset accuracy on Emotions data: means (standard errors) over 30 runs.

Method: #models 200 samples 250 samples 300 samples 350 samples 391 samples
One-vs-All(LGR):6 0.2058(0.0037) 0.2185(0.0036) 0.2213(0.0034) 0.2239(0.0027) 0.2206(0.0013)
One-vs-All(SVM):6 0.2167(0.0062) 0.2190(0.0045) 0.2195(0.0065) 0.2381(0.0054) 0.2386(0.0052)
Pairwise(LGR):21 0.2086(0.0036) 0.2208(0.0043) 0.2264(0.0030) 0.2322(0.0035) 0.2331(0.0020)
Pairwise(SVM):21 0.2190(0.0045) 0.2239(0.0040) 0.2328(0.0040) 0.2381(0.0044) 0.2512(0.0039)

CCA-Reduce(LGR):6 0.2079(0.0054) 0.2259(0.0040) 0.2251(0.0041) 0.2451(0.0035) 0.2594(0.0006)
CCA-Reduce(SVM):6 0.2059(0.0060) 0.2190(0.0074) 0.2289(0.0045) 0.2408(0.0082) 0.2551(0.0060)
CompressSensing:300 0.2096(0.0049) 0.2116(0.0026) 0.2195(0.0021) 0.2226(0.0022) 0.2221(0.0007)

One-vs-All(Tree):6 0.1343(0.0043) 0.1376(0.0043) 0.1452(0.0039) 0.1469(0.0043) 0.1436(0)
One-vs-All(Forest):300 0.2426(0.0041) 0.2540(0.0026) 0.2571(0.0032) 0.2649(0.0035) 0.2667(0.0034)

CCA-OC:12 0.2944(0.0051) 0.3153(0.0037) 0.3322(0.0033) 0.3366(0.0024) 0.3472(0.0016)
CCA-OC-Forest:600 0.3318(0.0033) 0.3411(0.0029) 0.3419(0.0024) 0.3432(0.0026) 0.3480(0.0023)

performed by sequentially applying the inner and outer decoder. Using two simpler codes, concate-
nated coding provides a longer, more powerful code with efficient encoding and decoding and has
produced high performance code in practice, e.g., the code in NASA standards in 1970s [CF07].

In our experiments, we will also study a concatenated coding scheme, where our proposed code
serves as the outer code and ensemble learning is the inner code. The intuition is that ensemble
learning, as a repetition code, improves the prediction on each individual output; our code, on the
other hand, contributes by exploiting the dependency among different outputs.

8.5 Experiments

Data. We conduct our experiments on two multi-label data sets: Emotions and Scene3. Emotions is
a music classification data set containing 391 songs in the training set and 202 songs in the testing
set. Songs are labeled with six emotions: amazed, happy, relaxed, quiet, sad and angry. Each song
is represented by 72 rhythmic and timbre features. Scene is an image collection for outdoor scene
recognition, with 1211 training images and 1196 testing images tagged with six scenes: beach,
sunset, fall foliage, field, mountain and urban. Features are 294 dimensional color statistics.

Methods. We study the following methods:
• One-vs-All(LGR/SVM): one-vs-all decomposition with `2 penalized logistic regression or SVM.
• Pairwise(LGR/SVM): calibrated pairwise label ranking [FHMB08] with `2 logistic regression or

SVMs.
• CCA-Reduce(LGR/SVM): supervised dimension reduction by CCA and one-vs-all in reduced

feature space. We report results with optimal dimensions.
• CompressSensing: multi-label compressed sensing (CS) [HKLZ09], with 300 projections to pro-

3http://mulan.sourceforge.net/datasets.html.
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Table 8.2: Micro-averaged F1 score on Emotions data: means (standard errors) over 30 runs.

Method: #models 200 samples 250 samples 300 samples 350 samples 391 samples
One-vs-All(LGR):6 0.6181(0.0034) 0.6301(0.0027) 0.6338(0.0026) 0.6416(0.0019) 0.6433(0.0005)
One-vs-All(SVM):6 0.6258(0.0040) 0.6322(0.0029) 0.6404(0.0040) 0.6505(0.0023) 0.6498(0.0036)
Pairwise(LGR):21 0.6219(0.0029) 0.6315(0.0025) 0.6350(0.0024) 0.6414(0.0020) 0.6421(0.0011)
Pairwise(SVM):21 0.6286(0.0042) 0.6295(0.0040) 0.6373(0.0033) 0.6458(0.0020) 0.6518(0.0022)

CCA-Reduce(LGR):6 0.6045(0.0033) 0.6214(0.0027) 0.6285(0.0032) 0.6338(0.0020) 0.6366(0.0008)
CCA-Reduce(SVM):6 0.6006(0.0040) 0.6200(0.0042) 0.6332(0.0034) 0.6372(0.0023) 0.6445(0.0030)
CompressSensing:300 0.5729(0.0050) 0.5795(0.0033) 0.5820(0.0026) 0.5849(0.0019) 0.5890(0.0008)

One-vs-All(Tree):6 0.5550(0.0043) 0.5603(0.0038) 0.5677(0.0030) 0.5778(0.0038) 0.5540(0)
One-vs-All(Forest):300 0.6247(0.0030) 0.6389(0.0022) 0.6413(0.0024) 0.6499(0.0024) 0.6518(0.0021)

CCA-OC:12 0.6499(0.0047) 0.6646(0.0031) 0.6792(0.0032) 0.6813(0.0020) 0.6828(0.0015)
CCA-OC-Forest:600 0.6828(0.0026) 0.6887(0.0021) 0.6888(0.0023) 0.6935(0.0018) 0.6959(0.0015)

Table 8.3: Macro-averaged F1 score on Emotions data: means (standard errors) over 30 runs.

Method: #models 200 samples 250 samples 300 samples 350 samples 391 samples
One-vs-All(LGR):6 0.6081(0.0038) 0.6198(0.0029) 0.6220(0.0029) 0.6304(0.0023) 0.6290(0.0009)
One-vs-All(SVM):6 0.6124(0.0045) 0.6179(0.0035) 0.6297(0.0049) 0.6378(0.0040) 0.6355(0.0055)
Pairwise(LGR):21 0.6102(0.0031) 0.6187(0.0025) 0.6216(0.0026) 0.6284(0.0023) 0.6293(0.0015)
Pairwise(SVM):21 0.6145(0.0043) 0.6159(0.0042) 0.6198(0.0047) 0.6339(0.0032) 0.6349(0.0041)

CCA-Reduce(LGR):6 0.5954(0.0033) 0.6112(0.0031) 0.6178(0.0032) 0.6229(0.0023) 0.6202(0.0004)
CCA-Reduce(SVM):6 0.5894(0.0047) 0.6085(0.0043) 0.6202(0.0036) 0.6228(0.0030) 0.6282(0.0053)
CompressSensing:300 0.5263(0.0046) 0.5343(0.0036) 0.5354(0.0029) 0.5370(0.0022) 0.5417(0.0009)

One-vs-All(Tree):6 0.5467(0.0043) 0.5528(0.0040) 0.5603(0.0032) 0.5585(0.0039) 0.5426(0)
One-vs-All(Forest):300 0.5973(0.0040) 0.6124(0.0030) 0.6172(0.0032) 0.6286(0.0026) 0.6326(0.0025)

CCA-OC:12 0.6392(0.0047) 0.6558(0.0029) 0.6715(0.0031) 0.6740(0.0021) 0.6767(0.0015)
CCA-OC-Forest:600 0.6712(0.0026) 0.6771(0.0023) 0.6782(0.0024) 0.6846(0.0019) 0.6856(0.0017)

duce highly redundant codewords, ridge regression to predict, and CoSaMP [NT08] to decode.
CS recovers real values, and we use 0.5 as the threshold. We report results with the optimal
CoSaMP parameter (sparsity level).

• One-vs-All(Tree/Forest): one-vs-all decomposition with classification trees [BFSO84] or ran-
dom forests [BS01] (50 trees per label). Comparing these two models shows the power of
ensemble learning as a repetition code.

• CCA-OC: our proposed coding with `2 logistic regression and ridge regression as classifiers and
regression models. We simply use the maximal d from CCA in Algorithm 2, and the parameter
λ in Algorithm 3 is chosen from {1

4
, 1, 4}.

• CCA-OC-Forest: our proposed coding with random forests, where random forests provide both
accurate classification and regression. This is a concatenated coding scheme with our code as
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Table 8.4: Subset accuracy on Scene data: means (standard errors) over 30 runs.

Method: #models 400 samples 600 samples 800 samples 1000 samples 1211 samples
One-vs-All(LGR):6 0.4356(0.0031) 0.4542(0.0035) 0.4710(0.0037) 0.4785(0.0030) 0.4868(0.0011)
One-vs-All(SVM):6 0.4210(0.0041) 0.4439(0.0046) 0.4634(0.0032) 0.4758(0.0026) 0.4861(0.0018)
Pairwise(LGR):21 0.4312(0.0032) 0.4572(0.0035) 0.4653(0.0023) 0.4749(0.0027) 0.4884(0.0012)
Pairwise(SVM):21 0.4183(0.0037) 0.4449(0.0034) 0.4634(0.0028) 0.4687(0.0026) 0.4857(0.0013)

CCA-Reduce(LGR):6 0.1585(0.0032) 0.2940(0.0024) 0.3622(0.0022) 0.4071(0.0020) 0.4438(0.0002)
CCA-Reduce(SVM):6 0.1618(0.0034) 0.2938(0.0022) 0.3594(0.0027) 0.3983(0.0030) 0.4259(0.0045)
CompressSensing:300 0.3917(0.0047) 0.4107(0.0030) 0.4199(0.0024) 0.4246(0.0017) 0.4322(0.0008)

One-vs-All(Tree):6 0.2948(0.0034) 0.3205(0.0039) 0.3373(0.0034) 0.3537(0.0031) 0.3678(0)
One-vs-All(Forest):300 0.4417(0.0020) 0.4813(0.0019) 0.5012(0.0012) 0.5139(0.0016) 0.5276(0.0014)

CCA-OC:12 0.5908(0.0041) 0.6063(0.0050) 0.6276(0.0037) 0.6326(0.0024) 0.6367(0.0011)
CCA-OC-Forest:600 0.6483(0.0040) 0.6780(0.0020) 0.6906(0.0015) 0.6977(0.0011) 0.7060(0.0010)

the outer code and a repetition code as the inner code.
The regularization parameter of `2 penalized logistic regression, SVMs and ridge regression is

set by cross validation within each individual learning task.
Evaluation measures. We report on three measures:

• Subset accuracy: rates of correctly classifying all the labels of an example. This is a difficult
measure, and exploiting the label dependency is helpful.

• Micro-averaged F1 scores: aggregate true positives/negatives and false positives/negatives over
labels, and then calculate an F1 score from them.

• Macro-averaged F1 scores: calculate F1 score for each label and then take the average over
labels.
Experimental settings. For the Emotions data, we sampled 200, 250, 300, 350 as well as all

the 391 examples from the training set. For the Scene data, we sampled 400, 600, 800, 1000 as
well as all the 1211 training examples. For each training size, we perform 30 random runs and
report means and standard errors of each evaluation measure over 30 runs.

Experimental results on three measures are shown in Table 8.1 - Table 8.3 for Emotions data
and Table 8.4 - Table 8.6 for Scene data. The proposed methods are in bold. We briefly highlight
the results as follows:
• CCA-OC significantly outperforms other methods and CCA-OC-Forests further enhances CCA-

OC with concatenated coding. Improvements are most evident on subset accuracy (Table 8.1
and 8.4), which require capturing the label dependency. We also note that two proposed methods
with 200 training samples on Emotions and 400 on Scene achieve similar or better performance
than baselines trained with 391 samples on Emotions and 1211 on Scene.

• One-vs-All decomposition is a strong baseline. This is consistent with other studies [RK04].
• Calibrated pairwise label ranking (denoted by Pairwise in all tables) shows slight improvements

over one-vs-all decomposition.
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Table 8.5: Micro-averaged F1 score on Scene data: means (standard errors) over 30 runs.

Method: #models 400 samples 600 samples 800 samples 1000 samples 1211 samples
One-vs-All(LGR):6 0.6203(0.0029) 0.6368(0.0024) 0.6480(0.0024) 0.6542(0.0017) 0.6589(0.0010)
One-vs-All(SVM):6 0.6091(0.0023) 0.6284(0.0027) 0.6395(0.0021) 0.6474(0.0019) 0.6570(0.0010)
Pairwise(LGR):21 0.6239(0.0024) 0.6445(0.0022) 0.6506(0.0011) 0.6599(0.0014) 0.6674(0.0008)
Pairwise(SVM):21 0.6171(0.0027) 0.6367(0.0023) 0.6460(0.0016) 0.6515(0.0014) 0.6622(0.0009)

CCA-Reduce(LGR):6 0.4185(0.0028) 0.5178(0.0022) 0.5677(0.0015) 0.6002(0.0015) 0.6259(0.0001)
CCA-Reduce(SVM):6 0.4156(0.0029) 0.5162(0.0022) 0.5654(0.0016) 0.5919(0.0020) 0.6153(0.0021)
CompressSensing:300 0.5510(0.0042) 0.5689(0.0026) 0.5781(0.0022) 0.5837(0.0017) 0.5911(0.0004)

One-vs-All(Tree):6 0.5177(0.0029) 0.5424(0.0032) 0.5549(0.0025) 0.5690(0.0022) 0.5885(0)
One-vs-All(Forest):300 0.6110(0.0021) 0.6463(0.0017) 0.6637(0.0012) 0.6742(0.0014) 0.6864(0.0011)

CCA-OC:12 0.6541(0.0028) 0.6713(0.0034) 0.6872(0.0029) 0.6927(0.0023) 0.7000(0.0011)
CCA-OC-Forest:600 0.7200(0.0021) 0.7418(0.0015) 0.7518(0.0012) 0.7568(0.0010) 0.7641(0.0010)

Table 8.6: Macro-averaged F1 score on Scene data: means (standard errors) over 30 runs.

Method: #models 400 samples 600 samples 800 samples 1000 samples 1211 samples
One-vs-All(LGR):6 0.6303(0.0029) 0.6463(0.0020) 0.6558(0.0020) 0.6608(0.0016) 0.6644(0.0009)
One-vs-All(SVM):6 0.6196(0.0023) 0.6387(0.0024) 0.6480(0.0018) 0.6546(0.0017) 0.6630(0.0009)
Pairwise(LGR):21 0.6318(0.0026) 0.6519(0.0021) 0.6579(0.0010) 0.6667(0.0014) 0.6724(0.0007)
Pairwise(SVM):21 0.6253(0.0028) 0.6449(0.0022) 0.6533(0.0015) 0.6576(0.0014) 0.6672(0.0009)

CCA-Reduce(LGR):6 0.4233(0.0029) 0.5229(0.0023) 0.5728(0.0016) 0.6041(0.0015) 0.6291(0.0001)
CCA-Reduce(SVM):6 0.4199(0.0029) 0.5215(0.0025) 0.5702(0.0016) 0.5951(0.0025) 0.6195(0.0025)
CompressSensing:300 0.5409(0.0052) 0.5616(0.0032) 0.5712(0.0025) 0.5775(0.0019) 0.5851(0.0004)

One-vs-All(Tree):6 0.5263(0.0029) 0.5504(0.0031) 0.5620(0.0026) 0.5767(0.0022) 0.5966(0)
One-vs-All(Forest):300 0.5988(0.0024) 0.6370(0.0019) 0.6562(0.0014) 0.6669(0.0017) 0.6802(0.0012)

CCA-OC:12 0.6632(0.0028) 0.6799(0.0030) 0.6952(0.0025) 0.7000(0.0021) 0.7064(0.0012)
CCA-OC-Forest:600 0.7233(0.0022) 0.7462(0.0015) 0.7563(0.0012) 0.7612(0.0009) 0.7686(0.0010)

• Dimension reduction via CCA (CCA-Reduce) is not effective: the canonical input directions
may not be predictive for the original output variables (labels).

• Multi-label compressed sensing is not a capable error-correcting code even with highly redun-
dant codewords, mainly due to its non-adaptive encoding with random projections and real-
valued decoding.

8.6 Conclusion

Using canonical correlation analysis, we propose a multi-label output coding scheme with pre-
dictable codewords: label dependency is characterized as the most predictable directions in the
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label space, extracted as canonical output variates and encoded into the codeword as the redundant
information for error correction. Predictions for the codeword define a graphical model of labels
with both Bernoulli potentials (from classifiers on the labels) and Gaussian potentials (from re-
gression on the canonical variates). Decoding is performed by mean-field approximation. In the
empirical study on multi-label classification of music and images, the proposed output code offer
substantial improvements over every competitor in every test.
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Chapter 9

Maximum Margin Output Coding for
Multi-Label Classification

9.1 Overview

In this chapter [ZS12b], we first argue that both discriminability and predictability are important
properties for multi-label output codes. Then we propose a max-margin formulation for output
coding, which promotes both discriminative and predictable codes (in contrast to the CCA-based
coding proposed in Chapter 8, where only the predictability of the codes is addressed).

In traditional channel coding [CT91, CF07], a message is encoded into an alternative (and
usually redundant) representation so that it can be recovered accurately after being transmitted
through a noisy channel. Error-correcting output coding (ECOC) applies the idea of channel coding
to multi-class classification [DB95, ASS01] and more recently to multi-label prediction [HKLZ09,
TL10, ZS11]: we encode the output into a codeword, learn models to predict the codeword, and
for a testing example, the output is obtained by decoding the predicted codeword.

We study output coding for multi-label prediction and focus on two important issues. First, as
studied in the previous chapter, output codes should be predictable. In output coding, codewords
need to be predicted from the input (instead of being actually transmitted through a channel),
so it is critical that codewords are easy to predict. From the channel coding perspective, having
predictable codewords (and thus low prediction errors) corresponds to reducing the channel error.

Second, the coding also needs to be discriminative: encodings for different outputs should
be significantly different from each other, so that the codeword for the correct output will not be
confused with incorrect ones, even under noisy predictions. This corresponds to the concept of
code distance in coding theory and is related to good error-correcting capabilities [CT91]. Note
that this is what the CCA-based coding in the previous chapter is missing.

To design output codes that are both discriminative and predictable, we propose a max-margin
formulation defined on the encoding transform. For each sample, the prediction from the input
should be close to the encoding of the correct output, and at the same time, the prediction should
also be far away from the encoding of any incorrect output. This is naturally captured by maximiz-
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ing the margin between the prediction distance to correct and incorrect output encodings.
We then convert this formulation to a metric learning problem of finding the optimal distance

metric in the label space, but with an exponentially large number of constraints as commonly en-
countered in structured prediction problems. In multi-label prediction, however, the output space
does not provide a structure for tractable inference, and we use overgenerating (i.e., relaxation)
techniques [FJ08] combined with the cutting plane method to optimize the metric learning formu-
lation. The encoding and decoding can be derived from the optimal distance metric in the label
space.

We conduct experiments on multi-label classification of images, text and music. Empirical re-
sults show that the proposed output code outperforms many recent multi-label prediction methods.

9.2 Multi-Label Output Codes: Framework and Existing Meth-
ods

In this section, we first introduce the general framework for multi-label output coding. Then we re-
view three recently-proposed output coding schemes [HKLZ09, TL10, ZS11], where the encoding
is based on random projections, principal component analysis and canonical correlation analysis,
respectively. We also argue that these existing output coding schemes are not designed to optimize
both discriminability and predictability of the codewords.

9.2.1 Framework

An output coding scheme usually contains three parts: encoding, prediction and decoding. Con-
sider a set of p input variables x ∈ X ⊆ Rp and a set of q output variables y ∈ Y ⊆ Rq. In
multi-label classification, y will denote the label vector, and thus y ∈ Y = {0, 1}q. We have a
set of n training examples: D = (X,Y) = {(x(i),y(i))}ni=1, where X and Y are matrices of size
n× p and n× q, respectively.

Encoding. Following previous work [HKLZ09, TL10, ZS11], we consider linear encoding. In
this case, the encoding transform can be defined by a set of d linear projections

V = (v1,v2 . . . ,vd) (9.1)

where d is the number of projections, each vk (k = 1, 2, . . . , d) is a q × 1 vector representing a
projection direction in the q-dimensional label space, and V is a q × d matrix.

Given the projection vectors V, the codeword z for an example (x,y) is defined:

z = VTy = (vT1 y, . . . ,vTd y)T (9.2)

where z is a d × 1 vector. Alternatively, as in Chapter 8, we can also include the q original labels
y = (y1, . . . , yq) into the codeword z, and in this case we have:

z = [Iq,V]Ty = (y1, . . . , yq,v
T
1 y, . . . ,vTd y)T (9.3)
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where Iq is a q × q identity matrix, V is a q × d matrix, and z is a (q + d)× 1 vector.
Prediction. After defining the encoding projections {vk}dk=1, we then learn prediction models

from training samples {(x(i),y(i))}ni=1 to predict the codeword. For a label projection vTk y in the
codeword, a regression model is usually considered:

m̂k ← learn regression({(x(i),vTk y(i))}ni=1) (9.4)

and for an original label yj (j = 1, 2, . . . , q), a classifier can be learned from training samples:

p̂j ← learn classifier({(x(i), y
(i)
j )}ni=1) (9.5)

Given a new sample x, a regression model m̂k predicts:

m̂k(x) = E(vTk y|x) (9.6)

and a classifier p̂j predicts:
p̂j(x) = (p̂j0(x), p̂j1(x)) (9.7)

where

p̂j0(x) = P (yj = 0|x) (9.8)
p̂j1(x) = P (yj = 1|x) (9.9)

Decoding. Given a new testing sample x, the decoding procedure recovers the unknown la-
bel vector y from our prediction for the codeword z. The prediction contains {m̂k(x)}dk=1 and
optionally {p̂j(x)}qj=1:

ŷ← decoding(x, {vk}dk=1, {m̂k(x)}dk=1, {p̂j(x)}qj=1) (9.10)

The decoding is usually achieved by maximizing a probability function or minimizing a loss func-
tion defined on possible label vector y. Since y ∈ Y = {0, 1}q, this optimization is usually
combinatorial in nature and intractable. As a result, certain approximation is required to obtain
the solution ŷ, e.g., relaxing y into a continuous domain and then rounding the relaxed solu-
tion [HKLZ09, TL10] or using approximate inference such as the variational approaches in Chap-
ter 7 and Chapter 8.

9.2.2 Coding with compressed sensing

Multi-label compressed sensing [HKLZ09] is one of the earliest works that formally defines a
multi-label output code. For encoding, each projection vector vk ∈ Rq (k = 1, 2, . . . , d) is ran-
domly generated as in compressed sensing [Don06, Can06], e.g., a projection vector with i.i.d.
Gaussian entries or i.i.d. Bernoulli entries. Thus, the codeword z = (vT1 y, . . . ,vTd y)T contains
random projections of the label vector y.
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Decoding follows the sparse approximation algorithms in compressed sensing. Two popular
classes are convex relaxation such as `1 penalized least squares [Tro06], and iterative greedy al-
gorithms such as CoSaMP [NT08]. For example, an `1 penalized convex relaxation solves the
following problem:

ŷ← argmin
y∈Rq

1

2

d∑
k=1

(vTk y − m̂k(x))2 + λ

q∑
j=1

|yj| (9.11)

where {m̂k(x)}dk=1 are predictions for the codeword z = (vT1 y, . . . ,vTd y)T , and the `1 penalty∑q
j=1 |yj| = ||y||1 promotes the sparsity of the solution ŷ. Note that this optimization problem is

solved in a relaxed continuous space y ∈ Rq.
Use of random projections is justified in compressed sensing, e.g., by the restricted isometry

property, that if the true signal y is sufficiently sparse, one can recover y from only a small number
of random projections. However, for output coding, random projections do not specifically pro-
mote either discriminative or predictable codewords, and may not be the most effective encoding.

9.2.3 Coding with principal component analysis

Given the n training examples, principal label space transformation [TL10] uses the top d principal
components in the label space as the encoding projections:

{vk}dk=1 ← top d principal components(Y) (9.12)

which is solved by performing SVD on the label matrix Y and taking the top d right singular vec-
tors. Therefore, the corresponding codeword z = (vT1 y, . . . ,vTd y)T contains the top d coordinates
of y in the principal component space.

Given predicted codeword ẑ = (m̂1(x), . . . , m̂d(x))T for a test sample x, decoding is per-
formed by projecting ẑ back to coordinates in the original label space and then rounding them
element-wise to 0s and 1s:

ŷ← round(Vẑ) (9.13)

Note that coding with principal components analysis can potentially produce discriminative
codewords. The top d principal components provide a coordinate system that keeps as much sam-
ple variance as possible by any d-dimensional projections. As a result of variance maximization,
the generated codewords for training samples tend to be spread out and far away from each other,
although this does not exactly maximize the minimum codeword distance.

However, coding with principal components analysis does not promote the predictability of the
codewords. Indeed, finding encoding projections as in eq. (9.12) is solely based on the label matrix
Y and does not involve the input X at all. As a result, this encoding may generate codewords with
large code distance but difficult to predict from the input.
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9.2.4 Coding with canonical correlation analysis

Predictability for multi-label output codes is addressed in recent work [ZS11], where output projec-
tions are obtained by canonical correlation analysis. CCA tries to find an input projection u ∈ Rp

in the feature space and an output projection v ∈ Rq in the label space such that the projected
variables uTx and vTy are maximally correlated:

argmax
u∈Rp,v∈Rq

uTXTYv√
(uTXTXu)(vTYTYv)

(9.14)

This can be solved as a generalized eigenvalue problem, and the top d pairs of eigenvectors
{(uk,vk)}dk=1 contain the encoding projections {vk}dk=1.

The codeword in this method is defined as z = (y1, . . . , yq,v
T
1 y, . . . ,vTd y)T . For a new sam-

ple x, regression predictions for label projections are {m̂k(x)}dk=1 and classification predictions
for original labels are {p̂j0(x), p̂j1(x)}qj=1. Decoding is performed by maximizing a joint proba-
bility function (including d Gaussian potentials from regression and q Bernoulli potentials from
classifiers), or equivalently minimizing the function [ZS11]:

ŷ← argmin
y∈{0,1}q

1

2

d∑
k=1

(vTk y − m̂k(x))2

σ̂2
k

+ λ

q∑
j=1

yjlog(
p̂j0(x)

p̂j1(x)
) (9.15)

where σ̂2
k is the estimated mean squared error for regression model m̂k. Since the problem is

defined on the label space y ∈ {0, 1}q, approximate inference such as mean-field approximation is
used for optimization.

Coding with canonical correlation analysis improves the code predictability by choosing the
projection directions that are maximally correlated with the input. However, this criterion does not
optimize the discriminability of the generated codewords. In other words, codewords of different
outputs may be close to each other, leading to inadequate error-correcting capabilities. Conse-
quently, even a small amount of prediction error can significantly affect the decoding result.

9.3 Maximum Margin Output Coding

In this section we propose a max-margin output coding scheme where the encoding transform
promotes both discriminability and predictability of the codewords.

9.3.1 A Max-Margin Formulation

As before, codewords are predicted using regression models:

M̂(x) = (m̂1(x), . . . , m̂d(x))T (9.16)
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where each m̂k() (k = 1, . . . , d) is a univariate regression function for predicting vTk y, which is
learned as in (9.4), and M̂() is the corresponding multivariate regression function for the entire
codeword VTy.

For each sample i, the codeword VTy(i) should be both predictable and discriminative. For
predictability, we want M̂(x(i)) to be close to the correct codeword VTy(i). For discriminabil-
ity, we want the correct codeword VTy(i) to have a large distance to any incorrect codeword
VTy,∀y 6= y(i). In the context of prediction with output coding, it is even more strightforward
and effective to require that the prediction M̂(x(i)) itself has a large distance to any incorrect
codeword VTy,∀y 6= y(i).

Based on these goals, we propose a max-margin formulation on output projections V:

argmin
V∈Rq×d,{ξi}ni=1

1

2
||V||2F +

C

n

n∑
i=1

ξi (9.17)

s.t. ||M̂(x(i))−VTy(i)||22 +4(y(i),y)− ξi ≤ ||M̂(x(i))−VTy||22, ∀y ∈ {0, 1}q,∀i (9.18)
ξi ≥ 0, ∀i

where || ||F is the Frobenius norm, || ||2 is the `2 norm, C is a regularization parameter,4(y(i),y)
is the hamming distance between binary vectors, and {ξi}ni=1 are slack variables, each for a training
sample. With the help from slack variables, constraint (9.18) requires that for any sample i, the
prediction distance to the correct codeword, denoted by ||M̂(x(i))−VTy(i)||22, must be smaller than
the prediction distance to any codeword ||M̂(x(i))−VTy||22 by a margin of at least4(y(i),y). Note
that this encourages both small prediction distance to the correct codeword and large prediction
distance to incorrect codewords, and hence promotes predictable and discriminative codes.

To simplify this formulation, we assume the regression functions M̂(x) = (m̂1(x), . . . , m̂d(x))T

are linear and estimated by least squares. Then given training samples (X,Y), we define the p×q
projection matrix P:

P = (XTX)−1XTY (9.19)

A small amount of regularization can be added to the diagonal of XTX for numerical stability.
Using P, the regression functions can be written in closed form:

m̂k(x) = [Pvk]
Tx, k = 1, 2, . . . , d (9.20)

and
M̂(x) = [PV]Tx (9.21)

Plugging eq. (9.21) into problem (9.17), we have the following max-margin formulation that is
completely defined on projections V and slack variables {ξi}ni=1:

argmin
V∈Rq×d,{ξi}ni=1

1

2
||V||2F +

C

n

n∑
i=1

ξi (9.22)

s.t. ||VT (PTx(i) − y(i))||22 +4(y(i),y)− ξi ≤ ||VT (PTx(i) − y)||22, ∀y ∈ {0, 1}q,∀i
ξi ≥ 0, ∀i
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9.3.2 Metric Learning Formulation

Problem (9.22) is a quadratic program with quadratic constraints, and we first convert it to a metric
learning problem. Define q × q matrix Q:

Q = VVT (9.23)

which is the Mahalanobis distance metric induced by V. Also, define a set of new feature vectors:

φiy = PTx(i) − y, ∀y ∈ {0, 1}q,∀i (9.24)

Now we formulate the metric learning problem as:

argmin
Q∈S+

q ,{ξi}ni=1

1

2
trace(Q) +

C

n

n∑
i=1

ξi (9.25)

s.t. φTiy(i)Qφiy(i) +4(y(i),y)− ξi ≤ φTiyQφiy, ∀y ∈ {0, 1}q,∀i
ξi ≥ 0, ∀i

where Q ∈ S+
q is positive semidefinite. Notice that both the objective function and the constraints

are now linear in Q and {ξi}ni=1.
We briefly show the equivalence between problem (9.22) and (9.25) as follows. For any feasible

solution V to (9.22), we can define Q = VVT ∈ S+
q . Also, for any feasible solution Q to (9.25),

since Q is positive semidefinite and thus has no negative eigenvalue, we can define V as:

V = Q
1
2 = UD

1
2 (9.26)

where the q × q matrix U contains (as columns) the q eigenvectors of Q, and D is the diagonal
matrix of eigenvalues. Given this one-to-one mapping between V and Q, we have trace(Q) =
||V||2F and φTiyQφiy = ||VT (PTx(i)−y)||22. Therefore, any feasible (or optimal) solution to (9.25)
gives a feasible (or optimal) solution to (9.22), and vice versa.

9.3.3 Incorporating Original Labels and Their Classifiers

As shown in eq. (9.3), the codeword can also include q original labels, i.e., z = (y1, . . . , yq,v
T
1 y, . . . ,vTd y)T .

Classifiers {p̂j}qj=1 can be learned to predict original labels as in (9.5), and the decoding algorithm
can make use of both regression and classifier outputs, e.g., as in eq. (9.15). In this case, the en-
coding projection should also be aware of the original labels (y1, . . . , yq) in the codeword, so that
the projection part (vT1 y, . . . ,vTd y) can provide complementary information.

To adapt our max-margin formulation (9.25) to this new information, we assume that classifiers
{p̂j}qj=1 have already been learned, and thus for each sample x we know the classifier output
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p̂j0(x) = P (yj = 0|x) and p̂j1(x) = P (yj = 1|x). We have the new formulation:

argmin
Q∈S+

q ,{ξi}ni=1

1

2
trace(Q) +

C

n

n∑
i=1

ξi (9.27)

s.t. φTiy(i)Qφiy(i) − logP (y(i)|x(i)) +4(y(i),y)− ξi ≤ φTiyQφiy − logP (y|x(i)), ∀y ∈ {0, 1}q,∀i
ξi ≥0, ∀i

where

P (y|x(i)) =

q∏
j=1

P (yj|x(i)) =

q∏
j=1

p̂jyj(x
(i)) (9.28)

is the joint probability of label vector y = (y1, . . . , yq) on sample x(i) from classifiers {p̂j}qj=1.

In this new formation (9.27), φTiyQφiy is extended into φTiyQφiy − logP (y|x(i)). Recall that
φTiyQφiy is equivalent to ||VT (PTx(i)−y)||22 in (9.22), which is the distance between the regression
prediction on the ith sample and the encoding of the label vector y. We expect that the correct
label vector y(i) should lead to lower values on this term than other y. Similarly, logP (y|x(i)) is
the log-probability of y predicted by classifiers on sample i, and we expect that y(i) should give
higher values on this term than other label vectors y. As a result, we now use the combined term
φTiyQφiy − logP (y|x(i)) to measure the margin between correct and incorrect outputs. The main
outcome of this new formulation is that distance metric Q will focus on the constraints where
−logP (y|x(i)) alone is not strong enough to ensure the margin. In other words, the output coding
concentrates on the cases where classifiers {p̂j}qj=1 alone tend to misclassify.

9.3.4 Cutting Plane Method with Overgenerating

In this section we consider how to solve problem (9.27). This problem involves an exponentially
large number of constraints due to the combinatorial nature of the label space {0, 1}q. As studied
in structured prediction [THJA04, TGK03], problem (9.27) could be solved efficiently, e.g., by the
cutting-plane method, if a computationally tractable separation oracle exists to determine which
of the exponentially many constraints is most violated [THJA04]. However, without a specific
structure (e.g., a chain or a tree) in the label space to enable efficient inference, the separation
oracle for problem (9.27) is computationally intractable.

To address this issue, we use overgenerating (i.e., relaxation) [FJ08] with the cutting plane
method. To use the overgenerating technique, we need to relax ∀y ∈ {0, 1}q in the constraint
of (9.27) to a continuous domain, e.g., ∀y ∈ [0, 1]q. However,4(y(i),y) and logP (y|x(i)) in (9.27)
are only defined on y ∈ {0, 1}q. To handle this, we redefine4(y(i),y) as

4̃(y(i),y) = ||y(i) − y||1 =

q∑
j=1

|y(i)
j − yj| (9.29)
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Then noticing logP (y|x(i)) =
∑q

j=1 logP (yj|x(i)), we redefine:

logP̃ (y|x(i)) =

q∑
j=1

logP̃ (yj|x(i)) (9.30)

where each logP̃ (yj|x(i)) is the linear interpolation of logP (yj = 0|x(i)) and logP (yj = 1|x(i)).
Using (9.29) and (9.30), the new relaxed problem is:

argmin
Q∈S+

q ,{ξi}ni=1

1

2
trace(Q) +

C

n

n∑
i=1

ξi (9.31)

s.t. φTiy(i)Qφiy(i) − logP̃ (y(i)|x(i)) + 4̃(y(i),y)− ξi ≤ φTiyQφiy − logP̃ (y|x(i)), ∀y ∈ [0, 1]q, ∀i
ξi ≥0, ∀i

where ∀y ∈ {0, 1}q in (9.27) is relaxed to ∀y ∈ [0, 1]q.
This new problem can be solved by the cutting plane method, because the separation oracle

(i.e., finding the most violated constraint for each sample i) is:

argmin
y∈[0,1]q

φTiyQφiy − logP̃ (y|x(i))− 4̃(y(i),y) (9.32)

where logP̃ (y|x(i)) and 4̃(y(i),y) are linear in y, and φTiyQφiy is quadratic in y given φiy defined
as (9.24). So (9.32) is a simple box-constrained quadratic program.

9.3.5 Encoding and Decoding

After solving Q in (9.31), encoding projections are obtained as (9.26), and one can choose d, the
number of projections, by keeping only the first d columns of V in (9.26) for any d ≤ q. The
codeword as in (9.3) includes original labels, and decoding is performed as (9.15).

9.4 Empirical Study

Data. We perform experiments on three real-world data sets1: an image data set (Scene), a text
data set (Medical) and a music data set (Emotions). Scene is an image collection for outdoor scene
recognition. Each image is represented by 294 dimensional color features and labeled as: beach,
sunset, fall foliage, field, mountain and urban. Emotions is a music classification problem. Each
song is represented by 72 rhythmic and timbre features, and tagged with six emotions: amazed,
happy, relaxed, quiet, sad and angry. Medical is a clinical text collection, where each document is
represented by 1449 words and labeled with ICD-9-CM codes. Many labels in Medical are rare,
so we select the 10 most common labels to study.

1http://mulan.sourceforge.net/
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Methods. We compare the proposed max-margin output coding to several recently proposed multi-
label output codes as well as a number of other multi-label classification methods:
• Binary relevance (BR). This baseline method learns to classify each label independently. It is

also called one-vs-all decomposition.
• Coding with compressed sensing (CodingCS) [HKLZ09]. As reviewed in Section 9.2.2, this

method uses random projections for encoding and sparse approximation for decoding. Specifi-
cally, we use CoSaMP [NT08] for decoding.

• Coding with PCA (CodingPCA) [TL10]. As reviewed in Section 9.2.3, this method uses princi-
pal components for encoding, and PCA reconstruction and rounding for decoding.

• Coding with PCA-Redundant (CodingPCA-R). CodingPCA does not include original labels into
the codeword. We also try this option to produce more redundancy as in eq. (9.3). Decoding
follows eq. (9.15).

• Coding with CCA (CodingCCA) [ZS11]. As reviewed in Section 9.2.4, this method uses CCA
for encoding. Decoding follows eq. (9.15).

• Calibrated label ranking (CLR) [FHMB08]. This method combines one-vs-one and one-vs-all
classifiers for multi-label classification. It can also be viewed as an output coding method.

• Multi-label learning by exploiting label dependency (LEAD) [ZZ10]. This method learns a
Bayes network on labels and use it to capture label dependency in multi-label classification.

• Max-Margin coding (MaxMargin). Our max-margin coding formulation where encoding is ob-
tained by solving (9.31) and (9.26). Decoding follows eq. (9.15).

Evaluation measures. We consider three evaluation measures for multi-label classification:
• Subset accuracy: rates of correctly classifying all the labels. It is obvious that achieving high

subset accuracy is difficult.
• Macro-averaged F1 score: calculate the F1 score for each label and take the average over labels.

F1 score is popular since the distribution of positive examples and negative examples for a label
is usually very imbalanced.

• Micro-averaged F1 score: aggregate true positives, true negatives, false positives and false neg-
atives over labels, and then calculate an overall F1 score.

Experimental settings. On each data set, we perform 30 random runs and report means and
standard errors of each evaluation measure. The number of training samples in each run is 300.

For CodingCS, the number of projections d is set to 100 to provide highly redundant codewords.
For CodingPCA, CodingPCA-R, CodingCCA and MaxMargin, the number of output projections is
set to the maximum possible number: the number of original labels.

For all methods, base regression models are ridge regression and base classifiers are `2-penalized
logistic regression, and their regularization parameters are chosen by cross validation. For LEAD,
the Bayes net is learned using the score-based searching algorithm in the Bayesian Net Toolbox2.
For decoding that follows (9.15), λ is set to 1, i.e., classifiers and regression models are equally

2http://code.google.com/p/bnt/
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Table 9.1: Subset accuracy on Scene data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(6) 0.4238 0.0040

CodingCS(100) 0.3821 0.0047
CodingPCA(6) 0.3691 0.0075

CodingPCA-R(12) 0.4305 0.0046
CodingCCA(12) 0.4928 0.0090

CLR(21) 0.4218 0.0034
LEAD(6) 0.4547 0.0048

MaxMargin(12) 0.5448 0.0073

Table 9.2: Macro-F1 score on Scene data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(6) 0.6209 0.0029

CodingCS(100) 0.5234 0.0050
CodingPCA(6) 0.5279 0.0096

CodingPCA-R(12) 0.6049 0.0039
CodingCCA(12) 0.6312 0.0038

CLR(21) 0.6238 0.0026
LEAD(6) 0.5958 0.0042

MaxMargin(12) 0.6462 0.0046

Table 9.3: Micro-F1 score on Scene data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(6) 0.6117 0.0030

CodingCS(100) 0.5345 0.0041
CodingPCA(6) 0.5404 0.0076

CodingPCA-R(12) 0.6014 0.0032
CodingCCA(12) 0.6251 0.0035

CLR(21) 0.6163 0.0024
LEAD(6) 0.6002 0.0036

MaxMargin(12) 0.6382 0.0047

weighted in decoding. The parameter C in (9.31) is set to 106. Most methods need to round their
final predictions into 0/1 assignments (e.g., from a probability forecast or a relaxed solution to the
label assignment), and in these cases we use 0.5 as the threshold without further optimization.

Empirical Results. Results for the Scene data set are shown in Table 9.1 - Table 9.3; results for
Medical are shown in Table 9.4 - Table 9.6; results for Emotions are shown in Table 9.7 - Table 9.9.
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Table 9.4: Subset accuracy on Medical data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(10) 0.7673 0.0039

CodingCS(100) 0.7071 0.0019
CodingPCA(10) 0.7541 0.0041

CodingPCA-R(20) 0.7803 0.0031
CodingCCA(20) 0.7824 0.0029

CLR(55) 0.7632 0.0037
LEAD(10) 0.7718 0.0038

MaxMargin(20) 0.7930 0.0042

Table 9.5: Macro-F1 score on Medical data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(10) 0.8626 0.0029

CodingCS(100) 0.7987 0.0026
CodingPCA(10) 0.8523 0.0032

CodingPCA-R(20) 0.8697 0.0021
CodingCCA(20) 0.8703 0.0020

CLR(55) 0.8556 0.0029
LEAD(10) 0.8550 0.0035

MaxMargin(20) 0.8710 0.0039

Table 9.6: Micro-F1 score on Medical data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(10) 0.8785 0.0022

CodingCS(100) 0.8333 0.0013
CodingPCA(10) 0.8780 0.0020

CodingPCA-R(20) 0.8853 0.0018
CodingCCA(20) 0.8867 0.0018

CLR(55) 0.8757 0.0022
LEAD(10) 0.8736 0.0023

MaxMargin(20) 0.8919 0.0025

Each table contains one evaluation measure. From the results we can see:
• BR provides a solid baseline with good performance.
• CodingCS generally underperforms, and encoding with random projections is not effective.
• CodingPCA-R outperforms CodingPCA as CodingPCA-R uses more redundant codewords.
• LEAD’s performance is not stable across data sets. Structure learning for Bayesian Networks is
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Table 9.7: Subset accuracy on Emotions data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(6) 0.2264 0.0031

CodingCS(100) 0.1665 0.0035
CodingPCA(6) 0.2198 0.0027

CodingPCA-R(12) 0.2601 0.0024
CodingCCA(12) 0.3005 0.0040

CLR(21) 0.2266 0.0037
LEAD(6) 0.1559 0.0035

MaxMargin(12) 0.3114 0.0042

Table 9.8: Macro-F1 score on Emotions data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(6) 0.6248 0.0027

CodingCS(100) 0.4742 0.0043
CodingPCA(6) 0.5592 0.0041

CodingPCA-R(12) 0.6367 0.0028
CodingCCA(12) 0.6539 0.0027

CLR(21) 0.6197 0.0029
LEAD(6) 0.4512 0.0046

MaxMargin(12) 0.6609 0.0029

Table 9.9: Micro-F1 score on Emotions data set: mean and standard error over 30 random runs

Method (#Base Models) Mean Standard Error
BR(6) 0.6363 0.0024

CodingCS(100) 0.5260 0.0029
CodingPCA(6) 0.5957 0.0032

CodingPCA-R(12) 0.6482 0.0026
CodingCCA(12) 0.6633 0.0025

CLR(21) 0.6331 0.0025
LEAD(6) 0.5142 0.0038

MaxMargin(12) 0.6688 0.0027

still a very challenging problem.
• CLR performs comparably to BR, despite the fact that it is one of the most redundant methods

in terms of the number of base models used.
• CodingPCA-R, CodingCCA and MaxMargin are most successful. Their codewords include

both label projections and original labels, and their decodings combine both regression and
classification outputs.
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• MaxMargin outperforms CodingCCA and CodingPCA, because max-margin encoding promotes
both code discriminability and code predictability.

• CodingCCA outperforms CodingPCA-R, showing the importance of predictable codewords.

9.5 Related Work

The proposed method in this chapter follows the direction of multi-label output coding [HKLZ09,
TL10, ZS11] and is motivated by the recent success of coding with PCA [TL10] and CCA [ZS11]
and their connections to code distance and code predictability. Our max-margin formulation is
converted into a metric learning problem, as in [WBS06], but with a metric defined for the label
space and an exponential number of constraints caused by label combinations. The optimization
technique developed for structured prediction [THJA04, TGK03], more specically the cutting plane
method with overgenerating [FJ08], is used to solve our metric learning problem.

9.6 Conclusion

Discriminability and predictability are both important for output codes. In this chapter we pro-
pose a max-margin formulation for multi-label output coding, which promotes both discriminative
and predictable codes. We convert this formulation into a metric learning problem in the label
space, and combine overgenerating with the cutting plane method for optimization. Our method
outperforms many existing methods on multi-label image, text and music data sets.
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Chapter 10

Conclusion, Discussion and Future
Directions

10.1 Conclusion

With the goal of learning with limited supervision, this thesis studies the representation, discovery
and incorporation of extra input and output information in learning.

Information about the input space can be gained from unlabeled data, related tasks and domain
knowledge, and then can be encoded into the learning process by regularization.
• In this direction we first design a semi-supervised learning method for text classification, where

the covariance and correlation structure of the input space can be inferred from even seemingly
irrelevant unlabeled text and used for regularization in any text classification task.

• To generalize this idea to multi-task learning, we propose a matrix-normal penalty to compactly
encode the covariance structure of the joint input space of multiple tasks, which enables us to
simultaneously infer and encode both task relations and feature structures.

• To capture input information that is more general than the covariance and correlation structure,
we propose learning compressible models and study a class of regularization penalties on model
compressibility, e.g., local smoothness and frequency-domain compacted energy.

• To encode input information conveyed by a dimension reduction while controlling the risk of
losing predictive information, we propose projection penalties: we still search the model in the
full model space but penalize the projection distance to the model subspace indicated by the
reduction.

Information about the output space can be incorporated into learning by error-correcting output
coding, and we design several coding schemes to improve multi-label classification.
• We first propose an improved pairwise coding for multi-label classification, which, inspired by

composite likelihoods, encodes pairwise label density estimations (as opposed to pairwise label
comparisons) and decodes using approximate inference on the composite likelihood.

104



• We then study problem-dependent output coding, where the encoding is learned from data. We
propose multi-label output coding via canonical correlation analysis: the most predictable direc-
tions in the label space are extracted by canonical correlation analysis, and the code is designed
to include these predictable label directions as redundant information to correct prediction er-
rors.

• We argue that both discriminability and predictability are critical properties for multi-label out-
put codes, and propose a max-margin formulation that simultaneously promotes discriminative
and predictable codewords. This formulation is converted into a metric learning problem in the
label space and solved by the cutting plane method combined with overgenerating techniques.

10.2 Discussion

In this section we discuss a few issues regarding the input and output coding methods designed in
this thesis. We organize this section by first asking the questions and then providing discussions
and answers.

Q: What are the connections between different input coding methods?
In Part I of this thesis we have presented four methods for encoding input information. All

these methods use regularization as the basic tool to incorporate extra input information into the
learning process. Chapter 3 introduces the use of a covariance operator in regularization, where
the covariance structure is inferred from unlabeled data. Chapter 4 extends the idea of using a
covariance operator in regularization to multi-task learning settings. A benefit of this extension is
that we no longer need unlabeled data to infer the covariance structure, since multiple tasks serve as
information sources for each other. But a challenge we need to face is the increased dimensionality
of the joint model space of multiple tasks (and thus the difficulty of estimating the covariance
structure), for which we propose a matrix-normal penalty as a compact representation of the joint
covariance operator for multiple tasks. Chapter 5 shows that a compression operator can be used in
regularization to encode input information, which generalizes the covariance operator in Chapter 3
and Chapter 4 to a much richer class of regularization operators. However, fully specifying a
compression operator for model coefficients requires strong domain knowledge about the input
space, which might not be available in many real-world problems. On the other hand, dimension
reduction techniques are widely used in many learning problems. A dimension reduction can be
viewed as a compression of the input space, so can we gain some insight about how to regularize
the model coefficients from a dimension reduction? Chapter 6 answer this question by presenting
the projection penalty, a new regularization operator that only requires a dimension reduction of the
input space instead of a fully specified compression operator to control model complexity wisely.

Q: Which input coding method should I use and when is the method applicable?
The four methods presented in Part I of this thesis differ in that they discover the input infor-

mation from different sources: unlabeled data, related tasks, domain knowledge, and dimension
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reduction. In this sense, the choice of methods depends on the external source of information
we have. Specifically, learning with the semantic correlation of words (Chapter 3) is applicable
to learning problems where the bag-of-words representation is appropriate and unlabeled data is
available; multi-task matrix-normal regularization (Chapter 4) is applicable to learning multiple
similar or related tasks; learning compressible models (Chapter 5) is designed for learning prob-
lems where strong domain knowledge about the input space is available to specify a compression
operator; the projection penalty (Chapter 6) is applicable when we have a certain dimension reduc-
tion that conveys useful information about the input space.

Q: What are the connections between different output coding methods?
In Part II of this thesis we have designed three output coding schemes to encode label depen-

dency in multi-label classification. Chapter 7 introduces a modification of the popular pairwise
coding approach based on a composite likelihood view of multi-label classification. Noticing that
the new coding scheme in Chapter 7 is still problem-independent (i.e., always based on pairwise de-
composition regardless of the problem), Chapter 8 and Chapter 9 present novel problem-dependent
coding, where codes are adaptively learned from data in the form of label projections. All three
output codes can be unified using the composite likelihood view of multi-label classification: en-
coding corresponds to decomposing the joint likelihood function (and hence the joint probability
of labels given the input) into the product of simple component likelihoods, and decoding corre-
sponds to approximate inference given the estimation of the composite likelihood. The difference
between the three methods is the choice of component likelihoods, which are pre-defined pair-
wise label densities in Chapter 7, and Gaussian densities on adaptively learned label projections in
Chapter 8 and Chapter 9. The difference between Chapter 8 and Chapter 9 is the way we find the
label projections that can provide good error-correcting capability in output codes.

Q: Which output coding method should I use and when is the method applicable?
Output coding in multi-label classification is usually designed to capture certain label depen-

dencies, so the choice of output code depends on the type of label dependency we want to capture.
For example, pairwise coding only captures pairwise label dependency, using either label compar-
isons (as in pairwise label ranking and calibrated label ranking) or pairwise label densities (as in the
composite pairwise code in Chapter 7). The CCA-based codes (Chapter 8) and max-margin codes
(Chapter 9), on the other hand, capture dependencies among all labels using linear projections of
labels. It is also possible to capture nonlinear relations among labels by extending CCA-based
coding to include nonlinear projections of labels, e.g., coding based on kernel CCA, and this will
be the subject of future work.

In our empirical studies, we find that CCA-based coding and max-margin coding achieve the
best prediction performance. Their codes contain label projections that are adaptively learned from
data and therefore may be able to represent certain label dependencies that are not well captured
by predefined codes (such as pairwise coding). Max-margin coding usually achieves better predic-
tion performance than CCA-based coding, but it is also computationally more expensive to learn
than CCA-based coding: max-margin coding needs to solve a metric learning formulation with an

106



exponential number of constraints, as opposed to a single generalized eigenvalue problem in CCA.

Q: Will the relative performance of different multi-label output codes change when we alter the
number of training examples?

Different output coding methods have different numbers of parameters to learn and hence dif-
ferent sample complexities. The 1-vs-all method (i.e., binary relevance) only includes original la-
bels into the codeword and each label is classified independently, i.e., the learning is very simple as
we only need one classifier learned independently for each label. The pairwise coding approaches
(pairwise label ranking, calibrated label ranking and our proposed composite pairwise coding in
Chapter 7) all have more parameters to estimate, as the length of the output code (and hence the
number of subproblems to learn) in these approaches is quadratic in the number of original labels.
For CCA-based coding and max-margin coding in Chapter 8 and 9, the number of subproblems
to learn is at most twice the number of original labels (i.e., q original labels plus at most q label
projections), although the label projections are not predefined and thus also need to be learned.

In practice one expects that simple methods perform well when the amount of training data is
small. The 1-vs-all method does not capture label dependency, but when the number of training
samples is small, it might perform relatively well compared to some of the more sophisticated
coding methods. In our empirical studies, the 1-vs-all method has outperformed two pairwise
coding methods (pairwise label ranking and calibrated label ranking) on some data sets (see, e.g.,
Chapter 7). Max-margin coding and CCA-based coding always deliver the best performance in
our experiments, but it is possible that, given an extremely small amount of training data, simpler
methods (such as the 1-vs-all method) may be a serious contender. When the number of training
examples becomes large, on the other hand, sample complexity may become less critical and the
performance of different methods may depend more on whether they can represent the true label
dependency structure well. In this case, problem-dependent coding schemes such as CCA-based
coding and max-margin coding may show more advantages.

Q: How many label projections should I use in CCA-based and max-margin output coding?
For CCA-based and max-margin coding, we use the maximum possible number of label projec-

tions (which is limited by the number of labels and features and in many cases equals the number
of labels) to avoid parameter tuning. Our observation is that using the maximum number of pro-
jections generally leads to very good performance, although it may not give the best performance
on certain data sets. In this sense, one can use cross-validation to choose the best number of pro-
jections to use. Using the maximum number of label projections maximizes the redundancy of
the output code. On the other hand, as we use more label projections, the redundancy of the code
increases but the quality of the code might decrease. For example, the first label projection found
by CCA is the most predictable direction, and successive projections found by CCA are usually
less predictable than the first one.
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10.3 Future Work

Future work on input and output coding can extend this thesis in the following directions.
• Multiple sources of input information: in Part I we study encoding input information from differ-

ent sources such as unlabeled data, related tasks, domain knowledge and dimension reduction.
In certain situations we may have input information available from multiple sources, e.g., learn-
ing multiple tasks where for each task we have a dimension reduction. In this case, it is possible
to exploit input information from both dimension reduction and related tasks.

• More redundant output coding: in Part II we design several output codes for multi-label classi-
fication. All these codes, however, can provide only a limited amount of redundancy: either the
code is predefined with a fixed length, or the code length is limited by the number of original
labels. In the future we will study output coding with high redundancy, which can be poten-
tially implemented by removing the orthogonality constraints on label projections and using a
randomized procedure to generate a large number of label projections with certain variation.

• Combining input and output coding: Part I and Part II of this thesis study input and output coding
separately. Methods proposed in these two parts, however, are compatible with each other, and
thus we can perform both input and output coding on certain problems. For example, in multi-
label text classification, label dependency can be utilized by one of our output codes, and the
semantic correlation structure of the input space can also be incorporated by regularization.
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classifiers for multidimensional classification. In IJCAI, pages 2192–2197, 2011.

[ZY06] P. Zhao and B. Yu. On model selection consistency of lasso. J. Mach. Learn. Res.,
7:2541–2563, 2006.

[ZY10] Y. Zhang and D. Y. Yeung. A convex formulation for learning task relationships in
multi-task learning. In Proceedings of the Twenty-fourth Conference on Uncertainty
in AI (UAI), 2010.

[ZZ10] M. Zhang and K. Zhang. Multi-label learning by exploiting label dependency. In
KDD, pages 999–1008, 2010.

117


	Introduction
	Motivation
	Thesis Overview
	Common Notation

	Background
	Regularization
	Introduction
	Survey

	Error-Correcting Output Codes
	Introduction
	Survey

	Multi-Label Classification
	Introduction
	Survey

	Semi-Supervised Learning
	Multi-Task Learning
	Matrix Normal Distributions
	Compressed Sensing
	Canonical Correlation Analysis

	I Encoding Input Information
	Learning with Word Correlation from Irrelevant Unlabeled Text
	Overview
	Semantic Correlation: Transferable Structure from Unlabeled Text
	Latent Topics and Semantic Structure
	Comparing Semantic Correlation and Data Correlation

	Semantic Structure and Informative Regularization
	Learning the Semantic Correlation
	Knowledge Transfer by Informative Regularization

	Experiments
	Related Work
	Conclusion and Discussion

	A Sparse Matrix-Normal Penalty for Learning Multiple Tasks
	Overview
	A Sparse Matrix-Normal Penalty for Multi-Task Learning
	Learning with a Matrix Normal Penalty
	Sparse Covariance Selection in the Matrix-Normal Penalty
	The Algorithm
	Additional Constraints

	Empirical Studies
	Data Sets and Experimental Settings
	Models and Implementation Details
	Results on Landmine Detection
	Results on Face Recognition

	Conclusion
	Appendix A

	Learning Compressible Models
	Overview
	Learning Compressible Models
	Lasso and Learning Sparse Models
	Learning Compressible Models

	Model Compression: Local Smoothness
	Order-1 Smoothness
	Order-2 Smoothness and Higher-Order Smoothness
	Hybrid Smoothness

	Model Compression: Energy Compaction
	Empirical Study: Brain-Computer Interface
	Empirical Study: Handwritten Character Recognition
	Conclusion

	Projection Penalties: Learning Safely with Dimension Reduction
	Overview
	Projection Penalties
	Dimension reduction and parameter subspace
	Projection penalties for linear reduction
	Projection penalties for kernel-based reduction
	Regularization in the parameter subspace
	Adaption to other nonlinear reduction

	Empirical Studies
	Linear Reduction in Regression
	Topic Modeling in Text Classification
	Kernel Methods in Face Recognition

	Conclusion


	II Encoding Output Information
	A Composite Likelihood Method for Multi-Label Classification
	Overview
	Composite Likelihood Methods
	Overview
	Computation, robustness, and statistical efficiency of estimation

	A Composite Likelihood View of Multi-Label Problem Decomposition
	The Full Multi-Label Model
	Multi-Label Problem Decomposition and Composite Likelihoods
	Other Multi-Label Classification Methods

	A Composite Marginal Model for Multi-Label Classification
	Implications of Composite Likelihood to Multi-Label Problem Decomposition
	Composite Marginal Modeling: Specification and Estimation
	Composite Marginal Modeling: Inference via Robust Mean-Field Approximation

	Empirical Studies
	Conclusion

	Multi-Label Output Codes using Canonical Correlation Analysis
	Introduction
	From Multi-class Output Codes to Multi-label Output Codes
	Overview: Coding with Canonical Correlation Analysis

	Related Work
	Multi-Label Output Codes using Canonical Correlation Analysis
	Encoding
	Decoding

	Connections to Other Research Areas
	Multi-label Compressed Sensing
	Ensemble Learning as Repetition Codes

	Experiments
	Conclusion

	Maximum Margin Output Coding for Multi-Label Classification
	Overview
	Multi-Label Output Codes: Framework and Existing Methods
	Framework
	Coding with compressed sensing
	Coding with principal component analysis
	Coding with canonical correlation analysis

	Maximum Margin Output Coding
	A Max-Margin Formulation
	Metric Learning Formulation
	Incorporating Original Labels and Their Classifiers
	Cutting Plane Method with Overgenerating
	Encoding and Decoding

	Empirical Study
	Related Work
	Conclusion


	Conclusion, Discussion and Future Directions
	Conclusion
	Discussion
	Future Work




