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Abstract

Proactive Learning is a generalized form of active learning where the learner must reach out to
multiple oracles exhibiting different costs and reliabilities (label noise). One of the its major goals
is to capture the cost-noise tradeoff in oracle selection. Sequential active learning exhibits coarse
accuracy at the beginning and progressively refine prediction at later stages. The ability to learn
oracle accuracies over time and select better oracles or oracle ensembles lead to potentially faster
error reduction rate as a function of total cost, and thus improve its cost complexity. To realize this
potential, we propose a statistical model that adapts to a range of accuracies at different stages of
active learning. In a more general scenario, we formulate the problem as maximum submodular
coverage subject to a budget envelope.
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1 Proactive Learning with Persistent Oracles
Consider the binary classification task. Let F be the hypothesis class. Let X represent the data
space, and Y = ±1 represent the label space. The target function f ∗ ∈ F . Let I = {1, 2, · · · , n}.
We consider the active learning problem with n persistent oracles whose noise is arbitrary. The
cost for oracle j is cj > 0, j ∈ I . We have the following assumptions on the oracle error rates.

Assumption 1. The error indicator 1(Oi(X) 6= f ∗(X)) of individual oracles are independent,
where Oi(X) is the answer of Oracle i for a given example X and i = 1, · · · , n.

Given n oracles with varied noise rates and costs, the goal of Proactive learner is to choose an
ensemble of oracles with minimum cost and whose error rate is no greater than ε

2
as the labeling

mechanism, and to output a classifier f whose generalization error P(f(x) 6= f ∗(x)) ≤ ε where
x ∈ X , with high probability 1 − δ, while keeping the total query cost small. Note the oracles
we study in this work are persistent : they provide the same answer for a given example if asked
multiple times. Furthermore, the situation with arbitrary noise forces one to sample the oracle
space, since there is no theoretical guarantee that one can get better than ε

2
error rate by querying

the same oracle multiple times with different examples.
We propose a meta-procedure that takes any agnostic active learning algorithm A as subroutine.

The agnostic algorithm A halts and outputs a classifier after making certain label requests. The
meta-procedure lets A choose examples to query, and hands back to A the “true” label after calling
the oracle selection routine and synchronise the answers from the selected oracles by (weighted)
majority vote. Furthermore, we may choose an ensemble of oracles adaptively to accommodate
a range of accuracy: different ensembles for different level of accuracy. Or we may pick the
ensemble offline and to use it for all queries. Our later analysis shows that the former can produce
a modest cost savings over the latter simpler method.

2 Combining Oracle Answers by Weighted Majority Vote
We combine the answers from the set of selected oracles S, by (Weighted) Majority Vote. Consider
first a simple majority vote on the label of exampleX . Let Y be the true label, and Yi be the answer
by oracle i. Denote the majority vote error rate as ermaj, and the average error rate of n oracles as
ε̄S =

∑
i∈S

εi
|S| . Assumption 1 implies that ermaj(S) should exponentially decrease as a function

of the number of oracles. By Hoeffding inequality and Assumption 1, after querying a sample size
of m,

ermaj = P
(∑

i∈S 1(Yi 6= Y )

|S|
≥ 1

2

)
= P

(∑
i∈S 1(Yi 6= Y )

|S|
− ε̄ ≥ 1

2
− ε̄
)

≤ exp

(
−2|S|(1

2
− ε̄)2

)
(1)
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Thus ermaj <
ε
2
, sufficient if

ε̄ <
1

2
−
√

1

2m
ln

2

ε
(2)

Let us extend the above analysis to Weighted Majority Vote. Denote the weighted majority
vote error rate as erwmaj. Denote wi for i ∈ S as the weights of a subset of oracles we choose.
ε̄S =

∑
i∈S

εiwi
|S| . We determine the weights by minimizing erwmaj. By Hoeffding inequality,

erwmaj = P
(∑

i∈S wi1(Yi 6= Y )

|S|
≥
∑n

i=1wi
2|S|

)
= P

(∑
i∈S wi1(Yi 6= Y )

|S|
− ε̄S ≥

∑n
i=1wi
2|S|

− ε̄S
)

≤ exp

−2|S|2(
Pn
i=1 wi
2|S| − ε̄S)2∑
i∈S w

2
i


≤ exp

−2|S|2
(P

i∈S wi
2|S| −

P
i∈S εiwi
|S|

)2∑
i∈S w

2
i


= exp

(
−

2(
∑

i∈S wi(
1
2
− εi))2∑

i∈S w
2
i

)
(3)

To minimize this bound on the error rate, we set the partial derivative of equation (3) to be zero

∂
(

(
P
i∈S wi(1/2−εi))2P

i∈S w
2
i

)
∂wi

= 0

and get

wi = (1/2− εi)
∑

i∈S w
2
i∑

i∈S(1/2− εi)wi
(4)

If error rate εi or its estimation is known, we can calculate wis by Equation (4). If εi is unknown,
we simply use majority vote. We also notice that when εi = 1/2, wi = 0. Equation (4) assigns
zero weights to those oracles whose noise rate amounts to random guess. However, for εi = 0
(a perfect oracle), Equation (4) does not gives an especially large wi, due to the relaxation of the
original erwmaj by Hoeffding inequality. To this end, we denote OrSelRoutine (ε) as any oracle
selection procedure that chooses a min-cost subset of oracles S ⊆ I , such that with weights wi for
i ∈ S calculated as in Equation (4), erwmaj ≤

ε
2
. In the later sections, we will provide efficient

optimization procedures to this task.

3 Oracle Selection Adaptive to Active Learning
If there is any hope that switching oracles during active learning can improve the cost complexity,
then the following model should realize that potential.
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Assumption 2. The availability of oracles. ∃ function g : ε 7→ c, mapping from a required
accuracy to the cost per example, such that ∀ε, ∃ oracle whose cost is g(ε), and error rate is ε.

According to Assumption 2, for a given accuracy, there is at least an oracle with a certain
available noise rate. The earlier stage of active learning needs a relatively coarse accuracy, however,
higher accuracies should be reached in later stages. This can be modeled by a sequential level of
accuracy

ε1 = 1/2, ε2 = 1/4, ε3 = 1/8, · · · , εt = (1/2)t, · · ·
Intuitively, having options to select the oracles may let active learning have a faster error reduction
rate in terms of the cost. The idea of adaptive labeling mechanism construction is: given the accu-
racy level εt of active learning, we choose an ensemble of Mt oracles to form labeling mechanism
to accommodate εt. The lower the εt, the larger Mt. Suppose mt is the sample complexity of A
given εt. We have the following algorithm for proactive learning with adaptive oracle selection.

Proactive Learner with Adaptive Oracle Selection (denoted as AdaProAL)
Input an agnostic active learning algorithm A
0. Initialize t = 1
1. do
2. εt ← (1/2)t

3. (St and wtj for j ∈ St) = OrSelRoutine (εt)
4. j = 0
5. do
6. Let A choose a query point X from the unlabeled data
7. Y = sgn(

∑
j∈St

wtjfj(X))

8. j = j + 1
9. Return Y to A
10. until j = mt

11. t = t+ 1
12. until A halts

Alternatively, the non-adaptive approach constructs the labeling mechanism ahead of time and
uses that chosen mechanism all the time while running the active learning algorithm.

Agnostic Proactive Learning with Non-Adaptive Oracle Selection
Input an agnostic active learning algorithm A
0. (S and wj for j ∈ S) = OrSelRoutine ( ε

2
)

1. Initialize t = 0
2. do
3. t = t+ 1
4. Let A choose a query point Xt from unlabeled data
5. Let y = sgn(

∑
j∈S

wjfj(Xt))

6. Return y into A
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7. until A halts

Denote θ as the disagreement coefficient [Hanneke, 2007] and d as VC-dimension [Vapnik, 1998].
The upper bound of sample complexity in achieving a given level of accuracy O(θεt) is

Õ

(
θ2

(
d+ log

(
1

δ

)))
according to a step of the proof in [Hanneke, 2007], if we choose the A2 algorithm given in [Balcan
et al., 2006] as the active learning algorithm A.
Thus the cost complexity of the non-adaptive approach is

Õ

(
θ2

(
d+ log

(
1

δ

)))
g
( ε

2

)
log

(
θ

ε

)
whereas the cost complexity of AdaProAL is

Õ

(
θ2

(
d+ log

(
1

δ

))) dlog( 32θ
ε )e∑

i=1

g(2−i)

Note A2 achieves the accuracy 16θ2−i by making θd2 queries. We want the noise rate of the last
oracle to be < ε; thus we let

16θ2−i = ε/2

Therefore i = log(32θ
ε

).

4 Proactive Learning with Cost-Reliability Assumption
The cost-reliability tradeoff assumption that more reliable oracles cost more than noisy ones, might
be formalized as

Assumption 3. ∃ β > 0, γ > 0 s.t. for i ∈ I ,

ciε
γ
i ≤ β (5)

Large cost ci leads to a small error rate εi. Large error rate εi drives the cost down. Our
algorithm is (α, β)-dependent. It will be interesting to explore algorithms that adapts to the value
of α and β. When γ < 1, a decrease of εi has to be how much faster than the increase of the cost
ci, as εγi is sublinear; whereas with γ > 1, the increase of εi forces a faster reduction on cost ci.

A trivial labeling mechanism is to pick a single oracle whose cost≥ β
(

2
ε

)γ . Condition (5) will
force its error rate to be < ε

2
. However, the hope is that an ensemble of cheap oracles can have

just as good accuracy as the expensive one at lower cost. Based on Assumption 3, we will provide
an algorithm that requires zero query to construct a label mechanism whose error rate < ε

2
, if the

upper bound in (5) is tight.
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4.1 The Algorithm and Complexity Analysis
Given the error rate ε

2
set up by the adversary, we can choose a cost c, and an ensemble of M

oracles with roughly this cost (or within a factor of 2 difference) by Assumption 2. The goal is
to minimize the total cost of the chosen ensemble, subject to Inequality 2 and Assumption 3. We
formulate this task as the following optimization problem:

min cM

s.t.
(
β

c

)1/γ

=
1

2
−
√

1

2M
ln

2

ε

Since

M =
ln(2/ε)

2
(

1
2
− (β

c
)1/γ
)2

we set

∂ (cM)

∂c
=

∂

(
c ln(2/ε)

2( 1
2
−(β

c
)1/γ)

2

)
∂c

= 0

Thus

c∗ = β2γ(1 +
2

γ
)γ (6)

M∗ = d2 ln

(
2

ε

)(
1 +

γ

2

)2

e (7)

We notice that c∗ has nothing to do with ε, and is fixed once γ and β are set up. M∗ is inversely
related to ε : the higher level of accuracy the active learning algorithm requires, the more oracles
will be needed to accommodate such an accuracy. We combine the answers from the M∗ selected
oracle by a simple majority vote (weighted vote by estimating oracle accuracy may yield even bet-
ter results).

Oracle Selection Routine with Assumption 3 ( ε
2
) (denoted as OrSelRoutineA3)

1. Calculate M∗ by (7)
2. Calculate c∗ by (6)
3. S = {j : j ∈ I ∧ cj ≈ c∗} with size M∗

4. Output S

Algorithm 1
Choose the A2 algorithm given in [Balcan et al., 2006] as the algorithm A
0. Initialize t = 0
1. do
2. t = t+ 1
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3. Let A choose a query point Xt from unlabeled data
4. St = OrSelRoutineA3 ( εt

2
)

5. Let y = sgn(
∑
j∈St

fj(Xt))

6. Return y into A
7. until A halts

Theorem 1. The total cost complexity of Algorithm 1 is

Õ

(
θ2

(
d+ log

(
1

δ

)))
c∗M∗

4.2 Adaptive Oracle Selection Saves A Constant Factor
To illustrate the range of saving one can get by using the adaptive oracle selection procedure com-
pared to the non-adaptive version, we suppose Õ

(
θ2
(
d+ log2

(
1
δ

)))
as previously mentioned is a

constant b, independent of t. For instance, under threshold classifier, the disagreement coefficient
θ = 2 and VC-dim d = 1; thus Õ

(
θ2
(
d+ log2

(
1
δ

)))
is a constant. Define M∗

t as the number of
oracles selected to accommodate εt. For adaptive oracle selection, Algorithm 1 has g(ε) = cM(ε).
By equation (7), the cost complexity of using the adaptive procedure is

bc∗
dlog2( 16θ

ε )e∑
t=1

M∗
t

(εt
2

)
= bc∗

dlog2( 16θ
ε )e∑

t=1

d2 ln

(
1

εt

)(
1 +

γ

2

)2

e (8)

where

dlog2( 16θ
ε )e∑

t=1

ln

(
1

εt

)
=

(
log
(

16θe
ε

)
2

)
≈

log2
2

(
16θe
ε

)
4e2

(9)

The total sample complexity of the active learning is b log2

(
1
ε

)
.

The cost complexity for the non-adaptive approach is

bc∗M∗
( ε

2

)
log2

(
1

ε

)
= bc∗d2 ln

(
2

ε

)(
1 +

γ

2

)2

e log2

(
1

ε

)
(10)

Comparing (9) and (10), for small θ, we have

log2
2

(
16θe
ε

)
4e2

< k log2
2(

1

ε
)

with k > 1. Thus the adaptive oracle selection procedure saves the cost complexity by a constant
factor compared with the non-adaptive version, under the above specified scenario.
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Empirical evidence from [Donmez & Carbonell, 2008] is consistent with the above example:
picking oracles adaptively can reduce the cost complexity by a constant factor versus always using
the better and expensive oracle or always using the cheaper less reliable one. Figure 1 and Figure 2
display the trends of classification error as a function of the total cost on the Adult dataset and the
VY-Letter dataset, respectively. It studies a proactive learning scenario where there are two oracles:
one is cheap but noisy, the other expensive but reliable. Each plot in Figure 1 indicates a different
cost ratio between the two oracles (same for Figure 2). Experiments on the two datasets show
that, when the classification accuracy is low, the proactive learner tends picks the low-cost oracle;
howevter, it tends to select the high-cost oracle once the error rate has been significant reduced. At
the later stages, the curve of the proactive learner goes roughly in parallel with that of the baseline,
meaning their speed of error rate reduction is roughly the same. If we draw a horizontal line on
the plot, the amount of total cost in achieving certain error rate by the proactive learner is roughly
a half of that by the baseline. Thus one roughly saves a factor of 2 by using the adaptive oracle
selection. For these two datasets, the constant factor can be smaller or larger depending on the
difficulty of the classification task. This paper provides the theoretical framework for proactive
learning, and our analysis is quite consistent with the above-mentioned empirical results.

Figure 1: Performance Comparison on the Adult dataset. The cost ratio is indicated above each
plot.

5 Maximum Submodular Coverage Subject to a Budget :
A More General Scenario

If we do not make any explicit assumption on cost-reliability tradeoff, that is, cost and accuracy
are not in strictly monotonic inverse relation, the proactive learning problem is actually finding a
subset of oracles with small enough majority vote error rate, given a budgetB. It can be formulated
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Figure 2: Performance Comparison on the VY-Letter dataset. The cost ratio is indicated above
each plot.

as the following optimization problem :

max
S∈I
{f(S) :

∑
i∈S

ci ≤ B} (11)

where the majority-vote accuracy f : S 7→ R with S ⊆ I is defined as :

f(S) = E1

((∑
i∈S wi(Yi 6= Y )∑

i∈S wi

)
< 1/2

)
(12)

=
1

|Z|
∑

(X,Y ∈Z)

1

((∑
i∈S wi1(Yi 6= Y )∑

i∈S wi

)
< 1/2

)
(13)

where Y is the true label and Yi is the answer by ith oracle. f has the following properties. First,
f is non-decreasing, and polynomial computable set function. Second, f is monotonic, since
∀S ⊆ T , we have f(S) ≤ f(T ). Third, f is submodular: it increases more by adding elements to
a small set, than by adding to a super set. ∀S, T ∈ I , we have f(S)+f(T ) ≤ f(S∪T )+f(S∩T ).
The role of submodularity plays for set functions, is similar to that of concavity for ordinary func-
tions.

Problem (11) is the problem of Maximum Submodular Coverage Subject to a Budget. [Sviri-
denko, 2004] describes a greedy algorithm for this type of problem, as an (1− e−1) approximation
algorithm for maximizing a nondecreasing submodular set function subject to a knapsack con-
straint. The quality of greedy solutions is strongly related to submodularity of the set function.
When the submodularity property holds (as in our case), the number of computations necessary to
get a greedy solution can be significantly reduced. The following greedy approximation algorithm
bMaxSubCover efficiently solves Problem (11).
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bMaxSubCover(B)
0. I = {1, 2, · · · , n}
1. Phase 1: S1 = arg max|S|=1,2 f(S)
2. Phase 2: for every U ⊆ I s.t. |U | = 3
3. Initialize S0 = U , k = 0
4. do
5. ∀ej ∈ I/Sk, compute

∆k(ej) =
f(Sk + ej)− f(Sk)

ci

6.

ej0 = argmax

(ej∈I/Sk)∧

0@ci≤B− P
ej∈Sk

cj

1A
∆k(ej)

7. SK ← Sk ∪ {ej0}
8. while(ej0 exists)
9. S2 ← Sk as local optimal obtained by Phase 2
10. If f(S1) ≥ f(S2) output S1, otherwise output S2

The algorithm has α performance guarantee (0 < α < 1), if it always outputs a solution of
value that is not smaller than α times the value of the optimal solution. The following performance
guarantee of bMaxSubCover is due to [Sviridenko, 2004].

Theorem 2. The worst-case performance guarantee of the above greedy algorithm bMaxSubCov-
erfor solving Problem (11) is (1 − e−1) ≈ 0.632. In another word, assume S is the subset output
by bMaxSubCover(B), the following holds:

f(S) ≤ (1− e−1)f(S∗)

where S∗ is the solution found by the exact approach.

Without knowing the smallest amount to spend in letting f(S) > 1− ε
2
, a double-and-guess on

the budget B can help decide the minimum budget.

Subroutine1 (εi for i = 1, · · · , n)
0. Initialize B = 1
1. do
2. S ←bMaxSubCover(B, εi for i = 1, · · · , n)
3. B ← 2B
4. while (f(S) < 1− ε

2
)

5. Output S and B.
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6 Conclusion
This paper provides the theoretical framework for proactive learning. We propose a meta-procedure
for the active learning problem with multiple persistent oracles under arbitrary noise. Having op-
tions to select oracles may let active learning have a faster error reduction rate as a function of the
total cost; we thus choose subsets of oracles adaptive to a range of accuracies. The non-adaptive
approach is to construct the labeling mechanism ahead of time and use that all the time while run-
ning the active learning algorithm. Analysis in some specified scenarios shows the adaptive oracle
selection procedure saves the cost complexity by a constant factor compared with the non-adaptive
version, and our analysis is quite consistent with empirical results from [Donmez & Carbonell,
2008]. We further combine the answers from the set of selected oracles by Weighted Majority
Vote.

Under the assumption that more reliable oracles cost more than noisy ones, we provide an
algorithm that cost zero query to construct a minimum-cost label mechanism whose error rate
< ε

2
. Without assuming that cost and accuracy are not in strictly monotonic inverse relation, we

formulate the problem as maximum submodular coverage subject to a budget, that can be solved
by a greedy algorithm with 1− e−1 worst-case performance guarantee.
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