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Abstract

Due to the dynamic nature of biological systems, biological networks underlying temporal pro-
cess such as the development of Drosophila melanogaster can exhibit significant topological
changes to facilitate dynamic regulatory functions. Thus it is essential to develop method-
ologies that capture the temporal evolution of networks, which make it possible to study the
driving forces underlying dynamic rewiring of gene regulation circuity, and to predict future
network structures. Using a new machine learning method called Tesla, which builds on a novel
temporal logistic regression technique, we report the first successful genome-wide reverse-
engineering of the latent sequence of temporally rewiring gene networks over more than 4000
genes during the life cycle of Drosophila melanogaster, given longitudinal gene expression
measurements and even when a single snapshot of such measurement resulted from each (time-
specific) network is available. Our methods offer the first glimpse of time-specific snapshots
and temporal evolution patterns of gene networks in a living organism during its full develop-
mental course. The recovered networks with this unprecedented resolution chart the onset and
duration of many gene interactions which are missed by typical static network analysis, and
are suggestive of a wide array of other temporal behaviors of the gene network over time not
noticed before.





Introduction
A major challenge in systems biology is to understand and model, quantitatively, the topologi-
cal, functional, and dynamical properties of cellular networks, such as transcriptional regulatory
circuitry and signal transaction pathways, that control the behaviors of the cell.

Empirical studies showed that many biological networks bear remarkable similarities to
various other networks in nature, such as social networks, in terms of global topological char-
acteristics such as the scale-free and small-world properties, albeit with different characteristic
coefficients (Barabasi & Albert, 1999). Furthermore, it was observed that the average cluster-
ing factor of real biological networks is significantly larger than that of a random network of
equivalent size and degree distribution (Barabasi & Oltvai, 2004); and biological networks are
characterized by their intrinsic modularities (Vászquez et al., 2004), which reflect presence of
physically and/or functionally linked molecules that work synergistically to achieve a relatively
autonomous functionality. These studies have led to numerous advances towards uncovering
the organizational principles and functional properties of biological networks, and even identi-
fication of new regulatory events (Basso et al., 2005); however, most of such results are based
on analyses of static networks, that is, networks with invariant topology over a given set of
molecules, such as a protein-protein interaction (PPI) network over all proteins of an organism
regardless of the conditions under which individual interactions may take place, or a single
gene network inferred from microarray data even though the samples may be collected over a
time course or multiple conditions.

Over the course of a cellular process, such as a cell cycle or an immune response, there may
exist multiple underlying ”themes” that determine the functionalities of each molecule and
their relationships to each other, and such themes are dynamical and stochastic. As a result,
the molecular networks at each time point are context-dependent and can undergo systematic
rewiring, rather than being invariant over time, as assumed in most current biological network
studies. Indeed, in a seminal study by Luscombe & et al. (2004), it was shown that the ”active
regulatory paths” in a gene expression correlation network of Saccharomyces cerevisiae exhibit
dramatic topological changes and hub transience during a temporal cellular process, or in re-
sponse to diverse stimuli. However, the exact mechanisms underlying this phenomena remain
poorly understood.

What prevents us from an in-depth investigation of the mechanisms that drive the tempo-
ral rewiring of biological networks during various cellular and physiological processes? A key
technical hurdle we face is the unavailability of serial snapshots of the rewiring network during
a biological process. Under a realistic dynamic biological system, usually it is technologically
impossible to experimentally determine time-specific network topologies for a series of time
points based on techniques such as two-hybrid or ChIP-chip systems; resorting to computa-
tional inference methods such as structural learning algorithms for Bayesian networks is also
difficult because we can only obtain a single snapshot of the gene expressions at each time point
– how can one derive a network structure specific to a point of time based on only one measure-
ment of node-states at that time? If we follow the naive assumption that each snapshot is from a
different network, this task would be statistically impossible because our estimator (from only
one sample) would suffer from extremely high variance. Extant methods would instead pool
samples from all time points together and infer a single ”average” network (Friedman et al.,
2000; Ong, 2002; Basso et al., 2005), which means they choose to ignore network rewiring and
simply assume that the network snapshots are independently and identically distributed. Or
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one could perhaps divide the time series into overlapping sliding windows and infer static net-
works for each window separately. These approach, however, only utilizes a limited number of
samples in each window and ignores the smoothly evolving nature of the networks. Therefore,
the resulting networks are limited in term of their temporal resolution and statistical power. To
our knowledge, no method is currently available for genome-wide reverse engineering of time-
varying networks underlying biological processes with temporal resolution up to every single
time point where gene expressions are measured.

Here, we present the first successful reverse engineering of a series of 23 time-varying net-
works of Drosophila melanogaster over its entire developmental course, and a detailed topo-
logical analysis of the temporal evolution patterns in this series of networks. Our study is
based on a new machine learning algorithm called TEmporally Smoothed L1-regularized LO-
gistic Regression, or Tesla (stemmed from TESLLOR, the acronym of our algorithm). Tesla
is based on a key assumption that temporally adjacent networks are likely not to be dramat-
ically different from each other in topology, and therefore are more likely to share common
edges than temporally distal networks. Building on the powerful and highly scalable iterative
L1-regularized logistic regression algorithm for estimating single sparse networks (Wainwright
et al., 2006), we develop a novel regression regularization scheme that connects multiple time-
specific network inference functions via a first-order edge smoothness function that encourages
edge retention in networks immediately across time points. An important property of this novel
idea is that it fully integrates all available samples of the entire time series in a single inference
procedure that recovers the wiring patterns between genes over a time series of arbitrary reso-
lution — from a network for every single time point, to one network for every K time points
where K is very small. Besides, our method can also benefit from the smoothly evolving nature
of the underlying networks and the prior knowledge on gene ontology groups. These additional
pieces of information increase the chance to recover biologically plausible networks while at
the same time reduce the computational complexity of the inference algorithms. Importantly,
Tesla can be casted as a convex optimization problem for which a globally optimal solution
exists and can be efficiently computed for networks with thousands of nodes.

To our knowledge, Tesla represents the first successful attempt on genome-wide reverse
engineering of time-varying networks underlying biological processes with arbitrary tempo-
ral resolution. Earlier algorithmic approaches, such as the structure learning algorithms for
dynamic Bayesian network (Ong, 2002), learns a time-homogeneous dynamic system with
fixed node dependencies, which is entirely different from our goal, which aims at snapshots
of rewiring network. The Trace-back algorithm (Luscombe & et al., 2004) that enables the
revelation of network changes over time in yeast is based on tracing active paths or subnetwork
in static summary network estimated a priori from all samples from a time series, which is
significantly different from our method, because edges that are transient over a short period of
time may be missed by the summary network in the first place. The DREM program (Ernst
et al., 2007) that reconstructs dynamic regulatory maps tracks bifurcation points of a regulatory
cascade according to the ChIP-chip data over short time course, which is also different from
our method, because Tesla aims at recover the entire time-varying networks, not only the inter-
actions due to protein-DNA binding, from long time series with arbitrary temporal resolution.

A recent genome-wide microarray profiling of the life cycle of Drosophila melanogaster
revealed the evolving nature of the gene expression patterns during the time course of its de-
velopment (Arbeitman et al., 2002). In this study, 4028 genes were examined at 66 distinct
time points spanning the embryonic, larval, pupal and adulthood period of the organism. It was
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found that most genes (86%) were differentially expressed over time, and the time courses of
many genes followed a wave structure with one to three peaks. Furthermore, clustering genes
according their expression profiles helped identify functional coherent groups specific to tis-
sue and organ development. Using Tesla, we successfully reverse-engineered a sequence of
23 epoch-specific networks from this data set. Detailed analysis of these networks reveals a
rich set of information and findings regarding how crucial network statistics change over time,
the dynamic behavior of key genes at the hubs of the networks, how genes forms dynamic
clusters and how their inter-connectivity rewires overtime, and improved prediction of the ac-
tivation patterns of already known gene interactions and link them to functional behaviors and
developmental stages.

Results and Discussion

Time-Varying Gene Networks in Drosophila melanogaster
Tesla can reconstruct time-varying dynamic gene networks at a temporal resolution from one
network per every time point to one network per epoch of arbitrary number of contiguous time
points. From the 64-step long Drosophila melanogaster life cycle microarray time course, we
reconstructed 23 dynamic gene networks, one per 3 time points, spanning the embryonic (time
point 1–11), larval (time point 12–14), pupal (time point 15–20) and adulthood stage (time
point 21–23) during the life cycle of Drosophila melanogaster (Fig. 1) . The dynamic networks
appear to rewire over time in response to the developmental requirement of the organism. For
instance, in middle of embryonic stage (time point 4), most genes selectively interact with
other genes which results in a sparse network consisting mainly of paths. In contrast, at late
adulthood stage (time point 23), genes are more active and each gene interacts with many other
genes which leads to visible clusters of gene interactions. The global patterns of the evolution
of the gene interactions in this network series are summarized in Fig 2. The network statistics
include a summary of the degree distribution, network size in term of the number of edges,
and the clustering coefficient of the networks, which are computed for each snapshot of the
temporally rewiring networks. The degree distribution provides information on the average
number and the extent that one gene interacts with other genes; the network size characterizes
the total number of active gene interactions in each time point; and the clustering coefficient
quantifies the degree of coherence inside potential functional modules. The change of these
three indices reflects the temporally rewiring nature of the underlying gene networks.

All three indices display a wave pattern over time with these indices peaking at the start
of the embryonic stage and near the end of adulthood stage. However, between these two
stages, the evolutions of these indices can be different. More specifically, the degree distribution
follows a similar path of evolution to that of the network size: there are three large network
changes in the middle of embryonic stage (near time point 5), at the beginning of the larval
stage (time point 11) and at the beginning of the adulthood stage (time point 20). In contrast,
clustering coefficients evolve in a different pattern: in the middle of the life cycle there is only
one peak which occurs near the end of the embryonic stage. This asynchronous evolution of
the clustering coefficient from the degree distribution and network size suggests that increased
gene activity is not necessarily related to functional coherence inside gene modules.

To provide a summary of the 23-epoch dynamic networks, gene interactions recovered at
different time points are combined into a single network (Fig. 3(a)). The resulting summary
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network consists of 4509 distinctive interactions. Overall the summary network reveals a center
of two giant clusters of tightly interacting genes, with several small loose clusters remotely
connected to the center. The two giant clusters are each built around genes with high degree
centrality. These two clusters and other small clusters are integrated as a single network via a
set of genes with high betweenness centrality.

The top giant cluster is centered around two high degree nodes, protein coding gene eIF4AIII
and CG9746. Both genes are related to molecular functions such as ATP binding. The selec-
tive interaction of these genes with other molecules modulates the biological functions of these
molecules. In the bottom giant cluster, high degree nodes are more abundant compared to the
top cluster. These high degree nodes usually have more than one functions. For instance, gene
dsf and dsx are involved in DNA binding and modulate their transcription, which in turn reg-
ulates the sex related biological processes. Gene noc, CG14438, mkg-p are involved in both
ion binding and intracellular component, while gene zfh1 and shn play important roles in the
developmental process of the organism.

The connections between the clusters are very often channeled through a set of genes with
high betweenness centrality. Note these genes do not necessarily have a high degree. They are
important because they provide the relays for many biological pathways. For instance, gene
fab1 is involved in various molecular functions such as ATP, protein and ion binding, while at
the same time it is also involved in biological processes such as intracellular signaling cascade.
Gene dlg1 participate in various functions such as protein binding, cell polarity determination
and cellular component. Another gene tko participates in functions related to ribosome from
both molecular, biological and cellular component point of views.

For comparison, a single static network of comparable size (∼4500 gene interactions)
is inferred by treating all measurements as independent and identically distributed samples
(Fig 3(e)). The static network shares some common features with the summary graph of the
dynamic networks. For instance, both networks reveal two giant clusters of interacting genes.
However, the static network provides no temporal information on the onset and duration of each
gene interaction. Furthermore, the static network and the summary graph of the dynamic net-
works follow very different degree distributions. The degree distribution of the summary graph
of the dynamic networks has a much heavier tail than that of the static network (Fig 3(f)). In
other words, the distribution for the dynamic networks resembles more to a scale free network
while that for the static network resembles more to a random graph.

Hub Genes in the Dynamic Networks
The hub genes correspond to the high degree nodes in summary network. They represent the
most influential elements of a network and tend to be essential for the developmental process of
the organism. The top 50 hubs are identified from the summary graph of the dynamic networks
in Fig. 3. These hubs are tracked over time in terms of their degrees and this evolution are
visualized as colormap in Fig. 4(a).

To further understand the role played by these hubs, histogram analysis are performed on
these 50 hubs in term of 43 ontological functions. The functional decomposition of these hubs
are shown in Fig. 4(c). The majority of these hubs are related to functions such as binding and
transcriptional regulation activity. This is in fact an expected outcome as transcription factors
(TF) are thought to target a large number of genes and modulate their expression.

To further understand the functional spectrum of the genes targeted by the high degree
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(a) (b) (c)

Figure 2: The evolution of the distribution on the node degree is summarized using its power
law exponent in (a). The evolution of the number of edge is plotted in (b). The networks change
in size over time with new edges appearing and old ones disappearing. The number of newly
added edges in each time point is also plotted in (b). Plotted in (c) are the clustering coefficients
for each snapshot of the temporal networks.

transcriptional factors, the top 20 transcriptional factor hubs are also tracked over time in terms
of their degrees and the evolution is illustrated in Fig. 4(b). The degrees of the transcriptional
factors peak at different stages which means they differentially trigger target genes based on the
biological requirements of developmental process. In Fig. 4(d)(e)(f), functional decomposition
is performed on the target genes regulated by three example transcriptional factor hubs. For
instance, peb, the protein ejaculatory bulb, interacts with extracellular region genes and genes
involved in structural molecular activity. Another example is spt4 which triggers many binding
genes. This is consistent with its functional role in chromatin binding and zinc ion binding.

Dynamic Clustering of Genes
Most gene interactions occur only at certain time during the life cycle of Drosophila melanogaster.
Indeed, on average there are only one eighth of the total gene interactions present in each tem-
poral snapshot of the dynamic networks. The clusters in the summary graph are the result of
temporal accumulation of the dynamic networks. To illustrate this, two clusters of genes are
singled out from Fig 3(a) for further study. Cluster I consists of 167 genes and there are five
major gene ontology groups, ie. binding activity (34.7%), organelle (9%), transporter activity
(6.6%), transducer activity (6.6%) and motor activity (5.4%); cluster II consists of 90 genes and
there are three major gene ontology groups, ie. structural molecule activity (61.1%), organelle
(8.9%) and transporter activity (6.7%).

To obtain a finer functional decomposition of the genes in the interaction networks, the
largest connected component of the summary graph is further grouped into 20 clusters. Al-
though this connected component consists only of about 40% (1674) of all genes , it contains
more than 97% (4401) of the interactions in the summary graph. This 20 clusters vary in size,
with the smallest cluster having only 11 genes and the largest cluster having 384 genes. The
evolution of these cluster of genes is illustrated in Fig. 5. It can be seen that the connections
within a cluster dissolve and reappear over time, and different clusters wax and wane according
to different schedule.

Furthermore, the functional composition of these 20 clusters are compared against the back-
ground functional composition of the set of all 4028 genes. For this purpose, gene ontology
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(a)

(b) (c)

Figure 3: The summary visualization in (a) is created by adding the 23-epoch dynamic networks
together; the width of an edge is proportional to the number of times it occurs, and the size of a
node is proportional to its degree. (b) A static network inferred by treating all microarray data
as independently and identically distributed samples. (c) The degree distribution of the static
network is different from that of the summary graph of the dynamic networks.
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Table 1: Top 5 functional components of the 9 clusters whose functional compositions are
statistically significantly different from the back functional composition. The second column of
the table displays the number of genes in each cluster respectively. The functional composition
of each cluster is displayed as the percentage of genes with that particular function. The last
column of the table shows that p-value of the statistical test.

# Genes # Top 5 Function Components p-value
1 138 transcription regulator activity (15.9%), developmental process (8.7%), < 10−6

organelle (13.8%), reproduction (8.0%), localization (5.8%)
2 384 binding (37.8%), organelle (12.5%), transcription regulator activity (7.8%), < 10−6

enzyme regulator activity (7.6%), biological regulation (3.6%)
3 146 binding (29.5%), transporter activity (11.0%), organelle (8.9%), 0.05

motor activity (6.2%), molecular transducer activity (5.5%)
4 120 structural molecule activity (45.0%), translation regulator activity (10.8%), < 10−6

organelle (6.7%), binding (5.8%), macromolecular complex (4.2%)
5 89 organelle (14.6%), binding (13.5%), multicellular organismal process (11.2%), 10−3

developmental process (7.9%), biological regulation (7.9%)
6 25 catalytic activity (16.0%), translation regulator activity (16.0%), organelle (8.0%), 0.04

antioxidant activity (8.0%), cellular process (8.0%)
7 39 extracellular region (28.2%), biological adhesion (12.8%), binding (7.7%), 0.007

reproduction (7.7%), transporter activity (5.1%)
8 119 multi-organism process (16.0%), reproduction (9.2%), developmental process (9.2%), < 10−6

molecular transducer activity (7.6%), organelle (5.9%)
9 151 binding (28.5%), envelope (14.6%), organelle (9.9%), < 10−6

organelle part (9.9%), transporter activity (5.3%)

terms are used as the bins for the histogram, and the number of genes belonging to each on-
tology group are counted into the corresponding bins. The functional composition of 9 out
of the 20 clusters are statistically significantly different from the background (two sample
Kolmogorov-Smirnov test at significance level 0.05). The top 5 functional components of these
significant clusters are summarized in Table 1.

During the life cycle of Drosophila melanogaster, the developmental program of the organ-
ism may require genes related to one function be more active in certain stage than others. To
investigate this, genes are grouped according to their ontological functions. It is expected that
the interactions between gene ontology groups, as quantified by the number of wirings from
genes in one group to those in another group, also exhibit temporal pattern of rewiring.

For this purpose, the 4028 genes are classified into 3 top level gene ontology (GO) groups
related to cellular component, molecular function and biological process of Drosophila melanogaster
according to Flybase. Then they are further divided into 43 gene ontology groups which are the
direct children of the 3 top level GO groups. The interaction between these ontology groups
evolving over time is shown in Fig. 6.

Through all stage of developmental process, genes belonging to three ontology groups are
most active, and they are related to binding function, transcription regulator activity and or-
ganelle function respectively. Particularly, the group of genes involved in binding function play
the central role as the hub of the networks of interactions between ontology groups. Genes
related to transcriptional regulatory activity and organelles function show persistent interaction
with the group of genes related to binding function. Other groups of genes that often interact
with the binding genes are those related to functions such as developmental process, response
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9 10 11 12

13 14 15 16

17 18 19 20 21 22 23

Figure 5: The adjacency matrix of the 20 clusters of genes derived from the largest connected
components of Fig. 3 are plotted over time. Showed on the upper left corner is an enlarged
picture of the adjacency matrix of the summary graph. The red lines show the boundaries
between the clusters.

to stimulus and biological regulation.
Large topological changes can also be observed from the temporal rewiring patterns be-

tween these gene ontology groups. The most diverse interactions between gene ontology
groups occur at the beginning of embryonic stage and near the end of adulthood stage. In
contrast, near the end of embryonic stage (time point 10), the interactions between genes are
largely restricted to those from 4 gene ontology groups: transcriptional regulator activity, en-
zyme regulator activity, binding and organelle.

Transient Coherent Subgraphs
During the development of Drosophila melanogaster, there may be sets of genes within which
the interactions exhibit correlated appearance and disappearance. These sets of genes and their
tight interactions form coherent subgraphs. Note that coherent subgraphs can be different from
the clusters in the summary graph. While the former emphasizes the synchronous activation
and deactivation of edges over time, the later only concerns the cumulative effect of the degree
of interactions between genes.

To identify these coherent subgraphs, CODENSE (Hu et al., 2005) is applied to the in-
ferred dynamic networks and 8 coherent subgraphs are discovered (Table 2). These coherent
subgraphs vary in size, with the smallest subgraph containing 27 genes and the largest sub-
graph containing 87 genes. The degree of activity of these functional modules as measured
by the clustering coefficients of the subgraphs follows a stage-specific temporal program. For
instance, subgraph 3 and 4 are most active during the adulthood stage, while subgraph 4 and 7
are most active during embryonic and pupal stage respectively.
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Table 2: CODENSE is used to discover coherent subgraphs across the 23 temporally rewiring
networks. Six such subgraphs are discovered. The number of genes within each subgraph are
69, 58, 29, 87, 64, 59, 27 and 63 respectively. In each cell of the table the evolution of the
clustering coefficient for each subgraph is plotted, and the corresponding configurations of the
subgraph at different time points are also illustrated.

1 2 3 4

5 6 7 8

It is natural to ask whether the genes in a coherent subgraph are enriched with certain
functions. To show this, the functional composition of these 6 subgraphs are also compared to
the background functional composition of the set of all 4028 genes. Statistical test (two sample
Kolmogorov-Smirnov test with significance level 0.05) shows that 6 out of the 8 subgraphs are
significantly different from the background in term of their functions. For instance, subgraph
6 is enriched with genes related to binding (20.3%), envelope (18.6%), organelle part (16.9%),
organelle (15.3%) and antioxidant activity (5.1%) (p-value < 10−6). Furthermore, these genes
reveal increased activity near the end of the first 3 developmental stages. Another example
is subgraph 7 which is enrich with genes related to transporter activity (11.1%), reproductive
process (11.1%), multicellular organismal process (11.1%), organelle (7.4%) and transcription
regulator activity (7.4%). These genes peak in their activity near the end of the pupal stage.
These results suggest that different gene functional modules follow very different temporal
programs.

Dynamics of Known Gene Interactions
Different gene interactions may following distinctive temporal programs of activation, appear-
ing and disappearing at different time point during the life cycle of Drosophila melanogaster. In
turn the transient nature of the interactions implies that the evidence supporting the presence of
an interaction between two genes may not be present in all microarray experiments conducted
during different developmental stages of the organism. Therefore, pooling all microarray mea-
surements and inferring a single static network can undermine the inference process rather
than helping it. This problem can be overcome by learning dynamic networks which recover
transient interactions that are supported by correct subsets of experiments.

To show the advantage of dynamic networks over a static network, the recovered inter-
action by these two types of networks are compared against a list of 1143 known undirected
gene interactions hosted in Flybase. The dynamic networks recover 96 of these known gene
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interactions while the static network only recovers 64. That is dynamic networks recover 50%
more known gene interactions than the static network. Furthermore, the static network provides
no information on when a gene interaction starts or ends. In contrast, the dynamic networks
pinpoint the temporal on-and-off sequence for each recovered gene interaction.

To investigate whether the gene interactions with different activation pattern are related to
their functional difference, hierarchical clustering is performed on these set of recovered gene
interactions based on their activation patterns (Fig. 7). It can be seen that all these interactions
are transient and very specific to certain stage of the life cycle of Drosophila melanogaster.
Furthermore, gene interactions with similar activation pattern tends to recruit genes with simi-
lar functions. To demonstrate this, histogram analysis is performed base on the gene ontology
groups of the genes involved in interactions. In Fig 7, five clusters in different level of the
cluster hierarchy are highlighted and their histograms show that functionally different gene in-
teractions tend to activation in very different temporal sequence. For instance, gene interactions
in cluster I activates near the boundary of embryonic and larval stage, and in these interactions,
no genes are related to the cellular component function of the organism; cluster II activates near
the end of pupal stage and is enriched by genes related to the cellular component function.

Conclusion
Numerous algorithms have been developed for inferring biological networks from high through-
put experimental data, such as microarray profiles (Segal et al., 2003; Dobra et al., 2004; Ong,
2002), ChIP-chip genome localization data (Lee et al., 2002; Bar-Joseph et al., 2003; Harbison
et al., 2004), and protein-protein interaction (PPI) data (Uetz et al., 2000; Giot et al., 2003;
Kelley et al., 2004; Causier, 2004), based on formalisms such as graph mining (Tanay et al.,
2004), Bayesian networks (Cowell et al., 1999), and dynamic Bayesian networks (Kanazawa
et al., 1995). However, most of this vast literature focused on modeling a static network or time-
invariant networks (Friedman et al., 2000), and much less has been done towards modeling the
dynamic processes underlying networks that are topologically rewiring and semantically evolv-
ing over time, and on developing inference and learning techniques for recovering unobserved
network topologies from observed attributes of entities (e.g., genes and proteins) constituting
the network. The Tesla program presented here represents the first successful and practical tool
for genome-wide reverse engineering the network dynamics based on the gene expression and
ontology data. This method allows us to recover the wiring pattern of the genetic networks over
a time series of arbitrary resolution. The recovered networks with this unprecedented resolu-
tion chart the onset and duration of many gene interactions which are missed by typical static
network analysis. We expect collections of complex, high-dimensional, and feature- rich data
from complex dynamic biological processes such as cancer progression, immune response, and
developmental processes to continue to grow, given the rapid expansion of categorization and
characterization of biological samples, and the improved data collection technologies. Thus
we believe our new method is a timely contribution that can narrow the gap between imminent
methodological needs and the available data, and offer deeper understanding of the mechanisms
and processes underlying biological networks.
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Material and Methods

Microarray Data
We used the microarray data collected by Arbeitman et al. (2002) in their study of the gene
expression patterns during the life cycle of Drosophila melanogaster. Approximately 9,700
Drosophila cDNA elements representing 5,081 different genes were used to construct the 2-
color spotted cDNA microarrays. The genes analyzed in this paper consists of a subset of
4,028 sequence-verified, unique genes. Experimental samples were measured at 66 different
time points spanning the embryonic, larval, pupal and adulthood period. Each hybridization
is a comparison of one sample to a common reference sample made from pooled mRNA rep-
resenting all stages of the life cycle. Normalization is performed so that the dye dependent
intenstive response is removed and the average ratio of signals from the experimental and ref-
erence sample equals one. The final expression value is the log ratio of signals.

Missing Value Imputation
Missing values are imputed in the same manner as Zhao et al. (2006). This is based on the
assumption that gene expression values change smoothly over time. If there is a missing value,
a simple linear interpolation using values from adjacent time points is used, i.e. the value of
the missed time point is set to the mean of its two neighbors. When the missing point is a start
or a end point, it is simply filled with the value of its nearest neighbor.

Expression Value Binarization
The expression values are quantized into binary numbers using thresholds specific to each gene
in the same manner as Zhao et al. (2006). For each gene, the expression values are first sorted;
then the top two extreme values in either end of the sorted list are discarded; last the median
of the remaining values are used as the threshold above which the value is binarized as 1 and 0
otherwise. Here 1 means the expression of a gene is up-regulated, and 0 means down-regulated.

Network Inference model
In this paper, we used a new approach for recovering time-evolving networks on fixed set
of genes from time series of gene expression measurements using temporally smoothed L1-
regularized logistic regression, or in short, TLR (for temporal LR). This TLR can be formu-
lated and solved using existing efficient convex optimization techniques which makes it readily
scalable to learning evolving graphs on a genome scale over few thousands of genes.

For each time epoch we assumed that we observe binary gene activation patterns, which we
obtained from the continuous micro-array measurements as described above. At each epoch
we represent the regulatory network using a Markov random field define as follows:

Let Gt = (V, Et) be the graph structure at time epoch t with vertex set V of size |V | = p and
edge set Et. Let {X t

1:Nt
} be a set of i.i.d binary random variables associated with the vertices

of the graph. Let the joint probability of the random variables be given by the Ising model as
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follows:

P (xt
d|Θt) = exp

(∑
i∈V

θt
iix

t
d,i +

∑
(i,j)∈Et

θt
ijx

t
d,ix

t
d,j − A(Θt)

)
, (1)

where the parameters {θt
ij}(i,j)∈Et capture the correlation (regulation strength) between genes

X t
i , and X t

j . A(Θt) is the log normalizing constant of the distribution. Given a set of {X t
1:Nt

}
i.i.d samples drawn from P (X t

d|Θt) at each time step, the goal is to estimate the structure of
the graph, i.e. to estimate {Êt}T

t=1. We cast this problem as a regularized estimation problem
of the time-varying parameters of the graph as follows:

Θ̂1, . . . , Θ̂T = arg min
Θ1,...,ΘT

T∑
t=1

nLL(Θt) + R(Θ1 . . . ΘT , λ), (2)

where, nLL(·) is the exact (or approximate surrogate) of the negative Log Likelihood R(·)
is a regularization term, and λ is the regularization parameter(s). We assume that the graph is
sparse and evolves smoothly over time, and we would like to pick a regularization function R(·)
that results in a sparse and smooth graphs. The structure of the graphs can then be recovered
from the non-zero parameters which are isomorphic to the edge set of the graphs.

When T = 1, the problem in Eq. (2) degenerates to the static case:

Θ̂ = arg min
Θ

nLL(Θ) + R(Θ, λ), (3)

and thus one needs only to use a regularization function, R(·), that enforces sparsity. Several
approaches were proposed in the literature (Wainwright et al., 2006; Lee et al., 2006; Guo
et al., 2007). this problem has been addressed by choosing R = L1-penalty, however, they
differ in the way they approximate the first term in Eq. (3) which is intractable in general due
to the existence of the log partition function, A(Θ) (Wainwright et al., 2006; Lee et al., 2006;
Guo et al., 2007). In Wainwright et al. (2006) a pseudo-likelihood approach was used. The
pseudo-likelihood, P̂ (Xd|Θ) =

∏P
i=1 P

(
xd,i|xd,N(i)

)
, where N(i) is the Markov blanket of

node i, i.e., the neighboring nodes of node i. In the binary pairwise-MRF, this local likelihood
has a logistic-regression form. Thus the learning problem in (3) degenerates to solving P l1-
regularized logistic regression problems resulting from regressing each individual variable on
all the other variables in the graph. More specifically, the learning problem for node i is given
by:

θ̂i = arg min
θi

1

N

N∑
d=1

log P
(
xd,i|xd,−i, θi

)
+ λ1 ‖ θ−i ‖1

= arg min
θi

1

N

N∑
d=1

[
log(1 + exp(θixd,−i)) − xd,iθixd,−i

]
+ λ1 ‖ θ−i ‖1, (4)

where, θi = (θi1, . . . , θiP ) are the parameters of the L1-logistic regression, xd,−i denotes the
set of all variables with xd,i replaced by 1, and θ−i denotes the vector θi with the component
θii removed (i.e. the intercept is not penalized). The estimated set of neighbors is given by:
N̂(i) = {j : θij 6= 0}. The set of edges E is then defined as either a union or an intersection
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of neighborhood sets {N(i)}i∈V of all the vertices. Wainwright et al. (2006) showed that both
definitions would converge to the true structure asymptotically.

To extend the above approach to the dynamic setting, we return to the original learning
problem in Eq. (2) and approach it using the techniques presented above. We use the negative
pseudo-loglikelihood as a surrogate for the intractable nLL(·) at each time epoch. To constrain
the multiple time-specific regression problems each of which takes the form of Eq. (4) so
that graphs are evolving in a smooth fashion, that is, not dramatically rewiring over time, we
penalize the difference between the regression coefficient vectors corresponding to the same
node, say i, at the two adjacent time steps. This can be done by introducing a regularization
term ‖ θt

i − θt−1
i ‖1

1 for each node at each time. Then, to also enforce sparsity over the graphs
learnt at each epoch, in addition to the smoothness between their evolution across epochs, we
use the standard L1 penalty over each θt

i . These choices will decouple the learning problem
in (2) into a set of P separate smoothed L1-regularized logistic regression problems, one for
each variable. Putting everything together, for each node i in the graph, we solve the following
problem for :

θ̂1
i , . . . , θ̂

T
i = arg min

θ1
i ,...,θT

i

T∑
t=1

lavg(θ
t
i) + λ1

T∑
t=1

‖ θt
−i ‖1 + λ2

T∑
t=2

‖ θt
i − θt−1

i ‖1
1, (5)

where

lavg(θ
t
i ) =

1

N t

Nt∑
d=1

log P
(
xt

d,i|xt
d,−i, θ

t
i

)
=

1

N t

Nt∑
d=1

[
log(1 + exp(θt

ix
t
d,−i)) − xt

d,iθ
t
ix

t
d,−i

]
. (6)

The problem in Eq. (5) is a convex optimization problem with a non-smooth L1 functions.
Therefore, we solve the following equivalent problem instead by introducing new auxiliary
variables, ut

i and vt
i (the case for q = 2 is handled similarly):

min
θ1
i ,...,θT

i ,u1
i ,...,uT

i ,v2
i ,...,vT

i

T∑
t=1

lavg(θ
t
i) + λ1

T∑
t=1

1Tut
i + λ2

T∑
t=2

1Tvt
i (7)

subject to − ut
i,j ≤ θt

i,j ≤ ut
i,j, t = 1, . . . , T, j = 1, . . . , i − 1, i + 1, . . . , P,

subject to − vt
i,j ≤ θt

i,j − θt−1
i,j ≤ vt

i,j, t = 2, . . . , T, j = 1, . . . , P,

where 1 denotes a vector with all components set to 1, so 1Tut
i is the sum of the components

of ut
i . To see the equivalence of the problem in Eq. (7) with the one in Eq. (5, we note that at the

optimal point of Eq. (7), we must have ut
i,j = |θt

i,j|, and similarly vt
i,j = |θt

i,j − θt−1
i,j |, in which

case the objectives in Eq. (7) and Eq. (5) are the same (a similar solution has been applied to
solving L1-regularized logistic regression in Koh et al. (2007)). The problem in Eq. (7) is a
convex optimization problem, with now a smooth objective, and linear constraint functions, so
it can be solved by standard convex optimization methods, such as interior point methods, and
high quality solvers can directly handle the problem in Eq. (7) efficiently for medium to large
scale (up to few thousands of nodes). In this paper, we used the CVX optimization package1.

1http://stanford.edu/$\sim$boyd/cvx
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Gene Ontology
Gene ontology (GO) data is obtained from Flybase2. There are altogether 25,072 GO terms
with 3 name spaces: molecular function, biological process and cellular component. The GO
terms are organized into a hierarchical structure, and 16,189 GO terms are leaf nodes of the
hierarchy. The 4,028 genes are assigned to one or more leaf nodes. When we estimate the
networks for a target gene, we restrict the network inference to those genes that share common
GO terms with the target gene. This operation restricts the network inference to a biologically
plausible set of genes and it also drastically reduces the computation time.

Mining Frequent Coherent Subgraphs
CODENSE is an algorithm for efficiently mining frequent coherent dense subgraphs across a
large number of massive graphs (Hu et al., 2005). In the context of dynamic networks, it is
adapted to discover functionally coherent gene modules across the temporal snapshots of the
networks. In such a module, the interactions between component genes follow a similar pattern
of onset and duration.

CODENSE takes as inputs a summary graph and a support vector for each edge. A node in
the summary graph represents a gene; an edge represents a gene interaction and its weight is
the number of times that this interaction occurs over time. The summary graph is used to guide
the search for dense subgraphs in CODENSE. A support vector records the exact temporal
sequence of on-and-off of a gene interaction. Using the support vectors, CODENSE finds a set
of genes whose interactions follow a similar path of evolution.
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