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Abstract

Graphs appear in several settings, like social networks, recommendation systems, and numerous more. A
deep, recurring question is “How do real graphs look like?”” That is, how can we separate real graphs from
synthetic or real graphs with masked portions? The main contribution of this paper is ShatterPlots, a simple
and powerful algorithm to tease out patterns of real graphs that help us spot fake/masked graphs. The idea is
to shatter a graph, by deleting edges, force it to reach a critical (‘“‘Shattering”) point, and study the properties
at that point. One of our most discriminative patterns is the “NodeShatteringRatio ”: that can almost perfectly
separate the real from the synthetic graphs of our extensive collection. Additional contributions of this paper
are (a) the careful, scalable design of the algorithm that needs only O(F) time, (b) extensive experiments on
a large collection of graphs (19 in total), with up to hundred of thousand of nodes and million edges; and (c)
a wealth of observations and patterns, which show how to distinguish synthetic or masked graphs from real
ones.
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1 Introduction

Graphs appear in numerous settings social networks, scientific publication network, conferences
vs. authors, an so forth. Our goal is to find patterns to help us spot fake and “masked” graphs. (By
“masked’ we mean a graph that is a non-random sample of a real graph - for example, a real graph
after one deletes all the nodes with degree < 100). We propose to tease-out the characteristics of a
large graphs with the novel tool of ShatterPlots. Moreover, we want our method to be scalable, so
that to handle graphs that span MegaBytes, GigaBytes or more.

The main idea behind ShatterPlots reminds of high-energy physics, where particles are smashed,
and experts study the results of the collisions to reach conclusions. Here, we propose to shatter the
given graph, that is, to drive it to the “Shattering point”, by deleting edges at random, and observ-
ing its behavior. The first research challenge is how to interpret the results of the Shattering. The
second challenge is scalability and speed.

The answers to the above challenges are exactly the contributions of this work. For the first, we
show that random edge deletion always leads to a high spike of the diameter, exactly at the critical
point that we call “Shattering point”.
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Figure 1: Our NodeShatteringRatio pattern allows an impressive distinction between fake/masked graphs
(triangles, Amazon, Web Google) from real graphs (rest).

At the Shattering point, we give a list of surprising observations for several real graphs. The
most surprising is the “30 per cent” pattern, which states that under random edge deletion, real
graphs have 30% more nodes than edges when they reach their Shattering point, regardless of
which the original graph was. Another interesting observation is that at the Shattering point the
count of remaining edges is 1/A; of the original edge count, where A; is the first eigenvalue of
original graph; it is fascinating that 1/, is the epidemic threshold of the graph [12].

The most striking pattern is the NodeShatteringRatio one, illustrated in Figure 1. This pattern
allows us to perfectly separate the real graphs from fake/masked ones, at least for the graphs of our
collection. Specifically, the fraction Ng/N; of remaining nodes at the Shattering point, is much-
much lower for most real graphs, while it is about 0.7 for the masked ones (and for the Erd6s-Rényi



graphs). (Vg is the number of nodes at the Shattering point and /V; is the total number of nodes of
original graph.)

Finally, for scalability, we propose a fast, adaptive algorithm that can quickly discover the
Shattering point. Its performance is linear on the number of edges E, as shown empirically.

The rest of the paper is organized as follows. Section 2 surveys the related techniques. Sec-
tion 3 proposes the data model and the formal problem specification. Section 3 further presents the
algorithms. In Section 4, we evaluate the algorithms with real data. Section 5 and Section 6 we
present patterns found, proofs and outliers spotted. The scalability is presented in Section 7. We
conclude in section 8.

2 Related Work

There is a significant body on research related to our problem, which we categorize into the fol-
lowing groups: graph algorithms; graph patterns; epidemiology; phase transitions; and outliers
detection.

Graph Algorithms: Intuitively we expect the graph to shatter at the point where natural com-
munities or clusters break apart. Popular methods for partitioning graphs include the METIS al-
gorithm [24], spectral partitioning techniques [23], flow-based methods [20] information-theoretic
methods [14], and methods based on the “betweeness” of edges [22], among others. Note that our
work is orthogonal to this, as we are using fast and scalable techniques to examine the structure of
the graph. Probably the most related is the k-cores [8] decomposition that recursively “peels” the
graph; a recent extension for bipartite graphs uses the KNC plots [29]. This approach would be
complementary to ours, since they examine different aspects of the graph.

Graph patterns: Several old and recent patterns have been discovered for large, real graphs:

The first is the skewed degree distribution phenomenon, with power law tails, for the Inter-
net [19], for the Web [26, 9], for citation graphs [40], for online social networksand many others.
Deviations from the power-law pattern have also been noticed [38], but the distribution is still very
skewed.

The second is the Small diameter: This is the the “small- world” phenomenon, or ‘six degrees
of separation’ [47] The diameter of a graph is d if every pair of nodes can be connected by a path
of length at most d. Following the computer network literature, we use the effective diameter [45]:
The minimum number of hops in which some fraction (or quantile g, typically ¢ = 90%) of all
connected pairs of nodes can reach each other. The effective diameter has been found to be small
and decreasing over time for large real-world graphs, like Internet, Web, and social networks [4,
35, 32].

Phase transitions: The point where the graph shatters is ultimately a point of phase transition,
i.e., a point where the connectivity structure abruptly changes. The Erd&s-Rényi graphs exhibit
phase transitions [17] in the size of the largest connected component. Several researchers argue that
real systems are “at critical points” [6, 44], like avalanches, forests (with forest fires), mechanical
tension causing earthquakes, and so on. If this also holds for real networks, then they should be



ready to “shatter”, after a lot of edges insertion. Phase transition is also known as bond and site
percolation threshold. An example of application is presented in [28].

Epidemiology: Most of the previous research on the flow of information and influence through
the networks has been done in the context of epidemiology and the spread of diseases over the
network [5, 12].

The work on spread of diseases in networks and immunization mostly focuses on determining
the value of the epidemic threshold [5], a critical value of the virus transmission probability above
which the virus creates an epidemic.

The epidemiology community has developed the so-called SIR and SIS models [5] of infection.
The SIS model (Susceptible — Infective — Susceptible) is suitable for the common flu, where nodes
may be infected, healed (and susceptible), and infected again.

Recent work showed that the epidemic threshold of a graph is 1/A;, that is, the inverse of
its strongest eigenvalue [12]. We give more details later, as well as its connection to the bond
percolation threshold.

Outliers detection on graphs: Last, we focus on outlier detection, as the connectivity structure
revealed by the ShatterPlots . Autopart [11] finds outlier edges in a general graph; however, we
need to detect outliers nodes. Noble and Cook [36] study anomaly detection on general graph
with labeled nodes; however, their goal is to identify abnormal substructure in the graph, not the
abnormal nodes. Aggarwal and Yu [2] propose algorithms to find outliers in high-dimensional
spaces, but its applicability to graphs is unclear: the nodes in a graph lie in a vector space formed
by the graph nodes themselves, so the vector space and the points in it are related. As we will
see later we observe very different patterns of shattered graphs when compared to simple models,
which allows us to detect masked/fake non-realistic graphs.

3 Proposed Method

We start with the problem definition and the motivating questions. Then we describe our design
decisions, and finally we give our algorithm.

3.1 Problem Definition.

Our goal is to find patterns at the Shattering point, that is a clear spike in the diameter after some
edges deletion in real graphs like social networks, citation and web graphs, recommendation sys-
tems (users-to-products bipartite networks). We also want to analyze if fake/masked graphs have
a different behavior than real graphs at the Shattering point. What can we say about real graphs at
the Shattering Point? Can we find interesting patterns in real graph at this point? Can we use these
patterns to spot fake/masked graphs?

The problem is defined as follows:

Problem 1 Given a large, sparse graph check whether it is an masked or synthetic graph.



In fact, we have two types of questions that we would like to check for all graphs. The first are
“philosophical” questions, whose answers will settle some conjectures. The second set consists of
“exploratory” questions. These questions refer to what properties we should expect to see, at the
Shattering point of a graph (assuming that it does have a Shattering point).

3.1.1 “Philosophical” Questions

PhQ 1 Do real graphs have a Shattering point?

Real networks are very resilient [3] at random node deletions while some others, like Erdés-Rényi
are not. One would expect so, if we have random edge deletion (RED). But are there exceptions
in real graphs? Is it possible to have a real graph, which, under RED, the diameter increasing
continuously, without an abrupt shattering?

PhQ 2 Are real-life graphs just a bit above the Shattering point?

One would expect so: For example, Bak [6] proposes the theory of SOC (Self-Organized Criti-
cally), arguing that several phenomena, are just at their critical point, like avalanches, finances of
interrelated companies, tectonic plaques. Several graph generators also focus on ’optimized toler-
ance’ [10, 18]. Thus one might expect that real graphs are connected, but barely so, and thus would
be just above Shattering. A communication network that is way above Shattering point, would be
wasting resources, one might argue.

3.1.2 Exploratory Questions.

Jumping ahead, it turns out that all the real and synthetic graphs we tried, do have a sharp Shattering
point. This brings a whole wave of questions:

ExQ 1 What is the Edge shattering ratio Es/ Ey (i.e., the fraction of edges at the Shattering point)?
How does it depend on the graph size, if at all?

Where E; is the number of edges and N is the number of nodes, both at Shattering point. E;
is the total number of edges of original graph and /V; is the total number of nodes in the original
graph. The symbols are defined in table 1.

ExQ 2 What about the Node shattering ratio Ns/ Ny (i.e., the fraction of nodes at the Shattering
point)?

ExQ 3 Do synthetic graphs have the same behavior at the Shattering point? or do they follow
different laws?

ExQ 4 What can we say about the node-to-edge ratio of a graph at the Shattering point? And
about the giant connected component at the Shattering point?



3.2 Design decisions.

Thinning methods: We tried several thinning methods, like Random Edge Deletion(RED), and
several versions of “Hostile” edge deletion. The most striking patterns were with the former, and
thus we shall exclusively focus on RED here.

Choice of shattering criterion: The shattering criterion should ideally have a sharp transition.
We considered several shattering criteria:

e Size (number of nodes) of the largest weakly connected component

e The effective diameter (number of hops at which 90% of all reachable pairs do reach each
other)

e Total number of reachable pairs of nodes

We expected that the graph will shatter at all of the above criteria, i.e., there will be a Shattering
point in the edge deletion process, where the connectivity of the graph will be seriously disrupted:
e.g., the graph gets disconnected, the size of the largest component drops, the diameter spikes,
and the number of reachable pairs of nodes drops. We examine the results of shattering of our 19
network datasets in more detail in the following section.

3.3 Algorithm description

Next, we present the algorithm for creating ShatterPlots. However, instead of the algorithm
starts with the full graph and delete edges at random, it starts with an empty graph and insert edges
at random. Algorithm 3.3 shows the details.

The idea is to shuffle the edges file of a graph GG and builds the temporary graph H adding some
number of edges (Step(t)) at random. Both of them have the same nodes (V), and will be exactly
the same in the end of the algorithm. After each insertion we measure the structural properties of
the graph, like, e.g., the diameter, the number of reachable pairs of nodes, number of triangles, the
first eigenvalue of the graph adjacency matrix or the size of the largest connected component. We
keep repeating the process until the graph is full, i.e., contains all edges from the edges file.

Ideally we would re-compute graph properties after insert of each and every edge. However,
that approach would be slow, and thus we insert a batches of edges at a time. The question is
what is the appropriate size of such batch, so that we will not overshoot and miss the Shattering
point? Our answer is an adaptive method: we start with a small batch size, and if there is no major
difference in the graph structure (say, the diameter), then, we increase the batch size. Conversely,
we decrease it, if we seem to be reaching a spike. The same process could be applied in the other
way around, that is, instead of inserting edges, we could start with a full graph and delete edges at
random on it. Empirically, we notice that the algorithm is very fast, and it usually needs about 250
steps to locate the Shattering point.

Scalability: next, we show that Adaptive ShatterPlot Algorithm scales well on the number of
total edges E; to. This shows that the Adaptive ShatterPlot is capable of handle large graphs. The



Algorithm 1 ShatterPlot algorithm

Adaptive ShatterPlot
Input: The input graph G(N, E)
Output: Point of shattering (and stats about it)
Shuffle the |E)|
Temporary H(N,@), on N nodes
e=0.0050re=1/)\
t=0
Step(t) = e * | E|
while H ! = G do
Insert Step(t) edges in H at random
t=t+1
Measure structural properties of H (diameter, connected components, first eigenvalue, etc.)
Dy = effective diameter of H
if £ > 1 then
if Dt — Dt,1 > 1 then
Step(t) = Step(t —1)/2
elseif D; — D, 1 < —1 then
Step(t) = 2 x Step(t — 1)
end if
else if ¢ = 1/, then
Step(t) = 0.005 * | E|
end if
end while




algorithm scales even better, up to 8 times faster, using the Eigenvalue pattern presented in Section
6.

First, we assume edge insertion is a constant time operation. This is true for most of graph
implementations. In some implementations it can be logarithmic/linear in the average degree of the
graph but as real graphs are sparse this is practically constant. Second, thanks to the Approximate
Neighborhood Function algorithm [37] (ANF), we can calculate the effective diameter of the graph
in time linear O(E') on the number of edges E in the graph.

Definition 1 The effective diameter is the minimum number of hops in which 90% of all connected
pairs of nodes can reach each other.

Also, the effective diameter is a more robust measure of the pairwise distances between nodes of a
graph.

However, this does not solve the problem immediately: if we use a naive implementation of
the ShatterPlot algorithm and at every step add a constant number of edges, then the full algorithm
would scale quadratically with the number of edges O(E?) (O(E) for the number of ShatterPlot
iterations, and a factor of O(E) for running ANF at each step). Due to the adaptive nature of our
algorithm that exponentially adjusts the number of edges it adds from the graph, we only need a
roughly constant number of iterations, which makes our algorithm scales well to the number of
edges.

We have two version of our algorithm. The first is called Proportional ShatterPlots in which in
Step(0) the initial value € is 0.005. The other version is called Eigenvalue ShatterPlots, given that
we use 1/ as initial value for € at Step(0). For Eigenvalue ShatterPlots none of our extensive
collection of graphs had the Shattering point missed. As we can see in the Eigenvalue pattern,
presented in Section 6, all of ours graphs are above the line, that is, the Ej is higher than the 1/\; *
E, at Shattering point. So we can overshooting the initial value of € to 1/)\;. In case of Eigenvalue
ShatterPlots miss the Shattering point, an easily solution is to backtrack the algorithm and apply
the Proportional ShatterPlots between 0 and previous value of Ag. Later we present wallclock
times, illustrating the scalability of our method and the improvements reached with Eigenvalue
ShatterPlots.

4 Experiments

Here we give the answers to our posed questions, our observations and the results achieved.

4.1 Datasets.

Table 1 present the symbols used in this section. We define the Shattering point as the point where
the shattering of the graph happens. Based on this definition we will present the results of other
measures, such as nodes and edges of giant component, total number or reachable pairs of nodes,
number of nodes, number of edges, diameter, highest degree, triangles and first eigenvalue in this
point, named respectively Nggee,Esgees NNpairss Nss Es, Ds, dg, Ag, and Ay .



Symbols | Definitions
SP Shattering point (= critical point)
REI Random Edge insertion

ct constant value
N Total number of nodes in the graph
E; Total number of edges in the graph
Ay Total number of Triangles in the graph
1 Largest eigenvalue of original graph
Ny Number of nodes at SPof degree > 1
Es Number of edges at SP
ds Highest degree at SP
Nggee | Nodes in largest weakly conn. comp. at SP
Es4ec | Edges in largest weakly conn. comp. at SP

AM,s Largest eigenvalue at SP
Ag Total number of Triangles at SP
Dy Effective diameter at SP

Table 1: Symbols, acronyms and definitions

Table 2 presents all datasets used and the symbols that represent each of them in the plots shown
in the following sections. The synthetic datasets were generating using the algorithm described in
their respectively papers. For RB we used the model described [39] with 3, 4 and 7 levels for each
of the three graphs. For Erd6s-Rényi we use the model in [15], but instead of G(n, p), where p is the
probability to attach an edge, and n is the number of nodes, we used G(n, m) as model, where m is
the total number of edge in a graph. The number of nodes and edges used are n = 1k, 2k, 10k, 100k
and m = 5k, 14k, 50k, 400k respectively.

The Preferential Attachment graphs (PA) were created using the model described in [7] using
3k and 4k nodes and 3 and 5 as parameter for degree. In Small Word graphs (SW), the generator
follows the model presented in [47] using as parameters number of nodes (n), degree (d) and
Rewire Probability (p). So, for our graphs we used: n = 5k, 8k, 8k, d = 5,6,3, p = 0.4,0.9,0.5
respectively. For 2D grids, we created 3 of them being 30x30, 50x50 and 1000x1000 without wrap
up. All of the graphs were generated as undirected.

4.2 Choice of shattering criterion.

Here we show that, among the several measures we can use to detect critical point/Shattering point,
the best is the effective diameter D). The reason is that giant component and number of reachable
pairs do show critical point (that is, a sudden increase, as we insert more and more edges), but it is
not clear how to define the exact Shattering point. In contrast, the diameter always has a sharp peak,
reminding us of the percolation threshold [43]. Indeed the diameter is widely use to evaluate the
network breakdown during the random node deletion or highest degree node deletion [3]. Figure



Nodes Edges | Description

Online social networks
o 75,877 405,739 | Epinions network [41]
o 33,696 180,811 | Enron email net [27]
Academic collaboration (co-authorship) networks
* 21,363 91,286 | Arxiv cond-mat [33]
* 11,204 117,619 | Arxiv hep—ph [33]
Information (citation) networks
34,401 420,784 | Arxiv hep—th citations [21]
32,384 315,713 | Blog citation (1 year) [30]
Web graphs
© | 319,717 | 1,542,940 | Stanford — UC Berkeley
© | 855,802 | 4,291,352 | Google web graph [1]
Amazon Product co-purchasing networks

| 473,315 | 3,505,519 | Snapshot 2 [13]
Bipartite (authors-to-papers) networks
+ | 54498 [ 131,123 | Arxiv astro-ph [30]
Internet networks
| 13,579 37,448 | AS Oregon [31]
[ | 22,963 48,436 | AS graph from M. Newman
| 62,561 147,878 | Gnutella, 31 Mar 2000 [42]
Grid networks
¢ | 4941 6,594 | Power Grid western US [47]
Synthetic networks
<V | 2D - Synthetic Grid
V¥ | Erd6és-Rényi random graphs [17]

BR - Barabasi Hierarchical Model [39]

vV | SW - SmallWorld [47]
7 | PA - Preferential Attachment [7]

Table 2: Datasets that we consider in our study. They symbol at the beginning of the row is later used in
figures to denote the datasets.
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Figure 2: We randomly delete edges and measure graph structural properties. Graphs shatter in all measure
but only diameter has a nice and clear spike.

2 shows Gnutella, AS-Oregon and Author to Paper datasets - we omit the rest for brevity, because
they all have similar behavior.

Rows correspond to measures (diameter Dy, Nggee and N npqirs). Each plot shows the measure
of interest (diameter, etc), versus the number of retained edges, under random edge insertion (REI).

The vertical lines correspond to the spike of the diameter (Top row plot) As we can see in
Figure 2, we can use ShatterPlots to find the critical point because it is the only one with a sharp,
clear spike. The main point is that the Shattering point Fs at which the diameter spikes always falls
in the region where the other measures have a sudden drop. Now, we define:

Definition 2 The Shattering point E of a graph is the number of retained edges for which the
(effective) diameter spikes.

10



The ShatterPlot is exactly the plot of diameter D, versus retained edges E's, and we shall not use
the rest of the measures any more.
Another important definition is:

Definition 3 For Erdds-Rényi graphs, the Shattering point as defined above, coincides with the
phase transition point.

This is important, because we have several results from the theory of random graphs. These results
are used as sanity checks to ours findings.

5 Results - Philosophical Questions

To answer philosophical and exploratory questions posed in section 3.1 we “shatter” many graphs
(Table 2 presents the datasets used) and build some plots with the measures collected at Shattering
point - Ny, F, ds and \q ¢ of all our real graphs. We also made these for synthetic, Erd6s-Rényi
graphs, 2D-grid graphs, Hierarchical graphs, Small Word, and Preferential Attachment for sanity
check and comparisons.

After “Shatter” real and synthetic graphs, we could answered both philosophical questions
PhQ 1 and PhQ 2 with the following patterns:

Pattern 1 All measures have a Shattering point at about the same point for a given graph, but only
the diameter has a clear spike.

Pattern 2 All graphs have a Shattering point, under REL

Figure 3 shows the plots of structural measures at Shattering point. The axis scaling is linear
- linear to (d), and log - log to (a), (b), (c), (e) and (f) and we also show the theoretical/expected
fitting curve (all of them with coefficient above 0.98), when there seem to be a strong correlation.
Moreover, we show fitting lines, a blue one for results we gotten, and a red one for theoretical or
expected ones. All experiments are average of 10 runs. The results for the Erdés-Rényi graphs are
shown with dark down triangles, and synthetic with down triangles for better viewing in black-and-
white. However, the paper is better viewing in color.

6 Results - Exploratory Questions

As we can see (Figure 3 (a)) all graphs have a Shattering point. The nodes-edges ratio at Shattering
point N/ E of all graphs follow a line which has the slope 1.30. This means that at the Shattering
point the number of nodes N, is about 30% higher than E;. This observation also answered
Question PhQ2 and part of ExQ3 and ExQ4.

It turns out that our REI procedure, when applied to Erd6s-Rényi graphs, leads to a Shattering
point which is exactly the one predicted by theory. In all our Erdés-Rényi graphs, the Shattering
value F satisfied Es = N;/2 and Ny = N; % (1 — 1/e), which is exactly the condition for phase
transition [15].

11



Eo/Et = 1/;“ o Power-Grid ¢ L Gri
| Mozt e, - i
o nutella
& 10 & 10-1 Gnytel
© Gnutella
[ . ui WebGoogle—_
D 4 =
B 10 }ﬁ" Y ui Amazon—"
Z A "
' N 10
zm 1 03 *
2 3
10 10
102 10° 10* 10° 10° 10 102 107" 10°
Eg- Edges at SP 1/
(a) Ny vs. E, (b) Eg/Ey vs. 1/\y
s 25
10 on VA = 1/
)N, =
(b)N: = o.tea'N, o s 20
= *| S /eb|
. 105 ()Ng=0.37*N¢ Godgle = 15 WebGoogle-,
@ ) Amazon~,
@ kel
8 10t =10
§ 10 Power Grid_ §
Z“" 5 Gnutella _Power Grid
103 *a ¢
7 AS - Oregon 0
0 5 10 15 20 25
102
102 10° 10* 10° 108 Mg
N, - Total Nodes
(¢) Ns vs. Ny (d) vds vs. A s
a 10° 10°
@ NsGec = Esgece WebGoogle”
© WebGoogle, Power-Grid.,
&) 3
O 4 o 2 /
@ 10 Amazon__x" w10 Amazén
— =4 @
o ©
P . & 7
3 “Power Grid g 4
2 10° o = 10! *
8 R4
(zD'” 2 . 0
10 10
10? 10° 10* 10° 10? 10° 10* 10° 10°
EsGcc - Edges of GCC at SP Eg
(e) ngcc VS. Esgcc (f) AS VS. ES

Figure 3: Structural observations at Shattering point (SP), where the graph shatters. Synthetic graphs in
triangles; Erd6s-Rényi ones in black triangles. (a) number of non-isolated nodes (V) versus number of
edges E; at Shattering point (30-per-cent pattern); (b) number of retained edges F; over total number of
edges E; versus one over Aj, first eigenvalue of original graph (Eigenvalue pattern); Amazon is deviate
from the line, also synthetic graphs RB, PA and 2D-grid. (c) number of survivors nodes Ny versus total
number of nodes in the original graph N, (NodeShatteringRatio pattern) 2D-grid are above the Erd6s-Rényi
line; SW are together with Erd&s-Rényi , RB and PA are above line ‘c’ and below line ‘b’ (d)square root of
highest degree at Shattering point d, versus A;  at Shattering point ( Root-degree pattern); (e) number of
nodes N4 versus number of edges .. in giant component at Shattering point ( 7reeGCC pattern); (f)
number of Triangles A, versus number of edges F; ( TriangleRatio pattern). We can see that Power Grid
has disproportionate number of triangles. Only the graphs with one or more triangles appear.
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6.1 30-per-cent pattern.
Pattern 3 (30-per-cent) All real graphs shatter when Ny is about 30% higher than E.

Theoretical Justification For Erd6s-Rényi graphs, the 30-per-cent pattern can be proved: For
Erd6s-Rényi graphs at phase transition (= Shattering point), we have

Es=1/2%Ngxe/(e—1)=0.79 x N, (1)

where e = 2.718. Identically, N, = 1.26 E;, very close to 30%.
Proof: At Shattering point, we have Ny = N; x (1 — 1/e) and E; = N;/2. Substituting Ny,
completes the proof. QED

Discussion: It is surprising that the rest of the graphs also obey this pattern, reasonably close. It
is even more surprising, because, as we see later, at the Shattering point, real graphs clearly differ
from Erd8s-Rényi graphs, when we consider other aspects than the ratio E/ N, (Question ExQ3).

Outliers: This is one of the few patterns we discovered that seems universal, and thus can not
help us spot outliers and masked/synthetic graphs. Several of our upcoming patterns do, though.

6.2 Eigenvalue pattern.

Let E5/E; be defined as the Edge Shattering Ratio, that is the fraction of edges that we need to
retain, to be at Shattering point. Figure 3 (b) shows the percentage of edges remaining in the graph
at Shattering point has a correlation with 1/\. This observation answered Question ExQ 1. Indeed,
this pattern shows that the Edge Shattering Ratio does not depend on the size of the graph but the
highest eigenvalue. Then we have:

Pattern 4 (Eigenvalue ) The edges ratio

Es/Ey =ctx1/\1. 2)

Theoretical Justification: The Edge Shattering Ratio is the percentage of edges that still create
a giant connected component. A; is the epidemic threshold for an SIS model (Susceptible-Infected-
Susceptible), like the flu virus: The epidemic threshold in an SIS model is 5/6 = 1/A1, where 3 is
the virus birth rate and § the virus death rate and )\; is the highest eigenvalue of the original graph.
See [12] QED

Discussion: 3/ is the number of attacks per edge that a virus-molecule can do, until the host
recovers. Thus, during the lifetime of a virus-molecule, it sees § = E; edges available to it. At
epidemic threshold, this edge count should be 3 = E,. The ratio E,/E; is also known Bond
Percolation Threshold. For 2D-grids the Bond Percolation Threshold is well defined as 0.5 [25].
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Outliers: In this pattern we can see that some graphs like Preferential Attachment (PA), Hierar-
chical (RB) and 2D-grids do not follow it.

6.3 NodeShatteringRatio pattern.

Figure 3 (c) shows the Node Shattering Ration, that is the relation of nodes at the Shattering point
N, versus number of nodes N, of entire graph. We fit three lines in Figure 3 (c). The line (a)
- dotted line - is exactly N; = N that is the maximum bound, the line (b) - solid line - is the
theoretical line of Erd6s-Rényi and the line (c¢) - dashed line - is N; = 0.37 * N; of which all real
graphs are below it. As we can see, this pattern answered Questions ExQ 2 and ExQ 3.

Pattern 5 Synthetic graphs are close to Ny = 0.63 * Nj.

Theoretical Justification:  As shown [15], for all Erd6s-Rényi in the phase transition we have
Ns= N x(1—1/e) 3)
and (1 — 1/e) = 0.63, where e = 2.718.

Discussion:  The explanation is that most of real graphs have many nodes with degree d = 1,
that is a heavy tail power law distribution and these nodes have high probability to be isolated at
Shattering point. An example of this is the dataset AS Oregon in which the degree distribution is
presented in 4 (c). On the other hand, graphs like 2D-grids have most of the nodes with degree four,
and Erd6s-Rényi graphs have a little variation, with most nodes having degree close to the average
degree. All such graphs have very few isolated nodes when they shatter, with 2D-grids even fewer
than Erd6s-Rényi graphs. This is the reason that the orange triangles (2D-grids) are above the line
of the black triangles (Erd8s-Rényi graphs) have at Shattering point many more nodes than real
ones. However some graphs, like Amazon and Gnutella are masked, this mean that they don’t have
a nice power law distribution, as shown in Figure 4 (a) and (b) respectively. For these graphs, we
can seen in 3 (c) that they shatter faster than the other real graphs, like AS Oregon.

Outliers: The NodeShatteringRatio pattern is probably the best detector of synthetic and masked
graphs, at least for the mix of graphs we studied. Notice that all synthetic graphs are close to the
line ’b’ and above the line ’c’ - Ng = 0.37 = [Ny - in Figure 3(c).

6.4 Root-degree pattern.

Figure 3 (d) plots the highest eigenvalue at Shattering point A; ,, versus d,, the square root of
the highest degree in the graph at shattering point. The Figure also shows the line with equation

>\1,s = \/@
Pattern 6 All graphs obey \1 s > \/ds.

There are some recent theorems that help us justify this behavior:
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Theoretical Justification: As shown [34] for all graphs we have v/d;(1—0(1)) < \; < Vd;(1+
o(1)),i=1,2,...,k
where J; is the i-th eigenvalue and d; is its respectively degree.

Theoretical Justification: As shown [16] for all Erdds-Rényi graphs we have A = [1 4 o(1)] *
max(N # p, v/Aegreemar)

where ) is the highest eigenvalue, N is the number of nodes of a graph, p is the probability of
a node be connected and degree, . is the maximum degree of the graph.

Discussion: The theory presented above hold for any graph, including the ones at shattering
point. At shattering point, we have that NV x p=1 for Erd6s-Rényi graphs, given that the maximum
degree will be > 1, we see why the pattern holds for Erd8s-Rényi graphs.

Specifically for Erd6s-Rényi graphs (black triangles), we see that their eigenvalue Aq s is
roughly constant, independent of the number of nodes N; that the graph started with.

Pattern 7 The \1 s for Erdds-Rényi graphs seems to be constant: ~ 2.8

Power-Grid graph is below the line. This mean that it is well connected at the Shattering
point. Figure 5 shows the highest degree node of Power-Grid in the original graph ( Figure 5 (a))
and at Shattering point (Figure 5 (b)). We can see that the highest degree node still has some
triangles and many connection even at Shattering point. We can also verify this looking at the
NodeShatteringRatio pattern. As we can see, the Power Grid is very close to the line "a’. That is
the N is very close to V.

(a) (b)

Figure 5: Highest degree node of Power-Grid: (a) Original Graph and (b) At Shattering Point

6.5 TreeGCC pattern.

Figure 3 (e) shows that all graph s at the Shattering point have the same amount of edges E.. and
nodes Nggc. in the Giant Connected Component. As we can see, this pattern answered the second
part of Question ExQ 4.

16



Pattern 8 All giant connected component of all graphs at Shattering Point have Fggcc = Nygee.

Discussion: We know that above the Shattering point the graph is very connected and below it
the graph is completely disconnected. So, at Critical/Shattering point we expected that the graph
is barely connected. This means that a small amount of edges removed make the graph totally
disconnected. Looking to this pattern we can see that Giant Connected Component at Shattering
Point looks like a tree. Notice that some graphs are plotted slightly below the line (apparently,
being ’fatter’ than a tree), for example Power Grid. Also notice the subtle difference between this
pattern and the 30-per-cent: here we ignore the (several) nodes and edges that are outside the giant
connected component, while in the 30-per-cent pattern we include them.

6.6 TriangleRatio pattern.

Figure 3 (f) shows that, at the Shattering point, most of the graphs have very few triangles. In fact,
we don’t even plot the graphs with zero triangles, because of the logarithmic axis.

Pattern 9 Graphs at Shattering point have few or no triangles (Ag = 0).
Outliers: The Power Grid graph stands out.

Discussion: We expected that graphs at Shattering point are barely connected. We can see this
in TreeGCC pattern where the giant connected component seems to be a tree and in Root-degree
pattern where we see that the \; s is strongly related to the highest degree at Shattering point. We
also know that the number of triangles (A) a node participates in, increases with the degree of that
node [46]. However some graphs, like Power Grid, have a lot of triangles at Shattering point. Why
is the Power Grid exhibiting such a different behavior? We give some explanations next:

For Power Grid, we observe that it falls below the line in Figure 3 (d), which mean that it has
more edges than nodes in the giant component, that is, the graph is “fatter” than a tree. Another fact
is that it has the \; 4 is higher than the v/d; as shown in Figure 3 (d). This mean that the eigenvalue
is not correlated to the highest degree node, given that the highest degree node is better connected
than a star as shown in Figure 5 (b).

Another fact is that the relation between the initial number of triangles (A;) of Power Grid is
much higher than the other graphs. For example, initially, Power Grid has A; = 651 while Web
Google has A; = 13,356, 298; at the Shattering point, Power Grid has Ay = 209 while Web
Google has A; = 556.

7 Scalability

The ShatterPlots is a fast tool that just needs to read the edge file once at every iteration The number
of iterations depends on how quickly we can zoom to the shattering point F.
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Figure 6 shows the scalability of Proportional ShatterPlots and Eigenvalue ShatterPlots, plot-
ting the wall-clock time versus the dataset size. The input graphs are synthetic Erdds-Rényi graphs,
where we controlled the number of initial edges F = 14k, 40k, 50k, 200k, 300k, 500k, 600k and
the number of nodes was N=2k, 10K, 10k, 40K, 60k, 80k, 100k, respectively. The experiments
ran on a Quad Xeon (2.66 GHz), with 8Gb of RAM, under Linux (Ubuntu).
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Figure 6: Scalability of Proportional ShatterPlots black double dotted line on dark triangles and Eigenvalue
ShatterPlots pink dotted line on gray triangles.
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Figure 7: ShatterPlots of a Erd6s-Rényi graph with 500k edges using Eigenvalue ShatterPlots (blue trian-
gles) and Proportional ShatterPlots (red circles).

Black and gray triangles correspond to the Proportional ShatterPlots and Eigenvalue Shat-
terPlots methods, respectively. We used the same datasets for both algorithms. The fitting lines
(dotted-black, and solid red) show that both methods seem to scale up linearly with the graph size,
with Eigenvalue ShatterPlots being significantly faster (up to 8x).
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8 Conclusions

Our goal is to find patterns in real graphs, to help us spot masked and synthetic graphs. The main
idea is to use a “crash test” approach: we propose to shatter the graph, and observe its behavior.
We proposed ’ShatterPlots’, a new tool for studying graphs, and we showed how it can help us find
surprising patterns. Our contributions are

e The careful, scalable design of the tool. ShatterPlots needs less than O(FE) effort on each
iteration, and a small number of iterations, thanks to our adaptive method.

e The use of Eigenvalue pattern to optimize the ShatterPlots (up to 8 times).

e Our observations, and confirmation/demolition of conjectures:

— all criteria shatter at the same point, with diameter being the only one with a clear,
sharp edge.
— real graphs are way above Shattering point

e Discovery of new patterns:

— the Shattering point is at 1/\; & F,/E}, like one might expect from epidemic thresh-
old theory;
— Several additional patterns, like the 30-per-cent and the NodeShatteringRatio patterns.

e Our patterns can spot synthetic/masked graphs

Future work could focus on the analysis of graphs over time, as well as on parallelization of
the method, say, on a "hadoop’/map-reduce architecture.
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