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Abstract

Standard max-margin structured prediction methods concentrate directly on the input-
output mapping, and the lack of an elegant probabilistic interpretation causes limitations. In
this paper, we present a novel framework called Maximum Entropy Discrimination Markov
Networks (MaxEntNet) to do Bayesian max-margin structured learning by using expected
margin constraints to define a feasible distribution subspace and applying the maximum en-
tropy principle to choose the best distribution from this subspace. We show that MaxEntNet
subsumes the standard max-margin Markov networks (M3N) as a spacial case where the pre-
dictive model is assumed to be linear and the parameter prior is a standard normal. Based
on this understanding, we propose the Laplace max-margin Markov networks (LapM3N)
which use the Laplace prior instead of the standard normal. We show that the adoption of
a Laplace prior of the parameter makes LapM3N enjoy properties expected from a sparsified
M3N. Unlike the L1-regularized maximum likelihood estimation which sets small weights
to zeros to achieve sparsity, LapM3N posteriorly weights the parameters and features with
smaller weights are shrunk more. This posterior weighting effect makes LapM3N more stable
with respect to the magnitudes of the regularization coefficients and more generalizable. To
learn a LapM3N, we present an efficient iterative learning algorithm based on variational
approximation and existing convex optimization methods employed in M3N. The feasibility
and promise of LapM3N are demonstrated on both synthetic and real OCR data sets.





1 Introduction

In recent years, log-linear models based on composite features that explicitly exploit the
structural dependencies among elements in high-dimensional inputs (e.g., DNA strings, text
sequences, image lattices) and structured interpretational outputs (e.g., gene segmentation,
natural language parsing, scene description) have gained substantial popularity in learn-
ing structured predictions from complex data. Major instances of such models include the
conditional random fields (CRFs) [15], Markov networks (MNs) [26], and other specialized
graphical models [1]. Adding to the flexibilities and expressive power of such models, dif-
ferent learning paradigms have been explored, such as maximum likelihood estimation [15],
and max-margin learning [1, 26, 30].

While the probabilistic likelihood-based estimation defines a joint distribution of both
input and output variables [22] or a conditional distribution of the output given the input [15],
the standard max-margin structured prediction [26, 1, 30] takes the max-margin principle
underlying support vector machines and concentrates directly on the input-output mapping.
Although the max-margin principle could lead to a robust decision boundary, the lack of
an elegant probabilistic interpretation causes limitations in standard max-margin structured
learning. For example, it is not obvious how to consider missing data, such as in the learning
of hidden hierarchical models [21, 35]. Another shortcoming, which is our focus in this
paper, of the standard max-margin structured learning is that it is not easy to learn a
“sparse” model.

For domains with complex feature space, it is often desirable to pursue a “sparse” repre-
sentation of the model that leaves out irrelevant features. Learning such a sparse model is key
to reduce the rick of over-fitting and achieve good generalization ability. In likelihood-based
estimation, sparse model fitting has been extensively studied. A commonly used strategy
is to add an L1-penalty to the likelihood function, which can also be viewed as a MAP
estimation under a Laplace prior. As noted by [14], the sparsity is due to a hard threshold
introduced by the Laplace prior, and weights less than the threshold will be set to zeros.
Recent work along this line includes [18, 31, 2].

In spite of recent advancements in likelihood-based estimation, little progress has been
made so far on learning sparse MNs or log-linear models in general based on the max-margin
principle, which is arguably a more desirable paradigm for training highly discriminative
structured prediction models in a number of application contexts. While sparsity has been
pursued in maximum margin learning of certain discriminative models such as SVM that
are “unstructured” (i.e., with a univariate output), by using L1-regularization [4] or by
adding a cardinality constraint [6], generalization of these techniques to structured output
space turns out to be extremely non-trivial. For example, although it appears possible to
formulate sparse max-margin learning as a convex optimization problem as for SVM, both
the primal and dual problems are hard to solve since there is no obvious way to exploit
the conditional independence structures within a regularized Markov network to efficiently
deal with the typically exponential number of constraints resulted from the max-margin
condition. Another empirical insight as we will show in this paper is that the L1-regularized
estimation is not so robust. Discarding the features that are not completely irrelevant can
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potentially hurt generalization ability.
In this paper, we propose a novel framework called Maximum Entropy Discrimination

Markov Networks (MaxEntNet) to combine Bayesian learning and max-margin learning for
structured prediction. MaxEntNet is a generalization of the maximum entropy discrimina-
tion [12] methods originally developed for single-label classification to the broader problem
of structured learning. It facilitates posterior inference of a full distribution of feature coef-
ficients (i.e., weights), rather than a point-estimate as in the standard max-margin Markov
network (M3N) [26], under a user-specified prior distribution of the coefficients and gen-
eralized maximum margin constraints. One can use the learned posterior distribution of
coefficients to form a Bayesian max-margin Markov network that is equivalent to a weighted
sum of differentially parameterized M3Ns, or one can obtain a MAP M3N. While the formal-
ism of MaxEntNet is extremely general, we concentrate on a specialization that we denote the
Laplace max-margin Markov networks (LapM3N). We show that, by using a Laplace prior for
the feature coefficients, the resulting LapM3N is effectively a “sparse” max-margin Markov
network. But unlike the L1-regularized maximum likelihood estimation, where sparsity is
due to a hard threshold introduced by the Laplace prior [14], the effect of the Laplace prior
in the LapM3N is a biased posterior weighting of the parameters. Smaller parameters are
shrunk more and thus robust estimation is achieved when the data have irrelevant features.
The Bayesian formalism also makes the LapM3N less sensitive to regularization constants.
One of our interesting insights is that a trivial assumption on the prior distribution of the
coefficients, i.e., a standard (zero-mean and identity covariance) normal, reduces the linear
MaxEntNet to the standard M3N, as shown in Theorem 3 in this paper. This understanding
opens the way to use different priors in the Bayesian max-margin Markov networks. Our
proposed LapM3N is a special case by using the Laplace prior.

To efficiently learn a Laplace M3N, direct optimization can be very hard. Instead, we use
the hierarchical representation of the Laplace prior [9] and develop a variational Bayesian
method to efficiently learn the model. Based on existing convex optimization algorithms
developed for M3N [26, 3, 23], our learning algorithm is simple and easy to implement. It
iteratively solves a QP problem, which is the same as that of the standard max-margin
Markov networks, and updates a covariance matrix which is used in the QP problem. Note
that in single label learning, sparse Bayesian learning and Relevance Vector Machine (RVM)
[29] have been proposed to find a sparse solution for classification. But unlike SVM which
directly optimizes margins, RVM defines a likelihood function from margins. Instead, we
optimize a KL-divergence with a set of classification constraints that are explicitly defined
with margins. This clarity makes it possible to develop a simple learning algorithm based
on existing algorithms.

The rest of the paper is structured as follows. In the next section, we review the basic
structured prediction formalism and set the stage for our model. Section 3 presents the max-
imum entropy discrimination Markov networks and some basic theoretical results. Section
4 presents the Laplace M3N, and a novel iterative learning algorithm based on variational
approximation and convex optimization. In Section 5, we briefly discuss the generalization
bound of MaxEntNet. Then, we show empirical results on both synthetic and real OCR
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data in Section 6. Section 7 discusses some related work and Section 8 concludes this paper.

2 Preliminaries

In a structured prediction problem, such as natural language parsing, image understanding,
or DNA decoding, our objective is to learn a predictive function h : X 7→ Y from a structured
input x ∈ X (e.g., a sentence or an image) to a structured output y ∈ Y (e.g., a sentence
parsing or a scene annotation), where Y = Y1 × · · · × Yl with Yi = {y1, . . . , ymi

} represents
a combinatorial space of structured interpretations of multi-facet objects. For example,
Y could correspond to the space of all possible instantiations of the part-of-speech (POS)
tagging in the parse tree of a sentence, or the space of all possible ways of labeling entities
over some segmentation of an image. The prediction y ≡ (y1, . . . , yl) is structured because
each individual label yi ∈ Yi within y must be determined in the context of other labels
yj 6=i, rather than independently as in a standard classification problem, in order to arrive at
a globally satisfactory and consistent prediction.

Let F : X × Y 7→ R represent a discriminant function over the input-output pairs from
which one can define the predictive function h. A common choice of F is a linear model,
which is based on a set of feature functions fk : X × Y 7→ R and their weights wk, i.e.,
F (x,y;w) = g(w>f(x,y)), where f is a K-dim column vector of the feature functions and
w is the corresponding vector of the weights. Given F , the prediction function h is typically
defined in terms of an optimization problem that maximizes F over the response variable y
given input x:

h0(x;w) = arg max
y∈Y(x)

F (x,y;w), (1)

where Y(x) ∈ Y is the feasible subset of structured labels for the sample x. Here, we assume
that for any sample x, Y(x) is finite.

Depending on the specific choice of F ( · ;w) (e.g., linear, or log linear), and of the objec-
tive function C(w) for estimating the parameter w (e.g., likelihood, or margin), incarnations
of the general structured prediction formalism described above can be seen in models such
as the CRFs [15], where g(·) is an exponential family conditional distribution function and
C(w) is the conditional likelihood of the true structured label; and the M3N [26], where g(·)
is an identify function and C(w) is the margin between the true label and any other label.
Recent advances in structured prediction has introduced regularizations of C(w) in the CRF
context (i.e. likelihood-based estimation), so that a sparse w can be learned [2]. To the
best of our knowledge, existing max-margin structured prediction methods utilize a single
discriminant function F ( · ;w) defined by the “optimum” estimate of w, similar to a practice
in Frequentist statistics. Furthermore, the standard max-margin methods [26, 1, 30] concen-
trate directly on the input-output mapping and lacks an elegant probabilistic interpretation.
This will cause limitations as discussed in the introduction, e.g., it is not obvious to incorpo-
rate missing data as in the learning of hidden hierarchical models [21, 35] and it is not easy
to derive a “sparse” model. In this paper, we propose a Bayesian version of the predictive
rule in Eq. (1) so that the prediction function h can be obtained from a posterior mean
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over multiple (indeed infinitely many) F ( · ;w); and we also propose a new formalism and
objective C(w) that lead to a Bayesian M3N, which subsumes the standard M3N as a special
case, and can achieve a posterior shrinkage effect on w that resembles L1-regularization. To
our knowledge, although sparse graphical model learning based on various likelihood-based
principles has recently received substantial attention [18, 31], learning sparse networks based
on the maximum margin principle has not yet been successfully explored. Our proposed
method represents an initial foray in this important direction.

Before dwelling into exposition of the proposed approach, we end this section with a brief
recapitulation of the basic M3N that motivates this work, and provides a useful baseline that
grounds the proposed approach. Under a max-margin framework, given a set of fully ob-
served training data D = {〈xi,yi〉}Ni=1, we obtain a point estimate of the weight vector w by
solving the following max-margin problem P0 [26]:

P0 (M3N) : min
w,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. ∀i,∀y 6= yi : w>∆fi(y) ≥ ∆`i(y)− ξi, ξi ≥ 0 ,

where ∆fi(y) = f(xi,yi) − f(xi,y) and w>∆fi(y) is the “margin” between the true label
yi and a prediction y, ∆`i(y) is a loss function with respect to yi, and ξi represents a
slack variable that absorbs errors in the training data. Various loss functions have been
proposed in the literature [30]. In this paper, we adopt the hamming loss used in [26]:

∆`i(y) =
∑|xi|

j=1 I(yj 6= yi
j), where I(·) is an indicator function that equals to one if the

argument is true and zero otherwise. The optimization problem P0 is intractable because the
feasible space for w, F0 = {w : w>∆fi(y) ≥ ∆`i(y)−ξi; ∀i,∀y 6= yi}, is defined by O(N |Y|)
number of constraints, and Y itself is exponential to the size of the input x. Exploring sparse
dependencies among individual labels yi in y, as reflected in the specific design of the feature
functions (e.g., based on pair-wise labeling potentials in a pair-wise Markov network), and the
convex duality of the objective, efficient optimization algorithms based on cutting-plane [30]
or message-passing [26] have been proposed to obtain an approximate optimum solution to
P0. As described shortly, these algorithms can be directly employed as subroutines in solving
our proposed model.

3 Maximum Entropy Discrimination Markov Networks

In this paper, we take a Bayesian approach and learn a distribution p(w), rather than a
point estimate of w, in a max-margin manner. For prediction, we take the average over all
the possible models, that is:

h1(x) = arg max
y∈Y(x)

∫
p(w)F (x,y;w) dw . (2)

Now, the open question is how we can devise an appropriate objective function over p(w), in
a similar spirit as the L2-norm cost over w in P0, that leads to an optimum estimate of p(w).
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Below, we present a novel framework of maximum entropy discrimination Markov networks
(MaxEntNet) that facilitates the estimation of a Bayesian M3N defined by p(w). As we show
in the sequel, our Bayesian max-margin learning formalism offers several advantages like the
PAC-Bayes generalization guarantee and estimation robustness.

3.1 The Basic MED

The basic maximum entropy discrimination (MED) [12] framework is studied for single-label
learning, where the output consists of only one class label. For example, for the single-label
binary classification, the training data are D = {(xi, yi)}Ni=1 where xi is a feature vector and
yi ∈ {+1,−1}. In MED, the prediction rule is:

ŷ = sign

∫
p(w)F (x, y;w) dw ,

where the discriminant function can be a linear function w>x+b or the general log-likelihood
ratio of two generative models: log p(x|w+)

p(x|w−)
+ b. Here, b is a scalar bias term. To find the best

distribution p(w), MED solves the following optimization problem:

min
p(Θ),ξ

KL(p(Θ)||p0(Θ))

s.t.

∫
p(Θ)[yiF (x, y;w)− ξi] dΘ ≥ 0,∀i,

where Θ can be the model parameter w when ξ are kept fixed or the pair of model parameter
and slack variable (w, ξ) when we want to optimize over ξ.

3.2 MaxEntNet and the Bayesian M3N

Given a training set D of structured input-output pairs, analogous to the feasible space F0

for weight vector w in the standard M3N (i.e., problem P0), the feasible subspace F1 of
weight distribution p(w) is defined by a set of expected margin constraints:

F1 =
{
p(w) :

∫
p(w)[∆Fi(y;w)−∆`i(y)] dw ≥ −ξi, ∀i,∀y 6= yi

}
,

where ∆Fi(y;w) = F (xi,yi;w)− F (xi,y;w).
To choose the best distribution p(w) from F1, the maximum entropy principle suggests

that one can consider the distribution that minimizes its relative entropy with respect to some
chosen prior p0, as measured by the Kullback-Leibler divergence, KL(p||p0) = 〈log(p/p0)〉p,
where 〈·〉p denotes the expectations with respect to p. If p0 is uniform, then minimizing the
KL-divergence is equivalent to maximizing the entropy H(p) = −〈log p〉p. To accommodate
the discriminative prediction problem we concern, instead of minimizing the usual KL, we
optimize the generalized entropy [7, 17], or a regularized KL-divergence, KL(p(w)||p0(w))+
U(ξ), where U(ξ) is a closed proper convex function over the slack variables and it is also
known as an additional “potential” term in the maximum entropy principle. This leads to
the following Maximum Entropy Discrimination Markov Networks:
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Definition 1 (Maximum Entropy Discrimination Markov Networks)
Given training data D = {〈xi,yi〉}Ni=1, a discriminant function F (x,y;w), a loss function
∆`x(y), and an ensuing feasible subspace F1 (defined above) for parameter distribution p(w),
the MaxEntNet model that leads to a prediction function of the form of Eq. (2) is defined
by the following generalized relative entropy minimization with respect to a parameter prior
p0(w):

P1 : min
p(w),ξ

KL(p(w)||p0(w)) + U(ξ)

s.t. p(w) ∈ F1, ξi ≥ 0,∀i.

The P1 defined above is a variational optimization problem over p(w) in a subspace of
valid parameter distributions. Since both the KL and the function U in P1 are convex, and
the constraints in F1 are linear, P1 is a convex program, which can be solved via applying
the calculus of variations to the Lagrangian to obtain a variational extremum, followed by a
dual transformation of P1. We state the main results as a theorem.

Theorem 2 (Solution to MaxEntNet) The variational optimization problem P1 under-
lying the MaxEntNet gives rise to the following optimum distribution of Markov network
parameters w:

p(w) =
1

Z(α)
p0(w) exp

{ ∑
i,y

αi(y)[∆Fi(y;w)−∆`i(y)]
}
, (3)

where Z(α) is a normalization factor and the Lagrangian multipliers αi(y) (corresponding
to constraints in F1) can be obtained by solving the dual problem of P1:

D1 : max
α
− log Z(α)− U?(α)

s.t. αi(y) ≥ 0, ∀i, ∀y,

where U?(·) represents the conjugate of the slack function U(·), i.e., U?(α) = supξ

( ∑
i,y αi(y)ξi−

U(ξ)
)
.

Proof: Since both the KL-divergence and U are convex and the constraints are linear, the
problem P1 is a convex program. To compute the convex dual, we introduce a non-negative
dual variable αi(y) for each constraint in F1 and a non-negative variable c for the normal-
ization constraint

∫
p(w) dw = 1. Then, we form the Lagrangian as,

L(p(w), ξ, α, c)= KL(p(w)||p0(w)) + U(ξ)

−
∑
i,y

αi(y)
( ∫

p(w)[∆Fi(y;w)−∆`i(y)] dw + ξi

)
+ c(

∫
p(w) dw − 1).

The Lagrangian dual function is defined as L?(α, c) , infp(w);ξ L(p(w), ξ, α, c). Take the
derivative of L w.r.t p(w), then we get,
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∂L

∂p(w)
= 1 + c + log

p(w)

p0(w)
−

∑
i,y

αi(y)[∆Fi(y;w)−∆`i(y)].

Set the derivative to zero and we get the distribution p(w),

p(w) =
1

Z(α)
p0(w) exp

{ ∑
i,y

αi(y)[∆Fi(y;w)−∆`i(y)]
}
,

where Z(α) ,
∫

p0(w) exp
{ ∑

i,y αi(y)[∆Fi(y;w)−∆`i(y)]
}

dw is a normalization constant
and c = −1− log Z(α).

Substitute p(w) into L?, and we get,

L?(α, c)= inf
p(w);ξ

(
− log Z(α) + U(ξ)−

∑
i,y

αi(y)ξi

)
= − log Z(α) + inf

ξ

(
U(ξ)−

∑
i,y

αi(y)ξi

)
= − log Z(α)− sup

ξ

( ∑
i,y

αi(y)ξi − U(ξ)
)
.

Let α′ = (α1, . . . , αN)> and αi =
∑

y αi(y). Then, the second term on the right hand

side of the above last equation is supξ((α
′)>ξ−U(ξ)). This is the definition of the conjugate

of U(ξ). Let U? be the conjugate of U , and we get,

L?(α, c) = − log Z(α)− U?(α′).

Without causing ambiguity, we use α instead of α′. Now, we get the dual problem D1.

For a closed proper convex function φ(µ), its conjugate is defined as φ?(ν) = supµ[ν>µ−
φ(µ)]. In problem D1, by convex duality [5], the log normalizer log Z(α) can be shown to
be the conjugate of the KL-divergence. If the slack function is U(ξ) = C‖ξ‖ = C

∑
i ξi, it is

easy to show that U?(α) = I∞(
∑

y αi(y) ≤ C, ∀i), where I∞(·) is a function that equals to
zero when its argument holds true and infinity otherwise. Here, the inequality corresponds
to the trivial solution ξ = 0, that is, the training data are perfectly separative. Ignoring this
inequality does not affect the solution since the special case ξ = 0 is still included. Thus, the
Lagrangian multipliers αi(y) in the dual problem D1 comply with the set of constraints that∑

y αi(y) = C, ∀i. Another example is U(ξ) = KL(p(ξ)||p0(ξ)) by introducing uncertainty
on the slack variables [12]. In this case, expectations with respect to p(ξ) are taken on both
sides of all the constraints in F1. Take the duality, and the dual function of U is another
log normalizer. More details can be found in [12]. Some other U functions and their dual
functions are studied in [17, 7].

The MaxEntNet model gives an optimum parameter distribution, which is used to make
prediction via the rule (2). An alternative way to understand our proposed model is suggested
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by the striking isomorphisms of the opt-problem P1, the feasible space F1, and the predictive
function h1 underlying a MaxEntNet, to their counterparts P0, F0, and h0, respectively,
underlying an M3N. Indeed, by making a special choice of the parameter prior in Eq. (3),
based on the above discussion of conjugate functions in D1, we arrive at a reduction of D1 to
an M3N optimization problem. Thus, we also call the MaxEntNet a Bayesian M3N (BM3N).
The following theorem makes this explicit.

Theorem 3 (Reduction of MaxEntNet to M3N) Assuming F (x,y;w) = w>f(x,y),
U(ξ) =

∑
i ξi, and p0(w) = N (w|0, I), where I denotes an identity matrix, then the La-

grangian multipliers αi(y) are obtained by solving the following dual problem:

max
α

∑
i,y

αi(y)∆`i(y)− 1
2
‖

∑
i,y

αi(y)∆fi(y)‖2

s.t.
∑
y

αi(y) = C; αi(y) ≥ 0, ∀i, ∀y,

which, when applied to h1, lead to a predictive function that is identical to h0(x;w) given by
Eq. (1).

Proof: Replacing p0(w) and ∆Fi(y;w) in Eq. (3) with N (w|0, I) and w>∆fi(y) respec-
tively, we can obtain the following closed-form expression of the Z(α) in p(w):

Z(α),
∫
N (w|0, I) exp

{∑
i,y

αi(y)[w>∆fi(y)−∆`i(y)]
}

dw

=
∫

(2π)−
K
2 exp

{
− 1

2
w>w +

∑
i,y

αi(y)[w>∆fi(y)−∆`i(y)]
}

dw

= exp
(
−

∑
i,y

αi(y)∆`i(y) +
1
2
‖

∑
i,y

αi(y)∆fi(y)‖2
)
.

As we have stated, the constraints
∑

y αi(y) = C are due to the conjugate of U(ξ) =
∑

i ξi.
For prediction, again replacing p0(w) and ∆Fi(y;w) in Eq. (3) with N (w|0, I) and

w>∆fi(y) respectively, we can get p(w) = N (w|µw, I), where µw =
∑

i,y αi(y)∆fi(y). Sub-

stituting p(w) into the predictive function h1, we can get h1(x) = arg maxy∈Y(x) µ>wf(x,y) =
(
∑

i,y αi(y)∆fi(y))>f(x,y), which is identical to the prediction rule of the standard M3N
[26].

Theorem 3 shows that in the supervised learning setting, the M3Ns are subsumed by
the MaxEntNet model, and can be viewed as a special case of a Bayesian M3N when the
slack function is linear and the parameter prior is a standard normal. As we shall see later,
this connection renders many existing techniques for solving the M3N directly applicable for
solving the MaxEntNet or BM3N.

Recent trend in pursuing “sparse” graphical models has led to the emergence of regular-
ized version of CRFs [2] and Markov networks [18, 31]. Interestingly, while such extensions
have been successfully implemented by several authors in maximum likelihood learning of
various sparse graphical models, they have not yet been explored in the context of maximum
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margin learning. Such a gap is not merely due to a negligence. Indeed, learning a sparse
M3N can be significantly harder as we discuss below.

As Theorem 3 reveals, an M3N corresponds to a BM3N with a standard normal prior for
the weight vector w. To encourage a sparse model, when using zero-mean normal prior, the
weights of irrelevant features should peak around zero with very small variances. However,
the isotropy of the variances in all dimensions in the standard normal prior makes M3N
infeasible to adjust the variances in different dimensions to fit sparse data. One way to learn
a sparse model is to adopt the strategy of L1-SVM [4, 34] to use L1-norm instead of L2-norm
(see appendix B for a detailed description of this formulation and the duality derivation).
However, in both the primal and dual of an L1-regularized M3N, there is no obvious way to
exploit the sparse dependencies among variables of the Markov network in order to efficiently
deal with typically exponential number of constraints, which makes direct optimization or
LP-formulation expensive. In this paper, we adopt the MaxEntNet framework that directly
leads to a Bayesian M3N, and employ a Laplace prior for w to learn a Laplace M3N. When
fitted to training data, the parameter posterior p(w) under a Laplace M3N has a shrinkage
effect on small weights, which is similar to the L1-regularizer in an M3N. Although exact
learning of a Laplace M3N is still very hard, we show that it can be efficiently approximated
by a variational inference procedure based on existing methods.

4 Laplace M3N

The Laplace prior of w is p0(w) =
∏K

k=1

√
λ

2
e−

√
λ|wk| =

(√
λ

2

)K
e−

√
λ‖w‖. The Laplace density

is heavy tailed and peaked at zero. Thus, it encodes the prior belief that the distribution
of w is strongly peaked around zero. Another nice property is that the Laplace density is
log-convex, which can be exploited to get convex estimation problems like LASSO [28].

4.1 Variational Learning with Laplace Prior

Although in principle we have a closed-form solution of p(w) in Theorem 2, the parameters
αi(y) are hard to estimate when using the Laplace prior. As we shall see in Section 4.2,
exact integration will lead to a dual function that is difficult to maximize. Thus, we present
a variational approximate learning approach.

Our approach is based on the hierarchical interpretation [9] of the Laplace prior, that is,
each wk has a zero-mean Gaussian distribution p(wk|τk) = N (wk|0, τk) and the variance τk

has an exponential hyper-prior density,

p(τk|λ) =
λ

2
exp

{
− λ

2
τk

}
, for τk ≥ 0.

Then, we have p0(w) =
∏K

k=1 p0(wk) =
∏K

k=1

∫
p(wk|τk)p(τk|λ) dτk =

∫
p(w|τ)p(τ |λ) dτ ,

where p(w|τ) =
∏K

k=1 p(wk|τk) and p(τ |λ) =
∏K

k=1 p(τk|λ) are joint distributions and dτ ,
dτ1 · · · dτK . Using the hierarchical representation of the Laplace prior and applying the
Jensen’s inequality, we get an upper bound of the KL-divergence,
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Algorithm 1 Variational Bayesian Learning

Input: data D = {〈xi,yi〉}Ni=1, constants C and λ, iteration number T
Output: posterior mean 〈w〉Tp
Initialize 〈w〉1p ← 0, Σ1

w ← I
for t = 1 to T − 1 do

Step 1: solve (5) or (6) for 〈w〉t+1
p = Σt

wη; update 〈ww>〉t+1
p ← Σt

w + 〈w〉t+1
p (〈w〉t+1

p )>.

Step 2: use (7) to update Σt+1
w ← diag(

√
〈w2

k〉
t+1
p

λ
).

end for

KL(p||p0) = −H(p)− 〈log
∫

p(w|τ)p(τ |λ) dτ 〉p

≤ −H(p)− 〈
∫

q(τ) log
p(w|τ)p(τ |λ)

q(τ)
dτ 〉p

, L(p(w), q(τ)),

where q(τ) is a variational distribution which is used to approximate p(τ |λ).
Substituting this upper bound for the KL in P1, we now solve the following problem,

min
p(w)∈F1;q(τ);ξ

L(p(w), q(τ)) + U(ξ). (4)

This problem can be solved with an iterative minimization algorithm alternating between
p(w) and q(τ), as outlined in Algorithm 1, and detailed below.

Step 1: Keep q(τ) fixed, we optimize (4) with respect to p(w). Taking the same proce-
dure as in solving P1, we get the posterior distribution p(w) as follows,

p(w)∝ exp{
∫

q(τ) log p(w|τ) dτ − b} · exp{w>η − L}

∝ exp{−1

2
w>〈A−1〉qw − b + w>η − L}

= N (w|µw, Σw),

where η =
∑

i,y αi(y)∆fi(y), L =
∑

i,y αi(y)∆`i(y), A = diag(τk), and b = KL(q(τ)||p(τ |λ))

is a constant. The posterior mean and variance are 〈w〉p = µw = Σwη and Σw = (〈A−1〉q)−1 =
〈ww>〉p − 〈w〉p〈w〉>p , respectively. The dual parameters α are estimated by solving the fol-
lowing dual problem:

max
α

∑
i,y

αi(y)∆`i(y)− 1

2
η>Σwη (5)

s.t.
∑
y

αi(y) = C; αi(y) ≥ 0, ∀i, ∀y.

10



This dual problem can be directly solved using existing algorithms developed for M3N,
such as [26, 3]. Alternatively, we can solve the following primal problem:

min
w,ξ

1

2
w>Σ−1

w w + C

N∑
i=1

ξi (6)

s.t. w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0, ∀i, ∀y 6= yi.

It is easy to show that the solution of problem (6) leads to the posterior mean of w under
p(w). Since p(w) is a normal distribution, the posterior mean is the only parameter that is
needed to do prediction by h1. The primal problem can be solved with subgradient [23] or
extragradient [27] methods.

Step 2: Keep p(w) fixed, we optimize (4) with respect to q(τ). Take the derivative of L
with respect to q(τ) and set it to zero, then we get.

q(τ) ∝ p(τ |λ) exp
{
〈log p(w|τ)〉p

}
.

By exploring the factorization forms of p(w|τ) and p(τ |λ), we can get an induced factoriza-
tion q(τ) =

∏K
k=1 q(τk) and each q(τk) is computed as follows:

∀k : q(τk) ∝ p(τk|λ) exp
{
〈log p(wk|τk)〉p

}
∝ N (

√
〈w2

k〉p|0, τk) exp(−1

2
λτk).

The same distribution has been derived in [14], and similarly we can get the normalization

factor:
∫
N (

√
〈w2

k〉p|0, τk) · λ2 exp(−1
2
λτk) dτk =

√
λ

2
exp(−

√
λ〈w2

k〉p). Also, as in [14], we can

calculate the expectations 〈τ−1
k 〉q which are required in calculating 〈A−1〉q as follows,

〈 1
τk
〉q =

∫
1
τk

q(τk) dτk =

√
λ

〈w2
k〉p

. (7)

We iterate between the above two steps until convergence. Then, we use the posterior
distribution p(w), which is a normal distribution, to make prediction. For irrelevant features,
the variances should converge to zeros and thus lead to a sparse estimation. The intuition
behind this iterative minimization algorithm is as follows. First, we use a Gaussian distribu-
tion to approximate the Laplace distribution and thus get a QP problem that is analogous
to that of the standard M3N; then, the second step updates the covariance matrix in the QP
problem with an exponential hyper-prior on the variance.

4.2 Insights

To see how the Laplace prior affects the posterior distribution, we examine the posterior
mean via an exact integration as follows.

Substitute the hierarchical representation of the Laplace prior into p(w) in Theorem 2,
and we get the normalization factor Z(α) as follows,
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Figure 1: Posterior mean with different priors against the estimation of M3N (i.e. with the
standard normal prior).

Z(α) =

∫ ∫
p(w|τ)p(τ |λ) dτ · exp{w>η − L} dw

=

∫
p(τ |λ)

∫
p(w|τ) · exp{w>η − L} dw dτ

=

∫
p(τ |λ)

∫
N (w|0, A) exp{w>η − L} dw dτ

=

∫
p(τ |λ) exp{1

2
η>Aη − L}dτ

= exp{−L}
K∏

k=1

∫
λ

2
exp(−λ

2
τk) exp(

1

2
η2

kτk)dτk

= exp{−L}
K∏

k=1

λ

λ− η2
k

, (8)

where ηk =
∑

i,y αi(y)(fk(x
i,yi) − fk(x

i,y)) and the last equality is due to the moment

generating function of an exponential distribution. An additional constraint is η2
k < λ, ∀k.

Otherwise, the integration is infinity. Using the integration result, we can get:

∂log Z

∂αi(y)
= µ>∆fi(y)−∆`i(y), (9)

where µ is a column vector and µk = 2ηk

λ−η2
k
, ∀1 ≤ k ≤ K. An alternative way to compute

the derivatives is using the definition of Z : Z =
∫

p0(w) · exp{w>η − L} dw . We can get:

∂log Z

∂αi(y)
= 〈w〉>p ∆fi(y)−∆`i(y). (10)

Comparing Eqs. (9) and (10), we get 〈w〉p = µ, that is, 〈wk〉p = 2ηk

λ−η2
k
, ∀1 ≤ k ≤ K.

Similar calculation can lead to the result that in the standard M3N (i.e. with the standard
normal prior) the posterior mean is 〈w〉p = η. As shown in [26], η is the optimal point
estimate of M3N. Figure 1 shows the posterior means (for any dimension) when the priors
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are standard normal, Laplace with λ = 4, and Laplace with λ = 6 against the optimal
point estimate of the standard M3N. We can see that with a Laplace prior, the parameters
are shrunk around zero. The larger the λ value is, the greater the shrinkage effect. For
a fixed λ, the shape of the posterior mean is smoothly nonlinear but no component is
explicitly discarded, that is, no weight is set to zero. This is different from the shape of a
L1-regularized maximum likelihood estimation [14] where an interval exists around the origin
and parameters falling into this interval are set to zeros.

Note that if we use the exact integration as in Eq. (8), the dual problem D1 will maximize
L−

∑K
k=1 log λ

λ−η2
k
. Since η2

k appears within a logarithm, the optimization problem would be

very hard to solve. Thus, we turn to a variational approximation method.

5 Generalization Bound

The PAC-Bayes bound [16] provides a theoretical motivation to learn an averaging model
as in P1 which minimizes the KL-divergence and simultaneously satisfies the discrimina-
tive classification constraints. To apply it in our structured learning setting, we assume
that all the discriminant functions are bounded, that is, there exists a positive constant
c: F ( · ;w) ∈ H : X × Y → [−c, c], ∀w. Recall that our averaging model is defined as
h(x,y) = 〈F (x,y;w)〉p(w). We define the margin of an example (x,y) for such a function h
as M(h,x,y) = h(x,y) −maxy′ 6=y h(x,y′). Clearly, the model h makes a wrong prediction
on (x,y) only if M(h,x,y) ≤ 0. Let Q be a distribution over X × Y , and let D be a sam-
ple of N examples randomly drawn from Q. With these definitions, we have the following
PAC-Bayes theorem.

Theorem 4 (PAC-Bayes Bound of MaxEntNet) Let p0 be any continuous probability
distribution over H and let δ ∈ (0, 1). If ∀w, F ( · ;w) ∈ H : X × Y → [−c, c], then with
probability at least 1 − δ over random samples D of Q, for very distribution p over H and
for all margin thresholds γ > 0:

PrQ(M(h,x,y) ≤ 0) ≤ PrD(M(h,x,y) ≤ γ) + O
(√

γ−2KL(p||p0) ln(N |Y|) + lnN + ln δ−1

N

)
.

Here, PrQ(.) stands for 〈.〉Q and PrD(.) stands for the empirical average on D. The proof
follows the same structure as the proof of the original PAC-Bayes bound, with consideration
of the margins. See appendix A for the details.

6 Experiments

In this section, we present some empirical results of the proposed Laplace max-margin
Markov networks on both synthetic and real data sets. We compare LapM3N with M3N,
CRFs, L1-regularized CRFs (L1-CRFs), and L2-regularized CRFs (L2-CRFs). We use the
quasi-Newton method and its variant [2] to solve the optimization problem of CRFs, L1-
CRFs, and L2-CRFs. For M3N and LapM3N, we can use the exponentiated gradient method
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Figure 2: Evaluation results on data sets with i.i.d features.

[3] or structured minimal optimization [26] to solve the dual QP problem or solve a primary
problem by using sub-gradient methods [23].

6.1 Synthetic Data Sets

We present some empirical results on synthetic data sets with ideally i.i.d features and data
sets with more real correlated features.

6.1.1 I.I.D Features

The first experiment is conducted on synthetic sequence data with 100 i.i.d features. We
generate three types of data sets with 10, 30, and 50 relevant features respectively. For
each setting, we randomly generate 10 linear-chain CRFs with 8 binary labeling states. The
feature functions include: a real valued state-feature function over a one dimensional input
feature and a class label; and 4 (2×2) binary transition-feature functions capturing pairwise
label dependencies. For each model we generate a data set of 1000 samples. For each sample,
we first independently draw the 100 features from a standard normal distribution, and then
apply a Gibbs sampler to assign a label sequence with 5000 iterations.

For each data set, we randomly draw a part as training data and use the rest for testing.
The numbers of training data are 30, 50, 80, 100, and 150. The QP problem is solved with
the exponentiated gradient method [3]. In all the following experiments, the regularization
constant of L1-CRFs and L2-CRFs is chosen from {0.01, 0.1, 1, 4, 9, 16} by a 5-fold cross-
validation during the training. For the LapM3N, we use the same method to choose λ from
20 roughly evenly spaced values between 1 and 268. For each setting, the average over 10
data sets is the final performance.

The results are shown in Figure 2. All the results of the LapM3N are achieved with 3
iterations of the variational Bayesian learning. Under different settings LapM3N consistently
outperforms M3N and performs comparably with the sparse L1-CRFs. But note that the
synthetic data come from simulated CRFs. Both the L1-CRFs and L2-CRFs outperform the
un-regularized CRFs. One interesting result is that the M3N and L2-CRFs perform com-
parably. This is reasonable because as derived by [17] and noted by [11] the L2-regularized
maximum likelihood estimation of CRFs has a similar convex dual as that of the M3N.
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Figure 3: Results on data sets with 30 relevant features.

The only difference is the loss they try to optimize. CRFs optimize the log-loss while M3N
optimizes the hinge-loss. As the number of training data increases, all the algorithms con-
sistently get higher performance. The advantage of the LapM3N is more obvious when there
are fewer relevant features.

6.1.2 Correlated Features

In reality, most data sets contain redundancy and the features are usually correlated. So,
we evaluate our models on synthetic data sets with correlated features. We take the similar
procedure as in generating the data sets with i.i.d features to first generate 10 linear-chain
CRF model. Then, we use each CRF model to generate one data set of which each sample
has 30 relevant features. The 30 relevant features are partitioned into 10 groups. For the
features in each group, we first draw a real-value from a standard normal distribution and
then ‘spoil’ the feature with a random Gaussian noise to get 3 correlated features. The
noise Gaussian has a zero mean and standard variance 0.05. Here and in all the remaining
experiments, we use the sub-gradient method [23] to solve the QP problem in both M3N
and LapM3N. We use the learning rate and complexity constant that are suggested by the
authors, that is, αt = 1

2β
√

t
and C = 200β, where β is a parameter we introduced to adjust

αt and C. We do K-fold CV on each data set and take the average over the 10 data sets as
the final results. Like [26], in each run we choose one part to do training and test on the rest
K-1 parts. We vary K from 20, 10, 7, 5, to 4. In other words, we use 50, 100, about 150,
200, and 250 samples during the training. We use the same grid search to choose λ and β
from {9, 16, 25, 36, 49, 64} and {1, 10, 20, 30, 40, 50, 60} respectively. Results are shown in
Figure 3. We can get the same conclusions as in the previous results.

Figure 4 shows the average variances of the 100 features, the weights of 200 state feature
functions in the model that generates the data, and the average weights of the learned models
on the first data set. All the averages are taken over 10 fold cross-validation. We can see
that the LapM3N can automatically group the first 30 features into 10 groups and in each
group the three features have correlated variances. There is no obvious correlation among
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Figure 4: From top to bottom, plot 1 shows the average variances of the features on the first
data set in LapM3N; plot 2 shows the weights of the state feature functions in the linear-chain
CRF model from which the data are generated; plot 3 to plot 7 show the average weights of
the learned LapM3N, M3N, CRFs, L2-CRFs, and L1-CRFs over 10 fold CV respectively.
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Figure 5: Evaluation results on OCR data set with different numbers of selected data.

other features. For LapM3N and L1-CRFs, the average weights (posterior means) of the last
140 state feature functions (corresponding to the last 70 irrelevant features) are extremely
small. In contrast, CRFs and L2-CRFs have more larger values of the last 140 state feature
functions. For the first 30 relevant features, the LapM3N has a similar plot as the sparse
L1-CRFs with some weights extremely small. Again, CRFs and L2-CRFs have more feature
functions with large average weights. These plots suggest that our LapM3N can recover
the sparse data well. Note that all the models have quite different average weights from the
model that generates the data. This is because we use a Gibbs sampler to assign labels to the
generated data instead of using the labels that are predicted by the model that generate the
data. In fact, if we use the model that generates the data to do prediction on its generated
data, the error rate is about 0.5. Thus, the learned models, which get lower error rates, are
different from the model that generates the data.

6.2 Real-World OCR Data Set

The OCR data set is partitioned into 10 subsets for 10-fold CV as in [26, 23]. We randomly
select N samples from each fold and put them together to do 10-fold CV. We vary N from
100, 150, 200, to 250, and denote the selected data sets by OCR100, OCR150, OCR200,
and OCR250 respectively. When β = 4 on OCR100 and OCR150, β = 2 on OCR200 and
OCR250, and λ = 36, results are shown in Figure 5.

We can see that as the number of training data increases all the algorithms get lower
error rates and smaller variances. Generally, the LapM3N consistently outperforms all the
other models. M3N outperforms the standard, non-regularized, CRFs and the L1-CRFs.
Again, L2-CRFs perform comparably with M3N. This is a bit surprising but still reasonable
due to the understanding of their only difference on loss functions [11] as we have stated. By
examining the prediction accuracy during the learning, we can see an obvious over-fitting in
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Figure 6: The prediction error rate during the learning at sample points. For the left plot,
the sampling points are the relative change ratios of the log-likelihood and from left to right,
the change ratios are 1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.04, 0.03, 0.02, 0.01, 0.005, 0.004, 0.003,
0.002, 0.001, 0.0005, 0.0004, 0.0003, 0.0002, 0.0001, and 0.00005; for the right plot, the
sampling points are the negative log-likelihoods, and from left to right they are 1000, 800,
700, 600, 500, 300, 100, 50, 30, 10, 5, 3, 1, 0.5, 0.3, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, and
0.002.

CRFs and L1-CRFs as shown in Figure 6. In contrast, L2-CRFs are very robust. This is
because unlike the synthetic data sets, features in real-world data are usually not completely
irrelevant. In this case, putting small weights to zero as in L1-CRFs will hurt generalization
ability and also lead to instability to regularization constants as shown later. Instead, L2-
CRFs do not put small weights to zero but shrink them towards zero as in the LapM3N. The
non-regularized maximum likelihood estimation can easily lead to over-fitting too.

6.3 Sensitivity to Regularization Constants

Figure 7 shows the error rates of different models on the data set OCR100. From the results,
we can see that the L1-CRFs are much sensitive to the regularization constants. However,
L2-CRFs, M3N, and LapM3N are much less sensitive. Among all the models, LapM3N is
the most stable one. The stability of LapM3N is due to the posterior weighting instead of
hard-thresholding to set small weights to zero as in the L1-CRFs.

7 Related Work

Our work is directly motivated by the Maximum Entropy Discrimination [12] which is a
combination of max-margin methods and Bayesian learning in the single label setting. We
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Figure 7: Error rates of different models on OCR100 with different regularization constants.
From left to right, the regularization constants are 0.0001, 0.001, 0.01, 0.1, 1, 4, 9, 16, and
25 for L1-CRFs and L2-CRFs, and for M3N and LapM3N they are 1, 4, 9, 16, 25, 36, 49, 64,
and 81.

present a structured version and under this framework we propose the Bayesian max-margin
Markov networks. We show that the standard M3N is a special case of the Bayesian M3N
and we also propose the Laplace M3N for sparse learning in high dimensional space.

Sparse Bayesian learning is a framework that has been proposed to find sparse and robust
solution to regression and classification. Relevance vector machine (RVM) [29] is studied
along that line with kernels. RVM is proposed based on SVM. But unlike SVM which
directly optimizes on the margins, RVM defines a likelihood function from the margins with
a Gaussian distribution for regression and a logistic sigmoid link function for classification
and then does type-II maximum likelihood estimation, that is, RVM maximizes the marginal
likelihood. Although called sparse Bayesian learning [10, 8], as shown in [14] the sparsity is
actually due to the MAP estimation. The similar ambiguity of RVM is justified in [32]. We
take the full Bayesian approach and optimize a generalized maximum entropy with a set of
the expected margin constraints. This clarity makes it possible to develop a simple learning
algorithm based on existing inference algorithms developed for M3N. Similarly, by defining
likelihood functions with margins, Bayesian interpretations of both binary and multi-class
SVM are presented in [25, 33].

Based on the hierarchical interpretation of the Laplace prior, a Jeffrey’s non-informative
second-level hyper-prior is proposed in [10] with an EM algorithm developed to find the MAP
estimate. The advantage of the Jeffrey’s prior is that it is parameter-free. But as shown in
[8, 14], usually no advantage is achieved by using the Jeffrey’s hyper-prior compared to the
Laplace prior. In [29], a gamma hyper-prior is used in place of the second-level exponential
as in the hierarchical interpretation of the Laplace prior.

To encourage sparsity in SVM, two strategies have been used. The first is replacing L2-
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norm by L1-norm of the weights [4, 34]. The second strategy is to explicitly add a cardinality
constraint on the weights. This will lead to a hard non-convex optimization problem. Thus,
relaxations [6] must be applied. For Maximum Entropy Discrimination, feature selection is
studied in [13] by introducing a set of structural variables. It is straightforward to gener-
alize it to the structured learning case but the resultant learning problem is complex and
approximation must be done.

Finally, the distribution p(w) in Theorem 2 has a similar form as that in Bayesian
Conditional Random Fields (BCRFs) [20]. The difference is that the normalization factor
here is dependent on a set of dual variables, which are estimated in a max-margin manner.
In testing, our decision rule can be explicitly expressed as a dot product, and we do not need
to take the approximate integration as in BCRFs.

8 Conclusions and Future Work

We proposed a novel framework of Maximum Entropy Discrimination Markov Networks
(MaxEntNet) for Bayesian max-margin learning in structured prediction. This framework
gives rise to a general class of Bayesian M3Ns and subsumes the standard M3N as a spacial
case where the predictive model is assumed to be linear and the parameter prior is a standard
normal. We show that the adoption of a Laplace prior of the parameter in Bayesian M3N
leads to a Laplace M3N that enjoys properties expected from a sparsified Bayesian M3N.
Unlike the L1-regularized maximum likelihood estimation which sets small weights to zeros
to achieve sparsity, LapM3N weights the parameters a posteriori. Features with smaller
weights are shrunk more. This posterior weighting effect makes LapM3N more stable with
respect to the magnitudes of the regularization coefficients and more generalizable. We
demonstrated that on synthetic data LapM3N can recover the sparse model as well as the
sparse L1-regularized MAP estimation, and on real data sets LapM3N can achieve better
performance.

The novel framework of MaxEntNet or Bayesian max-margin Markov networks is ex-
tremely general. As for future work, we plan to extend the framework to the learning
with missing data, such as semi-supervised learning and learning latent hierarchical models
[21, 35]. It is also interesting to study the structure learning under this general framework
since it is very natural to encode the field knowledge of model structures as a prior distribu-
tion and then apply our framework based on the max-margin principle. We also plan to apply
the Laplace M3N to more structured prediction tasks. It would be desirable to apply it to
some tasks in which approximate inference must be performed. Since MaxEntNet subsumes
M3N as a special case, exploring the kernel methods within the framework of MaxEntNet as
in M3N is also an interesting topic.
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Appendix A. Proof of Theorem 4

We follow the same structure as the proof of PAC-Bayes bound for binary classifier [16] and
employ the similar technique to generalize to multi-class problems as in [24]. Recall that the
output space is Y , and the base discriminant function is F ( · ;w) ∈ H : X × Y → [−c, c],
where c > 0 is a constant. Our averaging model is specified by h(x,y) = 〈F (x,y;w)〉p(w).
We also define the margin of an example (x,y) for such a function h as,

M(h,x,y) = h(x,y)−max
y′ 6=y

h(x,y′). (11)

Thus, the model h makes a wrong prediction on (x,y) only if M(h,x,y) ≤ 0. Let Q be a
distribution over X ×Y , and let D be a sample of N examples independently and randomly
drawn from Q. With these definitions, we have the PAC-Bayes Theorem 4. For easy reading,
we copy the theorem in the following:

Theorem 4: (PAC-Bayes Bound of MaxEntNet) Let p0 be any continuous proba-
bility distribution over H and let δ ∈ (0, 1). If ∀w, F ( · ;w) ∈ H : X × Y → [−c, c], then
with probability at least 1 − δ over random samples D of Q, for very distribution p over H
and for all margin thresholds γ > 0:

PrQ(M(h,x,y) ≤ 0) ≤ PrD(M(h,x,y) ≤ γ) + O
(√

γ−2KL(p||p0) ln(N |Y|) + lnN + ln δ−1

N

)
.

Here, PrQ(.) stands for 〈.〉Q and PrD(.) stands for the empirical average on D.

Proof: Let m be any natural number. For every distribution p, we independently draw m
base models (i.e., discriminant functions) Fi ∼ p at random. We also independently draw
m variables µi ∼ U([−c, c]), where U denote the uniform distribution. We define the binary
functions gi : X × Y → {−c, +c} by:

gi(x,y;Fi, µi) = 2cI(µi < Fi(x,y))− c.

With the Fi, µi, and gi, we define Hm as,

Hm =
{
f : (x,y) 7→ 1

m

m∑
i=1

gi(x,y;Fi, µi)|Fi ∈ H, µi ∈ [−c, c]
}
.

We denote the distribution of f over the set Hm by pm. For a fixed pair (x,y), the
quantities gi(x,y; Fi, µi) are i.i.d bounded random variables with the mean:
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〈gi(x,y;Fi, µi)〉Fi∼p,µi∼U [−c,c]= 〈(+c)p[µi ≤ Fi(x,y)|Fi] + (−c)p[µi > Fi(x,y)|Fi]〉Fi∼p

= 〈 1
2c

c(c + Fi(x,y))− 1
2c

c(c− Fi(x,y))〉Fi∼p

= h(x,y).

Therefore, 〈f(x,y)〉f∼pm = h(x,y). Since f(x,y) is the average over m i.i.d bounded vari-
ables, Hoeffding’s inequality applies. Thus, for every (x,y),

Prf∼pm [f(x,y)− h(x,y) > ξ] ≤ e−
m
2c2

ξ2

.

For any two events A and B, we have the inequality,

Pr(A) = Pr(A,B) + Pr(A, B̄) ≤ Pr(B) + Pr(B̄|A).

Thus, for any γ > 0 we have

PrQ

[
M(h,x,y) ≤ 0

]
≤ PrQ

[
M(f,x,y) ≤ γ

2
]
+ PrQ

[
M(f,x,y) >

γ

2
|M(h,x,y) ≤ 0

]
. (12)

Fix h,x, and y, and let y′ achieve the margin in (11). Then, we get

M(h,x,y) = h(x,y)− h(x,y′), and M(f,x,y) ≤ f(x,y)− f(x,y′).

With these two results, since 〈f(x,y)− f(x,y′)〉f∼pm = h(x,y)− h(x,y′), we can get

PrQ

[
M(f,x,y) >

γ

2
|M(h,x,y) ≤ 0

]
≤ PrQ

[
f(x,y)− f(x,y′) >

γ

2
|M(h,x,y) ≤ 0

]
≤ PrQ

[
f(x,y)− f(x,y′)−M(h,x,y) >

γ

2
]

≤ e−
mγ2

32c2 , (13)

where the first two inequalities are due to the fact that if two events A ∈ B, then p(A) ≤
p(B), and the last inequality is due to the Hoeffding’s inequality.

Substitute (13) into (12), and we get,

PrQ

[
M(h,x,y) ≤ 0

]
≤ PrQ

[
M(f,x,y) ≤ γ

2
]
+ e−

mγ2

32c2 .

Since the left hand side does not depend on f , we take the expectation over f ∼ pm on both
sides and get,

PrQ

[
M(h,x,y) ≤ 0

]
≤ 〈PrQ

[
M(f,x,y) ≤ γ

2
]
〉f∼pm + e−

mγ2

32c2 . (14)

Let pm
0 be a prior distribution on Hm. pm

0 is constructed from p0 over H exactly as
pm is constructed from p. Then, KL(pm||pm

0 ) = mKL(p||p0). By PAC-Bayes theorem [19],
with probability at least 1−δ over sample D, the following bound holds for any distribution p,

〈PrQ

[
M(f,x,y) ≤ γ

2
]
〉f∼pm≤ 〈PrD

[
M(f,x,y) ≤ γ

2
]
〉f∼pm

+

√
mKL(p||p0) + lnN + ln δ−1 + 2

2N − 1
. (15)
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By the similar statement as in (12), for every f ∈ Hm we have,

PrD
[
M(f,x,y) ≤ γ

2
]
≤ PrD

[
M(h,x,y) ≤ γ

]
+ PrD

[
M(f,x,y) ≤ γ

2
|M(h,x,y) > γ

]
. (16)

By rewriting the second term on the right-hand side of (16), we get

PrD
[
M(f,x,y) ≤ γ

2
|M(h,x,y) > γ

]
= PrD

[
∃y′ 6= y : ∆f(x,y′) ≤ γ

2
|∀y′ 6= y : ∆h(x,y′) > γ

]
≤ PrD

[
∃y′ 6= y : ∆f(x,y′) ≤ γ

2
|∆h(x,y′) > γ

]
≤

∑
y′ 6=y

PrD
[
∆f(x,y′) ≤ γ

2
|∆h(x,y′) > γ

]
≤ (|Y| − 1)e−

mγ2

32c2 , (17)

where we have use ∆f(x,y′) to denote f(x,y) − f(x,y′), and use ∆h(x,y′) to denote
h(x,y)− h(x,y′).

Put (14), (15), (16), and (17) together, then we get following bound holding for any fixed
m and γ > 0,

PrQ

[
M(h,x,y) ≤ 0

]
≤ PrD

[
M(h,x,y) ≤ γ

]
+ |Y|e−

mγ2

32c2 +

√
mKL(p||p0) + lnN + ln δ−1 + 2

2N − 1
.

To finish the proof, we need to remove the dependence on m and γ. This can be done
by applying the union bound. By the definition of f , it is obvious that if f ∈ Hm then
f(x,y) ∈ {(2k −m)c/m : k = 0, 1, . . . ,m}. Thus, even though γ can be any positive value,
there are no more than m + 1 events of the form {M(f,x,y) ≤ γ/2}. Since only the ap-
plication of PAC-Bayes theorem in (15) depends on (m, γ) and all the other steps are true
with probability one, we just need to consider the union of countably many events. Let
δm,k = δ/(m(m + 1)2), then the union of all the possible events has a probability at most∑

m,k δm,k =
∑

m(m + 1)δ/(m(m + 1)2) = δ. Therefore, with probability at least 1− δ over
random samples of D, the following bound holds for all m and all γ > 0,

PrQ

[
M(h,x,y) ≤ 0

]
− PrD

[
M(h,x,y) ≤ γ

]
≤ |Y|e−

mγ2

32c2 +

√
mKL(p||p0) + lnN + ln δ−1

m,k + 2

2N − 1

≤ |Y|e−
mγ2

32c2 +

√
mKL(p||p0) + lnN + 3 ln m+1

δ + 2
2N − 1

Setting m = d16c2γ−2 ln N |Y|2
KL(p||p0)+1

e gives the results in the theorem.

Appendix B. Duality of L1-M
3N

Based on L1-SVM [4], a straightforward formulation of L1-M
3N is as follows,
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min
w,ξ

1
2
‖w‖+ C

N∑
i=1

ξi

s.t. w>∆fi(y) ≥ ∆`i(y)− ξi,∀i, ∀y 6= yi

where ‖.‖ is the L1-norm, and ∆fi(y) = f(xi,yi)− f(xi,y). ∆`i(y) is a loss function.
To derive the convex dual problem, we introduce a dual variable αi(y) for each constraint

and form the Lagrangian as follows,

L(α,w, ξ) =
1
2
‖w‖+ C

N∑
i=1

ξi −
∑
i,y

αi(y)
(
w>∆fi(y)−∆`i(y) + ξi

)
.

By definition, the Lagrangian dual is,

L?(α)= inf
w,ξ

L(α,w, ξ)

= inf
w

[1
2
‖w‖ −

∑
i,y

αi(y)w>∆fi(y)
]

+ inf
ξ

[
C

N∑
i=1

ξi −
∑
i,y

αi(y)ξi

]
+

∑
i,y

αi(y)∆`i(y)

= − sup
w

[
w>( ∑

i,y

αi(y)∆fi(y)
)
− 1

2
‖w‖

]
− sup

ξ

[ ∑
i,y

αi(y)ξi − C
N∑

i=1

ξi

]
+

∑
i,y

αi(y)∆`i(y).

Again, by definition, the first term in the right-hand side is the convex conjugate of
φ(w) = 1

2
‖w‖ and the second term is the conjugate of U(ξ) =

∑N
i=1 ξi. It is easy to show

that,

φ?(α) = I∞(|
∑
i,y

αi(y)∆fk
i (y)| ≤ 1

2
, ∀1 ≤ k ≤ K),

and
U?(α) = I∞(

∑
y

αi(y) ≤ C, ∀i),

where as defined before I∞(·) is an indicator function that equals zero when its argument is
true and infinity otherwise. ∆fk

i (y) = fk(x
i,yi)− fk(x,y).

Therefore, we get the dual problem as follows,

max
α

∑
i,y

αi(y)∆`i(y)

s.t. |
∑
i,y

αi(y)∆fk
i (y)| ≤ 1

2
, ∀k

∑
y

αi(y) ≤ C, ∀i.
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