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Abstract
In many applications, one has to actively select among a set of expensive observations before making an

informed decision. For example, in environmental monitoring, we want to select locations to measure in order

to most effectively predict spatial phenomena. Often, we want to select observations which are robust against

a number of possible objective functions. Examples include minimizing the maximum posterior variance in

Gaussian Process regression, robust experimental design, and sensor placement for outbreak detection. In

this paper, we present the Submodular Saturation algorithm, a simple and efficient algorithm with strong

theoretical approximation guarantees for cases where the possible objective functions exhibit submodularity,

an intuitive diminishing returns property. Moreover, we prove that better approximation algorithms do

not exist unless NP-complete problems admit efficient algorithms. We show how our algorithm can be

extended to handle complex cost functions (incorporating non-unit observation cost or communication and

path costs). We also show how the algorithm can be used to near-optimally trade off expected-case (e.g.,

the Mean Square Prediction Error in Gaussian Process regression) and worst-case (e.g., maximum predictive

variance) performance. We show that many important machine learning problems fit our robust submodular

observation selection formalism, and provide extensive empirical evaluation on several real-world problems.

For Gaussian Process regression, our algorithm compares favorably with state-of-the-art heuristics described

in the geostatistics literature, while being simpler, faster and providing theoretical guarantees. For robust

experimental design, our algorithm performs favorably compared to SDP-based algorithms.
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1 Introduction

In tasks such as sensor placement for environmental monitoring or experimental design, one
has to select among a large set of possible, but expensive, observations. In environmental
monitoring, we can choose locations where measurements of a spatial phenomenon (such
acidicity in rivers and lakes, cf., Figure 1(a)) should be obtained. In experimental design,
we frequently have a menu of possible experiments which can be performed. Often, there are
several different objective functions which we want to simultaneously optimize. For exam-
ple, in the environmental monitoring problem, we want to minimize the marginal posterior
variance of our acidicity estimate at all locations simultaneously. In experimental design,
we often have uncertainty about the model parameters, and we want our experiments to be
informative no matter what the true parameters of the model are. In sensor placement for
contamination detection in water distribution networks (cf., Figure 1(b)), we want to place
sensors in order to quickly detect any possible contamination event.

Our goal in all these problems is to select observations (sensor locations, experiments)
which are robust against a worst-case objective function (location to evaluate predictive
variance, model parameters, contamination event, etc.). Often, the individual objective
functions, e.g., the marginal variance at one location, or the information gain for a fixed
set of parameters (Das and Kempe, 2007; Krause et al., 2007b; Krause and Guestrin, 2005;
Guestrin et al., 2005), satisfy submodularity, an intuitive diminishing returns property:
Adding a new observation helps less if we have already made many observations, and more
if we have made few observation thus far. While NP-hard, the problem of selecting an op-
timal set of k observations maximizing a single submodular objective can be approximately
solved using a simple greedy forward-selection algorithm, which is guaranteed to perform
near-optimally (Nemhauser et al., 1978). However, as we show, this simple myopic algorithm
performs arbitrarily badly in the case of a worst-case objective function. In this paper, we
address the fundamental problem of nonmyopically selecting observations which are robust
against such an adversarially chosen submodular objective function. In particular:

• We present Saturate, an efficient algorithm for the robust submodular observation
selection problem. Our algorithm guarantees solutions which are at least as informa-
tive as the optimal solution, at only a slightly higher cost.

• We prove that our approximation guarantee is the best possible, i.e., the guarantee
cannot be improved unless NP-complete problems admit efficient algorithms.

• We discuss several extensions of our approach, handling complex cost functions and
trading off worst-case and average-case performance.

• We extensively evaluate our algorithm on several real-world tasks, including mini-
mizing the maximum posterior variance in Gaussian Process regression, finding ex-
periment designs which are robust with respect to parameter uncertainty, and sensor
placement for outbreak detection.

This manuscript is organized as follows. In Section 2, we formulate the robust sub-
modular observation selection problem, and in Section 3, we analyze its hardness. We
subsequently present Saturate, an efficient approximation algorithm for this problem (Sec-
tion 4), and show that our approximation guarantees are best possible, unless NP-complete
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problems admit efficient algorithms (Section 5). In Section 6, we discuss how many im-
portant machine learning problems are instances of our robust submodular observation
selection formalism. We then discuss extensions (Section 7) and evaluate the performance
of Saturate on several real-world observation selection problems (Section 8). Section 9
presents heuristics to improve the computational performance of our algorithm, Section 10
reviews related work, and Section 11 presents our conclusions.

(a) NIMS deployed at UC Merced (b) Water distribution network

Figure 1: (a) Deployment of the Networked Infomechanical System (NIMS, Harmon et al. 2006) to monitor
a lake near UC Merced. (b) Illustration of the municipal water distribution network considered in the Battle
of the Water Sensor Networks challenge (cf., Ostfeld et al., 2008).

2 Robust Submodular Observation Selection

In this section, we first review the concept of submodularity (Section 2.1), and then intro-
duce the robust submodular observation selection (RSOS) problem (Section 2.2).

2.1 Submodular Observation Selection

Let us consider a spatial prediction problem, where we want to estimate the pH values across
a horizontal transect of a river, e.g., using the NIMS robot shown in Figure 1(a). We can
discretize the space into a finite number of locations V, where we can obtain measurements,
and model a joint distribution P (XV) over variables XV associated with these locations. One
example of such models, which have found common use in geostatistics (cf., Cressie, 1991),
are Gaussian Processes (cf., Rasmussen and Williams, 2006). Based on such a model, a
typical goal in spatial monitoring is to select a subset of locations A ⊆ V to observe, such
that the average predictive variance,

V (A) =
1
n

∑
i

σ2
i|A,
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is minimized (cf., Section 6.1 for more details). Hereby, σ2
i|A denotes the predictive variance

at location i after observing locations A, i.e.,

σ2
i|A =

∫
P (xA)E

[
(Xi − E [Xi | xA])2 | xA

]
dxA.

Unfortunately, the problem
A∗ = argmin

|A|≤k
V (A)

is NP-hard in general (Das and Kempe, 2007), and the number of candidate solutions is very
large, so generally we cannot expect to efficiently find the optimal solution. Fortunately, as
Das and Kempe (2007) show, in many cases, the variance reduction

Fs(A) = σ2
s − σ2

s|A

at any particular location s, satisfies the following diminishing returns behavior: Adding a
new observation reduces the variance at s more, if we have made few observations so far,
and less, if we have already made many observations. This formalism can be formalized
using the combinatorial concept of submodularity (cf., Nemhauser et al., 1978):

Definition 1 A set function F : 2V → R is called submodular, if for all subsets A,B ⊆ V
it holds that F (A ∪ B) + F (A ∩ B) ≤ F (A) + F (B).

Nemhauser et al. (1978) prove a convenient characterization of submodular functions: F
is submodular if and only if for allA ⊆ B ⊆ V and s ∈ V\B it holds that F (A∪{s})−F (A) ≥
F (B∪{s})−F (B). This characterization exactly matches our diminishing returns intuition
about the variance reduction Fs at location s. Since each of the variance reduction functions
Fs is submodular, the average variance reduction

F (A) = V (∅)− V (A) =
1
n

∑
s

Fs(A)

is also submodular. The average variance reduction is also monotonic, i.e., for allA ⊆ B ⊆ V
it holds that F (A) ≤ F (B), and normalized (F (∅) = 0).

Hence, the problem of minimizing the average variance is an instance of the problem

max
A⊆V

F (A), subject to |A| ≤ k, (2.1)

where F is normalized, monotonic and submodular, and k is a bound on the number of
observations we can make. As Krause and Guestrin (2007a) show (also, cf., Appendix ??),
many other observation selection problems are instances of Problem (2.1).

Since solving Problem (2.1) is NP-hard in most interesting instances (Feige, 1998; Krause
et al., 2006, 2007b; Das and Kempe, 2007), in practice, heuristics are often used. One such
heuristic is the greedy algorithm. This algorithm starts with the empty set, and iteratively
adds the element s∗ = argmaxs∈V\A F (A∪{s}), until k elements have been selected. Perhaps
surprisingly, a fundamental result by Nemhauser et al. (1978) states that for submodular
functions, the greedy algorithm achieves a constant factor approximation:
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Theorem 2 (Nemhauser et al. 1978) In the case of any normalized, monotonic sub-
modular function F , the set AG obtained by the greedy algorithm achieves at least a constant
fraction (1− 1/e) of the objective value obtained by the optimal solution, i.e.,

F (AG) ≥ (1− 1/e) max
|A|≤k

F (A).

Moreover, no polynomial time algorithm can provide a better approximation guarantee
unless P = NP (Feige, 1998).

2.2 The Robust Submodular Observation Selection (RSOS) Problem

For phenomena, such as the one indicated in Figure 2(a), which are spatially homogeneous
(isotropic), maximizing this average variance reduction leads to effective variance reduc-
tion everywhere in the space. However, many spatial phenomena are nonstationary, being
smooth in certain areas and highly variable in others, such as the example indicated in
Figure 2(b). In such a case, maximizing the average variance reduction will typically put
only few examples in the areas highly variable areas. However, those regions are typically
the most interesting, since they are most difficult to predict. In such cases, we might want
to simultaneously minimize the variance everywhere in the space.
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Figure 2: Spatial predictions using Gaussian Processes with a small number of observations. The blue solid
line indicates the unobserved latent function, and blue squares indicate observations. The plots also show
confidence bands (green). Dashed line indicates the prediction. (b) shows an example with high maximum
predictive variance, but low average variance, whereas (a) shows an example with high average variance, but
lower maximum variance. Note, that in (b) we are most uncertain about the most variable (and interesting,
since it is hard to predict) part of the curve, suggesting that the maximum variance should be optimized.

More generally, in many applications (such as the spatial monitoring problem discussed
above, and several other examples which we present in Section 6), we want to perform
equally well with respect to multiple objectives. We will hence consider settings where we
are given a collection of normalized monotonic submodular functions F1, . . . , Fm, and we
want to solve

max
A⊆V

min
i

Fi(A), subject to |A| ≤ k. (2.2)
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A F1(A) F2(A) mini Fi(A)
∅ 0 0 0
{s1} 1 0 0
{s2} 0 1 0
{t1} ε ε ε

{t2} ε ε ε

{s1, s2} 1 1 1
{s1, t1} 1 + ε ε ε

{s1, t2} 1 + ε ε ε

{s2, t1} ε 1 + ε ε

{s2, t2} ε 1 + ε ε

{t1, t2} 2ε 2ε 2ε

Table 1: Functions F1 and F2 used in the counterexample.

The goal of Problem (2.2) is to find a set A of observations, which is robust against the
worst possible objective, mini Fi, from our set of possible objectives. Consider the spatial
monitoring setting for example, and assume that the prior variance σ2

i is constant (we will
relax this assumption in Section 7.2) over all locations i. Then, the problem of minimizing
the maximum variance is equivalent to maximizing the minimum variance reduction, i.e.,
solving Problem (2.2) where Fi is the variance reduction at location i.

We call Problem (2.2) the Robust Submodular Observation Selection (RSOS) problem.
Note, that even if the Fi are all submodular, Fwc(A) = mini Fi(A) is generally not sub-
modular. In fact, we show below that, in this setting, the simple greedy algorithm (which
performs near-optimally in the single-criterion setting) can perform arbitrarily badly.

3 Hardness of the Robust Submodular Observation Selection
Problem

Given the near-optimal performance of the greedy algorithm for the single-objective prob-
lem, a natural question is if the performance guarantee generalizes to the more complex
robust optimization setting. Unfortunately, this hope is far from true, even in the simpler
case of modular (additive) functions Fi. Consider a case with two submodular functions,
F1 and F2, where the set of observations is V = {s1, s2, t1, t2}. The functions take values as
indicated in Table 1. Optimizing for a set of 2 elements, the greedy algorithm maximizing
Fwc(A) = min{F1(A), F2(A)} would first choose t1 (or t2), as this choice increases the ob-
jective min{F1, F2} by ε, as opposed to 0 for s1 and s2. The greedy solution for k = 2 would
then be the set {t1, t2}, obtaining a score of 2ε. However, the optimal solution with k = 2
is {s1, s2}, with a score of 1. Hence, as ε → 0, the greedy algorithm performs arbitrarily
worse than the optimal solution.

Given that the greedy algorithm performs arbitrarily badly, our next hope would be to
obtain a different good approximation algorithm. However, we can show that most likely
this is not possible:
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Figure 3: Truncating an objective function F preserves submodularity and monotonicity.

Theorem 3 Unless P = NP, there cannot exist any polynomial time approximation algo-
rithm for Problem (2.2). More precisely: Let n be the size of the problem instance, and
γ(·) > 0 be any positive function of n. If there exists a polynomial-time algorithm which is
guaranteed to find a set A′ of size k such that mini Fi(A′) ≥ γ(n) max|A|≤k mini Fi(A), then
P = NP.

Thus, unless P = NP, there cannot exist any algorithm which is guaranteed to provide,
e.g., even an exponentially small fraction (γ(n) = 2−n) of the optimal solution. All proofs
can be found in the Appendix.

4 The Submodular Saturation Algorithm

Since Theorem 3 rules out any approximation algorithm which respects the constraint k
on the size of the set A, our only hope for non-trivial guarantees requires us to relax this
constraint. We now present an algorithm that finds a set of observations which perform
at least as well as the optimal set, but at slightly increased cost; moreover, we show that
no efficient algorithm can provide better guarantees (under reasonable complexity-theoretic
assumptions). For now we assume all Fi take only integral values; this assumption is relaxed
in Section 7.1. The key idea is to consider the following alternative formulation:

max
c,A

c, subject to c ≤ Fi(A) for 1 ≤ i ≤ m and |A| ≤ αk. (4.1)

We want a set A of size at most αk, such that Fi(A) ≥ c for all i, and c is as large as
possible. Hereby, α ≥ 1 is a parameter relaxing the constraint on |A|. If α = 1, we recover
the original problem (2.2): In this case, maximizing c subject to the existence of a set A,
|A| ≤ k such that Fi(A) ≥ c for all i is equivalent to maximizing mini Fi(A). For arbitrary
values of α ≥ 1, we can conceptually solve program (4.1) as follows: For any given value
c, we find the cheapest set A with Fi(A) ≥ c for all i. If this cheapest set has at most
αk elements, then (c,A) is feasible. A binary search on c would then allow us to find the
optimal solution with the maximum feasible c.

We first show how to approximately solve Equation (4.1) for a fixed c. For c > 0 define
F̂i,c(A) = min{Fi(A), c}, the original function Fi truncated at score level c. These F̂i,c
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GPC (F c, c)
A ← ∅;
while F c(A) < c do

foreach s ∈ V \ A do δs ← F c(A ∪ {s})− F c(A);
A ← A∪ {argmaxs δs};

end
Algorithm 1: The greedy submodular partial cover (GPC) algorithm.

functions are also submodular (Fujito, 2000). Figure 3 illustrates this truncation concept.
Let F c(A) = 1

m

∑
i F̂i,c(A) be their average value. Submodular functions are closed under

convex combinations, so F c is submodular and monotonic. Furthermore, Fi(A) ≥ c for all
1 ≤ i ≤ m if and only if F c(A) = c. Hence, in order to determine whether some c is feasible,
we need to find the smallest set such that F c(A) = c = F c(V), i.e., solve:

Ac = argmin
A⊆V

|A|, such that F c(A) = c. (4.2)

Problems of the form minA |A| such that F (A) = F (V), where F is a normalized mono-
tonic submodular function, are called submodular covering problems. Since F c satisfies these
requirements, (4.2) is an instance of such a submodular covering problem. While such prob-
lems are NP-hard in general (Feige, 1998), Wolsey (1982) shows that the greedy algorithm
(cf., Algorithm 1) achieves near-optimal performance on this problem. Using his result, we
find:

Lemma 4 Given monotonic submodular functions F1, . . . , Fm and a (feasible) constant c,
Algorithm 1 (with input F c) finds a set AG such that Fi(AG) ≥ c for all i, and |AG| ≤ α|A∗|,
where A∗ is an optimal solution, and1

α = 1 + log

(
max
s∈V

∑
i

Fi(s)

)
≥ 1 + log

(
m max

s∈V
F c(s)

)
.

We can compute this approximation guarantee α for any given instance of the RSOS
problem. Hence, if for a given value of c the greedy algorithm returns a set of size greater
than αk, there cannot exist a solution A′ with |A′| ≤ k with Fi(A′) ≥ c for all i; thus, the
optimal solution to the RSOS problem must be less than c. We can use this argument to
conduct a binary search to find the optimal value of c. We call Algorithm 2, which for-
malizes this procedure, the submodular saturation algorithm (Saturate), as the algorithm
considers the truncated objectives F̂i,c, and chooses sets which saturate all these objectives.
Theorem 5 (given below) states that Saturate is guaranteed to find a set which achieves
worst-case score mini Fi at least as high as the optimal solution, if we allow the set to be
logarithmically larger than the optimal solution.

Theorem 5 For any integer k, Saturate finds a solution AS such that

min
i

Fi(AS) ≥ max
|A|≤k

min
i

Fi(A) and |AS | ≤ αk,

1This bound is only meaningful for integral Fi, otherwise it could be arbitrarily improved by scaling the
Fi. We relax the constraint on integrality of the Fi in Section 7.1.
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Saturate (F1, . . . , Fm, k, α)
cmin ← 0; cmax ← mini Fi(V); Abest ← ∅;
while (cmax − cmin) ≥ 1

m do
c← (cmin + cmax)/2;
Define F c(A)← 1

m

∑
i min{Fi(A), c};

Â ← GPC(F c, c);
if |Â| > αk then

cmax ← c;
else

cmin ← c; Abest = Â
end

end
Algorithm 2: The Submodular Saturation algorithm.

for α = 1 + log (maxs∈V
∑

i Fi(s)). The total number of submodular function evaluations is

O

(
|V|2m log

(∑
i

Fi(V)

))
.

Note, that the algorithm still makes sense for any value of α. However, if α < 1 +
log (maxs∈V

∑
i Fi(s)), the guarantee of Theorem 5 does not hold. If we had an exact

algorithm for submodular coverage, α = 1 would be the correct choice. Since the greedy al-
gorithm solves submodular coverage very effectively, in our experiments, we call Saturate
with α = 1, which empirically performs very well.

If we apply Saturate to the example problem described in Section 3, we would start
with cmax = 1. Running the coverage algorithm (GPC) with c = 0.5 would first pick el-
ement s1 (or s2), since F c({s1}) = 0.5, and, next, pick s2 (or s1 resp.), hence finding the
optimal solution.

The worst-case running time guarantee is quite pessimistic, and in practice the algorithm
is much faster: Using a priority queue and lazy evaluations, Algorithm 1 can be sped
up drastically (cf., Robertazzi and Schwartz 1989 for details). Furthermore, in practical
implementations, one would stop GPC once αk + 1 elements have been selected, which
already proves that the optimal solution with k elements cannot achieve score c. Also,
Algorithm 2 can be terminated once cmax − cmin is sufficiently small; in our experiments,
10-15 iterations usually sufficed.

5 Hardness of Bicriterion Approximation

Guarantees of the form presented in Theorem 5 are often called bicriterion guarantees.
Instead of requiring that the obtained objective score is close to the optimal score and all
constraints are exactly met, a bicriterion guarantee requires a bound on the suboptimality
of the objective, as well as bounds on how much the constraints are violated. Theorem 3
showed that – unless P = NP – no approximation guarantees can be obtained which do not
violate the constraint on the cost k, thereby necessitating the bricriterion analysis.
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One might ask, whether the guarantee on the size of the set, α, can be improved.
Unfortunately, this is not likely, as the following result shows:

Theorem 6 If there were a polynomial time algorithm which, for any integer k, is guar-
anteed to find a solution AS such that mini Fi(AS) ≥ max|A|≤k mini Fi(A) and |AS | ≤ βk,
where β ≤ (1−ε)(1+log maxs∈V

∑
i Fi(s)) for some fixed ε > 0, then NP ⊆ DTIME(nlog log n).

Hereby, DTIME(nlog log n) is a class of deterministic, slightly superpolynomial (but sub-
exponential) algorithms (Feige, 1998); the inclusion NP ⊆ DTIME(nlog log n) is considered
unlikely (Feige, 1998). Taken together, Theorem 3 and Theorem 6, provide strong theoret-
ical evidence that Saturate achieves best possible theoretical guarantees for the problem
of maximizing the minimum over a set of submodular functions.

6 Examples of Robust Submodular Observation Selection
problems

We now demonstrate that many important machine learning problems can be phrased as
RSOS problems. Section 8 provides more details and experimental results for these do-
mains.

6.1 Minimizing the Maximum Kriging Variance

Consider a Gaussian Process (GP) (cf., Rasmussen and Williams, 2006) XV defined over
a finite set of locations (indices) V. Hereby, XV is a set of random variables, one variable
Xs for each location s ∈ V. Given a set of locations A ⊆ V which we observe, we can com-
pute the predictive distribution P (XV\A | XA = xA), i.e., the distribution of the variables
XV\A at the unobserved locations V \ A, conditioned on the measurements at the selected
locations, XA = xA. Let σ2

s|A be the residual variance after making observations at A. Let
ΣAA be the covariance matrix of the measurements at the chosen locations A, and ΣsA be
the vector of cross-covariances between the measurements at s and A. Then, the predictive
variance (often called Kriging variance in the geostatistics literature), given by

σ2
s|A = σ2

s − ΣsAΣ−1
AAΣAs,

depends only on the set A, and not on the observed values xA. As argued in Section 2, an
often (especially in the case of nonstationary phenomena) appropriate criterion is to select
locations A such that the maximum marginal variance is as small as possible, i.e., we want
to select a subset A∗ ⊆ V of locations to observe such that

A∗ = argmin
|A|≤k

max
s∈V

σ2
s|A. (6.1)

Let us assume for now that the a priori variance σ2
s is constant for all locations s (in

Section 7, we show how our approach generalizes to non-constant marginal variances). Fur-
thermore, let us define the variance reduction Fs(A) = σ2

s − σ2
s|A. Solving Problem (6.1) is

then equivalent to maximizing the minimum variance reduction over all locations s. For a

9



particular location s, Das and Kempe (2007) show that the variance reduction Fs (often)
is a monotonic submodular function. Hence the problem

A∗ = argmax
|A|≤k

min
s∈V

Fs(A) = argmax
|A|≤k

min
s∈V

σ2
s − σ2

s|A

is an instance of the RSOS problem.

6.2 Variable Selection under Parameter Uncertainty

Consider an application, where we want to diagnose a failure of a complex system, by
performing a number of tests. We can model this problem by using a set of discrete random
variables XV = {X1, . . . ,Xn} indexed by V = {1, . . . , n}, which model both the hidden
state of the system and the outcomes of the diagnostic tests. The interaction between these
variables is modeled by a joint distribution P (XV | θ) with parameters θ. Krause et al.
(2007b) and Krause and Guestrin (2005) show that many variable selection problems can
be formulated as the problem of optimizing a submodular utility function (measuring, e.g.,
the information gain I(XU ,XA) with respect to some variables of interest U , or the mutual
information I(XA;XV\A) between the observed and unobserved variables, etc.). However,
the informativeness of a chosen set A typically depends on the particular parameters θ,
and these parameters might be uncertain. In some applications, it might not be reasonable
to impose a prior distribution over θ, and we may want to perform well even under the
worst-case parameters. In these cases, we can associate, with each parameter setting θ, a
different submodular objective function Fθ, for example,

Fθ(A) = I(XA;XU | θ),

and we might want to select a set A which simultaneously performs well for all possible
parameter values. In practice, we can discretize the set of possible parameter values θ (for
example around a 95% confidence interval estimated from initial data) and optimize the
worst case Fθ over the resulting discrete set of parameters.

6.3 Robust Experimental Designs

Another application is experimental design under nonlinear dynamics (Flaherty et al., 2006).
The goal is to estimate a set of parameters θ of a nonlinear function y = f(x, θ) + w, by
providing a set of experimental stimuli x, and measuring the (noisy) response y. In many
cases, experimental design for linear models (where y = A(x)T θ+w with Gaussian noise w)
can be efficiently solved by semidefinite programming (Boyd and Vandenberghe, 2004). In
the nonlinear case, a common approach (cf., Chaloner and Verdinelli, 1995) is to linearize
f around an initial parameter estimate θ0, i.e.,

y = f(x, θ0) + V (x)(θ − θ0) + w, (6.2)

where V (x) is the Jacobian of f with respect to the parameters θ, evaluated at θ0. Sub-
sequently, a locally-optimal design is sought, which is optimal for the linear design prob-
lem (6.2) for initial parameter estimates θ0. Flaherty et al. (2006) show that the efficiency of
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such a locally optimal design can be very sensitive with respect to the initial parameter esti-
mates θ0. Consequently, they develop an efficient semi-definite program (SDP) for E-optimal
design (i.e., the goal is to minimize the maximum eigenvalue of the error covariance) which
is robust against perturbations of the Jacobian V . However, it might be more natural to
directly consider robustness with respect to perturbation of the initial parameter estimates
θ0, around which the linearization is performed. We show how to find (Bayesian A-optimal)
designs which are robust against uncertainty in these parameter estimates. In this setting,
the objectives Fθ0(A) are the reductions of the trace of the parameter covariance,

Fθ0(A) = tr
(
Σ(θ0)

θ

)
− tr

(
Σ(θ0)

θ|A

)
,

where Σ(θ0) is the joint covariance of observations and parameters after linearization around
θ0; thus, Fθ0 is the sum of marginal parameter variance reductions, which are (often) indi-
vidually monotonic and submodular (Das and Kempe, 2007), and so Fθ0 is monotonic and
submodular as well. Hence, in order to find a robust design, we maximize the minimum
variance reduction, where the minimum is taken over (a discretization into a finite subset
of) all initial parameter values θ0.

6.4 Sensor Placement for Outbreak Detection

Target of
contamination

SensorsSensors

Figure 4: Securing a municipal water distribution network against contaminations performed under knowl-
edge of the sensor placement is another instance of the RSOS problem.

Another class of examples are outbreak detection problems on graphs, such as contam-
ination detection in water distribution networks (Leskovec et al., 2007). Here, we are given
a graph G = (V, E), and a phenomenon spreading dynamically over the graph. We define
a set of intrusion scenarios I; each scenario i ∈ I models an outbreak (e.g., spreading of
contamination) starting from a given node s ∈ V in the network. By placing sensors at a
set of locations A ⊆ V, we can detect such an outbreak, and thereby minimize the adverse
effects on the network.

More formally, for each possible outbreak scenario i ∈ I and for each node v ∈ V we
define the detection time Ti(v) as the time when the outbreak affects node v (and Ti(v) =∞
if node v is never affected). We furthermore define a penalty function πi(t) which models
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the penalty incurred for detecting outbreak i at time t. We require πi(t) to be monotonically
non-decreasing in t (i.e., we never prefer late over early detection), and bounded above by
πi(∞) ∈ R. Our goal is to minimize the worst-case penalty: We extend πi to observation
sets A as πi(A) = πi (mins∈A Ti(s)). Then, our goal is to solve

A∗ = argmin
|A|≤k

max
i∈I

πi(A).

Equivalently, we can define the penalty reduction Fi(A) = πi(∞) − πi(A). Clearly,
Fi(∅) = 0, Fi is monotonic. In Leskovec et al. (2007), it was shown that Fi is also guaranteed
to be submodular. For now, let us assume that πi(∞) is constant for all i (we will relax this
assumption in Section 7.2). Our goal in sensor placement is then to select a set of sensors
A such that the minimum penalty reduction is as large as possible, i.e., we want to select

A∗ = argmax
|A|≤k

min
i∈I

Fi(A).

In other words, an adversary observes our sensor placement A, and then decides on an
intrusion i for which our utility Fi(A) is as small as possible. Hence, our goal is to find a
placement A which performs well against such an adversarial opponent.

6.5 Robustness Against Sensor Failures and Feature Deletion

Another interesting instance of the RSOS problem arises in the context of robust sensor
placements. For example, in the outbreak detection problem, sensors might fail, due to
hardware problems or manipulation by an adversary. We can model this problem in the
following way: Consider the case where all sensors at a subset B ⊆ V of locations fail. Given
a submodular function F (e.g., the utility for placing a set of sensors), and the set B ⊆ V
of failing sensors, we can define a new function FB(A) = F (A \ B), corresponding to the
(reduced) utility of placement A after the sensor failures. It is easy to show that if F is
nondecreasing and submodular, so is FB. Hence, the problem of optimizing sensor place-
ments which are robust to sensor failures results in a problem of simultaneously maximizing
a collection of submodular functions, e.g., for the worst-case failure of k′ < k sensors we
solve

A∗ = argmax
|A|≤k

min
|B|≤k′

FB(A).

We can also combine the optimization against adversarial contamination scenarios as dis-
cussed in Section 6.3 with adversarial sensor failures, and optimize

A∗ = argmax
|A|≤k

min
i∈I

min
|B|≤k′

Fi(A \ B).

Another important problem in machine learning is feature selection. In feature selection,
the goal is to select a subset of features which are informative with respect to, e.g., a given
classification task. One objective frequently considered is the problem of selecting a set of
features which maximize the information gained about the class variable XY after observing
the features XA, F (A) = H(XY ) − H(XY | XA), where H denotes the Shannon entropy.
Krause and Guestrin (2005) show, that in a large class of graphical models, the information
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gain F (A) is in fact a submodular function. Now we can consider a setting, where an
adversary can delete features which we selected (as considered, e.g., by Globerson and
Roweis 2006). The problem of selecting features robustly against such arbitrary deletion of,
e.g., m features, is hence equivalent to the problem of maximizing min|B|≤m FB(A), where
B are the deleted features.

6.5.1 Improved Guarantees for Sensor Failures

As discussed above, in principle, we could find a placement robust to single sensor failures
by using Saturate to (approximately) solve

A∗ = argmax
|A|≤k

min
s

Fs(A).

However, since |V| can be very large, and the approximation guarantee α depends loga-
rithmically on |V|, such a direct approach might not be desirable. We can improve the
guarantee from O(log |V|) to O(log(k log |V|)), which typically is much tighter, if k � |V|
(i.e., we place far fewer sensors than we have possible sensor locations. We can improve the
approximation guarantee drastically by noticing that Fs(A) = F (A) if s /∈ A. Hence,

F c(A) =
|V| − |A|
|V|

min{F (A), c}+
1
|V|
∑
s∈A

F̂s,c(A).

We can replace this objective by a new objective function,

F
′
c(A) =

k′ − |A|
k′

min{F (A), c}+
1
k′

∑
s∈A

F̂s,c(A)

for some constant k′ to be specified below. This modified objective is still monotonic and
submodular when restricted to sets of size at most k′. It still holds that, for all subsets
|A| ≤ k′, that

F
′
c(A) ≥ c⇔ Fs(A) ≥ c for all s ∈ V.

How large should we choose k′? We have to choose k′ large enough such that Saturate
will never choose sets larger than k′. A sufficient choice for k′ is hence dαke, where α =
1 + log (|V|maxs∈V F ({s})). For this choice of k′, our new approximation guarantee will be

α′ = 1 + log
(

αk max
s∈V

F ({s})
)

= 1 + log
((

1 + log
(
|V|max

s∈V
F ({s})

))
k max

s∈V
F ({s})

)
≤ 1 + 2 log

(
k log(|V|) max

s∈V
F ({s})

)
Hence, for the new objective F

′
c, we get a tighter approximation guarantee, α′ = 1 +

2 log (k log(|V|) maxs∈V F ({s})), which now depends logarithmically on k log |V|, instead of
the number of available locations |V|. Note that this same approach can also provide tighter
approximation guarantees in the case of multiple sensor failures.
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7 Extensions

We now show how some of the assumptions made in our presentation above can be relaxed.
We also discuss several extensions, allowing more complex cost functions, and the tradeoff
between worst-case and average-case scores.

7.1 Non-integral Objectives

In our analysis of Saturate (Section 4), we have assumed, that each of the objective
functions Fi only take values in the positive integers. However, most objective functions
of interest in observation selection (such as those discussed in Section 6) typically do not
meet this assumption. If the Fi take on rational numbers, we can scale the objectives by
multiplying by their common denominator.

If we allow small additive approximation error (i.e., are indifferent if the approximate
solution differs from the optimal solution in low order bits), we can also approximate the
values assumed by the functions Fi by their highest order bits. In this case, we replace the
functions Fi(A) by the approximations

F ′
i (A) =

d2jFi(A)e
2j

.

By construction, F ′
i (A) ≤ Fi(A) ≤ F ′

i (A)(1 + 2−j), i.e., F ′
i is within a factor of (1 + 2−j)

of Fi. Also, 2jF ′
i (A) is integral. However, F ′

i (A) is not guaranteed to be submodular.
Nevertheless, an analysis similar to the one presented by Krause et al. (2007b) can be used
to bound the effect of this approximation on the theoretical guarantees α obtained by the
algorithm, which will now scale linearly with the number j of high order bits considered.
In practice, as we show in Section 8, Saturate provides state-of-the-art performance, even
without rounding the objectives to the highest order bits.

7.2 Non-constant Thresholds

Consider the example of minimizing the maximum variance in Gaussian Process regression.
Here, the Fi(A) = σ2

i − σ2
i|A denote the variance reductions at location i. However, rather

than guaranteeing that Fi(A) ≥ c for all i (which, in this example, means that the minimum
variance reduction is c), we want to guarantee that σ2

i|A ≤ c for all i. We can easily adapt

our approach to handle this case: Instead of defining F̂i,c(A) = min{Fi(A), c}, we define
F̂i,c(A) = min{Fi(A), σ2

i − c}, and then again perform binary search over c, but searching
for the smallest c instead. The algorithm, using objectives modified in this way, will bear
the same approximation guarantees.

7.3 Non-uniform Observation Costs

We can extend Saturate to the setting where different observations have different costs.
In the spatial monitoring setting for example, certain locations might be more expensive
to acquire a measurement from. Suppose a cost function g : V → R+ assigns each element
s ∈ V a positive cost g(s); the cost of a set of observations is then g(A) =

∑
s∈A g(s). The
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problem is to find A∗ = argmaxA⊂V mini Fi(A) subject to g(A) ≤ B, where B > 0 is a
budget we can spend on making observations. In this case, we use the rule

δs ←
F c(A ∪ {s})− F c(A)

g(s)

in Algorithm 1. For this modified algorithm, Theorem 5 still holds, with |A| replaced by
g(A) and k replaced by B. This more general result holds, since the analysis of the greedy
algorithm for submodular covering of Wolsey (1982), which we used to prove Lemma 4,
applies to the more general setting of non-uniform cost functions.

7.4 Handling More Complex Cost Functions

So far, we considered problems where we are given an additive cost function g(A) over the
possible sets A of observations. In some applications, more complex cost functions arise.
For example, when placing wireless sensor networks, the placements A should not only be
informative (i.e., Fi(A) should be high for all utility functions Fi), but the placement should
also have low communication cost. Krause et al. (2006) describe such an approach, where the
cost g(A) measures the expected number of retransmissions required for sending messages
across an optimal routing tree connecting the sensors A. Formally, the observations s are
considered to be nodes in a graph G = (V, E), with edge weights w(e) for each edge e ∈ E .
The cost g(A) is the cost of a minimum Steiner Tree (cf., Vazirani 2003) connecting the
observations A in the graph G.

More generally, we want to solve problems of the form

argmax
A

min
i

Fi(A) subject to g(A) ≤ B, (7.1)

where g(A) is a complex cost function. The key insight of the Saturate algorithm is that
the non-submodular robust optimization problem can be approximately solved by solving
a submodular covering problem. In the case where g(A) = |A| this problem requires
solving (4.2). More generally, we can apply Saturate to any problem where we can
(approximately) solve

Ac = argmin
A⊆V

g(A), such that F c(A) = c. (7.2)

Problem (7.2) can be (approximately) solved for a variety of cost functions, such as those
arising from communication constraints (Krause et al., 2006) and path constraints (Singh
et al., 2007; Meliou et al., 2007).

Let us summarize our analysis as follows:

Proposition 7 Assume we have an algorithm which, given a monotonic submodular func-
tion F and a cost function g, returns a solution A′ such that F (A′) = F (V) and

g(A′) ≤ αF min
A:F (A)=F (V)

g(A),

where αF depends on the function F . Saturate, using this covering algorithm, can obtain
a solution AS to the RSOS problem such that

min
i

Fi(AS) ≥ max
g(A)≤B

min
i

Fi(A),
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and
g(AS) ≤ αF B,

where αF is the approximation factor of the covering algorithm, when applied to F =
1
m

∑
i Fi.

Note that the formalism developed in this section also allows to handle robust versions of
combinatorial optimization problems such as the Knapsack (cf., Martello and Toth, 1990),
Orienteering (cf., Laporte and Martello, 1990; Blum et al., 2003) and Budgeted Steiner Tree
(cf., Johnson et al., 2000) problems. In these problems, instead of a general submodular
objective function, the special case of a modular (additive) function F is optimized:

A∗ = argmax
g(A)≤B

F (A).

The problems differ only in the choice of the complex cost function. In Knapsack for
example, g is additive, in the Budgeted Steiner Tree problem, g(A) is the cost of a minimum
Steiner tree connecting the nodes A in a graph, and in Orienteering, g(A) is the cost of
a shortest path connecting the nodes A in a graph. In practice, often the utility function
F (A) is not exactly known, and a solution is desired which is robust against worst-case
choice of the utility function. Since modular functions are a special case of submodular
functions, such problems can be approximately solved using Proposition 7.

7.5 Trading Off Average-case and Worst-case Scores

In some applications, optimizing the worst-case score Fwc(A) = mini Fi(A) might be a
too pessimistic approach. On the other hand, ignoring the worst-case and only optimizing
the average-case (the expected score under a distribution over the objectives) Fac(A) =
1
m

∑
i Fi(A) might be too optimistic. In fact, in Section 8 we show that optimizing the

average-case score Fac can often lead to drastically poor worst-case scores. In general, we
might be interested in solutions, which perform well both in the average- and worst-case
scores.

Formally, we can define a multicriterion optimization problem, where we intend to op-
timize the vector [Fac(A), Fwc(A)]. In this setting, we can only hope for Pareto-optimal
solutions (cf., Boyd and Vandenberghe, 2004, in the context of convex functions). A set
A∗, |A∗| ≤ k is called Pareto-optimal, if it is not dominated, i.e., there does not exist another
set B, |B| ≤ k with Fac(B) > Fac(A∗) and Fwc(B) ≥ Fwc(A∗) (or Fac(B) ≥ Fac(A∗) and
Fwc(B) > Fwc(A∗)).

One possible approach to find such Pareto-optimal solutions is constrained optimiza-
tion2: for a specified value of cac, we desire a solution to

A∗ = argmax
|A|≤k

Fwc(A) such that Fac(A) ≥ cac. (7.3)

By specifying different values of cac in (7.3), we would obtain different Pareto-optimal
solutions3. Figure 5 presents an example of several Pareto-optimal solutions, based on data

2Another approach is scalarization, where we optimize Fλ(A) = λFwc(A) + (1 − λ)Fac(A) for some λ,
0 < λ < 1. Saturate can be modified to handle such scalarized objectives as well (cf., Appendix ??).

3In fact, all Pareto-optimal solutions can be found in this way (Papadimitriou and Yannakakis, 2000).
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Figure 5: Tradeoff curve for simultaneously optimizing the average- and worst-case score in the water
distribution network monitoring application. Notice the knee in the tradeoff curve, indicating that by
performing multi-criterion optimization, solutions performing well for both average- and worst-case scores
can be obtained.

from the outbreak detection problem (Details will be discussed in Section 8.3). This curve
shows that, using the techniques described below, multicriterion solutions can be found
which combine the advantages of worst-case and average-case solutions.

We can modify Saturate to solve Problem (7.3) in the following way. Let us again
assume we know the optimal value cwc achievable for Problem (7.3). Then, Problem (7.3)
is equivalent to solving

A∗ = argmin
A

|A| subject to Fwc(A) ≥ cwc and Fac(A) ≥ cac. (7.4)

Now, using our notation from Section 4, this problem is again equivalent to

A∗ = argmin
A

|A| subject to F cwc,cac = cwc + cac, (7.5)

where
F cwc,cac(A) = F cwc(A) + min{Fac(A), cac}.

Note that F cwc,cac is a submodular function, and hence (7.5) is a submodular covering
problem, which can be approximately solved using the greedy algorithm.

For any choice of cac, we can find the optimal value of cwc by performing binary search
on cwc. We summarize our analysis in the following Theorem:

Theorem 8 For any integer k and constraint cac, Saturate finds a solution AS (if it
exists) such that

Fwc(AS) ≥ max
|A|≤k,Fac(A)≥cac

Fwc(A),

Fac(AS) ≥ cac, and |AS | ≤ αk, for α = 1+ log (2maxs∈V
∑

i Fi(s)). Each such solution AS

is approximately Pareto-optimal, i.e., there does not exist a set B, |B| ≤ k such that B domi-
nates AS. The total number of submodular function evaluations is O

(
|V|2m log(

∑
i Fi(V))

)
.
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8 Experimental Results

8.1 Minimizing the Maximum Kriging Variance

First, we use Saturate to select observations in a GP to minimize the maximum posterior
variance (cf., Section 6.1). We consider three data sets: [T] temperature data from a de-
ployment of 52 sensors at Intel Research Berkeley, [P] Precipitation data from the Pacific
Northwest of the United States (Widmann and Bretherton, 1999) and [L] temperature data
from the NIMS sensor node (Harmon et al., 2006) deployed at a lake near the University of
California, Merced. For the three monitoring problems, [T], [P], and [L], we discretize the
space into 46, 167 and 86 locations each, respectively. For [T], we consider the empirical
covariance matrix of temperature sensor measurements obtained over a period of 5 days.
For [P], we consider the empirical covariance of 50 years of data, which we preprocessed
as described by Krause et al. (2007b). For [L], we train a nonstationary Gaussian Process
using data from a single scan of the lake by the NIMS sensor node, using a method described
by Krause and Guestrin (2007b).

In the geostatistics literature, the predominant choice of optimization algorithms for
selecting locations in a GP to minimize the (maximum and average) predictive variance are
carefully tuned local search procedures, prominently simulated annealing (cf., Sacks and
Schiller 1988; Wiens 2005; van Groenigen and Stein 1998). We compare our Saturate
algorithm against a state-of-the-art implementation of such a simulated annealing (SA)
algorithm, first proposed by Sacks and Schiller (1988). We use an optimized implementa-
tion described recently by Wiens (2005). This algorithm has 7 parameters which need to
be tuned, describing the annealing schedule, distribution of iterations among several inner
loops, etc. We use the parameter settings as reported by Wiens (2005), and present the
best result of the algorithm among 10 random trials. In order to compare observation sets
of the same size, we called Saturate with α = 1.

Figures 6(a), 6(c) and 6(e) compare simulated annealing, Saturate, and the greedy
algorithm which greedily selects elements which decrease the maximum variance the most
on the three data sets. We also used Saturate to initialize the simulated annealing al-
gorithm (using only a single run of simulated annealing, as opposed to 10 random trials).
In all three data sets, Saturate obtains placements which are drastically better than the
placements obtained by the greedy algorithm. Furthermore, the performance is very close
to the performance of the simulated annealing algorithm. In our largest monitoring dataset
[P], Saturate even strictly outperforms the simulated annealing algorithm when selecting
30 and more sensors. Furthermore, as Figure 7 shows, Saturate is significantly faster than
simulated annealing, by factors of 5-10 for larger problems. When using Saturate in or-
der to initialize the simulated annealing algorithm, the resulting performance almost always
resulted in the best solutions we were able to find with any method, while still executing
faster than simulated annealing with 10 random restarts as proposed by Wiens (2005).
These results indicate that Saturate compares favorably to state-of-the-art local search
heuristics, while being faster, requiring no parameters to tune, and providing theoretical
approximation guarantees.

Optimizing for the maximum variance could potentially be considered too pessimistic.
Hence we compared placements obtained by Saturate, minimizing the maximum marginal
posterior variance, with placements obtained by the greedy algorithm, where we minimize
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Figure 6: (a,c,e) Saturate, greedy and SA on the (a) precipitation, (b) building temperature and (c) lake
temperature data. Saturate performs comparably with the fine-tuned SA algorithm, and outperforms it
for larger placements. (b,d,f) Optimizing for the maximum variance (using Saturate) leads to low average
variance, but optimizing for average variance (using greedy) does not lead to low maximum variance.

the average marginal variance. Note, that, whereas the maximum variance reduction is
non-submodular, the average variance reduction is (often) submodular (Das and Kempe,
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Figure 7: Running time for algorithms on the precipitation data set [P].

2007), and hence the greedy algorithm can be expected to provide near-optimal placements.
Figures 6(b), 6(d) and 6(f) present the maximum and average marginal variances for both
algorithms. On all three data sets, our results show that if we optimize for the maximum
variance we still achieve comparable average variance. If we optimize for average variance
however, the maximum posterior variance remains much higher.

8.2 Robust Experimental Design

We consider the robust design of experiments (cf., Section 6.3) for the Michaelis-Menten
mass-action kinetics model, as discussed by Flaherty et al. (2006). The goal is least-square
parameter estimation for a function y = f(x, θ), where x is the chosen experimental stimulus
(the initial substrate concentration S0), and θ = (θ1, θ2) are two parameters as described
by Flaherty et al. (2006). The stimulus x is chosen from a menu of six options, x ∈
{1/8, 1, 2, 4, 8, 16}, each of which can be repeatedly chosen. The goal is to produce a frac-
tional design w = (w1, . . . , w6), where each component wi measures the relative frequency
according to which the stimulus xi is chosen. Since f is nonlinear, f is linearized around an
initial parameter estimate θ0 = (θ01, θ02), and approximated by its Jacobian Vθ0 . Classical
experimental design considers the error covariance of the least squares estimate θ̂, Cov(θ̂ |
θ0,w) = σ2(V T

θ0
WVθ0)

−1, where W = diag(w), and aims to find designs w which minimize
this error covariance. E-optimality, the criterion adopted by Flaherty et al. (2006), measures
smallness in terms of the maximum eigenvalue of the error covariance matrix. The optimal
w can be found using Semidefinite Programming (SDP) (Boyd and Vandenberghe, 2004).

The estimate Cov(θ̂ | θ0,w) depends on the initial parameter estimate θ0, where lin-
earization is performed. However, since the goal is parameter estimation, a “certain circu-
larity is involved” (Flaherty et al., 2006). To avoid this problem, Flaherty et al. (2006) find
a design wρ(θ0) by solving a robust SDP which minimizes the error size, subject to a worst-
case perturbation ∆ on the Jacobian Vθ0 ; the robustness parameter ρ bounds the spectral
norm of ∆. As evaluation criterion, Flaherty et al. (2006) define a notion of efficiency, which
is the error size of the optimal design with correct initial parameter estimate, divided by
the error when using a robust design obtained at the wrong initial parameter estimates, i.e.,
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Figure 8: Efficiency of robust SDP of Flaherty et al. (2006) and Saturate on a biological experimental
design problem. (a) Low assumed uncertainty in initial parameter estimates: SDP performs better in region
C, Saturate performs better in region A. (b) High assumed uncertainty in initial parameter estimates:
Saturate outperforms the SDP solutions.

efficiency ≡ λmax[Cov(θ̂ | θtrue,wopt(θtrue)))]

λmax[Cov(θ̂ | θtrue,wρ(θ0))]
,

where wopt(θ) is the E-optimal design for parameter θ. They show that for appropriately
chosen values of ρ, the robust design is more efficient than the optimal design, if the initial
parameter θ0 does not equal the true parameter.

While their results are very promising, an arguably more natural approach than per-
turbing the Jacobian would be to perturb the initial parameter estimate, around which
linearization is performed. For example, if the function f describes a process which behaves
characteristically differently in different “phases”, and the parameter θ controls which of
the phases the process is in, then a robust design should intuitively “hedge” the design
against the behavior in each possible phase. In such a case, the uniform distribution (which
the robust SDP chooses for large ρ) would not be the most robust design.

If we discretize the space of possible parameter perturbations (within a reasonably cho-
sen interval), we can use Saturate to find robust experimental designs. While the classical
E-optimality is not submodular (Krause et al., 2007b), Bayesian A-optimality is (usually)
submodular (Das and Kempe, 2007; Krause et al., 2007b). Here, the goal is to minimize the
trace instead of maximum eigenvalue size of the covariance matrix. Furthermore, we equip
the parameters θ with an uninformative normal prior (which we chose as diag([202, 202]))
as typically done in Bayesian experimental design. We then minimize the expected trace of
the posterior error covariance, tr(Σθ|A). Hereby, A is a discrete design of 20 experiments,
where each option xi can be chosen repeatedly. In order to apply Saturate, for each θ0,
we define Fθ0(A) as the normalized variance reduction

Fθ0(A) =
1

Zθ0

(
tr
(
Σ(θ0)

θ

)
− tr

(
Σ(θ0)

θ|A

))
.

The normalization Zθ0 is chosen such that Fθ0(A) = 1 if

A = argmax
|A′|=20

Fθ0(A′),
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i.e., if A is chosen to maximize only Fθ0 . Saturate is then used to maximize the worst-case
normalized variance reduction.

We reproduced the experiment of Flaherty et al. (2006), where the initial estimate of the
second component θ02 of θ0 was varied between 0 and 16, the “true” value being θ2 = 2. For
each initial estimate of θ02, we computed a robust design, using the SDP approach and using
Saturate, and compared them using the efficiency metric of Flaherty et al. (2006). Note
that this efficiency metric is defined with respect to E-optimality, even though we optimize
Bayesian A-optimality, hence potentially putting Saturate at a disadvantage. We first
optimized designs which are robust against a small perturbation of the initial parameter
estimate. For the SDP, we chose a robustness parameter ρ = 10−3, as reported in Flaherty
et al. (2006). For Saturate, we considered an interval around [θ 1

1+ε , θ(1 + ε)], discretized
in a 5× 5 grid, with ε = .1.

Figure 8(a) shows three characteristically different regions, A, B, C, separated by ver-
tical lines. In region B which contains the true parameter setting, the E-optimal design
(which is optimal if the true parameter is known, i.e., θ02 = θ2) performs similar to both
robust methods. Hence, in region B (i.e., small deviation from the true parameter), robust-
ness is not really necessary. Outside of region B however, where the standard E-optimal
design performs badly, both robust designs do not perform well either. This is an intuitive
result, as they were optimized to be robust only to small parameter perturbations.

Consequently, we compared designs which are robust against a large parameter range.
For SDP, we chose ρ = 16.3, which is the maximum spectral variation of the Jacobian when
we consider all initial estimates from θ02 varying between 0 and 16. For Saturate, we
optimized a single design which achieves the maximum normalized variance reduction over
all values of θ02 between 0 and 16. Figure 8(b) shows, that in this case, the design obtained
by Saturate achieves an efficiency of 69%, whereas the efficiency of the SDP design is only
52%. In the regions A and C, the Saturate design strictly outperforms the other robust
designs. This experiment indicates that designs which are robust against a large range of
initial parameter estimates, as provided by Saturate, can be more efficient than designs
which are robust against perturbations of the Jacobian (the SDP approach).

8.3 Outbreak Detection

Consider a city water distribution network, delivering water to households via a system of
pipes, pumps, and junctions. Accidental or malicious intrusions can cause contaminants to
spread over the network, and we want to select a few locations (pipe junctions) to install
sensors, in order to detect these contaminations as quickly as possible (cf., Section 6.3).
In August 2006, the Battle of Water Sensor Networks (BWSN) (Ostfeld et al., 2006) was
organized as an international challenge to find the best sensor placements for a real (but
anonymized) metropolitan water distribution network, consisting of 12,527 nodes. In this
challenge, a set of intrusion scenarios is specified, and for each scenario a realistic simulator
provided by the EPA (Rossman, 1999) is used to simulate the spread of the contaminant for
a 48 hour period. An intrusion is considered detected when one selected node shows posi-
tive contaminant concentration. BWSN considered a variety of impact measures, including
the time to detection (called Z1), and the size of the affected population calculated using
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Figure 9: (a,b) compare Saturate, greedy and SA in the water network setting, when optimizing worst-
case detection time (Z1, (a)) and affected population (Z2, (b)). Saturate performs comparably to SA
for Z2 and strictly outperforms SA for Z1. (c,d) compare optimizing for the worst-case vs. average-case
objectives. Optimizing for the worst-case leads to good average case performs, but not vice versa.

a realistic disease model (Z2). The goal of BWSN was to minimize the expectation of the
impact measures Z1 and Z2 given a uniform distribution over intrusion scenarios.

In this paper, we consider the adversarial setting, where an opponent chooses the con-
tamination scenario with knowledge of the sensor locations. The objective functions Z1 and
Z2 are in fact submodular for a fixed intrusion scenario (Leskovec et al., 2007), and so the
robust optimization problem of minimizing the impact of the worst possible intrusion fits
into our formalism. For these experiments, we consider scenarios which affect at least 10%
of the network, resulting in a total of 3424 scenarios. Figures 9(a) and 9(b) compare the
greedy algorithm, Saturate and the simulated annealing (SA) algorithm for the problem
of maximizing the worst-case detection time (Z1) and worst-case affected population (Z2).

Interestingly, the behavior is very different for the two objectives. For the affected pop-
ulation (Z2), greedy performs reasonably, and SA sometimes even outperforms Saturate.
For the detection time (Z1), however, the greedy algorithm did not improve the objective
at all, and SA performs poorly. The reason is that for Z2, the maximum achievable scores,
Fi(V), vary drastically, since some scenarios have much higher impact than others. Hence,
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Figure 10: Experiments on trading off worst-case and average-case penalties on the water network [W]
data, minimizing detection time (a) and affected population (b).

there is a strong “gradient”, as the worst-case objective changes quickly when the high
impact scenarios are covered. This gradient allows greedy and SA to work well. On the
contrary, for Z1, the maximum achievable scores, Fi(V), are constant, since all scenarios
have the same simulation duration. Unless all scenarios are detected, the worst-case detec-
tion time stays constant at the simulation length. Hence, many node exchange proposals
considered by SA, as well as the addition of a new sensor location by greedy, do not change
the worst-case objective, and the algorithms have no useful performance metric.

Figures 9(c) and 9(d) compare the placements of Saturate (when optimizing the worst-
case penalty), and greedy (when optimizing the average-case penalty, which is submodular).
Similarly to the results in the GP setting, optimizing the worst-case score leads to reason-
able performance in the average case score, but not necessarily vice versa (especially when
considering the detection time).

We also performed experiments trading off the worst-case and average-case penalty re-
ductions, using the approach discussed in Section 7.5. We first ran the greedy algorithm to
optimize the average-case score, and then ran Saturate to optimize the worst-case score.
We considered the average-case scores cgreedy

ac and cSaturate
ac obtained by both algorithms,

and uniformly discretized the interval bounded by these average-case scores. For each score
level cac in the discretization, we use the modified Saturate algorithm as described in
Section 7.5, maximizing the worst-case score, subject to a constraint on the average-case
score. Each possible value of the constraint on cac can lead to a different solution, trading
off average- and worst-case scores. Figure 10(a) presents the tradeoff curve obtained in this
fashion for the detection time (Z1) metric, for different numbers k of placed sensors. We
generally observe that there is more variability in the worst-case score than in the average-
case score. We can also see that when placing 5 sensors, there is a prominent knee in the
tradeoff curve, effectively achieving the minimum worst-case penalty but drastically reduc-
ing the average-case penalty incurred when compared to only optimizing for the worst-case
score. The other tradeoff curves do not exhibit quite such prominent knees, but neverthe-
less allow flexibility in trading off worst- and average-case scores. Figure 10(b) presents the
same experiment for the population affected (Z2) metric. Here, we notice prominent knees
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Figure 11: (a,b) compare Greedy (ignoring sensor failures) and Saturate (optimizing for the worst-case
sensor failure) on water network data with detection time (a) and population affected (b) scores.

when placing k = 15 and 20 sensors. We can generally conclude that trading off average-
and worst-case scores allows to effectively achieve a compromise between too pessimistic
(only optimizing for the worst case) and optimistic (only optimizing for the average case)
objectives.

8.4 Sensor Failures

We also performed experiments on analyzing worst-case sensor failures (cf., Section 6.5). We
consider the outbreak detection application, and optimize the average score, i.e., F (A) =
1
m

∑
i Fi(A) (modeling, e.g., accidental contaminations). We use Saturate in order to op-

timize the modified objective function F
′
c described in Section 6.5.1, for increasing numbers

of sensors k. We also use the greedy algorithm to optimize sensor placements, ignoring
possible sensor failures. For both algorithms, we compute the expected scores (penalty
reductions Z1 and Z2) in the case of no sensor failure, and in the case of a single, worst-case
sensor failure. Figure 11(a) presents the results for the time to detection objective (Z1). We
can see, that initially, with small numbers of sensors, failures can strongly diminish the Z1

score. However, as the number of sensors increases, the placement scores optimized using
Saturate for sensor failures quickly approach those of Greedy in the case of no sensor
failures. Hence, even if only a small number of sensors are placed, Saturate can quickly
exploit redundancy and find sensor placements, which perform well both with and without
sensor failures. On the other hand, when not taking sensor failures into account, such fail-
ures can drastically diminish the utility of a placed set of sensors. Figure 11(b) presents
analogous results when minimizing the affected population (Z2).

8.5 Parameter Uncertainty

We also conducted experiments on selecting variables under parameter uncertainty (cf.,
Section 6.2). More specifically, we consider a sensor placement problem for monitoring
temperature in a building. In such a problem, we would like to place sensors in order to
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Figure 12: [T] Average and Maximum variance when optimizing for four different covariance models
obtained during different parts of the day.

get accurate predictions at various times of the day. However, since phenomena such as
temperature in buildings change over time, at different times of the day, different placements
would be most informative.

In our experiment, we consider the temperature data set [T], and learn four models,
described by parameters θ1, . . . , θ4, during four six-hour time periods over the day: 12am-
6am, 6am-12pm, 12pm-6pm and 6pm-12am. As models, we use the empirical covariances
Σ(θi) from the corresponding time periods of the 5 day historical training data. We also
use the single model Σ for the entire day, as described in Section 8.1. We then use the
greedy algorithm to optimize sensor placement of increasing sizes for the single model Σ,
optimizing the average variance reduction objective function. Similarly, we use Saturate
to optimize the minimum variance reduction over the four models Σ(i), normalized by the
average variance over the entire space.

Subsequently, we used both placements to compute the average Root Mean Squared
(RMS) prediction error over the entire day on 2 days of held out test data. We also computed
the maximum RMS error over the four six-hour time periods. Figure 12 presents the results
of this experiment. While the average RMS error is roughly equal for both placements, the
maximum RMS error is larger for the greedy sensor placement, as compared to the robust
placement of Saturate, especially for small numbers of sensors (six and less sensors).

9 Reducing the Number of Objective Functions

In many of the examples considered in Section 6, the number m of objective functions Fi

can be quite large (e.g., one Fi per parameter setting, or outbreak scenario), which impacts
both the running time (which depends linearly on m) and the approximation guarantees
(which depend logarithmically on m) of Saturate. Hence, showing that we can work with
a smaller set of objectives has both computational and theoretical advantages.
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9.1 Removal of Dominated Strategies

One direct approach to eliminate objective functions (and hence speed up computation and
improve the approximation guarantee) is to remove dominated objectives. An objective
function Fi is dominated by another objective Fj , if Fi(A) ≥ Fj(A) for all sets A ⊆ V.
Hence, an Fi is dominated by Fj if an adversary can always reduce our score by choosing Fj

instead of Fi. For example, when considering sensor failures or feature deletion (as discussed
in Section 6.5), for two sets B ⊆ B′, the objective FB is dominated by the objective FB′ , i.e.,
the score decreases more if more sensors fail. Similarly, in the case of outbreak detection,
some outbreak scenarios have much more impact on the network than others. Even though
objective functions measuring the impact reductions Fi for scenarios i ∈ I might not be
exactly dominated, they might be ε-dominated, i.e., Fi(A) ≥ Fj(A) − ε for some ε > 0
and all A ⊆ V. In such cases, these approximately dominated scenarios can be removed,
incurring at most an error of ε in the quality of the approximate solution.

9.2 Constraint Generation

Another possible approach to reduce the number m of objective functions is constraint gen-
eration (cf., Benders 1962). In this approach, one starts with an arbitrary single objective
function, F1. In iteration j + 1, (j ≥ 1), after functions F1, . . . , Fj have been considered,
one searches for set Aj maximizing maxA min1≤i≤j Fj(A). Subsequently, one selects Fj+1

minimizing mini Fi(Aj). The iteration terminates once Fj+1 is contained in the already
selected objectives F1, . . . , Fj . Another option is to terminate once the new objective Fj+1

is ε-dominated by some objective Fi, 1 ≤ i ≤ j. In this case, the approximate solution is
guaranteed to incur at most an absolute error of ε as compared to the optimal solution.

In order to implement this constraint generation scheme, one must be able to efficiently
solve problem mini Fi(Aj). In some settings, this problem might admit an efficient (perhaps
approximate) solution. In many problems, such as the experimental design setting, one
actually wants to perform well against an (uncountably) infinite set of possible objective
functions, corresponding to parameters θ ∈ D in some (typically compact and convex set
D). In such a setting, minθ Fθ(Aj) could potentially be (at least heuristically) solved using
a numerical optimization approach such as a conjugate gradient method.

10 Related Work

10.1 Submodular Function Optimization

In their seminal work, Nemhauser et al. (1978) and Wolsey (1982) analyze the greedy
algorithm for optimizing monotonic submodular functions. Lovász (1983) discusses the re-
lationship between submodular functions and convexity. He also shows that under certain
conditions, the minimum of two submodular functions remains submodular (and hence can
be efficiently optimized using the greedy algorithm). The objective functions resulting from
observation selection problems typically do not satisfy these properties, and, as we have
shown, the greedy algorithm can perform arbitrarily badly. Fujito (2000) uses submodular-
ity of truncated functions to find sets with partial submodular coverage; however, they do
not consider the case of multiple objectives, which we address in this paper. Bar-Ilan et al.
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(2001) consider covering problems for a generalization of submodular functions; they use
a similar binary search technique combined with multiple applications of the greedy algo-
rithm. Their approach does not apply to maximizing the minimum over a set of submodular
functions. Golovin and Streeter (2008) present an algorithm for online maximization of a
single submodular set function. An interesting question for future work would be to inves-
tigate whether our approach for maximizing the minimum over a collection of submodular
functions can be generalized to an online setting as well.

A large part of the theory of optimizing submodular functions is concerned with min-
imizing instead of maximizing a single submodular function. Queyranne (1995) present
the first algorithm for minimizing symmetric submodular functions; Iwata et al. (2001) and
Schrijver (2000) present combinatorial algorithms for minimizing arbitrary (not necessarily
symmetric) submodular functions.

10.2 Robust Discrete Optimization

Robust optimization of submodular functions is an instance of a robust discrete optimization
problem. In such problems, the goal generally is to perform well with respect to a worst-case
choice of evaluation scenario. Other instances of robust discrete problems have been studied
by a number of authors. Kouvelis and Yu (1997) introduce several notions of robust discrete
problems, presents hardness results and a class of robust problems that can be optimally
solved. Averbakh (2001) shows that a class of robust optimization problems (selecting a k-
element subset of elements of minimum cost) is solvable in polynomial time if the uncertain
cost coefficients are contained in an interval, but NP-hard under an arbitrary (finite) set of
adversarially chosen scenarios. Bertsimas and Sim (2003) proposes a class of robust mixed
integer programs, accommodating uncertainty both in cost and data coefficients. They show
that in certain cases (robust matching, spanning tree, etc.), the robust formulations are
solvable in polynomial time if the non-robust problem instances are solvable in polynomial
time. In the case of NP-hard but α-approximable non-robust problems, they show that
the corresponding robust formulations also remain α-approximable. However, their results
do not transfer to our setting of robust submodular optimization, since in this case, even
though non-robust solutions are (1 − 1/e) approximable, the non-robust formulation does
not admit any approximation guarantees (cf., Section 3).

10.3 Robust Methods in Statistics

10.3.1 Robust Experimental Design

Experimental design under parameter uncertainty has been studied in statistics; most of
the earlier work is reviewed in the excellent survey of Chaloner and Verdinelli (1995). In
the survey, the authors discuss Bayesian approaches to handling parameter uncertainty, as
well as robust Bayesian (cf., Berger 1984) approaches, which perform worst-case analyses
over prior and likelihood functions. In experimental design, most approaches have focused
on locally optimal designs, i.e., those selecting an optimal design based on a linearization
around an initial parameter estimate, for reasons of computational tractability. In order
to cope with uncertainty in the initial parameter estimates around which linearization is
performed, heuristic techniques have been developed, such as the SDP based approach of
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Flaherty et al. (2006), or a clustering heuristic described by Dror and Steinberg (2006). We
are not aware of approaches which allow to find designs in the context of such parameter
uncertainty that bear theoretical guarantees similar to the approach described in this paper.

10.3.2 Minimax Kriging

Minimizing the maximum predictive variance in Gaussian Process regression has been pro-
posed as a design criterion by Burgess et al. (1981) and since then extensively used. (cf.,
Sacks and Schiller, 1988; van Groenigen and Stein, 1998). To our knowledge, prior to this
work, no algorithms with approximation guarantees are known for this criterion.

Several authors consider the problem of spatial prediction under unknown covariance
parameters. Pilz et al. (1996) describes an approach for selecting – for a fixed set of observed
sites – the Kriging estimate minimizing the maximum prediction error, where the worst-
case over a fixed class of covariance functions is assumed. Wiens (2005) consider a similar
setting but also addresses the design problem of choosing locations in order to minimize the
mean squared prediction error against the worst-case covariance function. Algorithmically,
Wiens (2005) use the simulated annealing algorithm described in Section 8.1 with 7 tuned
parameter settings. Note that the Saturate algorithm can be used in this context as well.

10.4 Sensor Placement and Facility Location

Carr et al. (2006) consider the problem of robust sensor placements in water distribution
networks. They formulate Mixed Integer Programs for selecting sensor placements robust
against uncertainty in adversarial strategies and in water demands. Due to computational
complexity of Mixed Integer Programming, in their experiments, they used only small net-
works of at most 470 nodes. Saturate can potentially be applied to handle uncertainty
in demands as well, which is an interesting direction for future work. Watson et al. (2006)
consider different notions of robustness in the context of water distribution networks, in-
tended to remove some of the pessimistic assumptions of purely robust sensor placements.
They develop integer programs, as well as heuristics, and apply them to networks of similar
size as the one considered in this paper. Their local search heuristic performs a sequence of
local moves similar to those performed by the simulated annealing algorithm considered in
Section 8.3, and does not provide any theoretical guarantees.

Closely related to the adversarial outbreak detection problem is the k-center problem.
In this problem, one is given a graph G = (V, E) along with a distance function defined over
pairs of nodes in V. The goal is to select a subset A ⊆ V of size at most k, such that the
maximum distance between any unselected node s ∈ V \ A and its nearest center s′ ∈ A
is minimized. For this problem, Minieka (1970) discuss a technique reducing the solution
of this problem to a sequence of set cover problems combined in a binary search, similar in
spirit to Saturate. However, they do not discuss any implications regarding approximation
guarantees, and do not consider the case of arbitrary submodular functions. Mladenovic
et al. (2003) presents a Tabu search heuristic for k-center, also without theoretical guar-
antees. Gonzalez (1985) and Hochbaum and Shmoys (1985) present a 2 approximation for
the k-center problem in the case of symmetric distance functions satisfying the triangle
inequality. Panigrahy and Vishwanathan (1998) present a log∗(n) approximation in the
case of distance functions satisfying the asymmetric triangle inequality, which is shown to
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be best possible by Chuzhoy et al. (2005). Chuzhoy et al. (2005) also show that even for
bicriterion algorithms (such as Saturate), k-center is log∗(n) hard to approximate, even if
O(k) additional centers can be selected. Note that Saturate can be used to solve k-center
problems (without any requirements on symmetry or on the triangle inequality), hence the
bicriterion hardness result of Chuzhoy et al. (2005) gives further evidence on the tightness
of the guarantees described in Section 5.

Anthony et al. (2008) consider robust and stochastic notions of facility location prob-
lems (such as k-center and k-median, where, instead of the maximum distance the average
distance is optimized). In contrast to the robust problems in this paper which want to
select k elements to maximize the minimum value achieved by these k elements over the m
scenarios, the problems in Anthony et al. (2008) try to select k “centers” in a metric space
to minimize the maximum cost incurred over the m scenarios—where the cost is some func-
tion of the distances between non-selected vertices to the selected centers. For several such
robust cost-minimization problems in cases where distances satisfy the symmetric triangle
inequality, they present an algorithm that opens k “centers” and achieves an approximation
ratio of O(log n+log m) (where n is the number of nodes in the graph, and m is the number
of scenarios): this should be compared to the impossibility results for approximating robust
value-maximization problems presented in this paper.

10.5 Relationship to Game Theory and Allocation Problems

The RSOS problem can be viewed as the problem of finding an optimal pure strategy
for a zero-sum matrix game with player ordering. In this matrix game, the rows would
correspond to the possible sensor placements, and the columns would correspond to the
objective functions Fi. The entry for cell (A, Fi) is our payoff Fi(A). In the RSOS problem,
we want to select a row of the matrix, our adversary selects a column Fi (knowing our choice
A, hence the player ordering) minimizing our score Fi(A). A very related class of game
theoretic problems are allocation problems. In these problems, one is typically given a set V
of objects, and the goal is to allocate the objects to m agents (bidders), each of whom has
a (potentially different) valuation function Fi(Ai) defined over subsets of received items Ai.
The problem of finding the best such allocation (partition) is NP-hard, but recently, several
approximation algorithms have been proposed. The allocation problem most similar to the
RSOS problem is

π∗ = argmax
partition π=(A1,...,Am)

min
i

Fi(Ai).

The main difference is that in the allocation problem, the full set V is partitioned into
subsets A1, . . . ,Am, and the functions Fi are evaluated on the respective subset Ai each.
In the case of additive objective functions Fi, Asadpour and Saberi (2007) provide an
O(
√

k log3 k) approximation algorithm. In the case of the function being subadditive (which
is implied by, and is more general than, submodularity), Ponnuswami and Khot (2007)
present an O(2k−1) approximation algorithm. For settings where the sum of the valuations
is optimized, i.e.,

π∗ = argmax
partition π=(A1,...,Am)

∑
i

Fi(Ai),
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Feige (2006) develop a randomized 2-approximation for subadditive and 1 − 1/e approxi-
mation for submodular valuation functions.

The problem of trading off safety (i.e., improvements in worst-case scores) and average
case performance has been studied by several authors. Johanson et al. (2007) consider the
problem of opponent modeling in games, and develop an algorithm which can exploit op-
ponents which it can accurately model, and falls back to a safe (Nash) strategy in case the
models do not capture the opponents behavior. Their algorithm has a tradeoff parameter
which controls the eagerness of exploiting, and they present Pareto-curves similar to those
presented in Section 7.5. However, their approach does not apply to our robust submodular
observation selection setting. Watson et al. (2006) consider different optimization problem
formulations allowing to control risk in the water distribution network monitoring applica-
tion, but they only present heuristic algorithms without guarantees for coping with large
networks.

10.6 Relationship to Machine Learning

Submodular function optimization has found increasing use in machine learning. The al-
gorithm of Queyranne (1995) for minimizing symmetric submodular functions has been
used for learning graphical models by Narasimhan and Bilmes (2004) and for clustering by
Narasimhan et al. (2005). We are not aware of any work on optimizing the minimum over
a collection of submodular functions.

Observation selection approaches have been used in the context of active learning (cf.,
Sollich, 1996; Freund et al., 1997; Axelrod et al., 2001; MacKay, 1992; Cohn, 1994). Test
point selection has been used to minimize average predictive variance in Gaussian Processes
regression by Seo et al. (2000), and to speed up Gaussian Process inference by Seeger et al.
(2003); Lawrence et al. (2003). In these approaches, the sequential setting is considered,
where previous measurements are taken into account when deciding on the next observation
to make. The extension of the robust techniques discussed in this paper, which address the
a priori selection problem (i.e., observations are selected before measurements are obtained),
to the sequential setting is an important direction for future research.

Balcan et al. (2006) consider the problem of active learning in the presence of adversarial
noise. While their method is very different, our results potentially generalize to active
learning settings, since, as Hoi et al. (2006) show, certain active learning objectives are
(approximately) submodular.

Price and Messinger (2005) consider the problem of constructing recommendation sets,
and show that this problem is an instance of a k-median problem (cf., Section 10.4). The
analogue of the k-center problem in the preference set construction would be to construct a
preference set which maximizes the utility of displayed items under worst-case instantiation
of the parameters. This analogue seems natural, and an interesting direction for future
work would be to explore the use of Saturate in the recommendation set context.

10.7 Relationship to Previous Work of the Authors

A previous version of this paper appeared in (Krause et al., 2007a). The present version is
significantly extended, providing new theoretical analyses (described in Section 7, Section 9),
new examples demonstrating the generality of the observation selection problem (Section 6)
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and additional empirical results (Section 8). In previous work, the authors demonstrated
that several important observation selection objectives are submodular (Krause et al., 2007b;
Leskovec et al., 2007; Krause and Guestrin, 2005, 2007a). Krause et al. (2006) consider the
problem of optimizing the placement of a network of wireless sensors. In this context,
the chosen locations must be both informative and communicate well, constraining the
chosen locations not to be too far apart. Singh et al. (2007); Meliou et al. (2007) consider
the problem of planning informative paths for multiple robots, where the informativeness is
modeled using a submodular objective function, and a constraint on path lengths connecting
the locations is specified. In the context of such more complex (communication and path)
constraints – similarly to the robust setting – the greedy algorithm can fail arbitrarily
badly, and more complex algorithms have to be developed. Using the techniques described
in Section 7.4, both approaches can be made robust with respect to a worst-case submodular
function.

11 Conclusions

In this paper, we considered the RSOS problem of robustly selecting observations which
are informative with respect to a worst-case submodular objective function. We demon-
strated the generality of this problem, and showed how it encompasses the problem of sensor
placements which minimize the maximum posterior variance in Gaussian Process regression,
variable selection under parameter uncertainty, robust experimental design, and detecting
events spreading over graphs, even in the case of adversarial sensor failures. In each of these
settings, the individual objectives are submodular and can be approximated well using, e.g.,
the greedy algorithm; the robust objective, however, is not submodular.

We proved that there cannot exist any approximation algorithm for the robust opti-
mization problem if the constraint on the observation set size must be exactly met, unless
P = NP. Consequently, we presented an efficient approximation algorithm, Saturate,
which finds observation sets which are guaranteed to be least as informative as the optimal
solution, and only logarithmically more expensive. In a strong sense, this guarantee is the
best possible under reasonable complexity theoretic assumptions.

We provided several extensions to our methodology, accommodating more complex cost
functions (non-uniform observation costs, communication and path costs). Additionally,
we described how a compromise between worst-case and average-case performance can be
achieved. We also discussed several approaches for reducing the number of objective func-
tions, improving both running times and theoretical guarantees.

We extensively evaluated our algorithm on several real-world problems. For Gaussian
Process regression, for example, we showed that Saturate compares favorably to state-
of-the-art heuristics, while being simpler, faster, and providing theoretical guarantees. For
robust experimental design, Saturate performs favorably compared to SDP based ap-
proaches. We believe that the ideas developed in this paper will help the development of
robust monitoring systems and provide new insights for adapting machine learning algo-
rithms to cope with adversarial environments.
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A Proofs

[Theorem 3] Consider a hitting set instance with m subsets Si ⊆ V on a ground set V. Our
task is to select a set A ⊆ V with which intersects all sets Si, and such that |A| = k is as
small as possible. For each set Si, define a function Fi such that Fi(A) = 1 if A intersects
Si, and 0 otherwise. It can be seen that Fi is clearly monotonic. Fi is also submodular,
since for A ⊆ B ⊆ V and x ∈ V \ B, if Fi(B) = 0 and Fi(B ∪ {x}) = 1, then it x ∈ Si,
hence Fi(A ∪ {x}) = 1 and Fi(A) = 0. Now assume the optimal hitting set A∗ is of size
k. Hence mini Fi(A∗) = 1. If there were an algorithm for solving Problem (2.2) with
approximation guarantee α(n) it would select a set A′ of size |A′| ≤ k with mini Fi(A′) ≥
α(n) mini Fi(A∗) = α(n) > 0. But mini Fi(A′) > 0 implies mini Fi(A′) = 1, hence A′ would
be a hitting set. Hence, this approximation algorithm would be able to decide, whether
there exists a hitting set of size k, contradicting the NP-hardness of the hitting set problem
(Feige, 1998).

[Theorem 5] Lemma 4 proves that during each of the iterations of the saturation al-
gorithm it holds that mini Fi(A∗) ≤ cmax, where A∗ is an optimal solution. Further-
more, it holds that mini Fi(Abest) ≥ cmin, and Abest ≤ αk. Since the Fi are integral, if
cmax − cmin < 1

m then it must hold that mini Fi(Abest) ≥ mini Fi(A∗) as claimed by Theo-
rem 5.

For the running time, since at the first iteration, cmax− cmin ≤ 1
m

∑
i Fi(V), and cmax−

cmin is halved during each iteration, it follows that after 1+dlog2

∑
i Fi(V)e iterations, cmax−

cmin < 1
m , at which point the algorithm terminates. During each iteration, Algorithm 1 is

invoked once, which requires O(|V|2m) function evaluations.
[Theorem 6] We use the same hitting set construction as in Theorem 3. If there were an

algorithm for selecting a set A′ of size |A′| ≤ βk with mini Fi(A′) = 1, and β ≤ (1 − ε)α,
for some fixed ε > 0, then we would have an approximation algorithm for hitting set with
guarantee (1− ε) log m which would imply NP ⊆ DTIME(nlog log n) (Feige, 1998).

[Theorem 8] The proof is analogous to the proof of Theorem 5. The approximation
guarantee α is established by noticing that the greedy algorithm is applied to the modified
(integral) objective

F cwc,cac(A) =
∑

i

min{Fi(A), cwc}+ min

{∑
i

Fi(A),mcac

}
.
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The guarantee α is obtained from the analysis of the greedy submodular coverage algorithm
of Wolsey (1982), similar to Lemma 4. Approximate Pareto-optimality follows directly from
Pareto-optimality of any solution to (7.3).

B Scalarization

In the scalarized objective version of the problem we optimize the objective

Fλ(A) = λFwc(A) + (1− λ)Fac(A)

for a fixed parameter λ ∈ [0, 1]. The scalarization parameter λ can be though of as a prior:
with λ probability we expect to face an adversarial objective, while with probability 1− λ
we expect an objective drawn from the uniform distribution4 Fac.

It turns out that this formulation is equivalent to facing an adversary who, rather than
being able to pick any Fi arbitrarily, instead chooses a probability distribution on the Fi

from some convex set of probability distributions Pwc. If Pwc = ∆(m), the set of all possible
probability distributions on the m functions Fi, then we recover the fully adversarial problem
as the adversary can choose a probability distribution that puts probability 1 on the best
response to our chosen sensor placements:

Fwc(A) = min
p∈∆(m)

∑
i

piFi(A) (B.1)

The scalarized multi-criterion objective Fλ corresponds to a more interesting convex set,

Pλ
wc =

{
q | qi = λpi +

1− λ

m
for some p ∈ ∆(m)

}
,

which can be derived as follows:

Fλ(A) = λFwc(A) + (1− λ)Fac(A)

= λ min
p∈∆(m)

∑
i

piFi(A) + (1− λ)
∑

i

1
m

Fi(A) by (??)

= min
p∈∆(m)

∑
i

(
λpi +

1− λ

m
~1
)

Fi(A)

= min
q∈Pλ

wc

∑
i

qiFi(A).

It is straightforward to show Pλ
wc = {q | qi ≥ (1− λ)/m,

∑
i qi = 1}, and so the scalarized

multi-criterion objective is equivalent to solving the adversarial problem where the adversary
must put at least probability (1− λ)/m on every scenario.

In order to solve this problem, we recast Fλ again as

Fλ(A) =
∑

i

(λFi(A) + (1− λ)Fac(A)) .

4In fact, this argument easily generalizes to an arbitrary fixed distribution on the Fi
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The functions F λ
i = λFi(A) + (1 − λ)Fac(A) are submodular, and so we can solve the

scalarized version of the multi-criterion optimization by running an unmodified Saturate
algorithm on the set of objective functions F λ

i .
In fact, this algorithmic technique can be extended to an arbitrary convex set of prob-

ability distributions Pwc with a finite number of extreme points. An extreme point of Pwc

is a distribution that cannot be expressed as a convex combination of other distributions
in Pwc. Since the adversary knows our choice A, the optimization over Pwc to find the
best-response is the optimization of a linear objective over a bounded convex set, and so
there always exists an extreme point that is optimal.

An extreme point q is a distribution over the original Fi, and in fact corresponds exactly
to the submodular expected cost function∑

i

qiFi(A).

Hence, if we have a finite number of extreme points we can solve the set-selection problem
against an adversary constrained to play from Pwc by running Saturate on the set of
derived expected-cost functions corresponding to the extreme points.

C Examples of submodular functions

In this Section, we review several examples of submodular functions.

Cardinality of union (set cover) Perhaps the most well-known example is the cardi-
nality of union. Consider an application where we want to place a set of cameras covering
an area. With each camera, we associate a fixed field of view (e.g., a cone). Our goal is
to place the cameras such that as much area as possible is covered. More formally, we can
define a finite ground set S (consisting, e.g., of a discretization of the space to be covered
into a finite number of locations), and a collection of subsets W1, . . . ,Wn ⊆ S (each cor-
responding, e.g., to the view field of a camera when placed at one of n possible locations).
The function

F (A) =

∣∣∣∣∣⋃
i∈A
Wi

∣∣∣∣∣ ,
(which quantifies the total number locations of S covered if cameras are placed at locations
A) is a normalized, monotonic and submodular function over the set V = {1, . . . , n}. Inter-
esting extensions (preserving submodularity) allow different weights for the elements of S
(e.g., some locations are more important than others), or covering elements of S multiple
times (set multi-cover, cf., Rajagopalan and Vazirani 1998, formalizing, e.g., a setting where
we want to place the cameras with overlapping view fields such that each location is covered
a specified number of times).

Information theoretic objectives Consider an application, where we want to diagnose
a failure of a complex system, by performing a number of tests. We can model this problem
by using a set of discrete random variables XV = {X1, . . . ,Xn} indexed by V = {1, . . . , n},
which model both the hidden state of the system and the outcomes of the diagnostic tests.
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In such a setting, the joint entropy F (A) = H(XA) of subsets A ⊆ V is normalized mono-
tonic and submodular (Kelmans and Kimelfeld, 1980). In our diagnostic example, we are
interested in selecting a subset of variables which are maximally informative with respect to
a set of target variables XU , modeling the hidden state of the system. Krause and Guestrin
(2005) show that under certain conditional independence assumptions, the information gain
F (A) = I(XA;XU ) = H(XU ) − H(XU | XA) is normalized, monotonic and submodular in
A. Other applications include tracking, feature selection etc.

Another important class of observation selection problems arises in the context of mon-
itoring continuous, typically spatial phenomena (such as the temperature in a building).
Such phenomena can often be modeled using Gaussian Processes (cf., Cressie, 1991).
Krause et al. (2007b) show that in the case of Gaussian Processes, the mutual informa-
tion F (A) = I(XA;XV\A) (i.e., reduction in uncertainty about the remaining unobserved
locations V \ A) is normalized, submodular and approximately monotonic.

Variance reduction In continuous models such as Gaussian Processes, instead of using
entropy to quantify the predictive uncertainty, other loss functions such as the predictive
variance can be used. Das and Kempe (2007) show that under certain conditions, the
variance reduction F (A) = Var(Xi) − Var(Xi | XA) of a fixed random variable Xi given
observations XA is normalized, monotonic and submodular.
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