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Abstract

A Bayesian Exponential Family Harmonium (BEFH) model isgarated for topical modeling of
text and multimedia data, and for “posterior” latent sertgmtojection of such data for subsequent
data mining tasks. BEFHs are a Bayesian approach to inferend learning with the recently
proposed EFH models and their variants, which enables $radptobust estimation of the topic-
attribute coupling coefficients that are reminiscent of $h@othed topical word-probabilities in
the latent Dirichlet Allocation (LDA) model. The Langevitgarithm conjoint with an MCMC
scheme is applied for posterior inference with BEFH. An etogi Bayes method is also developed
to estimate the hyperparameters.



Keywords: Bayesian learning, latent semantics indexing, Markovrchéonte Carlo, undi-
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1 Introduction

The vast size of the text and multimedia information avdédbom digital libraries and world-
wide-web, and large amount of knowledge contained thecegates a need to organize and sum-
marize topical contents of these data. In recent yearsg tiseat growing volume of research on
applying probabilistic graphical models (GMs) to develapoaatic information distillation sys-
tems that can explore and exploit real-world data from digeyources, such as texts, images and
biological sequences.

Probabilistic graphical models provide a compact desonpbdf complex stochastic relation-
ships among random variables, which can correspond to bmttewable entities (e.g., words,
imageries) and abstract concepts (e.qg., topics, themasiuch a formalism often facilitates flexi-
ble statistical reasoning and query answering based ofeefficomputational algorithms. Inspired
by the classical approach GHtent semantic indexin@), recently there have been important ad-
vances in developing latent semantic GMs for large textu®gnd/or multimedia data, based on
either a Bayesian network (BN) or a Markov random field (MRé&i)nalism. For instance, the
probabilistic latent semantic indexingLSlI) @) method models each document as an admixture
of topic-specific distributions of words. The more recktént Dirichlet allocation(LDA) tech-
nique E|3) employs a hierarchical Bayesian extension of ptt&ating both the document-specific
topic-mixing coefficients and the topic-specific word prbitiies as random variables, under ap-
propriate conjugate priors. LDA can be extended to multi@edllections by assuming that the
unobserved “topics” are correlated with both image vadalasind word variables| (E| 2). Recently,
(Il_:'l) proposed another class of latent semantic GMs knowheasxponential family harmonium
model (EFH), which can be understood as an undirected, aneéBagesian counterpart of the
LDA model. Subsequentl 6) extended EFH tual-wing harmonium mod¢DWH) for joint
modeling of text and imagell(7) proposed th&e adapting Poisso(RAP) model which follows
the general architecture of EFH model and use conditioniakBn distributions to model observed
count data. AndﬂO) proposed a training criterion cattadtiple-conditional learningMCL) for
MRFs and EFHs. Unlike the directed GMs such as pLSI and LDAJ BBes not employ auxiliary
latent variables (i.e., the imaginary topic indicatorsdeery word) to facilitate topic mixing and
simulate data generation; and it allows a more flexible grtation of the latent topic aspects for
documents (i.e., as a point is a Euclidean space rathernhasimplex).

An important advantage of the directed latent-topic modalsh as LDA is that they can be
straightforwardly embedded in a Bayesian framework, andicalergo Bayesian training, smooth-
ing and inference. To date, the MRF-based models such as BEHD®WH have been largely
limited to a maximum likelihood (ML) framework, which is pne to undesirable effects such as
overfitting the (small) data, high variance in samplingdabsference and parameter estimation,
and indifference to prior knowledge. These limitationgniestheir utilities in many realistic data
mining scenarios where data are sparse and spurious. Theawework also makes it difficult to
fully exploit the modeling power of MRF in latent topic didiitions and to develop future exten-
sions. The unavailability of a Bayesian version of EFH istlgatue to the remarkable technical
difficulties one must overcome when working under such a &ism. It is well-known that sta-
tistical learning of EFH models from data, even under an Minfework, is technically nontrivial.
As discussed irml) anﬂlZ), Bayesian learning for geM@RdF, is even more challenging, par-
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ticularly in cases that involve latent variables as in ERHhiis paper, we attempt to address some
of this challenges: endowing EFH with a simple Bayesianrpand presenting a sampling-based
algorithm for Bayesian inference and learning.

We present Bayesian EFH (BEFH), in which a multivariate Garsprior is introduced for the
weight matrix that couples the latent topics with observidbaites in EFH (and also in DWH).
As detailed in the sequel, it is illuminative to view the wietignatrix of EFH as the matrix of word
probabilities under all topics in LDA. Under this analogyrgrior corresponds to the Dirich-
let priors for the word probabilities in LDA. It is well-knawthat methods for Bayesian infer-
ence/learning in directed GMs such as LDA does not applydatidirected GMs concerned here,
because of the intractability and non-conjugacy arisiogifthe partition function. In this paper,
we present the Langevin algorithm conjoint with a MCMC samgpkcheme for posterior infer-
ence under BEFH. We also propose an empirical Bayes methsadilwan the Langevin algorithm
for unsupervised estimation of the BEFH hyperparametegrgivaining data. Finally we show
comparisons of ML and Bayesian approaches on a synthetisetawith known parameters and a
dataset provided by TRECVID 2003 (14) with both text and imdgta.

2 From EFH to Bayesian EFH

In this section, we outline the basic structure of a BayeEigH in the context of a simple instan-
tiation of EFH for latent topic modeling of text corpus.

For completeness, we begin with a brief recap of the basic,BEldescribed nEllS) Consider
an undirected GM defined on a complete bipartite graph coinitwo layers of nodes (Fig 1).
LetH = {H,} denote the set dfidden unitsn such a graph, and & = {X;} denote the set of
input units An EFH defines the following Markov random field:

p(x, h) 8 %GXP { Z eiafia(xi> + Z )\jbg]b Z fm T gjb )} (1)
ia 7b

ijab

where{f;,(-) : Va} denotes the set of potential functions (or features) deforeéach of the
input units (indexed by) in the model, and likewisgg;,(-) : Vb} for the hidden unitsp =
{6} U {\;} U {W/"} denotes the "weights” of the corresponding potentials deiial pairs;
andZ stands for the partition function, which is a functioncf

The bipartite topology of the harmonium graph suggestsrthdes within the same layer are
conditionally independent given all nodes of the opposiyet. Specifically, from Eq1), we have
the following factored form for the between-layer conditib distribution functions;p(x/h) =
[I; p(zi|h), p(h|x) = [T, p(h;]x), and each of the singleton conditional has a simple expaient
family form:

p(zilh) = exp { Z éz‘afm(l'z‘) - Az‘({ém})}, (2)
plhyx) = exp{ > Ajngin(hy) — B;({Au})}, 3)



Figure 1. The graphical model representation for (a) a harmamo with 2 hidden units and 3 input
units.

whereA; (-) and B;(-) denote the respective log-partition functions; and théethparameters;,
and);, are defined as,

Aip = Ao + Z W2 fa(as),

where the shifts are induced by the total couplings betwexdts in the input and hidden layers.
As seen from the above definition, since all the parametetseijpint distribution under EFH can
be identified from the local conditional distributions, area determine an EFH using a bottom-up
strategy to by directly specifying the often easily comgmsible local conditionals. For instance,
as our running example in this paper, we define the followiag<sian-Bernoulli EFH (GB-EFH)
for text:

p(z:|h) = Bernoulli(z;[logit(6; + Y h;Wi;)), (4)
J

p(hilx) = N(hyl Z%Wij,l), (5)

where logita) = (1+e )" is the logistic function, and the shift of the logit-transfed

Bernoulli rated; is induced by a weighted combination of the latent uhitsit can be shown
that under this construction, we obtain an EFH with the joint

1
p(x,h) o< exp {OTX — §hTh + XTWh}. (6)

The GB-EFH models text (represented by variabteas binary occurrences of words, which is
suitable for sparse, short text such as video captions. Wiaeteling long articles, one may want
to directly model word counts; and in this case one can repkas. [4) with, e.g., a Binomial
distribution.
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Figure 2: A comparison of EFH, LDA and BEFH models over a srdgicument. Circles represent
variables, and diamond represents model parmeters. (a)fEdfléasy comparison, the hidden unit
(i.e., the topic weight coefficient§); } and the input unit$ X, } are represented as vector valued
variablesH and.X, respectively. For simplicity, only th& parameter of EFH is explicitly shown.
(b) LDA. Note the correspondence betweein LDA and H in EFH, and the fact that;’s are
random variables rather than parametdrslenotes the length of the document. (c) BEFH. Note
thatW = {IV;} are now lifted as random variables.

E-O®

It is interesting to examine side-by-side the GB-EFH and.bA model as displayed in Fi@l 2.
Note that, when treating each hidden uhjtas a representative of a latent topic aspect,[Eq.(4)
can be understood as a likelihood function of an observeibatit, such as a word occurrence,
induced by a combination of topics. Thus, the coupling mai = {W;,...,W,} in GB-EFH
is reminiscent of the word probability matr® = {5,,...,5,} in LDA, where 3; denotes the
M-dimensional vector/ denotes the size of the vocabulary) of multinomial word pimlties
under topicj. In GB-EFH each\/-vector\W; represents the set of “contributions” togitias on
each word in a vocabulary. Although structurally similarsi noteworthy that the topic mixing
mechanism of GB-EFH is very different from that of the LDA nebdin LDA the topic mixing is
achieved by marginalizing out the auxiliary topic indicatariables for each word occurrente
Whereas it can be shown that in EFH the expected rates of atlsaare directly determined by
the weighted sum of topic specific contributioﬁ% h;W; = Wh. In this regard EFH is closer to
the classical LSI principle in which the observed rates bivakds can be expressed as a weighted
combinations of the eigen-topics (i.e., orthonormal tegpecific word rate vectors).

Empirically, it was noted that the performance of EFH andaras on latent semantic modeling
is comparable, and sometimes superior, to LDA EIS 16). Btewn in FiglR, structurally EFH
is not yet a full undirected counterpart of LDA, which emp@a@n elegant hierarchical strategy to
incorporate priors for both the word probabilitiBsand topic mixing coefficients. We expect
that, as is the case for LDA, it is possible for EFH to also tage on the possible extra modeling
power endowed by a Bayesian formalism.

As illustrated in Fig[Rb, the LDA likelihood of a worg,,, given topic mixing coefficierd and the probabilities
of this word under all/ topics,{ 3,1, - - ., Bw,s } can be written ap(z,|0) = >__ p(z]0)p(zw|B, 2) =37, 0;Bw,;-



Now we propose a Bayesian EFH that exploits the purportedfiienTo maintain exchanga-
bility between hidden unit§.;}, we place columnisd prior on W, that is, each column oW
follows a multivariate Gaussian, which is a common choigenfiodeling continuous parameters
without any additional assumption:

J J

[TV, %) (7)

Jj=1 J=1

=
z
||
—
=
=
T

A full covariance matrix in the above prior would have siz&, which is prohibitively expensive
for modeling large vocabulary. For simplicity, we considefurther simplification where¥ =
diaglo), i.e. X;; = 0,0;0(4,5). (Modulo computational cost, upgrading to the full covade
matrix is straightforward with the same algorithm develbpethe sequel.) This means that each
element ofW follows an independent normal distribution. Note that@ailitgh we omit correlations
between the topic-word coupling coefficients, the expuessss of this prior is comparable to the
Dirichlet prior for columns in théB matrix of LDA, which captures little correlation behavidr o
the word-probabilities sampled from a simplex.

Now we are left with two remaining sets of parameters of EFtdnd \. It turns out that in
many practical settings (e.g., GB-EFH and DWH)is vacuous, i.e.A = 0, which essentially
“centers” the conditional distribution h|x) at the shifts induced by the input units. Foin EFH
it lacks an intuitive semantics, such as being a prior forctopefficients as in LDA. Therefore we
choose to leavé as fixed parameters to be estimated via an ML principle.

Now, putting things together, we arrive at a Bayesian EFH ehedth the following joint
density function

p(x,h, W18, 11, 0) = p(W]|p, o)p(x, h|8, W). (8)

The hyperparamters in the model arando, which we treat as fixed quantities presumably known
or to be estimated.

3 Posterior Inference via MCMC

Given the prior distribution oW with presumably known hyperparameters and a collectiaN of
iid-sampled data %= (x1, ...,xy), also suppose that parametéese known or already estimated
by an alternative learning method such as ML learning, we&l neecompute or approximate the
posterior

1
o PX[W)p(W) 9)
(Z(W))N

and the predictive posterior density over hidden variables

P(W|X) oc p(X|W)p(W) =

p(hlx, X) = / p(hlx, W)p(W|X)dW, (10)

wherep(-) in Eq. () represents the unnormalized density functionesponding tg(-).



We can take a Monte Carlo approach to obtain a set shmple§ Wy, ..., W,,} by simulat-
ing an ergodic Markov chain whose stationary distribut®thie posteriop(W|X). The difficulty
here is due to the presence of an intractable terf& (W))" in the posterior distribution, which
is a functionof the target random parameté¥€. Therefore, unlike simple posterior inference
settings in which there ismormalization constarthat will be canceled out by computing the ratio
of two posterior densities or taking the derivative, in Bsiga inference with MRFs using MCMC
we have to seek an efficient approximation of the intractedlidom partition function in posterior
distribution.

In the following, we investigate two MCMC approximation sches and show that in both
cases the intractable term can be written as expectatiates time data distributiop(x|W). Then
we show that these terms can be approximated efficiently binm#ing the contrastive divergence
(CD) @), or equivalently, by performing Gibbs sampling oy very few steps starting from data
(the empirical distribution). The derivation is in paraldth that in (11); here we provide a more
detailed discussion on the comparison of the two schemes

3.1 Approximation schemes
3.1.1 Metropolis-Hasting algorithms

Consider simulating a Markov chain using a Metropolis-liasalgorithm with the proposal dis-
tribution ¢(W’|W). The acceptance probability of the transitdn — W' is

WD) W) )
PWIX) o(WW)

p(W, W') = min ( (12)

Suppose the proposal distribution is easy to draw sampte fand is tractable, then the only
difficulty in implementing Metropolis-Hasting algorithms to approximate the intractable term

N
( ZZ((WW,))) , WhereN is the size of the dataset. The ratio of two partition funtsican be written

as an expectation over the data distributior| W”).

BTx+%xTW’W’TX
Z(W')
x

— <exp {%XT (VVVVT - W'W’T> x}> (12)

p(x[W’)

Z(W) Z o3 (WWT-WwWT)x ©

3.1.2 The Langevin algorithm

We also investigate theangevin algorithmas an alternative approximate MCMC scheme. The
Markov chain simulated by the Langevin algorithm is chaegzed by the following stochastic
transition equation

2
W =W + %v log p(W|X) + e Ny (13)



where Nw are randomly generated froif (0, I;w,). This is a discrete version of the Langevin
diffusion ande? corresponds to the discretization sfzeThe Markov chain converges wheris
reasonbly small and has the desired densi®|X) ase¢> — 0. The gradient of the posterior is
the sum of three terms

Viogp(W|X) = Viogp(X, W) = Vlogp(W) + Viog p(X|W) + (—=NVlog Z(W)) (14)

where in the GB-EFH model

dlogp(W) _ 0logpi;(W) 1

{Vigp(W)}ij & —— = —— = —— (Wi — ) (15)
1) 1] 7

andV log p(X|W) is also tractable

Viog p(X[W) = > Viogp(xi|W) =) xx] W = XXTW. (16)

Hence, the only intractable term involved in the Langevijoathm is NV log Z(W), in which
Vlog Z(W) can be written as an expectation over the data distribytifiw )

W)
Vlog Z(W ZV (X|VV ZVlogp x|W)

= Zp (x|W)V log p(x|W) = < a7

>10(><|W)

3.1.3 Discussion on the two schemes

The straightforward approach of estimatidgW ) itself often fails to provide reliable estimates.
To provide some intuition of the nature of this difficulty, wyeve a brief illustration as follows:
with some mathematical manipulation which is included irpApdix A, the partition function in
the BG-EFH model equals the expectation of the followinglaan variable

Z(t) = [+t (18)

under the multivariate lognormal distribution ©f
t ~ LogNormal@, WW7)

Thus under the Bayesian framework in whidhis considered a random matrix, we should expect
Z (W) to haveexponentiamean and variance.

2A diffusion is a continuous time process which can be definea $tochastic differential equation. The Langevin
diffusion is characterized by

dW (t) = %Vlogp(W(tHX)dt + dB(t),

whereB(t) is a|W|-dimensional Brownian motion.



Thus, we put more emphasis on variance in the bias-variaadedff of estimators in approx-
imate Bayesian learning. Compare the approximations ih.émgevin algorithm to updaf& as
in Eq.[I3 and in Metropolis-Hasting algorithms to computedlceptance probability as in [Egql 11

&V logp(W|X) = —eNV log Z(W) + C (19)
Z(W) NN N _(W-W')NV log Z(W’)
(Zws) =< 20

whereC' = ¢2(Vlogp(W) + V log p(X|W)) can be computed exactly, and Eq] 20 is obtained by
first-order Taylor expansion. We expect the latter appratiom hasexponentialvariance com-
pared to the former one. Therefore, we choose the Langegaritim conjoint with the MCMC
scheme for posterior inference on BEFH model.

3.2 Approximating the expectations with brief sampling

Vlog Z(W) in Eq.[IT can be estimated using a “sampling very few steps fhe data” technique.
It is first proposed bﬂ8) under the name of minimizing caastive divergence (CD) and suggested

) for approximate Bayesian inference in MRF in whicksinamedbrief sampling Brief
sampling in GB-EFH runs multiple chains starting from théad&. Each chain performsfull
step of Gibbs sampling. A total 6f samples are obtained, denotedYy= (x{’,...,x%). Then
Vlog Z(W) is approximated as an expectation over the empirical digion ole ThIS whole
procedure of brief sampling is illustrated as follows whereset! = 1:

e Drawh}’ ~ N(WTxy, I;)fork=1,...,N;
e Drawx}" ~ Bernoulli (logit((§ + Wh{"))) for k = 1,..., N;

o Vlog Z(W) ~ L3, x(x|7)"W = LX X{W

Brief sampling has been previously shown to provide lowaree estimation with a small bias in
ML learning (4). The intractable term in ML learning of MRFjisst the same terriv log Z (W),
therefore we expect similar low-variance behavior of bsampling estimation in the Langevin
algorithm. Fig[# in the experiment section provides an eivglidemonstration.

3.3 Computing the predictive posterior density

Givenm samples{W,, ..., W,,} obtained by the Langevin algorithm with brief sampling de-
scribed above, the predictive conditional distributioa;ixproximated by

p(h|x, X) Zp (h|x, Wy). (21)

More specifically, in GB-EFH we are mterested in the comdiail expectation dh givenx, this is
computed as

1 & 1 &
E (h|x,X) = — (hijx, Wy) = — 22
(hfx, m; [x, W) m; (22)



4 Hyperparameter Estimation

Now we briefly outline how to compute the maximum likeliho@limates of the hyperparameters
1 ando of BEFH from training data, based on an empirical Bayes jglac (ML estimation for
other model parameters suchéand A roughly follows the same scheme and hence omitted for
simplicity.) We employ a Monte Carlo EM scheme. In the “E&stwe impute the hidden variables
in BEFH, specifically,W, from its posterior distribution; and in Sec. 3 we have depet the
Langevin algorithm for this step. Given a set &fimputedW from iteration¢, we proceed to
the “M”-step, in which now we are essentially back to the ded ML learning scenario for fully
observed MRF, and compute an estimate of the hyperparasretéollow: we seek:

K
(", 0) = argmax Y _log p(X, Wi|u, o)
-
K
= argmax > _ (logp(W|1, o) + log p(X|W"))
k=1

K
= arg max Z log (W, |, o), (23)
-

whereW}’ denotes thé-th imputed sample at iteratian
It can be shown that, the ML estimate of each elemenptando is:

;t+1) JK Z Z Z(Jf)k (24)
S \/ TR 2 Wi 25)
wherel ")

. denotes thej-th element oW,

To initialize the EM procedure, we can make use of the ML eatiofW, denoted byw M1
and let

<0) Z WiJJVJLE (26)
0,0 = St Z MLE <0) (27)

5 Experiments

5.1 Synthetic EFH parameter estimation

The dataset is generated for a GB-EFH model with 0. The model containd/ = 100 observed
variables and/ = 10 hidden variables, so the number of parameteid’ins M x J = 1000. We
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vary the size of the training dataset from 25 to 200 and coentber performance of ML estimation
via gradient ascent and the Langevin algorithm propose@m 3.

Generatingid samples from a general MRF is known to be nontrivial. Howgefara GB-
EFH model exact samples can be genereated fairly efficibgtgmploying the perfect sampling
technique|__(]5) when all the elements of the mairix= W W™ are non-negative. To ensure this
property, we first generate all x M matrix whose elements are uniformly distributed in the
[0,0.1] interval. TheniV is determined by performing an SVD on this matrix so thds the best
rank-J approximation.

There is an inidentifiability issue here because the datdlulition

p(x|W) = %exp (%XTWWTX) (28)
is a function ofl/ and is invariant ifi¥ is right-multiplied by an orthogonal matri because
(WQ)Y(WQ)T = WWT. Also it can be shown the prior df defined in Eq7 is also invariant
under this transformation. Therefore our evaluation datare based on the matrix instead of
W. We define two error measuresiean averaged errofmag andmean relative erro(mre) to
evaluate an estimaté

maez%ZZﬂéj—‘zﬂ (29)
g

1 Vij — Vil
mre = — - 30
Mz;;maxﬂvm,ﬂ/iﬂ} o

Two tunable parameters in the Langevin algorithm are yettddiermined: the step sizen
Eq.[I3 and the number of stepw sample from data in brief sampling. We choose an apprgpria
e by investigating the evolution of a number of element§lotiuring the simulation of the Markov
chain. Under a too large step size the chain goes to infinityfew steps, and under a too small
one the burn-in time is undesirably long. Elg 3 shows a sitiaraf the Langevin algorithm using
the step size we choose.

Fig.[4 shows the estimate of the gradient using brief sargplersus the number of sampling
stepd. We also generate the same number of samples using thetgatepling technique to pro-
vide an approximately correct version for comparison. Bsa@mnpling provides biased estimation
compared to the exact sampling approach, but the bias tssedyesmall considering the difficulty
of dealing with intratable partition function. Note thaktbias is not decreased by increasing
The variance of the estimation, on the other hand, is mirechiwhen/ = 1. Therefore, we let
[ = 1in the subsequent experiments.

In Fig.[d we compare the performance of ML estimation via gmadascent and the Bayesian
approach using the Langevin algorithm. The Langevin algoriconsistently achieves lower errors
under both measures and with different sizes of the traiegig As more data are available, the
performance of ML estimation improves little; it appearattthe gradient ascent procedure gets
stuck into a local minimum. On the other hand, the Langewyo@ihm does benifit from more
data, which is possibly the consequence of the uninforraginor we placed for this problem by
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Figure 3: Details of Monte Carlo simulations of the Langeaigorithm, withy-axis corresponds

to the value ofi;;. Three chains of different starting points are shown. Tha4do time to reach
convergence is approximately 50 transition.
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Numbesr of Stepsl%or GibbslsSampling20

Figure 4: The estimation versus the number of sampling stefsief sampling (solid line)
compared with the estimation perfect sampling (dash linéy y-axis corresponds to an esti-
mated derivative of log-partition functiahlog Z(W)/0W,; averaged over 50 runs. Both sampling
schemes generate 100 samples in each run. The standarBas@re scaled by 1.64, indicating
95% significance of the difference in estimation.

settingu; = 0,0, =d =0.1fori =1,..., M. The estimation by both methods has a non-neglible
bias from the true value, and we conjecture that it is duedsgarsity of the data. We also observe
that the performance difference of ML estimation and thedesmn algorithm is much larger as
measured bynean absolute errahanmean relative errarwhich suggests that the latter algorithm
provides better estimates for parameters with larger galue

5.2 Classification of Text and Image Data

The dataset is from the complied TRECVID’03 news video @it in {I(ls). It contains 1078
video shots with captions; each one can be treated as a datané belongs to one of five
pre-defined categories. 1894 binary word occurence feaumd 166 continuous features for key
images are extracted from each document. We extend thendngharmonium (DWH) developed
in (16), which was previously trained by ML estimation, toyBaian DWH (BDWH) in which

11



0.0251 N R 0.981
0.961 e "
A
0.021 0.94
=& ML Learning 0.92- i
0.9 =6~ Bayesian Inference
0.881
0.01f
0.861
0.005|" 0841
0.82f
o ‘ ‘ ‘ 08 ‘ ‘
25 . 50 100 200 25 .50 . 100 200
Size of Training Dataset Size of Traning Dataset
(a) (b)

Figure 5: The Performance of ML learning and Bayesian imfeegeusing the brief Langevin al-
gorithm under two different error measures (a) mean abs@ubr; (b) mean relative error. The
results are averged over 10 runs. The error bar is shown onBdyesian inference in (a), in other
cases the standard error are too small to be distinguisfraintethe figure.

columniid multivariate normal priors are placed on the coupling nesasifor word and image
features respectively. The hyperparameters in the prierestimated using the empirical Bayes
method developed in Sec. 4.

To give a hint on the difficulty of performing Bayesian leargiin a real dataset discussed in
Sec. 3, we implement the naive Monte Carlo estimation op#rétion function in EqIB for both
GB-EFH with synthetic dataset and DWH with real world datasee histograms of the estimated
Z over 100 runs are shown in F[g. 6. In the synthetic dataseadgtimated values approximately fit
to a normal distribution. However, in the real dataset,glege a few spurious outliers, which shift
the mean estimated values over all the runs significantigitg to generally biased, high variance
estimates. In Fig. 6(b) the variance of the estimation isdliimes as large as the estimated mean.

We evaluate the performance of four different models DSI((IWI-LDA, DWH and BDWH for
classification task on the news video collection. For eagbrghm, the parameters are estimated
using all data, without reference to their labels. Once tbdehare learned, every document in the
data are projected into the lower-dimensional latent s¢éimapace. The data are then randomly
splited to a training set and a testing set with the same ¥¥eeshow the result of using one nearest
neighbor (1-NN) classifier to predict the category of eash data given the training data.

Fig.[d compares the performance obtained at different démes of latent semantic space, or
equivalently different numbers of latent topics rangingnfr4 to 32. BDWH and DWH achieve
comparable classification accuracy consistently, andesfdpn LSl and GM-LDA with a good
margin when the number of latent topics are 16 and 32. LSI, D&H BDWH all get better
performances in higher dimensional semantic space with desensionality-reduction. In the
constrast, GM-LDA outperforms other methods when the nurobdatent topics are 4 but the
performance curve goes down when the number of latent tapacsases from 16 to 32, which
may reflect a low-dimensionality bias from the modeling.
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using 1000 samples. The displayed values in (b) are scaleddwitor of2 x 10~
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Figure 7: Classification accuracy versus number of latgnt$o

6 Conclusion

We have proposed a new Bayesian formalism of EFH model amaniaifor latent semantic mod-
eling of text and multimedia data. The Langevin algorithmjomt with an MCMC scheme was
applied to carry out approximate posterior inference, anérapirical Bayes method is also de-
veloped for esimating the parameters. The Bayesian appmcteves superior performance of
parameter estimation on a synthetic data set and compatab#fication accuracy on a real dataset
of both text and image data.

Our experiments presented in this paper focus on binaryrencas of words which is suitable
for short texts. In ongoing work, we are building an BEFH teedtly model word counts. Also,
the independent Gaussian prior we used can be replaced byrmimiormative one, while the
inference and learning algorithm can straightforwardlplggo the new formalism. Finally, the
discretization scheme in the Langevin algorithm can be retadeorate, such as incorporating the
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idea suggested iﬂl3).
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A Partition Function of the GB-EFH Model

The joint probability distribution of observed variablkesand hidden variablek in the GB-EFH
model is

_ 1 Ty 1 T T
p(x,h) = Z(0.W) exp <9 X 2h h +x Wh) (32)
where the corresponding partition function is
= Z exp (BTX — %hTh + XTWh) (32)
x,h
And the marginal pdfs are
— 1 T 1 T T
p(x) = 7.0.W) exp (0 x + 5% WWwW x) (33)
_ 1 Lt T
p(h) = 70 W) exp ( 2h h + 1" log(1 + exp(0 + Wh))) (34)

where
Z(0, W) = (21)"22(0, W)
Zn(0, W) = Z(0, W)

hereJ = |h| is the number of latent topics (hidden variables).
Therefore,

Z(6, W) = (21)"2 Z,(, W)
= Z exp ((—— log 2m — %hTh) + 1" log(1 + exp(@ + Wh)))
= Z q(h eXp 1Tlog(1 + exp(0 + Wh)))
= <exp (1" log(1 + exp(6 + Wh))) > (35)

q(h)

where
J

a(h) = (27)"F exp (Z —%hﬁ) ~ N(0,1)

j=1
Thus by introducing a vector of random varialle- & + Wh, the partition function of the GB-
EFH model equals the expectation of the following randonialxe

Z(t) = [+t (36)

%

under the multivariate lognormal distributien~ LogNormal6, WWT).
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