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Abstract

Given @ nodes in a social network (say, authorship network), how can we fenddde/author that is the
center-piece, and has direct or indirect connections to all, or most wiheor example, this node could
be the common advisor, or someone who started the research area thatddes belong to. Isomorphic
scenarios appear in law enforcement (find the master-mind criminal, dediteall current suspects), gene
regulatory networks (find the protein that participates in pathways with atiast of the giver) proteins),
viral marketing and many more. Connection subgraphs is an importanttést lsandling the case of
Q=2 query nodes. Then, the connection subgraph algorithm finds thayth£20) intermediate nodes,
that provide a good connection between the two original query nodee W generalize the challenge
in multiple dimensions: First, we allow more than two query nodes. Second, we aNohole family of
gueries, ranging from 'OR’ to ’AND’, with 'softAND’ in-between. Finallwve design and compare a fast
approximation, and study the quality/speed trade-off. The experimentseddDBhP dataset confirm that
our proposed method naturally deals with multi-source queries and thatsthléng subgraphs agree with
our intuition.



Keywords: Center-piece subgraph, goodness scorspKAND



1 Introduction

Graph mining has been attracting increasing interest recently, for commuatégtobn, partitioning, fre-
guent subgraph discovery and many more. Here we introduce andasobxeel problem, thecenter-piece
subgraph” (CEPS) problem: GivenQ query nodes in a social network (e.g., co-authorship network), find
the node(s) and the resulting subgraph, that have strong connectalhasrtmost of the) query nodes. The
discovered nodes could contain a common advisor, or other members e$#dach group, or an influential
author in the research area that ienodes belong to. As mentioned in the abstract, there are multiple
alternative applications (law enforcement, gene regulatory networks).

Earlier work [6] focused on the so-called “connection subgraphslthoigh the inspiration for the
current work, the connection subgraph algorithm can only handle seeaf§)=2. This is exactly the major
contribution of our work: we allow not only pairs of query nodes, but arbitrary number) of them.

Figure 1 gives screenshots of our system, showing our solution on @QBaph, withQQ=4 query
nodes. All 4 researchers are in data mining, but the first two (Rakestwadand Jiawei Han) are more
on the database side, while Michael Jordan and Vladimir Vapnik are moreeomalchine learning and
statistical side. Figure 1(b) gives oGEPS subgraph, when we request nodes with strong ties to all four
guery nodes. The results make sense: researchers like Daryl&regddhraic Smythe and Heikki Mannila
are vital links, because of their cross-disciplinarity and their strong ections with both the above sub-
areas. Figure 1(a) illustrates an important aspect of our workkthe ft AN D feature, which we will
discuss very soon. In a nutshell, ik soft AN D query, our method finds nodes with connections to at
leastk of the query nodesk(= 2 in Figure 1(a)).
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Figure 1. Center-piece subgraph among Rakesh Agrawal, JiaweiMiahael 1. Jordan and Vladimir
Vapnik.

Thus, we define the center-piece subgraph problem, as follows:
Problem: Center-Piece Subgraph DiscovePHPS)

Given: an edge-weighted undirected graf¥, Q nodes as source queriés= {¢;} (: = 1,...,Q), the
softAND coefficientk and an integer budgét



Find: a suitably connected subgraphthat (a) contains all query nodes(b) at mosth other vertices and
(c) it maximizes a “goodness” functign{’+).

Allowing @ query nodes creates a subtle problem: do we want the qualifying nodesé¢ostrong
ties to all the query nodes? to at least one? to at least a few? We handighallabove cases with our
proposedK _softAN D queries. Figure 1(a) illustrates the case where we want intermediate wiles
good connections to at lealst= 2 of the query nodes. Notice that the resulting subgraph is much different
now: there are two disconnected components, reflecting the two sub-caties (atabases/statistics).

The contributions of this work are the following

e The problem definition, for arbitrary numbér of query nodes, with careful handling of a lot of the
subtleties.

e The introduction and handling df _so ft AN D queries.
e EXTRACT, a novel subgraph extraction algorithm.
e The design of a fast, approximate method, which providés aspeedup with little loss of accuracy.

The system is operational, with careful design and numerous optimizatioms|técnative normaliza-
tions of the adjacency matrix, a fast algorithm to compute the scords fasft AN D queries.

Our experiments on a large real dataset (DBLP) show that our methodgseasults that agree with our
intuition, and that it can be made fast (a few seconds response time), eftaileing most of the accuracy
(about 90%).

The rest of the paper is organized as follows: in Section 2, we review selated work; Section 3
provides an overview of the proposed meth&EPS. The goodness score calculation is proposed Sec-
tion 4. The ‘EXTRACT” algorithm and the speeding up strategy are provided in Section 5 and 1$éctio
respectively. We present experimental results in Section 7; and canttlaghaper in Section 8.

2 Related Work

In recent years, there is increasing research interest in large gregig, such as pattern and law min-

ing [2][5][7][20], frequent substructure discovery [27], infhee propagation [18], community mining [8][11][12]
and so on. Here, we make a brief review of the related work, which carategorized into four groups:

1) measuring the goodness of connection; 2) community mining; 3) randdknand electricity related
methods; 4) graph partition.

The goodness of connectionDefining a goodness criterion is the core for center-piece subgraph dis
covery. The two most natural measures for “good” paths are shdittahce and maximum flow. However,
as pointed out in [6], both measurements might fail to capture some pikfelneracteristics for social
network. The goodness function for survivable network [13], wligcthhe count of edge-disjoint or vertex-
disjoint paths from source to destination, also fails to adequately model salai@onship. A more related
distance function is proposed in [19] [23]. However, It cannot dbecthe multi-faceted relationship in
social network since center-piece subgraph aims to discover collectpmatlog rather than a single path.

In [6], the authors propose an delivered current based method. t&ypiating the graph as an electric
network, applying+1 voltage to one query node and setting the other query foadtage, their method
proposes to choose the subgraph which delivers maximum currentésethe query nodes. In [25], the
authors further apply the delivered current based method to multi-relagosyah. However, the delivered



current criterion can only deal with pairwise source queries. Moredke resulting subgraph might be
sensitive to the order of the query nodes (See Figure 2 for an examplethe other hand, as we will
show very soon, connection subgraph can actually be viewed asialsse of the proposed center-piece
subgraph (“AND query” with pair source nodes ).

Random walk related methods.The proposed importance score calculation is based on random walk
with restart. There are many applications using random walk and relateddasethcuding PageRank [22],
personalized PageRank [14], SimRank [16], neighborhood formulatidnpartite graph [26], content-
based image retrieval [15], cross modal correlation discovery [2ANKS system [1], ObjectRank [3],
RalationalRank [10] and so on.

Community detection. Center-piece subgraph discovery is also related with community detectan, su
as [8][11][12]. However, we cannot directly apply community detectioaubgraph discovery especially
when the source queries are remotely related or they lie in different comnsunitie

Graph partition and clustering. There are a bunch of graph partition and clustering algorithms pro-
posed in the literature, e.g. METIS [17], spectral clustering [21], flomutation [9], co-clusterfing [4],
betweenness based method [12]. It is worth pointing out that the prdposthod is orthogonal to the
specific graph partition algorithms.

3 Proposed Method: Overview

Let us first define the goodness score for nodes. For a givenjhade have two types of goodness score
for it:

e Letr(z,j) be the goodness score of a given ngdert the queryg;;
e Letr(Q, ) be the goodness score of a given ngdert the query seD.

A natural way to measure the goodness of the subgtaptto measure the goodness of the nodes it
contains: the more 'good’/important nodes (wrt the source querieshiaots, the bettet is. Thus, the
goodness criterion df{ can be defined as:

(1) g(H) = r(Q,))

JEH

With the above goodness criterion, a straightforward way to choose ##t"“bubgraph should be the
one which maximizeg(H):

2 H* = argmaxrg(H)

However, no connection is guaranteed in this way and the resulting sisgranight be a collection
of isolated nodes. Thus, there are two basic problems in center-piegeaphlaiscovery: 1) how to define
a reasonable goodness sco(€, j) for a given nodej; 2): how to quickly find a connection subgraph
maximizingg(H). Moreover, since it might be very difficult to directly calculate the goodsesre-(Q, j),
we further decompose it into two steps. The pseudo code for the piposthod CEPS) is listed as
follows:



Table 1:CEPS
Input: the weighted grap®W, the query se®, K _soft AN D coefficientk and the budgéi

Output: the resulting subgraphk
Step 1: Individual Score Calculation
Calculate the goodness scot@, ;) for a single node wrt a single query node;
Step 2: Combining Individual Scores.
Combine the individual scorg(i, j) to get the goodness scaréQ, j) for a single
nodej wrt the query set
Step 3: “EXTRACT".
Extract quickly a connection subgraphwith budgeth maximizing the goodness
criteriag(H)

4 Goodness Score Calculation

There are two basic concepts in goodness score calculation:

e Letr; ; be thesteady-state probability that a particle will find itself at nodg, when it does random
walk with restarts (RWR) from query nodg

e Letr(Q, , k) be themeeting probability, that is, the steady-state probability that at Idasut-of-Q
particles, doing RWR from the query nodes@fwill all find themselves at nodgin the steady state;
k is the K softAND coefficient.

These two kinds of steady probability; ¢ andr(Q, j, k)) are the base of our goodness score calculation
(for bothr (7, j) andr(Q, 7)). It's basic idea is that: suppose there @eandom particles doing RWR from
each query node independently; then after convergency, eachlgdudic somesteady-state probability
staying at the nodg; and different particles have someeting probability at the nodej. Thesteady-state
probability and themeeting probability provide some hints on how the nogéds related with the source
gueries, and are used to compute the goodness score ofj nddlereover, by designing differembeeting
probability, we can get the specific type of goodness score tailored for the spmpe#fig scenario. Table 2
lists all the symbols and definitions used throughout this paper.

4.1 Individual score calculation

Here we want to compute the goodness sedigej) of a single nodej, for a single query node;. We
propose to use random walks with restart, from the query gode

Suppose a random particle starts from querythe particle iteratively transmits to its neighborhood
with the probability that is proportional to the edge weight between them, andaéach step, it has some
probability ¢ to return to nodey;. (4, j) is defined as theteady-state probability r; ; that the particle will
finally state at node:

3) r(i,5) £ i
More formally, if we put all ther; ; probabilities into matrix fornR = [r; ;], then

(4) RT = cRT x W+ (1 - ¢)E
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Table 2: Symbols

| Symbol | Description

N total number of nodes in the weighted graph

m iteration step

c fly-out probability for random walk with restart

€; N x 1 unit query vector, with all zeros except one at rgw

W = {w;;} | the edge weighted matrix,(j =1, ..., N)
D= {d@j} N x N ma.triX,dm =d;, anddm- =0fori 75 i
d; the sum of the?” row of W/
H the chosen center-piece subgraph
Q number of source query nodes
Q= {q} set of query nodes & 1, ..., Q)
Q
%)

the first(@Q — 1) query nodes of query s€, Q = {¢;},(i =1,..,(Q — 1))
null query set, which contains no query node

r(i,7) goodness score for a single notert query nodey;
r(Q,7) goodness score for a single nofert query setQ
r(Q, (j,1)) | goodness score for a single edgel) wrt query setQ
i steady-state probability of a single node wrt query nodey;
R @ x N matrix of [r; ;]

r(Q, 7, k) meeting probability of a single nodg, wrt &£ or more of the query nodes ¢
r(i, (7,1)) meeting probability of a single edgéy, /), wrt query nodey;
r(Q, (4,1), k) | meeting probability of a single edgéj, (), wrt k£ or more of the query nodes &

whereE = [¢](i = 1,...,Q) is the N x @ matrix, c is the fly-out probability, andW is the adjacency
matrix W appropriately normalized, say, column-normalized:

(5) W=WxD!

The problem can be solved in many ways - we choose the iteration methotingetg. 4 until conver-
gence. For simplicity, in this paper, we iterate Egn4imes, wheren is a pre-fixed iteration number.

4.2 Combining individual scores

Here we want to combine the individual scot@, j)(i = 1, ..., Q) to getr(Q, j), the goodness score for a
single nodeg wrt the query se@. We propose to use thmaeeting probability (Q, j, k) of random walk with
restart. Furthermore, by using different softAND coefficiéntve can deal with different types of query
scenario.

The most common query scenario might be that “gigeguery nodes, find the subgraphthe nodes
of which are important/good wrt ALL queries”. In this cas€Q, j) should be high if and only if there is a
high probability that ALL particles will finally meet at node

Q
(6) r(Q,5) £7(2,5.Q) =[] r(i.j)

i=1



Eq. 6 actually defines a logic AND operation in terms of individual goodisesses: the nodg is
important wrt the query s&® if and only if it is important wrt every query node. Thus, we refer sugérg
type as “AND query”.

A complemental query scenario is “OR query”: “givéhqueries, find the subgrapt the nodes of
which are important wrt at least ONE query”. In this cas@, j) should be high if and only if there is a
high probability that at least one particle will finally stay at ngde

Q
(7) r(Q,5) £r(Q5,1) =1- [0 =r(i5)

i=1

Eq. 7 defines a logic OR operation in terms of individual importance sctrestodej is important wrt
the source queries if and only if it is important wrt at least one source/que

Besides the above two typical scenarios, the user might also ask “@gureries, find the subgraph
‘H the nodes of which are important wrt at leagt < k& < @) queries”. We refer such query type as
“K _softAN D query”. In this caser(Q, j) should be high if and only if there is a high probability that at
leastk-out-of-Q) particles will finally meet at nodg.

(8) r(Q,4) £7(Q,5.k)
To avoid exponential enumeration (which(®2")), Eq. 8 can be computed in a recursive manner:
(9) T(Q,],k‘):T’(Q,j,k‘—l)T(Q,])+T(Q,j,k)

wherer(2,5,0) =1(j = 1,...,Q).

Intuitively, Eq. 8 defines a logic operation in terms of individual importaroees that is between logic
AND and logic OR. In this paper, we refer it as logic3ftAND: the nodej is important wrt the source
queries if and only if it is important wrt at leaktout-of<Q) source queries.

It is worth pointing out that both “AND query” and “OR query” can be viemlvas special cases of
“K _softAN D query”: “AND query” is actually “QsoftAND query”; while “OR query” is actually “1softAND

query”

4.3 Variation: normalization on W

To compute the goodness scofé, j) andr(Q, j), we need to construct the transition mat for random
walk with restart. A direct way is to normali2® by column as Eq. 5. However, as pointed out in [6], there
might be the so called “pizza delivery person” problem, that is, the nodehigthdegree is prone to receive
too much attention (receiving too high individual goodness score in a&)cdo deal with this problem,
we propose to normalizZ& as Eg. 10. The normalized weighted gradhwill be further used to formulate
the transition matrisW by Eq. 5.

(10) Wy — wji/(d;)®

forallj,l =1,...,N.

The motivation of normalization is as follows: for the high degree no@eery edgé;j,[)(l = 1,....,N)
is penalized by(d;)“ and vice versa. The coefficieatcontrol the penalization strength: biggeindicates
stronger penalization. Note that the idea of penalizing the node with higle@égisimilar with that of
setting a universal sink node in [6].



5 The “Extract” Algorithm

The “EXTRACT” algorithm takes as input the weighted gréh the importance scores on all nodes, the
budgetb and the softAND coefficient; and produces as output a small, unweighted, undirected graph
The basic idea is similar with the display generation algorithm in [6]: 1) inste&giofy to find an optimal
subgraph maximizing(H) directly, we decompose it into finding key paths incrementally; 2) by sorting
the nodes in order, we can quickly find the key paths by dynamic progranmimihg acyclic graph.

However, we cannot directly apply the original display generation alguardimce it can only deal with
pair source queries (and also the resulting subgraph is sensitive tadiéreobithe source queries). To deal
with this issue, we extend the original algorithm in the following aspects:

(1) Instead of finding a source-source path, at each step, the aigosiilh pick up a most promising
destination noded; and try to find a source-destination path for each source query node.

(2) The order (which will be used in the dynamic programming) is specifiedesitin source query node.

(3) Key path discovery differs with the different query types: for ‘BNuery” the algorithm will discover
Q paths for all source nodes at each step; forstftAND query”, it only discovers: paths for the
first k source nodes; while for “OR query”, the algorithm will only filngbath at each step.

Before presenting the algorithm, we require the following definitions:

e SPECIFIED DOWNHILL NODE. Node « is downhill from nodev wrt sourceq; (v — d;,u) if
r(i,v) > r(i,u);

e SPECIFIED PREFIX PATH. A specified prefix pathP (i, «) is any downhill path that starts from
sourceg; and ends at node; that is, P(i,u) = (uo, u1, ..., u,) Whereuy = ¢;, u, = u, andu; —
diyuji1;

e EXTRACTED GOODNESS. The extracted goodness is the total goodness score of the nodes within
the subgrapti{: CF(H) = >,y 7(Q. 7).

e EXTRACTED MATRIX. Cs(1, u) is the extracted goodness score from source gotienodeu along
the prefix pathP (i, v) so that:
1. P(i,u) has exactly nodes not in the present output grakih
2. P(i,u) extracts the highest goodness score among all such paths that steqt &ind end at..
e ACTIVE SOURCE. For K _soft AN D, the source nodg is active wrt destination noge! if (i, pd) >
r®) (i, pd), wherer®) (i, pd) is thek!” largest value among(i, pd), (i = 1, ..., Q). Note that the num-
ber of active source differs with the query typéor “OR query”, there is only one active source while

for “AND query”, all sources are active. For a specific query tygeactive source; might turn into
inactive when the destination nogé changes and vice versa.

The destination nodgd can be decided by Eq. 11:

(12) pd = argmaxj¢Hr(Q,j)

!Since both “AND query” and “OR query” can be viewed as specialsa$& _softAND query”, the number of active sources
is actuallyk for all query types.



whereH is the partially built output subgraph.

In order to discover a new path between the soyr@nd the promising noded, we arrange the nodes
in descending order of(i, j)(j = 1, ...,n): {u1 = ¢;, ue, us, ..., pd = u, }. (Note that all nodes with smaller
r(i,7) thanr(i, pd) are ignored). Then we fill the extracted mat€ixin topological order so that when we
computeCs(t, u), we have already computéd (¢, v) for all v — d;, u. On the other hand, as the subgraph
is growing, a new path may include nodes that are already present intfhe subgraph, our algorithm will
favor such paths as in [6]. The complete algorithm to discover a single pathdource node; and the

destination noded is given in table 3.

Table 3: Single Key Path Discovery
1. Letlen be the maximum allowable path length
2. Forj « [1,...,n]
2.1. Letv = u;
2.2. Fors < [2,...,len)]
If vis already in the output subgraph

s’=s
Else
sf=5-1

LetCs <Z> ’U) = ma'ru|u—>di,v(csl(iv U’) + T(Qv U))
3. Output the path maximizing's (i, pd) /s, wheres # 0

Based on the previous preparations, ERERACT algorithm can be given in table 4.

Table 4: OUIEEXTRACT Algorithm
1. Initialize output graplt null
2. Letlen be the maximum allowable path length
3. WhileH is not big enough
3.1. Pick up destination noge! by Eq. 11
3.2. For each active source naoglevrt nodepd
3.2.1. use table 3 to discover a key pé&tty;, pd)
3.2.2. addP(¢;,pd) to'H
4. Output the finaH

6 Speeding up CEPS

To computer(i, j), we have to solve a linear system. When the data set is large (or more |y;egtsen
the total number of the edges in the graph is large), the processing time eolglaldo
Note that Eq. 4 can be solved in closed form:

(12) R =(1-c¢)I—cW)'E

Thus, an obvious way to speed GgPSis to pre-compute and store the mattix= (I — cVV)’l, then
R” = (1 — ¢)AE can be computed on-line nearly real-time. However, in this way, we have e tste

whole N x N matrix A, which is a heavy burden wheh is big.



As suggested by [26], the goodness sediej)(j = 1, ..., N) is very skewed, that is, most values of
r(i,7) are near zero and only a few nodes have high value. Based on thivatixs® we propose to pre-
partition the original weighted grapW into several partitions and only use the partitions containing the
source queries to ruBEPS In this paper, we use METIS [17] as the partition algorithm.

The pseudo code for the accelera@ePSis summarized as follows:

Table 5: FasCEPS
Input: the weighted grapW, the query se®, K _softAN D coefficientk, the budgeb, and

the number of partitiong
Output: the resulting subgrapH
Step 0O: pre-partitionW into p pieces (one-time cost)
Step 1: pick up partitions ofW that contain all the query nodes to construct the new weighted
graphn W
Step 2. runCEPSas in table 1 omW

7 Experimental Evaluation

In this section, we demonstrate some experimental results. The experimemtssigned to answer the
following questions.

e Does the proposed goodness criterion make sense?
e Does theEXTRACT algorithm capture the most goodness score?
e Does the extra normalization step really help?

e how does the pre-partition balance the quality and response time?

Data SetWe use the DBLP data set to evaluate the proposed method. To be speeificthior-paper
information is used to construct the weighted graph every author is denoted as a nodéwy, and the
edge weight is the number of co-authored papers between the cordaspdawo authors. On the whole,
there is~ 315K nodes andx 1,834K non-zero edges iNV.

Source QueriesTo test the proposed algorithm, we select several people from diffeoenmunities
to compose the source-query repositoty: people from database and minin3 people from statistical
and machine learning;l people from information retrieval; and people from computer vision. Then the
source queries are generated by randomly selecting a small numberielsdoem the repository.

Parameter Setting The re-starting coefficient in Eq. 4 is set).5 and the iteration numbern is set
50 since we do not observe performance improvement with more iteration Stepsnaximum allowable
path lengthlen is decided by the budgétand the number of active sourcess[b/k]. For normalization
coefficienta, a parametric study is provided in Section 7.3. For other experimenrts).5.

Evaluation Criterion Firstly, the resulting/(7{) can be evaluated by “Important Node RatioRatio)”.
That is, “how many important/good nodes are captured(i3y)?":

ZjeHT(Qaj)

13 N Ratio =
(13) atio Zjewr(gvj)
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Soumen Chakrabarti Raymond T Ng
‘ Theodore Johnson

(a) by delivered current method-{ voItage for Raymond and voltage for Soumen)

b Sudarshan @
Soumen Chakrabarti

(b) by delivered current method-( voItage for Soumen ar(ajvoltage for Raymond sink)

- . - \.\

Soumen Chakrabarti Raymond T. Ng
_ e
- H.V. Jagadish ' /

(c) by the proposed method

Raymond T Ng

Figure 2: Connection subgraph between Soumen Chakrabarti and RdyimiNg.

Laks V.8
Qhashl Shekhar | - @
.:;w,gL Karypis v.s. Subrahmanian —27

Figure 3: Center-piece subgraph among Lise Getoor, George Kaaypislian Pei.
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Complementally, we can also evaluate by “Important Edge Ré&iBdtio)”. That is, “how many im-
portant/good edges are captureddgddy)?":

Z(j,z)eH r(Q, (5,1))
> Gnew (2, (4,1))

The goodness scor€Q, (7,1)) of an edgeg(j, 1) is defined similarly as the goodness score for a node:
what is the probability that the specific edgel) will be traversed simultaneously by all (or at le&$tof
the particles. Firstly, we calculate the goodness se6igj, 1)) for an edgg(y, /) wrt a single query node

qi-

(14) ERatio =

. 1 . < . %
(15) r(i, (4,1)) = 5 (r(d,7) - Wy +r(i,l)- Wj,)
Based on Eq. 15, we can easily defin&, (j,1)) according to the specific query type. For example,
for “AND query”, r(Q, (j,1)) can be computed as Eq. 16; while for “OR query” and S&ftAND query”,
r(Q, (j,1)) can be computed as Eq. 17 and Eq. 18, respectively.

Q
(16) r(Q,(,0) £ 1(Q,(,0,Q) = [] (. G.1)
qi=1
Q
(17) r(Q,(5,0) £ 7(Q. (G0, 1) =1= ] 1 =r@ (1))
q;i=1
r(QG.0) & 1(Q (.0, k) /
(18) = ’I“(Q, (]al)7k - 1) : T(Qa (]J)) + T(Q, (]’l)v k)

wherer (9, (j,1),0) = 1.
For all experiments except subsection 7.1, we run the proposed alganittiiple times and report the
meanN Ratio as well as meat Ratio.

7.1 Evaluation on the goodnesg(H): case study

As we mentioned before, connection subgraph is a special case afpate subgraph (“AND query” with
pair source nodes ). Figure 2 shows the connection subgraph witketutly “Soumen Chakrabarti” and
“Raymond T. Ng”. It can be seen that both our method and the delivengdrd method output somewhat
reasonable results. Itis worth pointing out that the subgraph by theedastivurrent method is very sensitive
to the order of the source queries: comparing figure 2(a) and (bk thesnly one common node (“S.
Muthukrishnan”). On the other hand, if we compare figure 2(b) andafalle most nodes are the same for
the two methods, It is clear that our method captures more strong connemimpared with figure 2(b),
the different node (“H.V. Jagadish”) in figure 2(c), 1) has more eations ¢ vs. 3) with the remaining
nodes and 2) has more co-authored papers with those connectedansititdn the corresponding node in
figure 2(b) (“Zhiyuan Chen”).
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Figure 1 shows an example for multi-source queries. When the user @sks{ SoftAND, the
algorithm outputs two clear cliques (figure 1(a)), which makes some sérese “¥ladimir Vapnik” and
“Michael I. Jordan” belong to statistical machine learning community; whilekdga Agrawal” and “Jiawei
Han” are database and mining people. On the other hand, if the usepa$&BID”, the resulting subgraph
shows a strong connection with all four queries.

Figure 3 shows an example for “AND query”, with “George Karypis”,is& Getoor” and “Jian Pei”
as source nodes. All three researchers are working on graphlesnddes of the retrieved “center-piece
subgraph” are all database, data mining and graph mining people, fornégggtoups: the nodes close to
“Lise Getoor” are related to the University of Maryland (“V.S. Subrahiaahis a faculty member there
and he was the advisor of “Raymond Ng”). The nodes close to “Georggpis” are faculty members
at Minnesota (“Vipin Kumar”, “Shashi Shekar”). The nodes close farfPei” are professors at Simon
Fraser (SFU) or University of British Columbia (UBC), which are gepgieally nearby, both in Vancouver:
“Jiawei Han” was a faculty member at SFU and thesis advisor of “Jian P&iaks Lakshmanan” and
“Raymond Ng” are faculty members at UBC. Not surprisingly, the “cepteces” of the subgraph consist
of “Raymond Ng”, “Jiawei Han”, “Laks Lakshmanan”, which all haviesdt, or strong indirect connections
with the three chosen query sources.

7.2 Evaluation on “EXTRACT” algorithm

The performance of theEXTRACT” algorithm is evaluated by measuring ba¥hRatio and F Ratio as
functions of the budgét Here, we fix the query type as “AND query”.

Figure 4(a) shows the meay¥iRatio vs. the budgeb for different numbers of source queries; while
figure 4(b) shows the meafi Ratio vs. the budgeb for different numbers of source queries. Note that
in both cases, our method captures most of important nodes as well astsdgesmall number of budget
b. For example, fo2 source queries, the resulting subgraph with budgetapture95% important nodes
and70% important edges on average; for 4 source queries, the resultingaglibgith budgef0 captures
100% important nodes an@0% important edges on average. An interesting observation is that for the
same budget, the subgraph with more source queries captures Niglheio as well ast' Ratio than those
with less source queries. This is consistent with the intuition: generally sjpgdlnding people that are
important wrt all source queries becomes more difficult when the numbsswte queries increases. In
other wordsy(Q, j) becomes more skewed by increasing the number of source queries.

7.3 Evaluation on normalization step

Here we conduct the parametric study for normalization coefficiernithe meanV Ratio vs. « is plotted
in figure 5(a); and the meatk’ Ratio vs. « is plotted in figure 5(b).

It can be seen that in most cases, the normalization step does help to imprqerfirmance of the
resulting subgraply(#). For example, the normalization with = 0.5 helps to capturd7.7% more
important nodes an@l 1% more important edges for 2 source queries on average; while for 8esqueries,
it capturesl8.1% more important nodes arfd6% more important edges on average.

7.4 Evaluation on speedup strategy

For large graph, the response time for importance score calculation cedtth. By pre-partition the
original graph and performing subgraph discovery only on the partitontaining the source queries, we
could dramatically reduce the response time. On the other hand, we might nessimgortant nodes if
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they do not lie in these partitions. To measure such kind of quality loss, w&Resdative Important Node
Ratio (Rel Ratio)”:

Nmo

RelRatio = ————
ciiatio N Ratio

(19)
whereN Ratio and N Ratio are “Important Node Ratio” for the subgraph by pre-partition and by thgg-o
nal whole graph, respectively.

We fix the budge®0 and the query scenario as “AND query”. The mda#l Ratio vs. response time
is shown in figure 6(a); and the mean response time vs. the number of parigishown in figure 6(b).
It can be seen that with a little quality loss, the response process is largalglespup. For example, with
~ 10% loss, the subgraph f@& source queries can be generated withseconds on average; with 10%
quality loss, the subgraph férsource queries can be generated withlirseconds on average. On the other
hand, it might takelOs ~ 60s without pre-partition. Note that in figure 6 (b), even with a small number of
partitions, we can greatly reduce the mean response time.
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8 Conclusion and Future Work

We have proposed the problem afehter-piece subgraphs’, and provided fast and effective solutions. In
addition to the problem definition, other contributions of the paper are theviolip

e The introduction and handling dk _soft AN D queries, which includeAN D and OR queries as
special cases.

e EXTRACT, a fast novel algorithm to quickly extract a subgraph with the approp@ieectivity and
maximum “goodness” score

e The design and implementation of a fast, approximate algorithm that brings pegdug

e Experiments on real data (DBLP), illustrating that our algorithm and “gessliscore” indeed derive
results that agree with intuition.

A very promising research direction is the use of parallelism, to achieveeissbnses on huge graphs.
Another one is to extend the concepts and algorithms to “multi-graphs”, thgrishs with different types
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of edges. For example, a social network, where one type of edge Wwalitdite “e-mail correspondence”,
another would mean “telephone contact”, and so on.
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