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Abstract

Understanding how species have arisen, dispersed, amthirégl over time is
a fundamental question in population genetics with numenaiplications for basic
and applied research. It is also only by studying the ditsersihuman and differ-
ent species that we can understand what makes us differéntlzat differentiates
us from other species. More importantly, such analysisccgide us insights into
applied biomedical questions such as why some people argratater risk for dis-
eases and why people respond differently to pharmacetrtgzments. While there
are a number of methods available for the analysis of popul&istory, most state-
of-the-art algorithms only look at certain aspects of theol@tpopulation history.
For example, phylogenetic approaches typically look ohlyan-admixed data in a
small region of a chromosome while other alternatives erarmanly specific details
of admixture events or their influence on the genome.

We first describe a basic model of learning population hystmder the assump-
tion that there was no mixing of individuals from differerdggulations. The work
presents the first model that jointly identifies populatiobstructures and the rela-
tionships between the substructures directly from gemneati@ation data. The model
presents a novel approach to learning population trees laoge genetic datasets
that collectively converts the data into a set of small ppglretic trees and learns
the robust population features across the tree set to fgéiné population history.

We further develop a method to accurately infer quantiéaparameters, such
as the precise times of the evolutionary events of a populdtistory from genetic
data. We first propose a basic coalescent-based MCMC modzwfisplty for learn-
ing time and admixture parameters from two-parental andaameixed population
scenarios. As a natural extension, we then expanded thhboh&i identify popula-
tion substructures and learn population models and thefgpig&me and admixture
parameters pertaining to the population history for thremore populations. Anal-
ysis on simulated and real data shows the effectivenessdagproach in working
toward unifying the learning of different aspect of popigdathistory into single al-
gorithm.

Finally, as a proof of concept, we propose a novel structtestl statistic us-
ing the historic information learned from our prior methodrhprove demographic
control in association testing. The success of the stradtassociation test demon-
strates the practical value of population histories ledrfinem genetic data for ap-
plied biomedical research.
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Chapter 1

| ntroduction

For centuries, understanding how species have arisererdesgh and intermixed over time has
been one of the most sought-after questions man has trieffitess. Since the publication©h
the Origin of Speciem 1859, tremendous efforts have been made to characthazelationship
and significance of the diversity between and within speeigshe problem seems to possess an
irresistible aesthetic appeal to mankind. It is also onlystudying the diversity in humans and
other species that we can understand what makes us diff@nenivhat differentiates us from
other species. More importantly, such analysis could gs/msights as to why some people are
at a greater risk for diseases and why people respond diffgtt® pharmaceutical treatments.
Before the discovery of genetic material, works on the infeeeof the phylogenetic re-
lationships between organisms largely relied on morphoddgphysiological, and phenotypic
differences 70]. By quantifying the similarity and dissimilarity betweeiffdrent organisms,
one can infer the relationships among organisms. Analyassdon morphological, physiolog-
ical, and phenotypic differences have worked particulad}l for quantifying the relationships
between species that long ago diverged and evolved intotedynelated species with distinct
physical features, but are limited in close-species orimiipecies differentiations where phys-
ical appearances may be highly similar. Advances in ancésfierence did not significantly

progress until the development of tools for detecting gemnetriations P7, 104, 107]. The large

1



amount of genetic differences between organisms provid#itient resolution to infer precise
and accurate relations between closely related speciexe $ien, a large number of studies
utilizing genetic data have been publish@®,[36, 44, 79, 107, 129. However, close-species
and within-species analyses of genetic variations werdullgtrealized due to the difficulties
in obtaining large quantities of genetic data until the digmment of high-throughput sequence
techniques in the late 199087, 123 130. With ongoing efforts of high-throughput sequencing
jump started by the Human Genome Projd@d, we are now at an unprecedented stage where
genetic variations are gathering at an exponential rateh §uantities of genetic data provide
enormous opportunities for us to examine and understandishery of human population as
well as the rise of diseases in unprecedented detail. Hoyweith such enormous amounts of
genetic data, we face the challenge of developing efficiedteecurate algorithms for analyzing
large-scale datasets. Therefore, one of the intents ofttegss is to develop a way to solve some
of the problems in the inference of population history in toatext of large genetic variation

datasets.

1.1 Genetic Variations

Variations can occur within and among populations, withmal detween species, and in phe-
notypic features as well as in genetic materials. When vanaiccurs at the DNA level, we
call such variation genetic variation. Genetic variatisiiportant because it is what makes us
different and it provides clues to a number of questions frmw we arise as a species to how
a disease may have arisen. Genetic variation is typicatiygint by different mutational forces
that can be largely categorized into two groups: point nmatand structural variations (Fig-
ure 1.1). Point mutation occurs when a DNA base is substituted witbtfzer base. Structural
variation occurs when a DNA sequence is inserted, deletgaicdted, or inverted.

Before high-throughput technologies were developed, tleteaf point mutations was mainly

achieved through restriction enzyme assays that idergsyriction fragment length polymor-
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Figure 1.1: Genetic variations can largely be divided imto groups: Point mutations and struc-
tural variations. Point mutations are genetic variatioassed by substitutions of bases while
structural variations are genetic variations due to insest deletions, duplications, inversions,

and translocations.

phisms (RFLPs) 36, 44, 107]. RFLP employs a technique for fragmenting a DNA sample
by restriction enzymes that can recognize and cut DNA atiBpéacations. Once DNAs are
fragmented by the restriction enzyme into different leniglgments, gel electrophoresis then
separates the fragments by their lengths. If a mutationreaesithin one of the cleavage sites,
the restriction enzyme would no longer able to cleave thes sitsulting in longer fragments on
samples with such a mutation. By comparing the lengths of Did§rhents resulting from re-
striction enzyme cleavage on gel electrophoresis betwaemple and control groups, one can

identify if a particular point mutation occurs.

In addition to RFLP, traditional sequencing techniquesugtoautomated chain-termination
DNA sequencing were also used to identify single nuclegdiolgmorphisms (SNPs). SNPs are
single point mutations that occur throughout the genomeaevtie bases are switched from one
nucleotide to another. These variations can result in oemmgprotein sequence that may lead to
certain diseases. After high-throughput techniques wereduced, detecting and typing SNPs
through microarray chips became very popular. To detectsSbife would first sequence a small

region or the entire genome from a small sample of indivisluBl aligning the sequences, one
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can then identify the bases that are polymorphic. SNPs @anlié typed by running samples on
microarray chips with probes representing short sequearcemd each polymorphic site. While
SNPs genotyping using microarrays known as tiling arrayisesmost common approach today,
efforts to sequence the entire genome for all samples amirg more and more popular today

as the cost of whole-genome sequencing becomes affordable.

A second group of genetic variations is known as structusahtions. Although structural
variation was initially believed to be of lesser importanesearchers have begun to recognize
its importance in disease associati®2]] One way to detect a type of structural variation is
through polymerase chain reaction (PC&J[that identifies microsatellite polymorphisnq.
Microsatellite polymorphisms are short repeating seqesmanging between 2 and 6 base pairs
that vary in the number of repeat copies. These polymorphisam be detected and typed by
amplifying the microsatellite region using PCR with specgiamers outside the microsatellite
region and then separating different lengths of the mid¢edliga using gel electrophoresis. Those
individuals with heterozygous allele would have two diffiet bands on the gel, while those with

homozygous major or minor alleles would have just a singtedlan the gel.

In addition to microsatellite polymorphism, detection dher structural variations can be
achieved through high-throughput techniques via sequgraritiling arrays. Although there are
fewer structural variations compared to SNPs, researdteess shown that structural variations
can also result in disease phenotyp#8g 128. Detections of larger structural variations are
commonly conducted through array comparative genome thyltion (aCHG) 82| by mea-
suring a sample’s florescent intensity compared to a reéeresample, but a recent advances
in sequencing technology have led to a newer approach knevpaieed-end mapping that not
only enables detection of insertion/deletion polymorptsdut also translocations and inversions

[56].



1.2 Genetic Variation Datasets

With different types of genetic variations data and difféargenotyping and sequencing efforts
managed by different groups, locating specific genetic databe difficult. Luckily, efforts to
collect data from multiple studies into a centralized lamathave been initiated. A database
known as dbSNP was initiated by National Center for Biotecbgwlinformation (NCBI) in
1998 to enable researchers to submit newly identified gewnatiations 9. To search for
existing genetic variations submitted to dbSNP, one cosklthe NCBI's Entrez SNP search
tool to learn about a particular genetic variatigiZ]| a set of SNPs within a particular gene, or
even the set of SNPs within an entire chromosome. Alterelgtione could also utilize a genome
browser, such as the UCSC genome browser, to learn about@eagations across different

regions of the genomé»5, 69.

While dbSNP and associated browsers allow one to search fatigevariations identified
by various studies, data genotyped and sequenced for knbi&s 8n cohorts of samples needed
for actual analyses are typically deposited on differenbsites and databases. For small and
medium scale studies on collecting genetic variation datden fdifferent cohorts of individu-
als, one can often find the sample data in National Center faieBimology Center’'s (NCBI)
database of genotype and phenotype (dbG&4#) [The database contains information on each
genetic variation study listed, including the study docatagon, phenotypic data, genetic data,
and statistical results. While aggregated information saglstatistical analysis and summary
descriptions are available publicly, access to individeaél information including genotypic

data requires one to apply for access.

As an alternative to dbGaP, large-scale whole genome geraetation data are also available
from a number of resources as summarized in TaldleAmong the databases listed in Tallé,
HapMap is perhaps the most well-known whole genome genatiation dataset, consisting of
over 1.6 million SNPs from 1,184 reference individuals fridinglobal populations in its phase

3 release?, 4, 5]. In addition to HapMap, a number of large scale datasetsgugenotyping
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technologies have emerged including Human Genome DiyePsibject (HGDP) $0], Popu-
lation Reference Sample (POPRES3¥)]| Japanese Single Nucleotide Polymorphism (JSNPA)
[46], and Pan-Asian SNP (PASNP24]. While most large scale projects employ genotyping
technologies, a newer project known as 1,000 Genome Prigj#uet first large scale project to

sequenced entire genomes on more than 1,000 individélals [

Table 1.1: List of Some Important L arge-Scale Genetic Variation Datasets

Database Data Types Populations | Samples
HapMapp4] SNP (1.6M), CNV 11 1184
HGDP[95] SNP(500K), CNV (1k) 29 485
1000 Genom¢]3] | SNP (38M), CNV, Ins/Del/Inv 14 1092
POPRESTH)| SNP(500K), CNV 7 5886
PASNP[] SNP (56K), CNV 71 1982
JSNPF1] SNP(500K) 1 934

1.3 Inference of Population History

Past work on population history inference has essentiaiglved two inference problems: iden-
tifying meaningful population groups and ancestry infeeeamong them. In this section, we

survey major methods for these separate inference problems

1.3.1 Population Substructure

Population groups or substructures may be assumed in aglw@sed on common conceptions
of ethnic groupings, although the field increasingly degema computational analysis to make
such inferences automatic. Probably the most well-knovstesy for identifying population

substructure is STRUCTURBY]. STRUCTURE infers population substructures from genetic

6



variation data using a probabilistic model that assumehl papulation is characterized by a
set of frequencies for each variant form, or allele, acr@sgtion sites, or loci, in the dataset.
Assuming that the allele of each locus for each individualependent on the allele frequency
of the subpopulations the individual belongs to, STRUCTUR&stto identify the probability
distribution of the ancestral origi@ of each individual and the allele frequencigsof each
subpopulation given the observed genetic variation dataNamely, STRUCTURE aims to

learn the distribution

Pr(Z,P|X) < Pr(X|Z, P)Pr(Z)Pr(P)

using a Markov Chain Monte Carlo (MCMC) method to group sequeimteds ancestral pop-
ulation groups each with its own allele frequency profile.

Another well known program is EIGENSOF8]], which uses principal components analy-
sis (PCA) to identify a set of distinguishing vectors of adkethat allow one to spatially separate
a set of individuals into subgroups. Recently, two additiaalgorithms known as Spectrum
[105 and mStruct 101] have been proposed by Sohn and Xing and Shringarpure argir&in
spectively. While both algorithms are similar in nature t(RRICTURE, Spectrum constructs a
more realistic model by incorporating recombinations andations into their statistical model
and avoids the specification of ancestral population nural@iori by modeling genetic poly-
morphism based on the Dirichlet process. On the other haSttuct proposes a new admixture
model to identify subgroups by representing each popula®mixtures of ancestral alleles

rather than a single ancestral allele profile.

1.3.2 Phylogenetic Analysisfor Ancestry Inference

Traditionally, analysis of ancestry between individuaés targely been done through the use
of classic phylogenetic algorithms. Defined as methods fer ievolutionary relationship be-

tween different taxa or individuals using a tree and, in sonoee complicated cases, a graph,
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phylogenetic algorithms can be largely divided into two gyah classes of algorithm: distance-
based and character-based. Distance-based phylogelgetithans aim to piece together the
relationships between taxa or individuals by using a measfievolutionary distances between
taxa or individuals. Pairwise distances are typically cated between every pair of taxon or
individual and are then used to construct a tree in which thgogenetic distances between
taxa or individuals closely resemble the computed distan@éhile a number of distance-based
methods exist, they can largely be grouped into non-oledtased and objective based meth-
ods. Among non-objective based methods, two of the mostkmelvn are the Unweighted
Pair-Group Method Using Arithmetic Averages (UPGMAIL] and Neighbor Joining (NJ)3f].
Both methods compute a tree progressively from the bottotoyypining two closest taxa into a
single tree node and updating the distance matrix at eaphusté all taxa are joined into a tree.
While the two methods are similar, NJ differs from UPGMA inuggdates of distance matrix in
that NJ incorporates different mutation rate at differeeétbranches into distance calculations.
This makes NJ a better choice of algorithm when the mutatida is variable. While NJ and
UPGMA are popular distance-based methods, a second gradiptahce-based methods using
an objective function are also gaining popularity. Objtbased methods, such as minimum
evolution, aim to optimize for the best tree using objectiugctions such as the sum of the edge
weights. Although with higher computational cost, objeetbased methods have the advan-
tage of having theoretical guarantees of identifying thénogl tree by some precise criteria by
searching through all possible trees rather than greealilkihg at a subset of all possible trees

in the case of non-objective based methods.

A second class of phylogenetic algorithms is the chardsdsed approach. A character-
based algorithm takes an aligned set of characters, sucNAsBguences, and constructs a tree
describing the changes in individual characters neederbtiupe the observed set of characters.
Each node in the tree would represent a unique string of cteasaand each edge connected to

a node would describe the changes to the character thatdemdéw string of character from
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another node. Character-based algorithms can largely lediinto three groups: maximum
parsimony, maximum likelihood, and Bayesian. In maximunspaony, the goal of the algo-
rithms is to identify the tree that minimizes the total numbgchanges or mutations occurred
along the edges of the tree. The intuition behind maximursipany is that repeated or recur-
rent mutations are typically rare. Thus, by optimizing fbe tminimum number of mutations
that have occurred throughout history, maximum parsimooyld/give us a tree satisfying such
assumption. Because maximum parsimony is one of the firss cdasethods introduced, a
number of well-known software suites have utilized thisrapgh, including Phylip, PAUP, and
more recent mixed-ILP method8(Q, 96, 109. The advantage of the maximum parsimony is
that the method utilizes a simple but informative model otenalar evolution that can provide
correct evolutionary trees in some regions of the genomentlag be under selective pressures
that prevents frequent mutation or for short time scales/feav mutations would be expected.
However, the method is generally much more computatiortahsive than most distance-based

methods and can produce incorrect tree when the assumgtaoiated.

Another group of character-based method is the maximuritiked (ML) approach, where
finding the optimal tree is proposed in a probabilistic framk. In a maximum likelihood
approach, the method finds the optimal tree by maximizindikedihood function, P(D|M),
where data D) is the observed sequences and the mogi€) is the set consisting of the tree
topology, ancestral sequences, and other parameters.a8ugbproach can provide a finer and
generally more accurate depiction of the evolutionaryonisthan the maximum parsimony ap-
proach when the parsimony assumption no longer holds, byegngrally more computational

costly than the maximum parsimony approach.

In addition to maximum likelihood, a third group of charadt@sed methods is the Bayesian
approach49]. Rather than maximizing the probability functid®(D|M ), a Bayesian method
tries to learn the posterior distributiaR(1/) over possible trees, sequences, and parameters.

While the Bayesian approach is generally harder computdlypritahas the advantage of not
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requiring the users to specify parameters that can biasdbertference.

When comparing the two main classes of phylogenetic treenstaaction algorithm, there is
a general consensus that character-based approach paowdee realistic and generally more
accurate and detailed depiction of the evolutionary hysbart suffers from high computational
cost that limits its usefulness on large genomic datasets result, distance-based methods are
still currently the only feasible choice in building evatutary trees from large genome-scale
datasets. Therefore, part of this thesis is to provide aoiefii solution in learning population

history using character-based methods.

1.4 Ancestry Inferencein the Presence of Admixture

While ancestry inference through traditional phylogenafgorithms generally works well when
the populations rarely interact with one another, tradaigohylogenetic methods can fail when
there are interactions between individuals from diffengeopulations. When individuals from
one population migrate and come into contact with anothpulation that was long separated,
incorporation of genetic materials from one distinct p@pioin into another can result. This pro-
cess of mixing genetic material from different populatismknown as admixture. This process
is believed to be common in human populations, where mmmnatof peoples have repeatedly
brought together populations that were historically relpiaively isolated from one another.
When one is interested in detecting and learning ancesstirkiiin the presence of admixed
individuals, traditional phylogenetic analyses may natassarily produce correct results. Imag-
ine if we have a group of admixed individuals that have a mmextef genetic materials from two
different populations in the same dataset. In the best-s@segario, the traditional phylogenetic
tree algorithm would simply attach the admixed individuedsa sub-branch to one of the parental
populations. However, it is more likely that the algorithrowld return an evolutionary tree that
is far from the true evolutionary history, where the topglag the tree is reshuffled due to the

mixing of genetic materials from admixed individuals. Asesult, a different set of tools and
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algorithms are needed to learn about admixture.

One popular approach for analyzing admixture is principahponent analysis (PCABL].
PCA is a type of techniques for taking high-dimensional dai ansform them into a more
tractable, lower-dimensional form, without losing too rhucformation. Mathematically, PCA
tries to minimize the projection residuals when transfoignp-dimensional data into lower-

dimension form:

wherez; is the p-dimensional vector ofh data point andv; is thejth orthonormal vector. The
minimization can be achieved by finding the eigenvectors @gdnvalues of the data where
each eigenvector is associated with an eigenvalue. The dlthe eigenvalue indicates how
large the variance of the data is when projecting onto theesponding eigenvector. The idea
behind PCA for ancestry analysis is that user would take thetgevariation data as a matrix,
learn the eigenvalues and eigenvectors of the matrix, asjdgireach individual onto the largest k
eigenvectors to visualize individuals’ genetic varianceas populations. Since variances across
populations are usually the largest, individuals from eagpulation should nicely project into
different population clusters using the first few eigengeswith the largest eigenvalues. When
applying PCA on a dataset with admixed individuals, the aeuahixdividuals would generally
be projected linearly between the centers of two or morerpar@opulations. This approach
is popular due to its low computational cost and its abilityeasily visualize the separation and
intermixing of populations. Nonetheless, the PCA-basedaggh generally does not have an
easy and accurate way to quantify the separation or theminterg of populations.

To quantify the amount of admixtures between populatiorsneong individuals, one com-
mon approach is the admixture model-based methods thatImutieiduals as probabilistic
mixtures fromk ancestral population. Such an approach can typically perfdetailed esti-

mations of the admixture proportions at the individual lemeeven at the loci level for each
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individual. While a number of likelihood-based methods £j&§], one common implementa-
tion is the hidden Markov model (HMHBH, 111]. An HMM is a probabilistic graphical model
that assumes a Markov process with hidden states. A genét®d Hamework for inferring
admixture generally models the ancestry composition ohdividual at each genetic variation
site as the hidden state that must be inferred from the gpastyEach hidden state is connected
to its neighbors by a chain where the probability of the hiddtate is conditionally dependent
on the states of its neighbors. By using the observed gemoigpe the correlations between
the nearby markers, the HMM can then produce a probability quantifying the ancestry of
each individual. While there are a number of different HMMs&a methods introduced in re-
cent years, they are mainly based on the same framework ddlti@nal improvements such as
inclusion of linkage disequilibrium (LD) or other hyperpaneters. In addition to HMM, other
likelihood methods such as LAMP§], FRAPP [L10, and ADMIXTURE [8] are also popular

for quantifying admixture.

Despite success in learning admixture using PCA and adneixtwdel-based approaches,
neither approach provides a way to fully illustrate the ctatgoevolutionary history, such as the
relationships between the non-admixed populations or teeige time at which the admixture
happened. To learn about the time of admixture and the des®lationships between popula-
tions, a third type of admixture inference algorithm knoventlae coalescent-based algorithms
can be used. In coalescent-based algorithms, models ofajgmgulation history with different
time and admixture parameters are evaluated by enumegdtipgssible trees generated from a
coalescent model consistent with the general populatiodetn@and then computing the proba-
bility of observing the data given the generated coalestees [L7, 77, 126. Coalescent-based
methods generally have the advantage that these methoge@ade additional evolutionary
information, such as the time of the admixture and time oédjence in which one may be
interested in phylogenetic analysis. While coalescenétasethods can provide additional evo-

lutionary information, existing methods suffer from expme computational cost as well as the
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requirement to know the model of population history befarahinstead of learning it from the
data directly. Despite the limitations of current coalegdsased methods, the ability to learn
additional evolutionary information is desirable. Theref addressing the limitations of the

coalescent-based methods will be a focus in this thesis.

1.5 Limitationsof Existing Approachesfor Learning Popula-

tion History

Efforts at learning the history of populations from geneteta remain a problem solved in
bits and pieces: from population assignments to evolutioesaents inferences to parameter
estimation. While there have been significant advances tigcensubpopulation detection
[84, 85, 101], in phylogenetic inference3fl], and in parameter estimatioaq, 126, there is no
single method that learns all the information needed to gigletailed depiction of how different
populations emerged over time and, perhaps more impoytdrdlv long ago the populations
emerged. Methods for identifying substructure in a date@etprovide highly accurate mapping
of an ancestral origin for each region of the individual’'sarhosome 98, 111] but leave out
information regarding the relationships between anckstigins. On the other hand, classical
phylogenetic method$3)] provide highly detailed evolutionary relationships beem individu-
als but are mostly limited to tree-like structures. Funthere, phylogenetic inferences frequently
require large datasets to achieve statistical significandeconfidence but become computational
infeasible when given large datasets. Similarly, algonghor estimating parameters of evolu-
tionary events can be computational intensi/g [L7] and require a restrictive assumption that
the history of the population is known or assumed beforeh&uine parameter estimators cir-
cumvented the computational issue but, in exchange, otilya® a subset of the parameters,

such as admixturesg, 85].
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1.6 Contributions

Despite different types of methods excelling in learninifedent aspects of the population his-
tory, no single method of which we are aware can provide gfature of the population history,
which not only can be informative and time-saving to redears but also helpful in enhanc-
ing the accuracy of the estimations. For example, when usidigergence time estimator that
did not take admixture into account, the time estimatedasignificantly deviate from the true
divergence time if admixture events have actually occurfesia result, given the potential ad-
vantages of joint learning of multiple aspects of populatiistory, the goal of this thesis is to
work toward unifying different aspects of the inference opplation history into one algorith-
mic package. Since inference of population history can empass a broad range of problems,
we here specifically try to unify the problem of populatiorbsuucture, the inference of evo-
lutionary events involving divergence events and/or adunexevents, and the exact times and

admixture fractions describing the events given largestdsa

The key contribution of this thesis is the development ofat@lgorithms for automatically
learning detailed descriptions of population history frtarge scale genetic variation datasets
with and without the presence of admixture. The thesis fiestcdbes a model to learn pop-
ulation trees from large genomic datasets under the assumgbiat no admixtures occurred
throughout the history of the populations. The method diesdrhere employs a character-based
algorithm to take advantage of its better modeling of thdwdianary processes but avoids the
high computational cost by generating small phylogeneteg on fragments of the complete
dataset and then infers robust tree branches across thsetrde addition to solving the compu-
tational issue for learning evolutionary history from lardatasets, another contribution of this
work is to combine the inference of the population substmgst along with the history of the
populations as both problems depend on similar data soarwtsn principle can help inform
the decisions of one another. Through a series of tests ¢ndmulated and real datasets, this

thesis demonstrates the feasibility of automaticallyriesy of population substructures and their
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relationships in a reasonable time frame.

Analysis on the evolutionary history of human populatignsdally assumes a tree-like struc-
ture and ignores the migratory nature of human populativvisile a tree assumption has long
worked for evolutionary analysis on distance species, simcassumption may not always hold
for closely-related species or intra-species analysisniitlires, a result of the migratory nature
of human populations, have been proven to be a crucial factbe analysis of human population
history and an important step in understanding the etiolufgyiseases. Methods for detecting
and quantifying admixtures are on the rise in recent yeassthese methods usually look at a
limited aspect of the whole admixture history or lack theatality to analyze large quantities
of data to provide a fuller picture of the evolutionary hrstof human populations. To resolve
these issues, the second contribution of this thesis isatelobment of a novel algorithm capa-
ble of running on large-scale datasets for learning the &nmeadmixture parameters describing
a population history involving two non-admixed populas@and one admixed population.

As a natural extension to automatic learning of parametepopulation history involving
two non-admixed and one admixed populations, a third daution of this thesis is to expand
previous algorithm of learning parameters of populatiastdry for two non-admixed popula-
tion and one admixed population to learn the precise paemhand population model for any
arbitrary number of subpopulations.

Finally, to explore the possible applications of learnirgpplation history from large ge-
nomic datasets, one final contribution in this thesis is tmppse and test a simple structured
association test statistic that effectively removes tliecefof population substructure learned

from our prior algorithms.

1.7 ThesisOrganization

Chapter2 gives a detail description of the computational method damtjinference of popu-

lation substructures and their evolutionary history frargé scale genomic datasets under the
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assumption that there is no admixture. A series of valigatidone through simulated and real
datasets are also conducted and detailed in the chapterteCBajescribes a coalescent-based
algorithm involving a two-step process for learning thegpaeters of a population history from
large-scale genomic data involving two non-admixed pdpuia and one admixed population.
As a natural extension of the algorithm described in Chapt&hapterd details a generalized
algorithm for automatic identification of population substures, their evolutionary histories,
and the specific parameters pertaining to each evolutiomnagt from large-scale datasets with
or without the presence of admixture for any arbitrary nundfesubpopulations in the dataset.
In Chapter5, we describe a simple structured test statistic to testppécability of population
history learned from genomic datasets. Finally, Chapsermmaries the findings of these studies

and their conclusions and outlines possible direction$uiare work on this topic.
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Chapter 2

L earning Population Histories From
L arge-Scale Datasets in the Absence of

Admixtur?!

The recent completion of the human geno2g [L24 and the subsequent discovery of millions
of common genetic variations in the human genod@(] has created an exciting opportunity
to examine and understand how modern human population &@®eour common ancestor
at unprecedented detail. Several major studies have redem@n undertaken to assess genetic
variation in human population groups, thus enabling thaitket reconstruction of the ancestry
of human population groupg[ 10, 50, 76]. In addition to its importance as a basic research
problem, human ancestry inference has great practicalaete to the discovery of genetic risk
factors of disease due to the confounding effect of unreizegrsubstructure on genetic associ-
ation tests114].

As discussed in Chaptéy past work on human ancestry inference has treated andattra
ence as two distinct inference problems: identifying megful population groups and inferring
evolutionary trees among them. While most earlier worksgeréd the task of identifying

This chapter was developed from material published i
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meaningful population groups manually by assuming in adedhe groups based on common
conceptions of ethnic groupings, the field has increasingly on computational analysis to
make such inferences automatically. Two popular appraafdrdearning population substruc-
tures are STRUCTUREBP] and EIGENSOFT §1] that uses probabilistic model and principal

component anaylsis (PCA) to identify fine population struetitom genetic dataset.

A separate literature has arisen on the inference of rekstiips between populations, typi-
cally based on phylogenetic reconstruction of limited sétgenetic markers — such as classic
restriction fragment length polymorphism#4], mtDNA genotypes 14, 52], short tandem re-
peats 2, 116, and Y chromosome polymorphism]] — supplemented by extensive manual
analysis informed by population genetics theory. While enriphylogenetic reconstruction al-
gorithms, such as maximum parsimony or maximum likelihaaatk well on small datasets with
little recombination, most do not work well when utilizingrgome wide datasets. Furthermore,
there has thus far been little cross-talk between the twblenas of inferring population sub-
structure and inferring phylogenetics of subgroups, dedpe fact that both problems depend

on similar data sources and in principle can help inform #ha@sions of one another.

To unify these two inference problems, this chapter intoedua novel approach for recon-
structing a species history conceptually based on the ilearsensus tree§ 8], which repre-
sent inferences as to the robust features of a family of trébe approach takes advantage of
the fact that the availability of large-scale variationala¢ts, combined with new algorithms for
fast phylogeny inference on these data s@, [has made it possible to infer likely phylogenies
on millions of small regions spanning the human genome. Mhation behind this method is
that each such phylogeny will represent a distorted versidime global evolutionary history and
population structure of the species, with many trees sujpgpthe major splits or subdivisions
between population groups while few support any particsidits independent of those groups.
By detecting precisely the robust features of these treesawassemble a model of the true evo-

lutionary history and population structure that can be madestant to overfitting and to noise
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in the SNP data or tree inferences.

For the remainder of this chapter, Sectia will present a detailed description of the math-
ematical model of the consensus tree problem and a set oftalgs for finding consensus trees
from families of local phylogenies. Sectidh2 presents strategies for evaluating the method
on a set of simulated data and two real datasets from the HapNMase Il 4] and the Human
Genome Diversity Projecb]. Section2.3then shows the results of the validation experiments.
Finally, Sectior2.5 considers some of the implications of the results and fytuospects of the

consensus tree approach for evolutionary history and sudigte inference.

2.1 Methods

2.1.1 Consensus Tree Model

Assume we are given a s6tof m taxa representing the paired haplotypes from each indwidu
in a population sample. If we I6t be the set of all possible labeled trees connecting thes,
where each node of anye 7' may be labeled by any subset of zero or mere S without
repetition, then our input will consist of some setofreesD = (73,...,7,,) C 7. Our desired
output will also be some labeled trég, € T, intended to represent a consensugyof . ., 7,,.

The objective function for choosirifj, is based on the task of finding a consensus & [
from a set of phylogenies each describing inferred ancesdtaysmall region of a genome. The
consensus tree problem aims to identify tree structureigh@drsistent across a set of trees. The
typical approach for finding the optimal consensus treelii@gcounting occurrences of each
edge across the set of trees. If the frequency of the edgedss®me threshold, the edge will
be incorporated into the consensus tree. The present appiids, however, fairly different
from standard uses of consensus tree algorithms in thatylegenies are derived from many
variant markers, each only minimally informative, withirsiagle species. Standard consensus

tree approaches, such as majority conser®bjof Adam consensug], would not be expected
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to be effective in this situation as it is likely there is nagle subdivision of a population that
is consistently preserved across more than a small fractidhe local intraspecies trees and
that many similar but incompatible subdivisions are sufgmbby different subsets of the trees.
We therefore require an alternative representation of timsensus tree problem designed to be
robust to large numbers of trees and high levels of noise andrtainty in data.

Given such criterion, a model of the problem based on thecimi of minimum description
length (MDL)[38] was chosen. The principle of minimum discription lengttaistandard tech-
nique for avoiding overfitting when making inferences frooisy data sets. An MDL method
models an observed data set by seeking to minimize the anodumfiormation needed to en-
code the model and to encode the data set given knowledges ohtldel. Suppose we have
some function. : 7 — R that computes a description lengihy,7;), for any treeT;. We will
assume the existence of another function, which for natatioonvenience we will also call,

L : T xT — R, which computes a description length(7;|7}), of a treeT; given that we
have reference to a model trée Then, given a set of observed tre@s= {1, 15, ..., T, } for

T; € T, our objective function is

L(Ta, T, ..., Ty) =

arg min (L(TM) + Z L(T;|Twr) + f(TM)>

TveT P

The first term computes the description length of the modehgensus) tre&),;. The sum
computes the cost of explaining the set of observed (inpa8stD. The functionf(Ty,) =
c|Ty|log, m defines an additional penalty on model edges whésea constant used to define
a minimum confidence level on edge predictions. The highept#nalty term, the stronger the
support for each edge must be for it to be incorporated irgctnsensus tree.

We next need to specify how to compute the description lenfthtree. For this purpose,
this method use the fact that a phylogeny can be encoded asfggartitions (orsplits) of the
taxa with which it is labeled, each specifying the set of tigkag on either side of a single edge

of the tree. The algorithm represent the observed treesamtidate consensus trees as sets of
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e,;: 1,3,56,9,10|0,2,4,7,8 e,: 01010110011
e,: 0,1,2,3,4,6,7,89,10|5 e, 00000100000
e: 01,3,45,6,78,910|2 e: 00100000000
e 0,1,2,3,56,7,89,10/4 ey 00001000000

(b) (c)
Figure 2.1: (a) A maximum parsimony (MP) tree consisting bidbeled individuals or haplo-
types. (b) The set of bipartitions induced by edgesd;, e., e4) in the tree. (c) 0-1 bit sequence

representation for each bipartition.

bipartitions for the purpose of calculating descriptiomgéhs. Once the method identified a set of
bipartitions representing the desired consensus treendtieod then apply a tree reconstruction
algorithm to convert those bipartitions into a tree.

A bipartition b can in turn be represented as a string of bits by arbitras$ygming elements
in one part of the bipartition the label “0” and the other e label “1”. As an example, in
the tree of Fig2.1(a) the edge labeledinduces the bipartitiok1, 3,5,6,9, 10} : {0,2,4,7, 8}.
This edge would have the bit representation “10101001180c¢h a representation allows us to
compute the encoding length of a bipartitibas the entropyd8] of its corresponding bit string.

If we define H (b) to be the entropy of the corresponding bit stripgto be the fraction of bits

of b that are zero ang, as the fraction that are one, then:

L(b) = mH(b)
= m (—po logy po — p1log, p1)

Similarly, we can encode the representation of one bipamti; given anothem, using the
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concept of conditional entropy. If we |éf(b,|b2) be the conditional entropy of bit string éf
given bit string ofb,, pyo be the fraction of bits for which both bipartitions have \v&al@,” py, be

the fraction for which the first bipartition has value “0” atiee second “1,” and so forth, then:

L(b1|b2) = mH(b1|b2)

= m[H(by,by) — H(b)]

= m Z —Pst 108y por +
s,te{0,1}

> (Pou+ P1u) 1085 (Pou + P1a)
ue{0,1}

where the first term is the joint entropy &f andb, and the second term is the entropybef

We can use these definitions to specify the minimum encodisgaf a treel.(7;) or of one
tree given anothek (7;|7),). We first convert the tree into a set of bipartitidns. . ., b,. We can
then observe that each bipartitibycan be encoded either as an entity to itself, with cost egual t
its own entropyL(b;), or by reference to some other bipartitiprwith costL(b;|b,). In addition,
we must add a cost for specifying whether eaak explained by reference to another bipartition
and, if so, which one. The total minimum encoding co&t&l,) and L(7;|Ty,), can then be
computed by summing the minimum encoding cost for each tijearin the tree. Specifically,
let b, ; andb, »; be elements from the bipartition sBt of 7T; and B, of T, respectively. We
can then computé(7),) and L(T;|Ty) by optimizing for the following objectives over possible

reference bipartitions, if any, for each bipartition in kaee:

[Ba|

L(Ty) = argmin Y [L(bsubs) +logy (| By + 1)]
bs€BapU{0} s—1

|B;]
L(TyTy) =  argmin Y [L(bylb) +log, (|Bul + [Bil +1)]

thijuBiU{m} t=1
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2.1.2 Algorithms

Encoding Algorithm To optimize the objectives for computing7),) and L(T;|Ty,), we can
pose the problem as a weighted directed minimum spanniad@®& ST) problem by construct-
ing a graph, illustrated in Fig2.2, such that finding a directed minimum spanning tree allows
us to compute.(Ty,) and L(7T;|Ty). We construct a grapty = (V, £) in which each node
represents either a bipartition or a single “empty” root@edexplained below. Each directed
edge(b;, b;) represents a possible reference relationship by wiiexplainsb;. If a bipartition
b; is to be encoded from another bipartitibyy the weight of the edge;; would be given by
wj; = L (b;|b;) + log, |V'| where the terntog, |V| represents the bits we need to specify the ref-
erence bipartition (including no bipartition) from whiéhmight be chosen. This term introduces
a penalty to avoid overfitting. We add an additional edgectlyedrom the empty node to each
node to be encoded whose weight is the cost of encoding the willy reference to no other
edge wempty,; = L(b;) +log, |V

To computeL (7)), the bipartitionsB,, of T, and the single root node collectively specify
the complete node set of the directed graph. One edge is teated from every nodB,, U {r}
to every node of3,,. To computel(T;|T),), the node set will include the bipartitiord$ of 73,
the bipartitionsB,, of T,;, and the root node. The edge set will consist of two parts. Part
one consists of one edge from each nodépt B,, U {r} to each node oB;, with weights
corresponding to the cost of possible encoding®ofPart two will consist of a zero-cost edge
from r to each node irB,,, representing the fact that the presumed cost of the maglelhas
already been computed. F@2illustrates the construction for a hypothetical model ffgeand
observed tre&; (Fig. 2.2(a)), showing the graph of possible reference relatiorss{im.2.2(b)),
a possible solution corresponding to a specific explanatidn in terms of7T, (Fig. 2.2(c)), and

the graph of possible reference relationshipsitgrby itself (Fig.2.2(d)).

Given the graph construction, the minimum encoding lengthbbth constructions is found

by solving for the DMST with the algorithm of Chiu and Lia§] and summing the weights of
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Figure 2.2: lllustration of the DMST construction for detening model description length. (a)
Hypothetical model tre&), (gray) and observed trée (white). (b) Graph of possible reference
relationships for explaining’; (white nodes) by reference t6,, (gray nodes). (c) A possible
resolution of the graph of (b). (d) Graph of possible refeeerelationships for explaining),

by itself.

the edges. This cost is computed for a candidate modelltyeand for each observed trég,
fori =1,...,n, to give the total costC(T), 11, - .., T5,)]-

Tree Search While the preceding algorithm gives us a way to evalddg,, ), L(T;|T),), and
L(Ty, Ty, ..., T,) for any possible consensus tfEg, we still require a means of finding a high-
quality (low-scoring) tree. The space of possible treegaddrge to permit exhaustive search and
we are unaware of an efficient algorithm for finding a globdlrapm of our objective function.
We therefore employ a heuristic search strategy based ameaed annealing. The algorithm
relies on the intuition that the bipartitions to be found myaigh-quality consensus tree are
likely to be the same as or similar to bipartitions frequgmibserved in the input trees. The
algorithm runs for a total of iterations and at each iterationvill either insert a new bipartition

chosen uniformly at random from the observed (non-unigipgrbitions with probabilityl —i /¢
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or delete an existing bipartition chosen uniformly at ramdoom the current’,; with probability
i/t to create a candidate model trég. This strategy is intended to encourage the addition of
new bipartitions at the beginning of the search and the diear redundant bipartitions at the

end of search cycle.

If the algorithm chooses to insert a new bipartitigit then performs an additional expectation-
maximization-like (EM) local optimization to improve thé,fas many of the bipartitions in the
observed trees will be similar but not exact matches to thbailsplits inferred for the popula-
tions. The EM-like local optimization repeatedly identfithe setB, of observed bipartitions
explained by and then locally improves by iteratively flipping any bits that lower the cost of
explaining B,,, continuing until it converges on some locally optinhalThis final bipartition is
then added td’, to yield the new candidate tr&,. Once a new candidate trég, has been
established, the algorithm tests the difference in costéenT),, and7},. If T}, has reduced

cost then the move is accepted drjgd becomes the new starting tree. Otherwise, the method ac-

ceptsT’, with probabilityp = exp £ ) whereT = 400/t is the simulated

T

annealing temperature parameter.

Tree Reconstruction A final step in the algorithm is the reconstruction of the nsus tree
from its bipartitions. Given the bipartitions found by thied search heuristics, we first sort the
model bipartitions; < bs... < by, in decreasing order of numbers of splits they explain (ite,
number of out-edges from their corresponding nodes in th&IDMThe method then initialize a
treeT;, with a single node containing all haplotype sequences amd introduce the successive
bipartitions in sorted order into this tree. The intuitianthat bipartitions that explain a greater
fraction of the observed variation should generally cqroesl to earlier divergence events. For
eachh; = 1to k, the method subdivide any nodethat contains elements with label 0tin(5?)
and elements labeled as 1n(b}) into nodesv;; andv;, corresponding to the subpopulations
of v; in b or b;. The method also introduce a Steiner neddor each node; to represent

the ancestral population from whiely, andv;, diverged. The method then replace the prior tree
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E—l with T‘z = (V;, Ez) Where‘/; = ‘/i—l — {Uj}+{Uj1, Vj2, Sj} andEZ‘ = Ei—l — {6 = (t, Uj>|6 -
E;_1,t € parent(v;)} + {e = (¢, s;)|t € parent(v;)} + {(s;,vj1), (s}, v;2)}. After introducing

all £ bipartitions, T}, is the final consensus tree.

2.2 Validation Experiments

2.2.1 Simulated Dataset

Evaluation of the method is initially performed on a simathtlataset consisting of three inde-
pendent populations, each with 150 individuals (300 chsontes). To generate the sequence
data, we first generated the genealogies, or trees thatitsaethe possible lineages and history
between observed individuals, for each population usiegctialescent simulator M37] on
sequence of length)” base pair long with a mutation rate of—, a recombination rate df)—3,

and an effective population size of 25,000. The resultingutated branch length between the
root node of each population and the leaves was 1,600 gereyaln order to simulate the effect
of three populations diverging from a common ancestor, vibssguently merged the genealogy
trees from each population. We first defined a common anckesttbre root nodes of populations
one and two as shown in Fig@.3(b)with branch length 1,000 generations between their most
recent common ancestor (MRCA) and the root nodes of the twolatigos. We then defined a
common ancestor between the MRCA of populations one and twdéhenaot node of popula-
tion three, with branch length 1,000 generations to the MRCpagfulations one and two, and
2,000 generations to the root node of population three. Thed branch lengths between any
leaf and the MRCA of all of the populations was thus estimatejJ&10 generations. Given this
defined tree structure, we generated sequence for eaciduaivusing Seq-Ger8p]. We used a
mutation rate ofl0~? per site to generate a 10 million base pair sequence witl8ZB8P sites

in order to accommodate the branch lengths simulated from W&8g the 83,948 SNP sites,

we constructed 83,944 trees from 5 consecutive SNPs sgpaninss the sequences. Given the
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dataset, we ran the algorithms on 10,000 randomly selexted or their corresponding 33,295

unique SNPs.

2.2.2 Real Data

We further evaluated the method by applying it to samples ftwo real SNP variation datasets.
We first used the Phase Il HapMap data set (phased, relea$d] 2&)ich consists of over 3.1
million SNP sites genotyped for 270 individuals from foumpptations: 90 Utah residents with
ancestry from Northern and Western Europe (CEU); 90 indadslwith African ancestry from
Ibadan, Nigeria (YRI); 45 Han Chinese from Beijing, China (CHB)J &5 Japanese in Tokyo,
Japan (JPT). For the CEU and YRI groups, which consist of tria @@arents and a child),
we used only the 60 unrelated parents with haplotypes agédfdy the HapMap consortium.
For each run, we randomly sampled 10,000 trees each cotestrirom 5 consecutive SNPs
uniformly at random from 45,092 trees generated from chsone 21, which represented an
average of 28,080 unique SNPs. For the purpose of compamg®mnised 10,000 trees or the
corresponding 28,080 SNPs as inputs to the method and thpacative algorithms. We next
used phased data (version 1.3) from the Human Genome Dwémwject (HGDP) $0], which
genotyped 525,910 SNP sites in 597 individuals from 29 patprs categorized into seven
region of origin: Central South Asia (50 individuals), Afi¢159 individuals), Oceania (33
individuals), Middle East (146 individuals), America (3idividuals), East Asia (90 individuals),
and Europe (88 individuals). For each test with the HGDP,da¢asampled 10,000 trees from
a set of 39,654 trees uniformly at random from chromosome He 10,000 trees on average

consisted of 30,419 unique SNPs.

2.2.3 Benchmarks

There are no known existing method that perform the joirgr@fce of population substructure

and the evolutionary tree, and therefore the method camadiemchmarked directly against
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any competitor. Consequently, the method was assessed byriteva. We first assessed the
guality of the inferred population histories from the siateld data using the gold standard tree
and assessed the quality of the inferred population hetdrom the real data by reference to
a expert-curated model of human evolution derived from &vreby Shriver and Kittles[02,
which we treat as a “gold standard.” Shriver and Kittles uaetkfined set of known human
population groups rather than the coarser grouping infelosethe consensus-tree method. To
allow comparison with either of the inferred trees, we tfenemerged any subgroups that were
joined in our tree but distinct in the Shriver tree and deleday subgroups corresponding to
populations not represented in the samples from which eestwere inferred. (For example, for
the HapMap Phase Il dataset, we removed Melanesian, Paynédiddle Eastern, American,
and Central South Asian subgroups from the tree, as indilsduam those populations were
not typed in the Phase Il HapMap). We also ignored inferredigmire events in the Shriver
and Kittles tree. We then manually compared our tree to theltiag condensed version of the

Shriver and Kittles “gold standard” tree.

As a secondary validation, we also assessed the qualityrofifaured population subgroups
relative to those inferred by two of the leading substrueigorithms: STRUCTURE (version
2.2) [89] and SpectrumJ05. We selected these programs because of they are well accapt
leading methods for the substructure problem and are ablatdle comparable sizes of data set
to the method. We chose to omit EIGENSOFT, despite its wigaruthis field, as the program is
mainly used to visualize substructure and does not leadtmambiguous definition of substruc-
ture to which we can compare. STRUCTURE requires that the pseifg a desired number of
populations, for which we supplied the true number for eaatia det (three for simulated data,
four for HapMap, and seven for HGDP). For each run of STRUCTURE performed 10,000
iterations of burn-in and 10,000 iterations of the STRUCTURENC sampling. We did not
make use of STRUCTURE's capacity to infer admixture or to ugditimhal data on linkage

disequilibrium between sites. Spectrum did not require @sgr inputs other than the dataset
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itself.

We first visualize the cluster assignments by plotting eadividual in each population as
a vertical line showing the population(s) to which he or shassigned. Because the clusters
assigned by the algorithms have arbitrarily labels, wegassolors to these labels so as to best
capture their correspondence to the true population grolgpdo so, we first arbitrarily assign a
color to each population group in the gold standard. For éimsensus tree method, all sequences
found in a common node of the consensus tree are considenegl@ duster; we assign to each
such cluster the color of the gold standard group that hasmrmam overlap with that cluster.
For STRUCTURE, which assigns each individual a probabilitipeifig in each cluster, we color
each cluster according to the gold standard populationh@smaximum overlap with the most
probable cluster assignments for all individuals. For 8pee, which assigns each individual a
fractional ancestry from a set of inferred founder haplegjpve choose an arbitrary color for
each founder haplotype and color each individual to refle&t individual’s inferred fractional
ancestries. If we were to use the same assignment protac8pfectrum as for STRUCTURE,
all individuals would be assigned to the same subgroup.

We quantify clustering quality using variation of infornaat [67], a measure commonly used
to assess accuracy of a clustering method relative to agfreed “ground truth.” Variation of

information is defined as

VI(X,Y) = 2H(X,Y) — H(X) — H(Y)

whereH (X,Y) is the joint entropy of the two labels (inferred clusterimglaground truth) and
H(X) and H(Y") are their individual entropies. Given that most algorithregirns the frac-
tion or probability that each individual belongs to popidatk, for the purpose of evaluation,
we assigned each individual to the population group of tigaést likelihood as determined by
STRUCTURE. While Spectrum also provided a fraction or proligirofile for each individ-

ual, the number specifies probability or fraction a persogiated from a ancestral haplotype
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rather than the ancestral population. As a result, arbdytrassigning each individual by the
likelihood fraction will lead to poor clustering results. &&equently, we chose not to evaluate

Spectrum by this criterion.

For the three comparative algorithms (STRUCTURE, Spectrurd,@onsensus Tree), we
also assessed robustness of the method to repeated subsarfRpt each pair of individuals
(4, j) across five independent samples, we computed the numbempfes;; in which those
individuals were grouped in the same cluster and the nuibér which they were grouped in

different clusters. Each method was assigned an overalhsistency score:

i 2b;; 2ai;
min {1 - L(aiﬁiim 1 - L(az‘jH}’z‘j)J }

2]: ()

Inconsistency =

The measure will be zero if clusters are perfectly considt®m run-to-run and approach
one for completely inconsistent clustering. We defined tloeigd truth for HapMap as the four
population groups. For the HGDP data, we treated the grourd &s the seven regions of
origin rather than the 29 populations, because many papuolgtoups are genetically similar

and cannot be distinguished with limited numbers of SNPs.

2.2.4 Sensitivity Test

To characterize the relationship between data quantityaandracy of the inference, we further
performed the analysis for a variable number of tree sizes.rdll the consensus-tree method,
STRUCTURE, and Spectrum for 4 different data sizes — 10,0@®01,100, and 10 trees (or
the corresponding SNPs) — and computed the variation ofnmdition and the inconsistency

score for each.
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2.3 Results

Fig. 2.3 shows the trees inferred by the consensus-tree method ainthbated data and the
two real datasets alongside their corresponding true siteditree or the condensed Shriver and
Kittles “gold standard” trees. Fi@.3(a) shows the inferred tree produced by the consensus-tree
model on the simulated dataset. Based on the numbers of eldskipartitions explained by
each model bipartition, the tree reconstruction correictigrs the key divergence events across
the 3 populations when compared to RRg3(b). The method also picks up some additional splits
below the division into three subgroups that representtautisre within the defined subgroups.
The fractions of mutations assigned to each edge roughhggpond to the number of genera-
tions simulated on that edge, although with the edge fronMR&EA of all populations to the
MRCA of populations one and two assigned slightly fewer matetiand the two edges below

that somewhat more mutations than would be proportiondigo tlivergence times.

Fig. 2.3(c) shows the inferred tree from the HapMap dataset. Theré@enstruction infers
there to be an initial separation of the YRI (African) sub-plapion from the others (CEU+JPT+CHB)
followed by a subsequent separation of CEU (European) from+@PIB (East Asian). When
collapsed to the same three populations (African, Europgast Asian), the gold standard tree
(Fig. 2.3(d)) shows an identical structure. Furthermore, thesdtseate consistent with many
independent lines of evidence for the out-of-Africa hy@sils of human originsSd, 102, 117].
The edge weights indicate that a comparable number of gemesaelapsed between the di-
vergence of African and non-African subgroups and the dmmece of Asian from European
subgroups, consistent with a single migration of both gsooynt of Africa long before the two
separated from one another.

For the HGDP dataset, the trees differ slightly from run to, g0 we arbitrarily provide the
first run, Fig.2.3(e), as a representative. The tree infers the most ancieertgéince to be that
between Africans and the rest of the population groupsoviad by a separation of Oceanian

from other non-Africans, a separation of Asian+AmericamfrEuropean+Middle Eastern (and
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a subset of Central South Asian), and then a more recent §pgliherican from Asian. Finally,

a small cluster of just two Middle Eastern individuals isenmkd to have separated recently from
the rest of the Middle Eastern, European, and subset of C&utdh Asian. The tree is nearly
identical to the that derived from Shriver and Kittles foe ftame population groups (F&3(f)).
The only notable distinctions are that gold standard treenmaequivalent to the purely Middle
Eastern node identified by consensus-tree method; thatalldestpndard does not distinguish
between the divergence times of Oceanian and other nogakfpopulations from the African,
while the consensus-tree method predicts a divergence edrden and European/Asian well
after the African/non-African split; and that the gold sdard groups Central South Asian with
East Asians while the consensus-tree method splits CenttghSAsian groups between Eu-
ropean and East Asian subgroups (an interpretation siggpbst more recent analyses1]).
The results are also consistent with the simpler pictureigeal by the HapMap data as well
as with a general consensus in the field derived from manypem#ent phylogenetic analyses
[54, 118. The relative edge weights provide a qualitatively simgacture to that of the HapMap
data regarding relative divergence times of their commdpspulations, although the HGDP
data suggests a proportionally longer gap between thegdimee of African from non-African

subgroups and further divergence between the non-Africagrsups.

Fig. 2.4 visualizes the corresponding cluster assignments, asibleddn Methods, in order
to provide a secondary assessment of our method’s utilithhsimpler sub-problem of subpop-
ulation inference. Note that STRUCTURE and the consensesnatiethod assign sequences to
clusters while Spectrum assigns each sequence a distnlnftancestral haplotypes, accounting

for the very different appearance of the Spectrum output.

The three methods produced essentially equivalent outpuihe simulated and HapMap
data. For the simulated data (Fi&4(a)), all of the methods were able to separate the three
population groups. For HapMap (Fig.4(b)), all three methods consistently identified YRI and
CEU as distinct subpopulations but failed to separate CHB @gnand JPT (Japanese).
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Results were more ambiguous for HGDP (R2g4(c)). The consensus tree method reliably
finds five of the seven populations, usually conflating Midétestern and European and failing to
recognize Central South Asians, consistent with a similécaue from Heet al.[45]. STRUC-
TURE showed generally greater sensitivity but slightly veorsnsistency than our method, usu-
ally at least approximately finding six of the annotated sgvapulation groups and having dif-
ficulty only in identifying Central South Asians as a distigcoup. Spectrum showed a pattern
similar to STRUCTURE but the individual ancestral profile sedrto be similar in several pop-
ulation subgroups. For example, the African subgroup sddmbave a similar ancestral profile

to the European subgroup.

We further quantified the quality of the cluster inferenaarirthe consensus-tree method and
STRUCTURE by converting the result to the most likely clus&signment and computing VI
scores and inconsistency scores. Fdh shows the VI and inconsistency scores of the three
algorithms using inputs with different number of trees alNPS. When examining the variation
of information across different data sets, we can see iseceaccuracy for both STRUCTURE
and consensus tree as we increase the number of trees or BINEs.we compare the inconsis-
tency scores, neither of the algorithms showed a clear tnétidincreasing numbers of trees or
SNPs. When the number of trees or SNPs is large, however, tisecsus-tree method typically

becomes more consistent than STRUCTURE.

We also measured the runtimes of the algorithms using 10, 1,000, and 10,000 trees or
the corresponding SNPs (F&.6). In all cases, the consensus-tree method consistentfasser

than both STRUCTURE and Spectrum, which both use similar G3ab#pling approaches.

Fig. 2.7 shows the consensus trees constructed using differerst giz#ataset subsampled
from the simulated data. From the figure, we can see thateles trever infer substructure that
cuts across the true groups, but that as the data set sieagas, the method yields increasingly
refined tree structures. This observation is what we woubeéetxfor the chosen MDL approach.

The method identifies the separation of populations one wodniith 100 trees but not with
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10, and can discriminate substructure within the indivicagpulations when provided 10,000
trees but not 1,000 or fewer. The number of mutations asdigmeach edge increases as we
increased the number of observed trees, but the fractiofl ofuaations assigned to each edge

remains nearly constant with increasing data set size.

2.4 Discussion

While population substructure inference is only one fac¢teproblem solved by the consensus-
tree method, it nonetheless provides for a convenientgbasiidation. Comparison with lead-
ing population substructure algorithms shows that the@osiss-tree method provides very good
performance on the substructure problem. The consensesfproach shows equal or slightly
superior VI scores relative to STRUCTURE on both simulatedtdapMap data while showing
slightly worse VI scores in HGDP. The consensus-tree methatso quite competitive on run
time with these alternatives, although other substruatueéhods that were not amenable to a
direct comparison, such as mStrut0f], can yield substantially superior run times for closely
related analyses. The consensus-tree method also showslignta automatically adjust to
varying amounts of data while avoiding over-fitting, as destoated by the consistency scores,
as would be expected for the chosen MDL approach.

One key advantage of the consensus-tree approach is thegdtyg substructure inference
as a phylogenetic rather than a clustering problem, it camige additional information about
relationships between subgroups. Such information mayelgi in better completing our pic-
ture of how modern human populations arose and may provideniation of use in correcting
for population stratification during association testiBgcause we are aware of no comparable
methods for this problem, we must resort to validation onusated data and by comparison to
our best current models of true human population histooevaluate its performance on the full
population history inference problem. The consensusrretod correctly infers tree structures

from the simulated data using as few as 100 trees. Furthetnapplication to HapMap and
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HGDP data also shows that the method produces a portraitro&hwevolution consistent with
our best current understanding. The basic qualitative mafdeuman population history that
emerges is further consistent between the two independeasets, despite different individu-

als, populations represented, and markers selected.

The consensus-tree model also provides information abowtrhany mutations one can
attribute to each edge of a given tree. These edge lengthBecarierpreted to approximately
correspond to divergence times along different edges ofrées. In particular, provided one
assumes that mutations accumulate at a constant rate denoss lineages then one would
expect that mutations would accumulate in any subpopulatica rate proportional to the size
of that subpopulation and to become fixed with a probabititaersely proportional to the size of
that subpopulation. To a first approximation, then, edgeyhtaiormalized by the total number
of mutations used in the model should be approximately ptapwl to the time elapsed along
a given edge independent of the size of the population repted or the number of input trees.
The quantitative results do approximately fit this expectator the simulated data. There is,
however, some apparent bias towards lengthening the edgadtie MRCA of subpopulations
one and two to the MRCAs of the two individual subpopulations stmorting the edge from their
MRCA to that of all three subpopulations. This observation medlgct imprecision in the rough
approximation that edge length should be proportional &psdd time. Alternatively, it may
derive from misattribution of some SNPs formed within thbmapulations to the edges leading
to those subpopulations. While the method can provide e relative times elapsed along
edges, it does not have sufficient information to conveéhmimbers of mutations into absolute
elapsed time. In principle, one could make inferences oblals elapsed time along tree edges
given more detailed population genetics models and a cdejplabiased set of variant markers
from which to construct phylogenies. Similarly, having soabsolute time assigned to even a

single edge would allow one to estimate absolute times airggher edges in a tree.

Given that edge weights can be expected to be approximatepogional to elapsed time,
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we can use those derived on the real data to gain some additnsnght into how the inferred
human subgroups may be related. The two data sets yieldatiadly similar models supporting
a single emergence of an Asian/European ancestral groopAfaca followed by divergence
of that ancestral subgroup into Asian and European subgrotpere are, however, some no-
table quantitative differences between relative divecgetimes of various subgroups between
the two data sets. In particular, the HGDP data suggest aogiopally longer gap between
separation of African from non-African and separation ofaiisfrom European. For example,
if we assume that the African/non-African divergence ooedi60 thousand years ago (60 kya),
around the middle of the range of recent estimalds][ then the HapMap data would place
the Asian/European divergence at 32.7 kya while the HGDPdviead to an estimate of 19.5
kya. This observation could reflect an inherent bias in tlgedength estimates, as noted for the
simulated data, or biases intrinsic to the data sets. Sgweraous studies estimating divergence
times have found that inferences can be sensitive to theelbipopulation groups, the specific

genetic regions examined, or the particular individualdhose populationshl, 92, 132,.

While the results show that the consensus-tree method ibleapbmaking robust but sen-
sitive inferences of population structure as well as treectiire, the consensus-tree method
does nonetheless have some significant limitations. Onle lgudation is runtime; while the
consensus-tree method is superior in this regard to STRUCT&RESpectrum, its runtime is
still considerable and far worse other algorithms such agunSand EIGENSOFT. Although
this compute time is still a trivial cost compared to the tireguired to collect and genotype
the data, it may nonetheless be an inconvenience to usetbeFRuore, it prevents us from pro-
cessing the full HapMap or HGDP data sets in a single run, pesgd to the subsamples done
in the present work, likely preventing discovery of fineralesions of population substructure.
This high run-time is largely due to the many calls the comsesfiree method must make to
the DMST algorithm to repeatedly evaluate the MDL objecfivection and may be addressed

in future work by more sophisticated optimization methoaseduce the number of function
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evaluations or by introducing a more highly optimized suibiree for evaluating MDL costs. In
addition, the computations should be easily amenable tiphzation.

Another limitation, noted above, is that the current versod the consensus tree method
does not handle admixture in population groups as do competiethods. We would expect
admixture to appear during inference of bipartitions asdiseovery of sets of bipartitions that
cannot be reconciled with a perfect phylogeny. In pringiffan, the core MDL algorithm should
function correctly on admixed data but our conversion oftitpartitions into a tree would need
to be replaced with a method for inferring a phylogenetiowoek rather than a tree, similar to
methods for inferring ancestral recombination graphs fh@plotype datad9. New methods
will likewise be required to perform admixture mapping afiividual admixed genomes to label
them by population group. These additions are importanisgoafuture work and will help to
determine whether this novel approach, whatever its lIpt@mise, proves a competitive method

in practice for detailed substructure analysis.

2.5 Conclusion

We have presented a novel method for simultaneously infgpopulation ancestries and iden-
tifying population subgroups. The method builds on the gansoncept of a “consensus tree”
summarizing the output of many independent sources ofnmdition, using a novel MDL real-
ization of the consensus tree concept to allow it to makegbinferences across large numbers
of measurements, each individually minimally informativé incidentally provides ale novo
inference of population subgroups comparable in qualitth&d provided by leading methods.
The consensus-tree method also provides edge length &sdithat can roughly be interpreted
as relative times between divergence events, althougk Hygyears to be some biases in these
estimates. As we will demonstrate in the next chapter, it w&lpossible to translate these rel-
ative times into estimates of absolute elapsed times ustogk@scent-based population genetic

models. The MDL approach also allows our method to automlffi@dapt to larger data sets,
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producing more detailed inferences as the data to suppart becomes available.
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Figure 2.3: Inferred consensus trees. Node labels show exslbhaplotypes belonging to each
known population. Edges in inferred trees are labeled bynthmber of splits assigned to each
and, in parentheses, the fraction of all splits assigneé@eéb.eFor the simulated gold standard
tree, edges are labeled by a number of generations and,antpases, the expected number of
substitutions per site occuring on the corresponding edgeierating the data. (a) Consensus
tree obtained from simulated data. (b) Gold standard fostimellated data. (c) Consensus tree
obtained from the HapMap dataset. (d) Trimmed and condemnsedrom [LOZ. (e) Consensus
tree obtained from the HGDP dataset. (f) T:r)’i?nmed and coraetktree from 102].
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Figure 2.4: Inferred population structures. Each coloredical line shows the assigned pop-
ulation(s) for a single sequence for one method. From topottin: Spectrum (with colors
representing fractional assignments to distinct anddstiglotypes), STRUCTURE (with colors
representing probabilities of assignment to distinctteltsy, consensus-tree (with colors show-
ing assignments to single clusters), and ground truth (adtors representing assignments to
true clusters). (a): Inferred population structure fromrale trial of 10,000 trees from simu-
lated data. (b): Inferred population structures from algirigal of 10,000 trees from HapMap

Phase Il dataset. (c): Inferred population structures foomtrial of 10,000 trees.
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Chapter 3

Coalescent-based M ethod for L earning
Parameters of Admixture Events from

L arge-Scale Genetic Variation Datasets!

Since our emergence as a species, humans have divergedinéoous subpopulations. In some
instances, individuals from different subpopulationsehewme into contact, yielding genetically
mixed populations. We call this incorporation of genetidenials from one genetically distinct

population into another admixture. This process is betieleebe common in human popula-
tions, where migrations of peoples have repeatedly brotogfgther populations that were his-
torically reproductively isolated from one another. Thasmide seen, for instance, in the United
States where many African Americans contain varying ansohtancestry from Europe and
Africa [80]. Reconstructing historical admixture scenarios also hgmortant practical value in

biomedical contexts. For instance, learning the correce tscale on which different strains of
the human immunodeficiency virus (HIV) have diverged wowduseful for understanding the
circumstances surrounding the emergence of the acquinedima deficiency syndrome (AIDS)

pandemic as well as its continued genetic divergesie[In statistical genetics, studying ad-

1This chapter was developed from material published 20] and under review in121]
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mixture and population structure can help in identifyingl @orrecting for confounding effects
of population structure in disease association te3fs [Studying admixture can also help in

understanding the acquisition of disease-resistances|&7].

Arecent explosion in available genome-scale variatioa as led to considerable prior work
on characterizing relationships among admixed populati@ne popular approach for qualita-
tively characterizing such relationships derives from ahservation that principal component
analysis (PCA) provides a way to visually capture such mehstiips for complex population
mixtures [L3, 34]. While such methods provide a powerful tool for visualiziimge substructure
and admixture, however, they typically require consideraianual intervention and interpreta-
tion to translate these visualizations into concrete n®dethe population history. Furthermore,
these methods provide only limited quantitative data oati@hships between admixed popula-
tions, providing fractions of admixed data but not compleeameters of an admixture model,
such as timing of divergence and admixture events. Othehadstfocus on the related prob-
lem of finding detailed assignments of local genomic regafresdmixed individuals to ancestral
populations 84, 85, 98], which provides complementary information with importarses in
admixture mapping, but similarly provides little direcsight into the history by which these

admixtures occurred.

Inferring detailed quantitative models of historical adtare events, especially the timing of
these events, remains a difficult problem. It is typicallgi$sed by inferring basic parameters
of a single admixture event — the creation of a hybrid popoafrom two ancestral popula-
tions. Some methods do examine more complex scenarios asutie isolation with migration
model [77], and others different parameters, such as effective jadipul size 1]. We, however,
focus here on the more standard three-population scenadidhe joint inference of both the
admixture proportion and the times of divergence and admextMost methods for this problem
use allele frequencies to estimate admixture proportigressuming that admixed populations

will exhibit frequencies that are linear combinations afgk of their parental populations and
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optimizing with respect to some error mod&b]. While such methods can be very effective,
they generally require substantial simplifying assunmicegarding the admixture process, for
example assuming the absence of mutations after admixterése Such an assumption can be
problematic when the mutation rate is high or when the admexis sufficiently ancient that

mutations novel to the admixed populations are no longeligiblg.

This issue has been previously addressed by methodsndilalescent theoryl?, 126.

a probabilistic model of ancestral relationships that canded to efficiently sample among pos-
sible evolutionary histories of a set of individuals in a plgtion. MEAdmix[126], for instance,
uses coalescent theory to compute expected numbers ofjagresites (or mutations) between
lineages then identifies an optimal admixture proportiombgimizing the squared difference
between the expected number and observed number of seggegiéts. While such methods
were significant advances on the prior art, they have diffrcstaling to large data sets due to
long computation time and numerical errors. With genonciles data becoming widely avail-
able from whole-genome variation studies, new methods eegled to make full use of such
data in achieving more accurate and detailed models of ptpaldynamics. The prior methods
also assume that we know in advance the population struahdessignment of individuals to
that structure, a restriction that is increasingly suspeactve seek ever finer resolution in our

population models.

In the chapter, we describe a novel approach to reconstgyséirameters of admixture events
that addresses several limitations of the prior art. Thishow is designed to learn, directly
from the molecular data, what subpopulations are preseatgiven data set, the sequence of
divergence events and divergence times that produced thibather admixture exists between
these subpopulations, and, if so, with what proportionsigedpopulations draw their ancestry

from each ancestral population.

More formally, we assume the input to the problem is>am [0,1] matrix D where element

D;; represents the allele of théh genetic variation site for thah taxon. The output is a tuple
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T = {P, Py, P5,t1,t5,,0}. Py, P», and P3 form a tripartition of the rows o, t; € R™,

ts € R*, a € [0,1]. These outputs model a simple history of a population gréwap arose
from an ancestral population, divided into two subpopalaj and then admixed to produce a
third subpopulation.P;, P, and P; are an assignment of rows @i (taxa) to the three final
subpopulationst; is the elapsed time from the admixture event to the preseid,the elapsed
time from the divergence event to the admixture event,cargthe fractional contribution of the
first population to the admixturé. is a scaling parameter, explained in more detail in Material
and Methods, that combines effective population size angton rate. The problem does not
have a simple, standard objective function and the corttabwf the present work is in part to
define a likelihood-based objective function, explainedetail in Materials and Methods below.
We further note that the tripartition is commonly assumethaliterature to be included in the
input. A further contribution of the present work is to intle tripartition as an output together

with the real-valued parameters, treating the variatiotrisn@ as the sole input.

We have created a novel two-step inference model called @eunsdree based Likelihood
Estimation for AdmiXture (CLEAX). Rather than inferring thegulation history directly from
the molecular datal[7, 77, 126, we first learn a set of summary descriptions of the overal-p
ulation history from the molecular dafa corresponding to a inferred set of subpopulations and
a set of bipartitions, i.e., partitions of the taxa into twanrempty subsets, with a weight asso-
ciated with each bipartition. Once the set of summary dpsoris is obtained, we then apply
a coalescent-based inference model on the summary désasipd learn divergence times and
admixture fractions for the model. A key advantage of our-st&p inference model is substan-
tial reduction in the computational cost for large data,seisking it possible to perform more
precise and reliable inferences using genomic-scaleti@ridatasets. In addition, the proposed
method has the advantages of learning divergence timesdcmiktare times in a more general
framework encompassing simultaneous inference of papualafroups, their shared ancestry,

and potentially other parameters of their history.
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Figure 3.1: Example of a history of two parental populatifsand P;) and an admixed popu-
lation (P,). Ancestral populatior, diverged at, to form P, and Ps, followed by an admixture
event at, to form P,. (a) The admixture model of the example. (b) Possible hisibthe exam-
ple at some non-recombinant region of the genome with nantsiccurring at various branches
of the tree. (c) Alternative history of the example at othenmecombinant region of the genome
with mutations occurring at various branches of the treeT (@ desired output of the consensus
tree algorithm applied to the genetic variation data, nifigrthe set of model bipartitions and its
associated weights as well as a crude model of populati@darprigiithout the actually parame-
ters. (e) Genealogy generated from a parameter, of, anda showing the specific relationship
and branch length between every sample in the data. Heres &BA,, CD is in P, and EF is
in P3. (f) The corresponding bipartition and associated braealgth obtained from genealogy

in (e).
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3.1 Mateialsand Methods

To learn population history for a dataset, our approachtfies to determine a number of sub-
populations ), potential evolutionary model&{(= (G, V))between the subpopulations, and a
summary description{) that approximates the number of segregating sites (ortiron& that
are believed to have occurred after each subpopulatiomatepiedrom its parental population but
before it further divided into additional subpopulatiokige then use the resulting discrete model
of population divergence events to estimate expected thméseen events and the admixture

proportions between subpopulations.

As with much of the prior work11, 16, 17, 126, we specifically address the problem of
accurately reconstructing parameters of a single histbadmixture event. As shown in Fig.
3.1(a), we will assume that there exists a single ancestrallptpn P, before timet,. A diver-
gence event then occurs at timehat results in the formation of two subpopulatidisand Ps.
Finally, at timet,, an admixture event occurs between the two parental popuga®; and P; to
form a new admixed populatioR,. The admixed populatio®, is composed of an fraction
of individuals fromP; and al — « fraction of individuals fromPs;. Except for the admixture
event itself at, all populations are assumed genetically isolated throughistory. The model
can be characterized by the time of the divergengk the time of admixturet(), and the ad-
mixture proportion ¢). Additional hidden parameters include mutation rateand the effective
population size for the ancestral populatidyy], the two parental populationg/{ and/V3), and
the admixed population\). For simplicity, we will assume that the effective popidatsize
stayed constant in each population (e/g,=/N;=N,=N3=N). While such assumption may not
necessarily hold for all analyses, it is a reasonable assomip some cases such as human pop-
ulation since non-African populations share about the saffieetive population size6B, 113.
Furthermore, as our analysis has shown, such assumptiostidagive accurate results when
effective population size does not vary significantly. @itkis assumption, the effective popu-

lation size, N, and mutation ratey will be aggregated with the length of the sequenéeas a
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single parametet. As a result, the free parametédsve must learn are,, t,, «, andeé.

Given the admixture model, we would expect local regionsiefgenome to each have a tree-
like ancestral history, but with different histories infdifent regions sampled from a network of
possible ancestral relationships implied by the divergesnod admixture events. A tree-based
history corresponding to a local, non-admixed region ofghkeome is known as a genealogy.
For example, at some regions of the genome, we would expeae@ genealogy of the three
samples derived from Fi@.1(b) while other regions would have genealogies derived firogn
3.1(c). If we supposer = 0.5 then we should see these two genealogies with approximately

equal frequency.

Given the sequence data derived from admixture scenar@pproach will first learn that
there are three subpopulations in the example dataset asialgjorithm developed in our previ-
ous work fL19 for the problem of reconstructing population historiesscribing the historical
emergence of population subgroups in a broader populatiom non-admixed data. At the
same time, that prior algorithm will learn the potential lenmnary model shown in Fig3.1(d).
The algorithm will also learn a summary description thatgasjs that approximately 1 mutation
occurred in the genetic region under study affeiwas formed (branch, in Fig. 3.1(d)), that
approximately 2 mutations occurred eitherfp after P, was formed or inP; before P, was
formed (branche, ande. in Fig. 3.1(d)), and that approximately 2 mutations occurred either in
P; after formation ofP, or in P, before P, (branche, ande, in Fig. 3.1(d)). Using these infer-
ences, the next step would be to estimate the distributidmeoposterior probability of the event

times and admixture proportions that best describe the data

Learning Summary Descriptions. Our previous work described in Chap@pon learning
population histories from non-admixed variation détaq is conceptually based on the idea of
consensus tree$3J|, which represent inferences as to the robust featuresavhayf of trees. The
algorithm uses the genetic variation dataset to infer afdecal phylogenetic trees from small

consecutive regions across the genome. It then breaks regcimto a set of bipartitions, where
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each bipartition corresponds to one edge in one tree whoseved divides the taxa labeling
nodes into two groups (see Fi§1(f)). From the set of bipartitions, the algorithm then idées

a set of model bipartitions, robust splits between popattagiroups that define an inferred over-
all population history so as to minimize an informationdhegtic minimum description length

score Bg].

The intuition behind our method is that different regionghe genome should correspond
to different genealogies embedded within the overall pajpah structure. By first inferring
likely phylogenies on many small regions spanning the genand learning the robust features
of the phylogenies, the algorithm specifically builds a swanyndescriptiond = (B, W)
consisting of a set of model bipartitiong™ = {bM v} ...bM}, and a set of weight values,
W = {woy,wy,ws,...,w,}. Weightsw, ..., w, are each associated with a model biparition
while weightw, provides an additional count of observed bipartitions siggeed to any model
bipartition. The weightswy, ..., w,, are computed by counting the number of observed biparti-
tions optimally assigned to each corresponding model bijmar using an entropy-based scoring
function described in our prior workL[l9 that matches each observed bipartition to its most
similar model bipartition or to no bipartition if there is safficiently close match. When none
of the model bipartition is a good assignment for the obskbipartition, the bipartition is then
assigned to a empty bipartition and attribute to the weight By matching the observed bi-
partition, we indirectly estimates the approximate nundfenutations that most likely occurred
along any given branch in the population history. This sehoélel bipartitions and its associated

weights are then used to reconstruct the evolutionary model

Under the described admixture scenario, the consensaibdsed algorithm should first iden-
tify that there are three subpopulatiorts & 3) in the data. Second, the algorithm should output
an inferred evolutionary modél = (G, V), shown in Figure3.1(d) and characterized by the
model bipartition set3" = {VM = P||PPs, b = P|PPs, b} = P3|P,P,}. Finally, the

algorithm should also produce a weight vector = {wy, wy, w9, w3}, representing the num-
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ber of observed bipartitions most likely represented byenointhe model bipartitions vs. model
bipartitionsb??, b)!, or b}’. The method can also predict which of the populations idyikel-
mixed, as the two model bipartitions having the largest Wsighould represent the two parental

populations,P; and Ps.

Likelihood Model: Under the two-parental one admixed population scenarawnieg the
directed graplG = (V, E') and its label function from the outputs of consensus treerdkgn
would be trivial by associating the lowest weighted modglaliition representing one of the
three populations to be the admixed population. This woadsté us with jus® to infer. To make
inferences about the parameter ®@etwve will estimate the distribution of a posterior probalili
of the parameters given the observed weidghtassociated with branches in the tree. We first
note that in the absence of recombination and assuming amténsites model, the number of
mutations corresponding to an edge of the genealogy woulldeson distributed with mean
equal to the product of the sum of all branch lengths in thegkyyl;, the effective population
size N, the number of base paitsn the segment, and the mutation rateWe then break down
the genealogy into a set of bipartitions generated by rengoaisingle edge of the genealogy. For
each bipartition, iff (b) is a function that computes the optimal index assignmentpbartition
b to the model bipartition set using the conditional entrajpydtion described in our prior method
[119 and/,, is the branch length of the bipartitiép, then the total branch Iengtff that will be
assigned to model bipartitiohf” is given byl,y = 3=, ) ¢1)=i lb;- This formula gives us an
estimated amount of time over which a mutation could havewed in the genealogy on tlith

model bipartition, specifying an independent Poissorritistion for eachu; in that genealogy.

Because of recombination, however, the entire genome is op@@adénon-recombinant frag-
ments of DNA having different genealogies. Since we do naivkithe actual genealogy for
each fragment of the genome, the likelihood function wiltdngo sum over all possible genealo-

gies. Letg = {G4,Gs, ..., G, } be the set of genealogies each representing a genealogy of a
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non-recombinant fragment on the genome. Then the liketitianction£ = P(W0©) will be:

P(W|O) = (3.1)

H [ 3 Plede ) Pylg, O)P(Gio)y

MOg

whereP(w;|l,, ) = Poisson(w;; 6 x ).

The branch length associated with each model bipartitionlE computed exactly given
the genealogy set. The integral can then be eliminateﬂ(ao?z|g,@) becomes zero for any
branch length not consistent with the genealogy and onenfpibeanch length consistent with

the genealogy. Hence, the likelihood function simplifies to

pwle)  =][D_ P(wil,0)P(G|O) (3.2)

=0 G

As an example, suppose we have an output from the consergugtah shown in Fig-
ure3.1(d). If we have a particular parameter value we want to evaltiee likelihood function,
we would enumerate through all possible genealogy comsigti¢gh the specified,, -, o, andé.
Suppose a genealogy in FiguBel(e) was one possible genealogy being enumerated. We would
compute the score by converting the genealogy into a sepafttions as shown in Figui@ 1(f)
and subsequently compute the optimal assignment of eaaltitign to the most related model
bipartition using the same scoring mechanismiibg. Given the optimal assignment of each bi-
partition, we can then compute the expected branch Ielrgngthssociated with model bipartition
BM, B}, and B! as well as the null bipartition. The optimal assignment méxample should
give us an expected branch Iengtkgg, = b+l by = I3+ 1+ 17, leM =I5+ 1lg+lg+ Iy + 10,
and/, = 0. Using the expected branch lengths @hdve can compute the expected number
of mutations associated with each model bipartition and Iipartition and subsequently the
probability P(w;|l,»). The idea behind the model is that a correct parameter setiéisaribes
the history should give us the closest match of observedh&igssociated with each model

bipartition and thus the highest likelihood score.
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We know of no analytical solution to this function and thenit® number of possible ge-
nealogies prevents exhaustive enumeration. We therefopéog an MCMC strategy similar to
that of [17] and [77] but differing in the details of the likelihood function taetier handle large
genomic datasets. MCMC sampling may require a large numbstept to accurately estimate
the posterior of the likelihood function, so we make two difigations that drastically reduce
the number of steps needed to achieve convergence in exelfiang modest decrease in preci-
sion. First, we assume that the coalescence times are fitadiaexpected values, rather than
being exponentially distributed random variables, ymda number of genealogies that is finite,
although still exponential in. We justify this approximation by noting that, in the limitlarge
numbers of fragments, the total branch length of the geggalall converge on the mean im-
plied by the coalescent process, making it a reasonablyaecassumption for a model such as

ours designed to work with large genomic datasets.

To prove this, let,,; - be a random variable representing the total branch lengilggneal-
ogy. Suppose we haveindividuals in the sample, implying — 1 coalescence events needed
to reach a common ancestok,,,  would then be a function of the — 1 random variables,
Ly, Lo, ..., Li_1, representing the time of each coalescent event relatitieetprevious coales-

cent event. Specificallyi.c = 35, jL;.

If we assume that the entire genome is made up obn-recombinant fragments and that
each fragment is relatively independent, then the totaldirdength of the entire genonig,, ¢

would be the sum ofi independent random variablésg,; .

n 1 n
Liotg = Z Liot,q, = n (ﬁ Z Ltot,Gi> (3.3)
i=0 i=0

Under the weak law of large numbers, the average of a largédeuof trials should be close
to the expected value of each trial. Assuming a genome-widmtcof variations represents

a sufficiently large sample of an independent per-base rontatte, we can approximate the
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above formula as follows:
k
Lig ~ nBE(Lig)=n (Z jE(Lj)> (3.4)
j=2

The second approximation that we incorporate into the misdiile reduction of the total ge-
nealogies fronm to m. The intuition is that the total number of distinct gene@&sgdgrom which
lineages evolver() should be much less than the number of genetic sites typedkis approx-
imation would follow, for example, from the assumption thatombination is sufficiently rare
that nearby genetic regions usually have the same genedfogy setm = n, we would allow
for an exact model in which each input genealogy could bédistout empirical evidence given
in the Results suggests that, while specifying<< n independent genealogies allows for a pos-
sibility of error, the actual increased error in practicensdest as we observed the improvements
in error tapers off quickly as we increased the number of glegges in our experiments. Mak-
ing this second approximation, however, reduces the nuoflggnealogies we must consider in
evaluating the likelihood function to exponentialsinrather tham, a much more manageable
term whenm << n.

Letting G be the reduced set of genealogies, we derive the followimgplified likelihood

function given the two approximations:

3

pwie) = [[> Plwlly.6)P(G|o) (3.5)

i=0 ¢

The above assumptions and the constraints on the paranrefgse some constraints on the
feasible genealogies. From time 0#Q individuals from P, P,, and P; can only coalesce
with individuals within the same population. Let, ;, m, 2, m, s be the number of lineages
that came from populations;, P, and P; respectively at time:. Then theith coalescence
point starting from time O to timé, going backward will have an expected coalescence time of
AN/ ((mg,y — 1+ 1)(me, — 1)) from the previous coalescence event. If the next coalesdéme
point is greater tham, then the waiting time until the next coalescence time poayond that

one will be sampled from, rather than from the previous coalescence time point.
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MCM C Sampling: To estimate the posterior probability distribution, we éogghe Metropolis-
Hastings algorithm. We defined the state space of the Marlaneiras the set of all parameters
t1, ta, v, 0 and the set of possible genealogi@spanning the genome, Whe@] = m. Fur-
thermore, given specific values gf andt,, the genealogy s&t can only contain genealogies
consistent with those values gfandt,. For any stateX, = {x7 , zy , z?, mg} the likelihood of

that state can be expressed as:
P(X,|[W) x P(W|X,) (3.6)
3
= (H P(wi|lblz_w)P(leM|x2)> P(ag|y,, xf,, 27)
=0

To identify a candidate next stafe,, the algorithm will sample new values of, ., «, andf
from independent Gaussian distributions with = 7 , uf, = 27, 5, = x2, andug = xj and
04,y 01,y 0o, @Ndoy, using variances adjusted during the burn-in period byeiasing variance
when the expected number of mutations is far from the obgetuenber and decreasing variance
as the expected and observed numbers of mutations beconeesimular. We developed this
strategy based on the observation that acceptance ratettebd better for large variances when
the difference between the expected and observed numbeutations is large and better for
small variances when the difference between the expectedlaserved numbers of mutations is
small.

Once the algorithm selects values of parameters for the neMW®! stateX,,, it then samples
a new genealogy set through coalescent simulation giverselected new parameters. The

resulting new state will thus have a stationary probability

Q(X,X,) = P (a:fl\,ufl, O’t1> P (mg]ug, atz)

<P (ahlus, 00) P (Gl 0%, 22 ) (3.7)

yielding a Metropolis-Hastings acceptance ratiof:

R O CLD), .

(Hf’:o P(w;|ly) P (lbf” vag)>
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3.2 Validation Experiments

Coalescent Smulated Data: We evaluated our method on simulated datasets generategl us
differentt,, t5, o, and chromosome lengths. Each simulated dataset consisi€) chromo-
somes from each of the three hypothetical populatidis {», and /%) resulting in a total of
300 chromosomes. We divided the simulated datasets inte #imoups consisting of chromo-
somes with3.5 x 107 base pairs3.5 x 10 base pairs, an2l0 x 10° base pairs. For each group,
we generated 45 different datasets from all combinations=f400, 800, 1200, 2000, 4000},
t,={6000, 8000, 20000}, anda={0.05,0.2,0.6}. We chose the coalescence simulator M§] [
for generating the simulated datasets. In all of our sinmutat we assumed the effective popu-
lation size of each population is 10,000. We set the mutatim to bel0~° per base pair per
generation and the recombination rate tolbe® per generation for simulations, based on esti-
mated human mutation and recombination rad&s 62]. Using the parameters described above,
the simulations generated approximately 50 to 120, 100006 2and 10,000 to 20,000 SNPs on

datasets witl2.0 x 10°-, 3.5 x 10°-, and3.5 x 107-base sequences, respectively.

To evaluate the performance of our algorithm, we comparedesults obtained from the
simulated data with those of another method for learningisime fractions and divergence
times: MEAdmIix[126]. MEAdmixtakes as input a set of sequences of genetic variations from
individual chromosomes grouped into three different papohs and outputs the admixture frac-
tion, divergence time, admixture time, and mutation ratesfthe input data. WhilMEAdmix
produces similar outputs to CLEAX, one key difference betwgEAdmixand CLEAX is the
specification of populations. IMEAdmix individual sequences must be assigned by the user to
one of the three populations. On the other hand, CLEAX inteegbpulations directly from the
variation data before estimating the divergence time amabéddre fraction. Although there are
a number of methods in the literature for learning admixauéd divergence timedy, 77, 126,
we chose to compare MEAdmixbecause it estimates similar continuous parameters to CLEAX

and its software is freely available. The same characiesiapply tolea, but it was unsuitable
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for the present comparison because it is designed for mualiesrdatasets and proved unable to
process even the smallest models of genome-scale data widemd. Other methods were also
investigated 11, 77], but we could not directly compare their performance to @un because
of different admixture models assumed, different estithai@rameters, or lack of availability of

the software for comparison.

We ran both CLEAX andMEAdmixon the S = 135 simulated datasets and computed the
average absolute relative difference between the true stimiaed parameter values for each

parameter%(Zf 'éi@;ze"'). We terminated a program on a given data set if the analyskstore
than 48 hours to complete. When running our method on sintilddéa, we set the number of
genealogies for CLEAX to be»=30. For MEAdmix we set the bootstrap iterations to be five,

which proved to be a practical limit for the mid-size datassggven the run time bounds.

We also evaluated the accuracy of our algorithm as a fundfidime number of genealogies,
m. Using the same 45 simulated datasets wit{ 400, 800, 1200, 2000, 4000}, t5={6000, 8000, 20000},
anda={0.05,0.2,0.6} obtained from simulations usirg5 x 10° base pairs, we ran our method
with 10, 30, and 100 genealogies. For each genealogy sizegpeated the Markov chain ten
times with different starting points and computed the agerabsolute relative difference be-
tween the estimated parameters and true parameters. EactOM@Mused 1,000 iterations of

burn-in followed by 20,000 MCMC steps.

In addition to evaluating our algorithm under scenarios imohl the effective population
size remains fixed, we also examined the performance undeasos in which this assumption
no longer holds in order to explore a possible source of emradne analysis of real data. To
evaluate the performance of the method under scenariogiichweffective population size is not
constant, we generated four additional sets of simulatesdts consisting of the same values of
admixture time {;), divergence timet{), and admixture fraction() as in previous experiments
but with a reduced effective population size for all thre@udations after the admixture event

occurs. Specifically, prior to timg, the effective population size is assumed to be 10,000 as
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in our other simulated data sets. Fremto the present time, though, the effective population
size of all three populations is reduced to 2,000, 4,000@&,06r 8,000. Using the original and
additional four groups of 45 simulated datasets, we evatutite performance of the algorithm
by computing the average absolute difference between tieeaind estimated parameter values
within each group. Additionally, we computed the ratia pfo ¢, across all 45 datasets in order
to test whether one could get accurate estimates of botlstifree single “anchor” time was

already known.

Real SNP Data: We further evaluated our method by applying it to a bovinéPShataset
[12], chosen due to the limited availability of large-scale lamngenetic variation data containing
known admixed individuals. The bovine data consists of 48flefrom 19 breeds. Of the 19
different breeds of cattle, 3 of them are indicine (hump@&®8)pf them are taurine (humpless),
and the rest are hybrids of indicine and taurine. Becausedtaset has more breeds than the
supported admixture model, we filtered the dataset unty oné hybrid population and two non-
admixed populations remained. In particular, we selectetbhof 76 cattle as our input dataset:
25 Brahman, 27 Hereford, and 24 Santa Gertrudis. The Brahneaa breed of taurine, the
Hereford a breed of indicine, and the Santa Gertrudis a dresseen Shorthorn and Brahman
with an approximate mixture proportion of five-eighths Shorn and three-eighths Brahman.
Because the dataset did not include the Shorthorn cattleseetthe Hereford as a representative
of the Shorthorn since they are closely related to the Shorthreeds. Given the filtered bovine

data, we tested our algorithm on 2,587 SNP sites genotypeddhromosome 6.

We then tested our method on a human data set from 1,000 GerRnoject Phase | release
version 3 in NCBI build 37 §]. The dataset consisted of 1,092 individuals from a numlber o
different ethnic backgrounds that can largely be groupemfour different continents of origin:
Africa, Europe, Asia, and America. Of the 1,092 individuségjuenced, 246 have African an-
cestry from Kenya, Nigeria, and Southwest US. 379 indivislliave European ancestry from

Finland, England, Scotland, Spain, Italy, and Utah. 286viddals have Asian ancestry from
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China and Japan. The remaining 181 individuals from Ameraasist mainly of admixed in-
dividuals from Mexico, Puerto Rico, and Columbia. Similar he tbovine dataset, we filtered
the dataset until only one admixed population and two patgupulations remained by remov-
ing the 246 individuals having African ancestry. Due to comagtional limitations, we ran our
algorithm on a uniformly selected subsample of 150,000avaisites across the whole genome.

In addition to positive validations, we also performed aat®g control for our method on
a human data set for which no appreciable admixture is knowattur. We used the Phase Il
HapMap data set (phased, release 2p\Mhich consists of over 3.1 million SNP sites genotyped
for 270 individuals from four populations: 90 Utah residewith Northern and Western Europe
ancestry (CEU); 90 individuals with African ancestry (YRIB #an Chinese (CHB); and 45
Japanese (JPT). For the CEU and YRI groups, which consistooflatia (parents and a child),
we used only the 60 unrelated parents. Although the HapM#&gsdbldoes not contain known
admixed populations, the dataset allows us to evaluate #thad's ability to learn the diver-
gence time between populations. In addition, it serves agfulinegative control for detecting
admixture. For the HapMap dataset, we tested our algorithialld0,556 SNPs collected from
chromosome 22.

For all three datasets, we set the number of genealagiese 30 for these tests. We did not
evaluate the real datasets usMgAdmix as the number of segregating sites in the real dataset
exceeded the software’s limitations. As with the simulatathsets, we used 1,000 steps in the
burn-in period followed by 20,000 MCMC steps. We restartechezhain 10 times for bovine
and HapMap datasets and 50 times for 1000 Genome data teeehatit did not become stuck

in a local optimum due to poor selection of the starting point

3.3 Reaults

Coalescent Simulated Data: Figure3.2(a) shows the estimated computed by CLEAX using

10, 30, and 100 genealogies and MEAdmixon the3.5 x 10°-base sequences. Estimations
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Figure 3.2: Mean and 95% confidence interval of the estimpégdmeters o8.5 x 10°-base
sequences. The different bars represent the means estima@_EAX using 10, 30, and 100
genealogies (left) and IYIEAdmix(right). Solid gray horizontal bars represent true paramet
values used in the simulated data. (a) Est?rﬁaieﬁtganized into three rows of distinct true
values and grouped vertically by trug (b) Estimated; in generations organized into three

rows of truea and grouped by trug. (c) Estimated; in generations organized into three rows
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Figure 3.3: Plot of the mean and standard deviation of theageeabsolute difference between
the estimated and true parameter values when the effecmalgtion size changes from 10000
to 2000, 4000, 6000, 8000, and 10000. (a) Plot of the averag@late difference between the
estimatedv and the truev. (b) Plot of the average absolute difference between theatsd?,

and the true;. (c) Plot of the average absolute difference between thmatds, and truet,.

of o by CLEAX tend to improve as we increase the number of geneasdodiVhen comparing
results toMEAdmix estimations otx by CLEAX generally have a slight edge ovéfEAdmix
using 30 and 100 genealogies. The major exceptions are dididavges; (4000 generations)
and smallt, (6000 generations). The advantage of CLEAX is less congistkan using only
10 genealogies. Mean and 95% confidence interval estinsatbn by CLEAX also tend to
improve as we increase the number of genealogies. The twmoaietire about equally likely to
cover the truex within the confidence interval, but CLEAX tends to have a seratbnfidence
interval, especially when run with 30 or 100 genealogies. I®MMIEAdmixdoes not show any
obvious trend as we vary parameters, CLEAX tends to do bettsequences with sméll and

largets.

Estimates of; (Figure3.2b)) and¢, (Figure3.2(c)) show similar trends ta.. As with «,
mean estimations by CLEAX tend to be closer to the true valis those oMEAdmixin ma-
jority of cases. Mean and 95% confidence interval estimatifit; and¢, again improve for
CLEAX as we increase the number of genealogies. Confidenawahdeestimated by CLEAX
are wider than those faiIEAdmixfor these parameters, but more often covered the true param-

eters.
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Figure 3.4: Plot of estimated /¢, ratio against true, /¢, ratio from datasets when the effective

population size changes from 10000 to 2000, 4000, 6000,,20@D10000 (a-e).
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Aggregate quantitative performance is shown in Téble which provides the average ab-
solute relative difference between the estimated parasmeat&l true parameters computed by
the algorithm for different lengths of simulatior(éf;)(;—@‘). For datasets with.5 x 10°-base se-
guences, CLEAX has a worse average relative difference leetwstimated and trug and «
parameters when we set the number of genealogies to be llfetbert,; average relative differ-
ence fort;. When we increase the number of genealogies to 30 or more, CLEANS more

accurate estimates for all three parameters thaiidgdmix

We next examined performance on smaller sequence$ of 10° bases (approximately 50
to 120 SNPs), to test scaling of the methods to sub-genoraie slata. For these sequences,
our program is unable to automatically identify the threganpopulation groups, and instead
identifying only the divergence into subpopulatioRsand P;. We attribute this failure to the
small number of SNPs providing insufficient evidence for ¢éxéstence of a separate admixed
subpopulation?,. SinceMEAdmixdepends on the user to perform this assignment of popula-
tion groups, we manually performed the comparable assighfoeour program in order to test
just assignment of continuous parameters in this low-degaario. For these data, both meth-
ods again perform comparably to one another at estimatjrgth MEAdmixshowing slightly
lower mean and standard deviation in errors. Compared t8.the 10°-base data, both meth-
ods show substantially worge estimations, with approximately a three-fold increase gam
error. Estimates of; andt, on the smaller dataset also show substantially worse peégioce
for both methods. As seen in Taliel, CLEAX is worse in estimating,; andt¢, under these
conditions, likely because the assumptions of our simglifieelihood model are valid only in
the limit of large numbers of segregating sites and thugdyiebre pronounced inaccuracy on

short sequences. Both programs, however, do worse on thidateset than on the larger ones.

We next examined scaling to larger (genomic-scale) dasabsetiesting on simulated data of
3.5 x 107 bases.MEAdmixdid not report any progress on any of these data sets afteod® h

of run time, and so results are reported only for CLEAX. As &bl shows, accuracy of the
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three estimated parameter is improved relative to the smddtasets, with roughly 35%, 1%,

and 6.5% improvements far, ¢5, anda for m = 30.

We also examined the average running times for these data €4EAX with |G| = 30
required 1.27 hours, 1.94 hours, and 7.61 hours, respbgtiee the 2.0 x 10°-, 3.5 x 10°-,
and3.5 x 10"-base data setsMEAdmixrequired 2.8 hours for the.0 x 10°-base data set and
6.2 hours for the3.5 x 10°-base data set, while making no apparent progress in 48 battse

3.5 x 107-base data set.

To understand the effect of varying effective populatiareson the performance of the al-
gorithm, we evaluated our method on datasets with redudedtiee population size after ad-
mixture events. Figur8.3shows the average absolute difference between the estirmatethe
true parameter values across different reduced effectipelption size after admixture. Across
all parameters, the average absolute difference betweesstimated and true parameter values
increases as the effective population size decreasesy,Moe observe a modest change in the
absolute difference between the estimated and true paganvadties from 0.04 when the effec-
tive population remains constant to 0.10 when the effegiimgulation size is reduced to 20%
of the original size. Estimates for andt,, on the other hand, are significantly affected as we
decrease the effective population size. For bgtAndt,, average absolute difference increases
roughly 100-fold as we decrease the effective populatioBO% of the original size after ad-
mixture. This suggests that estimationcofvould be less likely to be affected by fluctuation of

effective population size throughout history.

We next examine the performance of the method under varyffiegtee population sizes
by plotting the estimated, /¢, ratio against true, /¢, ratio. This allows us to determine if the
estimation of the time can be corrected when effective paipr size is drastically changed by
anchoring one time point using external information. Feidshows the, /t, ratio for different
effective population sizes. Aside from the datasets whegesffective population size drops to

20% of the original size, most of the estimates maintaiosatlose to one, suggesting that errors
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induced by changes in effective population size can be tafedg corrected if additional partial

data is available fixing one of the two times.

Real SNP Data: Figure3.5a) shows the smoothed probability density distributibe,mean,
and 95% confidence interval of each parameter value for thimméaataset. Each gray line in
the figure represents the smoothed probability distriloutiom one of the ten independent runs
of the Markov chain. All ten runs of the chain on the bovineadgelded consistent probability
distribution may suggest the confidence of the estimateaihpeter values. The estimated mean
admixture proportion for the bovine dataset is 41.6 perBgahma and 58.4 percent Hereford.
The 95% confidence interval for admixture proportioms between 32.2 percent and 50.6 per-
cent. The mean estimate of divergence tim¢ i€ about 28,000 generations. Assuming 7 years
per generation for cattle, the divergence time would ti@esio approximately 195 kya (thou-
sand years ago), consistent with the belief thatiticécine andtaurine diverged approximately
250 kya [L2]. Admixture time ¢,) is estimated to be approximately 6 kya with ranges between
3.5 kya to 8.5 kya. This range is likely an overestimate oftthe value since artificial bread-
ing of the hybrid did not become common until the past 100 y§E2]. The mean estimate of
0 =1x N xpis 36.1. If we assume the effective population size is 20@&tan ancestral
effective population sizelP] then the mutation rate would be approximately x 10~'° base
per site per generation, a much lower estimate than is stegpby the prior literatureg8, 62].
Using an estimated effective population size of 102],[ a more consistent estimate of effec-
tive population size after a recent population bottleneskved by averaging the recent effective
population size of the three breeds, would yield a moresgainutation rate o£.8 x 10~ [62].
Inaccuracy in the rate might also be due to ascertainmestithe incomplete detection of the

mutations at the sequencing phase.

Figure3.5(b) shows the distribution of CLEAX estimates for the 1,00(i@mes Project data,
interpreting the American group, consisting of individsiilom Mexico and Puerto Rico, as ad-

mixed from the Asian and European groups. Given the samplesrgted from the ten chains,
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CLEAX inferred an average &% admixture from the Asian group a®d% from the European
group. Admixture fractiorx from different runs of the chain are most concentrated at@u@5,
although 6 out of 50 chains, likely stuck in local optima, @aalues of approximately 0.3 for
5 chains and 0.6 for another. While the mean estimate is Blifgpwer than other literatures
[66, 90, 117, the 95% confidence interval is consistent with other estés. The mean esti-
mate of the admixture timg was 48 generations with@% confidence interval between 17 to
150 generations. Assuming 20 years per generations, thight@anslate to approximately 960
years ago witlh5% confidence interval ranging from 340 years ago to 3,000 yegwsa number
slightly higher than the 200-500 year ago estimate by Teral. [112) but within a reasonable
range. The mean divergence tirmewas estimated to be 161 generations ago With confi-
dence interval between 74 and 447 generations ago. Usirgathe assumption of 20 years per
generations, this would translate to approximately 4,88y ago and @% confidence interval
ranging from 1,500 years to 9,500 years ago, a consistegenaith Garrigaret al. [35] but a

more recent estimate than Zhivotvosityal [132].

Figure3.5(c) shows the probability distribution for the HapMap Phds#ata. As with the
bovine dataset, there is a generally high consistency sai¢thesten runs in the parameter esti-
mates. For the HapMap Phase Il data, CLEAX estimatdd be less than 1% with a 0% to
6% confidence interval. The mean divergence timgwas estimated to be about 4,000 gener-
ations. Assuming 20 years per generation, the estimatesiggimce time of Europeans (CEU)
and Africans (YRI) would be around 80 kya with a confidenceridkbetween 57.6 kya and
106 kya. The divergence time ] between Europeans (CEU) and East Asians (CHB+JPT) has a
mean estimate of 26.1 kya and a confidence interval betwe®rk$8 and 33.6 kya. The mean
estimate of) is 4, 320. Assuming the effective population size of human poputatmbe 10,000
[42], the implied mutation rate would b216 x 10~? per site per generation, similar to prior

estimates$8, 62.
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Figure 3.5: Probability density of the estimated parame&dues,t;, t, anda (left to right)
for the bovine, HapMap, and 1000 Genome datasets. Verti@lrépresents the mean of the
parameter value with 95% confidence interval printed in pidesis. (a) 10 MCMC chains ran
on 76 cattle from the bovine dataset on each of the 10 indegpendns 12]. (b) 50 MCMC
chains ran on 1092 individuals from 1000 genome dé}a (c) 10 MCMC chains ran on 210

individuals from HapMap Phase Il daté]]

3.4 Discussion

In this chapter, we propose a method to learn admixture ptiops and divergence times of
admixture events from large-scale genetic variation d&@or coalescent-based methods for
estimating such parameters have been proposed in recast yed such methods tend to be

computationally costly and poorly suited to handling germatale data. Our new method pro-
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Table 3.1: The three quartiles (25%,50%,75%) of the redatdifference between estimated and

true parameter values for 135 simulated data get@ndt, are in units of generations.

2.0 x 10°

‘fl—t1| |£2—t2‘ \d—a|
t1 to «@

CLEAX-30 [2.2004.53512.819] [2.0775.5848.922] [0.22341.4.272 ]
MEAdmix [0.3170.5120.666] [0.2260.4790.698] [0.2900.4701.337]

3.5 x 108

CLEAX-10 [0.0820.2160.397] [0.0690.1930.420] [0.078 @1D6523 ]
CLEAX-30 [0.0870.1790.289] [0.0680.1250.335] [0.071 ®16267 ]

CLEAX-100 [0.0790.1650.254] [0.0630.1210.321] [0.06232D.264 ]
MEAdmix [0.1140.356 0.592] [0.0690.1270.329] [0.0690.165 0.299 ]

3.5 x 107

CLEAX-30 [0.0610.1160.199] [0.0640.1240.268] [0.062 ®D4248]

vides comparable estimates of admixture proportions tethe art on smaller datasets while
scaling to much larger data sets with increasing accuraltigoAgh the average errors fgrand

t, were worse than those MEAdmixfor datasets witl2.0 x 10°-base long sequences, we ob-
served a general improvement in CLEAX estimates &WEAdmixas we increased the length of
the input datasets. Our method also provides much betterdgtimates thaMlEAdmixon larger
datasets, yielding averageandt, estimation errors roughly two-thirds of thoseMEAdmixfor
chromosome-scale data. The poor performance on shortrssggimay be due to the assumption
that coalescence times in the genealogies are fixed, an pgsaomwhose validity breaks down

in the limit of small numbers of variant sites.

Variance between true and estimated parameter tends tghbddnidatasets with shorter se-
guences, as evident in Tal8el, but decreases as we increase the length of the sequences. We

expect the variance to continue to reduce further as we mgeisequences. Our method thus
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appears to be a poorer choice on older, gene-scale dataribamethods, but a clear improve-

ment providing increased confidence on datasets comparedilee to human chromosomes.

The performance of CLEAX also tends to improve as we incréeasatmber of genealogies,
|§|, used to estimate the expected branch length. While the &stsnofo by CLEAX are worse
than those oMEAdmixwhen|G| is set to 10, the results are better than thosIBAdmixfor
|G| = 30. Results showed little improvement upon further increagé oo 100, suggesting that
a relatively small number of genealogies is adequate t@blapproximate the true likelihood

function.

Results on the real datasets provide further confidence im#thod, yielding estimates of
divergence times and admixture fractions generally coarsisvith the current literaturelp, 40,
132. Using the HapMap Phase Il dataset, our method’s estimatiche YRI-CEU divergence
time between 76.5 kya to 89.6 kya is consistent with the STtRhation by [L32 (62-133kya)
and the HMM estimation byg1] (60-120 kya). Estimation of little or no admixture fraatibe-
tween the CHB+JPT and CEU is also consistent with the geneliaf beht negligible admixture
has occurred between the major human populations. Essmoéthe divergence time between
Asian and European between 23.0 kya and 33.6 kya for HapMaianlar to estimates by
Gutenkunset al. [40].

Estimates of the divergence time between Asian and Eurape tihe 1000 Genome dataset
is also similar to the estimate from HapMap albeit with sligimore recent range but consistent
with estimates from Garrigan (7-13kya) al. [35]. While the mean average of the admixture
time of the American group was somewhat higher than expd&@&al years), the lower bound
of the estimate of 340 years ago is a reasonable estimate afdihixture time. The admixture

fraction estimate for the American group is also consisietit existing literature §6, 117.

Similarly, using the bovine dataset, estimates of divectge¢ime and admixture fraction were
also consistent with the general consendi®.[One discrepancy in the bovine dataset was an

unrealistically high estimate of admixture time (6,000 ng@a One plausible source of error is
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the algorithm’s assumption of fixed effective populatioresiBecause there is believed to have
been a drop of effective population to a few hundred cattieaent years12, 59|, the decrease
in effective population size would increase the chance ¢htite share a most recent common
ancestor at a much earlier time. As a result, more mutatiwaisoccurred before the admixture
time will be miscategorized as mutations that occurredrdfte admixture time, resulting in
a bias in estimated admixture time. This observation magesigthat our method in current
form is poorly suited to estimating admixture times on daitf wignificant changes in effective
population size over time. Our analysis of simulated dataydver, suggests that estimates
of admixture fractions should remain accurate despite g@gsm effective population size. The
discrepancy could also be attributed to the difference betvthe Hereford and Shorthorn breeds,
where the mutations over-represented in the hybrid poipulahat led to the long estimates of
time since admixture could actually have been misattribuotatations between the Hereford and

Shorthorn breeds.

When we examine the results of our method on simulated datapaerve generally worse
performance with increasing admixture time, especialhysfmulations with low admixture pro-
portions. Such a phenomenon is likely caused by the facttkieaie are fewer lineages at the
admixture time as we increase the admixture time. For exanipt simulations with admix-
ture timet; of 4,000, we would expect roughly 10 lineages left by the tthreeadmixture event
occurred, preventing the method from inferring admixturepportions at a resolution of better
than 10%. Consequently, fewer lineages at the admixture wmed increase the variance of
the admixture fraction estimate. This observation suggistt our method will work better at

analyzing more recent admixture.

Analysis on the effect of varying effective size on perfonoa suggests that the estimation
of times of divergence and admixture is sensitive to changefective population size but that
such changes have modest effect on the admixture fractionaggn. This observation suggests

that estimates of the admixture fraction can be more reglibbted than estimates of divergence
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and admixture time when one suspects effective popula@snchanged drastically over time.
For time estimation, estimates were within an order of miagiei when the change in effective
population size was less than or equal to 40%, suggestingagin could still be trusted if
changes in effective population size are modest. Furthexnastimates of the ratio betwegn
andt, seemed to be accurate even when effective population saegel significantly. Despite
poor estimates of time when effective population size ckardyastically, we could potentially
correct time estimates if we can anchor at least one timet p@img external data sources or
prior knowledge even if the population size changes sicanitiy.

Despite some of the shortcomings of the algorithm, our neettometheless has demonstrated
its capability in estimating accurate parameters on lomgisece datasets. While our MCMC
strategy is similar to a number of prior approach®g [/7], our algorithm is distinguished by
novel strategies for simplifying the likelihood model in ygaespecially suited to genomic-scale
variation data sets, trading off increases in performahaedre substantial for long sequences
with decreases in accuracy that are modest under the satnenstances. Our method also has
the unique feature of automatically inferring the popwatsubstructure, history of formation
of that structure, and likely admixture model in a singlefigdi inference, allowing it to take
advantage of the fact that each aspect of that inferencependient on the answers to the other
two. Although our method currently only estimates divergetimes and admixture fractions
for a standard three-population single-admixture scentre approach establishes a method for
assigning likelihoods to admixture events and sampling paegameters for these events that
could in principle be used as a module for considering morepdicated scenarios potentially

involving larger numbers of populations or multiple admie events.
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Chapter 4

Coalescent-based M ethod for Joint
Estimation of Population History, Time,

and Admixturet

Despite intense study and interest, learning the historyvbich modern human population
groups arose from our common ancestors remains a difficelstoqpn. The topic is not only
a central issue in basic research into human genetics; isdsaa important practical question
in medical genetics for better separating functionallygigant genetic variations from spurious
associations with phenotype due to population substre¢b® 117. While large data sets suit-
able for inferences of population-level evolution havelifgoated (c.f., b, 6, 50, 76]), there is
as yet no fully automated method to analyze the available @ad reconstruct the sequences of
events by which ancestral populations have arisen andiinted to produce the modern diver-
sity of human population groups.

Although there are abundant methods for learning varioatifes of population origin and
evolution, these methods can generally be grouped into teadocategories. First, one can in-
fer evolutionary history by learning phylogenetic treesietworks consistent with a set of data

1This chapter was developed from material submitted 2]
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using variants of a wide variety of phylogenetic inferenlgoathms (c.f., B1]). Such methods
allow one to build detailed models of evolutionary relasibips between individuals in a dataset
and the sequences of mutations that might distinguish tiseroh approaches, however, have the
disadvantage of long computation times that limits thegfulhess on large genomic datasets or
large sample pools, especially when attempting to recoctsphylogenetic histories from data
presumed to have undergone extensive recombination. Tjo alernative is to study history
at the population level, greatly lowering computationadej but typically requiring considerable
preprocessing or manual intervention to identify popolasubgroups before inferring parame-
ters describing relationships among those subgro@psg 17, 63, 73, 125. Once population
labels are defined, a simple approach commonly applied isrtgoate the genetic distances be-
tween the populations and build a model of their phylogemnetationships using distance-based
tree reconstruction algorithms, such as UPGMA or neighbaoning [9, 73], with additional
parameters such as divergence times inferred subseq&5tl®9, 103 by custom inferences

designed for analyzing specific subsets of parameters supred population-level events.

A particularly challenging event type is admixture, an etolnary event in which two or
more geographically or culturally separated populaticarse into contact and establish a new
population in which individuals share a mixture of genetitormation from multiple parental
populations. This process of admixture is believed to bermomin human populations, where
movements have repeatedly brought together populati@svére historically separated. This
can be seen, for instance, in the United States where mamgaAfAmericans contain varying
amounts of ancestry from Europe and Afri&®]. To deal with the problem of interpreting evo-
lution in the presence of admixture, several coalesceasedmethods have been proposed. One
such approach is tHeamethod of Chikhet al. [17], which generates genealogies sampled from
backward simulation of coalescence trees of lineages ierdocestimate likelihood scores of ad-
mixture events for Markov chain Monte Carlo (MCMC) sampling. itagar method known as

MEAdmix[126), which also uses the coalescent theory to simulate mutaiadterns under var-
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ious admixture scenarios and identify those most condisgtih observed variation data. Such
methods were significant advances in learning evolutiohestpry in the presence of admixture.
Nonetheless, they are typically limited by the assumptiba fixed evolutionary model known

in advance, e.g., a two-parental and one admixture populatenario, and generally to small
fixed numbers of subpopulations. In addition, these methase difficulty scaling to large data

sets due to long computation times.

With large whole-genome variation data sets now becomiaegtiim for the field, new meth-
ods are needed that can productively use such data to buie acgurate and detailed models
of population dynamics. Other methods exist for drawin@iiaehces from large-scale variation
data, but each brings its own limitations. Principal comgraranalysis (PCA) has proven a pow-
erful tool for visually capturing relationships within cahex population mixturesi3, 34], but
typically requires considerable manual intervention amerpretation to translate these visualiza-
tions into concrete models of the population history. Itlier provides only limited quantitative
data on relationships between admixed populations (estmates of admixture fractions but
not timing of divergence and admixture events). Other nagHocus on the related problem of
finding detailed assignments of local genomic regions ofigedindividuals to ancestral popu-
lations [B4, 85, 98], which provides complementary information with importaises in admix-
ture mapping, but similarly offers little direct insightanthe history by which these admixtures

occurred.

Here, we describe a generalized Consensus-tree basedhbid@lEstimation for AdmiX-
ture (QCLEAX), intended to address the gap in methods forraated inference of population
histories for arbitrary number of populations from genoscale variation data. This method is
intended to learn population histories from genetic vatatata in a more generalized frame-
work than prior models allowing for automated identificataf subpopulations, reconstruction
of the history of divergence and admixture events by whicsésubpopulations likely emerged,

and inference of quantitative parameters describing tiraimd proportions of admixture for these
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events. The method is based in part on a method described pt&ZBdor learning parameters
of admixture events on two parental and one admixture ptipnlacenario 121] but general-
izes that approach to learn population history models foitrary numbers of populations. This
method makes it possible for the first time to perform fullycmated inferences of population
histories in the presence of admixture on large-scale gendatasets. In addition, it has the
advantage of learning divergence times and admixture timasmore general framework en-
compassing simultaneous inference of population groines; shared ancestry, and potentially
other parameters of their phylogenetic history, allowing iexploit dependencies among these

features of the population history that are inaccessibjeity approaches.

4.1 Material and Methods

As described in Chapted, rather than inferring parameters directly from the molacdata
[17,77,125, gCLEAX first learns a set of summary descriptions of the allgopulation history
from the molecular data that allow more efficient processiithe computationally costly Monte
Carlo sampling steps. Once the set of summary descriptiooistésned, it uses a coalescent-
based inference model on the summary descriptions to @eapassible population histories
and learn most likely divergence times and admixture fomsti Our method is based on our
prior work on learning parameters of a specific three-pdmnaadmixture scenaridlpR1]. The
present work generalizes that approach to infer populatiodels with or without admixture for
groups of, in principle, arbitrarily many populations. ldewe briefly describe the details of
previous three-population algorithm, with the methodsutsx primarily on the generalization
in the present work.

Although the present work is focused on the general scenhreahree-population scenario
consisting of three hypothetical populatioRs, P, and P; at the current time, is nonetheless
useful for illustrating the model. This scenario is showrkFig. 4.1 At time ¢,, populationP,

was formed from a mixture of amfraction of individuals from parental populatidh and al —«
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fraction of individuals coming from parental populatiéh. Further in the past, at timg, the

two parental populationg;, and P; themselves separated from a common ancestral population.
These events define a network of ancestral relationshipgeletthe observed populations and
the ancestral populations from which they derive.

Given the sequence data derived from the prior example,rgkred gCLEAX will first
learn that there are three subpopulations in the exampésetatsing an algorithm developed
in previous work 119, which identifies a well-supported set of phylogeneticlitsp defining
bipartitions of the population into robustly distinguisie subpopulation groups. At the same
time, that algorithm will also identify a set of edges repring the evolutionary history of the
population. Given the prior example, the algorithm wouldritify the edges that represent the
separation of population 1 from the other populations (sdgande, in Fig. 4.1), the separation
of population 2 ¢, in Fig. 4.1), and the separation of populationd@ @énde, in Fig. 4.1). In ad-
dition to the edges, the algorithm will also infer a numbemuitations that have likely occurred
along each identified edge. These inferences of meaningfafttitions, weighted by inferred
numbers of mutations, provide a concise summary of the cet@plariation data set that will
be used by our algorithm to estimate the posterior proligdistribution of the evolutionary

model, event times, and admixture proportions that besiriesthe data.

4.1.1 Learning Summary Descriptions

As described in detail in Chapt&, we developed an algorithm for identifying subpopula-
tions and their population-level evolutionary tree fromgte nucleotide polymorphism (SNP)
datasets. The algorithm produces a set of well-supportedehimpartitions (i.e., tree edges),
BM = {pM b3 .. .bM}, and a set of weight value®/’ = {w;, ws, ..., w, }, associated with the
model bipartitions, as well as a weight, that represents the number of observed bipartitions
that are best explained by none of the model bipartitiong Wéights of the bipartitions approx-

imate the numbers of mutations that most likely occurres@lihe individual branches of the
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Figure 4.1: Example of a history of two parental populatibfisand P;) and an admixed popu-
lation (7). Ancestral populatior, diverged at, to form P, and P, followed by an admixture

event at;; to form P,.

population history to which the bipartitions correspondisTset of model bipartitions and its

associated weights are then used to reconstruct the exwduyi model.

4.1.2 Admixture Moded

To learn the population history from the dataset, we willass that all populations derive from
a single ancestral population. The population is presumeudlve by a series of discrete events,
each either a divergence event in which an ancestral paoguilaplits into two subpopulations
or an admixture event in which two populations contributéhi® formation of a third admixed
population. If we have: populations at the present time, then there must have been
evolutionary events going backward in time until all popigias merge into a single ancestral
population. Hence, we would have— 1 time parameterst{, ..., t;_1) to learn. For each ad-
mixture event, another admixture parametej (lescribing the fraction of ancestry derived from
each ancestral population would also have to be learneddditien to time and admixture pa-
rameters, the model is characterized by the topology of dteark of population events\1;

the mutation ratey; and the effective population sizé&/(;) of each populatior at each time;
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for j = {1,2,....k — 1}. As in Chaptei3, we will assume that the effective population size is
constant and identical in each population at each time (¢eigt,NV;; = N). Under this assump-
tion, the free parameters we must learn Ate 7 = (¢, to, ..., tx1), A = (aq,...,a4_2), and
0= Nu.

Under the described admixture scenario, the consenseibdsed algorithm should first iden-
tify that there aret subpopulations in the data. Second, the algorithm shouigub@ model
bipartition setB = {b}1, b}, ...,bM} characterizing the evolutionary history of the populasion
Finally, the algorithm should produce a weight vedior= {wy, wy, ws, ..., w, }, representing the
numbers of observed variants most likely to correspond ¢b ezodel bipartitiorb?? | b7, ..., b
as well one additional weight attributed to a “null bipadtit,” essentially a noise term collecting
observed variations that appear not to correspond to anylaiogn-level bipartition.

To infer the parameter sét = { M, T, A, 0}, we estimate the distribution of the posterior
probability of the parameters given the observed weidhits= {wy, w1, ws, ..., w,} using a

similar model described in Chapt@r

P(W|©)P(O)

P(OIW) T

Since we have no prior knowledge of the parameters, we asaumédorm distribution for

the prior. Hence, we have

P(O|W) x P(W|0)

If we know the exact genealogy of the individuals at a palkticgegment of the genome
where no recombinations have occurred, under the assumgftian infinite sites model, the
number of mutations would be Poisson distributed with mearakto the length of the genealogy

I multiplied by the number of base pairsn the segment and the mutation rate While the
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assumption of infinite sites is an approximation, it is a oeable one when the mutation rate
per site per generation is much smaller than the inverseHeoigthe genealogy, as recurrent
mutations become highly unlikely under such a scenario.

Since a genealogy is a tree, it can be broken down into a sepaftitions (tree edges)
weighted by elapsed times. For each bipartition in the deggawe can determine the most
likely assignment of that bipartition to a branch in the camsus model, with the total number of
bipartitions yielding an estimated length of the branchhie tonsensus model. Given a branch
length, we can then calculate the expected number of maotaéissigned to each model branch
given a mutation rate and the length of the DNA fragment. Ibgeptial candidate genealogy
closely resembles the true genealogy, we would expect thebauof observed mutations as-
signed to each model branch to closely match the number @dota@ mutations assigned to
each model branch. Our likelihood function can thus be bral@vn as a function of a geneal-
ogy and branch lengths assigned to the model branches. Betteusntire genome is made of
fragments of DNA having different genealogies due to redoations, our likelihood function
will have to sum over possible mixtures of genealogies thghtrcollectively explain the full set
of fragments.

To make MCMC sampling of the likelihood function practicak wake two simplifications
described in ChapteB that drastically reduce the number of steps needed to acloienwver-
gence in exchange for a modest decrease in precision. Wesubstitute expected coalescence
times for integration over the full distribution of posshimes. Second, we assume that the
admixed evolutionary scenario as a whole is described byxéunai of a finite numbern of
distinct genealogies. Chapt8rshowed these assumptions introduce modest errors in @gcura
for genome-scale data while substantially simplifying teenputational problem. The result is
the following likelihood function, a generalization of tragerived in L21]:

pwie) = [ Plwilly)PyIG)P(Gl6)
=0 G

wherel}! is the total branch length assignedtomodel branch in the consensus mod&ly; |/, ) =

82



Poisson(w;; g X lsz), andG denotes the simplified genealogy set reduced tgenealogies.

4.1.3 MCMC Sampling

We estimate likelihoods of potential models by Metropadispling, where the state of the model
is the set of all paramete® = {M, T, A, 0} and the set of possible genealogi#spanning
the genome, wherfg| = m. The likelihood of any statex, = {a,, 2%, 2%, x§, 2%} is then

expressed as follows:

P(X,|IW) (HPWW) Plly ) Pag a5, 2%, 25)

New statesX,, are then sampled by first sampling a new discrete model umijoirom the set

of possible models consistent with the number of populatidentified in the consensus tree
phase and next sampling new continuous values for the datveiparameterg, A, andd from
independent Gaussian distributions with,, = ., ftoa, = Toa, AN, = ,9 andoy,,
04,, @andoy. Using the three-population scenario as an example, thie ek first sample a
model from one of the six possible models shown in Big.3 Suppose a model with admixture
betweenP; and P; was selected (Figt.1.3Db)), the chain will then proceed to sample new, ,

T tsy Tn,aes @aNdzy from Gaussian distributions with means:, , fio.t,+ fo.a1+ Hop @aNd standard
deviationsoy,, 01,, 04,, 0¢ respectively. If a model with no admixture was selected,din@in
will proceed to sample new,,,, andz, ., from Gaussian distributions but automatically set
Zn t0 1. The variances of the Gaussian distributions are aatjusiiring the burn-in period but
subsequently kept fixed, a heuristic adjustment intendatbtwease mixing time by balancing
the jump size per step and fraction of jumps accepted. Speityfi variances of the Gaussian
distributions are adjusted according to absolute diffeedretween the expected and the observed
number of mutations divided by the observed number of nanati If the difference between
the expected and the observed is small, the variances weutdolse to zero or a minimum
value specified by the user. If the difference between the@rd and the observed is large,

the variances would be set at a maximum value specified byldefaby the user. Once the
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algorithm selects values of parameters for the new stgtet then samples a new genealogy set
through coalescence simulation given the selected nevnedess.

Candidate state transitions are then accepted or rejecsed loa the likelihood function

Mo %))

NZ? Uti) P (I‘Zl

k—1
QX X,) = P(xylzi) (HP(:U?
<P (w1115, 00) P (Glah. e, s, 5)

by the Metropolis criterion.
If statesX, and X,, have the same model topology but differ in the populatiorlialy or
in time values, admixture fraction, @; then the parametetd1, 7, A would be distributed

identically in the old and new states, letting us simplifg etropolis acceptance ratio to:
(T Plawilty))
(T Plwiltyy)

On the other hand, iX, and X,, have different admixture events, then the transition proba

bilities would only cancel out in the acceptance ratio forgoaetersM, 7, anda; € A when
the jth event is an admixture event sharedyyand.X,. Let A~ be the set of admixture events
found in X, but notX,, and let A" be the set of admixture events foundXf, but notX,. In

this case, the Metropolis acceptance ratio can be simptiied

(ITio Pwiltyg)) Tljea- P(eSlaf, 00,)
(T Plwiliygn)) TLeas P(elag, o)

T —_=

4.1.4 Validation on Simulated Data

We first validated our method on the classical admixture agerof two parental populations,
P, and P, and one admixed populatio®;, at the present time. The admixed populatiBn
is assumed to have been formed at tilmevith admixture fractiom; from populationP; and

1 — a4 from populationP,. We used a total of 90 different simulated datasets gereenateur
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@ (b) (©)

(d) (e) ®

Figure 4.2: Possible evolutionary models for 3 populatidieg: Models with admixture events
att,. Bottom: Models with divergence eventstat Note that models with different ordering of

the populations are excluded because they are isomorpbitetof the six models presented.
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prior work[121] consisting of all possible combinationsf= {400, 800, 1200, 2000, 4000}, t5

= {6000, 8000, 20000}, anda; = {0.05, 0.2, 0.6} on3.5 x 10°-base sequences andf x 107-
base sequences. Each simulated dataset consists of 100odmmmes from each of the three
hypothetical populationsH;, P,, and P) resulting in a total of 300 chromosomes. We chose
this set of datasets as a baseline for comparison to existiagscence-based algorithms for

reconstructing admixture events that are limited to thecsjr three-population model.

To evaluate the performance of our method on the two-pdranthone admixture scenario,
we first assessed the quality of the evolutionary model tedday our method by the fraction of
trials in which our method assigned the maximum likelihoodhe correct evolutionary model.
This measure gives us a reasonably stringent assessmectwbey in selecting the correct

topology for the history independent of its quantitativegraeters.

We further assessed the quality of the method’s time andxdreifraction estimations by
comparing results obtained by our method with those of amgatiethod for learning admixture
fractions and divergence timeSEAdmix[126. MEAdmixtakes as input a set of sequences
of genetic variations from individual chromosomes groujmed three different populations and
outputs the admixture fraction, divergence time, admitiime, and mutation rates from the
input data. WhileMEAdmixproduces similar outputs to gCLEAX, one key difference betwe
MEAdmixand gCLEAX is the specification of populations. MEAdmix individual sequences
must be assigned by the user to one of the three populationthe®bther hand, gCLEAX infers
the populations directly from the variation data beforéneating the divergence time and admix-
ture fraction. Although there are a number of methods initeeglture for learning admixture and
divergence timesl7, 77, 126, we chose to compare tdEAdmixbecause it estimates similar
continuous parameters to gCLEAX and its software is freetylable. The same characteristics
apply tolea, but it was unsuitable for the present comparison becausel@signed for much
smaller datasets and proved unable to process even thestmatidels of genome-scale data we

considered. Other methods were also investigatédq7], but we could not directly compare
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their performance to our own because of different admixtuoeels assumed, different estimated
parameters, or lack of availability of the software for cangon. We ran both gCLEAX and
MEAdmixon the 135 simulated datasets and assessed error by agettagiabsolute difference
between the true and estimated parameter values for eaaimetar,|© — ©[). When running
our method on simulated data, we set the number of genealtaigCLEAX to bem=30. We
ran the MCMC chain 10 times with 1,000 steps of burn-in folldvig 10,000 steps of sampling
for each run. For adjusting for the variances during the {oarperiod, we arbitrarily used a
minimum and maximum variance of= 0.0010 andt = 0.156 for time anda = 0.01 and

a = 0.15 for admixture proportion. Faf, we first calculated a rough lower and upper bound by
assuming all other parameter values are known. If we sdtalllivergence and admixture times
to have occurred after every lineage within the subpopariatcoalesced, we would get a coarse
estimate of the lower bound by dividing the expected numbenugations from such a scenario
by the observed number of mutations. On the other hand, ifatvalkthe divergence times and
admixture times to have occurred at exactly time zero, weladvgat a coarse estimate of the
upper bound of) by dividing the expected by the observed number of mutatidfsng these
coarse lower and upper bounds, we set our minimum and maxivaniance off to be 0.1%
and 5% of the difference between the upper bound and the loawterd. ForMEAdmix we set
the bootstrap iterations to be five, which proved to be a maldimit for the mid-size data sets

given the run time bounds.

We next evaluated our method on a number of simulated datgseterated using differ-
ent evolution scenarios with four modern population growenotedP;, P, P3;, and P,. We
simulated data consisting of three evolutionary eventsvadt,, ¢,, andt; that resulted in the
formation of four population groups at the present time. & most ancient timég, we simu-
lated a divergence event that splits the ancestral populatio P, and the parental population,
P»34, consisting ofP,, P3, andP,. Then, at time,, either a divergence event splits the parental

population, Py34, into P, and parental populatioRs, or an admixture event occurs betwekn
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and P,34 with admixture proportiom, from P; and1 — a, from Pasy to yield an admixed popula-
tion P, and parental populations, and P4. Finally, at timet,, either a divergence event occurs
to form P; and P, or an admixture event occurs betweBnand P3, with «; admixture propor-
tion from P, to form admixed populatio’, and parental populatiof, and P;. We generated

a total of 36 different datasets from combinations of= {2000,4000}, t, = {4000, 10000},

ts = {6000,20000}, oy = {0,0.05,0.2}, anda, = {0,0.3,0.6} wheret; < t, < t5. We
chose the coalescence simulator MiB]|[for generating the simulated datasets. In all of our
simulations, we assumed the effective population size o @@pulation to be 10,000. We set
the mutation rate to b&)~° per base pair per generation, the recombination rate t®beper
generation for simulations, and the length of the chromastmbe7 x 107 base pairs.

Using the same configurations as with the evaluation of theetipopulation scenarios, we
evaluated our method’s ability to find the right evolutionarodel on the simulated four-population
datasets by computing the percentage of correctly infexvetutionary models. Because we are
not aware of any other algorithm that performs joint infeeof evolutionary model, time, and
admixture parameters for four or more populations, we atgstsmpared our estimates of the
time parameters to those of a commonly applied divergentmaer based on Wright's',
statistic described by Reynolésal. [93]. Letting P;;; be the frequency at thi¢h site of thejth
allele in thekth population, a commonly applied estimatorfaf between any two populations

with n total samples is

5 (35, (P — )’ — sy (2- 55, (B + P2) )
> (1 -2 15z'j1pz‘j2>

Under a model of neutral divergence from an ancestral ptipnlave can estimate the time

Fer =

of the divergence using the following formula:

t = —log(1 — Fsr)
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wheret is in unit of 2N generations. We computed the divergencedibmetween all pairs of
populations and used the UPGMA tree reconstruction algor[iL06 to generate an evolution-
ary history for these times. The estimated time for eachrdesmce point in the tree was then
used for comparison to our method. For each divergence oixadgtime point (i, t,, andts),
we computed the average difference between the true amdaget time from the 36 different

simulated datasets we generated.

4.15 Validation on Real Data

We further evaluated our method by applying it to two reajéescale genome variation datasets.
We first evaluated our method using sequence data from 1,6801Ges Project Phase | release
version 3 in NCBI build 37 ¢]. The dataset consists of 1,092 individuals from a number of
different ethnic backgrounds that can be largely grouptmfour broad subpopulations by con-
tinent of origin: Africa, Europe, Asia, and America. Of th@92 individuals sequenced, 246
have African ancestry from Kenya, Nigeria, and Southwest3¥F9 individuals have European
ancestry from Finland, England, Scotland, Spain, Italy bitah. 286 individual have Asian
ancestry from China and Japan. The remaining 181 individuale American ancestry and are
mainly admixed individuals from Mexico, Puerto Rico, and Qohia. We note that the data de-
viates somewhat from the assumptions of our model becauge wet have a sample descended
from the Native American subpopulation that would have Gbated to the ancestral admixed
American populations. Rather, we use modern Asian indivgdasa proxy for a modern Native
American population. Due to computational issues, we ranconsensus tree algorithm on a
uniformly selected subsample of variant sites across th@lempenome consisting of 100,000
sites to derive a summary description of the dataset as & sebael bipartitions representing
the population clusters. Once we identified a set of modelrhtpns, we then used the biparti-
tion set on the complete genome to compute the weight assigneach model bipartition and

use the set of pairs of model bipartitions and weights toregt the evolutionary history and its
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parameters.

In addition to sequencing datasets from the 1,000 Genomaed®r we also tested our
method on the HapMap Phase lll dataset (phased, releaSgvhich genotyped over 1.6 mil-
lion SNP sites 1,184 individuals from 11 global populatiohsstead of using the whole 1,184
individuals, we chose three non-admixed populations ardaoimixed population among the 11
global populations to minimize the effect of ascertainm@as. The three non-admixed popula-
tions were the 117 individuals with African ancestry fromadlan, Nigeria (YRI); 115 individuals
with Asian ancestry from Beijing, China and Tokyo, Japan; an@ ihdividuals with European
ancestry from Utah, USA. The admixed population consisted2oindividuals with Mexican
ancestry from Los Angeles, CA. Again, the data is not ideabfarmodel because of the lack of
a modern non-admixed Native American population. We woxjgbet the model to treat modern
Asian populations as a proxy for this Native American popatg with some error in inferences

to be expected as a result.

Because a large number of SNPs sites used in genotyping thdadpapamples were col-
lected from other sources, such as dbSB#, [distribution of the allele frequencies were heavily
skewed due to ascertainment bias. In addition, HapMagalhyitiiltered SNP sites with less than
5% minor allele frequency in the sample pools, but laterdvat to a two-hit criterion strategy
where at least two counts of the minor allele must have oedurr the sample in order for the
site to be considered a SNP site. Furthermore, HapMap addlty resequenced a portion of the
samples on ten 500-kb ENCODE regiod8][ As a result, because of the utilization of multiple
ascertainment mechanisms, we chose not to use the wholengeth@ta. Instead, we tried to
minimize the number of ascertainment sources by using cbsome 1 SNPs, as chromosome
1 contains no SNPs identified via the ten 500-kb ENCODE regibnaddition, since the pub-
lished HapMap data did not identify the specific sites olgdinsing the 5% filtering approach
versus the two-hit criterion, we therefore assumed thaettseequal chance that a site with fre-

guency lower than 5% is derived from either criterion. Gitkis SNP ascertainment model,
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we then modified our likelihood function to correct for asagrment bias. Lef’(asc|b;) be the
probability of ascertaining a variant site given that thie 8 generated from a mutation occurring
along brancth; € G. We can then estimate the probability of ascertainment Inyexing each
branchb; to an allele count and use the method Zfi][to estimate an ascertainment probability.
Given this ascertainment probability, we correct for astement bias in any branch length of
b; by multiplying the inferred length df; by its estimated ascertainment probability. This would

give us an ascertainment-corrected branch letfgth

s = Z Iy, P(asc|by)
bje{b|f(b)=i}

By substitutinglg?%f for lym, We can correct our likelihood model for the presumed aaoertent
bias.

For both datasets, we performed 50 trials of MCMC samplindn 2000 steps of burn-in
followed by 10,000 steps of sampling per trial. We set the Ineinof genealogiegs| to be 30
and the minimum and maximum value of the variances of the Ssaiaslistributions for sampling

next parameter values to be the same as used for the sinmustidy .

4.2 Results

4.2.1 Simulated Data
Two Parental and One Admixed Populations

Table4.1-4.3 shows the inferred posterior probabilities for all six pbksevolutionary models
for the three-population scenarios extracted from the wstpf the MCMC chains. Of the 45
datasets simulated from two parental and one admixed paguicenarios witl3.5 x 10%-base

sequences, 43 yielded correct identification of the trududlemary model as the most likely

evolutionary model. The two datasets for which the algamithcorrectly inferred the most likely
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evolutionary model were datasets simulated with low admnetraction (r = 0.05), suggesting
the variance ir8.5 x 10°-base sequences may still be too large in some instancespletely
distinguish the different evolutionary models. If we comgotihe probability distribution between
the three different sets of admixture fractioms=€ 0.05,« = 0.2, = 0.6), datasets with low
admixture fractionsq = 0.05) tend to yield flatter distributions, and thus lower-confide

predictions, than do datasets with moderate admixturéidrzs (@ = 0.2, 0.6).

When we tested our method on longer sequences, we observeavadpestimation of the
most likely evolutionary model. Tabke4-4.6 shows the probability distribution for all six possi-
ble evolutionary models on the 45 x 107-base sequences generated from the three populations
scenario. FoB.5 x 107 bases sequences, the algorithm inferred the correct evaduy model
for all the 45 simulated datasets. As with the shorter secpidgngths, datasets with low ad-
mixture fractions ¢ = 0.05) tend to yield flatter probability distributions than didtdsets with

moderate admixture fractiona & 0.2, 0.6).

Quality of the method’s parameter estimation on time andigidme fraction also compares
favorably toMEAdmix Table4.7 shows the mean and standard deviation of the absolute dif-
ference between estimated parameter values and true garamkies from the 45 simulated
datasets witl3.5 x 105-base sequences and 45 simulated datasetswith107-base sequences.
BecauseMEAdmixdid not show any progress for more than 48 hours3férx 107-base se-
quences, we did not obtain results MEAdmixon 3.5 x 107-base sequences. From Tall&,
we observed gCLEAX generally yields a slight improvementhef &verage absolute difference
between the true and estimated valuetfot,, ande overMEAdmixon 3.5 x 10°-base sequences.
Furthermore, average absolute difference of the parasieteds to improve as we increase from

3.5 x 10°-base sequences i x 10’-base sequences.
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Four-Population Scenarios

We next examine the performance on a set of more complicat#dtmnary scenarios with four
populations having either zero, one, or two admixture es.efable4.8 shows the inferred prob-
ability distribution of the top six evolutionary models feach of the datasets with no admixture
events. Our method correctly inferred the true evolutipmaodel to be the most likely evolution-
ary model on all four of the datasets with no admixture evehte results for the admixture-free
datasets showed that scenarios with long divergence titpete(d to have sharper probability

densities, and thus more confident predictions for the coeelutionary model.

Results on datasets with one admixture event,dbllowed by a divergence event &t
showed similar a trend (Tabk.9). For all the datasets with one admixture event.afol-
lowed by a divergence event at the true model was correctly inferred to be the most likely
model. Scenarios with shorter divergence timeg &nded to have flatter probability densities

compared to scenarios with longer divergence timeg. at

When we changed the simulated scenario to a divergence dvefiowed by an admixture
event att;, the correct evolutionary model became harder to infer. Asv in Table4.10
five out of eight datasets with one divergence event, dollowed by one admixture event at
t; were correctly inferred by our method. The three datasewshith the method failed to
infer the correct evolutionary model each produced an efdailing to detect the admixture
and misinterpreting the formation of the admixed popufags being purely a divergence from
its major ancestral population. This particular error goed only in scenarios for which the

admixture fraction was lowo( = 0.05).

For the remainder of the four-population datasets contgitwwo admixture events, the re-
sults showed a similar trend. Of the 16 datasets with two =ilm& events, 13 were correctly
inferred by our method. Among the three datasets in whichmathod failed to infer the correct
model as the most likely one, two were scenarios in which apowportion admixture event

was incorrectly identified as a divergence event from theom@appulation. The remaining case
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also consisted of an incorrect identification of admixtusasergence, but in a scenario with a
comparatively high admixture proportion & 0.2).

When pooling all the four-population results, we found that method was able to infer
the correct evolutionary model in 83.3% of scenarios. Coexgban the results obtained from
datasets with three populations, the four-populationages tend to have much flatter probabil-
ity distributions and thus lower confidence in the correctdeis. In four-populations datasets,
the most likely models have an average of 32% inferred posterobability compared to prob-
abilities of nearly 100% for three-population scenariosth@ six datasets for which the method
failed to infer the correct evolutionary model, five of therare models with low admixture pro-
portions. In these cases, our model mistakenly inferreddnmeixture event as a divergence event
from the major ancestral population.

To assess the quality of the parameter estimation, Pathkshows average error between the
estimated parameter values and the true parameter valbegable shows a trend of increasing
absolute difference between the estimated and true pagawadties as the evolutionary events
date further back in time. Estimatestgfshow the least error, followed by andt;. Estimates of
admixture proportion likewise show increasing error asievbecome more ancient. When com-
paring the average error for our method with that of ifag¢ approach, we found that gCLEAX
yields comparable but slightly superior time estimates. [éhie differences were almost negli-
gible fort; andt,, our estimates aof; improved approximately 60% compared to those based on
Fsr. The Fgr approach does not estimate admixture fractions, thoughyentherefore could

not use it as a basis for comparison to the quality of our atimaxproportion estimates.

4.2.2 Real Data

Running our method on the 1,000 Genomes dataset yieldedltmiers of individuals, as shown
in Fig. 4.3 95 chromosomes from the AMR group showed closer resemblartbe EUR group
than the AMR group and were classified with the EUR group. ®rimsomes from the AMR
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Figure 4.3: Top: True population assignment based on regfionigin for 1000 Genome Project

L
ASN AMR

dataset. Bottom: Population assignment identified by gCLEAX.

group were grouped with the AFR group. One chromosome fronRAdvioup and one from
ASN exchanged membership. While the assignments of indigdo populations do not always
match the region of origin exactly, we used the assignmemtified by our algorithm rather than
the true regions of origin to learn the evolutionary histtsom the dataset. Running the MCMC
sampling on the whole-genome dataset from the 1,000 GenBrogsct yielded 21 evolutionary
models with non-zero probability. Because many of the maaae low posterior probabilities,
we only show the four models with the highest posterior pbaliges in Fig.4.4. The most likely
evolutionary model from the 1,000 Genomes Project datésadis to the inference that the AFR
group diverged initially from the rest of the populations@and 103 kya assuming the effective
population size of human to be 10,00€2] and 25 years per generation. After the divergence
of the AFR group from the remaining populations, the EUR ai@NAopulations diverged at
roughly 17 kya. Finally, the AMR group was inferred to be ma@teadmixed from the ancestors
of the EUR and ASN groups, with an admixture proportion of 9B4R and 10% ASN at an
estimated time of 5 kya. Other slightly less probable modafggest that the EUR group may
have low admixture proportion from AFR or the ASN may have bwmixture proportion from
the AFR group.

To verify our findings, we also performed our method with astement bias correction on

the HapMap Phase 3 dataset. F¢p shows the population assignment identified by gCLEAX
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Figure 4.4: Top four evolutionary models obtained from ragnf50 MCMC chains on whole
genome dataset from 1000 Genome Project. The labels repsetbe four different regions
of origins the dataset consisted of. AFR represents grotipglividuals with majority having
African ancestry. EUR represents group of individuals witajority having European ancestry.
ASN represents group of individuals with majority havingia#s ancestry. AMR represents

group of individuals from the Americas that is believed t@bedmixed from Native Americans,

There were 26 individuals from the MXL group that were ass@jto the CEU group, with the
rest of the sample correctly assigned to the MXL group. Rungl@LEAX on chromosome 1 of

the HapMap dataset using the learned population assigsimgbit EAX identified 16 evolution-
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Figure 4.5: Top: True population assignment for HapMap asktt Bottom: Population assign-

ment identified by gCLEAX.

ary models with non-zero probability. Similar to the resubtained from the 1,000 Genomes
Project dataset, Figt.6 shows that the most likely models share nearly the samedgpatith
the exception of missing the admixture of the Mexican grolnstead, the most likely model
suggests the MXL group diverged from the CEU group 29 kya. Aotigionary model correctly
inferring the admixture event was identified as the secondtrikely model, with a similar
probability value to the most likely one (15.2% vs. 16.4%%. with the 1,000 Genomes dataset,
other less probable models suggested that the CEU group @HBs-JPT groups might have
contained admixture from the YRI group. The divergence priogas and admixture times esti-
mated from gCLEAX were also similar to the values obtainediftbe 1,000 Genomes dataset
with the divergence of YRI from the rest of the world-at130 kya, followed by the divergence
of CEU and CHB+JPT at- 60 kya, and the divergence or admixture event producing MXL at
~ 20 — 30 kya.

4.3 Discussion

Efforts to date at resolving the history of divergence anahiatlire events by which modern hu-

man population structure has emerged have involved a coatetl process requiring intensive
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5300 (132 kya)
5300 (133 kya)

2300 (57 kya) 2500 (62 kya)
ya,

1200 (29 kya) 900 (21 kya)

(a) 16.4 % (b) 15.2 %

6800 (169 kya) 6600 (165 kya)

2200 (54 kya) 2500 (63 kya)

1200 (30 kya) 1200 (29 kya)

(c) 13.6 % (d) 11.7 %

Figure 4.6: Top four evolutionary models obtain from rurgnB0 MCMC chains on the chro-
mosome 1 dataset from HapMap Phase 3 Release 2. Labels: YiRla\from Kenya, Nigeria,
CEU=European ancestry from Utah, USA, CHB+JPT=Asian from BgjjiChina and Tokyo,

Japan, MXL=Mexican from California, US

expert intervention and manual integration of numerousrsosE tools and analysis efforts. As
we seek to develop population history models of ever gresatgpe and finer resolution and from
ever larger data sets, such manual expert efforts can betexj® become increasingly imprac-
tical and error-prone. In this chapter, we propose a firstgt to automate the process of using
genetic variation data to infer complicated populatiortdrig models that capture population-
level divergence and admixture events. We have shown thaparoach for computing concise

summary statistics from large-scale genetic variatioa dats and using them to evaluate popu-

98



Table 4.1: Probability distribution of the possible evauaary models for the three population
scenarios (two parental + one admixed) estimated by gCLEAXafo= 0.05 on 3.5 x 10°

base sequences. Each row shows one input parameter setefbllyy the estimated posterior
probabilities for each of six possible scenarios (top). &checase, the left-most scenario is

correct.

[ Py
FEVI
th oty P2 Pz ® Py (P2 P2

0.01 0.15 0.05 0.893 0.027 0.000 0.041 0.025 0.014

0.02 0.15 0.05 0.720 0.120 0.000 0.040 0.070 0.051
0.03 0.15 0.05 0.384 0.370 0.000 0.112 0.085 0.049
0.05 0.15 0.05 0.227 0545 0.000 0.082 0.072 0.075
0.10 0.15 0.05 0.505 0.396 0.029 0.022 0.037 0.012
0.01 0.20 0.05 0.510 0.270 0.000 0.067 0.102 0.051
0.02 0.20 0.05 0.612 0.148 0.000 0.089 0.107 0.043
0.03 0.20 0.05 0.641 0.192 0.000 0.068 0.064 0.036
0.05 0.20 0.05 0.524 0.295 0.000 0.068 0.076 0.037
0.10 0.20 0.05 0.413 0.500 0.018 0.020 0.034 0.016
0.01 050 0.05 0.726 0.075 0.000 0.061 0.070 0.067
0.02 0.50 0.05 0424 0.212 0.000 0.135 0.130 0.099
0.03 0.50 0.05 0.641 0.305 0.000 0.024 0.015 0.015
0.05 0.50 0.05 0.955 0.024 0.000 0.013 0.007 0.001
0.10 0.50 0.05 0.921 0.056 0.000 0.002 0.005 0.016

lation models relative to a novel likelihood model providefeasible method for reconstructing
simple scenarios with comparable accuracy to leading nlstbo well-defined subproblems and

without the need for manual intervention to identify popiaia groups or history topologies or
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Table 4.2: Probability distribution of the possible evauaary models for the three population
scenario (two parental + one admixed) estimated by gCLEAXfet 0.20 on 3.5 x 10° base
sequences. Each row shows one input parameter set folloyvéiek estimated posterior proba-

bilities for each of six possible scenarios (top). In eackec#he left-most scenario is correct.

(] ®
28 I8 2 I Jh I
th to ay ® 008 & ® @ (2]

0.01 0.15 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.15 0.20 1.000 0.000 0.000 0.000 0.000 0.000
0.03 0.15 0.20 0.997 0.000 0.000 0.003 0.000 0.000
0.05 0.15 0.20 0986 0.010 0.000 0.004 0.000 0.001
0.10 0.15 0.20 0582 0.329 0.053 0.014 0.014 0.009
0.01 0.20 0.20 1.000 0.000 0.000 0.000 0.000 0.000
0.02 0.20 0.20 1.000 0.000 0.000 0.000 0.000 0.000
0.03 0.20 0.20 095 0.024 0.000 0.010 0.004 0.005
0.05 0.20 0.20 0988 0.003 0.000 0.001 0.000 0.008
0.10 0.20 0.20 0.898 0.075 0.000 0.017 0.006 0.004
0.01 050 0.20 0999 0.000 0.000 0.000 0.001 0.000
0.02 050 0.20 1.000 0.000 0.000 0.000 0.000 0.000
0.03 050 0.20 1.000 0.000 0.000 0.000 0.000 0.000
0.05 0.50 0.20 1.000 0.000 0.000 0.000 0.000 0.000
0.10 0.50 0.20 0.848 0.054 0.000 0.059 0.022 0.018

to synthesize results of multiple prediction methods. Whaile MCMC strategy is similar to a
number of prior approache&T, 77], our algorithm is distinguished by its capability to leam
evolutionary model for an in principle arbitrary number applations and by its novel strate-

gies for simplifying the likelihood model in ways espegyadluited to genomic-scale variation
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Table 4.3: Probability distribution of the possible evauaary models for the three population
scenario (two parental + one admixed) estimated by gCLEAXfet 0.60 on 3.5 x 10° base
sequences. Each row shows one input parameter set folloyvéiek estimated posterior proba-

bilities for each of six possible scenarios (top). In eackec#he left-most scenario is correct.

(] ®
28 I8 2 I Jh I
th to ay ® 008 & ® @ (2]

0.01 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.03 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.05 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.10 0.15 0.60 0.726 0.116 0.142 0.008 0.006 0.001
0.01 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.02 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.03 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.05 0.20 0.60 0993 0.000 0.003 0.003 0.000 0.000
0.10 0.20 0.60 0.867 0.000 0.105 0.024 0.004 0.000
0.01 050 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.02 050 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.03 050 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.05 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.10 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

data sets, trading off large increases in performance fallsstampromises in accuracy on the
assumption of large numbers of variant sites. Our methaallzs the unique feature of auto-
matically inferring the population substructure, histofyformation of that structure, and likely

admixture model in a single unified inference, allowing ita&e advantage of the fact that each
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Table 4.4: Probability distribution of the possible evaaary models for the three population
scenario (two parental + one admixed) estimated by gCLEAXfet 0.05 on 3.5 x 107 base
sequences. Each row shows one input parameter set folloyvéiek estimated posterior proba-

bilities for each of six possible scenarios (top). In eackec#he left-most scenario is correct.

(] ®
28 I8 2 I Jh I
th to ay ® 008 & ® @ (2]

0.01 0.15 0.05 0.702 0.028 0.000 0.035 0.114 0.120

0.02 0.15 0.05 0976  0.000 0.000 0.011 0.000 0.013
0.03 0.15 0.05 0523 0.198 0.000 0.080 0.063 0.137
0.05 0.15 0.05 0.628 0.251 0.000 0.057 0.042 0.022
0.10 0.15 0.05 0533 0.368 0.000 0.052 0.015 0.031
0.01 0.20 0.05 0.9%  0.003 0.000 0.001 0.000 0.000
0.02 0.20 0.05 0.697 0.068 0.000 0.035 0.005 0.194
0.03 0.20 0.05 0.403 0.132 0.000 0.154  0.090 0.221
0.05 0.20 0.05 0.888 0.000 0.000 0.011 0.000 0.101
0.10 0.20 0.05 0429 0.420 0.000 0.052 0.034  0.065
0.01 050 0.05 0.624 0.022 0.000 0.019 0.009 0.326
0.02 050 0.05 0.665 0.003 0.000 0.073 0.010 0.249
0.03 050 0.05 0542 0.130 0.000 0.097 0.024  0.207
0.05 0.50 0.05 0491 0.193 0.000 0.052 0.053 0.212
0.10 0.50 0.05 0.659  0.077 0.000 0.026 0.069 0.170

aspect of that inference is dependent on the answers tohlibetato. While the automated mod-
els still have a long way to go before they can match the scopgpert-curated analysis, they
do establish a proof-of-concept for a principled automateproach and help identify avenues

for future work. Continued efforts in this direction will be anportant component of advancing
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Table 4.5: Probability distribution of the possible evadatry models for the three population
scenario (two parental + one admixed) estimated by gCLEAXfet 0.20 on 3.5 x 107 base
sequences. Each row shows one input parameter set folloyvéiek estimated posterior proba-

bilities for each of six possible scenarios (top). In eacdec#he left-most scenario is correct.

Py ®
2R 2 I S I
th to ay ® OO0 & ®) @ ®

0.01 0.15 0.20 1.000 0.000 0.000 0.000  0.000 0.000

0.02 0.15 0.20 0974 0.000 0.000 0.000 0.000 0.026
0.03 0.15 0.20 0.900 0.000 0.000 0.000 0.000 0.100
0.05 0.15 0.20 0932 0.030 0.000 0.000 0.000 0.037
0.10 0.15 0.20 0571 0.242 0.044 0.020 0.020 0.103
0.01 0.20 0.20 0.997 0.000 0.000 0.000 0.000 0.003
0.02 0.20 0.20 0990 0.000 0.000 0.008 0.000 0.002
0.03 0.20 0.20 0994 0.000 0.000 0.000 0.000 0.006
0.05 0.20 0.20 0.698  0.061 0.000 0.024 0.007 0.210
0.10 0.20 0.20 0524 0379 0.000 0.052 0.012 0.034
0.01 050 0.20 1.000 0.000 0.000 0.000 0.000 0.000
0.02 0.50 0.20 1.000 0.000 0.000 0.000 0.000 0.000
0.03 0.50 0.20 0990 0.000 0.000 0.000 0.000 0.010
0.05 0.50 0.20 0924 0.000 0.000 0.005 0.000 0.070
0.10 0.50 0.20 0992 0.000 0.000 0.000 0.000 0.007
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Table 4.6: Probability distribution of the possible evauatry models for the three population
scenario (two parental + one admixed) by gCLEAX for= 0.60 on 3.5 x 107 base sequences.
Each row shows one input parameter set followed by the etgtnaosterior probabilities for

each of six possible scenarios (top). In each case, thenle$t-scenario is correct.

(] ®
28 I8 2 I Jh I
th to ay ® 008 & ® @ (2]

0.01 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.03 0.15 0.60 0993 0.000 0.000 0.007 0.000 0.000
0.05 0.15 0.60 0987 0.000 0.011 0.002 0.000 0.000
0.10 0.15 0.60 0.624 0.093 0.172 0.007 0.004 0.100
0.01 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.02 0.20 0.60 0989 0.000 0.000 0.0112 0.000 0.000
0.03 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.05 0.20 0.60 0927 0.000 0.000 0.0/73 0.000 0.000
0.10 0.20 0.60 0.988 0.000 0.005 0.006 0.000 0.000
0.01 050 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.02 050 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.03 050 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.05 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000
0.10 0.50 0.60 0999 0.000 0.000 0.001 0.000 0.000

the study of human population history in an era of plentiehgmic sequences.

Validation on real and simulated data demonstrates thergiynbigh accuracy of the meth-
ods on at least simple scenarios, with some caveats. Essnfram simulated data show our

method to yield comparable and often superior accuracyadimg methods for specific sub-
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Table 4.7: Mean and standard deviation of absolute diffterdretween estimated parameter val-
ues and true parameter values from the 45 datasets siméiatedhe three-population scenario

(two-parental, one admixed) with5 x 10°-base sequences.

MEAdmix gCLEAX gCLEAX
(3.5 x 10°) (3.5 x 10°) (3.5 x 107)
|d; — 1| 0.0448 £ 0.0469  0.0436 4 0.0403  0.0417 + 0.0360
|t — t1] 485 + 384 375 4 474 208 + 268
|ty —to] 2880 44373 2700 + 2390 2690 + 2675

Table 4.8: Probability distribution of the top six evolutery models for four-population scenar-
ios with no admixture events anx 107-base sequences. Each row shows one input parameter set
followed by the estimated posterior probabilities for eatthe six most likely possible scenarios

(top). In each case, the left-most scenario is correct.

- '
Aok
t to t3 a1 2 ®e e ®e e ® @& @ ® @ ® @

0.04 0.08 0.15 0.00 0.00 0.094 0.040 0.093 0.085 0.053

0.04 0.08 0.50 0.00 0.00 0.840 0.160 0.000 0.000 0.000
0.04 0.25 050 0.00 0.00 0444 0.158 0.07/5 0.035 0.021
0.08 0.25 050 0.00 0.00 0320 0.100 0.059 0.020 0.060

problems, such as reconstructing the specific three-ptpualadmixture scenario for which prior
methods were designed. Similarly, estimates from our ntefitoved slightly superior to those

of a standard approach based Bsy- statistics at estimating divergence times in these scenar-
ios. Analysis on the two real datasets also compared falyoveth existing literature in most
respects. Evolutionary models learned from the 1,000 Gesdpnoject dataset closely matched
the general consensus on the history of modern human pamdatith the inference of ances-

tral splits of African from non-African followed by Europedrom Asian, and with the inference
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Table 4.9: Probability distribution of the top 6 evolutiopanodels for four population scenario
with one admixture event followed by one divergence event onl07-base sequences. Each
row shows one input parameter set followed by the estimatstepor probabilities for each of

the six most likely possible scenarios (top). In each cédmeldft-most scenario is correct.

b T
t1 to t3 o %) ® e e ® @ e ® @ ®e e ®e e

0.04 0.08 0.15 0.00 0.30 0180  0.113 0.060  0.060 0.020

0.04 0.08 0.50 0.00 0.30 0240 0.110 0.140 0.060 0.220
0.04 025 050 0.00 0.30 0.352 0.040 0.091 0.192 0.000
0.08 0.25 0.50 0.00 0.30 0.380 0.040 0.080 0.200 0.000
0.04 0.08 0.15 0.00 0.60 0.167 0.153 0.139 0.018 0.039
0.04 0.08 050 0.00 0.60 0280 0.199 0.060 0.000 0.040
0.04 0.25 050 0.00 0.60 0440 0.021 0.034 0.000 0.030
0.08 0.25 050 0.00 0.60 0320 0.060 0.000 0.000 0.020

of Mexicans, Puerto Ricans, and Colombians as admixed greapsthese ancestral popula-
tions [66, 102 112. The HapMap dataset supported a similar model, althougfmavi incorrect
inference of the Mexican group as diverged from Europeaherahan admixed from European
and Asians, with the correct model having slightly lowerteasr probability. As the simulated
data results suggest, the method can have difficulty disishgng admixture from divergence
when the minor ancestral population’s contribution is $mRhrameter estimates on these data
are generally well supported by the literatu6d,[132. Estimates of the African-European di-
vergence time of 103 kya and 133 kya from 1000 Genomes and Hpjuidta respectively are
consistent with the STR estimation by32 (62-133kya) and the HMM estimation bg]] (60-
120 kya). Admixture proportion estimation of the Mexicagp was also generally consistent
with prior studies. While the 90% admixture proportion frdme EUR group for the AMR group

is high relative to prior estimates, it is not dramaticalff foom the ranges supported by prior
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Table 4.10: Probability distribution of the possible ex@muoary model for four-population sce-
narios with one divergence event followed by one admixtweneon7 x 107-base sequences.
Each row shows one input parameter set followed by the etgtnaosterior probabilities for

each of the six most likely possible scenarios (top). In ezde, the left-most scenario is cor-
rect.

o Y &re o e
i TE T T
t1 to t3 aq Q9 ® @ ® O © ® @ ® @ ®e e

0.04 0.08 0.15 0.05 0.00 0.100 0.180 0.060 0.060 0.100

0.04 0.08 050 0.05 0.00 0.080 0.340 0.043 0.000 0.100
0.04 0.25 050 0.05 0.00 0320 0.080 0.220 0.100 0.020
0.08 0.25 050 0.05 0.00 0.026 0.340 0.060 0.000 0.100
0.04 0.08 0.15 0.20 0.00 0.320 0.040 0.080 0.140 0.020
0.04 0.08 050 0.20 0.00 0.383 0.100 0.080 0.056 0.060
0.04 025 0.50 0.20 0.00 0573 0.000 0.180 0.120 0.000
0.08 0.25 0.50 0.20 0.00 0450 0.020 0.105 0.119 0.000

studies by Martinez-Cortest al. [66] and Tanget al. [112], which both estimated admixture
proportions in the ranges of 60-70% European, 10-20% Atfriead 10-20% Native American.

These deviations could be explained by the assumption ahodel that admixture events occur
only between pairs of populations and by the lack of a nonigelinNative American sample

from which our method could learn.

The most significant error of our model on the real data is imstantially overestimating
the age of the admixture time for the Mexican, Puerto Ricad,@oumbian groups. The most
likely source of error here is, again, the lack of a moderrigadmerican sample in the data set,
leading the method to approximate American samples as aarasxof the European and Asian
populations it had available. We would expect this infeeestaclead to a misattribution of a large

number of mutations distinguishing Asian from Native Ancan as mutations distinguishing

107



Table 4.11: Probability distribution of the top six possibdvolutionary models for four-
population scenarios with two admixture eventsior 107-base sequences. Each row shows
one input parameter set followed by the estimated postgraiyabilities for each of the six most

likely possible scenarios (top). In each case, the lefttracsnario is correct.

i 2o o
s
t ty ts a; ® @ 0o 0Rer O ® @

0.04 0.08 0.15 0.05 0.30 0220 0.201 0.080 0.020 0.020

0.04 0.08 050 0.05 0.30 0293 0.188 0.155 0.000 0.060
0.04 0.25 050 0.05 0.30 0200 0.080 0.1220 0.000 0.1220
0.08 0.25 050 0.05 0.30 0164 0.107 0.093 0.006  0.138
0.04 0.08 0.15 0.05 0.60 0.145 0.083 0.116 0.060  0.000
0.04 0.08 050 0.05 0.60 0.140 0.240 0.040 0.040 0.000
0.04 0.25 050 0.05 0.60 0.120 0.200 0.060  0.080  0.020
0.08 0.25 050 0.05 0.60 0.206 0.148 0.082 0.066  0.007
0.04 0.08 0.15 0.20 0.30 0199 0.160 0.140 0.000 0.120
0.04 0.08 050 0.20 0.30 0360 0.320 0.060 0.000 0.040
0.04 025 050 0.20 030 0.280 0.020 0.020 0.0200.416

0.08 0.25 0.50 0.20 0.30 0260 0.160 0.120 0.000 0.160
0.04 0.08 0.15 0.20 0.60 0.320 0.100 0.040 0.280 0.000
0.04 0.08 0.50 0.20 0.60 0498 0.060 0.000 0.140 0.000
0.04 0.25 050 0.20 0.60 0420 0.000 0.000 0.180 0.000
0.08 0.25 050 0.20 0.60 0.340 0.007 0.143 0.259 0.000

the ancestral from modern admixed American populationsjmturn to an overestimated time
since admixture. Another source of error may be the assomfitat the effective population size
is constant and equal for all population groups when in factwould expect smaller bottlenecks

for the newly admixed groups.
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Table 4.12: Mean and standard deviation of the absoluterdifice between the estimated pa-
rameter values and the true parameter values from the 3sadatsimulated from different four-

population scenarios with zero, one, or two admixture eent x 107-base sequences.

A

gCLEAX F,

|dp — ay|  0.0272 4 0.0389 -

|dy — | 0.0576 & 0.0588 -

It — t1] 203 4 228 264 4 194
|ty — ty 1100 4 930 1130 4 847
5 —t3] 357042440 5790 + 3110

Comparing the results between three-population and foptHation scenarios does suggest
that scaling to large models is problematic due to the coatbmal explosion in numbers of
possible models as the number of populations increasest ekipéosion in possible models
would be expected to impact both the true sharpness of tHmpiidy density and the mixing
time of the MCMC method. More data can in principle help to addrthe former problem,
leading to greater support for correct models althougheattst of increased computation time.
The current tests examined data sets up to the size of a $angeechromosome, but there is no
reason in principle the method cannot extend to all variemgsfull human genome. Similarly,
the datasets examined ranged to the size of hundreds ofdodlg, but adding more individuals
and especially individuals from a more diverse set of mogepulations can also be expected
to allow better discrimination of correct from incorrecstaries and finer resolution of those
histories. Further algorithmic improvements may be ne¢daddress slow mixing time, though,
especially as more data is added. Our primary criterion otess, inferring exactly the right
model with high probability, may also be too stringent agerdn for larger and more complicated
models. The MCMC approach makes it trivial to define more mbbas achievable goals,

though, such as identifying those specific events that alleswpported by a given data set and
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estimating their parameters.

110



Chapter 5

Structured Testing for Disease Association

Case-control association mapping has been one of the mosiywisled methods for identifying
loci involved in disease inheritanc8,[94, 127]. The method typically tests for association be-
tween a marker locus and trait by measuring the amount dédglequency differences between
individuals with the phenotype of interest (cases) andlated healthy individuals (controls). A
strong statistical association between genotypes at tihkeamiacus and the phenotype is usually
considered evidence for a potential candidate region wiherdisease locus may be located.

Since the availability of large scale genomic datasets,ralb@n of methods to test for dis-
ease association has been propo2éd131]. One classic test used in genome-wide association
studies (GWAS) is the Pearson’s chi-square t86L. [The count of the allele for each biallelic
SNP site can be summarized i2 & 2 contingency table which tests the null hypothesis that the
disease has no effect on the distribution of the allele cudther tests, such as likelihood ratio
test, logistic regression, and Cohran-Armitage test fordyare also frequently used in GWAS
[60, 131.

Despite its popularity, loci identified by association miaygpoften require close scrutiny and
careful analysis to exclude false-positives that are thesequence of stratification differences
between the cases and the contr8l2[0]. This stratification is most often due to differences in

population substructure in cases and controls. For examplen cases and controls have differ-
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ent fractions of individuals from different subpopulatsthis would increase the likelihood of a
marker locus being falsely identified by the statistical sssa candidate locus due to significant

differences in the allele frequencies between the subptipok.

To address this problem, one trivial approach to elimirgapurious associations in case-
control studies would be to avoid selecting samples whevetstre is clearly present or to bal-
ance the samples such that population structure is evestijtited between cases and controls.
Despite successfully avoiding the effect of populatioatsication, selecting individuals free of
population substructures can be a tedious and, in manyioosagnpossible task. A more desir-
able alternative is to apply a test statistic that corremtpdpulation substructure83, 86, 115.
One popular method is the EIGENSTRAZ3 which uses principal component analysis (PCA)
to identify the axes of variation. The axes of the highestaten should provide clues as to
the ancestry of individuals and population structure exéibin the dataset. By learning the
ancestry proportion of each sample based on where eachesamapls to the axes of variation,
EIGENSTRAT effectively corrects for population stratificat by readjusting the genotypes and
phenotypes of each sample according to the ancestries séthple. While this method corrects
each SNP for population structure according to a globalstncassignment for each sample, the
method does not consider the relationships between aatpspulations and the local substruc-
ture for each SNP. Another common approach is to partitienritividuals into their respective
subpopulations and perform a stratified association tast) as the Cochran-Mantel-Haenszel
test L15. On the other hand, given the history output learned autiwadly from genetic data
using methods described in our previous chapters, we cautlehpally take advantage of the
structural and relational information learned from theadi&telf to reduce the number of false
discovery of candidate loci due to population stratificaiio association studies. In this chapter,
we propose two simple structured association tests, asa pf@oncept, that correct for pop-
ulation stratification effects using the outputs of our mmom description length (MDL)-based

consensus tree algorithm in Chapzer
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51 Methods

In Chapter2, we proposed an MDL algorithm for learning population hiss that identifies
a set of robust edges persistent across the entire genomaisetla The algorithm specifically
produces a set of model edges or bipartitiéHé = { B, ..., B} by optimizing the following

MDL-based objective function:

L(Ty, Ty, Ty, ..., T,) = argmin (L(BM)+iL(BZ-]BM)+f(BM)>

BMeT i=0

whereB, B,, ..., B, are the observed bipartition sets derived from phylogemeeerated from a
SNP dataset partitioned intowindows ofk SNPs.L(B) computes the minimum description
length of the model edgé3,, andL(B;| BM) computes the minimum description length required
to explain the observed (input) bipartitioBs given the model edge#3(/). The functionf (B™)
defines an additional penalty for proposing a model treeishaterly complex.

At the end of the optimization procedure, the method woutstipce a set of robust model
bipartitions that represent the edges of the populatictoifyisAt the same time, finding the op-
timal model bipartitions indirectly provide local strucaliinformation through the computation
of the cost function. During the computation bfB;|BM), the method computes the condi-
tional entropy of each observed bipartitibre B; relative to each model bipartitiad! ¢ B,
This computation not only allows us to compute the minimuracdi@tion length but also ef-
fectively estimates the probability distribution over ptgdion subdivision events from which
the variant site may have most recently arisen from. For @@nsuppose that we identify an
observed bipartition derived from a variant site closelserabling the model bipartition repre-
sentingP,| P, P5 in a dataset with three populationB,( P, and P;). The fact that the observed
bipartition has the closest resemblance to the model liipartepresenting™| P, P; would in-
dicate that the mutation may have likely occurred simulbauséy with or afterP, diverged from

other populations. At the same time, the resemblandg tB, P; would also suggest the variant
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site may have a substructure effect betw&eand rest of the populations. Given the information
that the mutation may be a result of the population spliPofvith other populations, we could
then correct the substructure effect for the test by seiparéie samples int@, and rest of the

populations and test for association separately.

5.1.1 Localized Structured Association Test

To correct for population stratification, we would first idiénthe set of model bipartitiong?/ .
We would then use our functioh(B;| BM) to find the most likely model bipartition € BM
showing the closest resemblance to each variant $itam the genomic dataset. L&tbe the
observed bipartition derived from biallelic variant siteB™ be the set of model bipartition,
and H (b;|b}") be the conditional entropy of the observed bipartittpigiven model bipartition
bj.” € BM. Then, we can find the optimal model bipartiti&éﬁ’* showing the closest resemblance

to b; using the following formula:

pMx — argmin(H<bi|b§w))

Z b eBM

Given thatbf.”’* is the closest model bipartition or population edge resemltheith variant
site, we would split the chromosome copies from individfalérom each individual) into two
partitions according té; and perform a Cochran-Mantel-Haenszel (CMH) test of assoniat
conditional on the model partitidrj”’*. The intuition behind such an approach is that, by splitting
the samples into its respective substructures using tteesianatching model bipartition, we
should effectively remove the most prominent populatidosswcture affecting the variant site.

Suppose the best model bipartitibﬁ’* resembling variant sité split the chromosomes in
the dataset into pafiy and partp;, then we can count the number of chromosomes having any
specific genotype and specific phenotype. If the genotyprilelic and the phenotype is either
having the disease (cases) or healthy (controls), then weetaup tw@ x 2 contingency tables

shown in Fig5.1.1
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Figure 5.1: Example of a Cochran-Mantel-Haenszel testeppising separation of chromsomes
into two partition sets using the a model partition. Chronmogs partitioend into pagt, and part

p1 by model bipartitiorb; are separately tested for association of the phendtyp#th genotype

X using Cochran-Mantel-Haenszel test by counting the numbehmmosomes having each
specific phenotype with each possible genotyp2 in 2 contingency tablesa, by, ¢, andd,
represents the number of individuals in parhaving genotype and phenotype pats (1), (vo,

x1), (y1, xo), and {jo, x1) respectivelya,, by, ¢1, andd; represents the number of chromosomes in

partp; having genotype and phenotype paws 1), (vo, 1), (y1, z0), and o, 1) respectively.
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Givenay, by, g, dy as the number of chromosomes in partitigrihnaving phenotype-genotype
pair (y1, 1), (o, 1), (Y1, o), (Yo, xo) respectively and, b, c;, d; as the number of chro-
mosomes in partitiom; having phenotype-genotype paiy; { z1), (vo, z1), (y1, x0), (o, xo)

respectively, the Cochran-Mantel-Haenszel test statistiche computed as:

2
_ (ao+bo)(ao+-co) _ (aatbi)(arter) |
2 - <‘a0 ao+bo+co+do + | a1+b1+c1+dy 0.5
XmH = (ao+bo)(ao+co)(bo+do)(co+do) + (a1+b1)(a14c1)(b1+d1)(c1+dq)
(ao+bo+co+do)3—(ao+bo+co+do)? (a1+b1+c14d1)3—(a1+b14c1+d1)?

The numerator computes the squared sum of the deviatiomseéetthe observed and ex-
pected values with a continuity correction added. The demator estimates the variance of
the squared differences. The test statistic follows a ghased distribution with one degree of
freedom. When the observed and expected values are sirhéaggt statistics would be smaller
thus reducing the chance to reject the null hypothesis teaphenotype and genotype are in-
dependent. When the variance of the squared differenceyes, lsuggesting that observed can
significantly deviates from the mean under the null hypathleecause of uncertainties, the test
statistic would also be small. By identifying sites that héuge differences between expected
and observed allele frequencies in both partitions thrabgltest statistic, we should be able to
identify sites that are associated with the phenotype withite confounding effect of population

substructure.

5.1.2 Weighted Localized Structured Association Test

One issue with using the most likely model bipartition forigat site is that the most likely model
bipartition can have a very similar score to the other mogsititions in the population model.
If the scores of the model bipartitions are similar to eatientusing the most likely one can leave
out slightly less prominent substructure effects on thewasites, which may lead to more false-
positive associations. To address this issue, we notelt@abnditional entropy we computed for

each variant site given a model bipartition can roughly bated as the negative log probability
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[38] that the observed bipartition is best explained by the rhbgrartition. Equivalently, we
can view this as the probability that bipartiti@f’i{ is the key substructure effect for this variant
site. Under this assumption, we can compute a weighthat the model bipartitionbj.” is the
key substructure effect for the variant siteWe would then compute the p-value for each split
of the population by model bipartitiobj.” € BM using the Cochran-Mantel-Haenszel test and
computing each p-value using a weighted sum of the possip&thions producing the effect.
To justify the formulation, we claim that what we are intéeskin learning is the probability of
observing a value equal to or greater than the respectivstasstic given that the genotype
and phenotyp@” are independentH,) and that zero or one division of individuals by a model
bipartition is influencing the allele frequencies. Suppdseis a model that specifies how the
sample will split into two partitions using thgh model bipartitiorby € BM and M is the set

of all models that specifies how we can split the sample intogartitions. Then, we can rewrite

the probability as the following:

MjEM
Since P(M;|D) is the belief thab)’ is the prominent substructure effeét()/;| D) would

simply be the weighty; we computed from the conditional entropy:

o—H (bi[b3")

P(M;|D) = w; = S 2 G
k

Combining the definition above, we get:

ML o—H(b:b)
2 _
P(X3yy > clHo M) = >~ R

j=1

P(X3; > cjlHo, M;)
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5.1.3 Validation

To validate our approach, we first generated a simulatedefatesing the coalescent simulator
MS[48]. We simulated genotypes of 150 affected and 150 contravidhaals resulting in a total
of 600 chromosomes on a sequence Withx 10° bases using a mutation ratelof per site per
generation, a recombination ratelof® per generation, and effective population size of 10,000.
We assume that the individuals were sampled from three suldgttons ¢, P,, and P). At
time t; = 2,000 generations aga?, and P; diverged into their respective subpopulations. At
time t, = 6,000 generations agaP’, and the ancestral population 6% and P; diverged. We
assume the causal mutation occurred after the divergenée ahd the parental population of
P, and P;. This scenario should in theory result in a much higher redatisk to ascertain a
case fromP, and P; than a case fron®?;. Among the 150 affected, we arbitrarily assigned 75
individuals toP, and 75 individuals td>. In this dataset, we assumed no one frBntontracted
the disease. Of the 150 controls, 50 individuals were assligmeach of the three populations.
To simulate the candidate locus, we sample the genotype foypuiing the probability of
observing genotyp& given phenotyp&” and population assignmeht, P(X|Y, K). Through

conditional probability and Bayes’ theorem, we can rewfhi probability as:

P(X|Y, K)
ZXG{O,l} P(X|Y7 K)
P(K,Y|X)P(X)
2xeqony P Y[X)P(X)

P(Y|K, X)P(K|X)P(X)
ZXG{OJ} P(Y’K?X)P(K’X)P(X)
PY|K,X)P(X|K)P(K)

2 xeqony PV X)P(X[K)P(K)
PYIX)P(X|K)
Yxeqoy PYIX)P(X|K)

P(X|Y,K) =

where P(X|K') would correspond to the allele frequency of each allele shg@pulation and

P(Y|X) would be the probability of having disease or normal phepetgiven the genotype.
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Given the equation above, we generated genotypes for 1Zpémdlent disease loci using a
probability of P(Y = 1|X = 1) = N(0.7,0.1), P(Y = 1|X = 0) = N(0.3,0.1), P(X =
11K =1)=0.1,P(X =1|K =2) =0.6,andP(X = 1|K = 3) = 0.6.

In addition to simulated data, we also used the HapMap phasedinosome 21 dataset as
a test datasetd]. The dataset consisted of 90 Utah residents with ancesing Northern and
Western Europe (CEU); 90 individuals with African ancestigni Ibadan, Nigeria (YRI); 45
Han Chinese from Beijing, China (CHB); and 45 Japanese in TokyanJ&PT). For the CEU
and YRI groups, which consist of trio data (parents and a phive used only the 60 unrelated
parents with haplotypes as inferred by the HapMap consuort{iven that our algorithm identi-
fied three populations from the same dataset in Cha@phtee artificially assigned 5 individuals
from YRI, 40 individuals from CEU, and 40 individuals from CHBHIJRs cases. The remaining
125 individuals were labeled as controls. Using the sameoagp as with the fully simulated
data, we then generated the genotypes for the 120 candidai® Wising a probability aP (Y =
11X = 1) = N(0.7,0.1), P(Y = 1|X = 0) = N(0.3,0.1), P(X = 1|K = YRI) = 0.1,
P(X =1|K = CEU) = 0.66, andP(X = 1|K = CHB + JPT) = 0.66.

To compare the performance of our proposed methods, wealtestk the non-weighted and
weighted localized structured association test againshple and common statistical test used
for association testing known as Fisher’s exact t88} fhat does not correct for population
stratification. In addition to Fisher's exact test, we ferthested our methods against a simple
stratified association test commonly used in disease agBwciesting by software such PLINK
[87]. Rather than testing for association using the most promisebstructure effect for each
variant site, we instead perform the Cochran-Mantel-Hadrisst on the global substructures
identified. In this approach, the data would be partitiomed all known subpopulations identi-
fied. In both the simulated dataset and HapMap dataset, tughmean that we partitioned the

individuals into three subsets and test for associatioparagely in the subsets.
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5.2 Results

Fig. 5.2 shows the computed negative log p-value using Fisher'steégat; the global Cochran-
Mantel-Haenszel test, the localized Cochran-Mantel-Haadtest, and the weighted localized
Cochran-Mantel-Haenszel test. From the plot, we obsenadddgative log p-values for loci not
associated with the disease locus from the three CochraneMeédaenszel tests are much lower
than for the Fisher’'s exact test on the entire sample. Onttier dland, candidate loci showed a
slightly lower negative log p-values using the three Cochiviamtel-Haenszel tests than Fisher’s
exact test. If we reject the null hypothedig using a p-value of 0.0001, we achieved a type |
error of 0.023, 0.000, 0.002, and 0.000 for Fisher’s exdohal, local, weighted-local Cochran-
Mantel-Haenszel test respectively suggesting the sadtifest have a higher specificity. The
Fisher's exact test has a power of 0.94 while the Cochranehéfggenszel tests have power of
0.88, 0.86, 0.88 for global, local, weighted local respetyi indicating the stratified test may
have lower sensitivity than the non-stratified test. Howewtien comparing the three stratified
tests, the weighted-local test has the same power as thel gésth while decreasing the type |

error.

Semi-simulated data from the HapMap phase 2 dataset alseedrsmilar results compared
to the fully simulated data. Fig.2shows the negative log p-values for the genetic markersltype
on chromosome 21. Similar to the results from fully simuladata, the results from the HapMap
dataset showed lower number of false positives using the r@naetdantel-Haenszel tests. The
negative log p-value for the candidate loci were also lowéhé three Cochran-Mantel-Haenszel
tests compared to the Fisher’s exact test. When using a tejeshold of 0.0001, the weighted-
local Cochran-Mantel-Haenszel test gave the lowest typet €9.000) while Fisher’s exact test
gave the worst type | error (0.048). Global Cochran-Mantaéhkzel, however, outperformed
non-weighted local Cochran-Mantel-Haenszel with type dreaf 0.0005 compared to 0.0027.
Power analysis for the four test showed similar results amegbto fully simulated data. Power

of Fisher's exact test remained the best of the four with @@8wed by both weighted local
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Figure 5.2: Negative log p-values computed for all 1866armtrsites generated from coalescent
simulator, MS, and 120 simulated loci. We arbitrarily asgid 150 individuals out of 300 indi-
viduals as cases. The simulated candidate locus is attaclieel end of the dataset. Black lines
represent the rejection threshold of 0.0001. (a) Negabgeptvalues obtained from Fisher’s Ex-
act Test. (b) Negative p-value obtained from Mantel-Haehtst on the three subpopulations
identified. (c) Negative log p-values obtained from Manielenszel test on the best local split
of populations using our MDL-based scoring function. (dghlieve log p-values obtained from
Mantel-Haenzel test using a weighted local split of popatet using our MDL-based scoring

function.
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and global Cochran-Mantel-Haenszel of 0.90. Local Cochramtiel-Haenszel test achieved the

lowest power of the four with a power of 0.89.

5.3 Discussion

In this chapter, we proposed two methods to perform stradtassociation tests. The novelty
of the methods comes from the fact that the methods taketstal@nd relational information
learned from the dataset using our MDL-based consensualtresthm to correct for population
substructure. Intuitively, the methods map each varidattsia branch in the population history
learned from the dataset. Using that branch as the most pemiliocal population structure, the
method then corrects for the effect of population substimedby separately testing for association
in each local subpopulation. In one approach, the methosl theemost likely population edge
resembling the observed variant site to locally correcpfgpulation substructure. In the second
approach, we instead correct for population substructfiegts using each of the population
splits identified weighted by the probability belief thag thopulation split is the key stratification
effect.

Results from both fully simulated and semi simulated dat@sstthat structured association
tests using Cochran-Mantel-Haenszel test statistic argbtapf removing spurious discoveries
due to population structure. From the results, we obsetatthe global structured association
test seemed to perform better than the non-weighted l@xhBfructured association test. Such
trends may likely result from the fact that the most likelyppation substructure computed
using our minimum description length function may not ale/dée the correct one, especially
when the observed bipartition may be quite similar to two orermodel bipartitions. However,
by weighting and combining the p-values performed in ourglvead test, we effectively reduce
the effect of such issues and achieve the best type | errongmhe four methods.

From the results, we also observed that the three stratiBsdcetion tests tend to have

lower power than Fisher's exact test that does not take tteetedf population substructure

122



151

=
o

-log10(x)
-log10(x)

05 1 15 2 25 3 35 4 45

(a) Fisher’s Exact Test (b) Global Structured Mantel-Haenszel Test

15} 16+
14+

12 ¢

=
o

=

o

-log10(x)
-log10(x)

o N A O ®
]

05 1 15 2 25 3 35 4 45

(c) Localized Structured Mantel-Haenszel Tes{d) Weighted Localized Structured Mantel-Haenszel

Figure 5.3: Negative log p-values computed for all 4548 7avdrsites obtained from HapMap
phase 2 dataset and 120 simulated candidate loci. We ailgitnasigned 105 individuals out
of 210 as cases. The simulated candidate locus is attachix tend of the dataset. Black
line in the plots represents the rejection threshold of @0@a) Negative log p-values obtained
from Fisher’s Exact Test. (b) Negative p-value obtainednfidantel-Haenszel test on the three
subpopulations identified. (c) Negative log p-values atedifrom Mantel-Haenszel test on the
best local split of populations using our MDL-based scofungction. (d) Negative log p-values
obtained from Mantel-Haenszel test using weighted locliisspf populations using our MDL-

based scoring function.
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into account. Such pattern, while undesirable, may be adtron of the stratified tests since
samples are divided into smaller group with fewer samplesaich group. As a result, this
can reduce the confidence of the statistical test due to fdatarto support association in each
group. Despite lower power when comparing to non-stratifissociation test, our weighted-
localized Cochran-Mantel-Haenszel test achieved the samwerpas the global test suggesting
the weighted-localized test is able achieve a better typ®i @hile maintaining the same power.
Although further comparison with existing methods for deglwith substructure, such as
STRAT [86] or EIGENSTRAT B3] is needed, results nonetheless show a promising approach
to test for association under the effect of population sulotiire. Furthermore, comparison to
Fisher's exact test shows that there are fewer false pesitmd overall reduction of p-values
that are not truly associated with the disease phenotypeh Bsults suggest that our method
could potentially provide a promising direction to improagsociation tests under the effect of
population structure. Given that our prior methods in leagpopulation history can obtain time
and admixture information, a possible improvement woulddoacorporate such information
into the test statistics to further improve the performanide disease association test under the

presence of population substructure.
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Chapter 6

Conclusions and Future Directions

Automatically identifying subpopulations and learningithevolutionary history from the ever
growing genomic datasets is an important but challengioblpm that, to the best of our knowl-
edge, no existing algorithms have yet to solve. In this these have developed novel algorithms
specifically designed to address the problem of learningifadipn histories from large scale ge-
nomic datasets. Starting with a basic model based on theytbéminimum description length,
we have shown that itis computational feasible to autorabyicdentify population substructures
and infer evolutionary history at the same time from larg@lesclatasets under the assumption
that the underlying histories have little or no admixturéasen the populations. Validation re-
sults from Chapte showed the minimum description length-based consensesatgerithm

is capable of identifying the distinct substructures witthie dataset and the relationships be-
tween the substructures with high accuracy. We have alsadfthe algorithm to be robust over
a wide range of parameter variations, providing confideheg the ability of the algorithm to
identify the correct substructures and histories. Furtioge, population history produced by the
algorithm from real human datasets is consistent with iexjdbeliefs about human evolution.
Analysis of the computational time needed to run the algorifurther demonstrated its ability
to handle large-scale datasets in a reasonable time frastahlishing the method as the first

practical algorithm for joint inference of population stture and its history from large genomic
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datasets. Comparing to existing consensus tree algorittnmagroposed algorithm is also one
of the first practical algorithms able to identify a meanuigfonsensus tree from noisy datasets
in which observed splits between populations often inveleme individuals being classified in

different population groups at different observed datasoi

The thesis has further addressed the problem of admixturemenon phenomenon in hu-
mans of mixing genetic materials between populations, bgldping a method for learning the
parameters describing the population history in the pesehadmixture. By building upon the
algorithm described in Chapt@r we have demonstrated the feasibility of accurately qiang
the timing and fractions of admixture and divergence evieeteeen populations throughout the
history. Beginning with an initial model of learning paraeretalues pertaining to a simple two-
parental and one admixed population scenario, we showeé@shienation of parameters was at
least as good as or better than existing models on simulatpeeaces with lengths ranging from
roughly equivalent to large fragments of DNA chromosomesaimplete chromosome lengths.
Sensitivity analysis on varying population sizes sugg#dstsmethod is moderately robust to
time-varying population sizes. In addition, the minimaddoof accuracy on the long sequence
datasets also suggests that the mean length assumptiorfiougbd coalescent time of lin-
eages is a good strategy that could benefit coalescent siomd@and other simulations utilizing

repeated draws from exponential distributions.

Given the model for quantifying parameters of admixturengfer two-parental and one-
admixed population scenarios, the thesis further gerzexthe approach to automatically learn-
ing population histories and their associated parameterthifee or more populations. Analysis
on the simulated data suggests the generalized approasdsailar accuracy for quantifying
the parameters of admixture and divergence events withnitialimodel for two-parental and
one-admixed population scenarios. The method’s abilityotoectly infer the correct population
model and its associated parameters suggests its appticabithe first practical algorithm for

automatically learning histories of three or more popoladiunder the presence of admixture.
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Finally, as a proof of concept, the thesis tested the agpligaof incorporating population
history information into association test statistics tmoee the effects of population substruc-
ture. Analyses on simulated and semi simulated datasetgestagl the incorporation of popu-
lation history can indeed reduce type | errors due to pomuratratification differences. The
success of the structured association test demonstragasf time practical applications of popu-

lation histories learned from genetic data.

6.1 FutureWork

The work presented in the thesis provides one possiblegirdor learning population histories
with or without the presence of admixture for large-scaleageic datasets. While the models
presented in the thesis yielded reasonably accurate @autinder various scenarios, the prob-
lem of efficiently solving for all scenarios of populatiorstory, and perhaps at a much higher
resolution remains a challenge. Despite the difficulty afiéng population histories from ge-
netic data, the models here nonetheless act as a steppiegst@ach the holy grail of accurately
learning detailed history of populations in all possiblersarios directly from genetic variation
datasets.

Two scenarios of population history the thesis did not itigase are the issues of migration
between different populations and varying effective papah size. Migration of individuals in
large fractions can have a large impact on the pattern oftgevagiations and thus the accuracy
of the inference algorithms. Significant changes in efiectiopulation size, as demonstrated in
our analysis in Chapte, can also have large impacts on the accuracy of the curred¢imbe-
spite the fact that our current method does not incorporageation parameters into the model,
an extension to include migration events could in theory dieéeved by introducing migration
rate parameters\y/, and simulatig the coalescent process with the specifiedatog rates. In-
corporation of migration and variable effective populatgizes should provide a more realistic

and in-depth depiction of the human population history,dugh enhancements may also intro-
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duce additional challenges as additional parameters sanradrease the cost of computations.

Our current model only considers divergence and admixtegts as two possible evolution-
ary events. While these two evolutionary events can recraatt population scenarios, events
such as convergence can also exist. By incorporating otlwdutewnary events, we can achieve
a more accurate depiction of the evolutionary history of hns Such an incorporation into our
model can be naively done by simply adding additional pamitamodels into the set of pos-
sible modelM. However, introduction of new evolutionary events can éase the number of
models exponentially, thus making the inference expertiieto the number of steps needed to
sample from the MCMC chain. Nonetheless, such issues camiedied by developing prior
distributions on the set of possible models to steer thendmavisit models that one believes to

be more probable, thus reducing the number of steps needed.

In addition to addressing the fundamental questions in jadipn genetics, learning popula-
tion history provides important information for underddarg disease origin. With the ability
to automatically learn historic information from moleaculdata, the algorithms open up the
possibility of using that information to improve power inettifying disease-causing alleles
through genome-wide association studies (GWAS). One qtbssible direction in harnessing
such historic information is to incorporate the populatiastory into regularized linear regres-
sion (Y = X + A|B|z,/L,) for identifying weakly associated loct that are associated with
a complex diseas¥. By setting up the regression coefficients for each markereaath pop-
ulation in the dataset, we can, for example, formulate ojeative such that an associated or
causal mutation that occurs in two or more populations wbeldore likely to be selected given
a population history that specifies the populations wereggd as one ancestral population for
a long time. By doing so, mutations associated with the desé@st may not have been picked

up by simple regression could potentially be more likelynitifeed with the historic information.

Another possible direction in utilizing the populationtoigy is to incorporate historic infor-

mation into a new test statistic for identifying loci assded with a phenotype of interest. While
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Chapter5 demonstrated an improvement of the association test usengdpulation structure
information, we did not incorporate any other historic imf@tion, such as time and admixture
fractions into our test statistic. By incorporating the l#ngf each model bipartition or branch,
for example, we might reduce the chance of over-correctingie population substructure effect
when the most likely model bipartition resembling the olisdrbipartition does not have a high
confidence.

While we have only considered a few possibilities for utiigithe historic information
learned from the models presented in this thesis, the yabdiautomatically identify and learn
histories of populations from genetic variation data stiqubvide tremendous opportunities for

solving numerous problems in population and medical geseti

129



130



Bibliography

[1] Pan asian single nucleotide polymorphism. Onlire.t p: / / wwA4a. bi ot ec. or.
t h/ PASNP. 1.1

[2] The international hapmap projedtiature 426(6968):789-796, 2003.2

[3] Genome-wide association study of 14,000 cases of sewarmon diseases and 3,000

shared controlsNature 447(7145):661-678, 2007. 10.1038/nature05%L1.

[4] A second generation human haplotype map of over 3.1anikinps.Nature 449(7164):
851-861, 20071.2 2,2.2.2 3.2, 3.5,5.1.3

[5] Integrating common and rare genetic variation in diedraman population$Nature 467

(7311):52-58, 20101.2 4,4.1.5

[6] An integrated map of genetic variation from 1,092 humanames.Nature 491(7422):
56-65, 20121.2 3.2 3.54,4.1.5

[7] E.N. Adams. N-trees as nestings: Complexity, similardapd consensusJournal of

Classification 3(2):299-317, 198&2.1.1

[8] David Alexander, John Novembre, and Kenneth Lange. feaxtel-based estimation of

ancestry in unrelated individual&enome Research9(9):1655-1664, 2009..4

[9] David Balding, Martin Bishop, and Chris Canningbklandbook of Statistical Genetics
John Wiley and Sons, 2007. ISBN 9780470997628.

[10] D.M. Behar, S. Rosset, J. Blue-Smith, O. Balanovsky, S. , TRuComas, R.J. Mitchell,

131


http://www4a.biotec.or.th/PASNP
http://www4a.biotec.or.th/PASNP

L. Quintana-Murci, C. Tyler-Smith, R.S. Wells, and The Geragdric Consortium. The
genographic project public participation mitochondridfd®databasePL0oS Genet3(6):
el04, 20072

[11] G Bertorelle and L Excoffier. Inferring admixture progons from molecular data.

Molecular Biology and Evolutionl5(10):1298-1311, 1998.5, 3.1, 3.2 4.1.4

[12] The Bovine HapMap Consortium. Genome-wide survey of sapation uncovers the

genetic structure of cattle breed3cience324(5926):528-532, 2008.2, 3.3, 3.5, 3.4

[13] Katarzyna Bryc, Adam Auton, Matthew R. Nelson, Jorge R. édkerg, Stephen L.
Hauser, Scott Williams, Alain Froment, Jean-Marie Bodo, G&sawWambebe, Sarah A.
Tishkoff, and Carlos D. Bustamante. Genome-wide pattern®pftlation structure and
admixture in west africans and african americaBsceedings of the National Academy
of Sciencesl07(2):786—-791, 201@, 4

[14] R.L. Cann, M. Stoneking, and A.C. Wilson. Mitochondrial BMind human evolution.
Nature 325(6099):31-36, 1982

[15] L. L. Cavalli-Sforza and W. F. BodmerThe Genetics of Human PopulationdV. H.
Freeman and Company, 1974.
[16] Ranajit Chakraborty. Gene admixture in human populatiododels and predictions.

American Journal of Physical Anthropolag®9(S7):1-43, 19863, 3.1, 4

[17] L. Chikhi, M.W. Bruford, and M.A. Beaumont. Estimation afmixture proportions: A
likelihood-based approach using markov chain monte c&émetics158(3):1347-1362,
2001.1.4,153,3.1,3.1,3.23.44,41,41.44.3

[18] Y. J. Chuand T. H. Liu. On the shortest arborescence ofexcthd graphScience Sinica
14:1396-1400, 1962.1.2

[19] A. G. Clark, M. J. Hubisz, C. D. Bustamante, S. H. Wiliamsamd R. Nielsen. As-

certainment bias in studies of human genome-wide polymsnphGenome Red5(11):

132



[20]

[21]

[22]

[23]

[24]

[25]

[26]

1496-502, 20054.1.5

David G. Clayton, Neil M. Walker, Deborah J. Smyth, Relse®ask, Jason D. Cooper,
Lisa M. Maier, Luc J. Smink, Alex C. Lam, Nigel R. Ovington, Helg. Stevens, Sarah
Nutland, Joanna M. M. Howson, Malek Faham, Martin Moorheldgwel B. Jones,
Matthew Falkowski, Paul Hardenbol, Thomas D. Willis, antiddd. Todd. Population
structure, differential bias and genomic control in a lasgale, case-control association

study. Nat Genet37(11):1243-1246, 2005. 10.1038/ng1653.

F. S. Collins, M. Morgan, and A. Patrinos. The human gea@roject: lessons from

large-scale biologyScience300(5617):286—290, April 2002

Francis S. Collins, Ari Patrinos, Elke Jordan, Aravir@laakravarti, Raymond Gesteland,
LeRoy Walters, the members of the DOE, and NIH planning groiNesw goals for the
u.s. human genome project: 1998-2088ience282(5389):682—689, 1998.

The 1000 Genomes Project Consortium. 1000 genome préadine, .ht t p: / / wwww.

1000genones. org/. 1.1

The Hapmap Consortium. International hapmap projectlin@, . ht t p: / / hapmap.

ncbi . nl mnih.gov/.1.1

The HUGO Pan-Asian SNP Consortium. Mapping human gemgtersity in asia.Sci-
ence 326(5959):1541-1545, 2009.2

Anna L. Dixon, Liming Liang, Miriam F. Moffatt, Wei ChenSimon Heath, Kenny
C. C. Wong, Jenny Taylor, Edward Burnett, Ivo Gut, Martin Fayi@l Mark Lathrop,
Goncalo R. Abecasis, and William O. C. Cookson. A genome-widea@ation study of

global gene expressioMNat Genet39(10):1202-1207, 2007. 10.1038/ng2189.

[27] Isabelle Dupanloup, Giorgio Bertorelle, Louns ChikmgdaGuido Barbujani. Estimating

the impact of prehistoric admixture on the genome of europddolecular Biology and

Evolution 21(7):1361-1372, 20048

133


http://www.1000genomes.org/
http://www.1000genomes.org/
http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/

[28] R. B. Eckhardt. Matching molecular and morphologicalletion. Human Evolution4

(4):317-319, 19891

[29] L Excoffier, P E Smouse, and J M Quattro. Analysis of molacvariance inferred from
metric distances among DNA haplotypes: application to humaochondrial dna restric-

tion data.Genetics131(2):479-91, 19924

[30] Joseph Felsenstein. Phylip - phylogeny inference agekversion 3.2).Cladistics 5:
164-166, 19891.3.2 1.5

[31] Joseph Felsensteimferring PhylogeniesSinauer Associates, 2008.3.2 1.5, 4

[32] Lars Feuk, Andrew R. Carson, and Stephen W. Scherer. tS8talwariation in the human

genome.Nat Rev Genef7(2):85-97, 20061.1

[33] R. A. Fisher. On the interpretation gf from contingency tables, and the calculation of

p. Journal of the Royal Statistical SocieB5(1):87-94, 19225.1.3

[34] Olivier Franois, Mathias Currat, Nicolas Ray, EunjungnHhaurent Excoffier, and John
Novembre. Principal component analysis under populatemetic models of range ex-
pansion and admixtureMolecular Biology and Evolution27(6):1257-1268, 20103,

4

[35] D. Garrigan, S. B. Kingan, M. M. Pilkington, J. A. WildeM. P. Cox, H. Soodyall,
B. Strassmann, G. Destro-Bisol, P. de Knijff, A. NovellettoFdiedlaender, and M. F.
Hammer. Inferring human population sizes, divergencegiare rates of gene flow from
mitochondrial, x and y chromosome resequencing da&enetics 177(4):2195-2207,
2007.3.3 3.4

[36] N.J.Gawel, R. L. Jarret, and A. P. Whittemore. Restrictragment length polymorphism
(rflp)-based phylogenetic analysis of musBheoretical and Applied Genetic84(3-4):
286-290, 19921, 1.1

[37] David B. Goldstein and Louns Chikhi. Human migrations ao@ulation structure: What

134



we know and why it mattersAnnual Review of Genomics and Human Gengef¢$):

129-152, 20023

[38] P.D. Grnwald, 1.J. Myung, and M.A. PittAdvances in Minimum Description Length:
Theory and ApplicationsThe MIT Press, 200%2.1.1,2.1.1 3.1, 5.1.2

[39] D. Gusfield. Optimal, efficient reconstruction of raatknown phylogenetic networks
with constrained and structured recombinatidwurnal of Computer and System Sciences

70(3):381-398, 200%2.4

[40] Ryan N. Gutenkunst, Ryan D. Hernandez, Scott H. Williamsand Carlos D. Busta-
mante. Inferring the joint demographic history of multiplepulations from multidimen-

sional snp frequency dat®LoS Geneticsh(10):e1000695, 200%8.4

[41] M. F. Hammer, A. B. Spurdle, T. Karafet, M. R. Bonner, E. T. &ip A. Novelletto,
P. Malaspina, R. J. Mitchell, S. Horai, T. Jenkins, and S. Lg#a. The geographic
distribution of human Y chromosome variatiocBenetics 145(3):787-805, 19972

[42] Michael F. Hammer. A recent common ancestry for humahrpmosomesNature 378

(6555):376-378, 19933.3 4.2.2

[43] Ross C Hardison, Krishna M Roskin, Shan Yang, Mark Dielsh&d James Kent, Ryan
Weber, Laura Elnitski, Jia Li, Michael O’Connor, Diana KoJtend et al. Covariation
in frequencies of substitution, deletion, transpositenmg recombination during eutherian

evolution. Genome Researcthh3(1):13-26, 20033.2

[44] M. J. Havey and F. J. Muehlbauer. Variability for restion fragment lengths and phylo-
genies in lentil.Theoretical and Applied Genetics7(6):839-843, 1989, 1.1

[45] M. He, J. Gitschier, T. Zerjal, P. de Knijff, C. Tyler-Sthj and Y. Xue. Geographical
affinities of the HapMap sampleBLoS ONE4(3):e4684, 03 20022.3

[46] Mika Hirakawa, Toshihiro Tanaka, Yoichi Hashimoto, 84&o Kuroda, Toshihisa Takagi,

and Yusuke Nakamura. Jsnp: a database of common gene aasiati the japanese

135



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

population.Nucleic Acids Resear¢cB80(1):158-162, 20021.2

R. Hudson. Generating samples under a wright-fisheraleutodel of genetic variation.

Bioinformatics (Oxford, England)18(2):337-338, February 2002.2.1

R.R. Hudson. Gene genealogies and the coalescent pr&xdssd Surveys in Evolution-

ary Biology, 7:1-44,19903.2 4.1.45.1.3

John P. Huelsenbeck and Fredrik Ronquist. Mrbayes: Bay@sference of phylogenetic
trees.Bioinformatics 17(8):754—755, 20011.3.2

Mattias Jakobsson, Sonja W. Scholz, Paul Scheet, J.&&@ibbs, Jenna M. VanLiere,
Hon-Chung Fung, Zachary A. Szpiech, James H. Degnan, Kai \\Ritg Guerreiro,
Jose M. Bras, Jennifer C. Schymick, Dena G. Hernandez, Bryamyndr, Javier Simon-
Sanchez, Mar Matarin, Angela Britton, Joyce van de LeempuatRafferty, Maja Bucan,
Howard M. Cann, John A. Hardy, Noah A. Rosenberg, and Andrew ijI&ion. Geno-
type, haplotype and copy-number variation in worldwide harpopulationsNature 451

(7181):998-1003, 2008. 10.1038/nature06742, 2, 2.2.2 4

L. Jin, M.L. Baskett, L.L. Cavalli-Sforz, L.A. Zhivotoky, M.W. Feldman, and N.A.
Rosenberg. Microsatellite evolution in modern humans: apayison of two data sets

from the same populationg\nnals of Human Genetic64(02):117-134, 200@.4

L.B. Jorde, M.J. Bamshad, W.S. Watkins, R. Zenger, Fraiey., P.A. Krakowiak, K.D.
Carpenter, H. Soodyall, T. Jenkins, and A.R. Rogers. Origimsadfinities of modern
humans: a comparison of mitochondrial and nuclear genati@&. dAmerican Journal of

Human Geneticb7:523-538, 19952

L.B. Jorde, W.S. Watkins, and M.J. Bamshad. Populatiarogecs: a bridge from evo-
lutionary history to genetic medicineHuman Molecular Geneti¢sl0(20):2199-2207,
2001.4

M. Kayser, M. Krawczak, L. Excoffier, P. Dieltjes, D. Catg V. Pascali, C. Gehrig,

136



L.F. Bernini, J. Jespersen, E. Bakker, L. Roewer, and P. defK@ijf extensive analysis
of Y-chromosomal microsatellite haplotypes in globallgmirsed human populations.

American Journal of Human Genetj&8(4):990-1018, 2002.3

[55] James Kent, Charles Sugnet, Terrence Furey, KrishnailRoBkm Pringle, Alan Zahler,
and And Haussler. The human genome browser at uGsnome Researchi2(6):996—

1006, 20021.2

[56] Jan O. Korbel, Alexander Eckehart Urban, Jason P. Affoirian Godwin, Fabian Gru-
bert, Jan Fredrik Simons, Philip M. Kim, Dean Palejev, NielsoJ. Carriero, Lei Du,
Bruce E. Taillon, Zhoutao Chen, Andrea Tanzer, A. C. Eugenia&as, Jianxiang Chi,
Fengtang Yang, Nigel P. Carter, Matthew E. Hurles, Shermad®ssman, Timothy T.
Harkins, Mark B. Gerstein, Michael Egholm, and Michael Snydeaired-end mapping
reveals extensive structural variation in the human gen@urence318(5849):420-426,

2007.1.1

[57] B. Korber, M. Muldoon, J. Theiler, F. Gao, R. Gupta, A. Ldps, B. H. Hahn, S. Wolinsky,
and T. Bhattacharya. Timing the ancestor of the hiv-1 pandestnains. Science 288
(5472):1789-1796, 200@&

[58] Sudhir Kumar and Sankar Subramanian. Mutation rateeammalian genomesPro-

ceedings of the National Academy of Scien8¢2):803-808, 20023.3

[59] S. H. Lee, Y. M. Cho, D. Lim, H. C. Kim, B. H. Choi, H. S. Park, O. Kim, S. Kim,
T. H. Kim, D. Yoon, and S. K. Hong. Linkage disequilibrium aatfective population
size in hanwoo korean cattleAsian-Australasian Journal of Animal Scienc@4(12):

1660-1665, 20113.4

[60] Cathryn M. Lewis and Jo Knight. Introduction to genetssaciation studie<old Spring
Harbor Protocols 2012(3):pdb.top068163, 2013.

[61] Heng Li and Richard Durbin. Inference of human populatiostory from individual

137



[62]

[63]

[64]

[65]

[66]

[67]

[68]

whole-genome sequencdsature 475(7357):493-496, 2018, 3.4, 4.3

George Liu, Lakshmi Matukumalli, Tad Sonstegard, kg&hade, and Curtis Van Tassell.
Genomic divergences among cattle, dog and human estintateddrge-scale alignments

of genomic sequenceBMC Genomics7(1):140, 20063.2, 3.3

Jeffrey C. Long and Peter E. Smouse. Intertribal gene between the Ye’'cuana and
Yanomama: Genetic analysis of an admixed villagenerican Journal of Physical An-

thropology 61(4):411-422, 1983

Matthew D. Mailman, Michael Feolo, Yumi Jin, Masato Kiuma, Kimberly Tryka, Ri-
nat Bagoutdinov, Luning Hao, Anne Kiang, Justin Paschalh Pbhan, Natalia Popova,
Stephanie Pretel, Lora Ziyabari, Moira Lee, Yu Shao, ZhetWdéng, Karl Sirotkin,
Minghong Ward, Michael Kholodov, Kerry Zbicz, Jeffrey Bedklichael Kimelman,
Sergey Shevelev, Don Preuss, Eugene Yaschenko, Alan Griafies Ostell, and
Stephen T. Sherry. The ncbi dbgap database of genotypeshe&mbtypes.Nat Genet
39(10):1181-1186, 2002..2

T. Margush and F.R. Mcmorris. Consensus n-tr&esletin of Mathematical Biology43:

239-244,19812.1.1

Gabriela Martinez-Cortes, Joel Salazar-Flores, L&ahriela Fernandez-Rodriguez, Ro-
drigo Rubi-Castellanos, Carmen Rodriguez-Loya, Jesus Salvaslarde-Felix, Jose
Franciso Munoz-Valle, Isela Parra-Rojas, and Hector Rawjjalobos. Admixture and
population structure in mexican-mestizos based on pdteneages. Journal of Human

Genetics2012.3.3 3.4,4.3

M. Meila. Comparing clusterings—an information baseddathce.Journal of Multivariate

Analysis 98(5):873-895, 20072.2.3

Marta Mel, Asif Javed, Marc Pybus, Pierre Zalloua, M&taber, David Comas, Mi-

hai G. Netea, Oleg Balanovsky, Elena Balanovska, Li Jin, Yajang, RM. Pitchap-

138



pan, G. Arunkumar, Laxmi Parida, Francesc Calafell, Jaumedwgretit, and The Geno-
graphic Consortium. Recombination gives a new insight in ffectve population size
and the history of the old world human populatiortdolecular Biology and Evolution

2011.3.1

[69] Laurence R. Meyer, Ann S. Zweig, Angie S. Hinrichs, Do#@aolchik, Robert M. Kuhn,
Matthew Wong, Cricket A. Sloan, Kate R. Rosenbloom, Greg Roe, l&x&mhead, Brian J.
Raney, Andy Pohl, Venkat S. Malladi, Chin H. Li, Brian T. Lee, Kia& Learned, Vanessa
Kirkup, Fan Hsu, Steve Heitner, Rachel A. Harte, Maximiliaagdssler, Luvina Guru-
vadoo, Mary Goldman, Belinda M. Giardine, Pauline A. Fujitamothy R. Dreszer, Mark
Diekhans, Melissa S. Cline, Hiram Clawson, Galt P. Barber, ®Baussler, and W. James
Kent. The ucsc genome browser database: extensions antes@fHd 3. Nucleic Acids

Research2012.1.2

[70] C. D. Michener and R. R. Sokal. A quantitative approach toablem in classification.
Evolution 11(2):130-162, 19571

[71] Yusuke Nakamura. Jsnp database. Onlinet p: //snp.i nms. u-t okyo. ac. j p/.
1.1

[72] NCBI. Database of single nucleotide polymorphisms. @amlwww. ncbi . nl m ni h.

gov/snp. 1.2

[73] M. Nei and S. KumarMolecular Evolution and Phylogenetic®xford University Press,

2000.2,2.1.1 3.1, 4

[74] M. Nei and A.K. Roychoudhury. Genetic relationship anablation of human races.

Evolutionary Biology14:1-59, 19822

[75] Matthew R. Nelson. Popres: Population reference sampf@nline. http://
www. ncbi . nl m ni h. gov/ pr oj ect s/ gap/ cgi - bi n/ study. cgi ?study_

i d=phs000145. v1.pl.1.1

139


http://snp.ims.u-tokyo.ac.jp/
www.ncbi.nlm.nih.gov/snp
www.ncbi.nlm.nih.gov/snp
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000145.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000145.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000145.v1.p1

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Matthew R. Nelson, Katarzyna Bryc, Karen S. King, Amit &pd Adam R. Boyko, John
Novembre, Linda P. Briley, Yuka Maruyama, Dawn M. Waterwp@rard Waeber, Pe-
ter Vollenweider, Jorge R. Oksenberg, Stephen L. Hauseddi Stirnadel, Jaspal S.
Kooner, John C. Chambers, Brendan Jones, Vincent Mooser, darl@&istamante,
Allen D. Roses, Daniel K. Burns, Margaret G. Ehm, and Eric H.. L&he population
reference sample, popres: A resource for population, skseand pharmacological genet-
ics research.The American Journal of Human Geneti@&3(3):347-358, 20081.2, 2,

4

R. Nielsen and J. Wakeley. Distinguishing migrationnfrasolation: A markov chain
monte carlo approachGenetics 158(2):885-896, 20011.4, 3, 3.1, 3.2 3.4, 4.1, 4.1.4
4.3

Rasmus Nielsen, Melissa J. Hubisz, and Andrew G. Clark.oR&tuting the frequency
spectrum of ascertained single-nucleotide polymorphista.dGenetics 168(4):2373—
2382, 20044.1.5

R. D. M. Page and E. C. Holmeblolecular evolution. A phylogenetic approadBlack-
well Science Ltd., 19981

Esteban J. Parra, Amy Marcini, Joshua Akey, Jeremy ilNsoh, Mark A. Batzer, Richard
Cooper, Terrence Forrester, David B. Allison, Ranjan Deka, RoBe Ferrell, and
Mark D. Shriver. Estimating african american admixturegandions by use of population-

specific allelesAmerican Journal of Human Genetj&3(6):1839-1851, 199&, 4

Nick Patterson, Alkes L. Price, and David Reich. Popalastructure and eigenanalysis.

PLoS Genet2(12):e190, 20061.3.1 1.4, 2

Daniel Pinkel and Donna G. Albertson. Array compamtxenomic hybridization and its

applications in canceiNat Genet37:5S11-S17, 2004L.1

Alkes L. Price, Nick J. Patterson, Robert M. Plenge, MiehE. Weinblatt, Nancy A.

140



Shadick, and David Reich. Principal components analysisects for stratification in
genome-wide association studiddat Genet38(8):904-909, 2006. 10.1038/ngl184y.
5.3

[84] Alkes L. Price, Arti Tandon, Nick Patterson, KathleenBarnes, Nicholas Rafaels, Ingo

[85]

[86]

[87]

[88]

[89]

[90]

Ruczinski, Terri H. Beaty, Rasika Mathias, David Reich, and Sirwtyers. Sensitive
detection of chromosomal segments of distinct ancestrydimixed populations.PLoS

Genet 5(6):1000519, 2004..4, 1.5, 3, 4

Jonathan K. Pritchard, Matthew Stephens, and Peten&lyn Inference of population
structure using multilocus genotype da@enetics 155(2):945-959, 20001.3.1, 1.5, 2,
22334

Jonathan K. Pritchard, Matthew Stephens, Noah A. Rasgnland Peter Donnelly. As-
sociation mapping in structured populatioAie American Journal of Human Genetics

67(1):170-181, 2000, 5.3

Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lomifias, Manuel A. R. Ferreira,
David Bender, Julian Maller, Pamela Sklar, Paul I. W. de BakWark J. Daly, and Pak C.
Sham. Plink: A tool set for whole-genome association andufajon-based linkage

analysesAmerican journal of human geneti&1(3):559-575, 2005.1.3

David C. Queller, Joan E. Strassmann, and Colin R. Hughesrokshtellites and kinship.

Trends in Ecology and Evolutip8(8):285-288, 19931.1

A Rambaut and N.C. Grass. Seg-Gen: an application for tbet&Carlo simulation of
DNA sequence evolution along phylogenetic treé@smput. Appl. Bioscil3(3):235-238,
1997.2.2.1

H. Rangel-Villalobos, J. F. Muoz-Valle, A. Gonzlez-Miay A. Gorostiza, M. T. Magaa,
and L. A. Pez-Riberos. Genetic admixture, relatedness, andtgre patterns among

mexican populations revealed by the y-chromosodmerican Journal of Physical An-

141



thropology 135(4):448-461, 2008.3

[91] D. Reich, K. Thangaraj, N. Patterson, A.L. Price, and Ingh. Reconstructing indian
population historyNature 461(7263):489-494, 2002.3

[92] D.E. Reich and D.B. Goldstein. Genetic evidence for a étilkec human population
expansion in Africa. Proceedings of the National Academy of Sciences of the United

States of Amerigad5(14):8119-8123, 1992.4

[93] John Reynolds, B. S. Weir, and C. Clark Cockerham. Estimatidhe coancestry coeffi-
cient: Basis for a short-term genetic distanGenetics 105(3):767-779, 19831.1.4

[94] Neil Risch and Kathleen Merikangas. The future of genstudies of complex human

diseasesScience273(5281):1516-1517, 1996.

[95] Noah Rosenberg. The human genome diversity project. in@nlhtt p:// wwu.

st anf or d. edu/ gr oup/ rosenber gl ab/di versity. htm . 1.1

[96] Sridhar S. Mixed integer linear programming for maximparsimony phylogeny in-
ference. IEEE/ACM Transactions on Computational Biology and Bioinfatics 5(3):
323-331, 20081.3.2 2

[97] R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Hokh, A. Erlich, and N. Arnheim.
Enzymatic amplification of beta-globin genomic sequences ra@striction site analysis

for diagnosis of sickle cell anemi&cience230(4732):1350-4, 1984, 1.1

[98] Sriram Sankararaman, Srinath Sridhar, Gad Kimmel,Enadh Halperin. Estimating local
ancestry in admixed population®merican journal of human genetic82(2):290-303,

2008.1.4 1.5 3,4

[99] S. T. Sherry, M. Ward, and K. Sirotkin. dbSNP-databasesfngle nucleotide polymor-
phisms and other classes of minor genetic variat®enome Re9(8):677-9, 19991.2

4.1.5

[100] S. T. Sherry, M. H. Ward, M. Kholodov, J. Baker, L. Phan, M. Smigielski, and

142


http://www.stanford.edu/group/rosenberglab/diversity.html
http://www.stanford.edu/group/rosenberglab/diversity.html

K. Sirotkin. dbsnp: the ncbi database of genetic variatidocl. Acids Res29(1):308—
311, 2001.2

[101] S. Shringarpure and E.P. Xing. mstruct: Inferenceagation structure in light of both
genetic admixing and allele mutatiorSenetics 108:100222, 20091.3.1,1.5, 2.4

[102] M.D. Shriver and R.A. Kittles. Genetic ancestry and $skearch for personalized genetic
histories.Nature Reviews Genetics:611-618, 20042.2.3 2.3, 2.3 4.3

[103] M Slatkin. A measure of population subdivision basadrocrosatellite allele frequencies.
Genetics139(1):457-62, 19954
[104] Oliver Smithies.How It All Began: A Personal History of Gel Electrophoresislume

869 ofMethods in Molecular Biologychapter 1, pages 1-21. Humana Press, 2012.

[105] K.A. Sohn and E.P. Xing. Spectrum: joint bayesianiiaefece of population structure and
recombination eventBioinformatics 23(13):i479-489, 20071.3.1, 2.2.3

[106] R. R. Sokal and C. D. Michener. A statistical method forleating systematic relation-
ships.University of Kansas Science BulletBB8:1409-1438, 19581.1.4

[107] K. M. Song, T. C. Osborn, and P. H. Williams. Brassica texoy based on nuclear
restriction fragment length polymorphisms (rflp3heoretical and Applied Geneticg5

(5):784-794, 19881, 1.1

[108] Pawel Stankiewicz and James R. Lupski. Structuraktian in the human genome and

its role in diseaseAnnual Review of Medicin@1(1):437-455, 2010L.1

[109] David L. Swofford. Paup*: phylogenetic analysis ugparsimony, version 4.0b10. Soft-
ware, 2002www. si nauer . coni det ai | . php?i d=8060. 1.3.2

[110] Hua Tang, Jie Peng, Pei Wang, and Neil J. Risch. Estmaif individual admixture:
Analytical and study design consideratio@enetic Epidemiology28(4):289-301, 2005.
1.4

[111] Hua Tang, Marc Coram, Pei Wang, Xiaofeng Zhu, and NeitRifReconstructing genetic

143


www.sinauer.com/detail.php?id=8060

ancestry blocks in admixed individual&merican journal of human genetic&(1):1-12,

2006.1.4,1.5

[112] Hua Tang, Shweta Choudhry, Rui Mei, Martin Morgan, Vit Rodriguez-Cintron, Es-
teban Gonzlez Burchard, and Neil J. Risch. Recent genetictisgldn the ancestral
admixture of puerto ricansAmerican Journal of Human Genetj&l(3):626—633, 2007.

3.33443

[113] Albert Tenesa, Pau Navarro Ben J. Hayes, David L. D@#raldine M. Clarke, Mike E.
Goddard, and Peter M. Visscher. Recent human effective poipnlsize estimated from

linkage disequilibriumGenome Research7(4):520-526, 20073.1

[114] D.C. Thomas and J.S. Witte. Point: Population straiion: A problem for case-control
studies of candidate-gene associatiorid@ncer Epidemiol Biomarkers Pret1(6):505—

512, 2002.2

[115] Chao Tian, Peter K. Gregersen, and Michael F. SeldircoAnting for ancestry: popula-
tion substructure and genome-wide association stud#esnan Molecular Geneti¢d7

(R2), 2008.5

[116] S. A. Tishkoff, E. Dietzsch, W. Speed, A. J. PakstisRJKidd, K. Cheung, B. Bonn-
Tamir, A. S. Santachiara-Benerecetti, P. Moral, M. KringsPBo, E. Watson, N. Risch,
T. Jenkins, and K. K. Kidd. Global patterns of linkage diséhtum at the cd4 locus and
modern human originsScience271(5254):1380-1387, 1998.

[117] S.A. Tishkoff and B.C. Verrelli. Patterns of human géndiversity: Implications for hu-
man evolutionary history and diseaggnual Review of Genomics and Human Genetics

4(1):293-340, 20032.3 2.4, 4

[118] S.A. Tishkoff and S.M. Williams. Genetic analysis ofrisan populations: human evolu-
tion and complex diseasélat Rev GeneB3(8):611-621, 2002.3

[119] Ming-Chi Tsai, Guy E. Blelloch, R. Ravi, and Russell Schwar\ consensus tree ap-

144



proach for reconstructing human evolutionary history aetédting population substruc-
ture. IEEE/ACM Trans. Comput. Biol. Bioinformatic®:918-928, July 20111, 3.1, 3.1,
4.1

[120] Ming-Chi Tsai, Guy Blelloch, R. Ravi, and Russell Schwa@aoalescent-based method
for learning parameters of admixture events from largéesganetic variation data. In
Proceedings of the ACM Conference on Bioinformatics, Comiouiat Biology and

BiomedicingBCB 12, pages 90-97, New York, NY, USA, 2012. ACK.

[121] Ming-Chi Tsai, Guy Blelloch, R. Ravi, and Russell Schwanalescent-based method
for learning parameters of admixture events from largéesganetic variation data [ex-

tended journal version]. Under Review, 20134, 4.1, 4.1.24.1.4

[122] Ming-Chi Tsai, Guy Blelloch, R. Ravi, and Russell Schwai@nalescent-based method

for joint estimation of population history, time, and adiaipe. Submitted, 20131

[123] J. Craig Venter, Mark D. Adams, Granger G. Sutton, AnthB. Kerlavage, Hamilton O.
Smith, and Michael Hunkapiller. Shotgun sequencing of tm&n genomeScience280
(5369):1540-1542, 1994

[124] J.C. Venter, M.A. Adams, and Eugene W. Myetsal. The sequence of the human
genome.Science291(5507):1304-1351, 2002.

[125] J. Wang. Maximum-likelihood estimation of admixtyseoportions from genetic data.

Genetics164(2):747-765, 20031, 4.1

[126] J. Wang. A coalescent-based estimator of admixtune fina sequencesenetics 173

(3):1679-1692, 20061.4,1.5,3,3.1,3.2 4,4.1.4

[127] William Y. S. Wang, Bryan J. Barratt, David G. Clayton, alahn A. Todd. Genome-wide
association studies: theoretical and practical conceidat Rev Genet6(2):109-118,

2005.5

[128] Joachim Weischenfeldt, Orsolya Symmons, Francoiz Smd Jan O. Korbel. Phenotypic

145



[129]

[130]

[131]

[132]

impact of genomic structural variation: insights from ad fiuman diseaseNat Rev

Genet 14(2):125-138, 2013. 10.1038/nrg33131

Carl R. Woese and George E. Fox. Phylogenetic strucfureegrokaryotic domain: The
primary kingdomsProceedings of the National Academy of Sciencé11):5088-5090,
1977.1

Junshi Yazaki, Brian D. Gregory, and Joseph R. Ecker. papthe genome landscape
using tiling array technologyCurrent Opinion in Plant Biology10(5):534-542, 20071

D. V. Zaykin, P. H. Westfall, S. S. Young, M. A. Karnoul, J. Wagner, and M. G. Ehm.
Testing association of statistically inferred haplotypeih discrete and continuous traits

in samples of unrelated individualsluman Heredity53(2):79-91, 20025

L.A. Zhivotovsky. Estimating Divergence Time withehJse of Microsatellite Genetic
Distances: Impacts of Population Growth and Gene Fhawl Biol Evol, 18(5):700-709,
2001.2.4,3.3 3.4,4.3

146



	1 Introduction
	1.1 Genetic Variations
	1.2 Genetic Variation Datasets
	1.3 Inference of Population History
	1.3.1 Population Substructure
	1.3.2 Phylogenetic Analysis for Ancestry Inference

	1.4 Ancestry Inference in the Presence of Admixture
	1.5 Limitations of Existing Approaches for Learning Population History
	1.6 Contributions
	1.7 Thesis Organization

	2 Learning Population Histories From Large-Scale Datasets in the Absence of Admixture
	2.1 Methods
	2.1.1 Consensus Tree Model
	2.1.2 Algorithms

	2.2 Validation Experiments
	2.2.1 Simulated Dataset
	2.2.2 Real Data
	2.2.3 Benchmarks
	2.2.4 Sensitivity Test

	2.3 Results
	2.4 Discussion
	2.5 Conclusion

	3 Coalescent-based Method for Learning Parameters of Admixture Events from Large-Scale Genetic Variation Datasets
	3.1 Materials and Methods
	3.2 Validation Experiments
	3.3 Results
	3.4 Discussion

	4 Coalescent-based Method for Joint Estimation of Population History, Time, and Admixture
	4.1 Material and Methods
	4.1.1 Learning Summary Descriptions
	4.1.2 Admixture Model
	4.1.3 MCMC Sampling
	4.1.4 Validation on Simulated Data
	4.1.5 Validation on Real Data

	4.2 Results
	4.2.1 Simulated Data
	4.2.2 Real Data

	4.3 Discussion

	5 Applying Structure Information to Association Mapping
	5.1 Methods
	5.1.1 Localized Structured Association Test
	5.1.2 Weighted Localized Structured Association Test
	5.1.3 Validation

	5.2 Results
	5.3 Discussion

	6 Conclusions and Future Directions
	6.1 Future Work

	Bibliography

