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Abstract
Understanding how species have arisen, dispersed, and intermixed over time is

a fundamental question in population genetics with numerous implications for basic
and applied research. It is also only by studying the diversity in human and differ-
ent species that we can understand what makes us different and what differentiates
us from other species. More importantly, such analysis could give us insights into
applied biomedical questions such as why some people are at agreater risk for dis-
eases and why people respond differently to pharmaceuticaltreatments. While there
are a number of methods available for the analysis of population history, most state-
of-the-art algorithms only look at certain aspects of the whole population history.
For example, phylogenetic approaches typically look only at non-admixed data in a
small region of a chromosome while other alternatives examine only specific details
of admixture events or their influence on the genome.

We first describe a basic model of learning population history under the assump-
tion that there was no mixing of individuals from different populations. The work
presents the first model that jointly identifies population substructures and the rela-
tionships between the substructures directly from geneticvariation data. The model
presents a novel approach to learning population trees fromlarge genetic datasets
that collectively converts the data into a set of small phylogenetic trees and learns
the robust population features across the tree set to identify the population history.

We further develop a method to accurately infer quantitative parameters, such
as the precise times of the evolutionary events of a population history from genetic
data. We first propose a basic coalescent-based MCMC model specifically for learn-
ing time and admixture parameters from two-parental and one-admixed population
scenarios. As a natural extension, we then expanded that method to identify popula-
tion substructures and learn population models and the specific time and admixture
parameters pertaining to the population history for three or more populations. Anal-
ysis on simulated and real data shows the effectiveness of the approach in working
toward unifying the learning of different aspect of population history into single al-
gorithm.

Finally, as a proof of concept, we propose a novel structuredtest statistic us-
ing the historic information learned from our prior method to improve demographic
control in association testing. The success of the structured association test demon-
strates the practical value of population histories learned from genetic data for ap-
plied biomedical research.
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Chapter 1

Introduction

For centuries, understanding how species have arisen, dispersed, and intermixed over time has

been one of the most sought-after questions man has tried to address. Since the publication ofOn

the Origin of Speciesin 1859, tremendous efforts have been made to characterize the relationship

and significance of the diversity between and within species, as the problem seems to possess an

irresistible aesthetic appeal to mankind. It is also only bystudying the diversity in humans and

other species that we can understand what makes us differentand what differentiates us from

other species. More importantly, such analysis could give us insights as to why some people are

at a greater risk for diseases and why people respond differently to pharmaceutical treatments.

Before the discovery of genetic material, works on the inference of the phylogenetic re-

lationships between organisms largely relied on morphological, physiological, and phenotypic

differences [70]. By quantifying the similarity and dissimilarity between different organisms,

one can infer the relationships among organisms. Analyses based on morphological, physiolog-

ical, and phenotypic differences have worked particularlywell for quantifying the relationships

between species that long ago diverged and evolved into remotely related species with distinct

physical features, but are limited in close-species or within-species differentiations where phys-

ical appearances may be highly similar. Advances in ancestry inference did not significantly

progress until the development of tools for detecting genetic variations [97, 104, 107]. The large

1



amount of genetic differences between organisms provided sufficient resolution to infer precise

and accurate relations between closely related species. Since then, a large number of studies

utilizing genetic data have been published [28, 36, 44, 79, 107, 129]. However, close-species

and within-species analyses of genetic variations were notfully realized due to the difficulties

in obtaining large quantities of genetic data until the development of high-throughput sequence

techniques in the late 1990s [22, 123, 130]. With ongoing efforts of high-throughput sequencing

jump started by the Human Genome Project [123], we are now at an unprecedented stage where

genetic variations are gathering at an exponential rate. Such quantities of genetic data provide

enormous opportunities for us to examine and understand thehistory of human population as

well as the rise of diseases in unprecedented detail. However, with such enormous amounts of

genetic data, we face the challenge of developing efficient and accurate algorithms for analyzing

large-scale datasets. Therefore, one of the intents of thisthesis is to develop a way to solve some

of the problems in the inference of population history in thecontext of large genetic variation

datasets.

1.1 Genetic Variations

Variations can occur within and among populations, within and between species, and in phe-

notypic features as well as in genetic materials. When variation occurs at the DNA level, we

call such variation genetic variation. Genetic variation is important because it is what makes us

different and it provides clues to a number of questions fromhow we arise as a species to how

a disease may have arisen. Genetic variation is typically brought by different mutational forces

that can be largely categorized into two groups: point mutations and structural variations (Fig-

ure 1.1). Point mutation occurs when a DNA base is substituted with another base. Structural

variation occurs when a DNA sequence is inserted, deleted, duplicated, or inverted.

Before high-throughput technologies were developed, detection of point mutations was mainly

achieved through restriction enzyme assays that identify restriction fragment length polymor-
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Figure 1.1: Genetic variations can largely be divided into two groups: Point mutations and struc-

tural variations. Point mutations are genetic variations caused by substitutions of bases while

structural variations are genetic variations due to insertions, deletions, duplications, inversions,

and translocations.

phisms (RFLPs) [36, 44, 107]. RFLP employs a technique for fragmenting a DNA sample

by restriction enzymes that can recognize and cut DNA at specific locations. Once DNAs are

fragmented by the restriction enzyme into different lengthfragments, gel electrophoresis then

separates the fragments by their lengths. If a mutation occurs within one of the cleavage sites,

the restriction enzyme would no longer able to cleave the site, resulting in longer fragments on

samples with such a mutation. By comparing the lengths of DNA fragments resulting from re-

striction enzyme cleavage on gel electrophoresis between sample and control groups, one can

identify if a particular point mutation occurs.

In addition to RFLP, traditional sequencing techniques through automated chain-termination

DNA sequencing were also used to identify single nucleotidepolymorphisms (SNPs). SNPs are

single point mutations that occur throughout the genome where the bases are switched from one

nucleotide to another. These variations can result in changes in protein sequence that may lead to

certain diseases. After high-throughput techniques were introduced, detecting and typing SNPs

through microarray chips became very popular. To detect SNPs, one would first sequence a small

region or the entire genome from a small sample of individuals. By aligning the sequences, one
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can then identify the bases that are polymorphic. SNPs can then be typed by running samples on

microarray chips with probes representing short sequencesaround each polymorphic site. While

SNPs genotyping using microarrays known as tiling arrays isthe most common approach today,

efforts to sequence the entire genome for all samples are becoming more and more popular today

as the cost of whole-genome sequencing becomes affordable.

A second group of genetic variations is known as structural variations. Although structural

variation was initially believed to be of lesser importance, researchers have begun to recognize

its importance in disease association [32]. One way to detect a type of structural variation is

through polymerase chain reaction (PCR) [97] that identifies microsatellite polymorphisms [88].

Microsatellite polymorphisms are short repeating sequences ranging between 2 and 6 base pairs

that vary in the number of repeat copies. These polymorphisms can be detected and typed by

amplifying the microsatellite region using PCR with specificprimers outside the microsatellite

region and then separating different lengths of the microsatellite using gel electrophoresis. Those

individuals with heterozygous allele would have two different bands on the gel, while those with

homozygous major or minor alleles would have just a single band on the gel.

In addition to microsatellite polymorphism, detection of other structural variations can be

achieved through high-throughput techniques via sequencing or tiling arrays. Although there are

fewer structural variations compared to SNPs, researchershave shown that structural variations

can also result in disease phenotypes [108, 128]. Detections of larger structural variations are

commonly conducted through array comparative genome hybridization (aCHG) [82] by mea-

suring a sample’s florescent intensity compared to a reference sample, but a recent advances

in sequencing technology have led to a newer approach known as paired-end mapping that not

only enables detection of insertion/deletion polymorphisms but also translocations and inversions

[56].
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1.2 Genetic Variation Datasets

With different types of genetic variations data and different genotyping and sequencing efforts

managed by different groups, locating specific genetic datacan be difficult. Luckily, efforts to

collect data from multiple studies into a centralized location have been initiated. A database

known as dbSNP was initiated by National Center for Biotechnology Information (NCBI) in

1998 to enable researchers to submit newly identified genetic variations [99]. To search for

existing genetic variations submitted to dbSNP, one could use the NCBI’s Entrez SNP search

tool to learn about a particular genetic variation [72], a set of SNPs within a particular gene, or

even the set of SNPs within an entire chromosome. Alternatively, one could also utilize a genome

browser, such as the UCSC genome browser, to learn about genetic variations across different

regions of the genome [55, 69].

While dbSNP and associated browsers allow one to search for genetic variations identified

by various studies, data genotyped and sequenced for known SNPs on cohorts of samples needed

for actual analyses are typically deposited on different websites and databases. For small and

medium scale studies on collecting genetic variation data from different cohorts of individu-

als, one can often find the sample data in National Center for Biotechnology Center’s (NCBI)

database of genotype and phenotype (dbGaP) [64]. The database contains information on each

genetic variation study listed, including the study documentation, phenotypic data, genetic data,

and statistical results. While aggregated information suchas statistical analysis and summary

descriptions are available publicly, access to individuallevel information including genotypic

data requires one to apply for access.

As an alternative to dbGaP, large-scale whole genome genetic variation data are also available

from a number of resources as summarized in Table1.1. Among the databases listed in Table1.1,

HapMap is perhaps the most well-known whole genome genetic variation dataset, consisting of

over 1.6 million SNPs from 1,184 reference individuals from11 global populations in its phase

3 release [2, 4, 5]. In addition to HapMap, a number of large scale datasets using genotyping

5



technologies have emerged including Human Genome Diversity Project (HGDP) [50], Popu-

lation Reference Sample (POPRES) [76], Japanese Single Nucleotide Polymorphism (JSNPA)

[46], and Pan-Asian SNP (PASNP) [25]. While most large scale projects employ genotyping

technologies, a newer project known as 1,000 Genome Projectis the first large scale project to

sequenced entire genomes on more than 1,000 individuals [6].

Table 1.1: List of Some Important Large-Scale Genetic Variation Datasets

Database Data Types Populations Samples

HapMap[24] SNP (1.6M), CNV 11 1184

HGDP[95] SNP(500K), CNV (1k) 29 485

1000 Genome[23] SNP (38M), CNV, Ins/Del/Inv 14 1092

POPRES[75] SNP(500K), CNV 7 5886

PASNP[1] SNP (56K), CNV 71 1982

JSNP[71] SNP(500K) 1 934

1.3 Inference of Population History

Past work on population history inference has essentially involved two inference problems: iden-

tifying meaningful population groups and ancestry inference among them. In this section, we

survey major methods for these separate inference problems.

1.3.1 Population Substructure

Population groups or substructures may be assumed in advance based on common conceptions

of ethnic groupings, although the field increasingly depends on computational analysis to make

such inferences automatic. Probably the most well-known system for identifying population

substructure is STRUCTURE [85]. STRUCTURE infers population substructures from genetic
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variation data using a probabilistic model that assumes each population is characterized by a

set of frequencies for each variant form, or allele, across variation sites, or loci, in the dataset.

Assuming that the allele of each locus for each individual isdependent on the allele frequency

of the subpopulations the individual belongs to, STRUCTURE tries to identify the probability

distribution of the ancestral originZ of each individual and the allele frequenciesP of each

subpopulation given the observed genetic variation dataX. Namely, STRUCTURE aims to

learn the distribution

Pr(Z, P |X) ∝ Pr(X|Z, P )Pr(Z)Pr(P )

using a Markov Chain Monte Carlo (MCMC) method to group sequencesinto K ancestral pop-

ulation groups each with its own allele frequency profile.

Another well known program is EIGENSOFT [81], which uses principal components analy-

sis (PCA) to identify a set of distinguishing vectors of alleles that allow one to spatially separate

a set of individuals into subgroups. Recently, two additional algorithms known as Spectrum

[105] and mStruct [101] have been proposed by Sohn and Xing and Shringarpure and Xing re-

spectively. While both algorithms are similar in nature to STRUCTURE, Spectrum constructs a

more realistic model by incorporating recombinations and mutations into their statistical model

and avoids the specification of ancestral population numbera priori by modeling genetic poly-

morphism based on the Dirichlet process. On the other hand, mStruct proposes a new admixture

model to identify subgroups by representing each population asmixtures of ancestral alleles

rather than a single ancestral allele profile.

1.3.2 Phylogenetic Analysis for Ancestry Inference

Traditionally, analysis of ancestry between individuals has largely been done through the use

of classic phylogenetic algorithms. Defined as methods to infer evolutionary relationship be-

tween different taxa or individuals using a tree and, in somemore complicated cases, a graph,
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phylogenetic algorithms can be largely divided into two general classes of algorithm: distance-

based and character-based. Distance-based phylogenetic algorithms aim to piece together the

relationships between taxa or individuals by using a measure of evolutionary distances between

taxa or individuals. Pairwise distances are typically computed between every pair of taxon or

individual and are then used to construct a tree in which the phylogenetic distances between

taxa or individuals closely resemble the computed distances. While a number of distance-based

methods exist, they can largely be grouped into non-objective based and objective based meth-

ods. Among non-objective based methods, two of the most well-known are the Unweighted

Pair-Group Method Using Arithmetic Averages (UPGMA) [31] and Neighbor Joining (NJ) [31].

Both methods compute a tree progressively from the bottom-upby joining two closest taxa into a

single tree node and updating the distance matrix at each step until all taxa are joined into a tree.

While the two methods are similar, NJ differs from UPGMA in itsupdates of distance matrix in

that NJ incorporates different mutation rate at different tree branches into distance calculations.

This makes NJ a better choice of algorithm when the mutation rate is variable. While NJ and

UPGMA are popular distance-based methods, a second group ofdistance-based methods using

an objective function are also gaining popularity. Objective-based methods, such as minimum

evolution, aim to optimize for the best tree using objectivefunctions such as the sum of the edge

weights. Although with higher computational cost, objective-based methods have the advan-

tage of having theoretical guarantees of identifying the optimal tree by some precise criteria by

searching through all possible trees rather than greedily looking at a subset of all possible trees

in the case of non-objective based methods.

A second class of phylogenetic algorithms is the character-based approach. A character-

based algorithm takes an aligned set of characters, such as DNA sequences, and constructs a tree

describing the changes in individual characters needed to produce the observed set of characters.

Each node in the tree would represent a unique string of characters and each edge connected to

a node would describe the changes to the character that lead to a new string of character from
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another node. Character-based algorithms can largely be divided into three groups: maximum

parsimony, maximum likelihood, and Bayesian. In maximum parsimony, the goal of the algo-

rithms is to identify the tree that minimizes the total number of changes or mutations occurred

along the edges of the tree. The intuition behind maximum parsimony is that repeated or recur-

rent mutations are typically rare. Thus, by optimizing for the minimum number of mutations

that have occurred throughout history, maximum parsimony would give us a tree satisfying such

assumption. Because maximum parsimony is one of the first class of methods introduced, a

number of well-known software suites have utilized this approach, including Phylip, PAUP, and

more recent mixed-ILP methods [30, 96, 109]. The advantage of the maximum parsimony is

that the method utilizes a simple but informative model of molecular evolution that can provide

correct evolutionary trees in some regions of the genome that may be under selective pressures

that prevents frequent mutation or for short time scales where few mutations would be expected.

However, the method is generally much more computational intensive than most distance-based

methods and can produce incorrect tree when the assumption is violated.

Another group of character-based method is the maximum likelihood (ML) approach, where

finding the optimal tree is proposed in a probabilistic framework. In a maximum likelihood

approach, the method finds the optimal tree by maximizing thelikelihood function,P (D|M),

where data (D) is the observed sequences and the model (M ) is the set consisting of the tree

topology, ancestral sequences, and other parameters. Suchan approach can provide a finer and

generally more accurate depiction of the evolutionary history than the maximum parsimony ap-

proach when the parsimony assumption no longer holds, but isgenerally more computational

costly than the maximum parsimony approach.

In addition to maximum likelihood, a third group of character-based methods is the Bayesian

approach [49]. Rather than maximizing the probability functionP (D|M), a Bayesian method

tries to learn the posterior distributionP (M) over possible trees, sequences, and parameters.

While the Bayesian approach is generally harder computationally, it has the advantage of not

9



requiring the users to specify parameters that can bias the tree inference.

When comparing the two main classes of phylogenetic tree reconstruction algorithm, there is

a general consensus that character-based approach providea more realistic and generally more

accurate and detailed depiction of the evolutionary history but suffers from high computational

cost that limits its usefulness on large genomic datasets. As a result, distance-based methods are

still currently the only feasible choice in building evolutionary trees from large genome-scale

datasets. Therefore, part of this thesis is to provide an efficient solution in learning population

history using character-based methods.

1.4 Ancestry Inference in the Presence of Admixture

While ancestry inference through traditional phylogeneticalgorithms generally works well when

the populations rarely interact with one another, traditional phylogenetic methods can fail when

there are interactions between individuals from differentpopulations. When individuals from

one population migrate and come into contact with another population that was long separated,

incorporation of genetic materials from one distinct population into another can result. This pro-

cess of mixing genetic material from different populationsis known as admixture. This process

is believed to be common in human populations, where migrations of peoples have repeatedly

brought together populations that were historically reproductively isolated from one another.

When one is interested in detecting and learning ancestral history in the presence of admixed

individuals, traditional phylogenetic analyses may not necessarily produce correct results. Imag-

ine if we have a group of admixed individuals that have a mixture of genetic materials from two

different populations in the same dataset. In the best-casescenario, the traditional phylogenetic

tree algorithm would simply attach the admixed individualsas a sub-branch to one of the parental

populations. However, it is more likely that the algorithm would return an evolutionary tree that

is far from the true evolutionary history, where the topology of the tree is reshuffled due to the

mixing of genetic materials from admixed individuals. As a result, a different set of tools and
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algorithms are needed to learn about admixture.

One popular approach for analyzing admixture is principal component analysis (PCA) [81].

PCA is a type of techniques for taking high-dimensional data and transform them into a more

tractable, lower-dimensional form, without losing too much information. Mathematically, PCA

tries to minimize the projection residuals when transforming p-dimensional data into lower-

dimension form:

min
1

n

n
∑

i

k
∑

j

||~xi − (~xi · ~wj) ~wj||
2

where~xi is the p-dimensional vector ofith data point and~wj is thejth orthonormal vector. The

minimization can be achieved by finding the eigenvectors andeigenvalues of the data where

each eigenvector is associated with an eigenvalue. The value of the eigenvalue indicates how

large the variance of the data is when projecting onto the corresponding eigenvector. The idea

behind PCA for ancestry analysis is that user would take the genetic variation data as a matrix,

learn the eigenvalues and eigenvectors of the matrix, and project each individual onto the largest k

eigenvectors to visualize individuals’ genetic variance across populations. Since variances across

populations are usually the largest, individuals from eachpopulation should nicely project into

different population clusters using the first few eigenvectors with the largest eigenvalues. When

applying PCA on a dataset with admixed individuals, the admixed individuals would generally

be projected linearly between the centers of two or more parental populations. This approach

is popular due to its low computational cost and its ability to easily visualize the separation and

intermixing of populations. Nonetheless, the PCA-based approach generally does not have an

easy and accurate way to quantify the separation or the intermixing of populations.

To quantify the amount of admixtures between populations oramong individuals, one com-

mon approach is the admixture model-based methods that model individuals as probabilistic

mixtures fromk ancestral population. Such an approach can typically perform detailed esti-

mations of the admixture proportions at the individual level or even at the loci level for each
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individual. While a number of likelihood-based methods exist [98], one common implementa-

tion is the hidden Markov model (HMH) [84, 111]. An HMM is a probabilistic graphical model

that assumes a Markov process with hidden states. A general HMM framework for inferring

admixture generally models the ancestry composition of an individual at each genetic variation

site as the hidden state that must be inferred from the genotypes. Each hidden state is connected

to its neighbors by a chain where the probability of the hidden state is conditionally dependent

on the states of its neighbors. By using the observed genotypes and the correlations between

the nearby markers, the HMM can then produce a probability map quantifying the ancestry of

each individual. While there are a number of different HMM-based methods introduced in re-

cent years, they are mainly based on the same framework with additional improvements such as

inclusion of linkage disequilibrium (LD) or other hyperparameters. In addition to HMM, other

likelihood methods such as LAMP [98], FRAPP [110], and ADMIXTURE [8] are also popular

for quantifying admixture.

Despite success in learning admixture using PCA and admixture model-based approaches,

neither approach provides a way to fully illustrate the complete evolutionary history, such as the

relationships between the non-admixed populations or the precise time at which the admixture

happened. To learn about the time of admixture and the possible relationships between popula-

tions, a third type of admixture inference algorithm known as the coalescent-based algorithms

can be used. In coalescent-based algorithms, models of general population history with different

time and admixture parameters are evaluated by enumeratingall possible trees generated from a

coalescent model consistent with the general population model and then computing the proba-

bility of observing the data given the generated coalescenttrees [17, 77, 126]. Coalescent-based

methods generally have the advantage that these methods canprovide additional evolutionary

information, such as the time of the admixture and time of divergence in which one may be

interested in phylogenetic analysis. While coalescent-based methods can provide additional evo-

lutionary information, existing methods suffer from expensive computational cost as well as the
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requirement to know the model of population history beforehand instead of learning it from the

data directly. Despite the limitations of current coalescent-based methods, the ability to learn

additional evolutionary information is desirable. Therefore, addressing the limitations of the

coalescent-based methods will be a focus in this thesis.

1.5 Limitations of Existing Approaches for Learning Popula-

tion History

Efforts at learning the history of populations from geneticdata remain a problem solved in

bits and pieces: from population assignments to evolutionary events inferences to parameter

estimation. While there have been significant advances recently in subpopulation detection

[84, 85, 101], in phylogenetic inference [31], and in parameter estimation [17, 126], there is no

single method that learns all the information needed to givea detailed depiction of how different

populations emerged over time and, perhaps more importantly, how long ago the populations

emerged. Methods for identifying substructure in a datasetcan provide highly accurate mapping

of an ancestral origin for each region of the individual’s chromosome [98, 111] but leave out

information regarding the relationships between ancestral origins. On the other hand, classical

phylogenetic methods [30] provide highly detailed evolutionary relationships between individu-

als but are mostly limited to tree-like structures. Furthermore, phylogenetic inferences frequently

require large datasets to achieve statistical significanceand confidence but become computational

infeasible when given large datasets. Similarly, algorithms for estimating parameters of evolu-

tionary events can be computational intensive [11, 17] and require a restrictive assumption that

the history of the population is known or assumed beforehand. Some parameter estimators cir-

cumvented the computational issue but, in exchange, only estimate a subset of the parameters,

such as admixture [84, 85].
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1.6 Contributions

Despite different types of methods excelling in learning different aspects of the population his-

tory, no single method of which we are aware can provide a fullpicture of the population history,

which not only can be informative and time-saving to researchers but also helpful in enhanc-

ing the accuracy of the estimations. For example, when usinga divergence time estimator that

did not take admixture into account, the time estimated could significantly deviate from the true

divergence time if admixture events have actually occurred. As a result, given the potential ad-

vantages of joint learning of multiple aspects of population history, the goal of this thesis is to

work toward unifying different aspects of the inference of population history into one algorith-

mic package. Since inference of population history can encompass a broad range of problems,

we here specifically try to unify the problem of population substructure, the inference of evo-

lutionary events involving divergence events and/or admixture events, and the exact times and

admixture fractions describing the events given large datasets.

The key contribution of this thesis is the development of novel algorithms for automatically

learning detailed descriptions of population history fromlarge scale genetic variation datasets

with and without the presence of admixture. The thesis first describes a model to learn pop-

ulation trees from large genomic datasets under the assumption that no admixtures occurred

throughout the history of the populations. The method described here employs a character-based

algorithm to take advantage of its better modeling of the evolutionary processes but avoids the

high computational cost by generating small phylogenetic trees on fragments of the complete

dataset and then infers robust tree branches across the treeset. In addition to solving the compu-

tational issue for learning evolutionary history from large datasets, another contribution of this

work is to combine the inference of the population substructures along with the history of the

populations as both problems depend on similar data sourcesand in principle can help inform

the decisions of one another. Through a series of tests on both simulated and real datasets, this

thesis demonstrates the feasibility of automatically learning of population substructures and their
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relationships in a reasonable time frame.

Analysis on the evolutionary history of human populations typically assumes a tree-like struc-

ture and ignores the migratory nature of human populations.While a tree assumption has long

worked for evolutionary analysis on distance species, suchan assumption may not always hold

for closely-related species or intra-species analysis. Admixtures, a result of the migratory nature

of human populations, have been proven to be a crucial factorin the analysis of human population

history and an important step in understanding the etiologyof diseases. Methods for detecting

and quantifying admixtures are on the rise in recent years, but these methods usually look at a

limited aspect of the whole admixture history or lack the capability to analyze large quantities

of data to provide a fuller picture of the evolutionary history of human populations. To resolve

these issues, the second contribution of this thesis is the development of a novel algorithm capa-

ble of running on large-scale datasets for learning the timeand admixture parameters describing

a population history involving two non-admixed populations and one admixed population.

As a natural extension to automatic learning of parameters of population history involving

two non-admixed and one admixed populations, a third contribution of this thesis is to expand

previous algorithm of learning parameters of population history for two non-admixed popula-

tion and one admixed population to learn the precise parameters and population model for any

arbitrary number of subpopulations.

Finally, to explore the possible applications of learning population history from large ge-

nomic datasets, one final contribution in this thesis is to propose and test a simple structured

association test statistic that effectively removes the effect of population substructure learned

from our prior algorithms.

1.7 Thesis Organization

Chapter2 gives a detail description of the computational method for joint inference of popu-

lation substructures and their evolutionary history from large scale genomic datasets under the
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assumption that there is no admixture. A series of validations done through simulated and real

datasets are also conducted and detailed in the chapter. Chapter 3 describes a coalescent-based

algorithm involving a two-step process for learning the parameters of a population history from

large-scale genomic data involving two non-admixed populations and one admixed population.

As a natural extension of the algorithm described in Chapter3, Chapter4 details a generalized

algorithm for automatic identification of population substructures, their evolutionary histories,

and the specific parameters pertaining to each evolutionaryevent from large-scale datasets with

or without the presence of admixture for any arbitrary number of subpopulations in the dataset.

In Chapter5, we describe a simple structured test statistic to test the applicability of population

history learned from genomic datasets. Finally, Chapter6 summaries the findings of these studies

and their conclusions and outlines possible directions forfuture work on this topic.
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Chapter 2

Learning Population Histories From

Large-Scale Datasets in the Absence of

Admixtur1

The recent completion of the human genome [21, 124] and the subsequent discovery of millions

of common genetic variations in the human genome [100] has created an exciting opportunity

to examine and understand how modern human population arosefrom our common ancestor

at unprecedented detail. Several major studies have recently been undertaken to assess genetic

variation in human population groups, thus enabling the detailed reconstruction of the ancestry

of human population groups [4, 10, 50, 76]. In addition to its importance as a basic research

problem, human ancestry inference has great practical relevance to the discovery of genetic risk

factors of disease due to the confounding effect of unrecognized substructure on genetic associ-

ation tests [114].

As discussed in Chapter1, past work on human ancestry inference has treated ancestral infer-

ence as two distinct inference problems: identifying meaningful population groups and inferring

evolutionary trees among them. While most earlier works performed the task of identifying

1This chapter was developed from material published in [119]
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meaningful population groups manually by assuming in advance the groups based on common

conceptions of ethnic groupings, the field has increasinglyrely on computational analysis to

make such inferences automatically. Two popular approaches for learning population substruc-

tures are STRUCTURE [85] and EIGENSOFT [81] that uses probabilistic model and principal

component anaylsis (PCA) to identify fine population structure from genetic dataset.

A separate literature has arisen on the inference of relationships between populations, typi-

cally based on phylogenetic reconstruction of limited setsof genetic markers — such as classic

restriction fragment length polymorphisms [74], mtDNA genotypes [14, 52], short tandem re-

peats [52, 116], and Y chromosome polymorphism [41] — supplemented by extensive manual

analysis informed by population genetics theory. While current phylogenetic reconstruction al-

gorithms, such as maximum parsimony or maximum likelihood,work well on small datasets with

little recombination, most do not work well when utilizing genome wide datasets. Furthermore,

there has thus far been little cross-talk between the two problems of inferring population sub-

structure and inferring phylogenetics of subgroups, despite the fact that both problems depend

on similar data sources and in principle can help inform the decisions of one another.

To unify these two inference problems, this chapter introduces a novel approach for recon-

structing a species history conceptually based on the idea of consensus trees [73], which repre-

sent inferences as to the robust features of a family of trees. The approach takes advantage of

the fact that the availability of large-scale variation data sets, combined with new algorithms for

fast phylogeny inference on these data sets [96], has made it possible to infer likely phylogenies

on millions of small regions spanning the human genome. The intuition behind this method is

that each such phylogeny will represent a distorted versionof the global evolutionary history and

population structure of the species, with many trees supporting the major splits or subdivisions

between population groups while few support any particularsplits independent of those groups.

By detecting precisely the robust features of these trees, wecan assemble a model of the true evo-

lutionary history and population structure that can be maderesistant to overfitting and to noise
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in the SNP data or tree inferences.

For the remainder of this chapter, Section2.1will present a detailed description of the math-

ematical model of the consensus tree problem and a set of algorithms for finding consensus trees

from families of local phylogenies. Section2.2 presents strategies for evaluating the method

on a set of simulated data and two real datasets from the HapMap Phase II [4] and the Human

Genome Diversity Project [50]. Section2.3then shows the results of the validation experiments.

Finally, Section2.5considers some of the implications of the results and futureprospects of the

consensus tree approach for evolutionary history and substructure inference.

2.1 Methods

2.1.1 Consensus Tree Model

Assume we are given a setS of m taxa representing the paired haplotypes from each individual

in a population sample. If we letT be the set of all possible labeled trees connecting thes ∈ S,

where each node of anyt ∈ T may be labeled by any subset of zero or mores ∈ S without

repetition, then our input will consist of some set ofn treesD = (T1, . . . , Tn) ⊆ T . Our desired

output will also be some labeled treeTM ∈ T , intended to represent a consensus ofT1, . . . , Tn.

The objective function for choosingTM is based on the task of finding a consensus tree [73]

from a set of phylogenies each describing inferred ancestryof a small region of a genome. The

consensus tree problem aims to identify tree structure thatis persistent across a set of trees. The

typical approach for finding the optimal consensus tree involves counting occurrences of each

edge across the set of trees. If the frequency of the edge exceeds some threshold, the edge will

be incorporated into the consensus tree. The present application is, however, fairly different

from standard uses of consensus tree algorithms in that the phylogenies are derived from many

variant markers, each only minimally informative, within asingle species. Standard consensus

tree approaches, such as majority consensus [65] or Adam consensus [7], would not be expected
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to be effective in this situation as it is likely there is no single subdivision of a population that

is consistently preserved across more than a small fractionof the local intraspecies trees and

that many similar but incompatible subdivisions are supported by different subsets of the trees.

We therefore require an alternative representation of the consensus tree problem designed to be

robust to large numbers of trees and high levels of noise and uncertainty in data.

Given such criterion, a model of the problem based on the principle of minimum description

length (MDL)[38] was chosen. The principle of minimum discription length isa standard tech-

nique for avoiding overfitting when making inferences from noisy data sets. An MDL method

models an observed data set by seeking to minimize the amountof information needed to en-

code the model and to encode the data set given knowledge of the model. Suppose we have

some functionL : T → R that computes a description length,L(Ti), for any treeTi. We will

assume the existence of another function, which for notational convenience we will also callL,

L : T × T → R, which computes a description length,L(Ti|Tj), of a treeTi given that we

have reference to a model treeTj. Then, given a set of observed trees,D = {T1, T2, ..., Tn} for

Ti ∈ T , our objective function is

L(TM , T1, . . . , Tn) =

argmin
TM∈T

(

L(TM) +
n
∑

i=1

L(Ti|TM) + f(TM)

)

The first term computes the description length of the model (consensus) treeTM . The sum

computes the cost of explaining the set of observed (input) treesD. The functionf(TM) =

c|TM | log2m defines an additional penalty on model edges wherec is a constant used to define

a minimum confidence level on edge predictions. The higher the penalty term, the stronger the

support for each edge must be for it to be incorporated into the consensus tree.

We next need to specify how to compute the description lengthof a tree. For this purpose,

this method use the fact that a phylogeny can be encoded as a set of bipartitions (orsplits) of the

taxa with which it is labeled, each specifying the set of taxalying on either side of a single edge

of the tree. The algorithm represent the observed trees and candidate consensus trees as sets of
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(a)

(b) (c)

Figure 2.1: (a) A maximum parsimony (MP) tree consisting of 11 labeled individuals or haplo-

types. (b) The set of bipartitions induced by edges (ea, eb, ec, ed) in the tree. (c) 0-1 bit sequence

representation for each bipartition.

bipartitions for the purpose of calculating description lengths. Once the method identified a set of

bipartitions representing the desired consensus tree, themethod then apply a tree reconstruction

algorithm to convert those bipartitions into a tree.

A bipartition b can in turn be represented as a string of bits by arbitrarily assigning elements

in one part of the bipartition the label “0” and the other partthe label “1”. As an example, in

the tree of Fig.2.1(a), the edge labeleda induces the bipartition{1, 3, 5, 6, 9, 10} : {0, 2, 4, 7, 8}.

This edge would have the bit representation “10101001100.”Such a representation allows us to

compute the encoding length of a bipartitionb as the entropy [38] of its corresponding bit string.

If we defineH(b) to be the entropy of the corresponding bit string,p0 to be the fraction of bits

of b that are zero andp1 as the fraction that are one, then:

L(b) = mH(b)

= m (−p0 log2 p0 − p1 log2 p1)

Similarly, we can encode the representation of one bipartition b1 given anotherb2 using the
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concept of conditional entropy. If we letH(b1|b2) be the conditional entropy of bit string ofb1

given bit string ofb2, p00 be the fraction of bits for which both bipartitions have value “0,” p01 be

the fraction for which the first bipartition has value “0” andthe second “1,” and so forth, then:

L(b1|b2) = mH(b1|b2)

= m [H(b1, b2)−H(b2)]

= m





∑

s,t∈{0,1}

−pst log2 pst +

∑

u∈{0,1}

(p0u + p1u) log2(p0u + p1u)





where the first term is the joint entropy ofb1 andb2 and the second term is the entropy ofb2.

We can use these definitions to specify the minimum encoding cost of a treeL(Ti) or of one

tree given anotherL(Ti|TM). We first convert the tree into a set of bipartitionsb1, . . . , bk. We can

then observe that each bipartitionbi can be encoded either as an entity to itself, with cost equal to

its own entropyL(bi), or by reference to some other bipartitionbj with costL(bi|bj). In addition,

we must add a cost for specifying whether eachbi is explained by reference to another bipartition

and, if so, which one. The total minimum encoding costs,L(TM) andL(Ti|TM), can then be

computed by summing the minimum encoding cost for each bipartition in the tree. Specifically,

let bt,i andbs,M be elements from the bipartition setBi of Ti andBM of TM , respectively. We

can then computeL(TM) andL(Ti|TM) by optimizing for the following objectives over possible

reference bipartitions, if any, for each bipartition in each tree:

L(TM) = argmin
bs∈BM∪{∅}

|BM |
∑

s=1

[L(bs,M |bs) + log2 (|BM |+ 1)]

L(Ti|TM) = argmin
bt∈BM∪Bi∪{∅}

|Bi|
∑

t=1

[L(bt,i|bt) + log2 (|BM |+ |Bi|+ 1)]
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2.1.2 Algorithms

Encoding Algorithm To optimize the objectives for computingL(TM) andL(Ti|TM), we can

pose the problem as a weighted directed minimum spanning tree (DMST) problem by construct-

ing a graph, illustrated in Fig.2.2, such that finding a directed minimum spanning tree allows

us to computeL(TM) andL(Ti|TM). We construct a graphG = (V,E) in which each node

represents either a bipartition or a single “empty” root node r explained below. Each directed

edge(bj, bi) represents a possible reference relationship by whichbj explainsbi. If a bipartition

bi is to be encoded from another bipartitionbj, the weight of the edgeeji would be given by

wji = L (bi|bj) + log2 |V | where the termlog2 |V | represents the bits we need to specify the ref-

erence bipartition (including no bipartition) from whichbi might be chosen. This term introduces

a penalty to avoid overfitting. We add an additional edge directly from the empty node to each

node to be encoded whose weight is the cost of encoding the edge with reference to no other

edge,wempty,j = L(bj) + log2 |V |.

To computeL(TM), the bipartitionsBM of TM and the single root node collectively specify

the complete node set of the directed graph. One edge is then created from every nodeBM ∪{r}

to every node ofBM . To computeL(Ti|TM), the node set will include the bipartitionsBi of Ti,

the bipartitionsBM of TM , and the root noder. The edge set will consist of two parts. Part

one consists of one edge from each node ofBi ∪ BM ∪ {r} to each node ofBi, with weights

corresponding to the cost of possible encodings ofBi. Part two will consist of a zero-cost edge

from r to each node inBM , representing the fact that the presumed cost of the model tree has

already been computed. Fig.2.2illustrates the construction for a hypothetical model treeTM and

observed treeTi (Fig.2.2(a)), showing the graph of possible reference relationships (Fig.2.2(b)),

a possible solution corresponding to a specific explanationof Ti in terms ofTM (Fig. 2.2(c)), and

the graph of possible reference relationships forTM by itself (Fig.2.2(d)).

Given the graph construction, the minimum encoding length for both constructions is found

by solving for the DMST with the algorithm of Chiu and Liu [18] and summing the weights of
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(a) (b)

(c) (d)

Figure 2.2: Illustration of the DMST construction for determining model description length. (a)

Hypothetical model treeTM (gray) and observed treeTi (white). (b) Graph of possible reference

relationships for explainingTi (white nodes) by reference toTM (gray nodes). (c) A possible

resolution of the graph of (b). (d) Graph of possible reference relationships for explainingTM

by itself.

the edges. This cost is computed for a candidate model treeTM and for each observed treeTi,

for i = 1, ..., n, to give the total cost[L(TM , T1, . . . , Tn)].

Tree Search While the preceding algorithm gives us a way to evaluateL(TM),L(Ti|TM), and

L(TM , T1, ..., Tn) for any possible consensus treeTM , we still require a means of finding a high-

quality (low-scoring) tree. The space of possible trees is too large to permit exhaustive search and

we are unaware of an efficient algorithm for finding a global optimum of our objective function.

We therefore employ a heuristic search strategy based on simulated annealing. The algorithm

relies on the intuition that the bipartitions to be found in any high-quality consensus tree are

likely to be the same as or similar to bipartitions frequently observed in the input trees. The

algorithm runs for a total oft iterations and at each iterationi will either insert a new bipartition

chosen uniformly at random from the observed (non-unique) bipartitions with probability1− i/t
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or delete an existing bipartition chosen uniformly at random from the currentTM with probability

i/t to create a candidate model treeT ′
M . This strategy is intended to encourage the addition of

new bipartitions at the beginning of the search and the cleanup of redundant bipartitions at the

end of search cycle.

If the algorithm chooses to insert a new bipartitionb, it then performs an additional expectation-

maximization-like (EM) local optimization to improve the fit, as many of the bipartitions in the

observed trees will be similar but not exact matches to the global splits inferred for the popula-

tions. The EM-like local optimization repeatedly identifies the setBo of observed bipartitions

explained byb and then locally improvesb by iteratively flipping any bits that lower the cost of

explainingBo, continuing until it converges on some locally optimalb. This final bipartition is

then added toTM to yield the new candidate treeT ′
M . Once a new candidate treeT ′

M has been

established, the algorithm tests the difference in cost betweenTM andT ′
M . If T ′

M has reduced

cost then the move is accepted andT ′
M becomes the new starting tree. Otherwise, the method ac-

ceptsT ′
M with probabilityp = exp

L(TM ,T1,...,Tn)−L(T ′

M
,T1,...,Tn)

T
whereT = 400/t is the simulated

annealing temperature parameter.

Tree Reconstruction A final step in the algorithm is the reconstruction of the consensus tree

from its bipartitions. Given the bipartitions found by the tree search heuristics, we first sort the

model bipartitionsb1 ≺ b2... ≺ bk in decreasing order of numbers of splits they explain (i.e.,the

number of out-edges from their corresponding nodes in the DMST). The method then initialize a

treeT0 with a single node containing all haplotype sequences inS and introduce the successive

bipartitions in sorted order into this tree. The intuition is that bipartitions that explain a greater

fraction of the observed variation should generally correspond to earlier divergence events. For

eachbi = 1 to k, the method subdivide any nodevj that contains elements with label 0 inbi (b0i )

and elements labeled as 1 inbi (b1i ) into nodesvj1 andvj2 corresponding to the subpopulations

of vj in b0i or b1i . The method also introduce a Steiner nodesj for each nodevj to represent

the ancestral population from whichvj1 andvj2 diverged. The method then replace the prior tree
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Ti−1 with Ti = (Vi, Ei) whereVi = Vi−1−{vj}+{vj1, vj2, sj} andEi = Ei−1−{e = (t, vj)|e ∈

Ei−1, t ∈ parent(vj)} + {e = (t, sj)|t ∈ parent(vj)} + {(sj, vj1), (sj, vj2)}. After introducing

all k bipartitions,Tk is the final consensus tree.

2.2 Validation Experiments

2.2.1 Simulated Dataset

Evaluation of the method is initially performed on a simulated dataset consisting of three inde-

pendent populations, each with 150 individuals (300 chromosomes). To generate the sequence

data, we first generated the genealogies, or trees that traceback the possible lineages and history

between observed individuals, for each population using the coalescent simulator MS [47] on

sequence of length107 base pair long with a mutation rate of10−9, a recombination rate of10−8,

and an effective population size of 25,000. The resulting simulated branch length between the

root node of each population and the leaves was 1,600 generations. In order to simulate the effect

of three populations diverging from a common ancestor, we subsequently merged the genealogy

trees from each population. We first defined a common ancestorfor the root nodes of populations

one and two as shown in Fig.2.3(b)with branch length 1,000 generations between their most

recent common ancestor (MRCA) and the root nodes of the two populations. We then defined a

common ancestor between the MRCA of populations one and two andthe root node of popula-

tion three, with branch length 1,000 generations to the MRCA ofpopulations one and two, and

2,000 generations to the root node of population three. The sum of branch lengths between any

leaf and the MRCA of all of the populations was thus estimated at3,600 generations. Given this

defined tree structure, we generated sequence for each individual using Seq-Gen [89]. We used a

mutation rate of10−9 per site to generate a 10 million base pair sequence with 83,948 SNP sites

in order to accommodate the branch lengths simulated from MS. Using the 83,948 SNP sites,

we constructed 83,944 trees from 5 consecutive SNPs spanning across the sequences. Given the
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dataset, we ran the algorithms on 10,000 randomly selected trees or their corresponding 33,295

unique SNPs.

2.2.2 Real Data

We further evaluated the method by applying it to samples from two real SNP variation datasets.

We first used the Phase II HapMap data set (phased, release 22)[4] which consists of over 3.1

million SNP sites genotyped for 270 individuals from four populations: 90 Utah residents with

ancestry from Northern and Western Europe (CEU); 90 individuals with African ancestry from

Ibadan, Nigeria (YRI); 45 Han Chinese from Beijing, China (CHB); and 45 Japanese in Tokyo,

Japan (JPT). For the CEU and YRI groups, which consist of trio data (parents and a child),

we used only the 60 unrelated parents with haplotypes as inferred by the HapMap consortium.

For each run, we randomly sampled 10,000 trees each constructed from 5 consecutive SNPs

uniformly at random from 45,092 trees generated from chromosome 21, which represented an

average of 28,080 unique SNPs. For the purpose of comparison, we used 10,000 trees or the

corresponding 28,080 SNPs as inputs to the method and the comparative algorithms. We next

used phased data (version 1.3) from the Human Genome Diversity Project (HGDP) [50], which

genotyped 525,910 SNP sites in 597 individuals from 29 populations categorized into seven

region of origin: Central South Asia (50 individuals), Africa (159 individuals), Oceania (33

individuals), Middle East (146 individuals), America (31 individuals), East Asia (90 individuals),

and Europe (88 individuals). For each test with the HGDP data, we sampled 10,000 trees from

a set of 39,654 trees uniformly at random from chromosome 1. The 10,000 trees on average

consisted of 30,419 unique SNPs.

2.2.3 Benchmarks

There are no known existing method that perform the joint inference of population substructure

and the evolutionary tree, and therefore the method cannot be benchmarked directly against
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any competitor. Consequently, the method was assessed by twocriteria. We first assessed the

quality of the inferred population histories from the simulated data using the gold standard tree

and assessed the quality of the inferred population histories from the real data by reference to

a expert-curated model of human evolution derived from a review by Shriver and Kittles[102],

which we treat as a “gold standard.” Shriver and Kittles useda defined set of known human

population groups rather than the coarser grouping inferred by the consensus-tree method. To

allow comparison with either of the inferred trees, we therefore merged any subgroups that were

joined in our tree but distinct in the Shriver tree and deleted any subgroups corresponding to

populations not represented in the samples from which our trees were inferred. (For example, for

the HapMap Phase II dataset, we removed Melanesian, Polynesian, Middle Eastern, American,

and Central South Asian subgroups from the tree, as individuals from those populations were

not typed in the Phase II HapMap). We also ignored inferred admixture events in the Shriver

and Kittles tree. We then manually compared our tree to the resulting condensed version of the

Shriver and Kittles “gold standard” tree.

As a secondary validation, we also assessed the quality of our inferred population subgroups

relative to those inferred by two of the leading substructure algorithms: STRUCTURE (version

2.2) [85] and Spectrum [105]. We selected these programs because of they are well accepted as

leading methods for the substructure problem and are able tohandle comparable sizes of data set

to the method. We chose to omit EIGENSOFT, despite its wide use in this field, as the program is

mainly used to visualize substructure and does not lead to anunambiguous definition of substruc-

ture to which we can compare. STRUCTURE requires that the user specify a desired number of

populations, for which we supplied the true number for each data set (three for simulated data,

four for HapMap, and seven for HGDP). For each run of STRUCTURE,we performed 10,000

iterations of burn-in and 10,000 iterations of the STRUCTURE MCMC sampling. We did not

make use of STRUCTURE’s capacity to infer admixture or to use additional data on linkage

disequilibrium between sites. Spectrum did not require anyuser inputs other than the dataset
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itself.

We first visualize the cluster assignments by plotting each individual in each population as

a vertical line showing the population(s) to which he or she is assigned. Because the clusters

assigned by the algorithms have arbitrarily labels, we assign colors to these labels so as to best

capture their correspondence to the true population groups. To do so, we first arbitrarily assign a

color to each population group in the gold standard. For the consensus tree method, all sequences

found in a common node of the consensus tree are considered a single cluster; we assign to each

such cluster the color of the gold standard group that has maximum overlap with that cluster.

For STRUCTURE, which assigns each individual a probability ofbeing in each cluster, we color

each cluster according to the gold standard population thathas maximum overlap with the most

probable cluster assignments for all individuals. For Spectrum, which assigns each individual a

fractional ancestry from a set of inferred founder haplotypes, we choose an arbitrary color for

each founder haplotype and color each individual to reflect that individual’s inferred fractional

ancestries. If we were to use the same assignment protocol for Spectrum as for STRUCTURE,

all individuals would be assigned to the same subgroup.

We quantify clustering quality using variation of information [67], a measure commonly used

to assess accuracy of a clustering method relative to a pre-defined “ground truth.” Variation of

information is defined as

VI(X,Y) = 2H(X, Y )−H(X)−H(Y )

whereH(X, Y ) is the joint entropy of the two labels (inferred clustering and ground truth) and

H(X) andH(Y ) are their individual entropies. Given that most algorithmsreturns the frac-

tion or probability that each individual belongs to population k, for the purpose of evaluation,

we assigned each individual to the population group of the highest likelihood as determined by

STRUCTURE. While Spectrum also provided a fraction or probability profile for each individ-

ual, the number specifies probability or fraction a person originated from a ancestral haplotype
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rather than the ancestral population. As a result, arbitrarily assigning each individual by the

likelihood fraction will lead to poor clustering results. Consequently, we chose not to evaluate

Spectrum by this criterion.

For the three comparative algorithms (STRUCTURE, Spectrum, and Consensus Tree), we

also assessed robustness of the method to repeated subsamples. For each pair of individuals

(i, j) across five independent samples, we computed the number of samplesaij in which those

individuals were grouped in the same cluster and the numberbij in which they were grouped in

different clusters. Each method was assigned an overall inconsistency score:

Inconsistency =
∑

i,j

min
{

1− 2bij
⌊(aij+bij)⌋

, 1− 2aij
⌊(aij+bij)⌋

}

(

n
2

)

The measure will be zero if clusters are perfectly consistent from run-to-run and approach

one for completely inconsistent clustering. We defined the ground truth for HapMap as the four

population groups. For the HGDP data, we treated the ground truth as the seven regions of

origin rather than the 29 populations, because many population groups are genetically similar

and cannot be distinguished with limited numbers of SNPs.

2.2.4 Sensitivity Test

To characterize the relationship between data quantity andaccuracy of the inference, we further

performed the analysis for a variable number of tree sizes. We ran the consensus-tree method,

STRUCTURE, and Spectrum for 4 different data sizes — 10,000, 1,000, 100, and 10 trees (or

the corresponding SNPs) — and computed the variation of information and the inconsistency

score for each.
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2.3 Results

Fig. 2.3 shows the trees inferred by the consensus-tree method on thesimulated data and the

two real datasets alongside their corresponding true simulated tree or the condensed Shriver and

Kittles “gold standard” trees. Fig.2.3(a) shows the inferred tree produced by the consensus-tree

model on the simulated dataset. Based on the numbers of observed bipartitions explained by

each model bipartition, the tree reconstruction correctlyinfers the key divergence events across

the 3 populations when compared to Fig.2.3(b). The method also picks up some additional splits

below the division into three subgroups that represent substructure within the defined subgroups.

The fractions of mutations assigned to each edge roughly correspond to the number of genera-

tions simulated on that edge, although with the edge from theMRCA of all populations to the

MRCA of populations one and two assigned slightly fewer mutations and the two edges below

that somewhat more mutations than would be proportional to their divergence times.

Fig. 2.3(c) shows the inferred tree from the HapMap dataset. The treereconstruction infers

there to be an initial separation of the YRI (African) sub-population from the others (CEU+JPT+CHB)

followed by a subsequent separation of CEU (European) from JPT+CHB (East Asian). When

collapsed to the same three populations (African, European, East Asian), the gold standard tree

(Fig. 2.3(d)) shows an identical structure. Furthermore, these results are consistent with many

independent lines of evidence for the out-of-Africa hypothesis of human origins [54, 102, 117].

The edge weights indicate that a comparable number of generations elapsed between the di-

vergence of African and non-African subgroups and the divergence of Asian from European

subgroups, consistent with a single migration of both groups out of Africa long before the two

separated from one another.

For the HGDP dataset, the trees differ slightly from run to run, so we arbitrarily provide the

first run, Fig.2.3(e), as a representative. The tree infers the most ancient divergence to be that

between Africans and the rest of the population groups, followed by a separation of Oceanian

from other non-Africans, a separation of Asian+American from European+Middle Eastern (and
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a subset of Central South Asian), and then a more recent split of American from Asian. Finally,

a small cluster of just two Middle Eastern individuals is inferred to have separated recently from

the rest of the Middle Eastern, European, and subset of Central South Asian. The tree is nearly

identical to the that derived from Shriver and Kittles for the same population groups (Fig.2.3(f)).

The only notable distinctions are that gold standard tree has no equivalent to the purely Middle

Eastern node identified by consensus-tree method; that the gold standard does not distinguish

between the divergence times of Oceanian and other non-African populations from the African,

while the consensus-tree method predicts a divergence of Oceanian and European/Asian well

after the African/non-African split; and that the gold standard groups Central South Asian with

East Asians while the consensus-tree method splits Central South Asian groups between Eu-

ropean and East Asian subgroups (an interpretation supported by more recent analyses [91]).

The results are also consistent with the simpler picture provided by the HapMap data as well

as with a general consensus in the field derived from many independent phylogenetic analyses

[54, 118]. The relative edge weights provide a qualitatively similar picture to that of the HapMap

data regarding relative divergence times of their common subpopulations, although the HGDP

data suggests a proportionally longer gap between the divergence of African from non-African

subgroups and further divergence between the non-African subgroups.

Fig. 2.4visualizes the corresponding cluster assignments, as described in Methods, in order

to provide a secondary assessment of our method’s utility for the simpler sub-problem of subpop-

ulation inference. Note that STRUCTURE and the consensus-tree method assign sequences to

clusters while Spectrum assigns each sequence a distribution of ancestral haplotypes, accounting

for the very different appearance of the Spectrum output.

The three methods produced essentially equivalent output for the simulated and HapMap

data. For the simulated data (Fig.2.4(a)), all of the methods were able to separate the three

population groups. For HapMap (Fig.2.4(b)), all three methods consistently identified YRI and

CEU as distinct subpopulations but failed to separate CHB (Chinese) and JPT (Japanese).
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Results were more ambiguous for HGDP (Fig.2.4(c)). The consensus tree method reliably

finds five of the seven populations, usually conflating MiddleEastern and European and failing to

recognize Central South Asians, consistent with a similar outcome from Heet al. [45]. STRUC-

TURE showed generally greater sensitivity but slightly worse consistency than our method, usu-

ally at least approximately finding six of the annotated seven population groups and having dif-

ficulty only in identifying Central South Asians as a distinctgroup. Spectrum showed a pattern

similar to STRUCTURE but the individual ancestral profile seemed to be similar in several pop-

ulation subgroups. For example, the African subgroup seemed to have a similar ancestral profile

to the European subgroup.

We further quantified the quality of the cluster inference from the consensus-tree method and

STRUCTURE by converting the result to the most likely cluster assignment and computing VI

scores and inconsistency scores. Fig.2.5 shows the VI and inconsistency scores of the three

algorithms using inputs with different number of trees and SNPs. When examining the variation

of information across different data sets, we can see increased accuracy for both STRUCTURE

and consensus tree as we increase the number of trees or SNPs.When we compare the inconsis-

tency scores, neither of the algorithms showed a clear trendwith increasing numbers of trees or

SNPs. When the number of trees or SNPs is large, however, the consensus-tree method typically

becomes more consistent than STRUCTURE.

We also measured the runtimes of the algorithms using 10, 100, 1,000, and 10,000 trees or

the corresponding SNPs (Fig.2.6). In all cases, the consensus-tree method consistently ranfaster

than both STRUCTURE and Spectrum, which both use similar Gibbssampling approaches.

Fig. 2.7 shows the consensus trees constructed using different sizes of dataset subsampled

from the simulated data. From the figure, we can see that the trees never infer substructure that

cuts across the true groups, but that as the data set size increases, the method yields increasingly

refined tree structures. This observation is what we would expect for the chosen MDL approach.

The method identifies the separation of populations one and two with 100 trees but not with
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10, and can discriminate substructure within the individual populations when provided 10,000

trees but not 1,000 or fewer. The number of mutations assigned to each edge increases as we

increased the number of observed trees, but the fraction of all mutations assigned to each edge

remains nearly constant with increasing data set size.

2.4 Discussion

While population substructure inference is only one facet ofthe problem solved by the consensus-

tree method, it nonetheless provides for a convenient partial validation. Comparison with lead-

ing population substructure algorithms shows that the consensus-tree method provides very good

performance on the substructure problem. The consensus-tree approach shows equal or slightly

superior VI scores relative to STRUCTURE on both simulated andHapMap data while showing

slightly worse VI scores in HGDP. The consensus-tree methodis also quite competitive on run

time with these alternatives, although other substructuremethods that were not amenable to a

direct comparison, such as mStruct [101], can yield substantially superior run times for closely

related analyses. The consensus-tree method also shows an ability to automatically adjust to

varying amounts of data while avoiding over-fitting, as demonstrated by the consistency scores,

as would be expected for the chosen MDL approach.

One key advantage of the consensus-tree approach is that by treating substructure inference

as a phylogenetic rather than a clustering problem, it can provide additional information about

relationships between subgroups. Such information may be helpful in better completing our pic-

ture of how modern human populations arose and may provide information of use in correcting

for population stratification during association testing.Because we are aware of no comparable

methods for this problem, we must resort to validation on simulated data and by comparison to

our best current models of true human population histories to evaluate its performance on the full

population history inference problem. The consensus-treemethod correctly infers tree structures

from the simulated data using as few as 100 trees. Furthermore, application to HapMap and
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HGDP data also shows that the method produces a portrait of human evolution consistent with

our best current understanding. The basic qualitative model of human population history that

emerges is further consistent between the two independent datasets, despite different individu-

als, populations represented, and markers selected.

The consensus-tree model also provides information about how many mutations one can

attribute to each edge of a given tree. These edge lengths canbe interpreted to approximately

correspond to divergence times along different edges of thetrees. In particular, provided one

assumes that mutations accumulate at a constant rate acrosshuman lineages then one would

expect that mutations would accumulate in any subpopulation at a rate proportional to the size

of that subpopulation and to become fixed with a probability inversely proportional to the size of

that subpopulation. To a first approximation, then, edge weight normalized by the total number

of mutations used in the model should be approximately proportional to the time elapsed along

a given edge independent of the size of the population represented or the number of input trees.

The quantitative results do approximately fit this expectation for the simulated data. There is,

however, some apparent bias towards lengthening the edges from the MRCA of subpopulations

one and two to the MRCAs of the two individual subpopulations and shorting the edge from their

MRCA to that of all three subpopulations. This observation mayreflect imprecision in the rough

approximation that edge length should be proportional to elapsed time. Alternatively, it may

derive from misattribution of some SNPs formed within the subpopulations to the edges leading

to those subpopulations. While the method can provide estimates of relative times elapsed along

edges, it does not have sufficient information to convert these numbers of mutations into absolute

elapsed time. In principle, one could make inferences of absolute elapsed time along tree edges

given more detailed population genetics models and a complete, unbiased set of variant markers

from which to construct phylogenies. Similarly, having some absolute time assigned to even a

single edge would allow one to estimate absolute times alongall other edges in a tree.

Given that edge weights can be expected to be approximately proportional to elapsed time,
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we can use those derived on the real data to gain some additional insight into how the inferred

human subgroups may be related. The two data sets yield qualitatively similar models supporting

a single emergence of an Asian/European ancestral group from Africa followed by divergence

of that ancestral subgroup into Asian and European subgroups. There are, however, some no-

table quantitative differences between relative divergence times of various subgroups between

the two data sets. In particular, the HGDP data suggest a proportionally longer gap between

separation of African from non-African and separation of Asian from European. For example,

if we assume that the African/non-African divergence occurred 60 thousand years ago (60 kya),

around the middle of the range of recent estimates [117], then the HapMap data would place

the Asian/European divergence at 32.7 kya while the HGDP would lead to an estimate of 19.5

kya. This observation could reflect an inherent bias in the edge length estimates, as noted for the

simulated data, or biases intrinsic to the data sets. Several previous studies estimating divergence

times have found that inferences can be sensitive to the choice of population groups, the specific

genetic regions examined, or the particular individuals inthose populations [51, 92, 132].

While the results show that the consensus-tree method is capable of making robust but sen-

sitive inferences of population structure as well as tree structure, the consensus-tree method

does nonetheless have some significant limitations. One such limitation is runtime; while the

consensus-tree method is superior in this regard to STRUCTUREand Spectrum, its runtime is

still considerable and far worse other algorithms such as mStruct and EIGENSOFT. Although

this compute time is still a trivial cost compared to the timerequired to collect and genotype

the data, it may nonetheless be an inconvenience to users. Furthermore, it prevents us from pro-

cessing the full HapMap or HGDP data sets in a single run, as opposed to the subsamples done

in the present work, likely preventing discovery of finer resolutions of population substructure.

This high run-time is largely due to the many calls the consensus-tree method must make to

the DMST algorithm to repeatedly evaluate the MDL objectivefunction and may be addressed

in future work by more sophisticated optimization methods to reduce the number of function
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evaluations or by introducing a more highly optimized subroutine for evaluating MDL costs. In

addition, the computations should be easily amenable to parallelization.

Another limitation, noted above, is that the current version of the consensus tree method

does not handle admixture in population groups as do competing methods. We would expect

admixture to appear during inference of bipartitions as thediscovery of sets of bipartitions that

cannot be reconciled with a perfect phylogeny. In principal, then, the core MDL algorithm should

function correctly on admixed data but our conversion of thebipartitions into a tree would need

to be replaced with a method for inferring a phylogenetic network rather than a tree, similar to

methods for inferring ancestral recombination graphs fromhaplotype data [39]. New methods

will likewise be required to perform admixture mapping of individual admixed genomes to label

them by population group. These additions are important goals for future work and will help to

determine whether this novel approach, whatever its initial promise, proves a competitive method

in practice for detailed substructure analysis.

2.5 Conclusion

We have presented a novel method for simultaneously inferring population ancestries and iden-

tifying population subgroups. The method builds on the general concept of a “consensus tree”

summarizing the output of many independent sources of information, using a novel MDL real-

ization of the consensus tree concept to allow it to make robust inferences across large numbers

of measurements, each individually minimally informative. It incidentally provides ade novo

inference of population subgroups comparable in quality tothat provided by leading methods.

The consensus-tree method also provides edge length estimates that can roughly be interpreted

as relative times between divergence events, although there appears to be some biases in these

estimates. As we will demonstrate in the next chapter, it will be possible to translate these rel-

ative times into estimates of absolute elapsed times using acoalescent-based population genetic

models. The MDL approach also allows our method to automatically adapt to larger data sets,
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producing more detailed inferences as the data to support them becomes available.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Inferred consensus trees. Node labels show numbers of haplotypes belonging to each

known population. Edges in inferred trees are labeled by thenumber of splits assigned to each

and, in parentheses, the fraction of all splits assigned to each. For the simulated gold standard

tree, edges are labeled by a number of generations and, in parentheses, the expected number of

substitutions per site occuring on the corresponding edge in generating the data. (a) Consensus

tree obtained from simulated data. (b) Gold standard for thesimulated data. (c) Consensus tree

obtained from the HapMap dataset. (d) Trimmed and condensedtree from [102]. (e) Consensus

tree obtained from the HGDP dataset. (f) Trimmed and condensed tree from [102].
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Figure 2.4: Inferred population structures. Each colored vertical line shows the assigned pop-

ulation(s) for a single sequence for one method. From top to bottom: Spectrum (with colors

representing fractional assignments to distinct ancestral haplotypes), STRUCTURE (with colors

representing probabilities of assignment to distinct clusters), consensus-tree (with colors show-

ing assignments to single clusters), and ground truth (withcolors representing assignments to

true clusters). (a): Inferred population structure from a single trial of 10,000 trees from simu-

lated data. (b): Inferred population structures from a single trial of 10,000 trees from HapMap

Phase II dataset. (c): Inferred population structures fromone trial of 10,000 trees.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Variation of information (VI) and inconsistency scores. Lower VI reflects higher

accuracy in identifying known population structure. Lowerinconsistency reflects greater repro-

ducibility between independent samples.
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(a) (b)

(c)

Figure 2.6: Average runtime of the algorithms on different data sets and different data set sizes.
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(a) (b)

(c) (d)

Figure 2.7: Consensus trees produced using varying numbers of input trees. Node labels show

numbers of haplotypes belonging to each simulated population. Edges are labeled by the number

of splits assigned to each and, in parentheses, the fractionof all splits assigned to each. From left

to right: Consensus Tree from (a) 10, (b) 100, (c) 1000, and (d)10,000 observed trees.
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Chapter 3

Coalescent-based Method for Learning

Parameters of Admixture Events from

Large-Scale Genetic Variation Datasets1

Since our emergence as a species, humans have diverged into numerous subpopulations. In some

instances, individuals from different subpopulations have come into contact, yielding genetically

mixed populations. We call this incorporation of genetic materials from one genetically distinct

population into another admixture. This process is believed to be common in human popula-

tions, where migrations of peoples have repeatedly broughttogether populations that were his-

torically reproductively isolated from one another. This can be seen, for instance, in the United

States where many African Americans contain varying amounts of ancestry from Europe and

Africa [80]. Reconstructing historical admixture scenarios also has important practical value in

biomedical contexts. For instance, learning the correct time scale on which different strains of

the human immunodeficiency virus (HIV) have diverged would be useful for understanding the

circumstances surrounding the emergence of the acquired immune deficiency syndrome (AIDS)

pandemic as well as its continued genetic divergence[57]. In statistical genetics, studying ad-

1This chapter was developed from material published in [120] and under review in [121]
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mixture and population structure can help in identifying and correcting for confounding effects

of population structure in disease association tests [37]. Studying admixture can also help in

understanding the acquisition of disease-resistance alleles [27].

A recent explosion in available genome-scale variation data has led to considerable prior work

on characterizing relationships among admixed populations. One popular approach for qualita-

tively characterizing such relationships derives from theobservation that principal component

analysis (PCA) provides a way to visually capture such relationships for complex population

mixtures [13, 34]. While such methods provide a powerful tool for visualizingfine substructure

and admixture, however, they typically require considerable manual intervention and interpreta-

tion to translate these visualizations into concrete models of the population history. Furthermore,

these methods provide only limited quantitative data on relationships between admixed popula-

tions, providing fractions of admixed data but not completeparameters of an admixture model,

such as timing of divergence and admixture events. Other methods focus on the related prob-

lem of finding detailed assignments of local genomic regionsof admixed individuals to ancestral

populations [84, 85, 98], which provides complementary information with important uses in

admixture mapping, but similarly provides little direct insight into the history by which these

admixtures occurred.

Inferring detailed quantitative models of historical admixture events, especially the timing of

these events, remains a difficult problem. It is typically addressed by inferring basic parameters

of a single admixture event — the creation of a hybrid population from two ancestral popula-

tions. Some methods do examine more complex scenarios, suchas the isolation with migration

model [77], and others different parameters, such as effective population size [61]. We, however,

focus here on the more standard three-population scenario and the joint inference of both the

admixture proportion and the times of divergence and admixture. Most methods for this problem

use allele frequencies to estimate admixture proportions by assuming that admixed populations

will exhibit frequencies that are linear combinations of those of their parental populations and
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optimizing with respect to some error model [16]. While such methods can be very effective,

they generally require substantial simplifying assumptions regarding the admixture process, for

example assuming the absence of mutations after admixture events. Such an assumption can be

problematic when the mutation rate is high or when the admixture is sufficiently ancient that

mutations novel to the admixed populations are no longer negligible.

This issue has been previously addressed by methods utilizing coalescent theory, [17, 126].

a probabilistic model of ancestral relationships that can be used to efficiently sample among pos-

sible evolutionary histories of a set of individuals in a population.MEAdmix[126], for instance,

uses coalescent theory to compute expected numbers of segregating sites (or mutations) between

lineages then identifies an optimal admixture proportion byminimizing the squared difference

between the expected number and observed number of segregating sites. While such methods

were significant advances on the prior art, they have difficulty scaling to large data sets due to

long computation time and numerical errors. With genomic-scale data becoming widely avail-

able from whole-genome variation studies, new methods are needed to make full use of such

data in achieving more accurate and detailed models of population dynamics. The prior methods

also assume that we know in advance the population structureand assignment of individuals to

that structure, a restriction that is increasingly suspectas we seek ever finer resolution in our

population models.

In the chapter, we describe a novel approach to reconstructing parameters of admixture events

that addresses several limitations of the prior art. This method is designed to learn, directly

from the molecular data, what subpopulations are present ina given data set, the sequence of

divergence events and divergence times that produced them,whether admixture exists between

these subpopulations, and, if so, with what proportions admixed populations draw their ancestry

from each ancestral population.

More formally, we assume the input to the problem is an×m [0,1] matrixD where element

Dij represents the allele of thejth genetic variation site for theith taxon. The output is a tuple
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T = {P1, P2, P3, t1, t2, α, θ}. P1, P2, andP3 form a tripartition of the rows ofD, t1 ∈ R+,

t2 ∈ R+, α ∈ [0, 1]. These outputs model a simple history of a population group that arose

from an ancestral population, divided into two subpopulations, and then admixed to produce a

third subpopulation.P1, P2, andP3 are an assignment of rows ofD (taxa) to the three final

subpopulations,t1 is the elapsed time from the admixture event to the present,t2 is the elapsed

time from the divergence event to the admixture event, andα is the fractional contribution of the

first population to the admixture.θ is a scaling parameter, explained in more detail in Materials

and Methods, that combines effective population size and mutation rate. The problem does not

have a simple, standard objective function and the contribution of the present work is in part to

define a likelihood-based objective function, explained indetail in Materials and Methods below.

We further note that the tripartition is commonly assumed inthe literature to be included in the

input. A further contribution of the present work is to inferthe tripartition as an output together

with the real-valued parameters, treating the variation matrix D as the sole input.

We have created a novel two-step inference model called Consensus-tree based Likelihood

Estimation for AdmiXture (CLEAX). Rather than inferring the population history directly from

the molecular data [17, 77, 126], we first learn a set of summary descriptions of the overall pop-

ulation history from the molecular dataD corresponding to a inferred set of subpopulations and

a set of bipartitions, i.e., partitions of the taxa into two non-empty subsets, with a weight asso-

ciated with each bipartition. Once the set of summary descriptions is obtained, we then apply

a coalescent-based inference model on the summary descriptions to learn divergence times and

admixture fractions for the model. A key advantage of our two-step inference model is substan-

tial reduction in the computational cost for large data sets, making it possible to perform more

precise and reliable inferences using genomic-scale variation datasets. In addition, the proposed

method has the advantages of learning divergence times and admixture times in a more general

framework encompassing simultaneous inference of population groups, their shared ancestry,

and potentially other parameters of their history.
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Figure 3.1: Example of a history of two parental populations(P1 andP3) and an admixed popu-

lation (P2). Ancestral populationP0 diverged att2 to formP1 andP3, followed by an admixture

event att1 to formP2. (a) The admixture model of the example. (b) Possible history of the exam-

ple at some non-recombinant region of the genome with mutations occurring at various branches

of the tree. (c) Alternative history of the example at other non-recombinant region of the genome

with mutations occurring at various branches of the tree. (d) The desired output of the consensus

tree algorithm applied to the genetic variation data, inferring the set of model bipartitions and its

associated weights as well as a crude model of population history without the actually parame-

ters. (e) Genealogy generated from a parameter oft1, t2, andα showing the specific relationship

and branch length between every sample in the data. Here, AB is inP1, CD is inP2, and EF is

in P3. (f) The corresponding bipartition and associated branch length obtained from genealogy

in (e).
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3.1 Materials and Methods

To learn population history for a dataset, our approach firsttries to determine a number of sub-

populations (K), potential evolutionary models (̃G = (G, V ))between the subpopulations, and a

summary description (H) that approximates the number of segregating sites (or mutations) that

are believed to have occurred after each subpopulation separated from its parental population but

before it further divided into additional subpopulations.We then use the resulting discrete model

of population divergence events to estimate expected timesbetween events and the admixture

proportions between subpopulations.

As with much of the prior work [11, 16, 17, 126], we specifically address the problem of

accurately reconstructing parameters of a single historical admixture event. As shown in Fig.

3.1(a), we will assume that there exists a single ancestral populationP0 before timet2. A diver-

gence event then occurs at timet2 that results in the formation of two subpopulationsP1 andP3.

Finally, at timet1, an admixture event occurs between the two parental populationsP1 andP3 to

form a new admixed populationP2. The admixed populationP2 is composed of anα fraction

of individuals fromP1 and a1 − α fraction of individuals fromP3. Except for the admixture

event itself att1, all populations are assumed genetically isolated throughout history. The model

can be characterized by the time of the divergence (t2), the time of admixture (t1), and the ad-

mixture proportion (α). Additional hidden parameters include mutation rate,µ, and the effective

population size for the ancestral population (N0), the two parental populations (N1 andN3), and

the admixed population (N2). For simplicity, we will assume that the effective population size

stayed constant in each population (e.g.,N0=N1=N2=N3=N ). While such assumption may not

necessarily hold for all analyses, it is a reasonable assumption in some cases such as human pop-

ulation since non-African populations share about the sameeffective population size [68, 113].

Furthermore, as our analysis has shown, such assumption canstill give accurate results when

effective population size does not vary significantly. Given this assumption, the effective popu-

lation size,N , and mutation rate,µ will be aggregated with the length of the sequences,l, as a
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single parameterθ. As a result, the free parametersΘ we must learn aret1, t2, α, andθ.

Given the admixture model, we would expect local regions of the genome to each have a tree-

like ancestral history, but with different histories in different regions sampled from a network of

possible ancestral relationships implied by the divergence and admixture events. A tree-based

history corresponding to a local, non-admixed region of thegenome is known as a genealogy.

For example, at some regions of the genome, we would expect tosee a genealogy of the three

samples derived from Fig.3.1(b) while other regions would have genealogies derived fromFig.

3.1(c). If we supposeα = 0.5 then we should see these two genealogies with approximately

equal frequency.

Given the sequence data derived from admixture scenario, our approach will first learn that

there are three subpopulations in the example dataset usingan algorithm developed in our previ-

ous work [119] for the problem of reconstructing population histories, describing the historical

emergence of population subgroups in a broader population,from non-admixed data. At the

same time, that prior algorithm will learn the potential evolutionary model shown in Fig.3.1(d).

The algorithm will also learn a summary description that suggests that approximately 1 mutation

occurred in the genetic region under study afterP2 was formed (branched in Fig. 3.1(d)), that

approximately 2 mutations occurred either inP1 afterP2 was formed or inP3 beforeP2 was

formed (brancheb andec in Fig. 3.1(d)), and that approximately 2 mutations occurred either in

P3 after formation ofP2 or in P1 beforeP2 (branchea andee in Fig. 3.1(d)). Using these infer-

ences, the next step would be to estimate the distribution ofthe posterior probability of the event

times and admixture proportions that best describe the data.

Learning Summary Descriptions: Our previous work described in Chapter2 on learning

population histories from non-admixed variation data [119] is conceptually based on the idea of

consensus trees [73], which represent inferences as to the robust features of a family of trees. The

algorithm uses the genetic variation dataset to infer a set of local phylogenetic trees from small

consecutive regions across the genome. It then breaks each tree into a set of bipartitions, where
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each bipartition corresponds to one edge in one tree whose removal divides the taxa labeling

nodes into two groups (see Fig.3.1(f)). From the set of bipartitions, the algorithm then identifies

a set of model bipartitions, robust splits between population groups that define an inferred over-

all population history so as to minimize an information-theoretic minimum description length

score [38].

The intuition behind our method is that different regions inthe genome should correspond

to different genealogies embedded within the overall population structure. By first inferring

likely phylogenies on many small regions spanning the genome and learning the robust features

of the phylogenies, the algorithm specifically builds a summary descriptionH = (BM ,W )

consisting of a set of model bipartitions,BM = {bM1 , bM2 , ...bMr }, and a set of weight values,

W = {w0, w1, w2, ..., wr}. Weightsw1, . . . , wr are each associated with a model biparition

while weightw0 provides an additional count of observed bipartitions unassigned to any model

bipartition. The weights,w1, ..., wr, are computed by counting the number of observed biparti-

tions optimally assigned to each corresponding model bipartition using an entropy-based scoring

function described in our prior work [119] that matches each observed bipartition to its most

similar model bipartition or to no bipartition if there is nosufficiently close match. When none

of the model bipartition is a good assignment for the observed bipartition, the bipartition is then

assigned to a empty bipartition and attribute to the weightw0. By matching the observed bi-

partition, we indirectly estimates the approximate numberof mutations that most likely occurred

along any given branch in the population history. This set ofmodel bipartitions and its associated

weights are then used to reconstruct the evolutionary model.

Under the described admixture scenario, the consensus-tree based algorithm should first iden-

tify that there are three subpopulations (K = 3) in the data. Second, the algorithm should output

an inferred evolutionary model̃G = (G, V ), shown in Figure3.1(d) and characterized by the

model bipartition setBM = {bM1 = P1|P2P3, bM2 = P2|P1P3, bM3 = P3|P1P2}. Finally, the

algorithm should also produce a weight vectorW = {w0, w1, w2, w3}, representing the num-
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ber of observed bipartitions most likely represented by none of the model bipartitions vs. model

bipartitionsbM1 , bM2 , or bM3 . The method can also predict which of the populations is likely ad-

mixed, as the two model bipartitions having the largest weights should represent the two parental

populations,P1 andP3.

Likelihood Model: Under the two-parental one admixed population scenario, learning the

directed graphG = (V,E) and its label function from the outputs of consensus tree algorithm

would be trivial by associating the lowest weighted model bipartition representing one of the

three populations to be the admixed population. This would leave us with justΘ to infer. To make

inferences about the parameter setΘ, we will estimate the distribution of a posterior probability

of the parameters given the observed weightsW associated with branches in the tree. We first

note that in the absence of recombination and assuming an infinite sites model, the number of

mutations corresponding to an edge of the genealogy would bePoisson distributed with mean

equal to the product of the sum of all branch lengths in the genealogylG, the effective population

sizeN , the number of base pairsl in the segment, and the mutation rateµ. We then break down

the genealogy into a set of bipartitions generated by removing a single edge of the genealogy. For

each bipartition, iff(b) is a function that computes the optimal index assignment of abipartition

b to the model bipartition set using the conditional entropy function described in our prior method

[119] andlbj is the branch length of the bipartitionbj, then the total branch lengthlMbi that will be

assigned to model bipartitionbMi is given bylbMi =
∑

bj∈{b|f(b)=i} lbj . This formula gives us an

estimated amount of time over which a mutation could have occurred in the genealogy on theith

model bipartition, specifying an independent Poisson distribution for eachwi in that genealogy.

Because of recombination, however, the entire genome is madeup of non-recombinant frag-

ments of DNA having different genealogies. Since we do not know the actual genealogy for

each fragment of the genome, the likelihood function will have to sum over all possible genealo-

gies. LetG = {G1, G2, ..., Gn} be the set ofn genealogies each representing a genealogy of a
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non-recombinant fragment on the genome. Then the likelihood functionL = P (W |Θ) will be:

P (W |Θ) = (3.1)
3
∏

i=0

∫ ∞

l
bM
i

=0

∑

G

P (wi|Θ, lbMi )P (lbMi |G,Θ)P (G|Θ)dlbMi

whereP (wi|lbMi , θ) = Poisson(wi; θ × lbMi ).

The branch length associated with each model bipartition can be computed exactly given

the genealogy set. The integral can then be eliminated asP (lbMi |G,Θ) becomes zero for any

branch length not consistent with the genealogy and one for any branch length consistent with

the genealogy. Hence, the likelihood function simplifies to:

P (W |Θ) =
3
∏

i=0

∑

G

P (wi|lbMi , θ)P (G|Θ) (3.2)

As an example, suppose we have an output from the consensus algorithm shown in Fig-

ure3.1(d). If we have a particular parameter value we want to evaluate the likelihood function,

we would enumerate through all possible genealogy consistent with the specifiedt1, t2, α, andθ.

Suppose a genealogy in Figure3.1(e) was one possible genealogy being enumerated. We would

compute the score by converting the genealogy into a set of bipartitions as shown in Figure3.1(f)

and subsequently compute the optimal assignment of each bipartition to the most related model

bipartition using the same scoring mechanism in [119]. Given the optimal assignment of each bi-

partition, we can then compute the expected branch lengthlbMi associated with model bipartition

BM
1 , BM

2 , andBM
3 as well as the null bipartition. The optimal assignment in the example should

give us an expected branch lengths,lbM
1
= l1 + l2, lbM

2
= l3 + l4 + l7, lbM

3
= l5 + l6 + l8 + l9 + l10,

and l0 = 0. Using the expected branch lengths andθ, we can compute the expected number

of mutations associated with each model bipartition and null bipartition and subsequently the

probabilityP (wi|lbMi ). The idea behind the model is that a correct parameter set that describes

the history should give us the closest match of observed weights associated with each model

bipartition and thus the highest likelihood score.
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We know of no analytical solution to this function and the infinite number of possible ge-

nealogies prevents exhaustive enumeration. We therefore employ an MCMC strategy similar to

that of [17] and [77] but differing in the details of the likelihood function to better handle large

genomic datasets. MCMC sampling may require a large number ofsteps to accurately estimate

the posterior of the likelihood function, so we make two simplifications that drastically reduce

the number of steps needed to achieve convergence in exchange for a modest decrease in preci-

sion. First, we assume that the coalescence times are fixed attheir expected values, rather than

being exponentially distributed random variables, yielding a number of genealogies that is finite,

although still exponential inn. We justify this approximation by noting that, in the limit of large

numbers of fragments, the total branch length of the genealogy will converge on the mean im-

plied by the coalescent process, making it a reasonably accurate assumption for a model such as

ours designed to work with large genomic datasets.

To prove this, letLtot,G be a random variable representing the total branch length ina geneal-

ogy. Suppose we havek individuals in the sample, implyingk − 1 coalescence events needed

to reach a common ancestor.Ltot,G would then be a function of thek − 1 random variables,

L1, L2, ..., Lk−1, representing the time of each coalescent event relative tothe previous coales-

cent event. Specifically,Ltot,G =
∑k

j=2 jLj.

If we assume that the entire genome is made up ofn non-recombinant fragments and that

each fragment is relatively independent, then the total branch length of the entire genomeLtot,G

would be the sum ofn independent random variablesLtot,G.

Ltot,G =
n
∑

i=0

Ltot,Gi
= n

(

1

n

n
∑

i=0

Ltot,Gi

)

(3.3)

Under the weak law of large numbers, the average of a large number of trials should be close

to the expected value of each trial. Assuming a genome-wide count of variations represents

a sufficiently large sample of an independent per-base mutation rate, we can approximate the
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above formula as follows:

Ltot,G ≈ nE(Ltot,G) = n

(

k
∑

j=2

jE(Lj)

)

(3.4)

The second approximation that we incorporate into the modelis the reduction of the total ge-

nealogies fromn to m. The intuition is that the total number of distinct genealogies from which

lineages evolve (m) should be much less than the number of genetic sites typed (n). This approx-

imation would follow, for example, from the assumption thatrecombination is sufficiently rare

that nearby genetic regions usually have the same genealogy. If we setm = n, we would allow

for an exact model in which each input genealogy could be distinct, but empirical evidence given

in the Results suggests that, while specifyingm << n independent genealogies allows for a pos-

sibility of error, the actual increased error in practice ismodest as we observed the improvements

in error tapers off quickly as we increased the number of genealogies in our experiments. Mak-

ing this second approximation, however, reduces the numberof genealogies we must consider in

evaluating the likelihood function to exponential inm rather thann, a much more manageable

term whenm << n.

Letting Ĝ be the reduced set of genealogies, we derive the following simplified likelihood

function given the two approximations:

P (W |Θ) =
3
∏

i=0

∑

Ĝ

P (wi|lbMi , θ)P (Ĝ|Θ) (3.5)

The above assumptions and the constraints on the parametersimpose some constraints on the

feasible genealogies. From time 0 tot1, individuals fromP1, P2, andP3 can only coalesce

with individuals within the same population. Letmx,1, mx,2, mx,3 be the number of lineages

that came from populationsP1, P2, andP3 respectively at timex. Then theith coalescence

point starting from time 0 to timet1 going backward will have an expected coalescence time of

4N/((m0,y − i+1)(m0,y − i)) from the previous coalescence event. If the next coalescence time

point is greater thant1 then the waiting time until the next coalescence time point beyond that

one will be sampled fromt1 rather than from the previous coalescence time point.
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MCMC Sampling: To estimate the posterior probability distribution, we employ the Metropolis-

Hastings algorithm. We defined the state space of the Markov model as the set of all parameters

t1, t2, α, θ and the set of possible genealogiesĜ spanning the genome, where|Ĝ| = m. Fur-

thermore, given specific values oft1 andt2, the genealogy setG can only contain genealogies

consistent with those values oft1 andt2. For any stateXo = {xo
t1
, xo

t2
, xo

α, x
o
Ĝ
} the likelihood of

that state can be expressed as:

P (Xo|W ) ∝ P (W |Xo) (3.6)

=

(

3
∏

i=0

P (wi|lbMi )P (lbMi |xo
Ĝ
)

)

P (xo
Ĝ
|xo

t1
, xo

t2
, xo

α)

To identify a candidate next stateXn, the algorithm will sample new values oft1, t2, α, andθ

from independent Gaussian distributions withµo
t1
= xo

t1
, µo

t2
= xo

t2
, µo

α = xo
α, andµo

θ = xo
θ and

σt1 , σt2, σα, andσθ, using variances adjusted during the burn-in period by increasing variance

when the expected number of mutations is far from the observed number and decreasing variance

as the expected and observed numbers of mutations become more similar. We developed this

strategy based on the observation that acceptance rate tends to be better for large variances when

the difference between the expected and observed number of mutations is large and better for

small variances when the difference between the expected and observed numbers of mutations is

small.

Once the algorithm selects values of parameters for the new MCMC stateXn, it then samples

a new genealogy set through coalescent simulation given theselected new parameters. The

resulting new state will thus have a stationary probability

Q(Xn|Xo) = P
(

xn
t1
|µo

t1
, σt1

)

P
(

xn
t2
|µo

t2
, σt2

)

×P (xn
α|µ

o
α, σα)P

(

Ĝ|xn
t1
, xn

t2
, xn

α

)

(3.7)

yielding a Metropolis-Hastings acceptance ratior of:

r =

(

∏3
i=0 P (wi|lbMi )P

(

lbMi |xn
Ĝ

))

(

∏3
i=0 P (wi|lbMi )P

(

lbMi |xo
Ĝ

)) (3.8)
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3.2 Validation Experiments

Coalescent Simulated Data: We evaluated our method on simulated datasets generated using

different t1, t2, α, and chromosome lengths. Each simulated dataset consistedof 100 chromo-

somes from each of the three hypothetical populations (P1, P2, andP3) resulting in a total of

300 chromosomes. We divided the simulated datasets into three groups consisting of chromo-

somes with3.5× 107 base pairs,3.5× 106 base pairs, and2.0× 105 base pairs. For each group,

we generated 45 different datasets from all combinations oft1={400, 800, 1200, 2000, 4000},

t2={6000, 8000, 20000}, andα={0.05, 0.2, 0.6}. We chose the coalescence simulator MS [48]

for generating the simulated datasets. In all of our simulations, we assumed the effective popu-

lation size of each population is 10,000. We set the mutationrate to be10−9 per base pair per

generation and the recombination rate to be10−8 per generation for simulations, based on esti-

mated human mutation and recombination rates [43, 62]. Using the parameters described above,

the simulations generated approximately 50 to 120, 1000 to 2000, and 10,000 to 20,000 SNPs on

datasets with2.0× 105-, 3.5× 106-, and3.5× 107-base sequences, respectively.

To evaluate the performance of our algorithm, we compared our results obtained from the

simulated data with those of another method for learning admixture fractions and divergence

times: MEAdmix[126]. MEAdmixtakes as input a set of sequences of genetic variations from

individual chromosomes grouped into three different populations and outputs the admixture frac-

tion, divergence time, admixture time, and mutation rates from the input data. WhileMEAdmix

produces similar outputs to CLEAX, one key difference between MEAdmixand CLEAX is the

specification of populations. InMEAdmix, individual sequences must be assigned by the user to

one of the three populations. On the other hand, CLEAX infers the populations directly from the

variation data before estimating the divergence time and admixture fraction. Although there are

a number of methods in the literature for learning admixtureand divergence times [17, 77, 126],

we chose to compare toMEAdmixbecause it estimates similar continuous parameters to CLEAX

and its software is freely available. The same characteristics apply tolea, but it was unsuitable
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for the present comparison because it is designed for much smaller datasets and proved unable to

process even the smallest models of genome-scale data we considered. Other methods were also

investigated [11, 77], but we could not directly compare their performance to ourown because

of different admixture models assumed, different estimated parameters, or lack of availability of

the software for comparison.

We ran both CLEAX andMEAdmixon theS = 135 simulated datasets and computed the

average absolute relative difference between the true and estimated parameter values for each

parameter,1
S
(
∑S

i
|Θ̂i−Θi|

Θi
). We terminated a program on a given data set if the analysis took more

than 48 hours to complete. When running our method on simulated data, we set the number of

genealogies for CLEAX to bem=30. For MEAdmix, we set the bootstrap iterations to be five,

which proved to be a practical limit for the mid-size data sets given the run time bounds.

We also evaluated the accuracy of our algorithm as a functionof the number of genealogies,

m. Using the same 45 simulated datasets witht1={400, 800, 1200, 2000, 4000}, t2={6000, 8000, 20000},

andα={0.05, 0.2, 0.6} obtained from simulations using3.5× 106 base pairs, we ran our method

with 10, 30, and 100 genealogies. For each genealogy size, werepeated the Markov chain ten

times with different starting points and computed the average absolute relative difference be-

tween the estimated parameters and true parameters. Each MCMC run used 1,000 iterations of

burn-in followed by 20,000 MCMC steps.

In addition to evaluating our algorithm under scenarios in which the effective population

size remains fixed, we also examined the performance under scenarios in which this assumption

no longer holds in order to explore a possible source of errorin the analysis of real data. To

evaluate the performance of the method under scenarios for which effective population size is not

constant, we generated four additional sets of simulated datasets consisting of the same values of

admixture time (t1), divergence time (t2), and admixture fraction (α) as in previous experiments

but with a reduced effective population size for all three populations after the admixture event

occurs. Specifically, prior to timet1, the effective population size is assumed to be 10,000 as

59



in our other simulated data sets. Fromt1 to the present time, though, the effective population

size of all three populations is reduced to 2,000, 4,000, 6,000, or 8,000. Using the original and

additional four groups of 45 simulated datasets, we evaluated the performance of the algorithm

by computing the average absolute difference between the true and estimated parameter values

within each group. Additionally, we computed the ratio oft1 to t2 across all 45 datasets in order

to test whether one could get accurate estimates of both times if a single “anchor” time was

already known.

Real SNP Data: We further evaluated our method by applying it to a bovine SNP dataset

[12], chosen due to the limited availability of large-scale human genetic variation data containing

known admixed individuals. The bovine data consists of 497 cattle from 19 breeds. Of the 19

different breeds of cattle, 3 of them are indicine (humped),13 of them are taurine (humpless),

and the rest are hybrids of indicine and taurine. Because the dataset has more breeds than the

supported admixture model, we filtered the dataset until only one hybrid population and two non-

admixed populations remained. In particular, we selected atotal of 76 cattle as our input dataset:

25 Brahman, 27 Hereford, and 24 Santa Gertrudis. The Brahman are a breed of taurine, the

Hereford a breed of indicine, and the Santa Gertrudis a crossbetween Shorthorn and Brahman

with an approximate mixture proportion of five-eighths Shorthorn and three-eighths Brahman.

Because the dataset did not include the Shorthorn cattle, we used the Hereford as a representative

of the Shorthorn since they are closely related to the Shorthorn breeds. Given the filtered bovine

data, we tested our algorithm on 2,587 SNP sites genotyped from chromosome 6.

We then tested our method on a human data set from 1,000 Genomes Project Phase I release

version 3 in NCBI build 37 [6]. The dataset consisted of 1,092 individuals from a number of

different ethnic backgrounds that can largely be grouped into four different continents of origin:

Africa, Europe, Asia, and America. Of the 1,092 individualssequenced, 246 have African an-

cestry from Kenya, Nigeria, and Southwest US. 379 individuals have European ancestry from

Finland, England, Scotland, Spain, Italy, and Utah. 286 individuals have Asian ancestry from
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China and Japan. The remaining 181 individuals from America consist mainly of admixed in-

dividuals from Mexico, Puerto Rico, and Columbia. Similar to the bovine dataset, we filtered

the dataset until only one admixed population and two parental populations remained by remov-

ing the 246 individuals having African ancestry. Due to computational limitations, we ran our

algorithm on a uniformly selected subsample of 150,000 variant sites across the whole genome.

In addition to positive validations, we also performed a negative control for our method on

a human data set for which no appreciable admixture is known to occur. We used the Phase II

HapMap data set (phased, release 22) [4] which consists of over 3.1 million SNP sites genotyped

for 270 individuals from four populations: 90 Utah residents with Northern and Western Europe

ancestry (CEU); 90 individuals with African ancestry (YRI); 45 Han Chinese (CHB); and 45

Japanese (JPT). For the CEU and YRI groups, which consist of trio data (parents and a child),

we used only the 60 unrelated parents. Although the HapMap dataset does not contain known

admixed populations, the dataset allows us to evaluate the method’s ability to learn the diver-

gence time between populations. In addition, it serves as a useful negative control for detecting

admixture. For the HapMap dataset, we tested our algorithm on all 50,556 SNPs collected from

chromosome 22.

For all three datasets, we set the number of genealogiesm to be 30 for these tests. We did not

evaluate the real datasets usingMEAdmix, as the number of segregating sites in the real dataset

exceeded the software’s limitations. As with the simulateddatasets, we used 1,000 steps in the

burn-in period followed by 20,000 MCMC steps. We restarted each chain 10 times for bovine

and HapMap datasets and 50 times for 1000 Genome data to ensure that it did not become stuck

in a local optimum due to poor selection of the starting point.

3.3 Results

Coalescent Simulated Data: Figure3.2(a) shows the estimatedα computed by CLEAX using

10, 30, and 100 genealogies and byMEAdmixon the3.5 × 106-base sequences. Estimations
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Figure 3.2: Mean and 95% confidence interval of the estimatedparameters on3.5 × 106-base

sequences. The different bars represent the means estimated by CLEAX using 10, 30, and 100

genealogies (left) and byMEAdmix(right). Solid gray horizontal bars represent true parameter

values used in the simulated data. (a) Estimatedα organized into three rows of distinct trueα

values and grouped vertically by truet2. (b) Estimatedt1 in generations organized into three

rows of trueα and grouped by truet1. (c) Estimatedt2 in generations organized into three rows
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Figure 3.3: Plot of the mean and standard deviation of the average absolute difference between

the estimated and true parameter values when the effective population size changes from 10000

to 2000, 4000, 6000, 8000, and 10000. (a) Plot of the average absolute difference between the

estimatedα and the trueα. (b) Plot of the average absolute difference between the estimatedt1

and the truet1. (c) Plot of the average absolute difference between the estimatedt2 and truet2.

of α by CLEAX tend to improve as we increase the number of genealogies. When comparing

results toMEAdmix, estimations ofα by CLEAX generally have a slight edge overMEAdmix

using 30 and 100 genealogies. The major exceptions are data with larget1 (4000 generations)

and smallt2 (6000 generations). The advantage of CLEAX is less consistent when using only

10 genealogies. Mean and 95% confidence interval estimations of α by CLEAX also tend to

improve as we increase the number of genealogies. The two methods are about equally likely to

cover the trueα within the confidence interval, but CLEAX tends to have a smaller confidence

interval, especially when run with 30 or 100 genealogies. While MEAdmixdoes not show any

obvious trend as we vary parameters, CLEAX tends to do better on sequences with smallt1 and

larget2.

Estimates oft1 (Figure3.2(b)) andt2 (Figure3.2(c)) show similar trends toα. As with α,

mean estimations by CLEAX tend to be closer to the true values than those ofMEAdmixin ma-

jority of cases. Mean and 95% confidence interval estimations of t1 andt2 again improve for

CLEAX as we increase the number of genealogies. Confidence intervals estimated by CLEAX

are wider than those forMEAdmixfor these parameters, but more often covered the true param-

eters.
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Figure 3.4: Plot of estimatedt1/t2 ratio against truet1/t2 ratio from datasets when the effective

population size changes from 10000 to 2000, 4000, 6000, 8000, and 10000 (a-e).
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Aggregate quantitative performance is shown in Table3.1, which provides the average ab-

solute relative difference between the estimated parameters and true parameters computed by

the algorithm for different lengths of simulations,( |Θ̂−Θ|
Θ

). For datasets with3.5 × 106-base se-

quences, CLEAX has a worse average relative difference between estimated and truet2 andα

parameters when we set the number of genealogies to be 10, butbettert1 average relative differ-

ence fort1. When we increase the number of genealogies to 30 or more, CLEAXyields more

accurate estimates for all three parameters than didMEAdmix.

We next examined performance on smaller sequences of2.0 × 105 bases (approximately 50

to 120 SNPs), to test scaling of the methods to sub-genomic scale data. For these sequences,

our program is unable to automatically identify the three major population groups, and instead

identifying only the divergence into subpopulationsP1 andP3. We attribute this failure to the

small number of SNPs providing insufficient evidence for theexistence of a separate admixed

subpopulationP2. SinceMEAdmixdepends on the user to perform this assignment of popula-

tion groups, we manually performed the comparable assignment for our program in order to test

just assignment of continuous parameters in this low-data scenario. For these data, both meth-

ods again perform comparably to one another at estimatingα, with MEAdmixshowing slightly

lower mean and standard deviation in errors. Compared to the3.5 × 106-base data, both meth-

ods show substantially worseα estimations, with approximately a three-fold increase in mean

error. Estimates oft1 andt2 on the smaller dataset also show substantially worse performance

for both methods. As seen in Table3.1, CLEAX is worse in estimatingt1 andt2 under these

conditions, likely because the assumptions of our simplified likelihood model are valid only in

the limit of large numbers of segregating sites and thus yield more pronounced inaccuracy on

short sequences. Both programs, however, do worse on this small dataset than on the larger ones.

We next examined scaling to larger (genomic-scale) data sets by testing on simulated data of

3.5 × 107 bases.MEAdmixdid not report any progress on any of these data sets after 48 hours

of run time, and so results are reported only for CLEAX. As Table 3.1 shows, accuracy of the
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three estimated parameter is improved relative to the smaller datasets, with roughly 35%, 1%,

and 6.5% improvements fort1, t2, andα for m = 30.

We also examined the average running times for these data sets. CLEAX with |Ĝ| = 30

required 1.27 hours, 1.94 hours, and 7.61 hours, respectively, for the 2.0 × 105-, 3.5 × 106-,

and3.5 × 107-base data sets.MEAdmixrequired 2.8 hours for the2.0 × 105-base data set and

6.2 hours for the3.5 × 106-base data set, while making no apparent progress in 48 hourson the

3.5× 107-base data set.

To understand the effect of varying effective population size on the performance of the al-

gorithm, we evaluated our method on datasets with reduced effective population size after ad-

mixture events. Figure3.3shows the average absolute difference between the estimated and the

true parameter values across different reduced effective population size after admixture. Across

all parameters, the average absolute difference between the estimated and true parameter values

increases as the effective population size decreases. Forα, we observe a modest change in the

absolute difference between the estimated and true parameter values from 0.04 when the effec-

tive population remains constant to 0.10 when the effectivepopulation size is reduced to 20%

of the original size. Estimates fort1 andt2, on the other hand, are significantly affected as we

decrease the effective population size. For botht1 andt2, average absolute difference increases

roughly 100-fold as we decrease the effective population to20% of the original size after ad-

mixture. This suggests that estimation ofα would be less likely to be affected by fluctuation of

effective population size throughout history.

We next examine the performance of the method under varying effective population sizes

by plotting the estimatedt1/t2 ratio against truet1/t2 ratio. This allows us to determine if the

estimation of the time can be corrected when effective population size is drastically changed by

anchoring one time point using external information. Figure3.4shows thet1/t2 ratio for different

effective population sizes. Aside from the datasets where the effective population size drops to

20% of the original size, most of the estimates maintain ratios close to one, suggesting that errors
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induced by changes in effective population size can be effectively corrected if additional partial

data is available fixing one of the two times.

Real SNP Data: Figure3.5(a) shows the smoothed probability density distribution, the mean,

and 95% confidence interval of each parameter value for the bovine dataset. Each gray line in

the figure represents the smoothed probability distribution from one of the ten independent runs

of the Markov chain. All ten runs of the chain on the bovine data yielded consistent probability

distribution may suggest the confidence of the estimated parameter values. The estimated mean

admixture proportion for the bovine dataset is 41.6 percentBrahma and 58.4 percent Hereford.

The 95% confidence interval for admixture proportionα is between 32.2 percent and 50.6 per-

cent. The mean estimate of divergence time (t2) is about 28,000 generations. Assuming 7 years

per generation for cattle, the divergence time would translate to approximately 195 kya (thou-

sand years ago), consistent with the belief that theindicineandtaurinediverged approximately

250 kya [12]. Admixture time (t1) is estimated to be approximately 6 kya with ranges between

3.5 kya to 8.5 kya. This range is likely an overestimate of thetrue value since artificial bread-

ing of the hybrid did not become common until the past 100 years [12]. The mean estimate of

θ = l × N × µ is 36.1. If we assume the effective population size is 2000 based on ancestral

effective population size [12] then the mutation rate would be approximately2.0 × 10−10 base

per site per generation, a much lower estimate than is supported by the prior literature [58, 62].

Using an estimated effective population size of 107 [12], a more consistent estimate of effec-

tive population size after a recent population bottleneck derived by averaging the recent effective

population size of the three breeds, would yield a more realistic mutation rate of2.8×10−9 [62].

Inaccuracy in the rate might also be due to ascertainment bias or the incomplete detection of the

mutations at the sequencing phase.

Figure3.5(b) shows the distribution of CLEAX estimates for the 1,000 Genomes Project data,

interpreting the American group, consisting of individuals from Mexico and Puerto Rico, as ad-

mixed from the Asian and European groups. Given the samples generated from the ten chains,

67



CLEAX inferred an average of9% admixture from the Asian group and89% from the European

group. Admixture fractionα from different runs of the chain are most concentrated around 0.05,

although 6 out of 50 chains, likely stuck in local optima, have values of approximately 0.3 for

5 chains and 0.6 for another. While the mean estimate is slightly lower than other literatures

[66, 90, 112], the 95% confidence interval is consistent with other estimates. The mean esti-

mate of the admixture timet1 was 48 generations with a95% confidence interval between 17 to

150 generations. Assuming 20 years per generations, this would translate to approximately 960

years ago with95% confidence interval ranging from 340 years ago to 3,000 yearsago, a number

slightly higher than the 200-500 year ago estimate by Tanget al. [112] but within a reasonable

range. The mean divergence timet2 was estimated to be 161 generations ago with95% confi-

dence interval between 74 and 447 generations ago. Using thesame assumption of 20 years per

generations, this would translate to approximately 4,800 years ago and a95% confidence interval

ranging from 1,500 years to 9,500 years ago, a consistent range with Garriganet al. [35] but a

more recent estimate than Zhivotvoskyet al.[132].

Figure3.5(c) shows the probability distribution for the HapMap PhaseII data. As with the

bovine dataset, there is a generally high consistency across the ten runs in the parameter esti-

mates. For the HapMap Phase II data, CLEAX estimatedα to be less than 1% with a 0% to

6% confidence interval. The mean divergence time (t2) was estimated to be about 4,000 gener-

ations. Assuming 20 years per generation, the estimated divergence time of Europeans (CEU)

and Africans (YRI) would be around 80 kya with a confidence interval between 57.6 kya and

106 kya. The divergence time (t1) between Europeans (CEU) and East Asians (CHB+JPT) has a

mean estimate of 26.1 kya and a confidence interval between 18.9 kya and 33.6 kya. The mean

estimate ofθ is 4, 320. Assuming the effective population size of human population to be 10,000

[42], the implied mutation rate would be2.16 × 10−9 per site per generation, similar to prior

estimates [58, 62].
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Figure 3.5: Probability density of the estimated parametervalues,t1, t2, andα (left to right)

for the bovine, HapMap, and 1000 Genome datasets. Vertical line represents the mean of the

parameter value with 95% confidence interval printed in parenthesis. (a) 10 MCMC chains ran

on 76 cattle from the bovine dataset on each of the 10 independent runs [12]. (b) 50 MCMC

chains ran on 1092 individuals from 1000 genome data [6]. (c) 10 MCMC chains ran on 210

individuals from HapMap Phase II data [4].

3.4 Discussion

In this chapter, we propose a method to learn admixture proportions and divergence times of

admixture events from large-scale genetic variation data.Prior coalescent-based methods for

estimating such parameters have been proposed in recent years, but such methods tend to be

computationally costly and poorly suited to handling genomic-scale data. Our new method pro-
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Table 3.1: The three quartiles (25%,50%,75%) of the relative difference between estimated and

true parameter values for 135 simulated data sets.t1 andt2 are in units of generations.

2.0× 105

|t̂1−t1|
t1

|t̂2−t2|
t2

|α̂−α|
α

CLEAX-30 [ 2.200 4.535 12.819 ] [ 2.077 5.584 8.922 ] [ 0.223 0.441 1.272 ]

MEAdmix [ 0.317 0.512 0.666 ] [ 0.226 0.479 0.698 ] [ 0.290 0.470 1.337 ]

3.5× 106

CLEAX-10 [ 0.082 0.216 0.397 ] [ 0.069 0.193 0.420 ] [ 0.078 0.168 0.523 ]

CLEAX-30 [ 0.087 0.179 0.289 ] [ 0.068 0.125 0.335 ] [ 0.071 0.156 0.267 ]

CLEAX-100 [ 0.079 0.165 0.254 ] [ 0.063 0.121 0.321 ] [ 0.062 0.153 0.264 ]

MEAdmix [ 0.114 0.356 0.592 ] [ 0.069 0.127 0.329 ] [ 0.069 0.165 0.299 ]

3.5× 107

CLEAX-30 [ 0.061 0.116 0.199 ] [ 0.064 0.124 0.268 ] [ 0.062 0.146 0.248 ]

vides comparable estimates of admixture proportions to theprior art on smaller datasets while

scaling to much larger data sets with increasing accuracy. Although the average errors fort1 and

t2 were worse than those ofMEAdmixfor datasets with2.0 × 105-base long sequences, we ob-

served a general improvement in CLEAX estimates overMEAdmixas we increased the length of

the input datasets. Our method also provides much better time estimates thanMEAdmixon larger

datasets, yielding averaget1 andt2 estimation errors roughly two-thirds of those ofMEAdmixfor

chromosome-scale data. The poor performance on short sequences may be due to the assumption

that coalescence times in the genealogies are fixed, an assumption whose validity breaks down

in the limit of small numbers of variant sites.

Variance between true and estimated parameter tends to be high for datasets with shorter se-

quences, as evident in Table3.1, but decreases as we increase the length of the sequences. We

expect the variance to continue to reduce further as we use longer sequences. Our method thus
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appears to be a poorer choice on older, gene-scale data than prior methods, but a clear improve-

ment providing increased confidence on datasets comparablein size to human chromosomes.

The performance of CLEAX also tends to improve as we increase the number of genealogies,

|Ĝ|, used to estimate the expected branch length. While the estimates ofα by CLEAX are worse

than those ofMEAdmixwhen|Ĝ| is set to 10, the results are better than those ofMEAdmixfor

|Ĝ| = 30. Results showed little improvement upon further increase of|Ĝ| to 100, suggesting that

a relatively small number of genealogies is adequate to closely approximate the true likelihood

function.

Results on the real datasets provide further confidence in themethod, yielding estimates of

divergence times and admixture fractions generally consistent with the current literature [12, 40,

132]. Using the HapMap Phase II dataset, our method’s estimation of the YRI-CEU divergence

time between 76.5 kya to 89.6 kya is consistent with the STR estimation by [132] (62-133kya)

and the HMM estimation by [61] (60-120 kya). Estimation of little or no admixture fraction be-

tween the CHB+JPT and CEU is also consistent with the general belief that negligible admixture

has occurred between the major human populations. Estimates of the divergence time between

Asian and European between 23.0 kya and 33.6 kya for HapMap are similar to estimates by

Gutenkunstet al. [40].

Estimates of the divergence time between Asian and Europe from the 1000 Genome dataset

is also similar to the estimate from HapMap albeit with slightly more recent range but consistent

with estimates from Garrigan (7-13kya)et al. [35]. While the mean average of the admixture

time of the American group was somewhat higher than expected(980 years), the lower bound

of the estimate of 340 years ago is a reasonable estimate of the admixture time. The admixture

fraction estimate for the American group is also consistentwith existing literature [66, 112].

Similarly, using the bovine dataset, estimates of divergence time and admixture fraction were

also consistent with the general consensus [12]. One discrepancy in the bovine dataset was an

unrealistically high estimate of admixture time (6,000 years). One plausible source of error is
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the algorithm’s assumption of fixed effective population size. Because there is believed to have

been a drop of effective population to a few hundred cattle inrecent years [12, 59], the decrease

in effective population size would increase the chance thatcattle share a most recent common

ancestor at a much earlier time. As a result, more mutations that occurred before the admixture

time will be miscategorized as mutations that occurred after the admixture time, resulting in

a bias in estimated admixture time. This observation may suggest that our method in current

form is poorly suited to estimating admixture times on data with significant changes in effective

population size over time. Our analysis of simulated data, however, suggests that estimates

of admixture fractions should remain accurate despite changes in effective population size. The

discrepancy could also be attributed to the difference between the Hereford and Shorthorn breeds,

where the mutations over-represented in the hybrid population that led to the long estimates of

time since admixture could actually have been misattributed mutations between the Hereford and

Shorthorn breeds.

When we examine the results of our method on simulated data, weobserve generally worse

performance with increasing admixture time, especially for simulations with low admixture pro-

portions. Such a phenomenon is likely caused by the fact thatthere are fewer lineages at the

admixture time as we increase the admixture time. For example, for simulations with admix-

ture timet1 of 4,000, we would expect roughly 10 lineages left by the timethe admixture event

occurred, preventing the method from inferring admixture proportions at a resolution of better

than 10%. Consequently, fewer lineages at the admixture timewould increase the variance of

the admixture fraction estimate. This observation suggests that our method will work better at

analyzing more recent admixture.

Analysis on the effect of varying effective size on performance suggests that the estimation

of times of divergence and admixture is sensitive to changesin effective population size but that

such changes have modest effect on the admixture fraction estimation. This observation suggests

that estimates of the admixture fraction can be more reliably trusted than estimates of divergence
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and admixture time when one suspects effective population has changed drastically over time.

For time estimation, estimates were within an order of magnitude when the change in effective

population size was less than or equal to 40%, suggesting estimation could still be trusted if

changes in effective population size are modest. Furthermore, estimates of the ratio betweent1

andt2 seemed to be accurate even when effective population size changes significantly. Despite

poor estimates of time when effective population size changes drastically, we could potentially

correct time estimates if we can anchor at least one time point using external data sources or

prior knowledge even if the population size changes significantly.

Despite some of the shortcomings of the algorithm, our method nonetheless has demonstrated

its capability in estimating accurate parameters on long sequence datasets. While our MCMC

strategy is similar to a number of prior approaches [17, 77], our algorithm is distinguished by

novel strategies for simplifying the likelihood model in ways especially suited to genomic-scale

variation data sets, trading off increases in performance that are substantial for long sequences

with decreases in accuracy that are modest under the same circumstances. Our method also has

the unique feature of automatically inferring the population substructure, history of formation

of that structure, and likely admixture model in a single unified inference, allowing it to take

advantage of the fact that each aspect of that inference is dependent on the answers to the other

two. Although our method currently only estimates divergence times and admixture fractions

for a standard three-population single-admixture scenario, the approach establishes a method for

assigning likelihoods to admixture events and sampling over parameters for these events that

could in principle be used as a module for considering more complicated scenarios potentially

involving larger numbers of populations or multiple admixture events.
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Chapter 4

Coalescent-based Method for Joint

Estimation of Population History, Time,

and Admixture1

Despite intense study and interest, learning the history bywhich modern human population

groups arose from our common ancestors remains a difficult question. The topic is not only

a central issue in basic research into human genetics; it is also an important practical question

in medical genetics for better separating functionally significant genetic variations from spurious

associations with phenotype due to population substructure [53, 117]. While large data sets suit-

able for inferences of population-level evolution have proliferated (c.f., [5, 6, 50, 76]), there is

as yet no fully automated method to analyze the available data and reconstruct the sequences of

events by which ancestral populations have arisen and intermixed to produce the modern diver-

sity of human population groups.

Although there are abundant methods for learning various features of population origin and

evolution, these methods can generally be grouped into two broad categories. First, one can in-

fer evolutionary history by learning phylogenetic trees ornetworks consistent with a set of data

1This chapter was developed from material submitted in [122]
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using variants of a wide variety of phylogenetic inference algorithms (c.f., [31]). Such methods

allow one to build detailed models of evolutionary relationships between individuals in a dataset

and the sequences of mutations that might distinguish them.Such approaches, however, have the

disadvantage of long computation times that limits their usefulness on large genomic datasets or

large sample pools, especially when attempting to reconstruct phylogenetic histories from data

presumed to have undergone extensive recombination. The major alternative is to study history

at the population level, greatly lowering computational time, but typically requiring considerable

preprocessing or manual intervention to identify population subgroups before inferring parame-

ters describing relationships among those subgroups [9, 16, 17, 63, 73, 125]. Once population

labels are defined, a simple approach commonly applied is to compute the genetic distances be-

tween the populations and build a model of their phylogenetic relationships using distance-based

tree reconstruction algorithms, such as UPGMA or neighbor joining [9, 73], with additional

parameters such as divergence times inferred subsequently[15, 29, 103] by custom inferences

designed for analyzing specific subsets of parameters or presumed population-level events.

A particularly challenging event type is admixture, an evolutionary event in which two or

more geographically or culturally separated populations came into contact and establish a new

population in which individuals share a mixture of genetic information from multiple parental

populations. This process of admixture is believed to be common in human populations, where

movements have repeatedly brought together populations that were historically separated. This

can be seen, for instance, in the United States where many African Americans contain varying

amounts of ancestry from Europe and Africa [80]. To deal with the problem of interpreting evo-

lution in the presence of admixture, several coalescence-based methods have been proposed. One

such approach is theleamethod of Chikhiet al. [17], which generates genealogies sampled from

backward simulation of coalescence trees of lineages in order to estimate likelihood scores of ad-

mixture events for Markov chain Monte Carlo (MCMC) sampling. A similar method known as

MEAdmix[126], which also uses the coalescent theory to simulate mutation patterns under var-
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ious admixture scenarios and identify those most consistent with observed variation data. Such

methods were significant advances in learning evolutionaryhistory in the presence of admixture.

Nonetheless, they are typically limited by the assumption of a fixed evolutionary model known

in advance, e.g., a two-parental and one admixture population scenario, and generally to small

fixed numbers of subpopulations. In addition, these methodshave difficulty scaling to large data

sets due to long computation times.

With large whole-genome variation data sets now becoming the norm for the field, new meth-

ods are needed that can productively use such data to build more accurate and detailed models

of population dynamics. Other methods exist for drawing inferences from large-scale variation

data, but each brings its own limitations. Principal component analysis (PCA) has proven a pow-

erful tool for visually capturing relationships within complex population mixtures [13, 34], but

typically requires considerable manual intervention and interpretation to translate these visualiza-

tions into concrete models of the population history. It further provides only limited quantitative

data on relationships between admixed populations (e.g., estimates of admixture fractions but

not timing of divergence and admixture events). Other methods focus on the related problem of

finding detailed assignments of local genomic regions of admixed individuals to ancestral popu-

lations [84, 85, 98], which provides complementary information with important uses in admix-

ture mapping, but similarly offers little direct insight into the history by which these admixtures

occurred.

Here, we describe a generalized Consensus-tree based Likelihood Estimation for AdmiX-

ture (gCLEAX), intended to address the gap in methods for automated inference of population

histories for arbitrary number of populations from genome-scale variation data. This method is

intended to learn population histories from genetic variation data in a more generalized frame-

work than prior models allowing for automated identification of subpopulations, reconstruction

of the history of divergence and admixture events by which those subpopulations likely emerged,

and inference of quantitative parameters describing timing and proportions of admixture for these
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events. The method is based in part on a method described in Chapter3 for learning parameters

of admixture events on two parental and one admixture population scenario [121] but general-

izes that approach to learn population history models for arbitrary numbers of populations. This

method makes it possible for the first time to perform fully automated inferences of population

histories in the presence of admixture on large-scale genomic datasets. In addition, it has the

advantage of learning divergence times and admixture timesin a more general framework en-

compassing simultaneous inference of population groups, their shared ancestry, and potentially

other parameters of their phylogenetic history, allowing it to exploit dependencies among these

features of the population history that are inaccessible toprior approaches.

4.1 Material and Methods

As described in Chapter3, rather than inferring parameters directly from the molecular data

[17, 77, 125], gCLEAX first learns a set of summary descriptions of the overall population history

from the molecular data that allow more efficient processingof the computationally costly Monte

Carlo sampling steps. Once the set of summary descriptions isobtained, it uses a coalescent-

based inference model on the summary descriptions to evaluate possible population histories

and learn most likely divergence times and admixture fractions. Our method is based on our

prior work on learning parameters of a specific three-population admixture scenario [121]. The

present work generalizes that approach to infer populationmodels with or without admixture for

groups of, in principle, arbitrarily many populations. Here, we briefly describe the details of

previous three-population algorithm, with the methods focused primarily on the generalization

in the present work.

Although the present work is focused on the general scenario, the three-population scenario

consisting of three hypothetical populationsP1, P2, andP3 at the current time, is nonetheless

useful for illustrating the model. This scenario is shown inFig. 4.1. At time t1, populationP2

was formed from a mixture of anα fraction of individuals from parental populationP1 and a1−α
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fraction of individuals coming from parental populationP3. Further in the past, at timet2, the

two parental populationsP1 andP3 themselves separated from a common ancestral population.

These events define a network of ancestral relationships between the observed populations and

the ancestral populations from which they derive.

Given the sequence data derived from the prior example, generalized gCLEAX will first

learn that there are three subpopulations in the example dataset using an algorithm developed

in previous work [119], which identifies a well-supported set of phylogenetic “splits” defining

bipartitions of the population into robustly distinguishable subpopulation groups. At the same

time, that algorithm will also identify a set of edges representing the evolutionary history of the

population. Given the prior example, the algorithm would identify the edges that represent the

separation of population 1 from the other populations (edgesec andeb in Fig. 4.1), the separation

of population 2 (ed in Fig. 4.1), and the separation of population 3 (ee andea in Fig. 4.1). In ad-

dition to the edges, the algorithm will also infer a number ofmutations that have likely occurred

along each identified edge. These inferences of meaningful bipartitions, weighted by inferred

numbers of mutations, provide a concise summary of the complete variation data set that will

be used by our algorithm to estimate the posterior probability distribution of the evolutionary

model, event times, and admixture proportions that best describe the data.

4.1.1 Learning Summary Descriptions

As described in detail in Chapter2, we developed an algorithm for identifying subpopula-

tions and their population-level evolutionary tree from single nucleotide polymorphism (SNP)

datasets. The algorithm produces a set of well-supported model bipartitions (i.e., tree edges),

BM = {bM1 , bM2 , ...bMr }, and a set of weight values,W ′ = {w1, w2, ..., wr}, associated with the

model bipartitions, as well as a weightw0 that represents the number of observed bipartitions

that are best explained by none of the model bipartitions. The weights of the bipartitions approx-

imate the numbers of mutations that most likely occurred along the individual branches of the
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Figure 4.1: Example of a history of two parental populations(P1 andP3) and an admixed popu-

lation (P2). Ancestral populationP0 diverged att2 to formP1 andP3, followed by an admixture

event att1 to formP2.

population history to which the bipartitions correspond. This set of model bipartitions and its

associated weights are then used to reconstruct the evolutionary model.

4.1.2 Admixture Model

To learn the population history from the dataset, we will assume that all populations derive from

a single ancestral population. The population is presumed to evolve by a series of discrete events,

each either a divergence event in which an ancestral population splits into two subpopulations

or an admixture event in which two populations contribute tothe formation of a third admixed

population. If we havek populations at the present time, then there must have beenk − 1

evolutionary events going backward in time until all populations merge into a single ancestral

population. Hence, we would havek − 1 time parameters (t1, ..., tk−1) to learn. For each ad-

mixture event, another admixture parameter (αi) describing the fraction of ancestry derived from

each ancestral population would also have to be learned. In addition to time and admixture pa-

rameters, the model is characterized by the topology of the network of population events,M;

the mutation rate,µ; and the effective population size (Nij) of each populationi at each timetj
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for j = {1, 2, ..., k − 1}. As in Chapter3, we will assume that the effective population size is

constant and identical in each population at each time point(e.g.,Nij = N ). Under this assump-

tion, the free parameters we must learn areM, T = (t1, t2, ..., tk−1), A = (α1, ..., αk−2), and

θ = Nµ.

Under the described admixture scenario, the consensus-tree based algorithm should first iden-

tify that there arek subpopulations in the data. Second, the algorithm should output a model

bipartition setB = {bM1 , bM2 , ..., bMr } characterizing the evolutionary history of the populations.

Finally, the algorithm should produce a weight vectorW = {w0, w1, w2, ..., wr}, representing the

numbers of observed variants most likely to correspond to each model bipartitionbM1 , bM2 , ..., bMr

as well one additional weight attributed to a “null bipartition,” essentially a noise term collecting

observed variations that appear not to correspond to any population-level bipartition.

To infer the parameter setΘ = {M, T ,A, θ}, we estimate the distribution of the posterior

probability of the parameters given the observed weightsW = {w0, w1, w2, ..., wr} using a

similar model described in Chapter3

P (Θ|W ) =
P (W |Θ)P (Θ)

P (W )

Since we have no prior knowledge of the parameters, we assumea uniform distribution for

the prior. Hence, we have

P (Θ|W ) ∝ P (W |Θ)

If we know the exact genealogy of the individuals at a particular segment of the genome

where no recombinations have occurred, under the assumption of an infinite sites model, the

number of mutations would be Poisson distributed with mean equal to the length of the genealogy

lG multiplied by the number of base pairsl in the segment and the mutation rateµ. While the
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assumption of infinite sites is an approximation, it is a reasonable one when the mutation rate

per site per generation is much smaller than the inverse length of the genealogy, as recurrent

mutations become highly unlikely under such a scenario.

Since a genealogy is a tree, it can be broken down into a set of bipartitions (tree edges)

weighted by elapsed times. For each bipartition in the genealogy, we can determine the most

likely assignment of that bipartition to a branch in the consensus model, with the total number of

bipartitions yielding an estimated length of the branch in the consensus model. Given a branch

length, we can then calculate the expected number of mutations assigned to each model branch

given a mutation rate and the length of the DNA fragment. If a potential candidate genealogy

closely resembles the true genealogy, we would expect the number of observed mutations as-

signed to each model branch to closely match the number of expected mutations assigned to

each model branch. Our likelihood function can thus be broken down as a function of a geneal-

ogy and branch lengths assigned to the model branches. Because the entire genome is made of

fragments of DNA having different genealogies due to recombinations, our likelihood function

will have to sum over possible mixtures of genealogies that might collectively explain the full set

of fragments.

To make MCMC sampling of the likelihood function practical, we make two simplifications

described in Chapter3 that drastically reduce the number of steps needed to achieve conver-

gence in exchange for a modest decrease in precision. First,we substitute expected coalescence

times for integration over the full distribution of possible times. Second, we assume that the

admixed evolutionary scenario as a whole is described by a mixture of a finite numberm of

distinct genealogies. Chapter3 showed these assumptions introduce modest errors in accuracy

for genome-scale data while substantially simplifying thecomputational problem. The result is

the following likelihood function, a generalization of that derived in [121]:

P (W |Θ) =
r
∏

i=0

∑

G

P (wi|lbMi )P (lbMi |G)P (G|Θ)

wherelMbi is the total branch length assigned toith model branch in the consensus model,P (wi|lbMi ) =
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Poisson(wi;µ× lbMi ), andĜ denotes the simplified genealogy set reduced tom genealogies.

4.1.3 MCMC Sampling

We estimate likelihoods of potential models by Metropolis sampling, where the state of the model

is the set of all parametersΘ = {M, T, A, θ} and the set of possible genealogiesĜ spanning

the genome, where|Ĝ| = m. The likelihood of any stateXo = {xo
M, xo

T , x
o
A, x

o
θ, x

o
Ĝ
} is then

expressed as follows:

P (Xo|W ) ∝

(

r
∏

i=0

P (wi|lbMi )

)

P (lbMi |xo
Ĝ
)P (xo

Ĝ
|xo

M, xo
T , x

o
A, x

o
θ))

New statesXn are then sampled by first sampling a new discrete model uniformly from the set

of possible models consistent with the number of populations identified in the consensus tree

phase and next sampling new continuous values for the quantitative parametersT , A, andθ from

independent Gaussian distributions withµo,ti = xo,ti , µo,αi
= xo,α, andµo,θ = xo,θ andσti ,

σαi
, andσθ. Using the three-population scenario as an example, the chain will first sample a

model from one of the six possible models shown in Fig.4.1.3. Suppose a model with admixture

betweenP1 andP3 was selected (Fig.4.1.3(b)), the chain will then proceed to sample newxn,t1 ,

xn,t2 , xn,α1
, andxθ from Gaussian distributions with meansµo,t1, µo,t2, µo,α1

, µo,θ and standard

deviationsσt1 , σt2 , σα1
, σθ respectively. If a model with no admixture was selected, thechain

will proceed to sample newxn,t1 andxn,t2 from Gaussian distributions but automatically set

xn,α to 1. The variances of the Gaussian distributions are adjusted during the burn-in period but

subsequently kept fixed, a heuristic adjustment intended todecrease mixing time by balancing

the jump size per step and fraction of jumps accepted. Specifically, variances of the Gaussian

distributions are adjusted according to absolute difference between the expected and the observed

number of mutations divided by the observed number of mutations. If the difference between

the expected and the observed is small, the variances would be close to zero or a minimum

value specified by the user. If the difference between the expected and the observed is large,

the variances would be set at a maximum value specified by default or by the user. Once the
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algorithm selects values of parameters for the new stateXn, it then samples a new genealogy set

through coalescence simulation given the selected new parameters.

Candidate state transitions are then accepted or rejected based on the likelihood function

Q(Xn|Xo) = P (xn
M|xo

M)

(

k−1
∏

i

P
(

xn
ti
|µo

ti
, σti

)

P
(

xn
αi
|µo

αi
, σαi

)

)

×P (xn
θ |µ

o
θ, σθ)P

(

Ĝ|xn
T , x

n
M, xn

A, x
n
θ

)

by the Metropolis criterion.

If statesXo andXn have the same model topology but differ in the population labeling or

in time values, admixture fraction, orθ, then the parametersM, T , A would be distributed

identically in the old and new states, letting us simplify the Metropolis acceptance ratio to:

r =

(

∏r
i=0 P (wi|lbMi )

)

(

∏4
i=0 P (wi|lbMi )

)

On the other hand, ifXo andXn have different admixture events, then the transition proba-

bilities would only cancel out in the acceptance ratio for parametersM, T , andαj ∈ A when

thejth event is an admixture event shared byXn andXo. LetA− be the set of admixture events

found inXo but notXn and letA+ be the set of admixture events found inXn but notXo. In

this case, the Metropolis acceptance ratio can be simplifiedto:

r =

(

∏r
i=0 P (wi|lbMi )

)

∏

j∈A− P (αo
j |α

n
j , σαj

)
(

∏4
i=0 P (wi|lbMi )

)

∏

j∈A+ P (αn
j |α

o
j , σαj

)

4.1.4 Validation on Simulated Data

We first validated our method on the classical admixture scenario of two parental populations,

P1 andP2, and one admixed population,P3, at the present time. The admixed populationP3

is assumed to have been formed at timet1 with admixture fractionα1 from populationP1 and

1 − α1 from populationP2. We used a total of 90 different simulated datasets generated in our
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Figure 4.2: Possible evolutionary models for 3 populations. Top: Models with admixture events

at t1. Bottom: Models with divergence events att1. Note that models with different ordering of

the populations are excluded because they are isomorphic toone of the six models presented.

85



prior work[121] consisting of all possible combinations oft1 = {400, 800, 1200, 2000, 4000}, t2

= {6000, 8000, 20000}, andα1 = {0.05, 0.2, 0.6} on3.5× 106-base sequences and on3.5× 107-

base sequences. Each simulated dataset consists of 100 chromosomes from each of the three

hypothetical populations (P1, P2, andP3) resulting in a total of 300 chromosomes. We chose

this set of datasets as a baseline for comparison to existingcoalescence-based algorithms for

reconstructing admixture events that are limited to this specific three-population model.

To evaluate the performance of our method on the two-parental and one admixture scenario,

we first assessed the quality of the evolutionary model selected by our method by the fraction of

trials in which our method assigned the maximum likelihood to the correct evolutionary model.

This measure gives us a reasonably stringent assessment of accuracy in selecting the correct

topology for the history independent of its quantitative parameters.

We further assessed the quality of the method’s time and admixture fraction estimations by

comparing results obtained by our method with those of a leading method for learning admixture

fractions and divergence times:MEAdmix[126]. MEAdmixtakes as input a set of sequences

of genetic variations from individual chromosomes groupedinto three different populations and

outputs the admixture fraction, divergence time, admixture time, and mutation rates from the

input data. WhileMEAdmixproduces similar outputs to gCLEAX, one key difference between

MEAdmixand gCLEAX is the specification of populations. InMEAdmix, individual sequences

must be assigned by the user to one of the three populations. On the other hand, gCLEAX infers

the populations directly from the variation data before estimating the divergence time and admix-

ture fraction. Although there are a number of methods in the literature for learning admixture and

divergence times [17, 77, 126], we chose to compare toMEAdmixbecause it estimates similar

continuous parameters to gCLEAX and its software is freely available. The same characteristics

apply to lea, but it was unsuitable for the present comparison because itis designed for much

smaller datasets and proved unable to process even the smallest models of genome-scale data we

considered. Other methods were also investigated [11, 77], but we could not directly compare
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their performance to our own because of different admixturemodels assumed, different estimated

parameters, or lack of availability of the software for comparison. We ran both gCLEAX and

MEAdmixon the 135 simulated datasets and assessed error by averaging the absolute difference

between the true and estimated parameter values for each parameter,(|Θ̂ − Θ|). When running

our method on simulated data, we set the number of genealogies for gCLEAX to bem=30. We

ran the MCMC chain 10 times with 1,000 steps of burn-in followed by 10,000 steps of sampling

for each run. For adjusting for the variances during the burn-in period, we arbitrarily used a

minimum and maximum variance oft = 0.001θ and t = 0.15θ for time andα = 0.01 and

α = 0.15 for admixture proportion. Forθ, we first calculated a rough lower and upper bound by

assuming all other parameter values are known. If we set all the divergence and admixture times

to have occurred after every lineage within the subpopulations coalesced, we would get a coarse

estimate of the lower bound by dividing the expected number of mutations from such a scenario

by the observed number of mutations. On the other hand, if we set all the divergence times and

admixture times to have occurred at exactly time zero, we would get a coarse estimate of the

upper bound ofθ by dividing the expected by the observed number of mutations. Using these

coarse lower and upper bounds, we set our minimum and maximumvariance ofθ to be 0.1%

and 5% of the difference between the upper bound and the lowerbound. ForMEAdmix, we set

the bootstrap iterations to be five, which proved to be a practical limit for the mid-size data sets

given the run time bounds.

We next evaluated our method on a number of simulated datasets generated using differ-

ent evolution scenarios with four modern population groups, denotedP1, P2, P3, andP4. We

simulated data consisting of three evolutionary events at timest1, t2, andt3 that resulted in the

formation of four population groups at the present time. At the most ancient time,t3, we simu-

lated a divergence event that splits the ancestral population intoP1 and the parental population,

P234, consisting ofP2, P3, andP4. Then, at timet2, either a divergence event splits the parental

population,P234, into P2 and parental populationP34 or an admixture event occurs betweenP1
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andP234 with admixture proportionα2 fromP1 and1−α2 fromP234 to yield an admixed popula-

tion P2 and parental populationsP1 andP34. Finally, at timet1, either a divergence event occurs

to formP3 andP4 or an admixture event occurs betweenP2 andP34 with α1 admixture propor-

tion fromP2 to form admixed populationP4 and parental populationP2 andP3. We generated

a total of 36 different datasets from combinations oft1 = {2000, 4000}, t2 = {4000, 10000},

t3 = {6000, 20000}, α1 = {0, 0.05, 0.2}, andα2 = {0, 0.3, 0.6} wheret1 < t2 < t3. We

chose the coalescence simulator MS [48] for generating the simulated datasets. In all of our

simulations, we assumed the effective population size of each population to be 10,000. We set

the mutation rate to be10−9 per base pair per generation, the recombination rate to be10−8 per

generation for simulations, and the length of the chromosome to be7× 107 base pairs.

Using the same configurations as with the evaluation of the three-population scenarios, we

evaluated our method’s ability to find the right evolutionary model on the simulated four-population

datasets by computing the percentage of correctly inferredevolutionary models. Because we are

not aware of any other algorithm that performs joint inference of evolutionary model, time, and

admixture parameters for four or more populations, we instead compared our estimates of the

time parameters to those of a commonly applied divergence estimator based on Wright’sFst

statistic described by Reynoldset al. [93]. Letting P̄ijk be the frequency at theith site of thejth

allele in thekth population, a commonly applied estimator ofFST between any two populations

with n total samples is

F̂ST =

∑

i

(

1
2

∑

j

(

P̄ij1 − P̄ij2

)2
− 1

2(2n−1)

(

2−
∑

j

(

P̄ 2
ij1 + P̄ 2

ij2

)

))

∑

j

(

1−
∑

j P̄ij1P̄ij2

)

Under a model of neutral divergence from an ancestral population, we can estimate the time

of the divergence using the following formula:

t̂ = − log(1− F̂ST )
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wheret is in unit of 2N generations. We computed the divergence times between all pairs of

populations and used the UPGMA tree reconstruction algorithm [106] to generate an evolution-

ary history for these times. The estimated time for each divergence point in the tree was then

used for comparison to our method. For each divergence or admixture time point (t1, t2, andt3),

we computed the average difference between the true and estimated time from the 36 different

simulated datasets we generated.

4.1.5 Validation on Real Data

We further evaluated our method by applying it to two real large scale genome variation datasets.

We first evaluated our method using sequence data from 1,000 Genomes Project Phase I release

version 3 in NCBI build 37 [6]. The dataset consists of 1,092 individuals from a number of

different ethnic backgrounds that can be largely grouped into four broad subpopulations by con-

tinent of origin: Africa, Europe, Asia, and America. Of the 1,092 individuals sequenced, 246

have African ancestry from Kenya, Nigeria, and Southwest US. 379 individuals have European

ancestry from Finland, England, Scotland, Spain, Italy, and Utah. 286 individual have Asian

ancestry from China and Japan. The remaining 181 individualshave American ancestry and are

mainly admixed individuals from Mexico, Puerto Rico, and Columbia. We note that the data de-

viates somewhat from the assumptions of our model because wedo not have a sample descended

from the Native American subpopulation that would have contributed to the ancestral admixed

American populations. Rather, we use modern Asian individuals as a proxy for a modern Native

American population. Due to computational issues, we ran our consensus tree algorithm on a

uniformly selected subsample of variant sites across the whole genome consisting of 100,000

sites to derive a summary description of the dataset as a set of model bipartitions representing

the population clusters. Once we identified a set of model bipartitions, we then used the biparti-

tion set on the complete genome to compute the weight assigned to each model bipartition and

use the set of pairs of model bipartitions and weights to estimate the evolutionary history and its
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parameters.

In addition to sequencing datasets from the 1,000 Genomes Project, we also tested our

method on the HapMap Phase III dataset (phased, release 2) [5] which genotyped over 1.6 mil-

lion SNP sites 1,184 individuals from 11 global populations. Instead of using the whole 1,184

individuals, we chose three non-admixed populations and one admixed population among the 11

global populations to minimize the effect of ascertainmentbias. The three non-admixed popula-

tions were the 117 individuals with African ancestry from Ibadan, Nigeria (YRI); 115 individuals

with Asian ancestry from Beijing, China and Tokyo, Japan; and 170 individuals with European

ancestry from Utah, USA. The admixed population consisted of 52 individuals with Mexican

ancestry from Los Angeles, CA. Again, the data is not ideal forour model because of the lack of

a modern non-admixed Native American population. We would expect the model to treat modern

Asian populations as a proxy for this Native American population, with some error in inferences

to be expected as a result.

Because a large number of SNPs sites used in genotyping the HapMap samples were col-

lected from other sources, such as dbSNP [99], distribution of the allele frequencies were heavily

skewed due to ascertainment bias. In addition, HapMap initially filtered SNP sites with less than

5% minor allele frequency in the sample pools, but later switched to a two-hit criterion strategy

where at least two counts of the minor allele must have occurred in the sample in order for the

site to be considered a SNP site. Furthermore, HapMap additionally resequenced a portion of the

samples on ten 500-kb ENCODE regions [19]. As a result, because of the utilization of multiple

ascertainment mechanisms, we chose not to use the whole genome data. Instead, we tried to

minimize the number of ascertainment sources by using chromosome 1 SNPs, as chromosome

1 contains no SNPs identified via the ten 500-kb ENCODE regions. In addition, since the pub-

lished HapMap data did not identify the specific sites obtained using the 5% filtering approach

versus the two-hit criterion, we therefore assumed that there is equal chance that a site with fre-

quency lower than 5% is derived from either criterion. Giventhis SNP ascertainment model,
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we then modified our likelihood function to correct for ascertainment bias. LetP (asc|bj) be the

probability of ascertaining a variant site given that the site is generated from a mutation occurring

along branchbj ∈ G. We can then estimate the probability of ascertainment by converting each

branchbj to an allele count and use the method of [78] to estimate an ascertainment probability.

Given this ascertainment probability, we correct for ascertainment bias in any branch length of

bj by multiplying the inferred length ofbj by its estimated ascertainment probability. This would

give us an ascertainment-corrected branch lengthlasc
bMi

:

lascbMi
=

∑

bj∈{b|f(b)=i}

lbjP (asc|bj)

By substitutinglasc
bMi

for lbMi , we can correct our likelihood model for the presumed ascertainment

bias.

For both datasets, we performed 50 trials of MCMC sampling with 2,000 steps of burn-in

followed by 10,000 steps of sampling per trial. We set the number of genealogies|G| to be 30

and the minimum and maximum value of the variances of the Guassian distributions for sampling

next parameter values to be the same as used for the simulation study.

4.2 Results

4.2.1 Simulated Data

Two Parental and One Admixed Populations

Table4.1-4.3 shows the inferred posterior probabilities for all six possible evolutionary models

for the three-population scenarios extracted from the outputs of the MCMC chains. Of the 45

datasets simulated from two parental and one admixed population scenarios with3.5× 106-base

sequences, 43 yielded correct identification of the true evolutionary model as the most likely

evolutionary model. The two datasets for which the algorithm incorrectly inferred the most likely
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evolutionary model were datasets simulated with low admixture fraction (α = 0.05), suggesting

the variance in3.5 × 106-base sequences may still be too large in some instances to completely

distinguish the different evolutionary models. If we compare the probability distribution between

the three different sets of admixture fractions (α = 0.05, α = 0.2, α = 0.6), datasets with low

admixture fractions (α = 0.05) tend to yield flatter distributions, and thus lower-confidence

predictions, than do datasets with moderate admixture fractions (α = 0.2, 0.6).

When we tested our method on longer sequences, we observed improved estimation of the

most likely evolutionary model. Table4.4-4.6shows the probability distribution for all six possi-

ble evolutionary models on the 453.5×107-base sequences generated from the three populations

scenario. For3.5 × 107 bases sequences, the algorithm inferred the correct evolutionary model

for all the 45 simulated datasets. As with the shorter sequence lengths, datasets with low ad-

mixture fractions (α = 0.05) tend to yield flatter probability distributions than did datasets with

moderate admixture fractions (α = 0.2, 0.6).

Quality of the method’s parameter estimation on time and admixture fraction also compares

favorably toMEAdmix. Table4.7 shows the mean and standard deviation of the absolute dif-

ference between estimated parameter values and true parameter values from the 45 simulated

datasets with3.5×106-base sequences and 45 simulated datasets with3.5×107-base sequences.

BecauseMEAdmixdid not show any progress for more than 48 hours for3.5 × 107-base se-

quences, we did not obtain results forMEAdmixon 3.5 × 107-base sequences. From Table4.7,

we observed gCLEAX generally yields a slight improvement of the average absolute difference

between the true and estimated value fort1, t2, andα overMEAdmixon3.5×106-base sequences.

Furthermore, average absolute difference of the parameters tends to improve as we increase from

3.5× 106-base sequences to3.5× 107-base sequences.
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Four-Population Scenarios

We next examine the performance on a set of more complicated evolutionary scenarios with four

populations having either zero, one, or two admixture events. Table4.8shows the inferred prob-

ability distribution of the top six evolutionary models foreach of the datasets with no admixture

events. Our method correctly inferred the true evolutionary model to be the most likely evolution-

ary model on all four of the datasets with no admixture events. The results for the admixture-free

datasets showed that scenarios with long divergence times (t3) tend to have sharper probability

densities, and thus more confident predictions for the correct evolutionary model.

Results on datasets with one admixture event att2 followed by a divergence event att1

showed similar a trend (Table4.9). For all the datasets with one admixture event att2 fol-

lowed by a divergence event att1, the true model was correctly inferred to be the most likely

model. Scenarios with shorter divergence times att3 tended to have flatter probability densities

compared to scenarios with longer divergence times att3.

When we changed the simulated scenario to a divergence event at t2 followed by an admixture

event att1, the correct evolutionary model became harder to infer. As shown in Table4.10,

five out of eight datasets with one divergence event att2 followed by one admixture event at

t1 were correctly inferred by our method. The three datasets inwhich the method failed to

infer the correct evolutionary model each produced an errorof failing to detect the admixture

and misinterpreting the formation of the admixed population as being purely a divergence from

its major ancestral population. This particular error occurred only in scenarios for which the

admixture fraction was low (α = 0.05).

For the remainder of the four-population datasets containing two admixture events, the re-

sults showed a similar trend. Of the 16 datasets with two admixture events, 13 were correctly

inferred by our method. Among the three datasets in which ourmethod failed to infer the correct

model as the most likely one, two were scenarios in which a low-proportion admixture event

was incorrectly identified as a divergence event from the major population. The remaining case
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also consisted of an incorrect identification of admixture as divergence, but in a scenario with a

comparatively high admixture proportion (α = 0.2).

When pooling all the four-population results, we found that our method was able to infer

the correct evolutionary model in 83.3% of scenarios. Compared to the results obtained from

datasets with three populations, the four-population scenarios tend to have much flatter probabil-

ity distributions and thus lower confidence in the correct models. In four-populations datasets,

the most likely models have an average of 32% inferred posterior probability compared to prob-

abilities of nearly 100% for three-population scenarios. Of the six datasets for which the method

failed to infer the correct evolutionary model, five of them were models with low admixture pro-

portions. In these cases, our model mistakenly inferred theadmixture event as a divergence event

from the major ancestral population.

To assess the quality of the parameter estimation, Table4.12shows average error between the

estimated parameter values and the true parameter values. The table shows a trend of increasing

absolute difference between the estimated and true parameter values as the evolutionary events

date further back in time. Estimates oft1 show the least error, followed byt2 andt3. Estimates of

admixture proportion likewise show increasing error as events become more ancient. When com-

paring the average error for our method with that of theFST approach, we found that gCLEAX

yields comparable but slightly superior time estimates. While the differences were almost negli-

gible for t1 andt2, our estimates oft3 improved approximately 60% compared to those based on

FST . TheFST approach does not estimate admixture fractions, though, and we therefore could

not use it as a basis for comparison to the quality of our admixture proportion estimates.

4.2.2 Real Data

Running our method on the 1,000 Genomes dataset yielded four clusters of individuals, as shown

in Fig. 4.3. 95 chromosomes from the AMR group showed closer resemblance to the EUR group

than the AMR group and were classified with the EUR group. 5 chromosomes from the AMR
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Figure 4.3: Top: True population assignment based on regionof origin for 1000 Genome Project

dataset. Bottom: Population assignment identified by gCLEAX.

group were grouped with the AFR group. One chromosome from AMR group and one from

ASN exchanged membership. While the assignments of individuals to populations do not always

match the region of origin exactly, we used the assignment identified by our algorithm rather than

the true regions of origin to learn the evolutionary historyfrom the dataset. Running the MCMC

sampling on the whole-genome dataset from the 1,000 GenomesProject yielded 21 evolutionary

models with non-zero probability. Because many of the modelshave low posterior probabilities,

we only show the four models with the highest posterior probabilities in Fig.4.4. The most likely

evolutionary model from the 1,000 Genomes Project datasetsleads to the inference that the AFR

group diverged initially from the rest of the populations around 103 kya assuming the effective

population size of human to be 10,000 [42] and 25 years per generation. After the divergence

of the AFR group from the remaining populations, the EUR and ASN populations diverged at

roughly 17 kya. Finally, the AMR group was inferred to be recently admixed from the ancestors

of the EUR and ASN groups, with an admixture proportion of 90%EUR and 10% ASN at an

estimated time of 5 kya. Other slightly less probable modelssuggest that the EUR group may

have low admixture proportion from AFR or the ASN may have lowadmixture proportion from

the AFR group.

To verify our findings, we also performed our method with ascertainment bias correction on

the HapMap Phase 3 dataset. Fig.4.5 shows the population assignment identified by gCLEAX
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Figure 4.4: Top four evolutionary models obtained from running 50 MCMC chains on whole

genome dataset from 1000 Genome Project. The labels represents the four different regions

of origins the dataset consisted of. AFR represents groups of individuals with majority having

African ancestry. EUR represents group of individuals withmajority having European ancestry.

ASN represents group of individuals with majority having Asian ancestry. AMR represents

group of individuals from the Americas that is believed to bean admixed from Native Americans,

African, and Europeans.

There were 26 individuals from the MXL group that were assigned to the CEU group, with the

rest of the sample correctly assigned to the MXL group. Running gCLEAX on chromosome 1 of

the HapMap dataset using the learned population assignments, gCLEAX identified 16 evolution-
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Figure 4.5: Top: True population assignment for HapMap 3 dataset. Bottom: Population assign-

ment identified by gCLEAX.

ary models with non-zero probability. Similar to the results obtained from the 1,000 Genomes

Project dataset, Fig.4.6shows that the most likely models share nearly the same topology with

the exception of missing the admixture of the Mexican group.Instead, the most likely model

suggests the MXL group diverged from the CEU group 29 kya. An evolutionary model correctly

inferring the admixture event was identified as the second most likely model, with a similar

probability value to the most likely one (15.2% vs. 16.4%). As with the 1,000 Genomes dataset,

other less probable models suggested that the CEU group or theCHB+JPT groups might have

contained admixture from the YRI group. The divergence proportions and admixture times esti-

mated from gCLEAX were also similar to the values obtained from the 1,000 Genomes dataset

with the divergence of YRI from the rest of the world at∼ 130 kya, followed by the divergence

of CEU and CHB+JPT at∼ 60 kya, and the divergence or admixture event producing MXL at

∼ 20− 30 kya.

4.3 Discussion

Efforts to date at resolving the history of divergence and admixture events by which modern hu-

man population structure has emerged have involved a complicated process requiring intensive
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Figure 4.6: Top four evolutionary models obtain from running 50 MCMC chains on the chro-

mosome 1 dataset from HapMap Phase 3 Release 2. Labels: YRI=African from Kenya, Nigeria,

CEU=European ancestry from Utah, USA, CHB+JPT=Asian from Beijing, China and Tokyo,

Japan, MXL=Mexican from California, US

expert intervention and manual integration of numerous software tools and analysis efforts. As

we seek to develop population history models of ever greaterscope and finer resolution and from

ever larger data sets, such manual expert efforts can be expected to become increasingly imprac-

tical and error-prone. In this chapter, we propose a first attempt to automate the process of using

genetic variation data to infer complicated population history models that capture population-

level divergence and admixture events. We have shown that anapproach for computing concise

summary statistics from large-scale genetic variation data sets and using them to evaluate popu-
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Table 4.1: Probability distribution of the possible evolutionary models for the three population

scenarios (two parental + one admixed) estimated by gCLEAX for α = 0.05 on 3.5 × 106

base sequences. Each row shows one input parameter set followed by the estimated posterior

probabilities for each of six possible scenarios (top). In each case, the left-most scenario is

correct.

t1 t2 α1
P2 P1 P3

P3

P2

P2

P1 P2

P1

P3

P3 P2 P1 P3

P1

P2

P2 P3

P2

P1

P1

0.01 0.15 0.05 0.893 0.027 0.000 0.041 0.025 0.014

0.02 0.15 0.05 0.720 0.120 0.000 0.040 0.070 0.051

0.03 0.15 0.05 0.384 0.370 0.000 0.112 0.085 0.049

0.05 0.15 0.05 0.227 0.545 0.000 0.082 0.072 0.075

0.10 0.15 0.05 0.505 0.396 0.029 0.022 0.037 0.012

0.01 0.20 0.05 0.510 0.270 0.000 0.067 0.102 0.051

0.02 0.20 0.05 0.612 0.148 0.000 0.089 0.107 0.043

0.03 0.20 0.05 0.641 0.192 0.000 0.068 0.064 0.036

0.05 0.20 0.05 0.524 0.295 0.000 0.068 0.076 0.037

0.10 0.20 0.05 0.413 0.500 0.018 0.020 0.034 0.016

0.01 0.50 0.05 0.726 0.075 0.000 0.061 0.070 0.067

0.02 0.50 0.05 0.424 0.212 0.000 0.135 0.130 0.099

0.03 0.50 0.05 0.641 0.305 0.000 0.024 0.015 0.015

0.05 0.50 0.05 0.955 0.024 0.000 0.013 0.007 0.001

0.10 0.50 0.05 0.921 0.056 0.000 0.002 0.005 0.016

lation models relative to a novel likelihood model providesa feasible method for reconstructing

simple scenarios with comparable accuracy to leading methods on well-defined subproblems and

without the need for manual intervention to identify population groups or history topologies or
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Table 4.2: Probability distribution of the possible evolutionary models for the three population

scenario (two parental + one admixed) estimated by gCLEAX forα = 0.20 on 3.5 × 106 base

sequences. Each row shows one input parameter set followed by the estimated posterior proba-

bilities for each of six possible scenarios (top). In each case, the left-most scenario is correct.

t1 t2 α1
P2 P1 P3

P3

P2

P2

P1 P2

P1

P3

P3 P2 P1 P3

P1

P2

P2 P3

P2

P1

P1

0.01 0.15 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.15 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.15 0.20 0.997 0.000 0.000 0.003 0.000 0.000

0.05 0.15 0.20 0.986 0.010 0.000 0.004 0.000 0.001

0.10 0.15 0.20 0.582 0.329 0.053 0.014 0.014 0.009

0.01 0.20 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.20 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.20 0.20 0.956 0.024 0.000 0.010 0.004 0.005

0.05 0.20 0.20 0.988 0.003 0.000 0.001 0.000 0.008

0.10 0.20 0.20 0.898 0.075 0.000 0.017 0.006 0.004

0.01 0.50 0.20 0.999 0.000 0.000 0.000 0.001 0.000

0.02 0.50 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.50 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.05 0.50 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.10 0.50 0.20 0.848 0.054 0.000 0.059 0.022 0.018

to synthesize results of multiple prediction methods. Whileour MCMC strategy is similar to a

number of prior approaches [17, 77], our algorithm is distinguished by its capability to learnan

evolutionary model for an in principle arbitrary number of populations and by its novel strate-

gies for simplifying the likelihood model in ways especially suited to genomic-scale variation
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Table 4.3: Probability distribution of the possible evolutionary models for the three population

scenario (two parental + one admixed) estimated by gCLEAX forα = 0.60 on 3.5 × 106 base

sequences. Each row shows one input parameter set followed by the estimated posterior proba-

bilities for each of six possible scenarios (top). In each case, the left-most scenario is correct.

t1 t2 α1
P2 P1 P3

P3

P2

P2

P1 P2

P1

P3

P3 P2 P1 P3

P1

P2

P2 P3

P2

P1

P1

0.01 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.05 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.10 0.15 0.60 0.726 0.116 0.142 0.008 0.006 0.001

0.01 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.05 0.20 0.60 0.993 0.000 0.003 0.003 0.000 0.000

0.10 0.20 0.60 0.867 0.000 0.105 0.024 0.004 0.000

0.01 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.05 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.10 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

data sets, trading off large increases in performance for small compromises in accuracy on the

assumption of large numbers of variant sites. Our method also has the unique feature of auto-

matically inferring the population substructure, historyof formation of that structure, and likely

admixture model in a single unified inference, allowing it totake advantage of the fact that each

101



Table 4.4: Probability distribution of the possible evolutionary models for the three population

scenario (two parental + one admixed) estimated by gCLEAX forα = 0.05 on 3.5 × 107 base

sequences. Each row shows one input parameter set followed by the estimated posterior proba-

bilities for each of six possible scenarios (top). In each case, the left-most scenario is correct.

t1 t2 α1
P2 P1 P3

P3

P2

P2

P1 P2

P1

P3

P3 P2 P1 P3

P1

P2

P2 P3

P2

P1

P1

0.01 0.15 0.05 0.702 0.028 0.000 0.035 0.114 0.120

0.02 0.15 0.05 0.976 0.000 0.000 0.011 0.000 0.013

0.03 0.15 0.05 0.523 0.198 0.000 0.080 0.063 0.137

0.05 0.15 0.05 0.628 0.251 0.000 0.057 0.042 0.022

0.10 0.15 0.05 0.533 0.368 0.000 0.052 0.015 0.031

0.01 0.20 0.05 0.996 0.003 0.000 0.001 0.000 0.000

0.02 0.20 0.05 0.697 0.068 0.000 0.035 0.005 0.194

0.03 0.20 0.05 0.403 0.132 0.000 0.154 0.090 0.221

0.05 0.20 0.05 0.888 0.000 0.000 0.011 0.000 0.101

0.10 0.20 0.05 0.429 0.420 0.000 0.052 0.034 0.065

0.01 0.50 0.05 0.624 0.022 0.000 0.019 0.009 0.326

0.02 0.50 0.05 0.665 0.003 0.000 0.073 0.010 0.249

0.03 0.50 0.05 0.542 0.130 0.000 0.097 0.024 0.207

0.05 0.50 0.05 0.491 0.193 0.000 0.052 0.053 0.212

0.10 0.50 0.05 0.659 0.077 0.000 0.026 0.069 0.170

aspect of that inference is dependent on the answers to the other two. While the automated mod-

els still have a long way to go before they can match the scope of expert-curated analysis, they

do establish a proof-of-concept for a principled automatedapproach and help identify avenues

for future work. Continued efforts in this direction will be an important component of advancing
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Table 4.5: Probability distribution of the possible evolutionary models for the three population

scenario (two parental + one admixed) estimated by gCLEAX forα = 0.20 on 3.5 × 107 base

sequences. Each row shows one input parameter set followed by the estimated posterior proba-

bilities for each of six possible scenarios (top). In each case, the left-most scenario is correct.

t1 t2 α1
P2 P1 P3

P3

P2

P2

P1 P2

P1

P3

P3 P2 P1 P3

P1

P2

P2 P3

P2

P1

P1

0.01 0.15 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.15 0.20 0.974 0.000 0.000 0.000 0.000 0.026

0.03 0.15 0.20 0.900 0.000 0.000 0.000 0.000 0.100

0.05 0.15 0.20 0.932 0.030 0.000 0.000 0.000 0.037

0.10 0.15 0.20 0.571 0.242 0.044 0.020 0.020 0.103

0.01 0.20 0.20 0.997 0.000 0.000 0.000 0.000 0.003

0.02 0.20 0.20 0.990 0.000 0.000 0.008 0.000 0.002

0.03 0.20 0.20 0.994 0.000 0.000 0.000 0.000 0.006

0.05 0.20 0.20 0.698 0.061 0.000 0.024 0.007 0.210

0.10 0.20 0.20 0.524 0.379 0.000 0.052 0.012 0.034

0.01 0.50 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.50 0.20 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.50 0.20 0.990 0.000 0.000 0.000 0.000 0.010

0.05 0.50 0.20 0.924 0.000 0.000 0.005 0.000 0.070

0.10 0.50 0.20 0.992 0.000 0.000 0.000 0.000 0.007
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Table 4.6: Probability distribution of the possible evolutionary models for the three population

scenario (two parental + one admixed) by gCLEAX forα = 0.60 on 3.5 × 107 base sequences.

Each row shows one input parameter set followed by the estimated posterior probabilities for

each of six possible scenarios (top). In each case, the left-most scenario is correct.

t1 t2 α1
P2 P1 P3

P3

P2

P2

P1 P2

P1

P3

P3 P2 P1 P3

P1

P2

P2 P3

P2

P1

P1

0.01 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.15 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.15 0.60 0.993 0.000 0.000 0.007 0.000 0.000

0.05 0.15 0.60 0.987 0.000 0.011 0.002 0.000 0.000

0.10 0.15 0.60 0.624 0.093 0.172 0.007 0.004 0.100

0.01 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.20 0.60 0.989 0.000 0.000 0.011 0.000 0.000

0.03 0.20 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.05 0.20 0.60 0.927 0.000 0.000 0.073 0.000 0.000

0.10 0.20 0.60 0.988 0.000 0.005 0.006 0.000 0.000

0.01 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.02 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.03 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.05 0.50 0.60 1.000 0.000 0.000 0.000 0.000 0.000

0.10 0.50 0.60 0.999 0.000 0.000 0.001 0.000 0.000

the study of human population history in an era of plentiful genomic sequences.

Validation on real and simulated data demonstrates the generally high accuracy of the meth-

ods on at least simple scenarios, with some caveats. Estimates from simulated data show our

method to yield comparable and often superior accuracy to leading methods for specific sub-
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Table 4.7: Mean and standard deviation of absolute difference between estimated parameter val-

ues and true parameter values from the 45 datasets simulatedfrom the three-population scenario

(two-parental, one admixed) with3.5× 106-base sequences.

MEAdmix gCLEAX gCLEAX

(3.5× 106) (3.5× 106) (3.5× 107)

|α̂1 − α1| 0.0448± 0.0469 0.0436± 0.0403 0.0417± 0.0360

|t̂1 − t1| 485± 384 375± 474 208± 268

|t̂2 − t2| 2880± 4373 2700± 2390 2690± 2675

Table 4.8: Probability distribution of the top six evolutionary models for four-population scenar-

ios with no admixture events on7×107-base sequences. Each row shows one input parameter set

followed by the estimated posterior probabilities for eachof the six most likely possible scenarios

(top). In each case, the left-most scenario is correct.

t1 t2 t3 α1 α2 P2 P3P1

P1

P3

P2

P4 P3P1

P3

P4P2

P3P1

P1

P3P1

P3

P4P2

P1

P2P1

P4P1 P3P2

P1

P3

P2

P2

P4P1 P3P2

P3P2

P1

P3P1

0.04 0.08 0.15 0.00 0.00 0.094 0.040 0.093 0.085 0.053

0.04 0.08 0.50 0.00 0.00 0.840 0.160 0.000 0.000 0.000

0.04 0.25 0.50 0.00 0.00 0.444 0.158 0.075 0.035 0.021

0.08 0.25 0.50 0.00 0.00 0.320 0.100 0.059 0.020 0.060

problems, such as reconstructing the specific three-population admixture scenario for which prior

methods were designed. Similarly, estimates from our method proved slightly superior to those

of a standard approach based onFST statistics at estimating divergence times in these scenar-

ios. Analysis on the two real datasets also compared favorably with existing literature in most

respects. Evolutionary models learned from the 1,000 Genomes Project dataset closely matched

the general consensus on the history of modern human populations with the inference of ances-

tral splits of African from non-African followed by European from Asian, and with the inference
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Table 4.9: Probability distribution of the top 6 evolutionary models for four population scenario

with one admixture event followed by one divergence event on7 × 107-base sequences. Each

row shows one input parameter set followed by the estimated posterior probabilities for each of

the six most likely possible scenarios (top). In each case, the left-most scenario is correct.

t1 t2 t3 α1 α2 P1 P4P2

P1

P3

P3

P1 P3

P1 P4P2

P1

P3P1

P3

P3

P2

P2P1 P3

P1

P2

P1 P2

P3

P4 P2 P3P1

P1

P3

P2

P4 P1 P4P2

P1

P3

P3

P1 P3

0.04 0.08 0.15 0.00 0.30 0.180 0.113 0.060 0.060 0.020

0.04 0.08 0.50 0.00 0.30 0.240 0.110 0.140 0.060 0.220

0.04 0.25 0.50 0.00 0.30 0.352 0.040 0.091 0.192 0.000

0.08 0.25 0.50 0.00 0.30 0.380 0.040 0.080 0.200 0.000

0.04 0.08 0.15 0.00 0.60 0.167 0.153 0.139 0.018 0.039

0.04 0.08 0.50 0.00 0.60 0.280 0.199 0.060 0.000 0.040

0.04 0.25 0.50 0.00 0.60 0.440 0.021 0.034 0.000 0.030

0.08 0.25 0.50 0.00 0.60 0.320 0.060 0.000 0.000 0.020

of Mexicans, Puerto Ricans, and Colombians as admixed groups from these ancestral popula-

tions [66, 102, 112]. The HapMap dataset supported a similar model, although with an incorrect

inference of the Mexican group as diverged from Europeans rather than admixed from European

and Asians, with the correct model having slightly lower posterior probability. As the simulated

data results suggest, the method can have difficulty distinguishing admixture from divergence

when the minor ancestral population’s contribution is small. Parameter estimates on these data

are generally well supported by the literature [61, 132]. Estimates of the African-European di-

vergence time of 103 kya and 133 kya from 1000 Genomes and HapMap data respectively are

consistent with the STR estimation by [132] (62-133kya) and the HMM estimation by [61] (60-

120 kya). Admixture proportion estimation of the Mexican group was also generally consistent

with prior studies. While the 90% admixture proportion from the EUR group for the AMR group

is high relative to prior estimates, it is not dramatically off from the ranges supported by prior
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Table 4.10: Probability distribution of the possible evolutionary model for four-population sce-

narios with one divergence event followed by one admixture event on7 × 107-base sequences.

Each row shows one input parameter set followed by the estimated posterior probabilities for

each of the six most likely possible scenarios (top). In eachcase, the left-most scenario is cor-

rect.

t1 t2 t3 α1 α2 P2P1 P3

P1

P2

P1 P2

P3

P4 P2 P3P1

P1

P3

P2

P4 P2P1 P3

P1

P2

P1 P3

P3

P4 P2P1 P3

P1

P2

P1 P2

P3

P4 P1 P4P2

P1

P4P1

P4

P3

P2

0.04 0.08 0.15 0.05 0.00 0.100 0.180 0.060 0.060 0.100

0.04 0.08 0.50 0.05 0.00 0.080 0.340 0.043 0.000 0.100

0.04 0.25 0.50 0.05 0.00 0.320 0.080 0.220 0.100 0.020

0.08 0.25 0.50 0.05 0.00 0.026 0.340 0.060 0.000 0.100

0.04 0.08 0.15 0.20 0.00 0.320 0.040 0.080 0.140 0.020

0.04 0.08 0.50 0.20 0.00 0.383 0.100 0.080 0.056 0.060

0.04 0.25 0.50 0.20 0.00 0.573 0.000 0.180 0.120 0.000

0.08 0.25 0.50 0.20 0.00 0.450 0.020 0.105 0.119 0.000

studies by Martinez-Corteset al. [66] and Tanget al. [112], which both estimated admixture

proportions in the ranges of 60-70% European, 10-20% African, and 10-20% Native American.

These deviations could be explained by the assumption of ourmodel that admixture events occur

only between pairs of populations and by the lack of a non-admixed Native American sample

from which our method could learn.

The most significant error of our model on the real data is in substantially overestimating

the age of the admixture time for the Mexican, Puerto Rican, and Columbian groups. The most

likely source of error here is, again, the lack of a modern Native American sample in the data set,

leading the method to approximate American samples as admixtures of the European and Asian

populations it had available. We would expect this inference to lead to a misattribution of a large

number of mutations distinguishing Asian from Native American as mutations distinguishing
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Table 4.11: Probability distribution of the top six possible evolutionary models for four-

population scenarios with two admixture events on7 × 107-base sequences. Each row shows

one input parameter set followed by the estimated posteriorprobabilities for each of the six most

likely possible scenarios (top). In each case, the left-most scenario is correct.

t1 t2 t3 α1 α2 P2P1 P3

P1

P2

P1 P3

P3

P4 P1 P4P2

P1

P3

P3

P1 P3

P1 P4P2

P1

P4P1

P4

P3

P2

P4P1 P3P2

P1

P3

P1

P2

P4P1 P3P2

P3P2

P1

P2

0.04 0.08 0.15 0.05 0.30 0.220 0.201 0.080 0.020 0.020

0.04 0.08 0.50 0.05 0.30 0.293 0.188 0.155 0.000 0.060

0.04 0.25 0.50 0.05 0.30 0.200 0.080 0.120 0.000 0.120

0.08 0.25 0.50 0.05 0.30 0.164 0.107 0.093 0.006 0.138

0.04 0.08 0.15 0.05 0.60 0.145 0.083 0.116 0.060 0.000

0.04 0.08 0.50 0.05 0.60 0.140 0.240 0.040 0.040 0.000

0.04 0.25 0.50 0.05 0.60 0.120 0.200 0.060 0.080 0.020

0.08 0.25 0.50 0.05 0.60 0.206 0.148 0.082 0.066 0.007

0.04 0.08 0.15 0.20 0.30 0.199 0.160 0.140 0.000 0.120

0.04 0.08 0.50 0.20 0.30 0.360 0.320 0.060 0.000 0.040

0.04 0.25 0.50 0.20 0.30 0.280 0.020 0.020 0.0200.416

0.08 0.25 0.50 0.20 0.30 0.260 0.160 0.120 0.000 0.160

0.04 0.08 0.15 0.20 0.60 0.320 0.100 0.040 0.280 0.000

0.04 0.08 0.50 0.20 0.60 0.498 0.060 0.000 0.140 0.000

0.04 0.25 0.50 0.20 0.60 0.420 0.000 0.000 0.180 0.000

0.08 0.25 0.50 0.20 0.60 0.340 0.007 0.143 0.259 0.000

the ancestral from modern admixed American populations, and in turn to an overestimated time

since admixture. Another source of error may be the assumption that the effective population size

is constant and equal for all population groups when in fact we would expect smaller bottlenecks

for the newly admixed groups.
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Table 4.12: Mean and standard deviation of the absolute difference between the estimated pa-

rameter values and the true parameter values from the 36 datasets simulated from different four-

population scenarios with zero, one, or two admixture events on7× 107-base sequences.

gCLEAX F̂st

|α̂1 − α1| 0.0272± 0.0389 –

|α̂2 − α2| 0.0576± 0.0588 –

|t̂1 − t1| 203± 228 264± 194

|t̂2 − t2| 1100± 930 1130± 847

|t̂3 − t3| 3570± 2440 5790± 3110

Comparing the results between three-population and four-population scenarios does suggest

that scaling to large models is problematic due to the combinatorial explosion in numbers of

possible models as the number of populations increases. That explosion in possible models

would be expected to impact both the true sharpness of the probability density and the mixing

time of the MCMC method. More data can in principle help to address the former problem,

leading to greater support for correct models although at the cost of increased computation time.

The current tests examined data sets up to the size of a singlelarge chromosome, but there is no

reason in principle the method cannot extend to all variantsin a full human genome. Similarly,

the datasets examined ranged to the size of hundreds of individuals, but adding more individuals

and especially individuals from a more diverse set of modernpopulations can also be expected

to allow better discrimination of correct from incorrect histories and finer resolution of those

histories. Further algorithmic improvements may be neededto address slow mixing time, though,

especially as more data is added. Our primary criterion of success, inferring exactly the right

model with high probability, may also be too stringent a criterion for larger and more complicated

models. The MCMC approach makes it trivial to define more modest but achievable goals,

though, such as identifying those specific events that are well-supported by a given data set and

109



estimating their parameters.
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Chapter 5

Structured Testing for Disease Association

Case-control association mapping has been one of the most widely used methods for identifying

loci involved in disease inheritance [3, 94, 127]. The method typically tests for association be-

tween a marker locus and trait by measuring the amount of allele-frequency differences between

individuals with the phenotype of interest (cases) and unrelated healthy individuals (controls). A

strong statistical association between genotypes at the marker locus and the phenotype is usually

considered evidence for a potential candidate region wherethe disease locus may be located.

Since the availability of large scale genomic datasets, a number of methods to test for dis-

ease association has been proposed [26, 131]. One classic test used in genome-wide association

studies (GWAS) is the Pearson’s chi-square test [60]. The count of the allele for each biallelic

SNP site can be summarized in a2× 2 contingency table which tests the null hypothesis that the

disease has no effect on the distribution of the allele counts. Other tests, such as likelihood ratio

test, logistic regression, and Cohran-Armitage test for trend, are also frequently used in GWAS

[60, 131].

Despite its popularity, loci identified by association mapping often require close scrutiny and

careful analysis to exclude false-positives that are the consequence of stratification differences

between the cases and the controls [3, 20]. This stratification is most often due to differences in

population substructure in cases and controls. For example, when cases and controls have differ-
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ent fractions of individuals from different subpopulations, this would increase the likelihood of a

marker locus being falsely identified by the statistical test as a candidate locus due to significant

differences in the allele frequencies between the subpopulations.

To address this problem, one trivial approach to eliminating spurious associations in case-

control studies would be to avoid selecting samples where structure is clearly present or to bal-

ance the samples such that population structure is evenly distributed between cases and controls.

Despite successfully avoiding the effect of population stratification, selecting individuals free of

population substructures can be a tedious and, in many occasions, impossible task. A more desir-

able alternative is to apply a test statistic that corrects for population substructures [83, 86, 115].

One popular method is the EIGENSTRAT [83] which uses principal component analysis (PCA)

to identify the axes of variation. The axes of the highest variation should provide clues as to

the ancestry of individuals and population structure exhibited in the dataset. By learning the

ancestry proportion of each sample based on where each sample maps to the axes of variation,

EIGENSTRAT effectively corrects for population stratification by readjusting the genotypes and

phenotypes of each sample according to the ancestries of thesample. While this method corrects

each SNP for population structure according to a global ancestry assignment for each sample, the

method does not consider the relationships between ancestral populations and the local substruc-

ture for each SNP. Another common approach is to partition the individuals into their respective

subpopulations and perform a stratified association test, such as the Cochran-Mantel-Haenszel

test [115]. On the other hand, given the history output learned automatically from genetic data

using methods described in our previous chapters, we could potentially take advantage of the

structural and relational information learned from the data itself to reduce the number of false

discovery of candidate loci due to population stratification in association studies. In this chapter,

we propose two simple structured association tests, as a proof of concept, that correct for pop-

ulation stratification effects using the outputs of our minimum description length (MDL)-based

consensus tree algorithm in Chapter2.
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5.1 Methods

In Chapter2, we proposed an MDL algorithm for learning population histories that identifies

a set of robust edges persistent across the entire genomic dataset. The algorithm specifically

produces a set of model edges or bipartitionsBM = {BM
1 , ..., BM

r } by optimizing the following

MDL-based objective function:

L(TM , T1, T2, ..., Tn) = argmin
BM∈T

(

L(BM) +
n
∑

i=0

L(Bi|B
M) + f(BM)

)

whereB1, B2, ..., Bn are the observed bipartition sets derived from phylogeniesgenerated from a

SNP dataset partitioned inton windows ofk SNPs.L(BM) computes the minimum description

length of the model edgesBM andL(Bi|B
M) computes the minimum description length required

to explain the observed (input) bipartitionsBi given the model edges (BM ). The functionf(BM)

defines an additional penalty for proposing a model tree thatis overly complex.

At the end of the optimization procedure, the method would produce a set of robust model

bipartitions that represent the edges of the population history. At the same time, finding the op-

timal model bipartitions indirectly provide local structural information through the computation

of the cost function. During the computation ofL(Bi|B
M), the method computes the condi-

tional entropy of each observed bipartitionb ∈ Bi relative to each model bipartitionbM ∈ BM .

This computation not only allows us to compute the minimum description length but also ef-

fectively estimates the probability distribution over population subdivision events from which

the variant site may have most recently arisen from. For example, suppose that we identify an

observed bipartition derived from a variant site closely resembling the model bipartition repre-

sentingP2|P1P3 in a dataset with three populations (P1, P2, andP3). The fact that the observed

bipartition has the closest resemblance to the model bipartition representingP2|P1P3 would in-

dicate that the mutation may have likely occurred simultaneously with or afterP2 diverged from

other populations. At the same time, the resemblance toP2|P1P3 would also suggest the variant
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site may have a substructure effect betweenP2 and rest of the populations. Given the information

that the mutation may be a result of the population split ofP2 with other populations, we could

then correct the substructure effect for the test by separating the samples intoP2 and rest of the

populations and test for association separately.

5.1.1 Localized Structured Association Test

To correct for population stratification, we would first identify the set of model bipartitionsBM .

We would then use our functionL(Bi|B
M) to find the most likely model bipartitionbM ∈ BM

showing the closest resemblance to each variant sitei from the genomic dataset. Letbi be the

observed bipartition derived from biallelic variant sitei, BM be the set of model bipartition,

andH(bi|b
M
j ) be the conditional entropy of the observed bipartitionbi given model bipartition

bMj ∈ BM . Then, we can find the optimal model bipartitionbM,∗
j showing the closest resemblance

to bi using the following formula:

bM,∗
i = argmin

bMj ∈BM

(

H(bi|b
M
j )
)

Given thatbM,∗
i is the closest model bipartition or population edge resembling theith variant

site, we would split the chromosome copies from individuals(2 from each individual) into two

partitions according tobi and perform a Cochran-Mantel-Haenszel (CMH) test of association

conditional on the model partitionbM,∗
i . The intuition behind such an approach is that, by splitting

the samples into its respective substructures using the closest matching model bipartition, we

should effectively remove the most prominent population substructure affecting the variant site.

Suppose the best model bipartitionbM,∗
i resembling variant sitei split the chromosomes in

the dataset into partp0 and partp1, then we can count the number of chromosomes having any

specific genotype and specific phenotype. If the genotype is biallelic and the phenotype is either

having the disease (cases) or healthy (controls), then we can set up two2× 2 contingency tables

shown in Fig.5.1.1.
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Figure 5.1: Example of a Cochran-Mantel-Haenszel test applied using separation of chromsomes

into two partition sets using the a model partition. Chromosomes partitioend into partp0 and part

p1 by model bipartitionbi are separately tested for association of the phenotypeY with genotype

X using Cochran-Mantel-Haenszel test by counting the number of chromosomes having each

specific phenotype with each possible genotype in2 × 2 contingency tables.a0, b0, c0, andd0

represents the number of individuals in partp0 having genotype and phenotype pairs (y1, x1), (y0,

x1), (y1, x0), and (y0, x1) respectively.a1, b1, c1, andd1 represents the number of chromosomes in

partp1 having genotype and phenotype pairs (y1, x1), (y0, x1), (y1, x0), and (y0, x1) respectively.
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Givena0, b0, c0, d0 as the number of chromosomes in partitionp0 having phenotype-genotype

pair (y1, x1), (y0, x1), (y1, x0), (y0, x0) respectively anda1, b1, c1, d1 as the number of chro-

mosomes in partitionp1 having phenotype-genotype pair (y1, x1), (y0, x1), (y1, x0), (y0, x0)

respectively, the Cochran-Mantel-Haenszel test statisticcan be computed as:

χ2
MH =

(∣

∣

∣
a0 −

(a0+b0)(a0+c0)
a0+b0+c0+d0

∣

∣

∣
+
∣

∣

∣
a1 −

(a1+b1)(a1+c1)
a1+b1+c1+d1

∣

∣

∣
− 0.5

)2

(a0+b0)(a0+c0)(b0+d0)(c0+d0)
(a0+b0+c0+d0)3−(a0+b0+c0+d0)2

+ (a1+b1)(a1+c1)(b1+d1)(c1+d1)
(a1+b1+c1+d1)3−(a1+b1+c1+d1)2

The numerator computes the squared sum of the deviations between the observed and ex-

pected values with a continuity correction added. The denominator estimates the variance of

the squared differences. The test statistic follows a chi-squared distribution with one degree of

freedom. When the observed and expected values are similar, the test statistics would be smaller

thus reducing the chance to reject the null hypothesis that the phenotype and genotype are in-

dependent. When the variance of the squared differences is large, suggesting that observed can

significantly deviates from the mean under the null hypothesis because of uncertainties, the test

statistic would also be small. By identifying sites that havelarge differences between expected

and observed allele frequencies in both partitions throughthe test statistic, we should be able to

identify sites that are associated with the phenotype without the confounding effect of population

substructure.

5.1.2 Weighted Localized Structured Association Test

One issue with using the most likely model bipartition for variant site is that the most likely model

bipartition can have a very similar score to the other model bipartitions in the population model.

If the scores of the model bipartitions are similar to each other, using the most likely one can leave

out slightly less prominent substructure effects on the variant sites, which may lead to more false-

positive associations. To address this issue, we note that the conditional entropy we computed for

each variant site given a model bipartition can roughly be treated as the negative log probability
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[38] that the observed bipartition is best explained by the model bipartition. Equivalently, we

can view this as the probability that bipartitionbMj is the key substructure effect for this variant

site. Under this assumption, we can compute a weightwj that the model bipartitionbMj is the

key substructure effect for the variant sitei. We would then compute the p-value for each split

of the population by model bipartitionbMj ∈ BM using the Cochran-Mantel-Haenszel test and

computing each p-value using a weighted sum of the possible bipartitions producing the effect.

To justify the formulation, we claim that what we are interested in learning is the probability of

observing a value equal to or greater than the respective test statistic given that the genotypeX

and phenotypeY are independent (H0) and that zero or one division of individuals by a model

bipartition is influencing the allele frequencies. SupposeMj is a model that specifies how the

sample will split into two partitions using thejth model bipartitionbMj ∈ BM andM is the set

of all models that specifies how we can split the sample into two partitions. Then, we can rewrite

the probability as the following:

P (X2
MH ≥ c|H0,M) =

∑

Mj∈M

P (Mj)P (X2
MH,j ≥ cj|H0,Mj)

SinceP (Mj|D) is the belief thatbMj is the prominent substructure effect,P (Mj|D) would

simply be the weightwj we computed from the conditional entropy:

P (Mj|D) = wj =
2−H(bi|bMj )

∑

k 2
−H(bi|bMk )

Combining the definition above, we get:

P (X2
MH ≥ c|H0,M) =

|M|
∑

j=1

2−H(bi|bMj )

∑

k 2
−H(bi|bMk )

P (X2
MH,j ≥ cj|H0,Mj)
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5.1.3 Validation

To validate our approach, we first generated a simulated dataset using the coalescent simulator

MS[48]. We simulated genotypes of 150 affected and 150 control individuals resulting in a total

of 600 chromosomes on a sequence with3.5×106 bases using a mutation rate of10−9 per site per

generation, a recombination rate of10−8 per generation, and effective population size of 10,000.

We assume that the individuals were sampled from three subpopulations (P1, P2, andP3). At

time t1 = 2, 000 generations ago,P2 andP3 diverged into their respective subpopulations. At

time t2 = 6, 000 generations ago,P1 and the ancestral population ofP2 andP3 diverged. We

assume the causal mutation occurred after the divergence ofP1 and the parental population of

P2 andP3. This scenario should in theory result in a much higher relative risk to ascertain a

case fromP2 andP3 than a case fromP1. Among the 150 affected, we arbitrarily assigned 75

individuals toP2 and 75 individuals toP3. In this dataset, we assumed no one fromP1 contracted

the disease. Of the 150 controls, 50 individuals were assigned to each of the three populations.

To simulate the candidate locus, we sample the genotype by computing the probability of

observing genotypeX given phenotypeY and population assignmentK, P (X|Y,K). Through

conditional probability and Bayes’ theorem, we can rewrite the probability as:

P (X|Y,K) =
P (X|Y,K)

∑

X∈{0,1} P (X|Y,K)

=
P (K,Y |X)P (X)

∑

X∈{0,1} P (K,Y |X)P (X)

=
P (Y |K,X)P (K|X)P (X)

∑

X∈{0,1} P (Y |K,X)P (K|X)P (X)

=
P (Y |K,X)P (X|K)P (K)

∑

X∈{0,1} P (Y |K,X)P (X|K)P (K)

=
P (Y |X)P (X|K)

∑

X∈{0,1} P (Y |X)P (X|K)

whereP (X|K) would correspond to the allele frequency of each allele in each population and

P (Y |X) would be the probability of having disease or normal phenotype given the genotype.
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Given the equation above, we generated genotypes for 120 independent disease loci using a

probability ofP (Y = 1|X = 1) = N (0.7, 0.1), P (Y = 1|X = 0) = N (0.3, 0.1), P (X =

1|K = 1) = 0.1, P (X = 1|K = 2) = 0.6, andP (X = 1|K = 3) = 0.6.

In addition to simulated data, we also used the HapMap phase 2chromosome 21 dataset as

a test dataset [4]. The dataset consisted of 90 Utah residents with ancestry from Northern and

Western Europe (CEU); 90 individuals with African ancestry from Ibadan, Nigeria (YRI); 45

Han Chinese from Beijing, China (CHB); and 45 Japanese in Tokyo, Japan (JPT). For the CEU

and YRI groups, which consist of trio data (parents and a child), we used only the 60 unrelated

parents with haplotypes as inferred by the HapMap consortium. Given that our algorithm identi-

fied three populations from the same dataset in Chapter2, we artificially assigned 5 individuals

from YRI, 40 individuals from CEU, and 40 individuals from CHB+JPT as cases. The remaining

125 individuals were labeled as controls. Using the same approach as with the fully simulated

data, we then generated the genotypes for the 120 candidate locus using a probability ofP (Y =

1|X = 1) = N (0.7, 0.1), P (Y = 1|X = 0) = N (0.3, 0.1), P (X = 1|K = Y RI) = 0.1,

P (X = 1|K = CEU) = 0.66, andP (X = 1|K = CHB + JPT ) = 0.66.

To compare the performance of our proposed methods, we tested both the non-weighted and

weighted localized structured association test against a simple and common statistical test used

for association testing known as Fisher’s exact test [33] that does not correct for population

stratification. In addition to Fisher’s exact test, we further tested our methods against a simple

stratified association test commonly used in disease association testing by software such PLINK

[87]. Rather than testing for association using the most prominent substructure effect for each

variant site, we instead perform the Cochran-Mantel-Haenszel test on the global substructures

identified. In this approach, the data would be partitioned into all known subpopulations identi-

fied. In both the simulated dataset and HapMap dataset, this would mean that we partitioned the

individuals into three subsets and test for associations separately in the subsets.
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5.2 Results

Fig. 5.2shows the computed negative log p-value using Fisher’s exact test, the global Cochran-

Mantel-Haenszel test, the localized Cochran-Mantel-Haenszel test, and the weighted localized

Cochran-Mantel-Haenszel test. From the plot, we observed that negative log p-values for loci not

associated with the disease locus from the three Cochran-Mantel-Haenszel tests are much lower

than for the Fisher’s exact test on the entire sample. On the other hand, candidate loci showed a

slightly lower negative log p-values using the three Cochran-Mantel-Haenszel tests than Fisher’s

exact test. If we reject the null hypothesisH0 using a p-value of 0.0001, we achieved a type I

error of 0.023, 0.000, 0.002, and 0.000 for Fisher’s exact, global, local, weighted-local Cochran-

Mantel-Haenszel test respectively suggesting the stratified test have a higher specificity. The

Fisher’s exact test has a power of 0.94 while the Cochran-mantel-Haenszel tests have power of

0.88, 0.86, 0.88 for global, local, weighted local respectively indicating the stratified test may

have lower sensitivity than the non-stratified test. However, when comparing the three stratified

tests, the weighted-local test has the same power as the global test while decreasing the type I

error.

Semi-simulated data from the HapMap phase 2 dataset also showed similar results compared

to the fully simulated data. Fig.5.2shows the negative log p-values for the genetic markers typed

on chromosome 21. Similar to the results from fully simulated data, the results from the HapMap

dataset showed lower number of false positives using the Cochran-Mantel-Haenszel tests. The

negative log p-value for the candidate loci were also lower in the three Cochran-Mantel-Haenszel

tests compared to the Fisher’s exact test. When using a rejectthreshold of 0.0001, the weighted-

local Cochran-Mantel-Haenszel test gave the lowest type I error (0.000) while Fisher’s exact test

gave the worst type I error (0.048). Global Cochran-Mantel-Haenszel, however, outperformed

non-weighted local Cochran-Mantel-Haenszel with type I error of 0.0005 compared to 0.0027.

Power analysis for the four test showed similar results compared to fully simulated data. Power

of Fisher’s exact test remained the best of the four with 0.93followed by both weighted local
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(d) Weighted Localized Structured Mantel-Haenszel

Figure 5.2: Negative log p-values computed for all 1866 variant sites generated from coalescent

simulator, MS, and 120 simulated loci. We arbitrarily assigned 150 individuals out of 300 indi-

viduals as cases. The simulated candidate locus is attachedto the end of the dataset. Black lines

represent the rejection threshold of 0.0001. (a) Negative log p-values obtained from Fisher’s Ex-

act Test. (b) Negative p-value obtained from Mantel-Haenszel test on the three subpopulations

identified. (c) Negative log p-values obtained from Mantel-Haenszel test on the best local split

of populations using our MDL-based scoring function. (d) Negative log p-values obtained from

Mantel-Haenzel test using a weighted local split of populations using our MDL-based scoring

function.
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and global Cochran-Mantel-Haenszel of 0.90. Local Cochran-Mantel-Haenszel test achieved the

lowest power of the four with a power of 0.89.

5.3 Discussion

In this chapter, we proposed two methods to perform structured association tests. The novelty

of the methods comes from the fact that the methods take structural and relational information

learned from the dataset using our MDL-based consensus treealgorithm to correct for population

substructure. Intuitively, the methods map each variant site to a branch in the population history

learned from the dataset. Using that branch as the most prominent local population structure, the

method then corrects for the effect of population substructure by separately testing for association

in each local subpopulation. In one approach, the method uses the most likely population edge

resembling the observed variant site to locally correct forpopulation substructure. In the second

approach, we instead correct for population substructure effects using each of the population

splits identified weighted by the probability belief that the population split is the key stratification

effect.

Results from both fully simulated and semi simulated data suggest that structured association

tests using Cochran-Mantel-Haenszel test statistic are capable of removing spurious discoveries

due to population structure. From the results, we observed that the global structured association

test seemed to perform better than the non-weighted localized structured association test. Such

trends may likely result from the fact that the most likely population substructure computed

using our minimum description length function may not always be the correct one, especially

when the observed bipartition may be quite similar to two or more model bipartitions. However,

by weighting and combining the p-values performed in our weighted test, we effectively reduce

the effect of such issues and achieve the best type I error among the four methods.

From the results, we also observed that the three stratified association tests tend to have

lower power than Fisher’s exact test that does not take the effect of population substructure
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(d) Weighted Localized Structured Mantel-Haenszel

Figure 5.3: Negative log p-values computed for all 45487 variant sites obtained from HapMap

phase 2 dataset and 120 simulated candidate loci. We arbitrarily assigned 105 individuals out

of 210 as cases. The simulated candidate locus is attached tothe end of the dataset. Black

line in the plots represents the rejection threshold of 0.0001. (a) Negative log p-values obtained

from Fisher’s Exact Test. (b) Negative p-value obtained from Mantel-Haenszel test on the three

subpopulations identified. (c) Negative log p-values obtained from Mantel-Haenszel test on the

best local split of populations using our MDL-based scoringfunction. (d) Negative log p-values

obtained from Mantel-Haenszel test using weighted local splits of populations using our MDL-

based scoring function.
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into account. Such pattern, while undesirable, may be a limitation of the stratified tests since

samples are divided into smaller group with fewer samples ineach group. As a result, this

can reduce the confidence of the statistical test due to fewerdata to support association in each

group. Despite lower power when comparing to non-stratifiedassociation test, our weighted-

localized Cochran-Mantel-Haenszel test achieved the same power as the global test suggesting

the weighted-localized test is able achieve a better type I error while maintaining the same power.

Although further comparison with existing methods for dealing with substructure, such as

STRAT [86] or EIGENSTRAT [83] is needed, results nonetheless show a promising approach

to test for association under the effect of population substructure. Furthermore, comparison to

Fisher’s exact test shows that there are fewer false positives and overall reduction of p-values

that are not truly associated with the disease phenotype. Such results suggest that our method

could potentially provide a promising direction to improveassociation tests under the effect of

population structure. Given that our prior methods in learning population history can obtain time

and admixture information, a possible improvement would beto incorporate such information

into the test statistics to further improve the performanceof the disease association test under the

presence of population substructure.
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Chapter 6

Conclusions and Future Directions

Automatically identifying subpopulations and learning their evolutionary history from the ever

growing genomic datasets is an important but challenging problem that, to the best of our knowl-

edge, no existing algorithms have yet to solve. In this thesis, we have developed novel algorithms

specifically designed to address the problem of learning population histories from large scale ge-

nomic datasets. Starting with a basic model based on the theory of minimum description length,

we have shown that it is computational feasible to automatically identify population substructures

and infer evolutionary history at the same time from large scale datasets under the assumption

that the underlying histories have little or no admixture between the populations. Validation re-

sults from Chapter2 showed the minimum description length-based consensus tree algorithm

is capable of identifying the distinct substructures within the dataset and the relationships be-

tween the substructures with high accuracy. We have also found the algorithm to be robust over

a wide range of parameter variations, providing confidence that the ability of the algorithm to

identify the correct substructures and histories. Furthermore, population history produced by the

algorithm from real human datasets is consistent with existing beliefs about human evolution.

Analysis of the computational time needed to run the algorithm further demonstrated its ability

to handle large-scale datasets in a reasonable time frame, establishing the method as the first

practical algorithm for joint inference of population structure and its history from large genomic
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datasets. Comparing to existing consensus tree algorithms,the proposed algorithm is also one

of the first practical algorithms able to identify a meaningful consensus tree from noisy datasets

in which observed splits between populations often involvesome individuals being classified in

different population groups at different observed data points.

The thesis has further addressed the problem of admixture, acommon phenomenon in hu-

mans of mixing genetic materials between populations, by developing a method for learning the

parameters describing the population history in the presence of admixture. By building upon the

algorithm described in Chapter2, we have demonstrated the feasibility of accurately quantifying

the timing and fractions of admixture and divergence eventsbetween populations throughout the

history. Beginning with an initial model of learning parameter values pertaining to a simple two-

parental and one admixed population scenario, we showed that estimation of parameters was at

least as good as or better than existing models on simulated sequences with lengths ranging from

roughly equivalent to large fragments of DNA chromosomes tocomplete chromosome lengths.

Sensitivity analysis on varying population sizes suggeststhe method is moderately robust to

time-varying population sizes. In addition, the minimal loss of accuracy on the long sequence

datasets also suggests that the mean length assumption usedfor the coalescent time ofn lin-

eages is a good strategy that could benefit coalescent simulations and other simulations utilizing

repeated draws from exponential distributions.

Given the model for quantifying parameters of admixture event for two-parental and one-

admixed population scenarios, the thesis further generalized the approach to automatically learn-

ing population histories and their associated parameters for three or more populations. Analysis

on the simulated data suggests the generalized approach shared similar accuracy for quantifying

the parameters of admixture and divergence events with the initial model for two-parental and

one-admixed population scenarios. The method’s ability tocorrectly infer the correct population

model and its associated parameters suggests its applicability as the first practical algorithm for

automatically learning histories of three or more populations under the presence of admixture.
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Finally, as a proof of concept, the thesis tested the applicability of incorporating population

history information into association test statistics to remove the effects of population substruc-

ture. Analyses on simulated and semi simulated datasets suggested the incorporation of popu-

lation history can indeed reduce type I errors due to population stratification differences. The

success of the structured association test demonstrates one of the practical applications of popu-

lation histories learned from genetic data.

6.1 Future Work

The work presented in the thesis provides one possible strategy for learning population histories

with or without the presence of admixture for large-scale genomic datasets. While the models

presented in the thesis yielded reasonably accurate solutions under various scenarios, the prob-

lem of efficiently solving for all scenarios of population history, and perhaps at a much higher

resolution remains a challenge. Despite the difficulty of learning population histories from ge-

netic data, the models here nonetheless act as a stepping stone to reach the holy grail of accurately

learning detailed history of populations in all possible scenarios directly from genetic variation

datasets.

Two scenarios of population history the thesis did not investigate are the issues of migration

between different populations and varying effective population size. Migration of individuals in

large fractions can have a large impact on the pattern of genetic variations and thus the accuracy

of the inference algorithms. Significant changes in effective population size, as demonstrated in

our analysis in Chapter3, can also have large impacts on the accuracy of the current model. De-

spite the fact that our current method does not incorporate migration parameters into the model,

an extension to include migration events could in theory be achieved by introducing migration

rate parameters,M , and simulatig the coalescent process with the specified migration rates. In-

corporation of migration and variable effective population sizes should provide a more realistic

and in-depth depiction of the human population history, butsuch enhancements may also intro-
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duce additional challenges as additional parameters can also increase the cost of computations.

Our current model only considers divergence and admixture events as two possible evolution-

ary events. While these two evolutionary events can recreatemost population scenarios, events

such as convergence can also exist. By incorporating other evolutionary events, we can achieve

a more accurate depiction of the evolutionary history of humans. Such an incorporation into our

model can be naively done by simply adding additional population models into the set of pos-

sible modelM. However, introduction of new evolutionary events can increase the number of

models exponentially, thus making the inference expensivedue to the number of steps needed to

sample from the MCMC chain. Nonetheless, such issues can be remedied by developing prior

distributions on the set of possible models to steer the chain to visit models that one believes to

be more probable, thus reducing the number of steps needed.

In addition to addressing the fundamental questions in population genetics, learning popula-

tion history provides important information for understanding disease origin. With the ability

to automatically learn historic information from molecular data, the algorithms open up the

possibility of using that information to improve power in identifying disease-causing alleles

through genome-wide association studies (GWAS). One otherpossible direction in harnessing

such historic information is to incorporate the populationhistory into regularized linear regres-

sion (Y = βX + λ|β|L1/L2
) for identifying weakly associated lociX that are associated with

a complex diseaseY . By setting up the regression coefficients for each marker andeach pop-

ulation in the dataset, we can, for example, formulate our objective such that an associated or

causal mutation that occurs in two or more populations wouldbe more likely to be selected given

a population history that specifies the populations were grouped as one ancestral population for

a long time. By doing so, mutations associated with the disease that may not have been picked

up by simple regression could potentially be more likely identified with the historic information.

Another possible direction in utilizing the population history is to incorporate historic infor-

mation into a new test statistic for identifying loci associated with a phenotype of interest. While
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Chapter5 demonstrated an improvement of the association test using the population structure

information, we did not incorporate any other historic information, such as time and admixture

fractions into our test statistic. By incorporating the length of each model bipartition or branch,

for example, we might reduce the chance of over-correcting for the population substructure effect

when the most likely model bipartition resembling the observed bipartition does not have a high

confidence.

While we have only considered a few possibilities for utilizing the historic information

learned from the models presented in this thesis, the ability to automatically identify and learn

histories of populations from genetic variation data should provide tremendous opportunities for

solving numerous problems in population and medical genetics.
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