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1. Goals of Paragon

The goals of Paragon can be grouped into three broad classes: ab-

stract data type specification goals, abstract data type representation

goals and automatic-processing goals. These goals are listed below:

Abstract Data Type Specification Goals

Refinements of specifications of abstract data types may be writ-

¢ ten.

Related specifications may be combined in a single module.

Abstract Data Type Representation Goals

- Multiple implementations of an abstract data type may be de-

clared in a program.

- Several implementations of an abstract data type may be used

simultaneously in a program (one implementation per variable).
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If several implementations of an abstract data type are used for

different variables, those variables may interact.

A single implementation may be written for several separate spec-

ifications.

Automatic-Processing Goals

Static type checking of all variable declarations (object creations)

and procedure calls should be supported.

Compile-time checking should ensure that all representation-

selection decisions result in a program that can execute without

run-time errors.

The abstract data type specification goals are partially met by

the object-oriented language designs in Simula [Dah 68] and Smalltalk

[Gol 81, Ing 78, Ing 81, Mor 81, Xer 81], the use of clusters in En-

hanced C [Kat 83a, Kat 83b], the Traits additions to Mesa ICur 82]

and the Flavors facility for Lisp [Wei 81]. An extension of Simula pro-

posed by Ingargiola [Ingr 75] allows, in a very restricted way, layers

of specifications. The Scratchpad II system provides a nice way to

layer specifications [Sut 87]. A similar kind of hierarchy was proposed

by Smith and Smith [Smi 77] and in Taxis [Myl 80] for organizing

relations, views and objects in a database. Further, the Program De-

velopment System [Che 79] uses a refinement hierarchy for writing

system modules. But all of these systems use the refinements only

as a way to refine objects or system components however, and not as

refinements of specifications with the intention of later refining the

specifications into implementations.

Both sets of abstract data type goals are partially met by Clu

ILls 81], Alphard [Sha 81], Enhanced C and Ada [Ich 80]. However,

all of these languages use two levels of refinements, the upper level

being the abstract specification and the lower level being the concrete

implementation. The proposed layers of specifications are a departure

from most languages that provide data abstraction facilities.
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Further, these languages place strong restrictions on how repre-

sentations of abstract data types must be related to their specifica-

tions. These restrictions limit the languages' abilities to define and

use multiple implementations of abstract data types, or to let different

implementations interact. Paragon provides features that allow a pro-

grammer to define and use multiple implementations of an abstract

data type in a program. Further, the Paragon design permits differ-

ent representations to have access to additional details about their

parameters and use of their operations. This ability represents a sub-

stantial departure from current data abstraction methodology which

insists that a representation may be used anywhere the specification

is used.

The goal of static type checking is a departure from the

procedure-call (dynamic) checking performed in typical object-

oriented, hierarchy-based systems, such as for Smalltalk's methods

and Simula's virtual procedures. There is a tradeoff in these designs

between safety and efficiency, and flexibility. Because the parame-

ter matching for procedure calls can be verified during compilation,

static checking is considered safer, and because more is known about

the program being checked, a more efficient program should result.

Therefore Paragon opts for a safe and efficient language rather than

for flexibility.

In applying this philosophy to a language with multiple represen-

tations of abstract data types, the design of Paragon enforces compile-

time checking of implementations, guaranteeing that all variables have

a feasible representation. An implementation for a program's vari-

ables and procedures is feasible if appropriate procedure implemen-

tations exist for all procedure calls as dictated by the representations

of the actual parameters in the call. The design of Paragon ensures

that a program's feasibility may be checked at compile time.

Another part of this goal is that no run-time expense should be
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incurred for making a selection decision. Although Paragon allows

multiple procedure implementations to be provided for each proce-

dure specification, the selection of an implementation to use for each

procedure call must be made at compile time.

These goals are met by the Paragon design, which is discussed in

the next section. The following section then shows how these features

are used to write layers of specifications, multiple implementations of

abstract data types and various kinds of shared representations.

2. Introduction to Paragon

2.1. Classes and Inheritance

Classes in Paragon are similar to classes in Simula: they con-

tain declarations, statements and parameters. Unlike Simula classes,

Paragon classes may inherit more than one class, and an ancestor may

be inherited more than once. Also unlike Simula, classes declared in-

side of a class may be selected from that class.

Variable declarations in Paragon name a class that specifies the

variable. Only the visible declarations in the class or one of its ances-

tors may be used by the variable. An implementation for that variable

is selected from the subclasses of the specificed class. (The Paragon

system also contains a representation selection system that makes the

actual representation decisions. The discussion of the selection sys-

tem is beyond the scope of this paper, but is described fully in [She

8s].)



Paragon's Type Hierarchies 115

2.2. Procedure Specifications and Implementa-
tions

Procedures (which include functions and iterators) have separate

specifications and implementations. A procedure specification is the

signature of the procedure: the procedure's identifier and list of formal

parameters. A procedure implementation is a signature followed by

local declarations and statements. Any number of implementations

may be written for each specification in the class (and in any subclass

of the class) that contains the procedure specification. Paragon will

select an appropriate procedure implementation given the implemen-

tations of the actual parameters for each procedure call.

2.3. Uniform Object Notation

Paragon uses a uniform object notation in all expressions. Ex-

pressions are used as formal parameters in class and procedure dec-

larations, as actual parameters in class instantiations and procedure

calls, as "types" in variable declarations and as statements. The same

interpretation of an expression is used regardless of where it appears.

There are three interesting parts of this notation: definite objects,

indefinite objects and any objects. A definite object results from the

instantiation of a class. This is the same as object generation in Sim-

ula, and uses the same notation: new Class ID. An indefinite object

can be thought of as a type. Its notation is merely a class name: Class

ID. An "any" object is a special, predefined object with the property

that any object matches it. Its notation is any.

This uniform object notation allows a programmer to specify a

"type" parameter by using an indefinite object as an actual parameter,

to specify a constraint by using a definite object as a formal parameter,

and to specify a procedure parameter by declaring a procedure in the

a class which can then be passed. Thus Paragon can use this single
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notation to provide for commonly used facilities in other languages.

2.4. Comparing Objects

A relation called matching may exist between an actual object and

a formal object. The terms actual and formal are used in the conven-

tional sense. Unlike most languages, this relation is not symmetric.

When an actual matches a formal, there is no implication that the

formal matches the actual.

As parameters are objects, object matching is used for comparing

parameters. At different times, the same parameter may be used as

a formal and an actual. The following table summarizes the kinds of

comparisons that occur in Paragon.

Actual Formal

Proc. Call Parameter Proc. Specification Parameter

Proc. Call Parameter Proc. Implem. Parameter

Class Instantiation Class Declaration Parameter

Subclass Declaration Parameter Class Declaration Parameter

Proc. Implem. Parameter Proc. Specification Parameter

Much of the power of multiple procedure implementations and

subclasses comes from the fact that their parameters need not be iden-

tical with parameters in the corresponding procedure specification or

parent class. This is a radical departure from other data abstrac-

tion languages, since this ability implies that an implementation may

not necessarily work anywhere that the specification is permitted (be-

cause of incompatible implementations of variables and procedures).

Instead, Paragon defines a process called elaboration with implemen-

tations that ensures that feasible representation selections have been

made. This process is similar to execution simulation.

The basis for matching is the comparison of two instances of
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classes. Intuitively, an actual object matches a formal object if the

underlying class of the formal is an ancestor of, or the same as, the

underlying class of the actual. To ensure compatibility between def-

inite and indefinite instances, one of the following constraints must

also be met:

- The formal is an any instance,

The formal is an indefinite instance and the underlying class of

the formal is a ancestor of, or the same class as, the underlying

class of the actual, or

The formal is a definite instance and the actual is the same definite

instance.

Similar rules are recursively applied to parameters of an instance

(which are also instances of objects) to ensure that any parameters of

the instances match, but these rules are omitted for brevity.

3. Supporting Data Abstraction

In this section, the features of Paragon are use to illustrate how

data abstractions may be defined in Paragon. These examples show

how Paragon can describe and use shared specifications and repre-

sentations. These examples are programmed using a style of pro-

gramming called the object-manager model. This model is described

below.

3.1. Object Managers and Nested Classes

Paragon relies on the object-manager model of programming. The

object-manager model divides program objects into two categories:

managers and individuals. The manager is created first and contains

data and procedures that are shared among all individuals. For each

manager, there may be any number of individuals created, and each
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individual has a single manager. Naturally, each individual may have

private data and procedures not shared with other individuals.

As an example of this model, consider integers. Each individual

integer can be represented as a word in memory. Further, there ex-

ists a procedure, Addition, that is shared among all the individual

integers, and so this procedure belongs to the manager of all integers.

Paragon implements this model by using nested classes. The outer

class defines the manager and the inner class defines the individual.

3.2. Classes for Specifications

Classes in Paragon are used to represent two kinds of specifica-

tions: generalizations and descriptions. Generalizations attempt to

abstract some commonly used properties that are inherited by other

specifications. For example, Ada provides a generalization called non-

limited private which specifies that types declared as nonlimited pri-

vate have the assignment operation defined for them. Clu provides

a generalization that provides an object with the ability to be trans-

mitted over a network (see [Her 80] ). By properly defining a set of

classes for each set of operations that one might want to inherit later,

one can provide the same predefined generalization features that other

languages do without limiting the choices of operations. For example,

a set of declarations that simulate the concept of nonlimited in Ada

is shown below:

class AssignableManager is

class Assignable is begin end;

procedure Assign(Assignable,Assignable);

procedure Equal(Assignable,Assignable) return Booleans.Bit;

end;

A description corresponds to an abstract data type specification in
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other languages. It too consists of nested classes, and usually in-

herits generalization classes. An object manager that inherits the

AssignableManager class would then define an nonlimited type. Pro-

viding the details for the integer example shows this property:

class IntegerManager of AssignableManager is

begin

! Shared data and procedures go here ;

procedure Addition(Integer,Integer) return Integer;

! And the class definition for individuals ;

class Integer of Assignable is begin end;

end;

One could use these declarations to declare variables

vat AppleManager =_ new IntegerManager;

var Lisa _ AppleManager. new Integer;

var Macintosh _ AppleManager . new Integer;

and perform the operations declared in the specified classes or their

ancestors:

AppleManager.Assign(Lisa,MacIntosh);

The distinction between generalization and description classes is by

convention alone. Paragon places no restrictions on how a class is

used. There do exist classes that are used both as generalization and

description classes.

3.3. Classes for Implementations

Implementations are declared through the use of subclasses. Typ-

ically, a subclass that is intended to implement an abstract data type

contains the implementations for those procedures specified in its
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ancestors and contains subclasses for the nested classes. Assuming

that a full specification and implementation for computer words ex-

ists in a manager called CM, an implementation for the IntegerMan-

ager/Integer classes is:

classWordIntegerManager of IntegerManageris

begin

!....................;

procedureAssign(L:WordInteger,R:WordInteger)

returnWordlnteger is

begin

CM.Assign(L.Rep,R.Rep);

end;

!....................;

procedureEqual(L:Wordlnteger,R:Wordlnteger)

returnBooleans.Bitis

begin

returnCM.Equal(L.Rep,R.Rep);

end;

!....................;

procedureAddition(L:WordInteger,R:Wordlnteger)

returnWordlntegeris

begin

returnCM.Plus (L.Rep,R.Rep);

end;

!....................;

!And the classdefinitionforindividuals;

classWordlntegerofIntegeris

begin

var Rep _ CM .new Word;

end;

end;



Paragon's Type Hierarchies 121

The conventional methodology for implementing an abstract data

type requires that all operations in the specification must be imple-

mented, that a representation for the object must be described and

that there is some way to separate the abstract object from the con-

crete object. Procedure implementations for Assign, Equal and Ad-

dition are declared, the class WordInteger defines the representation

of Integer and use of the names Integer and WordInteger separates

the abstract object from the concrete object. Thus all of the re-

quirements for an abstract data type implementation are met in the

example above.

The example above also illustrates a feasible implementation for

IntegerManager. In WordIntegerManager, procedure implementa-

tions are provided for the procedure specifications in all inherited

ancestors: here the Assign, Equal and Addition procedures from the

IntegerManager and AssignableManager classes. This is not required

by Paragon but does guarantee that this subclass may be used as an

implementation anywhere the specification is used. If some operation

had been missing, and if a program used that operation on abstract

integers, then the implementation subclass for the specification could

not be used. An attempt to use such an incomplete subclass in this

circumstance would render the program infeasible.

The distinction between the abstract use of a object and the con-

crete use of an object is also illustrated by this example. The example

above specifies the class WordInteger in all of the procedures' param-

eters in the WordIntegerManager class. This implies that only the

WordInteger representation of Integer can be used with these proce-

dures and provides a boundary between the abstract and concrete rep-

resentations. Some languages provide an operation (in Clu called cvt)

that is supposed to translate between an abstract object and a con-

crete one. Within the implementation of the abstract data type, one

may restrict the implementation to use only the abstract properties of
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the object by omitting the special operation. Other languages reverse

the convention and allow the programmer access to the representa-

tion unless the programmer specifies that only the abstract operations

should be allowed. Ada uses still another approach by unconditionally

permitting access to the representation of an object within the imple-

mentation of the abstract data type. Paragon attempts to strike a

balance by using the names in the class declarations. Should only the

abstract operations be permitted, then the programmer may specify

this by writing the name of the specification class in the parameter.

If access to the representation is required, then the name of the class

used as a representation should be written in the parameter. Be-

cause each procedure specifies that WordInteger objects may be used

as parameters, it may use the details of WordInteger objects, such as

selecting the Rep field. Had the procedures merely required Integer

objects, then access to the Rep field would have been denied, even if

an instance of WordInteger had been given to the procedure.

The use of names rather than conventions for the ab-

stract/concrete decision permits a greater flexibility in the definition

of implementations. This is more fully explored in the next section

where some methods for providing multiple implementations of ab-

stract data types are considered.

3.4. Multiple Implementations

There are times when a programmer may wish to have more than

one implementation for an abstract data type. This can be illustrated

with the previously specified IntegerManager. Many computers have

more than one size of data representation provided by the hardware

so it seems reasonable that different integer variables might be able

to take advantage of these differences in order to improve a program's

performance. Each different sized representation has its own repre-
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sentation class and its own procedure implementations. Most data

abstraction languages allow only one representation for each specifi-

cation. If the one word representation for integers were present in a

program, such languages would prohibit the inclusion of a half word

integer and a double word integer.

Paragon does not have such a rule. A new representation may be

provided by declaring a new set of nested classes. For example, a pro-

gram might contain the following declarations for integers requiring

less than a word of storage:

class ShortWordIntegerManager of IntegerManager is

begin
!

procedure Assign(L:ShortWordInteger, R:ShortWordInteger)

return WordInteger is

begin

CMSW.Assign (L.Rep,R.Rep);

end;

! .................... ;

procedure Equal(L:ShortWordInteger, R:ShortWordInteger)

return Booleans.Bit is

begin

return CMSW.Equal(L.Rep,R.Rep);

end;

!.................... ;

procedure Addition(L:ShortWordInteger, R:ShortWordInteger)

return ShortWordInteger is

begin

return CMSW.PIus(L.Rep,R.Rep);

end;

!
...... o ........ ° .... °_

! And the class definition for individuals;
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class ShortWordInteger of Integer is

begin

var Rep _ CMSW . new ShortWord;

end;

end;

The ShortWordIntegerManager/ShortWordInteger classes repre-

sent another implementation of the integer abstract data type. Two

factors are present which allow the second implementation to be de-

clared and included in a program. First, the explicit separation of

the specification and implementation of the abstract data type pro-

vides a way to bind an implementation to a specification. Second, the

ability to name the representation explicitly circumvents a problem

of controlling the access to the concrete object.

The ability to name explicitly the representations or specifications

in parameters permits multiple representations to be used in a more

common setting: differing type parameters. Frequently cited exam-

ples are set implementations where alternative representations of the

set is caused by different element types [Joh 76, Low 74, Sch 77, Wul

81]. A typical (partial) specification for sets in Paragon appears be-

low:

class SetManager(T:any) is

begin

class Set is begin end;

!.................... ;

procedure Union(Set,Set) return Set;

!

end;

The element type of the set may be any class. However, certain classes

have special properties that an implementation may wish to exploit.
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For example, if the element type were totally ordered, a B-Tree or

discrimination net may be an appropriate implementation. If it can

be hashed, a hash table may prove efficient. Sets of a small number of

enumerated values are usually represented as a bit vector. Thus one

wants the implementation to be able to take advantage of knowledge

of the element type.

Other languages, such as Clu and Alphard, do not permit this

exploitation in an implementation, or more precisely, they insist that

such requirements appear in the specification of the abstract data

type. Paragon permits the specification to be as broad as required

and the implementation to be as narrow as required by allowing the

parameters in subclasses merely to match the parameters in the parent

class, and not to be identical. A discrimination-net implementation

of the previous SetManager could look like the following:

class DiscriminationSetManager (OrderedManager.T:Ordered)

of SetManager is

begin

!.................... ;

class DiscSet of Set is

begin

end;

!.................... ;

procedure Union(DiscSet,DiscSet) return DiscSet is

begin

! Impl of Union operation,

end,

! .................... ;

end;

The DiscriminationSetManager class may only be used as an im-

plementation for Setmanager when the element type of the set is or-
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dered. However, all available information about ordered objects (as

expressed in the specification for OrderedManager) may be used inside

DiscriminationSetManager in its manipulation of the set's element

type. This use of a subclass in the parameter of the implementa-

tion class also eliminates the need for procedure parameters since the

composed data type and its operations are combined in a class dec-

laration. Therefore the user can use the abstract data type without

needing to consider the constraints required by any particular imple-

mentation. Such considerations are automatically processed by the

translation system.

3.5. Explicitly Shared Implementations

The examples given in the previous sections for integers and sets

bring up another topic: the sharing of representations. Because the

class mechanism does not restrict the way in which specifications

and representations may be combined, several arrangements of classes

prove useful in selective sharing between the specifications of abstract

data types, between the representations of abstract data types, and

between the specifications and the representations of abstract data

types. Each of these kinds of sharing is considered in turn.

3.5.1. Shared Implementations via Shared Speci-
fications

Selective sharing of specifications is quite common in practice and

supported in some languages, such as Ada. This usually takes the

form of a single manager being used for several different kinds of

individuals. One example is a computer memory, as illustrated below:

class MemoryManager is

begin
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class Byte is begin end;

class Word is begin end;

procedure Read (Byte);

procedure Write(Byte,IM.Integer);

procedure LeftByte(Word) return Byte;

procedure RightByte(Word) return Byte;

end;

The single manager MemoryManager provides the shared decla-

rations for two related individuals, Byte and Word. Words and bytes

are closely coupled in a memory and should be considered connected

in some way. Some languages, such as Clu, have no provisions for

this selective sharing. Paragon permits multiple inner classes that are

declared in an outer class to denote different kinds of individuals for

the same manager.

The implementation of MemoryManager could contain further

subclasses for Byte and Word and implementations for Read, Write,

LeftByte and RightByte, each of which could access the concrete rep-

resentation for both bytes and words.

3.5.2. Shared Implementations via Previous Im-
plementations

Another way of combining classes gives the programmer the abil-

ity to write procedure implementations that can access multiple rep-

resentations. Like the MemoryManager example above where one can

write a single subclass of the specification class that has access to rep-

resentations of multiple kinds of objects, one can provide a subclass of

implementation subclasses that permits access to multiple, concrete

representations of the same abstract object. This can be illustrated

by extending the IntegerManager implementations given in Section

3.4). To include a procedure that can add integers regardless of the
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implementations of the abstract integer, one can write:

class CombinedWordIntegerManager of

WordIntegerManager, ShortWordIntegerManager is

begin

!.................... ;

procedure Addition(L:ShortWordInteger, R:WordInteger)

return WordInteger is

begin

end;

!.................... ;

procedure Addition(L:WordInteger, R:ShortWordInteger)

return WordInteger is

begin

°.°

end;

!

end;

If CombinedWordIntegerManager were to be selected as the im-

plementation for an abstract IntegerManager object, then abstract in-

tegers could be implemented with either the ShortWordInteger or the

WordInteger subclasses of Integer. Regardless of the implementation

selected for two abstract integers, there will exist an implementation

of the Addition procedure that can operate on them.

3.5.3. Shared Implementations for Unrelated

Specifications

A third way of sharing in Paragon allows an implementation class

to be used as an implementation for multiple specification classes.
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One example that illustrates this sharing is the SETL system where

sets are implemented by altering the representation of the elements

of the set. This is a unique approach to implementing sets and their

elements as it requires a shared implementation for two specifications

that are not otherwise related: one specification for sets, one specifi-

cation for the elements of the set. The use of classes and inheritance

provides a way to specify this capability as well. Given two separate

sets of specification classes, say for integers and sets, one creates a

single class that acts as the manager for both and that class contains

the representations for the union of the inherited individuals and pro-

cedures. An abbreviated illustration is given below:

T

! Specification Classes for Integers ;

!

class IntegerManager of AssignableManager is

begin

procedure Addition(Integer,Integer) return Integer;

class Integer of Assignable is begin end;

end;

T

! Specification Classes for Sets ;

!

class SetManager(T:any) is

begin

procedure Union(Set,Set) return Set;

class Set is begin end;

end;

With these specifications, one may write the following shared imple-

mentation for sets and integers (adapted from [Dew 79]):
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class IntegerSetManager(IntegerManager. T: Integer)

of IntegerManager, SetManager is

begin

!.................... ;

class IntBlock is

begin

! Reps for the integer and set indication ;

end;

! Shared Data for the Manager;

vat RIBM _ new RefManager(IntBlock);

var IntValueList _ RIBM. new Reference;

! .................... ;

! .................... ;

! Integer Implementations ;

! .................... ;

class SharedInteger of Integer is

begin

var IntValueBlock _ RIBM . new Reference;

end;

!.................... ;

procedure Addition(SharedInteger, SharedInteger)

return SharedInteger is

begin

! Implementation for Addition operation;

end;

!.................... ;

• ,.°., ...............

! Set Implementations ;

!.................... ;



Paragon's Type Hierarchies 131

class SharedSet of Set is

begin

var SetNum _ CM. new Word;

end;

!.................... ;

procedure Union(SharedSet, SharedSet) return SharedSet is

begin

! Implementation for Union operation;

end;

end;

Although the details are missing, the example above shows that

representation combinations can be expressed via the class mecha-

nism whereas most approaches to data abstraction have no way of

describing a combined representation.

3.6. Implicitly Shared Implementations

Paragon also supports implicit sharing of representations. Such

sharing comes when procedure are written that use only abstract

properties of their parameters. For example, an implementation of

the Union procedure could have been provided in the SetManager as

follows:

procedure Union(L:Set,R:Set) return Set is

begin

var Temp =_ new Set;

var i _ new T;

for i in Elements(L) do

Insert(Temp,i);

end for;
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for i in Elements(R) do

Insert(Temp,i);

end for;

return Temp;

end;

This procedure implementation assumes that an Elements iterator

and an Insert procedure have been specified in SetManager. Note

that implementation uses only abstract operations on sets. Each call

of this Union procedure may have different or even conflicting repre-

sentations for the parameters. Paragon permits these calls and checks

that all necessary procedure implementations are available for use in-

side of Union. All of the necessary processing is performed at compile

time; no run-time examination of representations is necessary when

executing this implementation.

These examples have shown how multiple representations for vari-

ables and procedures may be declared and used in Paragon. After

a program is written, the selection of an appropriate representation

must be made for each variable and each procedure call in the pro-

gram. To satisfy this need, Paragon provides a representation selec-

tion mechanism that the programmer may use to guide the translator

in picking appropriate implementations. The discussion of this selec-

tion system is beyond the scope of this summary (and paper). The

interested reader is referred to the complete description of Paragon

[She 85].

4. A Retrospective

Paragon was designed and implemented as a proof-of-concept and

was never intended to become a production system. Its design is com-

plete and a prototype implementation exists. Several thousand lines

of Paragon code have been programmed. Both abstract data types
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and application programs have been programmed and processed by

the prototype. This code also provides test cases for performance

measurements that were taken of the prototype translator. The re-

sults of the test are described in [She 85]. The source code for all of

the tests can be found in [She 85]. Generally, the system interprets

Paragon code at about the same speed as the initial Ada interpreters,

and outputs a transformed source that is equivalent to Pascal.

Over the last four or five years, several recurring themes have

merged in the discussions about hierarchies in languages. A taxonomy

of many of the discussions can be found in [Weg 87]. Four of these

issues relate to the Paragon experience and each will be discussed in

turn.

4.1. Compiled vs Interpretive Languages

There is a continuing debate about whether object-oriented lan-

guages should be interpreted or compiled. From the outset, there

were examples of both: Simula is compiled and Smalltalk is inter-

preted. Paragon performs a kind of execution simulation to check

feasibility. Another approach is to try to translate an interpreted lan-

guage into a compiled language [Cox 87]. It seems that the camp

favoring interpreted languages is assuming that with clever partial

compilations (e.g., compilation as needed), and with better hardware

support, the interpreted languages can perform as well as compiled

languages ([Suz 83, Deu 83]). However, it also seems to me that for the

incremental performance gained from better algorithms or hardware

can be applied usually to traditionally compiled languages, the result

being that both sets of languages perform better than before, but with

compiled languages outperforming interpreted languages. Further, I

have not yet seen a convincing answer to the problem of safety in an

interpreted language: a type error may not be located until well into
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program execution. The usual answer of "one can immediately fix

the program and continue execution" is not helpful in a production

environment.

4.2. Theoretical vs Applied Languages

Although the design of Paragon was clearly influenced by hetero-

geneous algebras, the work itself does not attempt to advance that

formalism. These technique provide a basis for determining if an im-

plementation meets a specification, and provide one kind of framework

for extending specification by adding domains and axioms. However,

these techniques do not provide any notion of combining together dif-

ferent implementations, nor discuss how to apply these theories in

practice. Attempts have been made to provide an additional the-

oretical framework for generating instances from specifications, for

example [Agn 85], but these efforts are usually just careful renaming

systems rather than anything can be applied in practice. There are so

few systems that can provide multiple representations of an abstract

data type, and even fewer that provide a way to select them, that

trying to abstract a theory on such systems may be premature. De-

manding that working systems must first have a complete theoretical

treatment before construction may begin seems too restrictive.

4.3. Using Hierarchies for Refinement vs Imple-
mentation

In her keynote address at the 1987 OOPSLA conference, Barbara

Liskov noted that languages encourage several uses of inheritance, two

of which are refinement and implementation. Roughly, refinement

means the addition of new specifications while implementation refers

to using a superclass as an implementation of a subclass. An example

of the former is that a mathematical group is a subclass of semigroup,
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while the later is that a set is subclass of list. She correctly points out

that the former is consistent with the strategies of information hiding

and data abstraction while that latter is an implementation trick that

can cause maintenance problems later. In this paper, the discussion

of Paragon uses its classes in a very stylized way, for example, in

the object-manger model. However, the programmer is not restricted

to using Paragon in this way. Arbitrary nesting and inheritance of

classes is permitted, but very confusing, resulting in programs that

are as bad as in any other language. I believe that design would have

been better if it had explicitly distinguished between specifications

and implementations, and between managers and individuals.

4.4. The Role of Scope Nesting in Languages

In order to allow Paragon's mechanisms of class nesting and hi-

erarchies to serve many roles, the mechanisms had few restrictions.

It has become apparent that allowing such arbitrary scopes has little

practical value but can make programs harder to read and harder to

process. For example, Paragon explicitly checks for an infinite re-

cursion of data structures and flags it as an error. Another system

encountered a different problem: attempts to provide in-line substitu-

tion in Loglan [Kre 87] for nested classes resulted in another variant

of the funarg problem. As a result of these observations, many newer

languages, such as C++, do not provide arbitrary nesting of scopes.

5. Summary

The paper demonstrates how a type hierarchy ITechnically, a di-

rected acyclic graph of types, but type hierarchy is a more commonly

used term.] can be used for writing programs using the object-manger

model to specify abstractions, refine the specifications, write repre-

sentations for the abstractions and combine representations as de-
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sired. These capabilities are not available in current languages, so

the Paragon design shows how type hierarchies can be used in new

language designs. A number of programs were written and translated

with a prototype system that processes Paragon, thus the suggested

language is not a mere paper design, but a complete language that

can be implemented and used for programming. However, its age in

a rapidly advancing field is showing, and a significant redesign would

be required to be used as a production system.
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