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The Andrew Message System is one of the most ambitious and technically suc-
cessful systems yet built in the area of electronic communication. In this paper,
the authors of the system explain the key decisions in the architecture and reflect
on what was done right and what was clearly wrong. Implementation details are
mentioned only in passing, in order to maximize the relevance of this paper for
the designers of successor systems.

1. Introduction

The Andrew Message System (AMS) was an ambitious project to build a prototype of the
electronic mail and bulletin board systems of the future. Because it was a research-flavored
development project, and not an attempt to define a standard for such systems in the future,
it was inevitable that certain decisions that were made in the AMS should be reconsidered in
successor systems, and particularly in any attempt to standardize such systems.

In this paper, we will briefly describe the Andrew Message System and then examine the
key architectural decisions that were made in its construction. These are the most basic
decisions, the ones most difficult to change once the system is built. We will discuss, in
particular, which things seemed to work out well and which we would do differently in a
future system.

2. Background: Andrew & Its Message System

The Andrew Project [10, 11] is a collaborative effort of IBM and Carnegie Mellon University.
The goal of the Andrew project was to provide a good environment for university computing.

That is, particular emphasis was paid to the needs of the academic and research com-
munities. '

"This work was performed as part of the joint IBM-CMU contract that established the Information Technology
Center.



Andrew consists of three main parts. The Andrew File System [5, 7] is a distributed net-
work file system designed to provide the illusion of a uniform central UNIX file system to a
large number of users; 10,000 workstations was the design goal. The Andrew Toolkit [12] is
a window-system-independent programming library that supports the development of user
interface software. It currently supports a wide range of applications, including a multi-
media editor that allows seamless editing of text, various kinds of graphics, and animations.

The third main piece of Andrew is the Andrew Message System, or AMS. The AMS builds
on the file system and the toolkit to provide a large-scale mail and bulletin board system
allowing communication that seamlessly includes text, pictures, animations, spreadsheets,
equations, and hierarchical drawings. The AMS also supports "old-fashioned” text-only com-
munication with low-end machines such as IBM PC’s and with the rest of the electronic mail
world. The Andrew Message System has only recently become widely available; the "results"”
discussed in this paper are really observations of the first large test installation, the Car-
negie Mellon campus, where thousands of students, faculty, and staff have been using the
system during its development over the last few years.

A detailed description of the Andrew Message System is beyond the scope of this paper, and
can be found elsewhere {2, 13]. This paper will concentrate on the factors that shaped the
basic AMS system architecture.

3. Key System Constraints & Goals

The AMS project began with a semi-formal requirements analysis. The result of that
analysis was an informal "wish list" for electronic communications [3]. Although some items
on that list needed to be abandoned as impractical, we were left with a series of clear goals
for our system, which acted as major design constraints:

Reliability of Message Delivery

Distributed mail delivery systems have, in the past, suffered from extraordinary levels of
unreliabiiity. Guaranteeing the delivery of a message, and providing users with a firm
promise that a message, once sent, would be either delivered or returned (at least for "local”
recipients), was from the outset one of our highest priorities. '

Support for Enormous Message Databases

A quick glance at existing bulletin board systems such as UNIX Netnews should be enough
to convince anyone that the future of electronic communication includes an enormous
volume of data. Extrapolating from the netnews example, it is clear that expanding both the
number of participants and the types of data (raster images, for example, are notoriously
larger than text) can only make matters worse (that is, make the database larger). A
forward-looking message system can not afford to ignore the question of scale, and must ex-
plicitly plan for databases we might regard as unthinkably large today.

Support for Wide Range of Machine Types _

For better or worse, machine and operating system heterogeneity is a reality. Any system
that is tied to the graphics capabilities of a specific machine or class of machines is doomed
by the market. Nonetheless, any system that constrains its capabilities to the lowest com-
mon denominator will be unlikely to excite its potential users. In our case, we took on the
twin goals of fully supporting the graphics capabilities of scientific workstations, while com-
patibly supporting simpler machines like the IBM PC.

Support for Wide Range of Media Objects

Given the goal of supporting scientific workstations, we wanted to be able to support a wide
range of media objects that can be represented on such machines. In particular, we felt it
essential to support formatted text, raster images, and line drawings, and we also set as a



- goal an architecture that would make it easy to add new objects (such as music) to the sup-
ported set in the future.

Support for Wide Range of Interface Styles

Observation has shown that there are basic differences of individual taste and inclinations
that lead to fundamentally different ideas about user interfaces. Moreover some user inter-
faces, though desirable in the context of a large graphics display on a workstations, may not
be possible in other situations, such as a dialup line. For these reasons, it seemed essential
that the architecture make it as easy as possible to develop alternative user interfaces.

Support for Active Messages

In most existing systems, a message is a passive object. Once a user receives a mail mes-
sage, for example, there is not really anything the message can do but allow itself to be read.
The user can do a few things to it, such as read it, delete it, and copy it, but the message is
not able to take the initiative. We had come up with several cases in which more active
messages would be desirable. For example, a message calling for a vote could simply ask the
user to choose from the specified alternatives, rather than make him compose his vote
answer by hand. Therefore it seemed important that our design be able to handle such ac-
tive messages in a manner relatively independent of the user interface programs.

4. The Andrew System Architecture

While all of the above considerations were forming themselves in our minds, the other
groups in the Andrew project were proceeding independently. They developed two key com-

ponents, the Andrew File System and the Andrew Toolkit, which fit in extremely well with
our own needs as outlined above.

4.1. The Andrew File System

The Andrew File System is a distributed file system, specifically designed to function in a
very large-scale manner. It achieves key efficiencies using whole file transfer, substantial
caching on the local disks, and callbacks to notify the workstation when the authoritative
copies of cached files have changed. (In whole file transfer, the first reference to any part of a
file causes the entire file to be transmitted to the client’s workstation.) The fact that it func-
tions well at a large site was something we could make good use of. However, the whole-file-
transfer had serious implications for our databases, which we had to break up into many
small files for performance reasons. Additionally, the distributed nature of the file system
required unusually careful attention to be paid to failure conditions from file operations
previously thought to be "reliable”.

4.2. The Andrew Toolkit Datastream

Much of the design of the Andrew Toolkit focused on the representation of cooperating inde-
pendent objects: a text object can include a table object, for example, and a table object can
include within itself another text object, and so on. Working with the Toolkit developers, we
were able to ensure that the external datastream -- that is, the form in which such nested
objects were represented in files -- could be transmitted through existing mail transport
mechanisms (notably SMTP and its variants). Thus, the most spectacular feature of the
Andrew Message System, its akility to handle a wide range of graphical objects, came almost
"for free" from the use of the Andrew Toolkit. However, an implication of this use was that
all mail files generated by the system would use this data format, requiring that we intro-
duce translators into several parts of the architecture.



5. The AMS System Architecture and Rationale

Given the Andrew Toolkit and File System, which were basically what we wanted and were
at any rate in large part out of our control, there were still a large number of important
architectural decisions to be made.

5.1. The Server/Client Split

One basic decision that must be made in any system like this is whether data sharing is to
be achieved via a server-based mechanism or a shared data space, such as a shared file sys-
tem. Because we could begin by using the Andrew File System, one might have expected us
to choose the latter approach. However, this use of the file system struck us as potentially
too limiting. In particular, low-end machines such as Macintoshes did not have direct access
to the file system (although such access is being developed), and we did not want the Andrew
Message System to be tied entirely to the Andrew File System. For example, a site with only
a few machines might not bother bringing up a central file system, but might still desire
centralized mail and bulletin board service.

For this reason, we added a second level of indirection. Although the message database does
indeed reside in a file system -- either the local UNIX file system, the Andrew File System,
or some other file system -- client programs are not expected to access that database directly.
Instead, all operations on the database go through a program called the message server (MS)
that communicates with client (generally, user interface) programs using remote procedure
calls [4]. Thus, all message server processes must run on machines with access to the
database in the file system, but client programs are under no such constraints. The exist-
ence of two levels of indirection in our system (from the client to the message server, and
from the message server to the central file system) has worked out extremely well, as
described below. '

5.2. Server Statelessness and Idempotency

Given that the server may be running on a different machine than the clients, questions of
optimizations quickly arise. One scenario we particularly wanted to support was to run mes-
sage server processes on idle machines. By some unspecified mechanism, client programs
would find underutilized machines on which to run their message server processes.
However, idle machines can be reclaimed, and so we wanted to make it possible for one mes-
sage server to quit and be replaced by another message server, possibly on another machine,
with no negative consequences for the client aside from a delay during the changeover (and
possible slowdowns due to loss of caching optimizations).

The desire to support this kind of transparent server migration led us to specify that the
client-message server relationship would be completely stateless; that is, each call to the
server could be issued and responded to independently of the history of previous calls.

Another problem that always arises in client-server relationships involves the coordination
of retried calls. If the client thinks that the server has timed out, and resends a call, it does
not necessarily want the server to execute the operation a second time. Given that we
wanted an extremely simple remote procedure call mechanism (to make it easier to port the
system to a wide variety of client machines), we did not want to count on the RPC
mechanism to avoid all such call duplications. Instead, we opted to specify that all remote
procedure calls must have the property that they can be retried indefinitely at the lowest
RPC level.



5.3. The SNAP RPC Mechanism

Given the constraints described above, we chose to design a small, simple remote procedure
call mechanism for use by the AMS. SNAP (Simple Network Access Protocol), as our RPC
package is known, handles the reliable fragmentation, transmission, and reassembly of RPC
requests and responses between the client and the server in a portable manner. Its view of
an RPC request is simply a buffer of bytes to be transmitted and a buffer of bytes to be
returned. Thus a set of packing/unpacking routines are provided by the application program
in order to complete the encapsulation of the network questions and answers behind what
appears to be a simple procedure call on the client end.

5.4. The Guardian

How, in a system like this, does a client find a server? Many mechanisms are possible, but
none is ideal. The normal UNIX "services" mechanism doesn’t answer the question satisfac-
torily for several reasons. First, in order to satisfy the protection requirements of the
Andrew File System, it seemed necessary that each server be authenticated as a single user.
Thus, while multiple clients can talk to the same server process, they can do so only as long
as they are each authenticated as the same user. Given, then, that there will be an ar-
bitrary number of message servers running on a given machine, how does a client find the
right address? Even worse, if there is no message server running, how does a client on a
remote machine (particularly a non-UNIX machine) start one?

In order to answer these questions, we created a special system program called the guar-
dian. The guardian is started at machine reboot time and is run as a privileged user. Itis a
small program that does only a few things. It takes client requests to be connected to ser-
vers, checks the client’s authentication (using either the raw password or the Andrew File
System authentication tokens), starts new authenticated servers when necessary, and tells
the clients where to find their servers (which may be on yet another machine). The guardian
is easily configured to determine what users may start servers on a given machine, whether
that machine will act as a server machine for remote clients, and so on. Moreover, if the
"migrating server" mechanism mentioned above is ever implemented, it will be straightfor-
ward for the guardian to connect clients with servers on other machines.

5.5. The CUI Library

On the client’s side of the client/server boundary, an additional layer is provided between the
remote procedure calls to the server and the client interface itself. This layer is called the
CUI (Common User Interface) Library. In addition to encapsulating and hiding the server
calls, the CUI Library improves the overall efficiency of the system by providing a level of
caching, so that certain kinds of questions need go to the server only once, with the answers
retained by the library. Additionally, the CUI library provides a few abstractions of context
(recall that the client/server interface is stateless) and relatively transparent handling of
server timeouts and reconnections. »

Beyond the functions described above, however, the CUI library tries to do a few extra
things to simplify the task of constructing a new user interface to the system. By packaging
up common operations into library units, the CUI library further simplifies the use of the
AMS by an interface program. However, such packaging, it turns out, is not without cost.
In the process of executing certain higher-level CUI library calls, user interaction is neces-
sary. The CUI library stipulates, therefore, that every client program must provide a few
simple routines for user interaction, such as "GetBooleanFromUser", "GetStringFromUser",
and "ChooseFromList" (a multiple choice question). Each client may implement these
routines however it wishes, but must provide routines to allow the answering of such ques-
tions.



For example, support for "active messages” is provided in an interface-independent manner
entirely by the CUI library. Each interface is encouraged -- though not required -- to call a
single CUI library routine each time it displays a new message to the user. This routine
checks for all of the different kinds of active messages, and handles them via the interface-
provided routines. Thus, for example, if the message calls for a vote, the CUI library will
notice this and will call the interface’s "ChooseFromList" procedure.

5.6. The Delivery System

Another key decision in the AMS was to entirely separate the mail transport mechanism not
merely from the user agent (the CUI library client) but also from the database agent (the
message server process). In this sense, the parts of the AMS described thus far are delivery-
system-independent. For example, they run transparently on top of the standard UNIX
sendmail-based delivery system [1], where that system can be made to function effectively.

Unfortunately, that system can not always be made to function effectively. In particular, the
standard sendmail tools predate the existence of a central file system, and function badly in
such an environment. For that reason, a rewritten mail delivery system became another
major component of the AMS. (Actually, there were other problems with sendmail as well;
running sendmail daemons on hundreds of workstations each with their own local disk
queue would be a maintenance nightmare even without considering the effects of a central
file system.)

In general, a message from a local user to another local user is written directly from the
originator’s workstation as a file in the recipient’s "Mailbox" subdirectory. This simplicity,
however, belies the difficulty of keeping delivery reliable. Figure 5-1 is an example of the
path this same message might take when the file server for the recipient’s home directory is
temporarily unavailable. In this case, the delivery process on the originator’s. workstation
queues the message, and additional delivery information, in a global directory (step 1, in the
figure). Such global, installation-wide directories are scattered throughout the central file
system on multiple file servers, to ensure reliability. Once a message is in a queue, a
daemon running on one of a set of dedicated post office machines will read the message and
its associated information (step 2). Assuming the file server is now available, the daemon
will deliver the mail to the recipient’s mailbox (step 3). If the file server is still unavailable,
the message is placed in a queue that is serviced less frequently than the global queues.
Eventually, the server will come back online and the message will be delivered (step 3).

Actually, though, the situation is even more complicated. Because mail delivery to15 people
involves writing mail into 15 Mailboxes, it was found to be unacceptable to make users send-
ing mail wait for this process to terminate before they could continue, say, reading another
message. Thus the notion of "dropoff ' was introduced. When mail is sent, it is not written
directly into mailboxes, but is simply queued in a subdirectory of the sender’s home direc-
tory. Once the items are written into this queue directory, a message is sent to a local
machine’s mail delivery daemon, telling it to deliver the message when it can. Delivery thus
proceeds in parallel with the user’s other actions, but delivery has already been guaranteed
by the act of enqueueing the message in the user’s outgoing directory in the central file sys-
tem. Even if the local daemon dies or the machine catches fire, a daemon running on a
dedicated post office machine will eventually check the user’s subdirectory and deliver the
queued mail.

With all of these daemons picking up queued messages, one might ask why the local com-
ponent is necessary at all. The answer is that the queueing is for the most part backup to
provide reliability; in most cases, all of the work of delivery is done on the workstation itself,
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Figure 5-1: AMS Delivery System

reducing the need for post office machines. The post office machines and delivery daemons

function as the deliverers of last resort for local mail, and the primary delivery mechanism
for off-site mail.

5.7. The Unformatted Version of Messages

Given the wide variety of possible client interfaces, it is clear that not all of them will be able
to understand multi-media messages in all their splendor. For this reason, a simple and
portable routine was written, completely independent of the Andrew Toolkit, for translating
the toolkit’s datastream into a "lowest common denominator” format. Thus, for example,
this translator would replace an animation by a sentence like "An animation appeared here,
but could not be displayed.” The translator also attempts to format text appropriately for a
simple ASCII display device with 72 characters-per-line capacity.

This procedure has found its way into the system at several points. Clients requesting the
body of a new message from the message server may request either the formatted or the
unformatted version, for example. The message delivery system, too, uses this
"unformatting” procedure when sending the message to sites that do not understand the
multi-media format.

5.8. The White Pages

The White Pages is a database package for mapping names to mail addresses. It can find
and report ambiguities (two John Smith’s) and can suggest corrections for many misspell-
ings, based on phonetic matching and some heuristic knowledge (about nicknames, for
example).



The white pages is accessed by a subroutine library, used by several pieces of the system.
The delivery system uses the white pages to resolve the ambiguities of delivery addresses.
The message server uses the white pages to provide an exported procedure call by which
client programs can validate lists of addresses before actually sending mail. Since client
programs may not be AFS clients, and thus may not have access to the actual White Pages
database, they can not query that database directly (that is, they cannot themselves be
white pages client programs) but can obtain the necessary functionality via calls to the mes-
sage server, which is a white pages client.

6. Assessment of AMS Architectural Decisions

The purpose of an architectural review of an implemented system is to provide some
guidance or advice to implementers of future, similar systems. In this case, there is a sup-
plemental purpose, which is to assess the utility of the two major new tools used in building
the system, namely the Andrew Toolkit and the Andrew File System.

6.1. Use of The Andrew File System and the Andrew Toolkit

It is frankly hard to be anything but positive about the Andrew Toolkit and the Andrew File
System. The Toolkit gave us multi-media capabilities essentially for free; using a toolkit-
based approach in this regard is clearly the right thing to do, as it provides a high level of
consistency across applications. The biggest thing the Andrew Toolkit gave us was the en-
capsulation of nested multi-media objects both on screen and in a permanent (i.e. file-based)
datastream. In addition, the Toolkit gave us window manager-independence; the Messages
application already runs virtually identically on two different window managers, with more
planned. Similarly, the use of some sort of central file system seems essential for the
management of a large volume of data. The AFS gave us the ability to distribute the mes-
sage database widely, so that users could see the same collection of messages re. rdless of
which machine they logged into.

A good question to be asked is whether or not the Andrew File System and Toolkit offered
significant advantages over other available file systems and toolkits. In the case of a UNIX-
based implementation, this really comes down to asking how they compare to the Sun NFS
file system [8] and the X Toolkit [15]. The comparison is in both cases quite easy. NFS was
simply not designed to support nearly as many workstations as the Andrew File System.
Although it may perform better for small numbers of workstations, it simply could not
handle the load our system would put on it at an installation like the Carnegie Mellon cam-
pus as well as the Andrew File System. In addition, the Andrew File System offers the sig-
nificant advantages of rigorous authentication and disk caching for better performance [6].

The comparison with the X Toolkit is even more straightforward. While the X Toolkit does
offer a simple model of the window, this simplicity goes much too far; it is, in fact, too simple
to allow for co-operating nested objects. For example, our message bodies can include text
that includes tables that include text that include raster images and equations. Further-
more, the X Toolkit apparently has no notion of a datastream, and hence no toolkit-level
support for permanent storage (or mail transmission) of multi-media objects. In short, the
largest part of what we got from the Andrew Toolkit would have to be re-invented if the X
Toolkit were used.

6.2. Things We Got Right in the AMS

There were quite a few decisions made in our architecture which, in retrospect, appear to
have been right on target. In fact, if we were to do it all over again, the highest levels of the
architecture would probably be identical to what they are now.



Particularly good was the clean split between four components: the client program, the mes-
sage server program, the delivery system, and the file system. The ability to replace any of
these components relatively cleanly has left us with a open system that may go in several
directions in the future. In particular, our system already can run with two delivery systems
(Unix sendmail and the AMS delivery system) and two different file systems (the Unix file
system and the Andrew File System), with one more of each likely to be added in the near
future. Moreover, we could relatively easily replace the entire message server, perhaps to
use a new database technology, with essentially no changes necessary to any of the user
interface programs.

We are especially pleased at having two levels of indirection between the client and the data.
It seems likely that our architecture could scale well to a far larger installation -- tens of
thousands of workstations, perhaps -- by clustering message server processes on a relatively
small number of workstations, all sharing a central file system, and having the client
workstations talk only to these servers, not to the central file system. Indeed, such a
pyramid architecture is probably worthy of further generalization in future systems.

The separation of the white pages component was also a good decision, primarily because a
general and powerful user name lookup facility turns out to have many other uses beyond
the message system. Within the white pages, the use of a b-tree representation [9], storing
the information in a large number of small files, has given us better database performance
than we ever really expected with a file system based on whole file transfer.

6.3. Problems With the Client/Server Split

Although the basic split between the client and the message server was, we believe, a good
decision, a future effort could improve some of the details substantially.

First of all, the set of routines exported by the server to the client was not designed suf-
ficiently carefully. While most of these routines are of the kind that would be needed in any
such system, a careful design would undoubtedly lead to a more coherent set.

The SNAP library for remote procedure calls was designed to be extremely simple, portable,
and cheap, especially on the client end. This had its costs, naturally. First of all, SNAP
limits transmissions to fixed-size buffers. Although the buffers could be quite large, there
are still several places where the code is much less natural than it would be if the RPC
mechanism could simulate the return of arbitrary-sized information. In addition, the SNAP
architecture is essentially unidirectional, in that the client can call the server but the server
can not call the client. This can be particularly painful in situations involving unanticipated
errors, where we would really like the server to be able to tell the client to report the
problem to the user. Instead, we have to try to make the error codes returned by the server
to the client (currently four 8-bit codes) sufficiently meaningful, which is awkward at best.
This problem could be alleviated without sacrificing the unidirectional architecture by, for
example, the creation of a distinguished error condition that meant, "ignore the return data
and just treat the return packet as an error string," but this would also have serious implica-
tions for the structure of the unpacking routines. In another implementation, we would at
least reconsider the unidirectional communication.

The requirement that all server calls can be retried, as described above, appears now to have
been overly restrictive. Although this requirement exists largely in order to keep the SNAP
level simple, it has led to some complexities and ugliness at the next level higher. Although
the RPC layer numbers its calls and keeps track of the results so as to simply prevent the
same call from going through twice, it does not handle reconnection to a server itself, and



thus cannot tell when a client has reconnected and is retrying the same call (which may, in
fact, already have succeeded). Providing more support for reconnection to servers at the
RPC level might allow future systems to simplify the design of the client-server interface
remarkably.

In general, the attempt to keep the client library simple has made the client-server interface
uglier. For example, we wrote a rather complicated address parsing library, to parse all of
the odd addresses used by various network mailers. In order to keep this complexity out of
the client library (and in order to avoid having to think about porting it to low-level
machines), we decided that all such parsing would be done by the server. This left usin a
situation where a client had a list of addresses, each of which needed to be validated by the
server. However, questions might need to be asked about each individual address, for ex-
ample if one is ambiguous. Since only the server knows how to separate the addresses, and
only the client knows how to query the user, the resulting protocol is strikingly complicated,
and the server call related to name validation is harder to explain than any other call in the
libraries. It would be nice if, in a future system, a bit more power on the client end could be
assumed.

6.4. Problems With the Required Interface Functions in the CUI Library

As discussed above, the CUI Library requires its clients to provide a few basic routines for
interaction with the user (e.g., GetBooleanFromUser). Although these seemed simple, harm-
less, and universal at first glance, they in fact turned out to be surprisingly challenging for
certain interfaces. For example, Batmail, the Emacs interface to the AMS, was implemented
largely in mocklisp, the Emacs extension language. The communication with the CUI
Library and message server process was done via a C subprogram, known as Robin. Unfor-
tunately, Robin, as the CUI Library client, had to provide the basic interaction routines, so
that the Batmail/Robin interface was rendered considerably more complex as Batmail had to
be ready to answer questions from Robin essentially asynchronously.

Although the occasional pain seemed worth the cost, a more careful separation of the various
parts of the library would make it possible to include only the low-level parts of the library if
so desired. In this way, some programs could supply the required interfaces and take advan-
tage of the higher-level library routines, but programs for which this would be problematic,
such as Batmail, could use only the lower-level routines, duplicate the higher-level
functionality, and never need to grapple at all with the implementation of the interaction
routines. However, the truth is that nearly any interface should be able to provide such
routines, and the basic Emacs/subprocess mechanism that has trouble with this paradigm is
itself an ugly (although widespread) hack.

6.5. Problems of Insufficient Generality

One of the major goals of the AMS was to generalize features that had been present in pre-
vious systems in more limited forms. In at least a few cases, however, the AMS introduced
new features which were only later recognized as worthy of generalization. In these cases,
future systems could introduce substantial improvement through generalization.

In particular, the notion of "active messages" was arrived at late, on the heels of several
specific types of actions. We have not yet stepped back and seriously considered the implica-
tions of this idea, but it seems clear that there are many more uses for this concept than the
four we have implemented. In a future system, a much wider range of active message types
should be supported. (It should be noted that it would be easy, using the Toolkit, to write a
generalized "active message" package, but that this package would not be useful in the
lower-functionality AMS application programs. Therefore, it seems necessary to have an
interface-independent definition of a general "active message” type.)



Another problematic area is customization. Although we recognized from the start that cus-
tomization is essential in such a large and complex system, we were not sufficiently aware of
the distributed nature of the customization requirements. In particular, each interface will
have some customizable parameters. The CUI library and message server each have their
own set of customizable parameters. The Toolkit itself provides another, fairly baroque, ex-
tension mechanism. An older, "standardized" customization mechanism for Andrew is still
used by certain library routines on which the Andrew Message System depends. Finally, the
language in which new messages can be automatically classified as they arrive is itself a
fairly complicated extension mechanism. The net effect is extremely confusing, especially to

new users, who have a hard time figuring out in which of five or six places to seek the cus-
tomization option he desires.

A future system should at least strive to provide a single method by which all of these com-
ponents can be customized. It should be remembered, in any such effort, that some applica-
tions will need extremely complex customizations -- e.g. LISP-like programs -- while others
will require simple yes/no options. If a general customization library can not support the
former powerfully and the latter simply, alternative customization mechanisms will in-
evitably creep in, as they did in our system. Once they do, they will be nearly impossible to
phase out. Much more attention to customization and extension should be provided from the
beginning for future message systems.

6.6. Other Futuristic Ideas

As the AMS has grown, a few new ideas have crept into our thinking, too late to be reflected
in the design of the system itself.

One such idea is to further partition functionality into specialized servers. For example, the
white pages technology could be reimplemented as a query-to-server mechanism, rather
than a database lookup mechanism. Such partitioning could significantly reduce the size of
various application programs, and improve their performance as well. To implement this
properly, a more general service mechanism would be necessary than was available to us.

Such mechanisms are beginning to appear now, the most notable being the Athena Service
Management System [14].

Another promising idea for future systems is to entirely abandon RPC as the fundamental
communication paradigm, using instead a full-blown programming language for communica-
tion with the server. Such an approach has been used with great success in the NeWS win-
dow system [16], and is especially appealing for systems like the AMS given that it proved
highly desirable to provide a full language in the server as an extension mechanism. If such
a language needs to be provided anyway, it is <appealing to use the language as the fun-
damental method of communication between client and server.

7. Conclusions and Future Work

Although work continues on the Andrew Message System, it is a maturing technology with a
large and growing number of people depending on its continued operation. Therefore it
seems likely that, with only a few exceptions, future development will focus on enhancing its
portability and reliability.

However, the AMS is obviously not the last word in message systems, although we believe it
has become a new "high-water mark" in such systems, and a reasonable object of comparison
for future systems. The AMS was built in a few years by a few people, during a time in
human history when electronic mail was taken seriously by a relatively small number of
people. We believe it is likely that electronic message systems will soon become a crucial



technology in the organization of society, as important as telephone communication. As this
happens, it seems inevitable that systems like ours will be replaced by highly-engineered
systems that represent thousands, rather than merely tens, of man-years of effort. That
such systems will operate more efficiently and reliably than ours, and that they will be
easier to use, should go without saying. It is our hope that this candid assessment of the
virtues and shortcomings of our system will prove of use to those who would build such sys-
tems.
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