CMU-ITC-85-040"

The ITC Distributed File System:
Prototype and Experience

Michael West ind David Nichols
John Howard
M. Satyanarayanan
Robert Sidebotham

Information Technology Center
Carncgie-Mellon University
Pittsburgh, PA 15213

Draft: 30 March 85 14:58

Abstract

In this paper we describe a prototype of the ITC distributed file system. a design intended to span a network
of thousands of workstations at Carnegic-Mcllon University. Key features of the design are the use of whole
file transfer and caching. The objective of the prototype is to evaluate the ability of the high-level design to
meect the the goals of location transparency, user mobility. and application code compatibility.

A user community of about 75 software developers and support personnel has been using a prototype of this
design for 9 months, on a system with 50 workstations and 2 servers. Both the servers and the workstations
run Unix. Minor kernel modifications have been made on the workstations to intercept file system calls, but
the cache management code is entirely outside the kernel. No kernel modifications have been made for the
Servers. :

The goals of location transparency and mobility have been met. Compatibility with Unix has been met to a
high degree: existing Unix application programs run without relinking or recompilation. We have
experienced some minor incompatibilities in the areas of links and renaming dircctorics.

Although the system is quite usable, it is noticcably slower than a stand-alone workstation: benchmarks
indicate a degradation of about 80% in total clapsed time. The bottleneck appears to be CPU utilization on
the servers. '

Expericnce with this prototype has been used in redesigning certain aspects of the system. The changes
mainly address the issuc of performance. operability. and compatibility with Unix.

This paper has been
T'his project was funded by the 1BM Corporation, submitted for publication.
DO NOT REPRODUCE
WITHOUT THE AUTHOR'S
PERMISSION.

Table of Contents
1. Overview of Goals and Design
2. General Implementation
2.1. Vice/Venus Interface
2.2. Vice
2.2.1. Data Storage
2.2.2. Proccss Structure
2.3. Venus
2.3.1. Kernel interface
2.3.2. The cache
2.3.3. Locating files
2.3.4. Conncction management
2.4. Other
24.1. RPC
2.4.2, Protection
2.4.3. Authentication
3. Status
4. Performance
4.1. Qualitative Observations
4.2. Measurements
S. Evaluation
5.1. High-Level Design
5.1.1. Whole file transfer
5.1.2. File caching
5.1.3. Unix semantics
3.1.4. Server load
5.2. Detailed Design
5.2.1. Opecration
5.2.2. Protection
5.2.3. Symbolic Links
5.2.4. Rename
6. Vice II
6.1. Volumes
6.2. Vice/Venus interface
6.3. Vice
6.3.1. File storage
6.3.2. Single Process Server
6.3.3. Venus
6.4.RPC
7. Summary

SOOOO\I\I\IO\O\O\O\O\MU\-&-&NNHMH

i relir el el el el el el adiad ol alieadl adiell ol gl
b bW W W W W NN RN N OO

1. Overview of Goals and\Design

This paper presents our experience in building a distributed file system (Vice) and the workstation attachment
(Venus) to interface with it. A scparate paper [2] describes the design in detail. including justification for the
decisions made and a survey of related work. Here we concentrate on implementation and experience to date,
including only cnough design information to make the paper sclf-contained.

Vice is intended to be shared by thousands of workstations on the Carnegic-Mcllon University campus. It
provides an integrated Unix-like file naming hicrarchy. using a network of cooperating file scrvers: users’
workstations (running Unix) attach to it by way of a high-performance local arca network. At present Vice is
uscd by several hundred individuals and about 100 workstations: over the next year we hope to cxpand it to
handle several hundred workstations, with at least occasional use by anybody on campus. -

The current version of Vice is a prototype, intended primarily to verify the following fundamental design
concepts:

Whole File Transfer

Workstations read and write entire files from file servers rather than pages or records.
What effect doces this have on performance? Are large files sufficiently rare?

File Caching Workstations cache files on their local disks. Are these disks large enough to cache a
typical working sct of files? How well do our cache management aigorithms work?

Unix Semantics How well can we emulate Unix and retain the benefits of centralized timesharing systems
in a distributed cnvironment? Does whole file transfer conflict with our desire to run Unix
application programs without modification?

Server Load Vice 1s implemented with multiple cooperating servers in order to grow with the user
community. How many workstations can a single-scrver support? Can the load be
balanced across scrvers?

The rest of this paper presents key implementation decisions and our experience with the prototype system.
Section 2 describes many of the important implementation details. Section 3 gives the current status of the
system. In Section 4 we give measurements of the performance of the prototype. Scction § describes the
answers we discovered to our design questions and other expericnce we gained from the effort. Section
6 describes changes we are making to the next version based on our experience from the prototype. Finally,
Section 7 contains a brief summary of the paper.

2. General Implementation

The major components of the implementation include the file server and related programs (Vice) and the
workstation cache manager (Venus). They communicate using a remote procedurc call package (RPC) that is
linked into cach program. These programs run on the Berkeley 4.2BSD release of Unix [1], which we have
maodificd to allow Venus to intercept file system calls on the workstation.

Since our primary goal in the prototype was to test our design, we traded performance for function whenever
it would affect development time. Often this meant using off-the-shelf sottware. FFor example. the file server
itself is based on Unix and depends heavily on the Unix file system: the RPC package uses 4.2BSD 1P sockets.

2.1.Vice/Venus Interface

Since Vice is hased on whole hle transfer, the interface between Viee and Venus is very simple. 1t has two
basic types of objects: files are umnterpreted bvie streams, and directories are lists of liles and other
directories. Objects are named inthe mtertace with their tll pathname.

workstation Vice server

lock, cluster, backup

user I servers |

processes

Venus file server worker
process processes
modified kernel kernel
ethernet

Figure 2-1: Vice/Venus Overview
The operations provided by the Vice interface allow Venus to:

o ['eich. store and remove files. The entire file is shipped on cach fetch or store.

o Make und remove directories. Venus cannot directly store a directory: dircctories are updated as
side effects of other operations.

e Get and set status information. For both files and directories.

o Check access rights and file currency. Access rights are checked for a particular user relative to a
particular file or directory. The same operation also returns the last change date for the file or
directory. .

e Acquire and release locks. To implement Unix advisory locking.

2.2. Vice

Vice is distributed over several server machines. On each of these machines, there are a number of
independent Unix processes that implement the server function by fielding requests and performing updates
on the local Unix file system. -

2.2.1. Data Storage
A Vice file server stores its data in the server machine’s Unix file system. The Vice directory hierarchy is
represented by an identical Unix hierarchy. plus additional files and dircctories used to store status

information.

There arc two types of file storage within Vice. Normal files are stored at one server onlv. Replicated files are
stored at all servers. Venus can fetch replicated files from any server. Fach file has a single server. its
custodian, to which all stores must be directed. When replicated files are updated. the custodian is responsible
for copying the changes to all other servers. The updating is done through an asynchronous process. and
while the updating is going on the non-custodian servers have an old copy of the file. Replicated tiles are

primarily used for system binarics.

replicated
files

normai
files

server 3

server 2

Figure 2-2: File Distribution

A replicated directory must have a replicated parent. This results in a tree that is replicated down to a frontier
in the hicrarchy. and is normal from there on down. Note that the subtree extending tfrom a normal directory
has a single custodian, and a server stores a file (or directory) only if it stores its parent.

The location database, that tells which server is the custodian for cach file, is embedded in the file tree. A
server finds the custodian tor a file by scarching the replicated part of the tree unil it finds cither the file or a
normal (non-replicated) directory whose custodian is not the server doing the searchh. Stub directories are
maintained on ail servers for the top level of non-replicated subtrees in order to point to the custodians of the
subtrees. The server returns the name of the custodian and the name of the root of the normal subtree that
contains the file. Venus keeps this information in a cache which it uses to guide subscquent requests to the
proper server. :

[fa server is down, non-replicated files on that server can neither be read nor updated. If the custodian server
for a replicated file is down, the file can be read from other servers but not updated.

Status information is stored in Vice in a set of shadow files. For cach directory stored in Vice there is an
associated .admin directory. Within that .admin directory is a .admin file that contains status information for
the dircctory. Each file in the stored directory also has a corresponding file in the .admin dircctory that
contains status information for the file.

Vice stores status information about files organized as a list of named propertics. The information stored
includes:

Type 4 Replicated (stored at all servers) or normal (stored only at one server). This is stored for
dircctorics only.

Location The custodian for the tile. This is stored for directories only.

Dates The time at which the file laststored and the time that the status was last moditied.

Access List - The access listwhich controls aceess w the tiles, This is stored for directorics only.

dir1
.admin file1 file2 file3 dir2

.admin filet file2 file3 etc.

Figure 2-3: Status Information

Owner The name of the owner of the directory. This is stored for directories only. The owner of a
directory can always change the access list.

User Defined Clients are allowed to define named properties and store them with the file. Venus uses
this for the execute and setuid bits.

Since some of the properties are stored only with directories, all files in a directory have those properties in
common. Specifically, all of the files in a directory have the same custodian. type. owner, and access list.

We chose this representation to avoid writing our own underlying file system. In addition to allowing us to
usc the storage and naming mechanism. it made available utility programs such as tape backup/restore and
the file system consistency checker. Also. we have access to the files even if our file server fails. However, this
choicc imposes on us various restrictions in the way we can share files. and it leads to noticeable CPU
overheads. for example, in looking up file names.

-

2.2.2. Process Structure

When a server machine is brought up several processes are started to handle the requests to the server. The
primary process is the file server process. which listens for connecting workstations. When a workstation
connccts. the file server process forks a worker process which handles ali requests for a particular user from
that workstation. All requests from that user on that workstation are routed to this single worker Process.

The lock process is used to handle any lock requests. Unix does not allow memory to be shared between
processes, so we usc a separate process in order to keep the locks in memory. Lock requests must be directed
to the custodian of the file being locked.

The backup and cluster process arc used to keep replicated files up-to-datc on all servers. Worker processes
write entrics to a backup queue whenever a replicated file is modified. The backup process cxamines the
qucuc and sends requests to update the file to the cluster processes on the other servers. The cluster process is
like a worker process. but has a simpler interface and bypasses normal checking of requests.

2.3. Venus

Venus is implemented as a user-level process running on a workstation with a modified Unix kernel. In
response to file system catls made by client progrims, Venus caches files from the servers and makes the files
i its cache available o the client programs. In order to do this. Venus must locate the tiles among the

scrvers, connecting to scrvers as needed on behalf of the client.

2.3.1. Kernel interface

From the point of view of an application running on the workstation. the Vice file system appears as a subtree
in the name space. The workstation kernel intercepts file svstem calls directed to files in that subtree and
routes them to Venus. When it has performed the system call. Venus sends a reply via the kernel to the
original calling process.

Unix uscs a special kind of file system object known as a device file to implement device drivers. This
mcchanism allows the kernel implementor to provide special routines to handle reads and writes to the device
file. Venus uses such a file to communicate with the kernel. Whenever Venus rcads from the device file, the
kernel delivers the parameters for an intercepted file system call. Venus replics to the call by writing to the
device file.

When a program opens a remote file. Venus first verifies that the program making the request is allowed to
open the file. It then checks that the file is in the cache and up-to-date. fetching a new copy if necessary.
Venus sends the name of the local copy of the file to the kernel. The kernel opens the file in the cache and
gives the requesting program a file descriptor for the local copy. Rcad. writes. and sceks appiied to this
descriptor are not trapped by the kernel. so they run at full speed.

Close requests arce trapped and sent to Venus. If the file was open for writing, Venus stores it back to the file
SCrver.

Other calis are simpler: Venus receives the request. does some work to perform the operation, and sends a
reply back to the kernel. For example, a utimes system call. which sets the modificd date tor the file, is
translated into the Vice call that sets the file’s status information.

2.3.2. The cache

‘The cachie is maintained with an LRU replacement algoruhm. The current impiementation limits the cache
size by the number of files in the cache; a later version will use the disk space available on the local disk to
control the cache size.

Each entry is marked with the version number of the file that was fetched to create it. When a program opens
a file that is in the cache, Venus must check that the cache entry is still valid. In addition. Venus checks that
the user making the request is authorized to open the file. for it may have been fetched into the cache by
another uscr. These checks are combined into a single file server operation (Test.uth).

If a file is open for writing, Venus satistics requests concerning the file from the version being modified in the
cache. For example, if a program is writing a file and requests its length, this information is taken from the
version being written instead of from the version on the server.

Unix supports fine-grain sharing of file data between processes on a single workstation. If a process writes ten
bytes of data to a file, then the new data is immediately visible to any other process that attempts to read it.
Because our server only supports the transter of entire files. we cannot support this degree of sharing between
processes on different machines.

Finc-grain sharing between processes on the same machine 1s supported by having the processes share cache
entries. I a program is wiiting a file and another opens it they will wind up with file descriptors onto the
same file in the cache. Processes that are related via torks are guaranteed o et fine-grain sharing because
they must be on the same machine. Also. a user can watch the progress of a prouram that is writing a large
output file.

Applications that attempt to synchronize unrelated processes (e.g. two users runnme a database program from
difterent workstations) cannot usc the fine-aram sharing. Fhe applications can share duata on an open/close

granularity instcad of read/write granularity.

We have not yet encountered any applications that are affected by this difference, but it may become a
problem later as more database applications are developed for our system.

2.3.3. Locating files

Whenever Venus sends a request to the wrong server, it receives in the reply the name of a subtree that
contains the file it needs and the custodian for that subtree. Venus uses the custodian name to continue its
scarch for the file.

Venus remembers the names of the subtrees and uses this information to make first guesses as to where to
find files in subsequent requests. When Venus needs to direct a file opceration to some scrver, it looks in the
location table for the longest prefix of the pathname named in the operation. This prefix gives the deepest
spot in the file hicrarchy along the path to this file for which a server is known. This server is used as the first
guess for the real location of the file.

2.3.4. Connection management

Since authentication applics to RPC connections instead of to individual remote procedure calls, Venus must
maintain scparate connections to the file servers for cach user on the workstation. The current
implementaton of RPC restricts the number of active connections, so Venus maintains a table of active
connections, making and breaking conncctions to file servers as nceded. using an LRU replacement
algorithm. Venus closes connections that are idle for 30 minutes to conserve server resources.

2.4. Other

2.4.1.RPC

The RPC package provides a high level of communication between Vice and Virtue based on a client-server
model using remote procedure calls for transfer of data and control. The RPC subroutine package has been
implemented on top of the Internet protocols. The distinctive features of the RPC package are:

e The transfer of files as side effects of remote procedure calls. This capability is used extensively in
the file system for transferring files to and from the workstations. A scparate channel is used for

file transfer to allow for optimization by the system for the differences between file and control
transfers.

® Built-in authentication facilities which allow two mutually suspicious partics to cxchange
credentials via a three way encrypted handshake.

® Optional use of encryption for sccurc communication, using session keys generated during the
authentication handshake.

The server half of the RPC package supports the file server’s process structure by automatically forking a
worker process for cach new connection. "The fork can be suppressed for new connections, but the server
process must then disconnect from the client before serving a new client,

2.4.2. Protection

We felt that standard Unix protection would not be sufficient to handle 1 group of users as large as the CMU
campus. To allow for this. a more claborate protection mechanism was devised. ‘This allows users or groups
W be anen access to dircctories. Users are accountable entities within (he file system-and groups are
collections of users or other groups. An access list is stored with cach directory that IMaPs USCIS Or groups o
access rights to that directory. The access rights that are supported are:

Read Allows a file to be fetched.

Writc Allows an existing file to be stored.

Inscrt Allows a new file or subdircctory to be created.

Declete Allows an existing file or subdirectory to be removed.

Lookup Allows the names of the members of a dircctory to be retrieved.
Lock Allows a l.ock call to be made.

Administer Allows the access list to be changed.

These access lists allow better control of who can do what to files than the Unix protection system. However,
since they arc associated only with directorics and not with files, all files in a given directory must have the
same level of control.

2.4.3. Authentication

RPC implements a three way handshake authentication protocol and the ability to encrypt traffic on the
cthernet. Initially, however. we have just used the userid on the workstation to cstablish the connection to
Vice. There is currently no check in Vice to ensure that the user is who he claims to be: we intend to capture
the login password and use it to authenticate connections.

3. Status

Our servers run on SUN 170s and VAX 11/750s with four megabytes of memory and two 400 megabyte disk
drives cach. The workstations are SUN 120s and SUN 100s with two mcgabytes of memory and 70 megabyte
local disks. SUNs arc based on the Motorola 68010 processor chip.

By using standard facilities and by using machines that store data in different bvte orders, we have tried to
keep our code machine independent so that we can port it to other machines casily.

As of March 1985 we have wwo file systems running. Onc is our internal system and consists of two servers
with about 50 workstations and 75 users and has been in opcration for ninc months. The other is used outside
the ITC and consists of four servers. with 50 workstations attached exclusively to it in addition to the internal
workstations has been in operation about two months. About 250 users are authorized to use the external
system. We usc Ethernets with fiber optic links between gateways to connect the workstations and servers,

The internal system has about a gigabyte of data stored in it, and the external system has about 1.5 gigabytes
of data.

4. Performance

In this section, we discuss a number of performance-related issucs pertinent to our implementation. One of
the most important of these issues is the ratio of remote to local file access times. Also important are the
cffects of whole-file transfer and caching on performance. We are also interested in knowing how many users
can be reasonably assigned to a server. whether we are balancing the load on our servers evenly. and on tie
factors which currently limit performance.

A user who is accustomed 1o a stand-alone workstation perceives some qualitative performance differences

when he uses a Virtue workstation. Section 4.1 describe these differences. We then present quantitative
results in Section 4.2, based on actual measurements of the system.

4.1. Qualitative Observations

Although command exccution is noticcably slower in Virtue than on a stand-alone workstation. the
performance is often better than on the timesharing systems used by the gencral campus user community at
CMU. Performance degradation is not uniform across all operations. Some operations. like the compilation
of a large program, procced at almost stand-alone speed. Other operations, such as a recursive search of a
subtree of files. take much longer when the subtree is in Vice.

Certain programs run much slower than we had originally expected, cven when all relevant files arc in the
local cache. This is because such programs obtain status information about tiles (using the s/as primitive in
Unix). before actually opening them. Since each siar call either involves a cache miss or a cache validity
check. the total number of client-server interactions is significantly higher than the number of file opens. This
increascs both the total running time of these programs and the load on the servers.

The whole-file transfer approach contributes significantly to good performance during many frequent user
operations such as program compilation. Exccution proceeds at the same speed as on a stand-alone system
except for an initial delay to fetch the compiler binary and the file being compiled (or to validate their cache
entrics), and to store the generated code back into Vice. Another common user operation is the editing of
files. The cditors in usc in our environment read the entire file being cdited into virtual memory prior to
using them. Whole-file transfer neither improves nor hurts performance in this case.

We find that performance is usually acceptable up to a limit of about 25 active users per server. However,
there have been occasions when even a few users intensely using the file system have caused performance to
degradc intolerably.

4.2. Measurements

An obvious quantity of interest in a caching file system is the hit ratio obscrved during actual use. Venus uses
two caches: one for files and the other for status information about files. A snapshot of the caches of 12
machines in our environment shows an average file cache hit ratio of 81%. with a standard deviation of 9.8%.
and an average status cache hit ratio of 82%. with a stand dceviation of 12.9%.

Also of interest is the relative distribution of individual Vice calls. Such a protile is valuable in improving
server performance, since attention can be focussed on the most frequent calls. Table 4-1 shows the observed
distribution of each Vice call which accounts for more than one percent of the total. This data was gathered
over a onc-month period on five cluster servers. The distribution is dramatically skewed, with two calls
accounting for ncarly 90% of the total. The TestAuth call is used to validate check entrics. while GetFileStat is
used to obtain status information about files absent from the cache. The table also shows that only 6% of the
calls to Vice (Fetch and Siore) actually involve file transfer, and that the ratio of Ferch calls to Store calls is
approximately 2:1.

In order to investigate the performance penalty caused by Vice and Venus, we performed a scries of
controlled experiments using a benchmark. This benchmark stresses the file system far more intensely than a
typical user and involves a series of file copy operations. directory and file scans, and a large compilation.
Table 4-2 presents the total running time for the benchmark as a function of the number of clients
simultancously cxecuting that benchmark. The table also shows the average response time for the most
frequent Vice operation. Test Aurh. during cach of the experiments. Onc important observation from this
table is that the benchmark takes about 80% longer in the 1 client/server case than in the standalone case. A
second observation is that the time for TestAwh rises rapidly bevond a load of S clients/server. indicating
server saturation. For this benchmark, therefore, a client-server ratio between S and 10 is the maximum
feasible.

For measuring server usage, we hine instatled softwire on servers to maimtain statistics about CPU and disk
utilization, and about data transiers o and from the disks. Table 4-3 presents this data for four servers over a

Server Total Calls © Call Distribution
TestAuth | GetFileStat FFetch Store SctliileStat {GetMembers| All Others

cluster0 1625954 64.2% 28.7% 3.4% 14% 0.8% 0.6% 09%
clusterl 564981 64.5% 22.7% 3.1% 315% 28% 1.3% 2.1%
cmu-0 281482 50.7% 33.5% 6.6% 19% 1.5% 3.6% 22%
cmu-1 1527960 61.1% 29.6% 38% 11% 14% 18% 12%
cmu-2 318610 68.2% 19.7% 33% 27% 23% 1.6% 22%
Mean 61.7% 26.8% 40% 21% 1.8% 18% 1.7%

(6.7) (5.6) (L.5) (1.0) (0.8) (1.1) 0.6)

NOTE:

Figures in parentheses are standard deviations.
The data shown here was gathered over a one-month period.

Table 4-1: Observed Distribution of Vice Calls

two-weck period. The daw is restricted to observations made during 9am to Spm on weckdays, since this is
the period of most intense system use. As the CPU utilizations in the table show. the servers are not cvenly
balanced. This fact is independently confirmed by Table 4-1, which shows a spread of about 5:1 in the total
number of Vice calls presented to cach server. Moving users to less heavily loaded servers is possible. but
relatively cumbersome at the present time.

Table 4-3 also reveals that the two most heavily used servers show an average CPU utilization of about 40%.
This is a very high figure. considering that it is an average over an 8-hour period. Closer examination of the
raw data shows much higher short-term CPU utilization: figures in the neighborhood of 75% over a S-minute
averaging period are common. Disk utilizations, however, are much lower. The $-hour average is less than
15%, and the short-term peaks are rarely above 20%. We conclude from these figures, and from server
utilization data obtained during the benchmarks. that the current performance bottleneck is the server CPU,
Bascd on profiling of the servers. we arce led to believe that the two factors chictly responsible tor this high
CPU utilization are the frequency of context switches between the many server processes. and the time spent
by the servers in traversing rull pathnames presented by workstations.

To summarize. the measurements presented in this section indicate that significant pertormance
improvements are possible it we reduce the frequency of cache validity checks. reduce the number of server
processes. require workstations rather than the semnvers to do pathname traversals, and balance server usaec by
reassiening users. Section 6 discusses the spectfic wavs in which we intend (o incorporate these changes.,

10

Configuration Overall Benchmark Time Time per TestAuth Call
Absolute (s) Relative Absolute (ms) Relative
Stand-Alone 998 100% NA NA
)
1 client/server 1789 179% 87 100%
3))
2 clients/server 1894 190% 118 136%
4 1
S clients/server 2747 275% 259 298%
(48) (16)
8 clients/server 5129 514% 670 770%
(177) (23)
10 clients/server 7326 734% 1050 1207%
(69) (13)

NOTE:

Figures in parentheses are standard deviations.

Each client had a 300-entry cache.
Each data point is the mean of 3 independent replications.

5. Evaluation

This section presents our observations of the prototype along dimensions other than performance. We first
discuss the extent to which our high-level design decisions were validated by the prototype. We then present
additional obscrvations that bear on the detailed design decisions. The material presented this section

Table 4-2: Stand-Alone versus Remote Access

motivates the changes proposed in Section 6.

5.1. High-Level Design

5.1.1. Whole file transfer

I'ransferring entire files to and from the workstation contributes greatly to the success of our prototype.
Despite the relatively slow performance of our servers. the overall system s quite usable because reads and

writes dare pertormed locally.

11

Senver Samples CPU Utilization Disk 1 Disk 2

total user system util KRBytes xfers util K Bytes xfers

clusterQ 13 37.8% 9.6% 28.2% 120% 330058 | 132504 6.8% 186017 75212
(12.5) 4.4) (8.4) (3.3) (84330) | (35796) (4.2) | (104682){ (42972)

clusterl 14 12.6% 2.5% 10.1% 41% 159336 | 45127 4.4% 168137 49034
(4.0) (11 3.4) (L3) (41503) | (21262) 2.1 (63927) | (32168)

cmu-0 15 7.0% 1.8% 51% 2.5% 106820 28177
(2.5) 0.7 (1.8) 0.9) (41048) | (10289)

cmu-1 14 43.2% 7.2% 36.0% 13.9% 478059 | 126257 15.1 373526 | 140516
(10.0) (1.8) (8.7) (4.5) (IS1755)} (42409) (5.4) | (105840} [(40464)

NOTE:

Figures in parentheses are standard deviations
Peak period is defined as 9am to Spm on weckdays.
The data shown here was gathered over a two-wecek period.

Table 4-3: Server Usage During Peak Period

With the current system’s performance, we feel quite comfortable handing files up to about a megabyte. We
have rarely encountered larger files in day-to-day usage.

5.1.2. File caching
The default file cache for Venus is 300 files. With this cache size, we achicve an average cache hit rate of over
80%. The cache normally fits into about ten megabytes of the 30 megabvtes of disk our workstations allocate

for the cache. This disk allocation has been generous cnough that we have not yet devoted the effort to
converting Venus to use a disk space limited cache.

5.1.3. Unix semantics :
The cache manager provides an interface to the file system that is highly compatible with Unix. We run
standard Unix applications without modification. The high-level design decisions do not interfere with our
ability to emulate Unix. The difference in file-sharing granularity has not proved to be a problem in practice.
However. as described in Sections 5.2.3 and 5.24. certain decisions made in the prototype implementation
precluded the renaming of directories and the use of symbolic links.

12

5.1.4. Server load
‘The current prototype can handle 15 to 25 workstations per server while providing acceptable performance.

Our mecasurements indicate, and cxpericnce bears out, that the servers can become substantially slower if a
fcw workstations are doing file system intensive work.

Replication of system files will allow us to balance server load. The current imbalance reported in Section
4.2 is duc both to a bug in the implementation of the file location algorithm and to the difficulty of
rcassigning users to servers in the current system.

5.2. Detailed Design .

In this scction we discuss certains cffects of decisions made in the prototype implementation. These
obscrvations do not reflect adversely on the high-level design, but indicate changes that nced to be made in
building a more usable system.

5.2.1. Operation
The current system is difficult to operate and maintain. The two main problems are an inability to reassign
uscrs to scrvers easily and the lack of convenient facilities for backup and restoration of files.

The fact that the file system does not tie the file name to the server that it is on is a big advantage. It allows us
to move users from onc scrver to another without changing the namcs of their files. However, actually
moving a uscr to a different server is difficult because the location database is embedded in the files. To move
a user's subtree of files. we must save the files somewhere, deicte the old subtree, create a new directory for
the user on the new custodian, and then restore his files.

We back up the current system by doing tape dumps of the server file structure. Because the dump programs
do not understand the invariants of the Vice data structures, special carc must be taken when restoring files
from the backup tapes.

5.2.2. Protection

We have found the access list mechanism to be quite useful. It is superior to Unix group protection because
the uscr is casily able to create lists of users for protection purposes without interacting with the system
administrator. While it has many advantages, it makes emulation of the Unix protection scheme difficult. We
arc occasionally inconvenienced by not being able to sct protections separately on individual files. Also. since

the chmod system call does not change the access lists, Unix programs cannot change the protection of files.
This has been a minor inconvenience.

5.2.3. Symbolic Links

Vice does not impiement symbolic links. While few programs use them explicitly, they are quite uscful in
administering the Unix system. They allow sharing of directories. and are frequently used to convince
existing software with wired-in pathnames to look clsewhere for files. We arc quite inconvenienced by their
absence from Vice. For some of our problems. symbolic links on the local disk of the workstation pointing
into Vice are sufficient. However. cven when this scheme works, the solutions are more complicated than
they would be if we could put symbolic links in Vice.

5.2.4. Rename

The rename system call is allowed in Viee only for ordinary files. not for dircctorics. The inability to support
rename on directorics is a unanticipated side-cffect of our decision to use full pathnames in the Vice/Venus
intertace. Since we have no low-level idenufiers for files in Vice, the names used to refer to files in the cache
change during a rename. making itimpossible to reliabhy validate these cache entries.

13

As is the case with svmbolic links. we have found the inability to rename directorics more a user
inconvenience than a source of incompatibility for application programs.

6. Vice il

In response to the problems we encountered with the prototype we are making a number of changes in the
next system. The concept of file system volumes answers many of our opcrational problems. The use of file
identifiers in the Vice/Venus interface will allow us to rename directories and implement symbolic links.
Using a single-process file server and changing the server's data representation should substantially reduce the
system overhead we encounter on the server.

6.1. Volumes

A volume is a collection of files comprising a partial subtree of the file system hicrarchy. The volume is the
administrative unit: the files within a volume arc owned by a single uscer and charged to a single account.
Volumes will have disk space quotas. an expiration date. access control (to be used in additon to normal
access control on files). and other userul attributes. Volumes will typically be quite smail (one student’s files,
for cxample) and will be easy to move between servers. Snapshots of volumes, called read-only voiumes. will

be replicable to any subset of the servers in the system: these will be used to distribute highly available but
slowly changing public files.

6.2. Vice/Venus interface

The new system will use unique file identifiers (fids) to identify files. A fid contains a volume number, a key
into the volume index. and a additional field to ensure uniqueness within the volume. The interface will
remain basically the same, with fids taking the place of pathnames and some restrictions removed.

The unit of file transter will still be the entire file. When a file is fetched. however., a callback is gencrally
obtained. unless the file is being fetched from a read-only volume. When the file changes, Vice will notify all
interested parues. This should greatly reduce the number of interactions between Vice and Venus as cache
validation tests account for over 60% of the calls in the present systent.

6.3. Vice

The changes for the next design are intended to speed up the system by reducing the overhcads caused by
using many processes and storing files in the Unix file system hierarchy. Our usc of one process per
workstation connection has frequently pushed Unix to its limits. We had to reconfigure our server kernels
several times to increase various table sizes.

6.3.1. File storage A

The current system uses the Unix file system for naming and storing information. and tacks on extra files for
status information. The new system will keep a volume index, indexed by fid. containing status information
and file addressing information. We propose to simply use a Unix inode number tor the latter: in order to do
this some minor kernel moedifications are required. Fach server will store a replicated volume location
database which will be used to direct clients to the appropriate server machine.

6.3.2. Single Process Server

The current implementation uses manv Unix processes per server. This results m content switching overhead
and high vietual memory paging demands. [taldso imis our abiline to explicitly cache information or to share
information without introducing yet another process (the fock process. Tor cvample) or storng the shared
information in the file system. Fo address bothv of these ssues, we have decided to implement the mam file

14

server functions within a single process. In order to allow this process to handle requests rapidly, it will
control a small number .of file transfer processes which will pecform the actual bulk transfter of data to/from
the workstation. "The majority of requests will be handled directly by the server.

6.3.3. Venus

Venus will change to handle the new file identifier interface. This interface forces Venus to handle pathname
lookups. and cnables us to support symbolic links that cross server boundarics. The current implementation
of Venus handles only one request at a time; the next version of Venus will overlap requests from several
processes. The system call intercept code in the kernel will remain cssentially the same.

6.4. RPC

The current RPC package restricts server processes to serving at most one client connection at a time. The
ncw implementation will allow multiple clients to connect to the same server process concurrently, which w111
cnable us to build the single process server for Vice.

7. Summary

The work described in this paper was motivated by a desire to validate the high-level decisions we had made
in the design of a large-scale. location-transparent distributed file system. ‘The most important of these
decisions are the transfer of entire files to and from servers, and caching at workstations.

Our experience with the prototype has been mostly positive. A workstation using the distributed file system is
quite usable despite the fact that remote file access is noticeably slower than local access. We have met the
goals of location transparency and user mobility, and are able to emulate the Unix file system closely enou°h
to be able to run application programs unchanged.

The experience of running the prototype with an actual group of users has given us confidence in our
high-level design. It has also revealed that certain detailed design dcecisions need to be changed in order to
allow the system to scale better, and to provide a more accurate cmulation of Unix.

Work on a refined implementation is currently under way, and should be complete within a year.

.

15

References

[1] D.M. Ritchic and K. Thompson.
The UNIX Time-Sharing System.
Bell System Technical Journal 57(6), July-August, 1978.

[2] M. Satvanarayanan. John H. Howard, Alfred Z. Spector, Michacl J. West.
The ITC Distributed File System: Principles and Design.
Companion paper. submitted to SOSP-10.

