
CMU-ITC-84-035

The Project: An Experiment in
Large-Scale Distributed Personal Computing L

M. Satranarayanan

/t! fi;,.motion Technology Center

Carnegie-Alellon University

October 1984

Abstract

The Information Technology Center, a collabrative effort between International

Business Machines Corporation and Carnegie-Melhm University, is currently in

the process of designing and implementing what may he one of the largest
distributed computing systems yet attempted. This paper traces the origins of the
project, discusses design issues pertinent to it, and gives an overview of the current

status of a prototype implementation. The design described here combines the
case of information sivmng characteristic of timesharing systems with the richness

of user-machine interaction typical of personal computing. The resulting

synergesis yields a model that may well become the standard computing paradigm
of the next decade.

1. The Mission

Carnegie-Mellon University (CMU) is a small, technically sophisticated institution located on a

geographically compact campus. These attributes, in conjunction with rapidly advancing technology in the

co:nputer industry and an enlightened administration have given rise to a project to produce a campus-wide

integrated personal computer environment.

In 1.979 the Computer Science Department at CMU (CMU-CSD) carried out an extensive study to

determine the characteristics of a computing environment appropriate for computer science researchers in the

1980's. Their report [24] described the spccificatkms of a hypothetical high-tunction personal computer called

the Spice machine. The key attributes of this machine were the use of a bit-mapped display and a pointing

device, virtual memory, attachment to a local area ,etwork, a lnulti-precess operating systen], and a

sophisticated user iutcrface. Using off-the-shelf hardware that approximated these _equiremeuta, the Spice

project at CMU-CSD has been engaged in research to dcsign and build d-:e software component of the Spice

machine.

In September 1981, the presidept of CMU cremcd a multi-disciplinary task fi_rce to consider the role of

computing in CMU's educational pn_gram. The task force repo,t [16] cmphasised the need to maintain and

IA preliminary_ersionwaspre.':ented_¢at, it;;'itcdpaperat the Nctwolks84Conferenceheld in October 1984at Madras,India.

enhance CMU's preeminence ill the area of computing. The proliferation of personal computers points to a

situation where small, technical universities will have one computer per person on campus by 1990. The task

force rcconmlended that this process be controlled and accelerated at CMU, thereby giving it an opportunity

to set the standard for educational computing in the next decade.

Experience with personal computing has been overwhelmingly positive in small groups such as individual

departments and research laboratories. However, the c_)st/benefits of personal computing are not yet so

demonstrably superior that businesses or large universities are willing to adopt it as their model of ct)mputing.

With its particular strengths, CM U is in an excellent position to conduct an experiment in large-scale personal

computing. CM U students would thus not merely be computer literate, but would actually advance the use

of tcchnolt_gy in the world.

The task force report strongly cmphasiscd the importance of communication betwccn all the personal

computers and mainframes on campus so that maximal sharing of information and resources would be

possible. The natural outcome of such a strategy would be a network of personal computers which is larger

than any developed hitherto.

Contemporaneously, IBM was developing a strategy for increased involvement with universities. Its

primary goal was to become a leading purveyor of computing systems to research-oriented universities.

Discussions with CM U resulted, and the adwmtagcs of a collaboration soon became obvious to both parties.

CMU could be a showcase for advanced IBM products, and a source of ideas for future products. IBM's

development community would also benefit from interaction with the university. For its part, CMU would

receive considerable development resources and the confidence that the system it developed would not

become a one-of-a-kind curiosity.

In October 1982, CMU and IBM signed a contract which created the lnlbrmation Technology Center

(ITC). [,ocated on the CMU campus, the charter of this organisation is to design and develop a system based

upon IBM hardware to support CMU's ambitious plans fi)r educational computing. In a nutshcll, the mission

of the ITC is to provide the software underpinnings needed to harness the energy and creative talents of the

entire university in making computers an integral part of the educational process.

2. The Computing Paradigm

2.1. personal Computing

Personal computei_ have been touted by manufacturers and users as the wave of the future. I,ike other

buzzwords, the phrase "personal computing" has come to acquire a variety of shades of meaning. What does

it connote in the context of tile ITC project?

The era of personal computing was ushered in by two independent events in the 1970's. The first of these

was file introduction of stand-alone microprocessor-based computers by companies such as Apple Inc. The

identifying characteristic of this class of machines was their cost: it had to be affordable to small businesses

and individuals. This cost constraint and the available technology dictated the architecture, hardware

implementation, and software aspects of these machines: floppy disks, 8-bit dau_ paths, character-displays,

and BASICwere the order of the day. From a user's point of view, the only real difference between using such

a machine and using a timesharing system was the fact that the performance of the former was constant and

predictable, unaffected by the activities of other users.

'l'hc second influence was the Alto project at Xerox's Palo Alto Research Center [27]. In a radical departure

from traditional designs, this project sought to make possible a "paperless office," where electronic media

could totally replace the printed page. A custom-built stand-alone machine was designed as part of the

project. Integral to this design were a pixcl-addressable display mapped into main memory and a pointing

device (a mouse). The software for this machine treated the screen as a two-dimensional collage of text and

graphical images rather than a one-dimensional string of text. Small graphical Icons were used to symbolize

actions or states, and mouse movements and button clicks rather than keystrokes were used by humans to

communicate with the machine. The Alto project was thus as farreaching an advance over traditional

timesharing user interfaces as timesharing was over batch processing. The model of man-machine

commtmication first demonstrated in this project has now come to be accepted as a highly desirable one,

particularly for novices.

The confluence of these two independent developments has yielded the class of personal computers

envisioned in the ITC project: individual students and faculty will each possess a workstation with a bit-

mapped display, pointing device, and user-interface software that exploits them. Within this general scenario

there arc, of course, many degrccs of fi'ccdom in design. The challenge is to find a design that is friendly to a

novice user. and yet does not hinder the expert. An important class of experts in this regard is the set of

application developers who will create educational software.

The need to span a wide spectrum of user sophistication has motivated the [TC to require that the hardware

possess a large address space, virtual memory, and a multi-process operating system, in addition to a bit-

mapped display and mouse. The Sun Microsystcms Inc. workstation, which possesses these features, has been

chosen as the hardware for internal development in the ITC and pilot deployment to a small set of users.

Hardware currently under development by IBM will be used in the large-scale deployment to students and

faculty.

On the soRware flont, the desire to have a shortened development cycle, a stable software base, and the

ability to import existing applications has resulted in the adoption of Unix 2 as a de facto ITC standard. In the

long run it is expected that workstations with a variety of operating systems will be integrated into this

environment. Initially, however, they will all run 4.2BS1) Unix with minor, upward-compatible ITC

modifications.

2.2. Timesharing

An unanticipated side-effect of the popularity of timesharing was the use of computers as a vehicle for

communication between users. Sharing of information via a file system, electronic mail. and bulletin boards

is now taken for granted. In fact, there are many users for whom dac communication and information sharing

aspects of a computer are far more hnportant than its strictly computational capability.

In moving away from timesharing to pcrsonal computing, it would indeed be ur'forttmate if users lost the

ability to communicate among themselves. "lqac development of local area networks (I.ANs) specifically

addresses this issue. Originating with the Ethcrnct[14] in the Alto project, the linking together of

workstations by a LAN has become standard practice in institutional environments. Inter-machine mail and

bulletin board facilities are typical utilities in a networked personal computer environment[4,2].

Transmission of files between machines, and the use of a shared facility as a repository of files are also

common [3, 26]. LANs also make possible the shared use of relatively expensive peripherals such as laser

printers.

In a timesharing environment, cooperation between users is particularly simple because of the existence of

common logical name spaces. For example, two users who are sharing a file refer to it using the same name;

the physical locations at which they are logged in is immaterial. As another example, mail from one user to

another need only specify the recipient's name; no information need bc given about the terminal at which the

latter will login to read mail.

While a networked person;d computing environment provides connectivity, it does not automatically imply

21nparticular,the 4.2BerkeleyStandardDistribution(4.2BSDUnix)hasbeen adopted.

the same ease of sharing. Each workstation in such an environment has a unique network address which has

to be specified when accessing files fiom it, or when sending mail to its owner. Further, explicit user actions

are usually required to achieve sharing: before using a file, a user has to run a program to transfer it to the

network node where he is currently located: changes made by him are not visible to other worksu_tions until

he transfers the modified file to them or to a central repository. A corollary to these observations is that user

mobility is limited. One cannot create a file at one workstatkm, walk to another workstation, and access that

file with the effortlessness that is possible when using geographically separated terminals of a timesharing

system.

In a relatively small network, the limitations exposed in the previous paragraphs may not impact user

productivity significantly. The ITC project, however, aspires to interconnect over 5000 workstatitms! Ahnost

by definition, an academic environment requires a large amount of information sharing. A high degree of

user mobility between dormitories, faculty offices, libraries, and laboratories is also essential.

In the light of these observadous, the second fundamental goal of the ITC project becomes evident: to

make possible an informatkm sharing environment that has the same degree of Location Transparency and

User Mobility that is available in a well-designed, modern, timesharing system. Llnix, once again, is a good

role model for this aspect of the system.

2.3. VICE and VIRTUE

The computing paradigm envisioned in the ITC is thus a marriage between personal computing and

timesharing. It incorporates the flexibility and visually rich user-machine interface made possible by the

former, with the the ease ofcommt|nication and information sharing characteristic of the latter. This model is

depicted in Figure 2-1.

The large anaoeba-like structure in the middle, called VICE, is a collection of communication and

computational resources serving as the information sharing backbone of a user community. Individual

workstations, called VIRTUES,are attached to VlCl- and provide users with the computational cycles needed for

actual w_rk as well the overhead of a sophisticated user-machine interface. 3

VICEprovides a common name space for shared resources, particularly files. Users may thus access files in a

uniform manner regardless of the specific workstations at which they are logged in, or at which the files were

created originally. VICE has mail and bulletin board facilities, thus obviating the need for location-specific

in|br|nation in sending mail or posting notices. Software in each VIRTUE workstation makes these facilities of

3Rumour has it that wee stands tbr "Vast Integrated Computing Environment." VIRTUI.'..of course, is one's only defense against VICE!

VIRTUE [

vICE

Figure 2-1: VICEand VIRTUE

VICEappear as a transparent extension of that workstation's operating system.

The VICE-VIRTUEinterface has two important properties:

1. It is a relatively static programming hlterface.
Enhancements to this interface will typically be made in an upward-compatible manner. This

allows adwmccs in technology to bc taken advantage of, without system-wide u'auma. A new type
of workstation will require some software development to integrate it with VICE. However,
existing workstations will not bc affected in any way. In the long run, therefore, one can expect a
situation where non-homogeneous workstations are attached to vICE, but share its resources in a

uniform manner. Even at the present time two different types of machines (Sun Microsystems
workstations and Digital Equipment Vaxcs) running 4.2BSD Unix are capable of accessing VICE.

2. It is the boundary of trustworthiness.
All computing and communication elements within vICI- may be assumed to be secure. This
guarantee is achieved through physical and administrative control of computers and the use of
encryption on exposed parts of the network. No user programs are executed on any VICE
machine. Barring Trojan horsemanship, therefore, VICl-is an internally secure environment. The
workstations, however, are owncd by individuals who arc frcc to modify the hardware and
software in any way they choose to. Hence VIWl'Ul"is not trusted by vICE, except for the duration
of an authenticated session at the beginning of which credentials are exchanged, and during which
communication between VICl"and VIRTUI-is encrypted.

The ITC project may be naturally decomposed into three parts:

1. A Network Communication component, dealing with the hardware and software nccdcd for inter-
machine communication.

2. The Shared I;71eSystem, which is the first and most important shared resource in VICE.

3.7"he User Interface on all individual workLation, which is file aspect of the ITC project most visible
to the average user.

We examine these topics in the next three sections of this paper.

3. Network Communication

3.1. Connection Structure

Conventional wisdom, based on I.AN usage experience such as that reported in [6, 23], suggests that

network utilization is rarely high enough to be a serious concern in designing a distributed system. However,

the scale of the ITC project is one to two orders of magnitude larger than that of most existing networks.

Consequently, it is possible that network utilization may become a serious source of performance degradation

in a fully configured system. Even if network delays turn out to be inconsequential, there is still cause for

concern: the shared computing elements within VICE may become bottlenecks. The evidence indicates that

this is indeed a possibility in real systems [12].

The ll'C project uses a design strategy that exploits locality of reference to reduce network and server

utilization. Viewed at a finer granularity than Figure 2-1, VICE is composed of a collection of semi-

autonomous Clusters connected together by a Backbone I,AN. Figure 3-1 illustrates such an interconnection

scheme, assuming a linear topology connection medium such as Ethernet. Each cluster consists of a collection

of workstations and a representative of VICE called a Cluster Server. Physical security considerations may

dictate that cluster servers be co-located in small groups in machine rooms, even though each cluster server is

logically associated with the workstations in its cluster. Being part of VICE, a cluster server only runs software

trusted by the system administrators. There is no mechanism for users to run their programs on cluster

servers.

The Bridges which connect individual clusters to the backbone serve both as touters and as traffic tilting.

The routing capability of these elements provides a uniform network address space for all nodes, obviating the

need for any end-to-end routing by servers and workstations. The key to effective use of this interconnection

scheme for reducing network utilization lies in designing the software so that most network traffic remains

within a cluster. Inter-cluster traffic via the backbone should be the exception rather than the rule. The file

system described in Section 4 is designed with this goal in mind. There is conceptual similarity between this

problem and that faced by sofware on Cm*, a multiproccssor with differential memory access times caused by

the clustering of its constituent processo,'s [11].

Backbone Ethernet

I I I
I.r,d o I,.,d o I.r,d o

_ Cluster I_._ C,uster ___ C,uster
Server Server Server

Cluster 0 Cluster 1 Cluster2

Figure 3-1: Ethernet VICE Topology

3.2. Network Hardware

Though the distributed nature of the H'C project is pervasive at all levels of the design, there is suprisingly

little dependence on specific attributes of the network hardware. There is no requirement, for instance, that

the connection media be capable of broadcast communication. The only features required of the network

hardware are:

1. High speed (in the 1to 10 Mbit/s range).

2. Low error rate (comparable to that of Etherne0.

3. Addressing and node attachment capability adequate for 5000 to 10000 nodes.

4. Availability as a standard vendor product, with a full range of accessories for maintenance.

5. Low-cost adaptors, to minimize the expense of VICF.-VIRTUEattachment.

The long-range plans of the ITC call for the use of a token ring network currently under development by

IBM. This network is based on (but is not plug-compatible with) the token ring developed at IBM Zurich [5],

and conforms to the IH:,E Sumdard 802 [10]. In the short term, for development purposes and pilot

deployment the 1TC is using F,thernct as the networking medium.

There is some controversy over the relative merits of CSMA-CI) technology (Ethcrnet in particular) versus

token ring technology in a large-scale network. An eloquent defense of token rings has been put forth by

Saltzer et al [19]. The compelling argument in favour Of token rings is that workstations may be attached

using wiring technology identical to that used in wiring telephones: one which has evolved over the years to

allow ease of serviceability, fault detection, and fault isolation. The more ad hoc attachment scheme

characteristic of Ethernet is convenient for small installations but may not be ideal for a user community as

large as the entire CMU campus. Proponents of the Fthernet point to the fact that this is a mature

technology, is in widespread use, and is supported by a large number of independent vendo_.'s.

It is not clear at this point in time how this controversy will be resolved. Usage experience with a pilot

deployment using Ethernet and IBM sponsorship of the project are two factors that will undoubtedly play a

role in the final decision. Fortunately, ITC-developed software is quite well insulated from the specilics of

network hardware. Moving to a token ring network would require writing device drivers and a

communication protocol package for the workstations and servers. The bulk of the file system and user

interface software would be unaffected.

3.3. Network Protocols

Experience with networking over the last decade has emphasised the importance of using standardized

communication protocols for inter-machine communication. Precisely what protocols are used is far less

important than the fact that all interconnected machines use the same protocol.

Prior to the inception of the ITC, many of the departmental mainframes at CM U used the I)ARPA Internet

Standard protocols [7] Ibr communication. This is a family of protocols spanning the levels between the

Application l,ayer and the Network l,ayer of the ISO Open System Interconnect Reference Model [8]. The

family consists of an unreliable datagram protocol (IP/UI)P) and a reliable byte stre_m protocol (IP/TCP) at

the lowest levels, with end-t:ser application protocols such as those for mail, file transfer, and remote login

built on top.

Due to its sponsorship by the US Department cjr Defence, this protocol family has become the lingua franca

of the Arpanet user community, of which CM U is a very active member, l::urther, the 4.2BSD Unix operating

system, which is being used as a base for vICE a_zdVII_,TUE,already has implementations of these protocols

built into it. Consequently, the ITC has adopted the Internet protocol family as its standard too.

tligh-level communication between vICE and VIRTUEis based on a client-server model using Remote

I'rocedure Calls (RPCs) for transfer of data and control [15]. An RPC subroutine package has been

implemented on top of the lnternet protocols at the ITC [21]. The distinctive features of this package are:

1. The transfer of bulk data objects, such as files, as side effects of remote procedure calls. This
capability is used extensively in the file system tbr caching of files at workslaltions.

2. Built-in authentication facilities which allow two mutually suspicious parties to exchange
credentials via a 3-phase encrypted handshake. This mechanism is used by servers in VlCl,:to
authenticate users.

3. Optional use of encryption for secure communication, using session keys generated during the
authentication handshake.

4. The Shared File System

Network file systems have been the subject of investigation in a number of projects over the last few years

[17, 1]. A good discussion of these designs may be found in Svobodova's survey [26]. Typically, these designs

have been intended for networks with at most a few hundred nodes. With its ambitions to span an order of

magnitude more nodes, the ITC distributed file system design problem had to be approached afresh: the

designers had little confidence that an adaptation of an existing design would prove adequate to the task.

The goal of the ITC is to produce a distributed file system possessing the fotlo_ lug properties:

Location transparency
A user need never know which network node a particular file is located at. For all intents
and purposes, the distributed file system is viewed by users as a giant timesharing file
system.

User mobility A user can suspend work at one workstation, move to any other workstation and resume
work without explicit actions to transfer files. A workstation is "personal" only in the sense
that it is owned by a particular individual.

Security It cannot be assumed that all users of the system are non-malicious. In particular, the
hardware and software on workstations may be modified in arbitrary ways by their owners.
Network communications cannot be assumed secure. The design of the system should
allow easy and flexible sharing of resources (in particular, files) in such an environment.

Performance The user-perceived performance should be no worse than that of a well-designed, lightly-
loaded timesharing system. Users should not feel the need to make explicit file placement
decisions on account of poor performance.

Expandibility It should be possible to expand the system in a graceful and non-traumatic manner. It is
expected that the total number of network nodes in the system will be between 5000 to
10000, thus making it one of die largest distributed file system in existence.

10

Reliability As users become dependent on this system, system non-availablity will become
increasingly intolerable. While not as stringent as in a real-time process control
enviromnent, reliability and availability are none the less very important goals.

The following sections describe the main architectural features of a design that addresses these issues.

4.1. Naming

From the point of view of each workstation, the space of file names is partitioned into two subspaces: Local

and Shared. Figure 4-1 illustrates this partitioning of name spaces.

I,OCA L 3
SIIARE1)

I.OCAL 2

Figure 4-1: Shared and Local Name Spaces

The shared name space is the same for all workstations, and contains the majority of files accessed by users.

The local name space is small, distinct for each workstation, and contains files which typically belong to one

of the following groups:

1. System files essential for booting the workstation and for its functioning prior to connecting to
VICE.

2. Temporary files, such as those containing intermediate output from compiler phases.

3. l)ata files which the owner of the workstation considers so sensitive that he is unwilling to entrust
them to the security mechanisms of vlCF:. Such file'; cannot, of course, be accessed in a location
transparent nlanner.

In addition, to improve perR)rmance and to allow at least a modicum of usability wllen disconnected fiom file

11

network, certain commonly used system programs may be replicated in the local name space of each

workstation.

Both the local and shared name spaces are hierarchically structured, and are similar to a timesharing Unix

file system [18]. In Unix ten]ainology, the local name space is the Root File System of a workstation and the

shared name space is Mounted on the node "/vice" during workstation initialization. Figure 4-2 depicts this

situation. Since all shared file names generated on the workstation have "/vice" as the pathname prefix, it is

trivial to disambiguate between local and shared files.

/

• • • • vmuni,. ,,,
LocalFiles vice

SharedFiles

Figure 4-2: A Workstation's View of the File System

4.2. Data Distribution and Replication

Each cluster server in VICE runs a file server process which supports operations such as storing and

retrieving files on that cluster server in response to workstation requests. The hierarchical file name space is

partitioned into disjoint subtrecs, and each such subtree is served by a single cluster scrvcr, called its Primary

Custodian. Storage for a file, as well as the servicing of requests for it, arc the responsibility of the

corrcspcmding primary custodian. Certain subtrecs which contain ficqucntly read. but rarely modified files,

may have read-only replicas at other cluster servers. Thcsc read-only sitcs are referred to as Secondary

Custodians for the subtrcc, and each of them can satisfy read requests indcpcndcntly. Write requests to that

subtree have to be directed to the primary custodian of the subtrcc, which will perform the necessary

coordination of secondary custodians. Changing the custodian of a subtree is a rclativcly heavyweight

process: the design is predicated on the assumption that such changes do not occur on a minute-to-minute

basis, but arc batchcd together and typically done once a day.

F_,achcluster server logically contains a location database which may be queried by workstations to ascertain

the custodian of any file. The query may be addressed to any cluster server, but performance considerations

suggest that the communicating parties be on the same cluster. The size of this replicated database is

12

relatively small because custodianship is on a subtree basis: if all files in a subtree have the same custodian,

the location database need only have all entry tbr the root of the subtree.

The location database changes relatively slowly for two reasons:

1. Most file creation and deletion activity occurs at depths of the naming tree far below that at which
the assignment of custodians is done.

2. R.eassignment of custodians is infrequent and is initiated via adI_iinistrative procedures.

Consequently, a specialized slow-update procedure which updates the custodianship information
at all clt, stcr servers is possible.

The assignment of custodians to the file subtrccs of individual users is done so that there is a high

probability of a user being at a workstation on the same cluster as his custodian cluster server. A faculty

member, for instance, would be assigned a custodian on the same cluster server as the workstation in his

office. This assignment does not affect the faculty member's mobility, since he could access his files from any

other cluster on campus, albeit with some performance penalty.

4.3. Caching

In this design, caching of entire files on workstations is the primary mechanism used to attain location

transparency, performance, and application code compatibility. F;_.ch workstation has a lt_cal disk, part of

which is used to store files in the local name spz_ce, the rest being used as a cache of files in the shared name

space.

When an application program on a workstation makes a system call to open a file, the request is first

examined by the kernel to determine whether the file is local or shared. In the foixner case, the open request

is satisfied exactly as in a stand-alone system. For a shared file, the cache is checked for the presence of valid

copy. If such a copy exists, the open request is treated as a local file open request to the cached copy. If tl_e

file is not present in the cache, or if the copy is not current, a fresh copy is fetched from the appropriate

custodian. All these actions arc transparent to application programs: they merely perform a normal file open.

After a file is opened, individual read and write operations on a shared file a directed to the cached copy: no

network traffic is generated on account of such requests. On a close request, 'he cached copy is first closed as

a local file; this copy is then transmitted to the appropriate custodian. The cache thus behaves as a write-

through cache on closes.

Checking the validity of a cached copy of a file is done by workstations rather than by a broadcast

invalidation mechanism as in multiprocessor systems. This is because only a small fl'action of the total update

13

activity in the entire system is likely to affect an individual workstation. Broadcasting all such changes is

likely to have a drastic effect on performance.

The caching mechanism allows complete mobility of users. If a user places all his files in file shared name

space, his workstation becomes "personal" only in the sense that it is owned by him. The user can move to

any other workstation attached to VICl.'.and use it exactly as he would use his own workstation. The only

observable differences would be an initial performance penalty as the cache on the new workstation is filled

with the user's working set of files and a smaller, perhaps unnoticeable, performance penalty as inter-cluster

cache validity checks, lock requests, and cache writc-throughs are made.

The caching of entire files, rather than individual pages, also has a beneficial effect on performance:

1. Network overheads are minimized because custodians are contacted only on file opens and closes,
and not on individual reads and writes.

2. The servers do not have to maintain state information about open files in the system.

Inevitably, there are some files which are far too large to fit in workstation caches. These are typically

databases, such as the on-line card catalogue of the university library. The current design does not address

this class of files; separate mechanisms for accessing such databases have to be developed. Except in such

cases, actual usage experience has shown that the need to cache entire files is nut a prublcm. Sludies of file

usage patterns in real systems have, in fact, shown that most files tend to be small [20, 12].

4.4. Other Issues

vICEprovides multi-reader/single-writer synchronization for files. Read locks are optional, but a write lock

prior to creating or overwriting a file is mandatory. These are more stringent requirements than those in

Unix, but were felt to be necessary in view of the size of the shared file space, and the amount of concurrent

usage activity on it. Application programs do not, of course, have to do explicit locking: it is done on dleir

bchalf by the caching software on their workstations. If communication with a workstation is lost, VICE

automatically breaks all locks granted to that workstation.

In order to allow flexible yet controlled sharing of resources in \'ICE, an access list package has been

developed. The protected objects in the file system are directories, not individual files. Typical modes of

sharing between users lead us to bclicvc that the overheads involved in associating an access list with each file

is unwarranted. Entries in an access list may cotter;pond to Users or Groups. Users arc typically humans,

while groups are collections of users and other groups. The recursive structure of groups implies that a user

may be a direct member of a group, or an indirect member via transitivity of the membership property.

When accessing an object in vicE, the rights accrued to a user are the union of the rights possessed by all the

14

groups that he is a direct or indirect member of. More details on the protection mechanism may be found in

the design document [22].

For reliability, a directory can have a Backup custodian specified. This custodian contains an exact image

of tile original directory, and changes to the latter are asynchronously reflected to the backup. Currently, the

backup copies of files are read-only by workstations. Algorithms for allowing workstations to directly modify

backup directories are under consideration.

Further details on the design of the shared file system may be found in the design documents [9, 28].

5. The User Interface

in the user interface domain, the role of the 1TC is to design and develop software that allows application

developers to easily exploit the graphics capabilities of workstations. Since user-interface code in the past has

tended to be highly hardware-specific, one of the goals of the ITC has been to develop software to insulate

application developers from flae details of the graphics hardware. Software has also been developed to

simplify and encourage the implementation of consistent application-specific user interfaces. This is

particularly important fi)r novices, since they are often overwhehned by the diversity of application-specific

knowledge they need to possess to effectively use the system.

The user interface offerings of the ITC can be categorized as follows:

®A Window Managerthat allows multiple processes to share a bit-mapped display.

• A Tool Kit of graphical data types for application developers.

• Applications built using the window manager and the base editor.

We examine each of these components in the following sections.

5.1. Window Manager

The window manager may be viewed as a Hoare-style monitor that manages the display, mouse, and

keyboard attached to a workstation, allowing multiple processes to use these devices without interfering with

each other. Two features of 4.2BSl) Unix are essential to the wiudow manager implementation: interproccss

communication between ancestrally unrelated processes, and the ability to simultaneously wait for input from

many different devices. No kernel modifications are necessary, since the window manager runs as a user

process.

The screen is partitioned into non-overlapping rectangular Windows, each associated with a unique Client

process. A client can have more than one window associated with it, though this is not usually the case.

15

[:igure 5-1 shows tile typical process structure on a workstation, with a number of client processes

communicating with the window manager. A specialized remote procedure call mechanism is used for

comn_unication between clients and file window manager. To obtain satisfactory interactive performance,

remote procedure calls which do not return values arc batched together prior to transmission.

_ from Mouse
_. to l)isplay

-_ from Keyboard
O

Clients Window Manager

Figure 5-1: Window Manager Process Structure

Mouse movements are tracked by tile window manager and converted into the appropriate cursor

movements on the display. Keyboard typein is routed to the client in whose window the cursor was when the

characters were typed in. Clients obtain information about mouse events and keyboard typein by querying

thc window manager. A pop-up menu system triggered by mouse clicks is provided. The contents of the

menus, and the actions taken on their selection are client-specific. A subset of the menu items, such as

reshaping a window or rcdrawing the screen, arc acted upon by the window manager itself.

Clients have no control over the precise locations or shapes of their windows. These choiccs are either

made heuristically by the window manager, or on demand by the user. The window manager does not

possess adequate high-level knowledge about the contents of windows to be able to redraw them correctly.

l-lcnce, when a window needs to be redrawn, the appropriate client is informed via a software interrupt. It is

the responsibility of that client to query the window manager for the new window coordinates and size, and to

16

make tile necessary low-level calls to the window manager to accomplisll tile Iedrawing of tile window. 'llle

fact that clients cannot insist on specific window sizes or shapes, and may be called upon to redraw their

windows at any time, enforces a programming discipline that makes clients relatively immune to specific

display hardware characteristics. In effect, clients are being asked to deal with a new display whenever the

size or shape of a window changes. The window manager itself will, of course, have to be modified to deal

with new display hardware.

The window manager has been in use in the ITC for nearly a year, and has undergone a number of

refinements. It is st) versatile and useful that using it is the norm rather than the exception, t:igure 5-2 is a

snapshot of a workstation screen, showing the multi-process, multi-font, and graphic capal)ilities of the
window manager.

Performance. Monitor satya itclogo satya
, d fI

[Abort

misc/docs/nulcr.d satya
-c ,,*-r--r-- J. satya U Oct Reposition window
:Jr=a::r*_>:rLux 2 satya 512 Hay Enlarge window
:h,m:rt0:,;ro,x 2 satya 512 Jun Hide window The Excelan Nutcracker: An Evaluation
-r,axr,JJxrwx I satya 1348 Jan
Jrwxrtoxrwx 8 satva 2568 OctI'r_JI_.'::;_",,'-I / bt Satvaoaravar, an

Jr,_::r-xr-x 2 sat,/a 1024 Oct 15 21:22 r, etd4 Informat_m Tecr_okm_, Center

_ruxr-xr-x 2 satya 512 Sep 26 15:45 perf Carnegle-I'lelloc, lWwversltv

-rw-r--r-- i sat'/a 266 Oct 12 09:44 preferences _ Septemeer 1984
JruJ;<rwxrt0x 8 sat'y'a 512 Aug 6 12;08 prs
Jlwv.r-xr-x 2 satya 512 Sep 18 17:17 rbench
Jfwxrwxrux 2 $atya 512 May 22 11:25 readpress
drbJxrtoxrwx tl satya 1536 Sep 12 11:58 rpc What is it?
dr_xr-xr-x 2 satya 1824 Oct i3 t4:48 scribelib -)

Ivice/itc/eatva/scribeli_ The Nutcracker is an Ethernet monitoring device built by

-rbd 1 satya 8 OCt 14 17:01 sendmmail.CKP E::celan Inc. It is s stand-alnr, e unit incorpo_atinq an

-rLu-r--r-- 1 satya 2264 Aug 28 og;34 sn.txt Intel-6086 _srocessor, memory, a 10Mb _mchester disk, I
drtu:<rtuxrbJx 2 .=at"a 512 3ul 24 12:29 spool _ppv drive. The ?,sftware on the _ ,_st em i:q
druJxruxrwx 2 sat'ya 512 Oct 13 14:54 test _Kustofil-built. Users cannot t program the H,JtcracI.er in
-rw-r--r-- 1 satya 531 May 5 17:10 todo.dat the usual sense; instead, a nlenu-drl,,en interface is
druxr_axru;x 4 satya 512 May 22 11:18 vp used to set up experiments pertaining to Ethernet
drw×r-xr-x 2 satya 512 Sep 26 I5:82 zurich traffic generation and monitoring.
satya;,,

The Nutcracker's claim to uniqueness lies in the special
Ethernet harc_are it possesses. This harduare serves
two fundamental functions:

It allows capture of r, ilimal y-spaced packets.

Thus one can be sure that monitoring is
accurate regardless of traMic conditions,

It provides a packet filtering capability.

Essentially this is a pattern matching
capability tohich can be set to capture packets
with a particular bit pattern at specific

Figure 5-2: Snapshot of a Window Manager Screen

17

5.2. A User-Interface Toolkit

Built on top of the window manager,but distinct from it, isan ITC-developed library of graphical abstract

data typescalled the Base Editor Toolkit. These data types are similar to classicalabstract data typcs in

programming languages[29,]3] in that they consist of cncapsulationsof data structures and operations on

them. However, ill addition to a programming #lterface eachdata type also possessesa well-defined user

interface: a set of operations that a user can perform using mouse or keyboard input.

Application programs which use the toolkit exclusively for their interactions with users are benefitted in a

number of ways:

• The toolkit interface is a higher-level interface than the window manager interface. This relieves
file application developer of many programming details.

• The user interfaces of programs that use the toolkit are more likely to be mutually consistent than
those of programs with independently developed user interfaces.

• It is easier to exploit graphics hardware and to obtain good pertbrmance by carefully boning the
implementations of a small number of data types than by refining individual application
programs.

The most basic data type in the toolkit is a View, which corresponds to a rectangular screen region within

which an instantiation of another data type may be displayed. The latter may be a nr_mitive data type or a

composition of data types. A Document is a data type that may be used whenever text manipulation of any

kind is involved, l)ocuments may range in size from a short label to an entire file. A view of a d(_cument is

essentially a focus of interest on dlat document. Regions of text within a document may be demarcated with

Markers whose specific semantics depends on the application program. A Scrollbar is a data type used in

conjunction with a view on a document, and is used to make different parts of file document visible on the

screen. The toolkit includes a family of data types referred to as Buttons. These are labelled, rectangular

screen objects each of which is instantiated with a set of procedures to be called when a specific event, such as

a mouse click, occurs. Individual members of this family are used to represent scalar data types such as

booleans, finite sets, and strings.

The toolkit incorporates a Layout mechanism, which deals with the physical placement of instantiations of

data types within a window. Using high-level hints and placement constraints supplied by the application

program, this mechanism uses heuristics to determine the actual si/es and locations of individual items within

a window. When a window is moved or reshaped by the user, the layout mechanism is responsible for

appropriately reconfiguring and rcdrawing that window.

The toolkit is implmented as a library of subroutines in C. No language extensions have been made. It

18

would be possible to incorporate tile toolkit into C using a subclassing facility such as that described by

Stroustrup[25]. This would make tile progr_,mming interface more robust, on account of the stronger

typechecking enforced by the subclassing mechanism.

Usage experience with tile base editor toolkit has proved that it is indeed a valuable asset to the I'I'C. A

numbcr of application programs have been developed in a surprisingly short amount of time. Ilaving learned

the interfaces to a few of these programs, users are able to intuit the interfaces of the others quite well.

F-nriching the set of primitive data types, and making it easy for users to define their own data types are two

areas where further work needs to be done.

5.3. Applications

Using the window manager and the base editor toolkit, a potpourri of applications which use the

capabilities of a bit-mapped display have been developed at the ITC. The unifying theme of these

applications is that they are of use to us in the course of our development work.

Examples of these applications are:

• a bulletin board browsing program, supporting an extensible set of interest groups.

• a text editor with dynamic formatting capability. This editor is superficially similar to a "What
you see is what you get" editor, bt_t differs From the latter in that it makes no attempt to ploduee a
replica t}fa primed page. Reshaping an editor window automatically refollnats the text to fit the
new window.

• a special preview program that displays formatted text destined for a printer.

• an access list editor for manipulating file system access lists.

• a personnel directory containing the names and addresses of individuals.

• a drawing program which is built directly on top of the window manager and provides a
reasor_ably sophisticated drawing facility.

• an activity management tool which assists individuals in keeping track of work items.

These applications have been in use for a few months and have come to form part of the repertoire of

programs in regular use by the ITC.

An experimental icon-based interface to Unix, called Don Z, is also being developed. Replacing keyboard

typein almost cntirely by mouse actions, Don Z provides users with a way to communicate with Unix in a less

terse and cryptic manner than that required by Unix traditionally. Figure 5-3 shows a screen snapshot during

a dialogue with Don Z. This system is (_perational but still undergoing development. With experience and

19

refinement, it may well become the preferred mode of communication with Unix in the future.

.°,ooo..'_all_o,,o,.g.n°__on"o,.............. ..,_.

*_n']'_. _- -I-I_T'_- de satyai

............._, _,_'_ _ ____.___4;';',......................... _ _ _1.,___._

:re

if_clc,_ o

NN N ® _,,,!_,,,.J_!._?'--?--
:egrezs /bm,_bm -- File e,:l._'.a I

/L.:

Figure 5-3: Don Z.: An Icon-Based Unix Interface

6. Project Status

The ITC project is currently at the midpoint of its expected deveh)pment period. The major activities and

accomplishments to date can be chronologically summarized as follows:

October 1982 IBM-CM U contract signed, establishing die ITC.

January 1983 Project started.

January to July 1983

ttiring, top-level structuring of project, definition of specific goals, architectural
discussions.

August 1983 Development hardware and software obtained. These were Sun workstations running tim
4.2BS1) Unix operating system, with l'thernet networking support.

20

October 1983 File system architecture complete.

November 1983 First release of window manager in use.

November 1983 Prototype file system implementation design complete.

January 1984 First release of base editor toolkit available.

March 1984 First application program using base editor toolkit available.

July 1984 File system prototype available for use.

Present 30 users in the ITC use the window manager, base editor and file system on a daily basis.
A variety of application packages have been developed on the base editor for applications
such as bulletin boards, staff directories, and editing file system access lists.

Our current and projected future efforts include:

• Pilot dephwnent of a prototype.

About 30 to 50 faculty members on campus are being selected for advance exposure to the
prototype system. They will be supplied with hardware and software similar to that in use at the
ITC. This pilot deplwment will serve two functions: it will allow the faculty members to use the
ITC system to develop educational software and, at the same time, give valuable user feedback
about our design and implementation. This deployment is scheduled for November 1984.

• Perfommrce analysis ofthefile system.
Measurement of the current prototype is under way and is expected to yield information needed
for a reimplementation.

• l'71eSvstem Reimplementation.
The current implementation already gives Us much of the functionality we require. It is
noticeably slower than a stand-ahme Unix file system, but is not so slow that it is unusable. For a
prototype system, it is quite robust. The reimplemcntation will use the experience gained wifll the
currcnt prototype to produce a system that cmphasises performance and reliability. We expect
this implcmcntation to bc available in the spring of 1985.

• Development of application packages
These packages will use the window manager and base editor for a variety of cnd-ttser
applications.

• Large-scale del>loyment
Faculty members are expected to receive workstations in the fall of 1985, and students are

expected to receive them a year later. A whole host of activities, including wiring with I,ANs,
porting of the ITC software to the final hardware, and designing appropriate administrative
controls for the system are involved in this aspect of the project.

To summarize, therefore, the ITC currently has a small-scale, operational prototype of tile system described

in tiffs paper. The next phase of the ITC's efforts is essentially directed at building a scaled-up version of the

21

system, taking due account of our positive and negative usage experiences with the present system.

7. Conclusion

As mentioned at file beginning of this paper, the ITC is an institution created with the express purpose of

designing and implementing a computing environment that will serve as a unifying presence in the

educational, administrative, and social life of CMU. To meet this challenge, a system that represents the

synthesis of personal computing and timesharing has been designed. The nature of the problem has

necessitated the use of sUite-of-the-art techniques in local area network technology, distributed file system

design, and user interface design. Using existing vendor-supplied hardware, a prototype has been

implemented with a view to testing out the design. The experience to date indicates that the design is

fundamentally sound, though refinements are necessary in a number of areas. As the system grows there will

inevitably be many iterations over the design and implementation of various parts of the system. This is, of

course, a characteristic of almost all large, heavily-used systems regardless of their specific goals.

In conclusion, it is appropriate to ask what is unique and noteworthy about this project. In many ways, the

most fascinating aspect of the project is its scale. Never before has there been an attempt to integrate more

than 5000 autonomous computational entities, each under the total control of an unconstrained individual.

Scale is important not because bigger is necessarily better, but because it makes the building ¢)f a "real"

system for "real" users that much harder. Reliability, security, and performance problems all conspire to

make the design of such a system an intellectual challenge of first magnitude.

Acknowledgements

The work described in this paper represents the creative efforts of

the entire staff of the ITC. The author is only one of the many

individuals who have contributed to the ideas described here. Both

CMU and IBM deserve credit for their willingness to chart a course

into unknown waters, and for providing an excellent working

environment within the ITC.

22

References

[i] Accetta, M.. Robertson, G., Satyanarayanan, M. and Thompson, M.
771eDesign of a Network-11ased Central 1.71eSystem.

Technical Report CM U-CS-80-134, Department of Computer Science, Carnegie-Mellon University, August 1980.

[2] Rircll, A.I')., I +evin.P,., Nccdham, R.M. and Schroeder, M.D.
Grapevine: An Fxcrcise in l)istributcd Computing.
In Proceedings of the Eighth 3_vrnposiumon Operating Systems l'rinciples. Asilomar, CA, December, 1981.

[3] Boggs, I).R. and Taft, E.A.
Irl'p.

In Taft, E. (editor), Alto User's Ilandbook. Xerox Palo Alto Research Center, September 1979.

[4] I/rotz, D. and l.evin, R.
laurel.

In Taft, E. (editor), Alto User's llandbook. Xerox Palo Alto Research Center, September 1979.

[5] Bux, W., Closs, F., Janson, P.A., Kummcrle, K., Muller, II.R. and Rothauser, F,ll.
A local-area communication network based on a reliable token ring system.
In Proceedings oJ'the International Symposium on Local Computer Networks. Florcnce, Italy, April 1982.

[6] Crane, P,.C. and Taft. F..A.

Practical ConsMerations in Ethernet Local Network Design.
Technical Report. Xerox Palo Alto Research Center, October 1979, reviscd February 1980.

[7] Defense Advanced P,esearch Projects Agency, Information Processing Tcchniques Office.
RI,'C 791: DARPA lnternet Program Protocol Specification
September 1981.

[8] Day, J.D. and Zimmermann, II.
The OSI Reference Model.

Proceedings of the IEEE 71(12), December, 1983.

[9] Iloward, J.ll. (Editor).
II'C l'7/e System Design.
Technical Report, Information Technology Center, Carnegie-Mellon University, Scptember 1983.

[10] IF.I-E Project 802 Committee.
la)cal Area Network Standards (Draft Standard 802.5).

[11] Jones, A.K. and Gchringer F.F. (Editors).
The Cm" Multiproccssor Project: ,4 Research Review.
Technical Report CM U-CS-80-131, 1)cpartment of Computer Science, Carnegie-Mellon Univcrsity, July 1980.

[12] I azowska, E.D., 7,ahorjan, J., Chcriton. I).R. and Zwaenepoel, W.
File Acccss Perlbrmance of Diskle_:_I.Vorkstations.
Technical Report 84-06-01, Dcpartmcnt of Computer Science, University of Washington. June 1984.

[I3] I iskov, B.. Snydcr, A., Atkinson, R. and Schaffcrt, C.
Abstraction Mechanisms in CLU.
Communications of the ACM 20(8), August, 1977.

[14] Metcalfe, R.M. and Boggs, D.R.
1:'thernet: Distribtttcd Packet Switching for Local Computer Networks.
Technical Report CSL-75-7, Xerox Palo Alto l,',escarch Center, May 1975, reprintcd Fcbruat3, 1980.

[15] Nelson, B.J.
Remote Procedure Call.

PhD thesis, l)cpartmct_t of Computer Science, Carnegie-Mellon University, May, [981.

[16] The Task l:orcc for the Future of Computing, Alan Newcll (Chairman).
"llae Future of Computing at Carnegie-Mellon University.
Fcbruary 1982.

