
,,' CMU-ITC-83-024

An Editor-Based User Interface Toolkit

James Gosling

The Information Technology Center/IBM

Carnegie-Mellon University

Pittsburgh, PA

now with

SUN Microsystems
2550 Garcia Avenue

Mountain View, CA

Abstract

A toolkit has been constructed at the Information Technology Center for building

interfaces between users and programs. Programs such as a help system, a mail

system, a document editor, or a command language typescript all use the same fa-

cilities. They are individually easier to construct and have consistent user inter-

faces. The host system is a powerful personal workstation with a large bitmap

display, rumfing 4.2BSD Unix. The toolkit defines a set of data types. As pro-

grams manipulate instances of these types, the toolkit updates the screen image to

show the changes to the user. Similarly, users can edit the objects and the pro-

gram will be informed. The most powerful primitive data type is the document:

building a text editor in the same class as Bravo[LAM78] or LisaWrite[APP84] on

top of it is almost trivial.

Introduction

Constructing the interfaces between programs and their users has become more difficult as the

hardware has improved. This evolution is illustrated in Unix. It was originally designed for tele-

types and provided no support beyond simple line-editing. The advent of 24x80 CRT terminals

led to packages such as curses[ARN80], encouraging simple graphical interaction by implement-

ing many of the common operations in a terminalAndependent way. Now powerful workstations

with fast, high-resolution bitmapped displays are becoming common. They are capable of sup-

porting many new user interface techniques, including dials, meters, buttons, menus, and typeset

documents. A package encapsulating these techniques in a simple, usable form would encourage

their widespread use.

-2-

The toolkit described in this paper is an attempt to provide both a general framework for build-

ing such interfaces, and an open-ended set of objects that can be placed into the framework. It
has several goals:

- To lead to simple and uniform interfaces: all programs which use this toolkit should

have interfaces whose various components act alike. For example, cutting and pasting
should work similarly everywhere.

- To be simple to program: the system must be understandable to the programmers that

are to use it. As much as possible, the data structures should be hidden and the burden

of their maintenance should be the toolkit's. For example, the programmer should not

have to specify the exact placement of the objects.

- To be flexible: allowing new kinds of behaviours to be defined easily.

- To exploit the hardware effectively.

- To perform well: There is a myth in computer science that performance is almost ir-

relevant when compared to functionality. In constructing user interfaces, a slow power-

ful system is almost always less useful than a fast simple one.

The Toolkit

It was built on a powerful personal workstation running 4.2BSD Unix (a SUN workstation).

We built our own window manager through which the user interface toolkit performs all of

its interactions. The components fit together roughly like this:

The window manager is a separate

client processes' access to the display.

It performs the actual graphics opera- oc

tions, reads keystrokes and tracks the

mouse. Client processes may talk to

the window manager directly with no assist, but most use the user interface toolkit to help.

One way to think of the division of labour between the window manager and the toolkit is

that the toolkit shares data structures with the client, the window manager does not. There

is also one window manager per display station, while there is one toolkit instance per client

-3-

-3-

process.

The toolkit sits between the client program and the window manager, issuing graphics opera-

tions to keep screen images up-to-elate, handling editing requests from the user and client,

and informing each about the other's changes. The user is informed of changes in the data

object by observing changes in the image on the screen. The client program is informed ei-

ther by procedure calls or by inspection of the data structures.

The fundamental datatype in the toolkit is the view. A view corresponds to a rectangular

patch of screen space in which a data object will be displayed. The data object may be a

composition of other views or may be a primitive data object. Some primitives are defined in

the toolkit and others may be defined by client programs.

Within a view is presented an image of a object. Objects may be integers, ranges (used for

scroll bars), booleans, enumerations or documents. Other object types will eventually be sup-

ported as well. There are hooks in the system allowing new types of objects and methods of

representing them on the screen to be defined. The toolkit takes care of all I/O, dispatching

mouse hits and characters, performing full redraws and incremental updates of the image.

Suppose one wanted to write a program to play a card game, with an interface containing a

typescript of an ongoing computer-generated commentary, a few buttons implementing ac-

tions in the game, and two hands of cards. There isn't a predefined hand-of-cards datatype,

so the client would have Io define one. The typescript could use the document datatype and

the buttons the boolean. The sp_ification of the interface would be:

typescript = DoeumentViewO

dealbutton = ButtonView('Deal", DealHitProcedure)

foldbutton = ButtonView('Fold", FoldHitProcedure)

programhand = PrimitiveView (HandHitProcedure, HandRedrawProcedure, HandU1MateProcedure, Hand-

SizePrecedure, data-object-l)

userhand ---PrimitiveView (HandHitProcedure, HandRedrawProcedure, HandUpdatePrecedure, HandSizePro-

cedure, data-object-2)

-4-

-4-

interface = AboveOrBeside (Beside (userhand, Above (dea!button, foldbutton) , programhand), typescript)

Document View creates a view object and a document. If the program inserts text into the

document the effect of that insertion will eventually be reflected onto the screen. ButtonView

creates a view and a button. Buttons correspond to boolean variables. The ButtonHitPro-

cedure is activated whenever the user hits the button. It can change the value of the boolean,

which will change the image on the screen.

Programhatut and userhand are defined as views on user-specified data objects. The

behaviour of these data objects (and ultimately, all others) is defined by five procedures:

Hit the action to be performed when the user cricks a mouse button over the object.

Redraw the action to be performed when the image of the object needs to be completely

redrawn. The redraw procedure will be passed the data object to be drawn and

the rectangle in which it is to be drawn.

Update the action to be performed when an incremental screen update is needed. This can

result from a change to the object made by either the user or the client. Informa-

tion about the extent of the incremental update is derived from the data object. In

simple cases, this degenerates to clearing the region and redrawing the object.

Size answers the question 'if you were to be placed inside a rectangle with this width

and height, what size would you really like to be?'. For objects of constant size

(like labels) the answer is fixed and doesn't depend on the size of the region the

object is being squeezed into. For very. flexible objects, like views on documents,

the desired size usually matches the size of the target. Some objects, like arrays of

buttons, have more complicated size behaviours ; their actual size may depend on

the number of rows and columns they decide to break themselves into. The size

procedure is called by the algorithm that juggles view sizes and placement.

InputFocus handles characters typed to this view. It will be called whenever keystrokes

are recieved. There is a global input focus procedure pointer which is used as the

destination of aU keystrokes. Generally the hit procedures for the various views

will set the global input focus to a procedure specific to the data type.

-5-

-5-

Each view also has an associated data object (data-object-q). These data objects are not in-

terpreted by the toolkit but are considered to have all the information pri_ate to the object

implementation. When the toolkit invokes any of the procedures that is a part of a view, the

data object will be passed as one of the parameters.

An important design goal was the decoupling of screen update from object update. When an

object is updated, its screen image is not immediately updated. Rather, an invocation of the

object's update procedure is scheduled. It is the responsibility of the implementation of the

object to maintain the information necessary to do incremental updates. For example, the

'boolean' datatype maintains two fields value and DisplayedValue. When the client program

sets the boolean, the value field is changed and an update is scheduled. When the actual up-

date happens, value and Disp layed Value are compared and the screen image will be updated
appropriately if they differ.

All screen updates will be performed just before the program next blocks for input from the

keyboard. Updates from a sequence of operations are thus batched and done together. This

was done partly to make the design cleaner and partly to avoid the phenomenon seen in some

systems, with complicated operations depending on smaller operations causing many screen
updates.

One of the most complicated algorithms in this system is the one that lays views out on the

screen. One reason is the window manager; users can change the shape of windows at will.

Tools must adapt to dynamically varying window sizes and shapes. The task of the layout

algorithm is to take a set of views on prinaitive objects composed into a hierarchy and allo-

cate space to each, ensuring enough space.

As an example of an object type which complicates the algorithm consider a set-of-strings

that should be arranged as a grid of rows and columns. The width of a column and the

height of a row is fixed, but the number of rows and columns can vary, so long as their pro-

duct exceeds the number of strings. Acceptable shapes range from tall and skinny to short
and wide, where the range of shapes is not continuous. It was considered undesirable to have

the layout algorithm incorporate detailed knowledge about all different size behaviours.

6

The algorithm currently in use is a brute force search through an enumeration of the entire

set of possible layouts. While this sounds as though it could take a lot of time, the applica-

tion of clever heuristics makes it possible to prune the search tree dramatically.

Documents

Document--like objects appear in many places in user interfaces. Every displayed string can

be thought of as one. For example, text presented by a help system, labels on diagrams, mail

messages, and message directories are all documents. Having one document implementation

has many advantages: documents have a consistent appearance and command language, less

implementation work needs to be done in each client, and a more powerful implementation is

possible with the cost distributed over many applications.

The goals for document objects were slightly unusual in this project. On the one hand, we

wanted to be able to do fairly sophisticated typesetting with them. On the other, we wanted

to be able to use them as components of user interfaces. The phrase What you see is what

you get is often used to describe text editors that emulate the quality of typesetters on the

screen, providing an exact one--to-one correspondanee between screen images and the printed

page. This often leads to large, poorly spaced screen images attempting to emulate the size

of a piece of paper and the higher resolution of a printer. Brian Kernighan has rephrased

this as What you see is all you get: making the point that this approach forces the quality of

the document to be compromised on either the display or the printer. We placed a heavy

emphasis on the readability of documents on the _reen and dispensed with an exact

correspondence between the document on the screen and on the printed page. For example,

when the user asks for help, the manual entry is presented correctly formatted for the size of

the window. If the entry printed, it is reformatted using the line and page lengths appropri-

ate for the printer. A preview tool can be used to inspect the page layout before cornitting to

paper.

These goals simplified several aspects of the document implementation. There was no need

to pay careful attention to the properties of the printer nor to paginate the document. But

there were also complications: the internal document representation had to respond to fre-

quent changes in line width. We use a data structure with no embedded line break or pagi-

-7-

-7-

nation information. Rather, this data is kept in localized caches. For each physical line on

the display there is a eaehe entry containing the starting position and length of the text ap-

pearing on that line, along with the initial state of the formatter. To facilitate scrolling the

document through the window similar cache entries are maintained at random points in the

document. To find the formatter state at some position the formatter state at the nearest

such cache is found and the formatter run on the text until the desired position is reached.

The formatter runs very quickly; in many cases it can run backwards over the text.

Appraisal

So far, this toolkit has been very successful. The limited ambitions of the toolkit are an im-

portant contribution. By that I mean that the toolkit itself doesn't do very much, mc_t of the

hard work has been unloaded onto the implementation of the various datatypes. The toolkit

itself doesn't try to construct images, it merely provides coordination. The datatypes are

more complicated, having to deal individually with incremental updates. However, they have

more detailed knowledge of the the properties of the datatype than a generalized incremental

update algorithm, and can do a much better job.

The most important benefit has been the consistency of the interface. Users can be taught

one way to edit documents and can apply that to all applications. Text is edited in exactly

the same way in the editor as in the command language typescript, and can be cut and past-

ed between them uniformly.

Bibliography

APP84 Apple Computer, LisaWrite Users Manual, 1984

ARN80 Arnold, K. Screen Updating and Cursor Movement _timization: A Library

Package. 4.2BSD Unix User Manual.

LAM78 Lampson, b. Bravo Users Manua_ Xerox PARC, 1978.

-9-

require a full handshake and the rest are generally much faster.

For example, the Emacs text editor takes 360ms to completely redraw the screen when it is

run on a SUN with direct access to the display. The same test under the window manager but
di_laying the same text with the same font and using the same amount of screen area takes 530ms.

This is 47%slov_r, which is hardly perceptible. Performing this test again with Emaes and the win-
dow manager on different machines yields an interesting result: the full redraw takes 390rns. Only
8%slowcr - the two machines are effectively dividing the computational load.

One item in the window manager's menu sends a re-draw signal to all visible windows. With

a typical screen layout of 6 windows, this takes about 2 seconds, scheduling among the window
manager and the clients to re-tgaint every pixel.

The reasons for the acceptable performance are simple:

• For the common operations, including character drawing, the number of pixels affected per
byte transferred is large.

• The underlying IPC mechanism -4.2BSD sockets and TCP/IP -performs very v_ll.

• Remote procedure calls that don't return values get chained to following calls. The RPC
mechanism builds large buffers of requests and avoids sending unnecessary messages.

• Few procedures in the window manager interface return values, and those that do are called
infrequently.

6. Future Work

Eventually v_ would like to move to a hybrid implementation: one that uses direct device
access if possible, otherwise falling back on remote procedure calls. Even if direct device access is

possible, most clients are unlikely to use it. Few need the extra performance, and loading the extra
graphics library will make them much bigger. Above all, most will prefer to remain device-
independent.

There is a limit on the number of clients that the window manager may have that is imposed
by the limit on the number of open file descriptors. Each socket accessible to a UNIX process uses
one file descriptor. Typically, UNIX processes are limited to 20 file descriptors. The implementa-
tion of 4.2BSD allows this limit to be increased by recompiling the kernel, but only to 31. Normally
the limit isn't a problem; more than a half dozen windows visible on the screen looks cluttered and
confusing.

Unfortunately, v_ would like to support a large number of hidden windows, and each of these

also takes up a file descriptor. We don't know of a satisfactory solution to the problem. One possi-
bility that v_ considered was to use connectionless datagram sockets. The window manager would
need only one socket on which to receive from all of its clients. The problem here is that at present
only unreliable datagrams are implemented; datagrams get through with some probability between 0
and 1, exclusive.

An alternative is to pass the descriptors for closed windows in messages to another process.
The window manager can then close the descriptor, sharing the limit among the visible windows
only. We plan to experiment with a receiving process that maintains a window full of icons

representing hidden windows, and sends the descriptor back to the window manager when one is
selected for exposure.

Acknowledg_rnents

Bob Sproull has been an invaluable source of advice. The other members of the ITC's User
Interface group, Fred Hansen, Tom Peters, and James Peterson, rushed in where others feared to

tread, and suffered the consequences. Bob Sidebotham, Andrew Palay, and Bruce Lucas have all
implemented significant parts of the system as it now stands.

