
CMU-ITC-84-020

VICE File System Services

MJ West

Information Technology Center
Carnegie--Mellon University

Schenley Park
Pittsburgh, PA 15213

August 7, 1984

This is a preliminary document
The interfaces may change

Introduction

This paper deals with the Vice File System; what services it offers, what data structures it

uses and how it is implemented. The intent is to keep this document up to date to reflect the
state of the Vice file system.

The structure has been chosen to simplify implementation and present the correct semantics

of the intended services. It is left for later to optimize the basic services and to work on per-
formance. By striving first for simplicity of implementation and correct semantics it is possi-
ble to ensure that the semantics are complete. The initial base system is 4.2BSD UNIX.

The paper is organized to first describe an overview of the Vice file system, then to describe

an overview of the implementation, then a description of the services and finally the data
structures used to support those services.

It is intended that this be implemented on a cluster machine. Separate papers will describe:

the protocols used for communication.
the workstation implementation.
the access list package
the authorization server.

-2-

Overview

The VICE system consists of a number of cluster machines that are logically connected to
each other, each of the duster machines have many server processes running on them, one of
these servers is the file server, and that is what this paper describes.

It is assumed that each of the cluster machines is on a lobe of a local area network that may
contain some workstations. Workstations refer requests for files to the closest cluster
machine and the file server on that cluster either provides the file, or refers the workstation
to a duster that has the file.

File Server

The file server is a set of processes running on a cluster machine. The processes are:

a process that does initialization and waits for workstation connects.

a process for each workstation to handle its requests.

a process to wait for connect requests from other clusters.

a process for each connected cluster file server.

a prooess to handle backup requests (requests to other dusters).

a prooess to handle lock requests.

Network appearance

Each file server will have two identities on the network. There will be one name for the file

system that is used by workstations and another that is used by the file system cla other clus-
ters. If a network name is considered to be a duster ID and server ID pair, then each cluster

that contains a file system will have a file server name to handle workstation requests, and a
cluster server name to handle the cluster to duster requests from other file servers.

-3-

New VICE specific information

The VICE file system directory logically contains a single hierarchical tree. The file system
is distributed across the various dusters that make up the VICE file system. The upper part
of the directory tree and common system files are replicated at all VICE dusters. The rest
of the directory and most files are maintained at a single duster machine.

Associated with each file and directory is some additional information. The new in-
formation is:

the name d the custodian which keeps the primary copy of the directory and its
files.

the backup cluster machine(s) which keeps a backup copy of the directory and its
files.

descriptive information about the file or directory that is maintained by other ser-
vices.

a type field to indicate the type of the directory and any member files. The types
are either replicated, or normal

the date when the data was last changed, and the date when the status was last
changed

the owner d the directory

an access list that is used to determine who can do what to the data

The new information is kept in separate files in the same directory structure. This is done by
creating a new directory for each directory in the system. The new directory will be named

.admm fde for the information about the direc-".admin". This new directory will contain a
tory, and a file for information about each file that has the same name as the file.

The cluster and type information, and the descriptive information about the directory are
kept in the .admin file in the new directory. The descriptive information about the files are

kept in a file in the .admin directory. The file name of the file in the .admin directory will
be the same as the file name in the standard directory. The information that is kept in the
inede will be left there.

The ability to set and fetch this information will be through the GetFileStat, GetMember
and SetFileStat calls. It will not be allowed to open a directory and read it as a file as is

currently possible in UNIX. All programs that currently do that will have to be changed to
use the GetFileStat, GetMember and SetFileStat calls or the workstation cede will have to be

written to issue the calls and build a block that looks like the current directory.

-4-

Access Lists

Protection is provided throught the use of the access list package. Each directory will have
associated with it an access list that will determine the ability of users and groups to modify
it and the files it contains. The levels of aocess provided are:

Access Meaning

Read Fetch files

Write Store old files

Insert Store new files or dirs

Delete Remove old files or dirs

Lookup Examine dir contents

Lock Obtain Read locks

Protect Change access lists

For a more complete description of the package see the document User's, Groups, and Access
Lists.

File Types

There are two types of files:

Normal

These files reside at the custodian cluster, in addition there may be a list of sites that
have Backup copies of the file.

Replicated

Files and directories which are located on all clusters. All clusters, except the custo-

dian, treat these files differently. They can respond to fetch requests for the file
without going to the custodian to check that it has the latest copy. Whenever a
change is made to a replicated file, the custodian sends the same change to all clus-
ter file servers. It does this by simply passing the same request it receives on to all
dusters.

-5-

The type of a file is the same as its parent directory. Any directories will have their own
type information.

Dates

The system maintains three dates:

data last modified date (STAT_JVIDATE)

This date is kept by the system for files and directories. It cannot be changed by the
user. For files it is the time of the last store. For a directory it is the latest of:

when the directory was created.

when a new member was added (file or directory)
when a member was deleted (file or directory)

status last modified date (STAT_SDATE)

This date is kept by the system for files and directories. It cannot be changed by the
user. It is updated whenever the data last modified date is. In addition it is updated
if any status information about a file or directory is changed. In addition to the
above calls, the following also modify the status date:

when a SetFileStat is done.
when a SetAceessList is done.

user last modified date (STAT_UDATE)

This date is only kept on files. It can be changed by the user either with a SetFileS-
tat or passed in as data on a Store. If the user does not modify it, it will be the
same as the system last modified date. This allows the user to have a modify date
that reflects his knowledge of the data.

The name in parentheses behind the dates is the define in filedef.h that describes these dates.

Custodian

The custodian of a file or directory is the cluster where that file is synchronized and con-
trolled. It has a copy of the file. The name of the custodian cluster and any backup clusters
are kept in the .admin file. The custodian of a file is the same as its parent directory. All
files have a custodian, even replicated ones. The major difference is that for replicated files,
the copies are updated by the custodian, and for normal files the process of Fetch ensures
that the latest copy is retrieved.

Backup

A function not described in the base document is backup clusters. It is possible for a file to
be assigned one or more backup clusters. The backup clusters are used to fetching cff a file
even if the custodian is not available or the media that holds the file is physically damaged.
When a backup cluster receives a fetch request for a file, it checks with the custodian to eta-

-6-

sure it has the latest copy, if it does, it satisfies the request, if it doesn't it retrieves a copy of
the file and satisfies the request. If the custodian is partitioned, it returns the copy of the file
it has along with an indicator saying that the file may be out of date.

Locks

Locks are handled by a separate process. All lock requests are sent to the new process and it
keeps a list of the outstanding locks, and either grants the request or rejects it. It is also able
to free all of the locks for a given workstation or user. There is also a function to test if a

given workstation holds a read or write lock on a given pathname. If an operation requires a
lock and it is not held, the lock will be requested. If the lock is available the operation will
be performed and the lock will be released. If the lock is not available, the operation will be
aborted using the return from lock.

Operation Overview

Once initialized, the system operates as follows:

A process is waiting for workstation connect requests. Whenever a workstation con-

nects to the cluster it forks a process to handle that workstations requests. The pro-
oess stays active handling those requests until the workstation issues a disconnect.

A process is waiting for requests from other clusters. Whenever a connect request is
received frorn another cluster it forks a process to handle the requests. The process
stays around until the other cluster disconnects. The main difference betvc_en this

and workstation requests is that clusters will usually disconnect after each request.

A process is waiting for requests to update replicated or backup files or directories.
Whenever a replicated or backup file is updated, a message is stored in the queue of
this process and it takes care of updating all effected clusters.

A process is waiting to handle lock requests. It keeps a table of the outstanding
locks in storage. It is able to lock on a pathname and unlock by pathname, worksta-
tion, or user and workstation. It can also check whether a lock is held.

Examples

A client that wanted to Fetch a file would need the following code:

Too be filled in with an crumple using RPGEN.

-7-

Structure

Directory

The directories structure is similar to that in UNIX. A new directory is added to each direc-
tory to allow some extended information to be sawxi. The new directory contains a file for
the directory information and a file for every file (not sub-directory) in the directory. The
new file is like a directory extension and contains additional information about the directory
and any files that are contained in it. Current information is left intact. A pictorial
representation of a directory looks like the following:

n= -> name of directory

t= -> norm or repl
c= -> name of custodian
b= -> name of backup(s)

Directory Representation

-8-

n=/

t=Repl
c=CL1

bin n=tmp n=nmt n=usr

t=Repl t=Repl t=Repl t=Repl
_'-q___l c=CL1 c=CL1 c=CL1

I

I 1
west n =satya n=king n =jhh

qorm t=Norm t=Norm t=Norm
_--_L1 c=CL1 c=CL2 c=CL2
CL2 b=CL1

m

files files -- files

Directory structure for CL1

-9-

n=/

t=Repl
c=CL1

_1
n =bin n =tmp n =mnt n =usr

t =Repl t =Repl t =Repl t =Repl
___,1 c=CL1 c=CL1 c=CL1

t _t
n =west n =satya n =king n =jhh

_lorm t=Norm t=Norm t=Norm
L'_L1 c=CL1 c=CL2 c=CL2
Lq_.2 b=CL1

files -- files --7 files

-]l l t
Directory structure for eL2

This shows that the directories that are replicated are at all dusters. Directories and files
that are normal are only at the custodian and any backup clusters.

Processes

The structure has two processes that listen for connect requests from other machines, the
main and cluster processes. Each of these processes have child processes that are used to
handle the requests. In addition there are processes that are used for special purposes such

-10 -

as Lock, Wherels and backup requests.

Files erver Clust_S e_er

Mare Process Main Process

[I
handler handler

--_-L
-LL I [

Lock Server Backup Server

Processes used by File Server

The process structure in the Vice file system.

This is a brief discussions of the processes used on a cluster machine by Vice.

The FileServer Main Process listens for workstations to connect.

For each connected work station there is a process to handle its requests.

The ClusterServer Main Process listens for other servers to connect.

For each connected cluster there is a process to handle its requests.

The lock server handles lock requests for this duster.

-11 -

The BackupServer connects to other clusters to move replicated and backed up re-
quests around the network.

- 12 -

Service routines

The service routines de_ribed below are reached by using the protocols described in the do-

cument titled 'RPC User Manual Outline". The input for the routines is placed in the
RPC_RequestBlock.

The RPC_RequestBlock must contain the following information to invoke the service rou-
tines:

RPC_RequestHdr

BodyLength field contains the length of the body.

SubSystem field in the request block header is set to FileSystem
(FILESYSID).

OpCede field in the request block header is the name of the service routine.

Body is the parameters described in the following routines as input parameters

The return from the routines is passed in the RPC..ResponseBlock.

The RPC._ResponseBlock must contain the following information to invoke the service rou-
tines:

RPC..ResponseHdr

BodyLength field contains the length of the body of the response.
RPC_ReturnCode field that indicates the result of the request.

Body is the parameters described in the following routines as output parameters.

All requests may receive FS_PARMBAD or FS._FAIL in the return code field.
FS_PARMBAD indicates that the Opcode field was invalid. FS_FAIL indicates some sort of

error that should not occur such as insufficient storage. Any requests that require a lock
may receive the lock return codes if a lock is not held and not available.

The include file FILHDEF.H will contain the constants necessary to use the service routine
names for OpCede and FileSys to set in the SubSystem field of the RPC_,RequestHdr. It
will also contain the defines to describe any input fields that are constants and to describe the
return cedes from the various routines

-13 -

Lock

Format

Lock (char pathname, char mode) returns (char timestamp)

Input Parameters

pathname Names the file or directory to be locked.
mode Contains a value of READ or WRITE. The defines are in the in-

clude file FILEDEF.H.

Output Parameters

timestamp Time the file or directory was last modified in seconds since
1/1/1970.

Function

Lock is used to serialize use of a file. Lock requests can only be sent to the custodian of a
file. (When caching is implemented, a cluster that is a cache for a file, will also forward

lock requests to the custodian.) A lock request results in further lock requests to the same
pathname being honored according to the rules below.

The lock can only be released on the same connection as it was obtained. It will automatical-

ly be released if the connection goes away.

A discussion of what authorization is needed to request what type of locks is included in the
section Commands -Access & Lock requirements.

The request returns a timestamp from the file, the timestamp that is returned is the last

modified time. It returns a time of zero if the file does not exist. The timestamp is only re-
turned if the return code is zero.

Lock rules -

A read request will:

get a return code of FS_HOLDLCK if the user already holds a read or
write lock on the same pathname.

get a return code of FS_WRITLCK if someone else holds a write lock on
the pathname.

get a return code of FS._SUCCESS otherwise.

-14 -

A write request will:

get a return code of FSA-IOLDLCK if the user already holds a write lock
on pathname.

get a return code of FS_PROMLCK if the user holds the only read lock on
pathname. The lock will be changed to a write lock.

get a return code of FS_READLCK or FS_WRITLCK if someone else

holds a read or write lock on pathname.

get a return code of FS_SUCCESS otherwise.

Errors

FS_NOTCUST Cluster is not a custodian of pathname
FS_NOTAUTH Not authorized for requested kind of lock
FS_,NOPARENT Parent directory does not exist
FS_PARMBAD Pathname or mode invalid
FS_READLCK File is read locked

FS_WRITLCK File is write locked

FS_HOLDLCK You already hold the lock
FS_.PROMLCK The lock was promoted from read to write

-15 -

Unlock

Format

Unlock (char pathname)

lnput Parameters

pathname The string representing the file or directory to have its lock released.

Function

Unlock releases a previously obtained lock. It must be issued over the same connection that
the Lock call used.

Erro rs

FS_3qOTCUST Cluster is not a custodian of pathname
FS_PARMBAD Pathname invalid
FS_.NOLOCK No lock held

-16 -

WhereIs

Format

Wherels (char pathname) returns (char custodiar_ char backup, char prefix)

Input Parameters

pathname The string naming the file or directory whose location is to be deter-
mined.

Output Parameters

custodian The custodian of the file or directory
backup The names of the clusters that contain backup copies of the file or

directory separated by tab characters.
prefix The briefest prefix of pathname all the descendents of which have

the returned custodian.

Funct ion

Wherels is used to find the location of files within the file system.

Errors

FS_.PARMBAD Pathname invalid

-17 -

Fetch

Format

Fetch (RPC_BulkDescriptor file, char pathname) returns (char sysmod-
time, char usermodtime)

Input Parameters

file The RPC_BulkDescriptor that causes the requested file to be
transferred.

pathname The string representing the file to be fetched.

Output Parameters

sysmodtime This is the time the file was last stored in seconds since 1/1/70.
usermodtime This is the user last stored time. The user can override this on a

store or a SetFileStat. If not overridden it will be the same as sys-
modtime.

Function

Fetch is used by a workstation to request a file from VICE. The file server looks the file up
in its local file system. If it has a copy d the file and is the custodian of the file, or the file
is a replicated file, it returns it to the requester. If it has a Backup copy of the file, a check
is made with the custodian to see if the file is up to date. If it is up to date it is returned, if
it isn't up to date a current copy is fetched from the custodian, and it is returned, if the cus-
todian can not be contacted, the copy that is present is returned with an FS__NOCUST re-
turn code. If it does not have a copy of the file, it returns an error indication.

Fetch also returns the system and user last modified times. If the return code is
FS_.NOTCUST it will return the same data as Wherels.

Errors

FS._NOTCUST Cluster is not a custodian for this file (returns Wherels
data)

FS...NOCUST A copy of the file is returned, but it may not be the latest
copy

FS__NOTAUTH The user is not authorized to read the file
FS_NOTFILE Pathname is not a file
FS_PATHBAD Pathname does not exist

FS_PARMBAD Pathname not formed correctly
FS_NOPARENT Parent is not a directory

-18 -

Store

Format

Store (RPC_.BulkDescriptor file, char pathname, char usermodtime)

lnput Parameters

file The RPC_BulkDescriptor from the client that describes the file to
be stored.

pathname The string representing the file to be stored.
usermodtime The time the user wants stored in the user time field.

Function

Store is used to save a file in the file system. If the file has a type of replicated or backup,
any replicated or backup clusters are updated automatically.

If the return code is FS._NOTCUST it will return the same data as Wherels.

Errors

FS_.NOTCUST Cluster is not a custodian of pathname
FS_NOTAUTH Not authorized to store the file

FS_.NOPARENT Parent directory does not exist
FS._READLCK File is read locked

FS_PROMLCK The lock was promoted from read to write
FS_NOTFILE pathname not a file

FS_PARMBAD Pathname not formed correctly

-19 -

Remove

Format

Remove (char pathname)

lnput Parameters

pathname The string representing the file to be removed.

Function

Remove deletes the requested file.

If the return code is FS_NOTCUST it will return the same data as WhereIs.

Errors

FS_NOTCUST Cluster is not a custodian of pathname
FS_NOTAUTH Not authorized to remove the file

FS_.NOPARENT Parent directory does not exist
FS_READLCK File is read locked

FS_PROMLCK The lock was promoted from read to write
FS_PATHBAD File does not exist

FS_PARMBAD The pathname was malformed
FS_3qOTFILE Pathname not a file

-20 -

GetFileStat

Format

GetFileStat (char pathname, char status) returns (char status)

Input Parameters

pathname The string representing the file or directory to queried.
status The parameter showing what status is requested. This string con-

tains the names of the entries to be returned separated by tabs. An
asterisk (*) is allovced to be the last character in any field and
means that any entry that starts with the characters before the as-
terisk are to be returned. For more information see FileStat Format
in the appendix.

Output Parameters

status This is the status data returned. The format of the character string
is that the string is broken into entries by newline characters and
the entries are broken into fields by tab characters. The first field

in each entry is the name of the entry. For more information see
FileStat Format in the appendix

Function

GetFileStat formats the data about the file or directory into entries. Each entry contains the
name and value of the information. This allows the information to be tailored to the request
and be expanded in the future without a need for recc,:iing.

The status is returned based on the status requested. The status is a single character string,
entries within the string are separated by newline characters, and fields within the entries are
separated by tab characters.

The input status field is used to specify which status fields are requested. Each field contains
the name of an entry to return. There is a single wild card character, which is an '_". This
character must be the last character in a field request, and results in a match for all entries

that start with the characters before the '_*". If a single field, that contains only an '_"", or is
null, is received, all status information is returned.

The output is a character string that contains the requested named status information. The
first field in each entry is the name of the entry, subsequent fields contain the status informa-

tion itself. The following entry names are maintained by the file system, users are allowed to
invent new ones of their own.

The system entries maintained for each file or directory are:

whether a directory or file (STAT_CAT)

-21 -

data last modified date (STAT..MDATE)
status last modified date (STAT..SDATI_)
user last modified date (if file) (STAT_UDATE)

length of file (STAT_LENGTH)
custodian (STAT_CUST)

backup clusters (STAT__BACKUP) -may contain multiple fields
type of directory and any member files (STAT_TYPE)
access rights for the owner, anyuser and current user of the file (STAT_OAUTHO,
STAT..AAUTH, STAT_UAUTH)
name of the owner of the file (STAT_OWNER)

The names in parentheses refer to the names assigned in filedef.h.

If the return code is FS_NOTCUST it will return the same data as Wherels.

Errors

FS._NOTCUST Cluster is not a custodian
FS_.NOTAUTH Not authorized to read file or directory
FS_PATHBAD Pathname does not exist
FS_NOPAKENT Parent is not a directory
FS_PARMBAD pathname is malformed

-22 -

GetMc_nber

Format

GetMember (char pathname) returns(char status)

Input Parameters

pathname The string representing the directory to return the list of members
for.

OutPut Parameter

status The names of the members of the directory.

Function

C_retMember returns the list of members of a directory. The names are in the same format as

data from GetFileStat and will have the STAT_MEMBER name on the entry.

If the return code is FS_NOTCUST it will return the same data as Wherels.

Errors

FS..NOTCUST Cluster is not a custodian

FS._NOTAUTH Not authorized to read file or directory
FS_NOTDIR Pathname is not a directory
FS_PATHBAD Pathname does not exist

FS._NOPARENT Parent is not a directory
FS_PARMBAD pathname is malformed

-23 -

SetFileStat

Format

SetFileStat (char pathname, char status)

Input Parameters

pathname The string representing the file to be changed.
status The new status information. The information is in the same format

as that returned from GetFileStat. For more information see FileS-
tat Format in the appendix.

Function

SetFileStat is used to maintain a list of properties about a file or directory. Any information
that the user desires can be stored in the property list. The information is supplied as named
properties and stored in the same manner as the system properties. The stored information is
retrieved by GetFileStat.

If the directory is replicated or has backup clusters, the changes are sent to the effected clus-
ters.

The input data is passed as a status string. If an entry has only one field, the field is deleted.
If an entry has more than one field the field is replaced or added.

The user cannot change or define properties whose name start with "sys".

If the return code is FS._NOTCUST it will return the same data as Wherels.

Errors

FS PATHBAD Pathname is invalid

FS PARMBAD Status information is invalid or pathname is malformed
FS NOTCUST Cluster is not a custodian of pathnarne
FS NOTAUTH Not authorized to update the directory status
FS NOPARENT Parent directory does not exist
FS READLCK File is read locked

FS PROMLCK The lock was promoted from read to write

-24 -

SetBackup

Format

SetBackup (char pathname, char backup)

Input Parameters

pathname The pathname for the directory that is to have its backup informa-
tion changed.

backup The new backup information. The first field is backup the next
fields contain clusters that are backups for this directory.

Function

SetBackup is used to change the backup dusters for a directory. The information is a single
entry in the same format as that retrieved from GetFileStat with a request for backup data.
The request will cause the clusters listed in fields after the first to become backups for all of
the files in the directory referred to by pathname. Pathname must refer to a directory, all
dusters listed must already have copies of the parent directory (because the parent is repli-
cated, or because the parent is also backed up on the clusters). A request with no clusters
listed will cause all backup clusters to be removed.

This call requires administrative authorization. The process of moving necessary files is not
complete when the call returns. It is done asynehronously, and may take quite a while.

If the return code is FS_NOTCUST it will return the same data as Wherels.

Errors

FS_NOTAUTH The user must have administrative authorization

FS..NOTCUST Cluster is not a custodian of pathname
FS_REPL A replicated directory can not have backup sites
FS_NOPARENT Parent directory does not exist
FS_READLCK File is read locked

FS_NOTEMPTY A backup site cannot be deleted if it contains another direc-
tory

FS_PROMLCK The lock was promoted from read to write
FS_PARMBAD The backup list is invalid or patlmame is malformed.
FS_PATHBAD Pathname does not exist

FS__NOTDIR Pathname is not a directory

-25 -

SetAccessList

Format

SetAccessList (char pathname, char access)

lnput Parameters

pathname The pathname for the directory that is to have its authorization
data changed.

access The new access list

Function

SetAocessList is used to change the access list for a directory. The information is in the

same format as that retrieved from GetAccessList. Pathname must refer to a directory.
This function will be filled out more fully when the authorization document is complete.

A write lock must be held on pathname. This call requires administrative authorization.
f

If the return code is FS_.NOTCUST it will return the same data as Wherels.

Errors

FS NOTAUTH The user is not authorized to change auth data
FS PARMBAD The auth data is invalid or pathname is malformed
FS NOTCUST Cluster is not a custodian of pathname
FS NOPARENT Parent directory does not exist
FS READLCK File is read locked

FS PROMLCK The lock was promoted from read to write
FS NOTDIR Pathname is not a directory

-26 -

GetAccessList

Format

GetAccessList (char pathname) returns (char access)

Input Parameters

pathname The pathname for the directory that is to have its authorization
data changed.

Output Parameters

access The access list

Function

GetAccessList is used to retrieve the access list from a directory. The information is in the
same format as that sent to SetAccessList. Pathname must refer to a directory. This func-
tion will be filled out more fully when the authorization document is complete.

This call requires administrative authorization.

If the return code is FS__NOTCUST it will return the same data as Wherels.

Errors

FS..NOTAUTH The user is not authorized to change auth data
FS_PARMBAD The auth data is invalid or pathname is malformed
FS_NOTCUST This is not the custodian of pathname
FS..NOPARENT Parent not a directory
FS__NOTDIR Pathname is not a directory

-27 -

TestAuth

Format

TestAuth (char pathname, char type) returns (char datamodified, char sta-
tusmod ified)

Input Parameters

pathname The pathname for the directory that is to have its authorization
data changed.

type The type of authorization requested. This can be set to FS_READ
or FS_WRITE.

Output

datamodified Time the file data was last modified in seconds since 1/1/1970.
statusmodified Time the file status was last modified in seconds since 1/1/1970.

Function

TestAuth is used to check if a user is authorized to a file or directory. The type is the same
as used in a Lock request.

If the return code is FS..NOTCUST it will return the same data as Wherels.

Errors

FS_PARMBAD The pathname is malformed, or type is invalid
FS_NOTCUST Not the custodian

FS__NOTAUTH The user is not authorized to pathname
FS__NOPARENT The pathname does not have a parent

-28 -

MakeDir

Format

MakeDir (char pathname, char custodian, char normal)

Input Parameters

pathname The string representing the directory to be created.
custodian The duster that is to be custodian of the new file or directory if it is

different from the parent directory.
normal This changes the type to normal from replicated

Function

MakeDir creates a new directory.

If specified, the custodian operand allows the directory to have a different custedian than its

parent. The request must be directed to the cluster that is the custodian of the parent direc-
tory. It creates the directory and new .admin file, and sends copies of them to the new custo-
dian. This operand requires the user to be a system administrator.

When it creates the .admin file. The file type in the .admin file for the new directory is set
to what the file type is in the parent directory. The custodian and backup dusters are the
same as in the parent unless a new custodian is specified on the call. If a new custodian is
specified, it has no backup clusters.

If the parent directory has a type of replicated or backup, the request is sent to the effected
cluster file servers (all servers for replicated, indicated servers for backup).

The caller must hold a write lock on the requested pathname.

If the return code is FS._NOTCUST it will return the same data as Wherels.

Errors

FS_NOTAUTH The user not authorized

FS._NOTCUST Cluster is not a custodian of pathname
FS_READLCK File is read locked

FS_.PROMLCK The lock was promoted from read to write

FS._NOPARENT The parent of pathname is not a directory
FS_DUPPATH Directory already exists
FS_PARMBAD Pathname is malformed

-29 -

RemoveDir

Format

RemoveDir (char pathname)

Input Parameters

pathname The string representing the directory to be removed.

Function

RemoveDir removes a directory from the file system. It only deletes the directory if they are
empty.

If the parent directory has a type of replicated or backup, the request is sent to the effected

cluster file servers (all servers for replicated, indicated servers for backup).

If the return code is FS_NOTCUST it will return the same data as WhereIs.

Errors

FS_NOTAUTH The user not authorized

FS_NOTCUST Cluster is not a custodian of pathname
FS_NOPARENT Parent directory does not exist
FS_READLCK File is read locked

FS_PROMLCK The lock was promoted from read to write
FS_PARMBAD Pathname is malformed

FS_NOTDIR Pathname is not a directory
FS_NOTEMPTY Directory is not empty

-30 -

ChangeOwner

Format

ChangeOwner (char pathname, char newowner)

Input Parameters

pathname The string representing the directory to change the owner of
newowner The string representing the new owner

Function

This allows the name of the owner of a directory to be changed

If the return code is FS_.NOTCUST it will return the same data as Wherels.

Errors

FS NOTCUST Cluster is not a custodian
FS PATHBAD Pathname does not exist
FS NOTAUTH The user not authorized

FS NOPARENT Parent directory does not exist
FS READLCK File is read locked

FS PROMLCK The lock was promoted from read to write
FS PARMBAD Pathname is malformed

-31 -

aodtlaille

Format

Rename (char oldpathname, char newpathname)

Input Parameters

oldpathname The string representing the file to be renamed.
newpathname The string representing the new name of the file.

Function

This function allows a file to be renamed.

The user must be authorized to delete the old file and create the new file. The old file must
exist and the new file must not. Both files must have the same custodian.

If the return cede is FS._NOTCUST it will return the same data as Wherels.

Errors

FS_N(TI'CUST Cluster is not a custodian

FS_NOTFILE Old pathname is not a file
FS._NOTAUTH The user not authorized

FS_NOPARENT Parent directory does not exist
FS_.READLCK File is read locked

FS_.BADCUST The new name would have a different custodian than the
old

FS_PROMLCK The lock was promoted from read to write
FS_PARMBAD Pathname is malformed

FS_DUPPATH New pathname already exists

-32 -

Data Structures

.admin and descriptor files

These files are used to keep what is actually directory extension information. These files are
kept in a .admin directory which is added to each system directory. The .admin file for the
directory contains at least the custodian and the type of the file. It also contains the authori-
zation data. The information is propagated to any directory that is constructed as a member
of this one. The types are:

Normal

This is a file or directory that is treated normally. All requests are syn-
chronized by the custodian.

Replicated

This is a file or directory that exists in all clusters. Clusters are notified by
the custodian, if the file changes. Fetches are allowed without checking with
the custedian.

The .admin file also contains the name of the custodian cluster and the names of any backup
clusters.

The type and custodian information of a file is the same as that of its parent directory. Any
sub-directories contain their own information.

It is also possible for users to supply named properties about files and directories. For direc-
tories that information is kept in the .adrnin file, for files, a shadow file of the same name is
kept in the .admin directory to hold the necessary information

-33 -

Commands -Access & Lock requirements

Access lists are used to control access to files and directories.

The following is a list of the commands and the access needed to use them, as well as any
locks that must be obtained.

Request Access Needed Lock Needed Custodian

GetFileStat File Read
None Yes

Dir Lookup
SetFileStat File Write

Write Yes
Dir Insert & Delete

Fetch Read None No
Store Write (if old)

Write Yes
Insert (if new)

Remove Delete Write Yes

MakeDir Insert Write Yes

RemoveDir Delete on Parent Write Yes
Lock Read Lock

Write Any Admin [owner [

Admin group
None Yes

None Insert

File Delete [Insert

Dir (Delete & Insert) I
Delete on Parent

UnLock None None Yes

Whereis None None No

SetAccessList Admin [Owner Write Yes

GetAccessList Lookup None Yes

SetBackup In Admin group Write Yes
TestAuth Read File Read

Dir Lookup
None Yes

Write File Write

Dir Insert & Delete

-34 -

FileStat format

This is the information this is passed back on a GetFileStat request or supplied on a Set-
FileStat request. It consists of a number of formatted fields. The information is passed as a
character string. The character string is broken into entries by newline characters, and the

entries are broken into fields by tab characters. The first field within each entry is the name
of the entry, any subsequent fields are data. It is possible for certain entries to contain more
than two field (such as the names of members in a directory). Most entries will contain only
two field.

In addition to the entries supplied by the file system, users may define and name their own

entries. The user entries cannot have the same name as any file system supplied entry. All
system entries start with the character string " "sys,

The entry names that are supplied are:

syscategory -whether a directory or file
sysd_jnodify -data last modified date
sysd_.modify -status last mcxtified date
date_modify -user last mcdified date (file only)
syslength -length of file
sysowner -the userid of the file owner

syscustodian -custodian
sysautho -access rights of file owner
sysauthu -access rights of the current user
sysautha -access rights of any user
sysbackup -backup clusters

systype -type of directory and any member files

Of the system defined entries, only backup may contain multiple fields.

User defined entries can be added, changed or deleted.

On input to GetFileStat the entries to be retrieved can be specified. This is done by building
a character string that contains a field for each entry desired. Each field contains the name
of the entries to return. A simple wild card character '_'" is supported. The wild card char-
acter must be the last character in the field and will return all entries which match up to the
point of the '_'". For example a request for '_]s*" would return all of the system data. To
retrieve all entries, a single field containing only an '_'" or a null field is requested. This
results in a match on all entries.

-35 -

Include Definitions

These definitions are used to set and test fields used by the file system.

/*
* These are the defines used to interface to the File System
*/

/* define for SubSystem field of RPC_.RequestHdr */

define FILESYS '_s" /*SubSytem ID for the File Sys */
define FILESYSID 1
define FILEPROTO 1

/* defines for limits on user and workstation
IDs */

define MAXUI D 8 /* max length of user
ID */

define MAXWSID 32 /* max length of workstation ID */

/* defines for OpCode field of RPC..RequestHdr */
define CONNECTFS 1 /* OpCode for ConnectFS */
#define DISCONNECTFS 2 /* OpCode for DiscormectFS */
define FETCH 3 /* OpCede for Fetch */
define STORE 4 /* OpCode for Store */
define REMOVE 5 /* OpCede for Remove */
define MAKEDIR 6 /* OpCode for MakeDir */
define REMOVEDIR 7 /* OpCede for RemoveDir */
define GETFILESTAT 8 /* OpCode for GetFileStat */
define SETFILESTAT 9 /* OpCode for SetFileStat */
define LOCK 10 //* OpCede for Lock */
define UNLOCK 11 /* OpCode for UnLock */
#define WHEREIS 12 /* OpCode for WhereIs */
#define SETACCESSLIST 13 /* OpCode for SetAocessList */
#define GETACCESSLIST 14 /* OpCode for GetAccessList */
define RENAME 15 /* OpCode for Rename */
define SETBACKUP 16 /* OpCode for SetBack-up */
define TESTAUTH 17 /* OpCode for TestAuth */
#define CHANGEOWNER 18 /* OpCode for ChangeOwner */
define GETMEMBER 19 //* OpCode for GetMember */

//* defines for mode operand to Lock */
define LOCK_WRITE '_¢¢RITE"//* WRITE operand */
define LOCK_.READ 'READ"/* READ operand */

//* defines for system maintained properties */
#define STAT..MEMBER "sysmember" /* names of members in a cUr */
#define STAT_CAT " "/* */syscategory category -file or dir

#define STAT_LENGTH '_yslength" /* length of file or directory */
define STAT_SDATE '_ysd_status"/* status last modified date */
define STAT...MDATE '_ysdAnodify"//* date last modified date */

-36 -

define STAT_UDATE 'Hate..modify"/* user last modified date */
#define STAT_TYPE '_ystype" /* type */

#define STAT_CUST "syscustcdian"/* custodian name */
define STAT_BACKUP "sysbackup" /* backup cluster names */
#define STAT_OWNER '_ysowner" //* owner name */
define STAT_UAUTH "sysauthu" /* rights for current user*/
define STAT_OAUTH "sysautho" /* rights for owner */
#define STAT_AAUTH '_ysautha" /* rights for anyuser */

/* defines for categories of files */
#define STAT_DIR 'Uirectory" i/* pathname is a directory */
#define STAT_FILE '_[ile" /* pathname is a file */

/* defines for types of files */
#define STAT_NORM 'hormal" /* pathname is normal */
define STAT..REPL '_'eplicated" /* pathname is replicated */

/* defines for status field and entry separators */
define STAT_.FIELD '_t" /* field separator */
define STAT__FIELDC 'vt' /* field separator -character */
define STAT_.ENTRY '_ta" /* entry separator */
define STAT_ENTRYC 'via' /* entry separator -character */
define STAT._RECORD '_A)" /* record terminator */
define STAT_RECORDC '¢0' /* record terminator -character */

/* return codes from the File System -in RPC--ReturnCode */
#define FS..SUCCESS 0 /* operation successful */
define FS_.PARMBAD 1 /* input parameter is invalid */
define FS_.NOTCUST 2 /* the call was not directed to the */

/* custodian of the file or directory */

define FS_NOTAUTH 3 /* not authorized to perform the request */
define FS_NEWCUST 4 /* new name has different custodian */
define FS_READLCK 5 //* request failed because the file is */

/* read locked */
define FS_WRITLCK 6 /* request failed because the file is */

/* write locked */
define FS_NOPARENT 7 /* request failed because the parent of */

/* pathname does not exist */
define FS_NOCUST 8 /* custodian is partitioned */
define FS_.NOLOCK 9 /* a needed lock is not held */
#define FS_.PATHBAD 10 /* pathname is not known */
#define FS_.NOTFILE 11 /* pathname does not resolve to a file */
define FS_NOTDIR 12 /* pathname does not resolve to a */

/* directory */
#define FS DUPPATH 13 /* pathname already exists */
define FS NOTEMPTY 14 /* the directory is not empty */
define FS FAIL 16 /* miscellaneous failures */
#define FS HOLDLCK 17 /* already hold requested lock */

#define FS PROMLCK 18 /* a read lock has been changed to write */
#define FS REPL 19 /* the directory is replicated */
define FS BADCUST 20 /* the parent is not on the cluster */

