
CMU-ITC-84-015

Authentication Server Internals

David King

File System Group

!. This document describes, in not much detail, the internal organization and
operation of the VICE Authentication Server. This information is not necessary
to write VICE server software or user workstation software to use the Authenti-
cation Server.

Definitions for all the internal data bases, arbitrary codes, and messages
are contained in a header file, "authserver.h."

1.1. Definitions

central machineSome cluster machine on the network which is distinguished as far
as accounting is concerned, running a copy of the Authentication Server
with additional routines.

central serverThe Authentication Server running on the central machine. The

central server is used as the final deposit for accounting transactions.
It may be that the reliability of VICE machines will be so low that a more

dynamic approach will be required to perform this function; if this proves
to be the case, a different design can be developed.

internal keyAn encryption key known only by the authentication system. At
present it is not easily changed, and there is no advanced kev distribution

system internal to the authentication system. It will become completely
unnecessary if there is a separate, secure network linking the cluster
machines together.

master keyThe key under which passwords are encrypted when stored in the User
Authorization File.

password encryption algorithmThere may be more than one encryption algorithm or

master key used for storing passwords over the life of the product.

1.2. Data Bases

!.2.1, User Authorization File

The UAF contains one record for each user, containing:

July 18, 1984



struct uaf {

struct uaf_llead {

char username[8]; /* Username, or zeroes for null file slot */

char password[16]; /* Password, encrypted _ith master key */

char defacct[4]; /* Default account, or zero */

int pchange; /* Password change time */

char algorithm; /* Password encryption algoritl_m */

char acctcnt; /* The number of account blocks to follow */
} head ;

/* Maximum number of account blocks allowed */
#define UAF MAXACCT I0

struct uaf_acct { /_'_As many of these as necessary */

char account[4]; /* Account number */

char flag; /* Account flag */
_i-_defineUAF_OVERALLOC i

char dummy; /* Entries must be even-bytes in ]ength */
} acctblk;

};

It would be good to use a salted password storage hashing system, as Unix

does, but our use of passwords as encryption keys makes this impossible.

1.2.2. AccountingData Base

Tllere will be an Accounting Data Base (ADB) file on the central machine,

containing tile allocation status of each user. This information is not kept in
tlle UAF because it is not needed in all of tile cluster machines.

'FileADB contains one record for each username/account code pair:

struct adb {

char username[8];

char account[4];

int balance;

};

1.2.3. Rate Table File

There will be a Rate Table File, giving the currenn billing rate for each

system-provided commodity. The file starts with an integer containing the

number of entries to follo_¢; the entries contain the commodity code and the rate

:n ergs (or perhaps tentl_s or hundredths of ergs; this will depend on the scale

involved_. It must exist on every maclline, and changes very rarely. This can

July 18, 1984



be read in once at system initialization; there may be a maintenance function to
force the server to read a new table.

struct rate_entry {

int commodity;

int rate ;

1.2.4. Cluster Machine File

There will be a file containing the names of each of the cluster machines,

suitable for use by the RPC system. Each line of the ASCII file will contain

the name of one machine; the first line will designate the "central" machine.

1.2.5. Active User Block

This will exist in ti_e virtual memory of each Authentication Server, and

',cill contain the data base of who is Connected and _,'hat their keys are. Each
51ock will contain

struct aub {

int job; /* The job number _':/

char username[8]; /* The username */

char account [4]; /* The account number */

char key[6]; /* Encryption key */

int logtime; /* Time of login */
},

1.2.6. Usage Update Block

Each Authentication Server will have in the virtual memory of its main pro-
cess a list of username/account number pairs, and a list of transactions and a

total amount for each one, to remember how much usage should be charged against

the user's account. As servers call BiT1 User these entries are created or aug-
merited; as the server wishes, it will batch the entries to the central server to

be applied against the data base, and write the transactions to the transaction
file.

July 18, 1984



struct uub (

struct uub *link;

char username[8] ;
char account [4],
inn total;

strucn uub_trans {

struct uub_nrans *link;

int count ;
inn subtotal;

int code ;

inn repeat ;

} *tranlist;
};

1.2.7. Accounting Transaction File

Each Authentication Server will have its o;,'11transaction file. The
Accounting Traqsaction File will contain records of:

struct trans_head {

inn stamp; /* Timestamp */
char username[8]; /* Usernanm */

char account[4]; /* Account number */

char cluster[20]; /* Cluster machine providing service */

inn charge; /* Total ergs in this transaction */
int count; /* Number of commodity blocks to follow */

};
struct trans_comm {

inn code; /* Commodity code */

inn repeat; /* Number of independent transactions _'_/

inn sum; /* Number of "things" done */,

inn subtotal; /* Total ergs expended on "things" */
};

The "cluster number" in the transaction header is the index of the cluster

machine's entry in the cluster name table, for eventual traffic analysis. It
could be made an Internet adapter address, or the ASCII name of the cluster
machine, if they turn out to be more reliable.

There is a redundancy here, since the transaction contains both the origi-
nal information and the finai charge. Tilis is desirable to allow user's alloca-

tions to be corrected if retroactive changes are made to the rate tables.

July 18, 1984



j --

1.2.8. Broadcast Queue

There will be times that tile other servers must be informed of things, sucl!
:{s password chan,zes and balance updates, but when they cannot be reached (one is

down or tile net_¢ork is partitioned]. The Broadcast Queue, stored in fl disk

file, will contain such transactions; a process will be responsible for accept-

/ng such messages, queueing them, and sending them when tile recipient becomes
:_vailable.

The file contains entries of tlm form

struct broadmsg_h {

int length; /* Length of entire entry */

int ccnt; /_'_Number of cluster addresses in list */

int m]en; /* Length of message */

int cleft; /* Number of nonzero clusters in list */

int opcode; /;':Opcode of message */
};

The formats of the messages are described later, in the description of tile

utilities they call.

1.3. Authentication Server organization

The server will exist as two processes communicating over pipes.

o Tile Main Process will create the broadcast subprocess, do other initializa-

tion, and then be tile focal point for centralized processing, receiving

connections from clients, reading and processing their requests, and clos-

ing tile connections at the end of the conversations. It will activate

other work routines based on the timer. (This used to be a multi-process

application, using the RPC's automatic forking mechanism, but persuasive

arguments concerning the efficiency of forking, and the amount of authenti-

cation traffic to expect, have caused everything to be collapsed into one

process again.)

o One child process will handle tile Broadcast Queue.

1.4. Main process

The main process initializes the broadcast queue process, initializes for

remote procedure calls, and then loops waiting for connections. When a connec-

tion is received, it loops reading requests and replying to them, until tile
conversation is over and the connection is closed. It also calls demons when

,:equired by tile clock.

July IS, 1984



1.4.1. Initialization

The Internal Key is initialized, at present from a constant. Tile Rate
]'able must be read in.

The main process must create each the Broadcast Queue Process, with a pipe
to feed it.

1.4.2. Usage Update Spill demon

Every hour, the master process will run through the Usage Update Blocks,

_,rite transactions to the transaction file, and send an Update ADB message to

the Central via tile Broadcast Queue Process containing the balance-update

._.mounts for each of the users. (If this is the Central server, it will just

call the Upcfate ADP routine direct]y.] It will _'ipe out tile data in the blocks,

and wipe out the blocks themselves if they haven't been used in a while.

1.4.3. Flush AUB demon

This routine will be activated every few hours, to go through the AUB and

erase the entry for any job which has been logged in for more than a certain

cmlount of time (e.g., two days], after which it is assumed that the workstation

never bothered to log out. If there are legitimate applications which do this,

it may be necessary to develop a more elaborate scheme to keep track of still-
:letive users.

1.4.4. Transaction File Spill demon

Whenever it seems appropriate (based on time or file size, perhaps) the

master process will rename the transaction file to a new name and start a new

.transaction file. It can then fork a temporary process to copy tile completed

transaction file to a directory in the Central machine (or just rename it there

if this is the Central), and delete the file. For no_,"it can just rename it to

,i standard name, like "oldfile."

1.4.5. Transaction File Dump

On the Central system, every week, or whenever _t is otherwise needed, the

main process should fork a temporary process to do _,-hatever is appropriate for

the accumulated transaction files. If nothing else, it should erase them;

perhaps it should write them to tape first.

July 18, 1984



j -

1.4.6. Disk Billing

Every day, the main process will fork a temporary process to do disk bil-

ling. For all user directories (those starting with "/user") it is sufficient

to examine each file in the directory tree (including the directory directory

files themselves) and to bill its storage to the owning user's default account

Lot, if he has not defined one, to an account picked at random).

1.4.7. UAF consolidation

Every day the Central server should fetch the UAF from every other server

nnd compare it with its own UAF to check for inconsistencies. If any are found

they can be reported, and the other server corrected from the central's UAF.

1.4.8. Connect

The Connect service will always be called immediately after an initial con-

:_ection for a secure connection. It will do the other things described above.

1.4.9. Disconnect

Upon receiving the DISCONNECT message, the Authentication Server will first

see that the user is who he says he is. It will bill the user, remove the AUB

entry, and send a success reply.

1.4.10. Change Authorization (CHGAUTH)

The server will validate the user's authentication information, then vali-

date the user's request. For a CHGAPWD request, it will perform whatever checks

it wishes on the new password (for instance, whether it is long enough). For a

CI{GAACT request, it will make sure that the specified account is on the user's

account list. It will then perform the change on the local UAF; if the password

is changed the password change time will be updated. When this is done, it will

then distribute the change by sending an Update UAF (UPDUAF) message to every

other server via the Broadcast queue process. Once this has been done, it can

send the reply.

1.4.11. Assign Key (ASSIGNKEY)

The server will look up the user' information, assign the conversation key,

build the message, and reply. It may make an Assign Partner RPC request of the

partner's Authentication Server if necessary.

July 18, 1984



1.4.12. Get User Data

On receipt of the GETUSER message, the Authentication Server will look up

the supposed username and job number in the list of Active User Blocks; if
found, it will return Lhe information desired.

1.4.13. Bill User

For a BILLUSER message, the server computes the price for the commodities,

as listed in the Rate Table, and creates or updates User Update Blocks to con-
tain the new transaction.

1.4.14. User Maintenance

It will make the change to the local UAF, and then will distribute the

change via Update UAF (UPDUAF).

1.4.15. Assign Partner (ASSIGNPART)

This will be called during Assign Key when Lhe two users are logged in to

different Authentication Servers. It will do the work of assigning the key and

building the reply messages, encrypting one part with the proper session key.

1.4.16. Update UAF (UPDUAF)

This will be called on servers to distribute UAF changes caused by users or

by maintenance functions. It will make the change to the UAF.

1.4.17. Update ADB

The Central Server receives an UPDADB message to record permanent changes

in usage allocations. In performing the changes, _he server will keep track of

those accounts which have now gone over their allocations. It will call U z_late

G'AF to set the UAF OVERALLOC flags in their UAF entries, and pass an Update UAF
(UPDUAF) message to the Broadcast Process to tell all the other Authentication
Servers.

1.5. Broadcast Queue Process

This exists in every Authennica_ion Server, and receives messages from the

main process via a pipe. It will initialize by initializing the RPC system to

communicate _,'ith other Authentication Servers, -and by opening and parsing the

i_roadcast Queue. I_ will " try to flush _he queue, and then wai_ for messages
from the main process.

July 18, 1984



- 9

_lessages presented on tile pipe from the main process, and messages saved in
uhe Broadcast Queue, wili look the same. When the process receives a message,
it will create a header containing a list of the network addresses of all the
,;luster machines which have vet to receive the message (the cailer has the

eption of targeting the message to only one machine). It will write _he message
_o the queue file. Then it will at.tempt to send it, by establishing an RPC con-
'aection to the receiving cluster, making the request, getting a reply, and clos-
ing the connection; if this all happens without error the entry can be removed
from the queue (or the cluster address can be removed to nullify the recipient).

Every once in a while it will time out of the receive wait and run through
the queue file, attempting to send each unseat message. Once an hour seems fine
:-orthe UAF changes.

An optimization: it would be a fine thing for this to send out several mes-

sages in a burst, to overlap processing on the various clusters. But using
stream sockets, which can't be overlapped as easily, seems safest for now.

1.6. Maintenance Programs

There will have to be a program to maintain the authorization file, which

,,ill add and relnove users and assign passwords. There must be a program to add
and remove user/account entries in the data base, to update the allocations, and
to adjust or reset the balances. They simuld have both interactive and batch

usage modes. They should not be major data base management systems, but simply
the last interface to the operating system level, taking inputs from the large
user administration system. They should use User _lafntenance and Update ADB as
uecessary, which should queue any interactions it needs for clusters which are
"_mrt it ioned.

Initially, it will be simplest to have these programs run in the VICE

:,_achine, distributing the changes with the Broadcast mechanism. The security

system will be, then, that if you can log in to a VICE machine, you can do
maintenance. We can do better when we want to.

July 18, lq84




