
CMU-ITC-84-013

Authentication Server Examples

David King

Information Technology Center

I. Workstation examples

I.i. Example of Workstation Login

Here is a fragment from my test program, which shows how code within the

workstation can log in to an Authentication Server.

;i:include <sys/time.11>

[:include </usr/local/rpc/include/rpc.h>
[_include <authuser.h>

* Global variables.

*/

char my_user[8]; /* The user's username */

int my_job; /* The job number assigned by login */

char my_key[8]; !* The session encryption key assigned by login */

struct RPC_ReqBuffer *reqbuff; ,/_':The RPC request buffer */

struct RPC_RespBuffer *respbuff;/* The RPC response buffer */

by RPC MakeRPC */

struct timeval tout = {60, 0}; /* RPC timeout of one minute */

* Initialize to use RPC.

do_initialize ()

{
if (RPC_ClientInit (2, RPC_VERSION) I= RPC SUCCESS)

abort _) ;

reqbuff = (struct RPC_ReqBuffer *_ malloc (i000);

reqbuff->ActualRequest. Header. ProtoVersion = 0;

reqbuff->ActualRequest.lleader. Subsys = 2;

reqbuff->ActualRequest. Header.NoReturnValue = 0 ;

}

July 18, 1984

_ ")

* Log the user in.

do_login ()

{

int authcid; /* The RPC connection id, to be filled in */

char user_pwd[16]; /* The user's password */

char pwd key[8]; /* The password turned into an encryption key */

int self_id[lO]; /* An RPC_BoundedBS containing the user's self-

identity. An RPC_BoundedBS must be on an

integer boundary. */

* Initialize the user's username and password, which are

* constants for this examp]e.
*/

bzero (my_user, 8);

strcpy (my_user, "djk");

bzero (user _wd]6]"
,, T, -

strcp v (user_pwd, secret);

* Turn the user's password into an encryption key according to
* the crunching algorithm.

crunch_pwd_DES (user_pwd, pwd_key);

* Now we must generat e what RPC calls my 'self-identity' string.

* For the login case, this is simply the user's eight-character
* username.

{

register RPC_BoundedBS *self_id_ptr;

self_id_ptr = (RPC BoundedBS *) self_id;

self_id_ptr->MaxSeqLen = 8;

self_id_ptr->SeqLen = 8;

bcopy (my_user, self_id_ptr->SeqBody, 8);
}

* Now we will bind to the server, requesting an authenticated and

* encrypted connection. We will provide our self-identification

* and the encryption key for t!_is connection. For this example,
* the cluster machine name is the constant 'admit'

if (RPC_Bind (RPC_SECURE, "auth", "admin", O, &authcid,

[RPC_BoundedBS *) seif_id,

(RPC_EncryptionKey *) pwd_key) != RPC_SUCCESS)
abort () ;

* We have a connection, now we must make a Connect request over it.

July 18, 1984

3 -

* This will do the actual login, and will return to us our job

* number and session encryption key.

{
/*
* Build the message in the 'request buffer.

register struct ms_connect *msg_ptr;

msg_ptr = (struct ms connect *) reqbuff->ActualRequesn. Body;

reqbuff->ActuaiRequest.Header. Opcode = AAS_CONNECT;

reqbuff->ActualRequest.Header. BodyLength = sizeof *msg_ptr;

bcopy ("r602", msg_ptr->account, 4);

bcopy (user_pwd, msg_ptr->password, 16);
}
/*
* >|ake the request.

*/

if RPC_MakeRPC (authcid, reqbuff, &respbuff, &tout) != RPC_SUCCESS)
abort () ;

if respbuff->Actua]Response. Header. ReturnCode != AAR__SUCCESS)
abort (] ;

/*

* Get the information out of the reply message.
*/

(
register struct ms_connect_r *rep_msg_ptr;

rep_msg_ptr = (struct ms connect_r *) respbuff->ActualResponse. Body;
my_job = ntohl (rep_msg_ptr->job);

bcopy (rep_msg_pzr->key, my_key, 8);
}
/*

* Done with the connection.

*/
RPC_Unbind (authcid);

}

1.2. Example of Workstation Logout

Here is the logout routine from my test program.

do_logout (]

{
int authcid; /* The RPC connection id */

int self id[lO]; /* An RPC_BoundedBS for self-identity */

/ ""

* Generate the self-identification string, for the case where

July 18, 1984

* the user is already logged in. 111this case, the self-identity
* contains the username and the job number.
*/
{

register RPC_BoundedBS r,self_id ptr;

register struct ms_service_si *self_id_blk;

self_id_ptr = (RPC BoundedBS *) self_id;

self_id_ptr->MaxSeqLen = sizeof *self_id_blk;
self_id_ptr->SeqLen = sizeof *self_id blk;

self_id_blk = (struct ms_service_si *) self_id_ptr->SeqBody;
bcopy (my_user, self_id_blk->username, 8);
self_id_blk->job - htonl (my_job);

}
/*

* Bind to the server, requesting a secure connection but this time

* the encryption key is the previously assigned session key, and the
* self-identity string is of the type containing the job number.
*/

if (RPC_Bind (RPC SECURE, "auth", "admit", O, &authcid,
(RPC BoundedBS _'_} self_id,

(RPC_EncryptionKey *) my_key) != RPC SUCCESS)
abort () ;

/*
* Build the Disconnect request in the request buffer.
*/

reqbuff->ActualRequest.Header. BodyLength = O;
reqbuff->ActualRequest, lieader. Opcode = AAS_DISCONNECT;
/-_

* Hake the request.
*/

if (RPC_MakeRPC (authcid, reqbuff, &respbuff, &tout) != RPC_SUCCESS)
abort () ;

if (respbuff->ActualResponse.Header.ReturnCode != AAR_SUCCESS)
abort () ;

/*
* It has been done, close the connection.
-_/

RPC_Unbind (authcid);
}

1.3. Example of Workstation Password Change

Here is the password-change routine from my tes_ program.

July 18, 1984

do_pwdchg ()
{

int au_hcid; /* The RPC connection id */
ing self id[10]; /* An RPC_BoundedBS for self-identity */

char old_pwd[16]; /* The old pass_ord */

char new_pwd[16]; /* Tile new password */

/*
* Make the old and new passwords, from constants for the example.

_',-/
bzero (old pwd, 16);

strcpy (old pwd, "secret");

bzero (new pwd, 16);
scrcpy (new_pwd, "moresecret");

/*

*Generane the self-identification string, for the case _,'here

* the user is already logged in. In this case, the self-identity
* contains the username and the job number.
*/

{
register RPC BoundedBS *s_lf_id_ptr;
register struct ms_service_si *self_id_blk;

self_id_ptr = (RPC BoundedBS _':} self_id;

self_id_ptr->>laxSeqLen = sizeof *self id_blk;

self_id_ptr->SeqLen = sizeof *self id_blk;

self id blk = (struct ms_service_si *) self id_ptr->SeqBody;
bcopy (my user, self id_blk->username, 8);

self_id blk->job - htonl (my_job);
}
/*

* Bind to the server, requesting a secure connection but this time

* the encryption key is the previously assigned session key, and the

_'- self-identity string is of the type containing the job number.
*/

if (RPC_Bind (RPC_SECURE, "auth", "admit", 0, &authcid,

(RPC BoundedBS ":) self_id,

(RPC_EncryptionKey *) my_key) != RPC SUCCESS)
aborc () ;

/*

* Build the Change Authorization request in the request buffer.
*/

{
register struct ms chgauth *msg_ptr;

msg_ptr = tstruct ms cilgaunh :'_Ireqbuff-_ActuaiRequest. Body;

reqbuff->ActualRequest. Header. BodyLength = sizeof *msg_ptr;

reqbuff->ActualRequest.Header. Opcode = AAS DISCONNEC;

bcopy (my_user, msg_ptr->username, 8);

bcopy (old pwd, msg__ptr->oldpwd, 16);

July 18, 1984

msg_pnr->item = htonl (AA0_CIIGAPWD);

bcopy (ne_'_p_¢d,msg_ptr->newpwd, 16);
}
/*

* _'lakethe request.

*/
if (RPC_MakeRPC (aunhcid, reqbuff, &respbuff, &tout) != RPC SUCCESS)

abort ();

if (respbuff->ActualResponse. Ileader.ReturnCode != AAI__SUCCESS)
abort ();

/*
* It has been done, close _he connection.

*/
RPC_Unbind (authcid);

)

July 18, 1984

- 7 -

2. Cluster Server Examples

2.1. Initial Connection Example

When a user workstation makes initial connection to a server, it will

request either a completely secure connection or an authenticated connection.

In either case, the workstation will provide a self-identification string _o

RPC, and an encryption key. The self-identification string should include, at

the least, the user's username and Authentication job number, and the encryption

key should be the session key assigned at login.

The server's connection accepting routine should contain an RPC Accept

coded something like this:

do_accept ()

(
int whoami; /* Filled in with parent/child indicator _'_/

int bulkproto; /* Filled in with bulk transfer protocol id */

int howsecure; /* Filled in with the user's security level */

RPC_BoundedBS *clientident; /* Filled in with pointer to self-ident */

inn do_getkeys (); /* The routlne _o get the encrypnion key */

tT . It

* Wait for a connection and accept it. This _'ill, behznd the scenes ,

* call do_getkeys to figure out the encryption key the user presumably

* is using.

RPC_Accept (&whoami, &bulkproto, do_getkeys, &howsecure, &clientident);

* The connection has been made, the encryption key set up, and the

* handshake messages have been exchanged. We now are certain the

* the user is who he says he is.

}

The "do getkeys" routine must be provided to the RPC call, so that the RPC

code can find out what a given user's encryption key is supposed to be. In the

environment we have, where the file server (for instance) is being connected to,

the file server must get that information from the Authentication Server. Here

is a Get Key routine which may do the job.

July 18, 1984

/*

* Get encryption key for RPC authentication handshake. RPC_Accept calls
* here when a connection arrives and the client requested a secure

* connection. The self-idennification string_ which the client must

* provide must be (in _his example) 12 bytes long, containing the user's

* 8-byte username and his job number. We will here ask the Authentication
* Server to tell us the session key it assigned to him, so we can return

* the key to RPC.

*/

July 18, 1984

struct self_id blk (

char user[8] ;

int job;
);

int do getkeys (client_ident, ident_key, session key)

/* Returns 0 if successful, 1 if not */

RPC_BoundedBS *client_ident; /* The user's self-identification */

RPC_EncryptionKey *ident_key; /* The encryption key for this authentication

handshake */

RPC_EncryptionKey *session_key; /* The encryption key for dana transmission

following the handshake */
{

char username[8]; /* The user's username */

int jobno; /* The user's job number */
int authcid; /* RPC connection id to Authentication

Server ¢:/
/*
* Reject if the length is incorrect.
* /

if (c]Jent ident->SeqLen !:]2_,

return (i);

/*

* Get the data out of the string.
*/
{

register struct self_id blk *self_id_ptr;

self_id_ptr = (snruct self_id_blk *) client ident->SeqBody;
bcopy (self id_ptr->user, username, 8);

jobno = ntoh! (self id_ptr->job);
)
/*
* Make a connection to the Authentication Server.

* For this example, we assume that we are running on host "admin".
*/

if (RPC_Bind (RPC OPENKIMOXO, "auth", "admit", 0, &aunhcid, 0,

0) !: RPC_SUCCESS)

abort () ;

/*

* Bui]d the Get User request.

*/
{

register struct ms_getuser *msg_ptr;

msg_ptr = (struct ms_getuser *) reqbuff->ActualRequest.Body;

reqbuff->ActualRequesn.Header. BodyLength = sizeof *msg_ptr;

reqbuff->ActualRequest.}ieader. Opcode = AAS_GETUSER;

bcopy (username, msg_ptr->username, 8);

msg_ptr->job = jobno;
)
/*

July 18, 1984

* Make the Get User request.

if (RPC__IakeRPC (authcid, reqbuff, &respbuff, &tout) != RPC_SUCCESS)
abor_ () ;

* Done with the RPC connection.

*/
RPC_Unbind (authcid) ;

/*
* Return the data to RPC if the user was found.

*/
if (respbuff->ActuaiResponse.IIeader. Return == AAR_SUCCESS) {

register struct ms getuser_r *rep msg_ptr;

rep_msg_ptr = (struct ms_getuser_r *) respbuff->ActualResponse. Body;

bcopy (rep msg_ptr->key, ident_key, 8);

bcopy (rep_msg_ptr->key, session_key, 8);

return (0);

}
else

return (1);
}

July 18, 1984

