CMU~-ITC-84-005

g

Users, Uroups, and Access List

w

Animplemantor’s Guide

CMU-ITC 84-005
06 August 24 15:12

M. Satyanarayanan

Inforraation Technalogy Center
Carnegie-hMellon Lniversity
Scheatoy Park

Pitishiagh, PA 15213

Drafi: Do oot Circulaie, Heproduce, or Cite

Table of Contents

Preface
1. ey Concepts

1.1. Naming

1.2. Membership

1.3. Rights

1.4. Access Lists
2. The Access List Package

2.1. Data Structures

2.2. Routines

2.3. Examples
3. Protection Server RPC Calls
Appendix I. Summary of Protection Server RPC Calls
Appendix il. Usage Notes for the ITC SUN Systems

Do~ NG A DG W =

W W -
G W O

X

‘reface
This document is a reference guide to the protection mechanism in VICE. It is expected that the

W

typical reader is either:

o an implementor of a VICE subsystem with controiled access to oifered services.

¢ or, an implementor of a user-friendly interface (on a workstation) to query and manipulate
the protection domain in VICE.

End-users are not expected to use the facilities descritied here directly.

Two related facilities are dascribed in this manual:

A VICE server, called the Protection Sarver.
An instance of this server runs on each cluster server and handies remote
requests via an RPC interface. This server deals with queries and changes to the
protection domain.

Alibrary of C subroutines for dealing with access lists.
This library is linked in with each VICE server which wishes to enforce protection
on the objects it is responsible for. The VICE [ile Server will be the first user of
this package, using it to enforce protection on hles. The Protection Server will
itself use this packagze to protect its long-term cata structures. Other VICE
servers, such as Database Servers and Print Scrvers, may use this package 1oo.

Mote that this is a preliminary definition. Changeas are likely to be made in the light of implementation

and usage experience.

2

<

[¢°]

1. Key Concaopts

The fundamental protection question is "Can qu* X perform gperation Y on obiect 22"

The set of agents about whom such a question can he asked is referred to as the VICE Prctociion
Domain. The set of operations and the set of objects are specific to each VICE subsystem; however

there is only one protection domain in VICE.

For each object. an Access List is a function that maps the prolection doniain to the set of

operations valid for that object.

The protection domain is composed of Users and Groups:

» From our point of view, a user is a an entity uniquely identified by a charaster string called
its UserMame. Mothing further is assumed about a user. Fhilosophically, a user is an
entity that is capable of authenticating itself to VICE, can be held responsible for its
actions, and can be charged for resource consumption. Typically a user is a human
being.

< A group is a set of other groups and users, and is uniquely identified by a Groupianie.
A group possesses certain Naming and Membership propertics which are central o the
protection mechanism.

1.1. Maming
A username is an arbitrary alphameric string of length less than PRS__MAXNAMLELEN. Upper-lower

case distinctions are ignoread.

Associated with each group is a user called its Qwner. Typically the owner is the creator of the

group, however ownership of a group may be transferred between mutually consenting users.

A groupname is a lwo-luple of the form Prefix . Suffix, where the prefix is the owner's username and

the suffix is an arbitrary string of alphameric characters. No interpretation is placed on the suffix of a

groupname. However the character "." is allowed iii the suffixes and may be used to superimpose
structure on groupnames. For exemple, "BovikiFriends"”, "Bovik:Friends.Catl.overs"”, and

"Bovik:Friends.CatHaters" could be the names of three groups owned by user "Bovik", with the latter
two being disjoint refinements of the first. 1t should be emphasised that such an interpretation of
groupnames is purely by convention; the protection system treats all groups of a user as unrelated

entities. The maximum length of a groupname is PRS_MAXNAMELEN ',

1Obvé0usiy a usger with a name of length PRS__MAXNAMELEN can own no groups!

Hes

Lystem.”

Initially, there is a single user catlec System is an oranipotent user: no protection checks
apply to it. In this regard System {ulfils the same role that & superuser {ulfils in Unix systems. It should
bfa obvious that only highly trustworthy system administrators should be capable of authenticating
themselves as System; more so than in Unix systems bocause of the size and scale of VICE. The
access list mechanism provides a way to delegate most administrative responsibility without all

adiministrator’s being capable of authenticating themselves as System.

The names of groups owned by System can have their prefixes omitted. Thus "System:AlStudents”

has the alias "AllStudents.” To avoid ambiguily, usernames raust be distinct from the suffixes of the

groups owned by System.

Two names have special semantics. The username "Anonymous" stands for "anyone who is not an'
authenticated user of VICE." The groupname "System:AnyUser" has all uscers of VICE (except
Anonymous) as its implicit members: users do not have to be explicitly added to this group. One has
to have a username o be a member of System:Anylser. These names can be used in access lists to
specity very liberal access policies. Certain restrictions apply to these names: Anonymous cannot be
made a member of any group; AnyUser cannot be made to have any explicit members, nor can it be

made a member of any group.

1.2. Membership

As mentioned carlier, a group is essentially a set whose elements are users and other groups. The
constituent elements of a group are referred to as its Members. The IsAMemboerOf relation holds
between a user or group X and a group G, if and only if X is a member of G. For each X, the reflexive,
transitive closure of the IsAMemberOf relation defines a subset of the protection domain. This subset
is referred to as the Current Proitoction Subdomain (CPS) of X, and plays a crucial role in the
protection mechanism. Less forimally, the CPS is the set of all groups that X is a member of, cither

directly or indirectly; it also includes X itself.

1.3. Rights

A Rightis a bit position in a 32-bit integer mask. No further interpretation of rights is imposed by the

access list package.

Each user ol the access list package has to do the following:

¢ Construct a C header file with symbolic definitions for rights.

e Define a mapping between rights and operations on the c¢lass of objects being protected.

Ut

This mapping is not relevant to the access list package iiself, but is needed to interpret
the result ol a protection check performed using the package. ‘

As an example, consider a hypothetical VIGE server which implements a classified bulletin board.
Entries on this bboard are of security rating Unclassitied, Secret, or TopSecret. The server
recognizes six rights, with symbolic names ReadUnclassified, WriteUnclassifed, ReadSecret,
Wiitesecret, ReadlopSecret, and Write TopSecret. These rights occupy bit positions 0 1o 5 of a 32-bit

integer mask. The interpretation of these rights is obvious.

In the above example, one could have assumed that anyone who could read a notice at a certain
security level could also post notices at that level. In that case there would only be three rights,
symbolically referred to as AccessUnclassified, AccessSecret, and AccessTopScaret, correspionding
to mask bit positions 0, 1, and 2. The point of this example is that the choice of rights and their
semantics is a matter for individual VICE servers to decide. The only restriction placed by the access

list package is that there can be at most 32 rights associated with each object.

The Protection Server is a VICE server whose protected objects are users and groups. it recoynizes
two rights: PRS_EXAMINE and PRS_MANIPULATE. If one possesses PRS_EXAMINE rights on a
user or group, one is allowed to execute those operations which reiurn membership information

modification of the membership status. Table 3-1 specifies the exact semantics of these rights.

1.4. Access Lists

An entry in an access list is a two-tuple of the form (User or Group, Rights Mask). An access list
contains two lists of such entries: one called a Posiiive Riyhts List and the other a Megative
Rights List. An entry of the form (X, 1?) in a positive rights list implies that user or group X possesses
the set of rights defined by mask R.In a negative rights list it implies that X is denied the rights

defined by R. If the entry is present in both lists, the negative rights override, and X is denied R.

Negative rights are a means to specify rapid, selective, revocation of rights on sensitive objects to
specific users or groups. This is intended as a mechanism fer handling emergencies. Usually a
negative rights list will be empty; a user or group will be denied rights to an object bacause of the

absence of an appropriate entry in the Positive Rights List of the object.

The total rights possessed by a user U on an object O is the union of all the rights that the members of

U’'s CPS possess on O. In other words, U possesses the maximal rights that is collectively possessed

by all of the groups that he is a direct oi indirect member of. Suppose A is an arbitrary access list and

Cis the CPS of U. The rights possessed by U on O is detormined as follows:

I

4.

Let M and N be rights masks, initially empty.

. For each element of C, if there is an entry in the positive rights list of A, O M with the

rights portion of the entry.

. For cach element of C, if there is an entry in the negative rights list of A, OR N with the

rights portion of the entiy.

Remove from M, those rights which ar2 specified in N.

. M now specifies the rights thut U possesses on O.

The access list package supports two physicai representations for access lists: an internal format and

an external format. The internal format stores inleger representations of user and group names, and

is des

igned for compactness and rapid access checks. It is the format in which access lists are

represented on secondary storage and used in VICE servers. The external format represents user

and group names as character strings, and is intended to be used by clients of VICE servers.

2. The Access List Package

The access list package consists of a C header file and a library of subroutines to deal with access
lists. The package is designed so that the user (typically a VICE server) is completely insulated from
the implementation details of the access list mechanism. The package also contains routines .lo read

access lists from and to write them to Unix files.

2.1. Data Structures

The data structures used in this package are defined in the header file "al.h", and are described

below.
define Al.__VERSION "$Header$"
typedef
struct
{
int Id; /*internally-used 1D ot user or group*/
int Rights; /*mask*/
}
AL__Accesstintry,
/’
The above access list entry format is used in VICE
'//
#define AL__ALISTVERSION 1 /Mdendties current lormat of access lists*/
typedetf
struct
{
int MySize; *size of this access list in bytes. including MySize itself*/
int Version; /*to deal with upward compatibility in ancient files; <=
AL _ALISTVERSION®Y/
int TotalNoOtEntries; /*no of slots in ActualEntries[]; redundant, bu! used for
convenience*/
int PlusEntriesinUse; /rstored Torwards from ActualEntries{01*/
int MinusEntriesinUse; /*stored backwards from ActualEntries{TotalNoOFEntries-1]*/
AL__Accessntry Actualbntries[1]; /P Actual array bound is TotalNoOfEntries*/
}
AL__Accesslist;
/‘
Used in VICE. This is how acccess lists are stored on secondary storage.
t/
typedef
struct
{
RPC__Integer NoOIllusEntries;
RPC_integar NoOMinuaFntries;
RPC__Integer OtfsetOiMinusEntries; /eam ActualEntries[0]. '/
RPC__String ActualEntries; /*See format description below*/

}

AL_Extamal/\ccessList;

/O

Used ‘n dealings with clients via RPC. Input and output BPC paramsters will typically contain this data structure as the
SeqBody of an RPC__CountedBS. The ActualEntries lield consisis f two lists: the first for the Plus entries and the second for
thie Minus entries. Fach entry consists of a username or groupname followed by a decimal number representing the rights
mask for that name. Each entry in thie list looks as if it had been produced by printl() using a format list of "¢\ t%d\n".

*/

2.2. Routines

The library "libal.a” contains the following routinas to manipulate access lists:

/l
NOTE: Unless otherwise specified, these routities return 0 on success and -1 on lailure of any kind.

The access list package has routines to allocate, free, byte-swap and reverse byte-swap access lists and CPSs in internal and
external format. Don't clobber the bytes preceding the allocated data structures --- the storage allocator uses this information.
*/

int AL__NewAlist(IN MinNoOfEntries, OUT Al)
int MinNoQfEntries;
AlL.__Accesslist **Al,
{
/#
Creates an access list capable of holding at least MinNoOfEntries entries.
Returns 0 on success; aborts if we run out of memory.
*/
}

int Al.__FrecAlist(INOUT Al)
Al.__Accesslist **Al;
{
/!ﬁ
Releasas the access list defined by Al
Returns O always.
*/
}

int AL__htonAlist{INQUT Al)
AL _Accesslist *Al;
{
/‘
Caonverts the access list defined by Al to network order.
Retuins 0 always.
*/
}

int Al ntohAlist(INOUT Al)
AL__Accesslist *Al;
{
/#
Converts the access list defined by Al to host order.
Returns 0 always.
*/
}
int AL__NewExternalAlisi{IN MinMoOIfEntries, CUT R)

int MinNoOlEntries;
KPC__CountedBS **R;

{

/*

On successtul return, R defines an externial ac~ess list big enough

to hold MinNoOfEntries full-sized entries.

Returms 0 on success; aborts it insufficient maemory.

NOTE: The caller may set the Seqlen ficld of the RPC__CountedBS to the number of bytes
actually used. Then the assumption about full-sized entries only means that the
malloc()ed storage is larger than typically necessary; RPC does not have to sce
the excess bytes. AL__FreeExternalAlist{) deals with Lhis properly.

*/

}

int AlL_'ieefxternal AlistINOUT R)
REC__CountedBS **R;
{
/*
Releases the external access list defined by R.
Returns 0 always.
*/
1

int Al.__htonExternalAlist(INOUT EA)
Al__ExternalAccesst.ist “EA;
{
/t
Converts the external access list defined by FA to neiwork order.
Retuins 0 always.
*/
}

int AL_ntohExternal Alist{INOUT EA)

AL ExternalAccesslist *EA;

{

/r)

Corwver!s the external access list defined by EA to host order.
Returns 0 always.
t/ .

}

int AlL.__NewGCPS(IN MinNoOftntries, OUT ICPS)

int MinNoOIfEntries;

PRS__InternalCPS **ICPS;

{

/4!

On successful return, ICPS defines an internal CPS which is
capabte of holding at least MinNoOfL:ntries entries.

Relurns 0 on success; abaorts if we run out of memory.

*/

}

int AL__FreeCPS(INOUT C)

PRS__InternalCPS **C;

{

/* .
Releases the internal CPS defined by C.
Returns 0 always.
~/

1

int AL__litonGPS(INOUT C)

10

PRS__InternalCPS *C;

{

/‘

Converts the CPS defined by C to network byte order.
Returns 0.

*/

}

int AL _ntohCPS(INQUT C)
PRS _InternalCPS *C;
{
/»'d
Converts the CPS defined by C to host byte order.
Returns 0 always.
*/
}

int AL__NewExternalCPS(IN MinNoOfEntries, QUT R)
int MinNoOfEntries;
RPC__CountedBS **R;

{

/il

On successful return, R defines a newly-created external CPS which is
big enough to hold MinNoOfEntries full-sized entries.

Returns 0 on success; abeits if insutlicient memory.

NOTE:
The caller may set the Seqlen field of the RPC_ CountedBS Lo the number of bytes
actually used. Then the assumption about fult-sized entries only means that the
malloc()ed storage is larger than typically necessary; RPC does not have to see
the excess bytes. Al._FreetixteinalCPS deals with this properly.

*/

}

int AL _ FreeBExternalCPS(INOUT R)
RPC__CountedBS **R;
{
/*
Releases the external acecess list defined by R.
Returns 0 always.
*/
}

int Al__htonExternal CPS(INOUT EC)
PRS_ExiernalCPS *EC;
{
/li
Converts the external CPS defined by EC to network byte order.
Returns 0 always.
*/

}

int Al.__ntohExternal CPS(INQUT EC)
PRS__ExternalCPS *EC;
{
/#
Converls the external CPS defined by EC to host byte order.
Returns 0 always.
¥/
}

11

int AL_Externalize(IN Alict, OUT Externalilep)
Al.__AccessList "Alist;
RPC__CountadBS **E xlernalRep;
{
/*
Converts the access list defined by Alist into the newly-created
external access list in ExternalRep.
Non-transtatable lds are coverted to their Ascii integer representations.
Retuins 0 always.
*/
}

int AL __Internalize(tN ExternaiRep, OUT Alist)
AL_ExternalAccesslist *UxternalRep;
AL _Accesslist **Alist;
{
/0(
On successful return, Alist will define a newly-created access list
coiresponding to the external access list defined by ExternaliRep.
Returns 0 on successful conversion.
Returps -1 if ANY name in the access list is not translatable.
*/
.}

int Al.___CheckRights(IN Alist, IN CPS, OUT WhichRights)
AL _Accesslist *Alist;
PRS__InternalCPS *CPS;
int *WhichRights;

{

/t

Returns in WhichRights, the rights possessed by S on Alist
Y/

}

int AL__Initialize(JIN Version, IN pdbFile, IN pcfFile)
char *Version;
char "pdbFile;
char *pcfFile;
{
/‘l
Initializes the access list package.
Version should always be AlL__VERSION.
pdbFile is a string detining the protection database file; set to NULL for default.
petfile is a string defining the protection configuration file; set to NULL for default.
*/
}

int AL__MameTold{IN Name, OQUT Id)
char *Name;
int *id;
{
/’I
Translales the username or groupname defined by Name to Id.
Returns 0 on success, -1 if translation fails.
*/
}

int AL__ldToName(IN Id, OUT Name)
int id;

12

char Name[1 + PRS__MAXNAMELEN];

{

/*

Translates td and returns the cortesponding usermame or grounpnama inn Name.
Returns 0 on success, -1 if Id is not ranstatable.

*/

)

int Al.__GetInternalCPS{IN Id, QUT ICPS)
int td;
PRS__nternalCPs " *ICPS;
{
/t
On successful return, ICPS defines a newly-created data st ucture,
corresponding to the internal GPS of Id.
Return O on success; -1 if id is not a vaiid user or agroup id.
*/
}

int Al__GetExternalCPS(IN 1d, OUT ECPS)
int Id;
RPC__CountedBS **ECPS;
{
/‘
On successful return, ECPS defines a newly -created deta structure,
corresponding to the external CPS of Id.
Return 0 on success; -1 if td is not a valid user or group id.
*/
1
P
int CaseFolded Cmp(IN s1, IN s2)
char *s1, *s2;
{
/* same as stremp() except that case differences are ignored */

}

2.3. Examples
As an example of how these routines may be used, consider the following examples modelled on the

VICE File Server;

#include <rpc/rpc.hd>
#include <pss/prs.hy

A include <prs/al.hd
#include <prs/prs_fs.h>

PRS__InternalCPS *ThisUser; /* Initializad after connection to point to this user’'s CPS*/

int Fetch{ViceFileName)
char *ViceFileName;

{

Al._AccessList *Al;
int MyRights;

Obtain the access list Al to be used in the protection chech from the parent directory of VicoFileName.
Al__CheckRights(Al Thislser, &MyRighis);

if (PRS_FILEREAD & MyRights = = 0)
return(/* faitine indication */Y;

Do actual lile transmission here

}

int Store(ViceFileName)
char *ViceFileName;
{
ldentical to Fatch; except:
use PRS_FILEINSERT il you wani lo allow only creation of new tiles,
use (PRS_FILEWRITE[PRS _FILFINSERT) if you want to allow writing new or existing files.
}

int GetFileStat(ViceFileName)
char *ViceFileName;
{
RPC__CountedB38 *ExtRep;
AL__Accesslist *Al;
int MyRights;

Obtain the access list Al from the parent directory of ViceFileName
PRS _CheckRights{Al, ThisUser, &MyRights);

if (PRE_FILELOOKUP & MyRights = = 0)
return{failure indication);

AL _Externalize(Al, &ExtRep) <)
Now ExtRep can be sent to the client, along with other file status info

AL__FreebExternalAlist(ExtRep);
}

int SctFileStat(ViceFileName)
char *ViceFileName;
{
RPC__CountedBS *ExtRep;
AL _ Accessl.ist *NewAl, *OIdAl;
Obtain the access list OldAl from the parent directory of ViceFileName

PRS__CheckRights{OldAl, ThisUser, &MyRights);

if (PRS_FILEWRITE & MyRights = = 0)
return{failure indication);

Obtain client-supplied ExtRep

if (AL __Internalize{ExtRep, &NewAl) <0)
return{failure indication);

Write out the access list NewAl to the parent directory of ViceFileName

do other SetfileStat() processing
PRS_reeilisi(NewA!);

)

3. Protection S=rver RPC Calls

This chapter describes the primitives of the Protection Server. The calls are described in a format
that assumes that you are using the VICE BRPC mechanism to make remote procedbure calls to the
Protection Server. The types ot the arguiments specified in these calis are the types defined in the
RPC manual [Satyanarayanan84a]. The header file "al.h” contains the definitions for the symbolic

constants used in the descriptions.

It is assumed that all connections to the Protection Server are secure, atthenticated, RPC
conneclions. The username of a client is the value of the ClientiD parameter in the corresponding
RPC__Bind call.

During the implementation and refinement of this subsystem, some restrictions may be placed on the

primitives:

1. Each VICE cluster server will have a Protection Server running on it. Initially one of these
will be a master, and is the only one which will service vrimitives that change the
protection domain. Such requests will result in a return code of PRS_FAIL from all the
other Protection Servers. All other requests (i.¢., queries) may be directed to any
Protection Server. The descriptions of the calls indiciate whether they can only be
serviced by the master.

2. There will be limitation on the membership properties of groups. The purpose of this
restriction is allow & quick implementation withiout spending a major amount of time on
efficient transitive closure algorithms. These limitations will be specified in a later release
of this document. Most probably groups may only be allowed users as members; they
may not have other groups as members.

The header file "prs.h" containg definitions for the rights PRS_EXAMINE and PRS_MANIPULATE,

and definitions for the data types involved in calls to proteclion server:

detfine PRS__VERSION "$Header$”

define PRS_MAXNAMELEN 100 /*Maximum length of group and user names*/
#define PRS__SYSTEMID 100 /*Userid of System*/

#detine PRS _ANONYMOLUSID 101 /*Userid of the faks user Anonymous®/

define PRS__ANYUSERID -101 /*Groupld of System:Anyliser*/

#define PRS__PLBMNAME "/usr/local/lib/vice.pdb”
/*default location of protection data hase*/

#define PRS__PCFNAME "/usr/tocal/lib/vice. pet
/rdetault location of configuration file*/

16

typedef
struct
{
int NoOfEntries; srin ldlistts

int dlist{1]; Z*Actual bound is NoOtintries. List of ids in this subdomain

Sorted in ascending order*/

}
PRS__InternaiCPs;
/?
Used only in VICE. Typically obtained via access list packaye routine Al __GetinternalCPS.
*/
typedaf
struct
{
RPC _Integer NoOfEntries; /*number of names in Namel.ist*/
RPC__String Namel.ist, /list of blank separated namas in this subdommain */
}
PRS_ExternalCPS;
/O

Used in dealings with clients. Typically transmitted as the Seq3ody of an RPC_CountedBS parameter.
*/

The rights requirements for various Protection Server operations are specified in Table 3-1 below.

System Only PRS__EXAMINE PRS_MANIPULATE
On Users
PRS_NewUser X
PRS _DeleteUser X
PRS_RenameUser X
PRS_GetCPS X
PRS LisiDircctMembership X
PRS_GetProtection X
PRS_SetProtection X
PRS_ListGroups X
On Groups
PRS_NewGroup
PRS_RenameGroup X
PRS _DeleteGroup X
PRS_ListDireciMembers X
PRS_LisiDirectMembership X
PRS_GetCPS X
PRS_GetProtection X
PRS_SetProtection X
PRS_AddToGroup X
PRS_RemoveFromGroup X

Note: System can always peiform any operalion.

Table 3-1: Rights Required for Protection Server Oparations

PRS_GetCPS

Obtain CPS of user or group

Call
int PRS_GetCPS(TN RPC_String Name, IN RPC__Integer Format,
OUT RPC_BoundedBS Subdomain)
Parameters:
Name Name of a user or greup
Format PRS_INTERNAL or PRS_EXTERNAL. VICE servers should request the

internal format in order to us2 Subdomain in calls to the access list package.

All other clients should request the external format.
Subdomain The curtent protection subdomain of this user or group. Depending on what
was specified for Format, this RPC_BoundedBS is to be interpreted as of type

PRS _InternalCPS or PRS _ExtarnalCPS.

Completion Codes:

PRS_SUCCESS All went well
PRS _NOACCESS Youdo not have PRS_EXAMINE rights on Name

PRS_NOSUCHNAME

Name does nact correspond to a user or group.

PRS _FAIL Something else went wrong

Given a user or group name, this call returns its current protection subdomain. This is the reflexive,

transitive closure of all the groups that this user or group is a member of.

19

PRS_ Newllser

Creale a new user

Call:
int PRS_NewUser(IN RPC_String UserName)

Parameters:

UserName The naune of the new user.

Completion Codes:

PRS_SUCCESS Al went well.
PRS_NOACCLSS You are not System.

PRS_DUPLICATENAME

A user {or a group helenging to System) is already called UserName.

PRS_FAIL Something else went wrong

This call is used to add new users to the system. To use this call, you must be auibeaticaied as

System to the Protection Server.

May only be directed to the master Protection Server,

20

PRS_NewGroup

Cieate a new group

Call:
int PRS_NewGroup(IN RPC_String GroupName)

Parameters:

GroupName Name of the new group.

Completion Codes:

PRS_SUCCESS Created the new group.
PRS_NOACCESS You were not System and the prefix of GroupName was not your user name.

PRS_DUPLICATENAME

There is alieady a group cailed GreupName.

PRS_FAIL Somathing clse went wrong

If you are not System, the prefix portion of the name must be your user name. Oystem can create
groups with any prefix. The newly created group has an empty access list. You and System always

possess all rights on all your groups.

May only be directed to the master Protection Server.

PRES_DeleteUser

Get rid of a user

Call:
int PRS_DeleteUser(IN RPC_String UseriName)

Parameters:

UserName Name of the user to be deleted.

Completion Codes:

PRS_SUCCESS Allwentwell

PRS_NOACCESS You are not System and you do not possess PRS__MANIPULATE rights on
UserNarme.

PRS_NOSUCHNAME

UserName is not a valid user name.
PRS_NOTIEMPTY This user still has some groups.
PRS_FAIL Something else went wrong
Hemoves the specified user. Prior to deietion, this user should have no groups. Use

PRS_RenameGroup to preserve important groups which were created by this user and which

continue to be of importance.

May only be directed to the master Protection Server.

22

PRS__DelzioGroup

Get rid of a giroup

Call:

int PRS_DeleteGroup(IN RPC_SLring GroupName)

Paramelcrs:

GroupName

Compietion Codes:

PRS_SUCCESS

PRS_NOACCESS

Name of the group to be deleted.

All went well,

You were: not System, your user name did not correspond to the prefix of
GreupName, and you did not possess PRS_MANIPULATE rights on
GroupName.

PRS_NOSUCHNAME

PRS_FAIL

There is no group with the specified name.

Something else went wrong

A user can always delete any of his groups. System and any user with PF S_MANIPULATE rights on a

group may also delete it.

May oniy be directed to the master Protection Server.

PRS Renamelser

Change the name of a user

Call: .
int PRS_RenameUser{ IN RPC_Siriny OldName,
IN RPC_String NewName)
Parameiers:
OldName What the user is currently known as.
NewNarme What the user should be called in future.

Completion Codes:

PRS_SUCCESS All went weil.

PRS_NOACCESS You are not System and you do not possess PRS_MANIPULATE rights on
OldName.

PRS_DUPLICATENAME

A user or system group called NewName ahendy oxicts

PRS__NOSUCHNAME

A user by name NewName does nct exist.

PRS_FAIL Somathing else went wrong

A user cannot rename himself, unless he possesses PRS__MANIPULATE rights on himself. All the

groups belonging to this user are automaticaily renamed to have NewName as their prefix.

May only be directed to the master Protection Server.

PRE_RenameGroup

Change the name of a group.

Call:
int PRS_RenameGroup(IN RPC_String OldName,
IN RPC_String NewName)
Parameters:
OldName Whal the group is curiently known as.
NewName What the group should be called in future.

Completion Codes:
PRS_SUCCESS Allwent well
PRS_NOACCESS You do not possess PRS_MANIPULATE 1ights on OldiName, or the prefix of

MewName is not your user name. System can perfarm acbitrary 1enaming of
groups.

PRS_DUPLICATENAME

NewName is already the name of a grouj: or a user.

PRS_NOSUCHNAME

There is no group by name OldName.
PRS_FAIL Something else went wrong
Performs renaming of a group, leaving its membership properties unaltered. Ownership of a group
may be transferred by this primitive: the new owner must request this rename and he should possess

PRS__MANIFULATE rights on OldName. Unless you are System, NewName must have a prefix

corresponding to your user name.

May only ke directed to the master Protection Server.

PRE_ListDirectMembers

Enumerate the immediate members of a group

Call:
int PRS_ListDirectMembers(IN RPC_String GroupName,
OUT RPC_Tnteger HowMany,
OUT RPC_BoundzdBS Memberlist)
Parameters:
GroupName Which group to enumcrate
HowMany The number of members in MamberList
Memberl.ist A sevies of RPC__Strings snecifying the members of GroupMame.

~

Cempletion Codes:

PRS_SUCCESS Allwentwell.

PRS_NOACCESS You are not System and you do not possess PRS__EXAMINE rights on
CroupName.

PRS_NOSUCHNAME

GroupName is nut the nane of a group.

PRS_FAIL Something else went wrong

Gives you the immediate members of GroupName: i.e., no transitive closure is performed.

26

PRS__ListDirectMembership

Enumerate the immediate meibership of a tiser or group

Call:
i int PRS_ListDirectMembership(IN RPC_String Name,
OUT RPC__integer HowMany,
QUT RPC__isoundedBS MembershipList)
Paramelers:
Name The name of a user or group
HowMany The number of names in Membex List

Moermbershiplist The names of the groups which Name is an immediate member of.
F groug

Completion Codes:

PRS_SUCCESS Al went well.
PRE_NOACCESS You are not System, and you do not possess PRS_EXANMINE rights on Name.

PRS_NOSUCHNAME

No user or group called Name exists.
PRS_FAIL Something else went wrang
This primitive applies tc both users and groups. Gives you the groups which this user or group is an

immediate member of. It differs from the primitive PRRS_GetCPS in that no transitive closure is

performed hera.

27

PRS_AddToGroup

Make a user or group a member of an exisiing group

Call:

int PRS_AddToGroup(IN RPC_String Name. IN RPC_String ToGroup
Parameters:

Name Thes user or group to be added

TOGI‘OU,D The group which Name must be made a member of.

Completion Codes:

PRS_SUCCESS Al went well.

PRS_NOACCESS You are not System and you do not possess PRS_MANIPLLATE rights on
ToGroup.

PRS_NOSUCHNAME
Either Name does not exist, or ToGroup is not the name of 4 group.

FPRS_FAIL Someihing else went wrong

No rights need be possesed on Name. The truly paranoid may consider this a shortcoming. f Name
¢ b

is already a member of TeGroup, this call is a nop.

May only be directed to the master Protection Server.

28

PRS__RemoveFromGroup

Remove a user or group from an existing ¢roup

Call:
int PRS_RemovelFromGroup(IN RPC_String Name.
IN RPC_String FromGroup)
Parameaters:
Name The user or aroup to be removed
FromGroup The group from which Name must be removed

Compietion Codes:
PRS_SUCCESS Allwent well.
PRS_NOACCESS You do not possess PRS_MANIPULATE iights on FromGroup.
PRS _NOSUCHNAME
tither Name does not exist, or FromGroup is not the name of a group, or
Name is not currently 2 member of FromGroup.
PRS_FAIL Somelhirg else went wrong

No righis need be possessed on Name. This is probably not a shortcoming cven for the trul
g p

paranoid, since full control should be maintained by the owner of FromGroup.

May only be directed to the master Protection Server.

29

PRS_GelProtection

Obtain the access list of a user or grotig

Cail:
int PRS_GetProtection(IN RPC_String Name,
OUT RPC_BoundedBS CurrentAccessblisi)

Parameters:

Name The name of the user o group whose access list is desired
CurrentAccessList nformat PRS_ExternalAList.

Coinpleticn Codes:

PRS_SUCCESS Atlwentwell
PRS_NOACCESS You are not System and you do 1ot possess PRS_EXAMINE rights on Name.

PRS_NOSUCHNAME
Name is not the name of a user or group.

PRS_FAIL Something else went wrong

Returns the access list of Name in external format. Note that the external format is not intended to be

directly viewed by humans; the caller may need to periorm further formatting and beautification.

30

PRS_ _SetProtection

Specify a new access list for a user of group

Call:
int PRS_SetProtection(IN RPC_String Name,
IN RPC_BoundedBS NewAccessList)
Parameters:
Name The user or group whase access list is to be changed
NewAccessList In format PRS__ExternalAList

Completion Codes:

PRS_SUCCESS Allwent well

PRS_NOACCESS You are not System, and you do not possess PRS_MANIPULATE rights on
Name.

PRS_NOSUCHNAME

Name is not the name of a user or group.

PRS__FAIL Something eise went wiong. Perhaps NewAccessList was of improper format.
— g

Replaces the existing access list by @ new one. For human interaction, the caller should interpose a

frent-end program which allows individual entries to be added or deleted.

May only be directed to the master Protection Server.

31

PRS_ListGroups

Enumerate the groups owned by a user

Call
int PRS_ListGroups(IN RPC_String UserName,
OQUTRPC_Tnteger HowMany,
OUT RPC_BoundedBS GrouplList)
Paramecters:
UserName I'he user whose groups are to be enumerated
HowMany The number of groaps in GrouplList
Groupl.ist A series of RPC__Strings, cach specifying a group owned by UserName.

Completion Codes:

PRS_SUCCESS All wentweli

PRS_NOACCESS You are not System, and you do not possess PRS_FExamine rights on
UseriName.

PRS_NOSUCHNAME

UserName is not the name of a user.

PRS_ FAIL Something else went wrong

Appendix |

Summary of Protection Server RPC Calis

Mote: The numbers in square brackets indicaie the page on which the call is described.

[18]

19l
[20]
[21]
[22]
(23]
[24]

[25]

[27]

(28]

[29]

(30]

[31]

PRS_GetCPS(IN RPC_String Name, IN RPC_Integer format,
OUT RPC_BoundedBS Subdomain)

PRS__NewUser (IN RPC_String UserName)

PRS_NewGroup(IN RPC_Striing GroupName)

PRS_DeleteUser(IN RPC_String UserName)

PRS_DeleteGroup(IN RPC_String GroupName)

PRS_RenameUser (IN RPC_Stiring OldName, IN RPC_String NewName)
PRS_RenameGroup (IN RPC_String OldName, IN RPC_String NewName)

PRS_ListDirectMembers(IN RPC__String GroupName,
QUT RPC_Integer HowMany, OUT RPC_BoundedsS Mombeirlist)

PRS__ListDirectMembership(IN RPC_String Name,
OUT RPC__1Integer HowMany, OUT RPC_BoundedBS Menbershipl.ist)

PRS_AddToGroup(IN RPC_String Name, IN RPC_String ToGreup)

PRS_RemoveFromGroup(IN RPC_String Name,
IN RPC_String FromGroup)

PRS_GetProtection(IN RPC_String Name,
OUT RPC_BoundedBS CurrentAccesslist)

PRS_SetProtection(IN RPC_String Name,
IN RPC_BoundedBS NewAccesslist)

PRS__ListGroups(IN RPC_String UserName,
OUTRPC_Integer HowMany, OUT RPC_BoundedB3S Grouplist)

Apnendix i
Usage Notes for the ITC SUN Systems
Two header files, /usr/local/include/prs/prs.h and /usr/local/include/prs/al.h should be included
in all programs which use the access list package. You may also need to use the RPC header file,

/usr/local/include/rpc/rpc.h

For each subsystem you will need a header file giving the interpretation of rights. A sample, tor the

VICE file system, is given in /usr/local/include/prs/prs fs.h.
The access list package is in /usr/local/lib/libal.a.

The VICE protection database is in /usr/local/lib/vice.pdb, and the corresponding i:onfiguration file

is in /usr/local/lib/vice.pcf.

The global integer variable AL __Debugl.evel may be declared as an extern by users of the access list
package. lt is initialized to 0 and may be set to obtain debugging output; higher values yield rore

verbese output.

