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Abstract 

 
Previous work has shown that activities and places of interest can be extracted from GPS traces of 
human movements using behavioral models based on conditional random fields (CRFs) [3]. In this 
paper, we adapt and extend this work in two ways. First, we apply the framework to analysis of a 
vehicle-tracking maritime environment, analyzing GPS data from a 5 day surveillance of merchant 
marine ships conducting exercises in the English channel. Secondly, we expand the model to a 
perform a broader population analysis segmenting the population into several classes with distinct 
behavioral models. Empirical results show that our algorithm is successful in inferring locations of 
interest, but makes only coarse distinction in activity inference. In clustering behaviors, it 
successfully divides agents with highly localized activities from those servicing distant ports. 
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1. Introduction 
 
Localization systems such as the Global Positioning System (GPS) are making it possible to 
collect data in many domains tracking the position of individual actors over time. One way to use 
this data is to interpret it as the observed portion of a system which includes hidden contextual 
variables, such as the activities and goals motivating agent movement at each time period in the 
trace. If a distribution over values in such a system can be estimated, observed paths (and any 
other data collected simultaneously) can be used to make inference about hidden states. This 
framework has been successful in applications such as prediction of future motion [1], 
identification of transport habits and deviations therefrom [2], and annotation of traces with 
activities and activity-associated locations [3]. 
 
In each of the experiments above, a model was trained by fitting parameters to labeled traces 
from multiple users, then used to perform inference about new, unlabeled traces.  Implicitly, this 
assumes that all traces (labeled or not) come from users sharing the same behavioral patterns. In 
many multi-agent environments this is incorrect: traces may come from agents of several classes 
with distinct behaviors. If we train a single model on all such traces, the resulting parameters 
would be fit to a mixture of behavior distributions, resulting in poor inference on any real trace. 
In this paper we address this possibility by first segmenting the labeled population into 
behavioral classes and training a separate behavioral model for each class. These models 
summarize patterns in labeled data and can be used to estimate the behavioral class of new 
traces, for better inference. We apply the technique to a set of traces tracking the movements of 
merchant marine vessels in the English channel. Potential applications in this setting include the 
isolation of distinct commercial strategies and distinction of “normal” commercial activity from 
deviant activities such as smuggling. 
 
We accomplish the segmentation via supervised expectation-maximization (EM) clustering. 
Labeled traces (which correspond 1:1 to agents) are first divided randomly into K partitions. At 
each iteration, a behavioral model is trained for each partition based on the traces within. Each 
trace is then reassigned to the partition whose model gives it highest likelihood, and the two 
steps are repeated until partitions stabilized. To model behavior within each partition we adapted 
the approach of Liao et al. (2007), which associates each time segment in a trace with an activity 
and, for stationary activities, a place of interest. The conditional distribution of activities and 
places is modeled using conditional random fields (CRFs) generated for each trace. Training this 
model consists of learning weights on log-linear compatibility features between variables. At 
time of inference, places of interest are proposed and repeatedly updated in conjunction with 
identifying stationary activities in the trace.  
 
The rest of this paper is organized as follows. In section 2, we provide background on our data 
and on conditional random fields. In section 3, we briefly summarize the use of CRFs for activity 
and place recognition, emphasizing the adaptations we made to previous work, and outline our 
EMapproach. In section 4 we present results for both single-model training and inference and our 
population segmentation task. Since this is a pilot study, these results are based on minimal 
labeled data and a simplified model, reducing their generalizability. Concluding in section 5, we 
discuss how future work can overcome these limitations. 
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2. Background  

 Maritime GPS Data 
 
From the 25th to 30th of June 2005, a sensor network queried Automated Identification System 
(AIS) transponders on merchant marine vessels throughout the English Channel, recording 
navigational details such as current latitude and longitude, heading, speed, a navigational status 
such as “ANCHORED”, “MOORED”, or “UNDERWAY”, and several forms of identifying 
information. In total, traces for over 1700 vessels were recorded, with apparent activities ranging 
from simple shipping lane traversals to complex itineraries with stops at multiple ports of call. 
 
A primary motivation in analyzing this data is distinguishing different navigation strategies that 
might affect port congestion or aide in differentiating normal trade behavior from “deviant” 
activities such as smuggling or logistics for terrorist activity. We also wanted to pick out 
locations around which these activities center, such as queues where ships wait for entrance to a 
busy port. Table 1 shows the range of activities we defined corresponding to those hidden values, 
as well as associated place types and the color code used in the figures in this paper. 

 
Table 1:  Activity and Place Labels 

  
Because polling is scheduled independent of activity, our GPS traces contain many redundant 
entries (i.e. 5 days of hourly reports from the same dock). This unnecessary computational 
burden can be reduced by pre-segmenting the data into intervals and aggregating reports on each 
interval. Previous work, including [3], performed segmentation by “snapping” observations to 
street segments, under the assumption that an interval spent on a small segment was spent doing 
a single activity. Our ocean environment does not have a similar structure to snap to, and there is 
no satisfactory radius to contain an activity while reducing redundancy – shipping lane traversals 
might cover thousands of kilometers, but movement of even half a kilometer indicates that a ship 
is no longer docked. We experimented with several strategies and settled on segment boundaries 
determined by a significant change of speed (see section 3.1 for our discretization of velocity), 
since acceleration is the primary sign of control activity in these large vessels. 
 
Segmentation was done automatically by a script which determined boundaries and then 
calculated aggregate statistics such as average speed and location for observations within a 
segment. After segmenting all data, we picked 10 long and varied traces to hand label based on 
domain knowledge. Figure 1 shows the range of this data, with pointer colors indicating activity 
labels for each segment (see table 1), and locations of interest marked with orange circles. 
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Figure 1.  Labeled Segments and Places  

 
Conditional Random Fields 
 
A Conditional Random Field (CRF) is a graphical model whose maximal cliques C factorize 
a conditional distribution according to 
 

 
where Z(X) is a normalizing function, Xc and Yc are members of clique c, and Φc is a 
corresponding potential function indicating the relative compatibility assignments to member 
variables. In equation (2), we have replaced the _s with a set of log-linear features, whose 
parameter sets will define the maximal cliques. If the weight of a feature is positive, then the 
feature is correlated with the compatibility of its parameter variables; negative-weights denote 
anticorrelation. 
 
When we find model parameters for observed variables X and hidden variables Y, we are doing 
discriminative learning – we make no attempt to estimate any distribution over X. This is 
attractive because it allows us to estimate fewer parameters, and to be agnostic regarding 
independences between our X variables. On the downside, we cannot solve inference queries 
with unknown values in X. Defining our distribution in terms of features simplifies model design 
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and allows us to discretize continuous observed variables to avoid hybrid factors. It also gives a 
more interpretable parameterization, and one that is convenient for learning of shared 
parameters. On the downside, our model learning is constrained by the parameterization and 
cannot assign importance unanticipated interactions between variables. 
 

3. Methods 
3.1 Model 
Figure 2 shows the layout of a CRF associated with a trace.   There are 3 classes of variables: 
 

• A set of observed variables average speed (S), course variance (C), and navigation 
data (N) are instantiated for each of the n trace segments, representing statistics 
aggregated over the observations within that segment. Average speed and course variance 
are real-valued, but navigation data is a binary vector indicating 

• One activity (A) variable is instantiated for each segment with value range as listed in 
Table 1. 

• A set of place (P) nodes are associated with only those activity nodes corresponding to 
time segments spent near them. Each place can takes on type values listed in Table 1. 

 
Figure 2.  CRF Associated with a Trace 

 
Note that actual location data is not directly encoded by variables in the model. Instead, the 
relevant aspect – association between places and activities – is encoded by the place  
activity edges. These are decided when the CRF is generated by testing whether each activity 
falls within a 5 km1 radius of each place, an assigning edges between nearby pairs. Locations 
near no place of interest are not connected to any place. 
 
As a hypothetical example, the model in figure 2might correspond to a ship beginning with a 
DOCKED activity at DOCK P1, engaging in a TRANSIT activity in open ocean at A2, visiting 
FUEL station P3 and REFUELING at A3, before finally returning to P1 at time n. 
 
The edges in figure 2 correspond to several classes of features: 
 

• Place activity edges represent sets of compatibility features. Each feature in the set 
corresponds to a specific pairing of place types and activities and is binary valued, 
returning 1 if that combination occurs. Positive weight on such a feature indicates that 
that activity often occurs at that type of place. Similarly, 
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• Activity activity edges are transition feature sets, which are set up like compatibility 
sets but for pairs of activities. Positive weights here indicate a oft-occurring transition. 

• Binary navigation features are constructed similarly, but each one indicates the co-
occurrence of one activity and a specific status message being observed in the segment 
time interval. Weights on these features capture the degree to which a status message 
such as “MOORED” correlate a specific activity such as “DOCKED”. 

• There is one course variance feature for each activity, which returns the real course 
variance value if the activity node is as specified. A positive weight here indicates that an 
activity involves frequent, large course corrections. The intention is to capture the 
difference between stable routes such as shipping lanes and more varied activity such as 
local maneuvering. 

• Speed features operate like course variance features above, but there is an additional set 
of speed class features which discretize velocity. There is one such feature for each 
combination of activity and speed class. This is essential for 1) allowing activities to be 
associated with specific speeds rather than simply high or low speed, and 2) allowing us 
to model multimodal speed distributions. Figure 3 shows the distribution of observed 
velocities in our data as well as the breakpoints we selected between speed classes. 

 

 
 Figure 3.  Velocity Histogram and Discretization 

Weights are shared between all instances of the same feature in the network – for example, 
the weight on compatibility feature between place type “DOCK” and activity “DOCKED” is the 
same for any pair of place and activity nodes. 
 
3.2 Parameterization 
 
Training a model from labeled traces means learning weights for all of the features described in 
the previous section. To do this, we first construct a single CRF using all labeled traces (each 
trace forms a separate activity chain; traces are linked only when associated with a common 
place). We would now like to find an assignment of weights, W, that gives maximum likelihood 
to the labels known for this CRF. Liao et al. (2007) describe a fast approximate method called 
Maximum Pseudo-Likelihood (MPL) estimation, which we will briefly outline. The speed 
advantages of this method are significantly more important for our application, because our EM 
clustering will require multiple iterations of training as well as inference. 
 



CMU SCS ISRI                                                       CASOS Report -9-

Maximum pseudolikelihood proceeds by maximizing   , ), where MB(y) is 
y’s Markov blanket (adjacent nodes), rather than full likelihood P(Y | X,W).  This is much faster 
since we need iterate only over the value range R(y) of each individual y, rather than all possible 
combinations of assignments to these values. We calculate the pseudolikelihood gradient for the 
weight of one feature using 

 
 
In other words, the difference between an observed value of a feature and its expected value 
given the surrounding variables, plus a Gaussian prior pushing feature weights toward 0. The 
prior is essential to avoid overfitting small amounts of data, and in our case was necessary for 
numerical stability of weight values for features which never took nonzero values in our training 
data. We picked a Gaussian prior because it was convenient for directly manipulating the 
variance. 
 
Previous work used quasi-newton methods to choose the rate of gradient descent, but 
implementation of this was outside the bounds of this project’s time limit. We instead used an 
adaptive descent rate which would grow slowly while likelihood increased and shrink quickly if 
the maximal point was overshot. While this produced reasonable weights quickly, it was very 
slow to converge, and we were forced to cap our approximation at a fixed number of iterations. 
 
3.3 Inference 
 
To estimate (maximum a posteriori) the values of unobserved variables in our CRFs, we used 
Max-Product Belief Propagation, which is described for activity detection in [3] and with greater 
generality in [4]. The only interesting feature of our implementation was that feature functions 
were dynamically (bytecode) compiled to incorporate values of observed variables directly. 
 
Liao et al. (2007) include in inference not only assigning values to known variables, but 
proposing the existence of place variables which are initially unknown. This is done by first 
conducting hidden-value inference on a placeless CRF, then creating place nodes for each 
segment whose belief location-associated activity. Since these places may have been based on 
bad initial activity estimates, the inference is repeated with the new graph, and the process 
iterates until the population of places is stable. 
 
In that experiment, the aim was to discover places of significance to a single agent. Since we are 
interested in discovering places of interest to a whole class of agents, we consider inferred places 
as part of a learned behavioral model. We incorporate this into the previous place-detection 
algorithm simply by using a CRF containing known places in the initial step, and inferring 
additional places as necessary. 
 
3.4 Clustering 
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Our primary extension to previous work it the application of an EM clustering algorithm to 
segment labeled data into separate population classes. The input to the algorithm is a set of 
labeled traces and a number of clusters k. The algorithm then proceeds as follows: 
 

1. For each trace, choose one of the k clusters at random as an initial assignment. 
2. For each cluster, train a model as in 3.2 based only on traces assigned to the cluster. 
3. For each trace, calculate the psuedolikelihood of the trace under each model and assign it 
to model giving the highest score. 
If any traces change assignment, return to step 2. 

 
The use of pseudolikelihood rather than actual likelihood is necessary because calculating the 
normalization function for the CRF of a long trace would be intractable. In future work, we will 
investigate the possibility that the repetitive features of our model might allow a shortcut to 
computing the true normalization function. 
 

4. Results 
 
The model and algorithms discussed in section 3 were implemented in the Python interpreted 
programming language and executed on a 1.8 Ghz Pentium 4 laptop with 1 gb of RAM. We were 
able to produce only 10 labeled traces, for a total of 214 labeled segments and 15 places. We 
used these to conduct experiments in two phases. First, we performed leave-one-out validation of 
the model by comparing actual labels for each trace to those inferred using a model trained on 
the other 9. Then, we tested the success of our clustering technique in dividing the model into 
two populations. 
 
Runtime. In our experiments, the most expensive procedure was model training. We capped the 
MPL algorithm at 20 iterations, which took an average of 253 seconds on datasets with 9 traces. 
MAP inference using Max-Product took an average of 12 seconds for a single unlabeled trace. 
The place detection algorithm never required more than 3 iterations to find a stable set of 
locations, with one MAP inference performed per iteration. The clustering algorithm took 4 
iterations, each requiring 2 parameter learning phases. However, each training uses only a 
portion of the labeled population, and the total runtime was approximately 14 minutes. 
 
Learned Weights. Our training process was successful in selecting weights which matched the 
intuitions on which we based our hand-labeling. For example, weights on the speed class features 
for the Docked state were negative except for a value of .011 for the lowest speed class. Features 
for the navigation status messages were carried near-zero weights, except that the 
“UNDERWAY” message carried weights near .01 in conjunction with nonstationary activities. 
Significant transition weights include a high probability of shifting from DOCKED to TRANSIT 
and high probabilities of shifting in either direction between TRANSIT and LOCAL features. 
 
Leave-One-Out Accuracy. Our model had significant difficulties in differentiating all but the 
coarsest distinctions in utilities. Figure 4 shows that MAP inference assigns only DOCKED and 
TRANSIT activity labels, resulting in 64% training accuracy. On the simpler task of 
differentiating stationary from non-stationary activities, accuracy was 93.9%. Errors in this 
second task were caused mainly by unnecessary transitions between DOCKED and TRANSIT 
states, presumably from high transition probabilities and overlapping state compatibilities 
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between these states. As we discuss further in the conclusions, a potential solution to these issues 
is a larger amount of labeled data and a richer feature set. 
 

 
Figure 4.  Sample trace labeling. 

Another question as regards inference is whether our model was able to accurately predict 
locations of interest to merchant marines. Although our algorithm did not produce precisely the 
same coordinates, there was a clear 1:1 correspondence for 14 out of 15 labeled places in our 
learned places. However, all learned places received the DOCK label, which is unsurprising 
given the inferred place labeling. 
 
Clustering. Fortunately, our clustering algorithm does not depend on accurate inference, and was 
able to give interesting results even for our small set of labeled data. Figure 5 shows the two 
clusters identified in 4 iterations of EM. Qualitatively, they seem to differentiate behavior 
patterns with significant amounts of docking and local movement from those who involve large 
amounts of transit time. 
 
 

 
Figure 5.  Clustering Results 

 
5. Conclusions and Future Work 

 
We adapted existing methods for extracting activities and locations of interest from GPS traces 
to a commercial shipping environment. We also extended that framework with a clustering step 
that segmented the population into groups with distinct behavior patterns. Our training and 
inference algorithms were unsuccessful in assigning precise activity labels to unlabeled traces 
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based on a small labeled data set, but was successful in identifying locations of interest. Our 
clustering algorithm was surprisingly successful in separating a small population of labeled 
traces into groups with clearly identifiable differences in behavior. 
 
This pilot study could be improved into primary ways to make our results more generalizable.  
First, tests should be performed with substantially more labeled data. The few labeled traces we 
produced carried information about a small region of the conditional distribution For example, 
many activity transitions were never observed, resulting in clear overfitting on the weights of 
some features. Ideally, a larger set of traces would be labeled directly by ships crew or apparatus, 
rather than by third parties with domain knowledge. 
 
Secondly, our model itself should be augmented with additional features that were too difficult to 
implement for the scope of this project. For example, features incorporating external 
information, such as known port locations or coordinate distance from land, could greatly 
improve the accuracy of our place type detection. Another useful addition would be counting and 
timer features to permit association of activities with durations and overall frequencies. These 
features would have to be designed carefully to avoid producing large maximal cliques in our 
model. 
 
This framework for path analysis spans many fundamental problems, including graphical model 
training, inference, structural inference (with place nodes), and clustering. In each of these, we 
make compromises for performance: maximum pseudo-likelihood is an approximation, our MAP 
inference does not give a full view of the posterior, and both our place detection and clustering 
algorithms are susceptible to local maxima. While these compromises are necessary to make the 
model tractable, it is important that we characterize the error induced by these steps, both 
individually and in conjunction with each other. 
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