

The Golden Age of Software Architecture:
A Comprehensive Survey

Mary Shaw and Paul Clements*

February 2006

CMU-ISRI-06-101

Institute for Software Research International
School of Computer Science

5000 Forbes Avenue
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
This retrospective on nearly two decades of software architecture research examines
the maturation of the software architecture research area by tracing the evolution of
research questions and results through their maturation cycle. We show how early
qualitative results set the stage for later precision, formality, and automation, how
results have built up over time, and how the research results have moved into
practice.

*Software Engineering Institute, Carnegie Mellon University, Pittsburgh PA 15213

Mary Shaw’s work is supported by the Software Industry Center, the A.J. Perlis Chair of Computer
Science, and the National Science Foundation under Grant CCF-0438929. The Software Engineering
Institute is sponsored by the U.S. Department of Defense. The views and conclusions contained in
this document are those of the authors and do not necessarily reflect the opinions of the sponsoring
organizations.

Keywords: Software architecture, technology maturation, history of software

engineering

The Golden Age of Software Architecture: A Comprehensive Survey 3

The Golden Age of Software Architecture: A Comprehensive Survey *

Mary Shaw
Institute for Software Research, International

Carnegie Mellon University
Pittsburgh PA 15213 USA
mary.shaw@cs.cmu.edu

Paul Clements
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA
clements@sei.cmu.edu

Abstract

This retrospective on nearly two decades of software
architecture research examines the maturation of the
software architecture research area by tracing the
evolution of research questions and results through their
maturation cycle. We show how early qualitative results
set the stage for later precision, formality, and automation,
how results have built up over time, and how the research
results have moved into practice.
Keywords: Software architecture, technology
maturation, history of software engineering

1. Introduction
Since the late 1980’s, software architecture research

has emerged as the principled study of the large-scale
structures of software systems. From its roots in
qualitative descriptions of empirically observed useful
system organizations, software architecture has matured to
encompass broad explorations of notations, tools, and
analysis techniques. Whereas initially the research area
interpreted software practice, it now offers concrete
guidance for complex software design and development.
It has made the transition from basic research to an
essential element of software system design and
construction.

This retrospective examines the trajectory software
architecture has taken in the context of a technology
maturation model, matching significant accomplishments
in software architecture to the stages of that model to gain
perspective on where the field stands today.

This trajectory has taken software architecture to its
“golden age” and that in the near future it will attain the
status of all truly successful technologies: It will be
considered an unexceptional and essential part of software
system building, taken for granted, employed without
fanfare, and assumed as a natural base for further
progress.

2. How Technologies Mature
Redwine and Riddle [71] reviewed several software

technologies to see how they develop and propagate. They
found it typically takes 15-20 years for a technology to
enter widespread use. They identified six typical phases:

• Basic research. Investigate basic ideas and concepts,
put initial structure on the problem, frame critical
research questions.

• Concept formulation. Circulate ideas informally,
develop a research community, converge on a
compatible set of ideas, solve specific subproblems,
refine the structure of the problem.

• Development and extension. Explore preliminary
applications of the technology, clarify underlying
ideas, generalize the approach.

• Internal enhancement and exploration. Extend
approach to other domains, use technology for real
problems, stabilize technology, develop training
materials, show value in results.

• External enhancement and exploration. Similar to
internal, but involving a broader community of people
who weren’t developers, show substantial evidence of
value and applicability. Flesh out the details to
provide a complete system solution.

• Popularization. Develop production-quality,
supported versions of the technology, commercialize
and market technology, expand user community
As technologies mature, their institutional

mechanisms for disseminating results also change. These
mechanisms begin with informal discussions among
colleagues and progress to products in the marketplace.
Along the way, preliminary results of the first two phases
appear in position papers, workshops, and research
conferences. As the ideas mature, results appear in
conferences and then journals; larger conferences set up
tracks featuring the technology, and eventually richer
streams of results may justify topical conferences. Books
that synthesize multiple results help to move the
technology through the exploration phases. University
courses, continuing education courses, and standards
indicate the beginning of popularization.

* This paper updates an invited keynote for ICSE 23, “The
Coming-of-Age of Software Architecture Research” by Mary
Shaw[77]. It is also the basis for “The Golden Age of Software
Architecture” published in IEEE Software, March/April 2006
[79].

The Golden Age of Software Architecture: A Comprehensive Survey 4

3. Maturation of software architecture
Software architecture is the principled study of the

large-scale structures of software systems. From its roots
in qualitative descriptions of useful system organizations,
software architecture has matured to encompass broad ex-
plorations of notations, tools, analysis techniques, and
creation methods. Whereas initially the research area
interpreted software practice, it now offers concrete
guidance for complex software design and development.

Software architecture overlaps and interacts with the
study of software families, domain-specific design,
component-based reuse, software design, specific classes
of components, and program analysis. It is not productive
to attempt rigid separation among these areas; research
can certainly contribute to more than one.

One way to see the growth of the field is to examine
the rate at which earlier results serve as building blocks
for subsequent results. A rough estimate is provided by
citation counts for papers with “software architecture” in
the title. Virtually all of the cited papers were published in
1990 or later. There were steady increases in the number
of citations of papers published from 1991 to 1996 and a
sharp increase for papers published in 1998. The two
dozen most widely-cited books and papers were published
between 1991 and 2000. They include five books
([12][17][72][82][94], 1995 to 2000), four papers
presenting surveys or models for the field ([33][34][57]
[68], 1992 to 1997), six papers dealing with architecture
for particular domains ([18][19][24][27][51][53], 1991 to
1998), seven formalizations ([1][2][3][43][54][55][62],
1992 to 1996), and one paper each on an architectural
description language [80] and an analysis technique [46].
The major changes in this pattern since a similar count in
2001 [77] are an increase in citations of formalizations
and substantial turnover in the most-cited papers about
architectures for specific domains.

This indicator is based on the published literature, so
it naturally reflects the first three phases of development.
Imperfect though this estimate may be, it still indicates
very substantial growth over the past decade or so and a
balance between exploration of specific problems and
development of generalizations and formalizations. Of the
two dozen papers that were most commonly cited in 2001,
fourteen remain among the most commonly cited papers
in 2005 – an indication that the seminal sources have been
identified. The Appendix compares the lists from 2001
and 2005.

Here are some of the highlights of the field’s
development, mapped to the Redwine/Riddle model. The
chronology is not as linear as the Redwine/Riddle model
might suggest: different aspects of the field evolve at

different rates; transitions between phases do not happen
instantly; and publication dates lag the actual work by
different amounts, as indicated in the figure Nevertheless,
overall progress corresponds fairly well to their model.

3.1 Basic research phase: 1985-19941
For as long as complex software systems have been

developed, designers have described their structures with
box-and-line diagrams and informal explanations. Good
designers recognized stylistic commonalities among these
structures and exploited the styles in ad hoc ways. These
structures were sometimes called architectures, but knowl-
edge about common styles –generally useful structural
forms – was not systematically organized or taught.

Significantly, by the mid-1980s several foundational
ideas were firmly in place, having traveled their own 15-
20-year Redwine-Riddle cycles. These included
information-hiding, abstract data types, and other ideas
that contributed to considering software elements as black
boxes. Object-oriented development was building on
abstract data types and inheritance. These ideas all had
their foundations on observations, for example by Dijkstra
[26] and Parnas [64], that it was not enough for a
computer program to produce the correct outcome. Other
qualities of the software, such as dependability and
maintainability, were also important and could be
achieved by careful structuring.

In the late 1980s people began to explore the
advantages of deliberately-designed specialized software
structures for specific problems. Some of this work
addressed software system structures for particular
product lines or application domains such as avionics
[66], oscilloscopes [25] and missile control [22][60].

Other work organized the informal knowledge about
common formations of software structures, or
architectural styles, that can be used in a variety of
problem domains. This work cataloged existing systems to
identify common architectural styles such as pipe-filter,
repository, implicit invocation, and cooperating processes,
both by identifying the architectures of specific classes of
systems [7][63] and by finding general ways to describe
such structures [4][74][75][76]. These complementary
lines of research led to models for explaining the
architectural styles and to two widely cited papers in 1992
and 1993 that established the structure (and settled the
name) of the field [34][68].

1 Time spans for phases are suggested by the dates of the cited

work in the corresponding section, discounting foundational
works from the 1960s and 1970s.

The Golden Age of Software Architecture: A Comprehensive Survey 5

3.2 Concept formulation phase: 1992-1996
The basic models were elaborated and explored

largely through work in architecture description
languages, early formalization, and classification. The
early ideas centered on the system structures that
commonly occurred in software systems, and the results
emphasized description of organizations found in practice
[34].

Architecture description languages [57] served as a
vehicle to flesh out specific details of a variety of aspects
of architecture. The early ideas centered on the system
structures that commonly occurred in software systems,
and the results emphasized description of organizations
found in practice [34]. Ideas about system organization,
especially alternatives to the then-emerging object
orientation, were elaborated in programming languages.
These languages included Aesop [30] (exploiting specific
properties of styles), C2 [56] (exploring power of a
particular event-based style), Darwin [54] (design and
specification of dynamic distributed systems), Meta-H
[13] (real-time avionics control), Rapide [52] (simulation
and analysis of dynamic behavior), UniCon [80]
(extensible set of connectors and styles, compilation to
code), and Wright [4] (component interaction).

Formalizations developed in parallel with the
language development. Sometimes this was integral to the
language (Darwin [55], Rapide, Wright [3]), and in other
cases it was more independent, as the formalization of
style [1][2] or formal analysis of a specific architectural
model [91][43] or application area [51][53]. The
recognition that multiple views must be reconciled in
architectural analysis [48] helped to frame the
requirements for formalism.

The early narrative catalogs of styles were expanded
in taxonomies of styles [78] and of the elements that
support those styles [47]. The common forms were
cataloged and explained as patterns [17][72]. An early
book [82] on these ideas set the stage for further
development.

Understanding of the relationship between
architectural decisions and a system’s quality attributes
revealed software architecture validation as a useful risk-
reduction strategy. Interconnectivity metrics [73],
checklists for architects [8], and attribute-specific
architecture analysis techniques [84] gave way to more
general architecture evaluation methods such as the
Software Architecture Analysis Method (SAAM) [46].

Figure © 2006 IEEE [79]

Figure 1. Maturation of the software architecture field.

The Golden Age of Software Architecture: A Comprehensive Survey 6

Significant in this phase was the emergence of
architectural views as a working concept. Parnas set the
stage for this in 1974 [65] with his observation that
software systems have many structures that serve different
engineering purposes and it makes little sense to call out
any one as distinguished. After percolating for a Redwine-
Riddle maturation period, the concept flowered in
influential papers [90][48][68] that firmly established
views in architectural practice.

Workshops on other topics (such as the International
Workshop on Software Specification and Design)
provided a temporary home for the software architecture
community. A formative Dagstuhl seminar held in 1995
[32] gathered researchers to think about the layout and
future directions of the field. A series of International
Software Architecture Workshops (associated with other
conferences) from 1995 to 2000 provided a welcome and
ongoing forum devoted solely to software architecture.

3.3 Development and extension phase: 1995-2000
During this phase, the focus shifted to unifying and

refining initial results. The Acme architectural interchange
language began with the goal of providing a framework to
move information between architecture description
languages [31]; it later grew to integrate other design,
analysis and development tools.

Refinement of the taxonomies of architectural
elements [59] and languages [58] also continued.

The institutions of the area also matured. The IEEE’s
Transactions on Software Engineering had a special issue
on software architecture in 1995[33]. The special “road-
map” track at the ICSE 2000 conference included
software architecture [29] among its topics to survey, and
it is now routine for ICSE to have one or more sessions on
architectural topics. A standalone conference, the
Working IEEE/IFIP Conference on Software Architecture
(WICSA) began in 1998 and continues to the present [95].
One of its sponsors is a new IFIP working group on
software architecture [41].

3.4 Internal enhancement and exploration phase:
1996-2003

Architectural styles (which during this stage shifted
their name to architectural patterns to acknowledge their
kinship with design patterns) are commonly used
informally as design guides. The explicit attention to this
aspect of design is increasing, and as a result we are
gaining experience.

A few formal analyses of real system designs have
been done as well. For example, architectural
specification of the High-Level Architecture for
Distributed Simulation [5] was able to identify

inconsistencies before implementation, thereby saving
extensive redesign.

Architectural analysis and evaluation emerged as a
fertile sub-topic. At the SEI, the Software Architecture
Analysis Method [46] gave way to the Architecture
Tradeoff Analysis Method (ATAM) [45], which supports
analysis of the interaction among quality attributes as well
as the attributes themselves. Books on the application of
the research to practice [12][36] set the stage for external
exploration. Books on specialized parts of the practice
such as architecture evaluation [21] and documentation
[20] also emerged, signaling a new kind of maturation of
the overall field.

Another internal enhancement of note was the
exploration of architectural tactics [9], which are fine-
grained architectural design decisions that contribute to
architectural patterns. During this stage, the importance of
quality attributes increased, along with architecture’s role
in achieving them [11]. The early 2000’s saw work
strongly connecting quality attributes and architectural
design decisions, and for the first time an automated
architectural design aid seemed within reach [10].

3.5 External enhancement and exploration
phase: 1998-present

Several areas have matured enough to be useful
outside their developer groups.

UML [14], under the leadership of (at the time)
Rational, has integrated a number of design notations and
developed a method for applying them systematically.
UML has, for better or (many would say) for worse,
become the industry standard ADL. Tied inextricably to
UML is the Rational Unified Process, a tool-centered
industrialization of Kruchten’s original elegant idea of
4+1 views [48]. For the most part, UML provides
graphical notations; it remains, however, to provide a
robust suite of tools for analysis, consistency checking, or
other means of automatically connecting the information
expressed in UML with the code of the system.

The rise of object-oriented software frameworks
provided a rich development setting for object-style
architecture and considerable public enthusiasm for
object-orientedness. The benefits of the built-in
infrastructure and available, interoperable components
provided substantial incentive to use the frameworks even
when they were not ideal fits for the problems. These
satisfied needs for those architectures. As a result, work
on general-purpose architecture description languages
gave way to extensive support for specific architectures.
At about the same time, architecture provided a solid
enough foundation on which to implicitly base the
component-based software engineering movement [92].

The Golden Age of Software Architecture: A Comprehensive Survey 7

Also indicative of external enhancement are
company-specific end-to-end architecture-based
development lifecycle models, such as the Raytheon
Enterprise Architecture Process (REAP) [69].

3.6 Popularization phase: 2000-present
The popularization phase is characterized by

production-quality, supported, commercialized, and
marketed versions of the technology, along with an
expanded user community.
Architectural patterns, fueled in part by the explosion of
the World Wide Web and web-based e-commerce, are
leading the commercialization wave. N-tier client-server
architectures, agent-based architectures, and Service-
Oriented Architectures – along with the interfaces,
specification languages, tools and development
environments, and wholly implemented components,
layers, or subsystems to go along with them – are
examples of enormously successful architectural patterns
that have entered everyone’s vocabulary. Microsoft says
its .NET platform “includes everything a business needs
to develop and deploy a Web service-connected IT
architecture: servers to host Web services, development
tools to create them, applications to use them, and a
worldwide network of more than 35,000 Microsoft
Certified Partner organizations to provide any help you
need.”[61] Connected services, tools, applications,
platforms, and an army of vendors, all built around an
architecture: This is true popularization.

One of the hallmarks of a production-ready technol-
ogy is good standards. Standards for particular component
families (e.g., COM, CORBA) and interfaces (e.g., XML)
have existed for several years, but they reflect component
reuse interests as much as architectural interests. An
ANSI/IEEE standard [39] has attempted to codify the
current best practices and insights of both the systems and
software engineering communities in the area of
documentation. Newer standards are emerging all the
time, primarily in support of the important patterns
mentioned above. Recently AADL (a true architecture
description language) was standardized by the Society of
Automotive Engineers (SAE)[86].

One sure sign of an expanded user community is the
degree to which people take ownership of the terms and
concepts. Bill Gates, who could have any title he chooses,
is Microsoft’s “chief software architect”. The OMG chose
to call its development initiative separating business and
application logic from platform technology “model driven
architecture.” The SEI invites people to submit their
working definitions of “software architecture,” and by late
2005, over 156 definitions had been submitted by
practitioners in 24 countries [87]. Another sign is the way

the term gets co-opted and diluted by people pulling their
own interests under the currently popular umbrella. Terms
such as “program architecture” make us shudder.

An institutional indicator of popularization is the
degree to which the subject is routinely taught. In
universities, software architecture is moving from
graduate to undergraduate curricula; more than one
textbook for introductory software engineering courses
now includes a chapter on “architectural design” [70][93].
In the ACM/IEEE undergraduate software engineering
curriculum [44], 20% of the software design unit is
devoted to software architecture. The Software
Engineering Body of Knowledge identifies software
architecture as a major section in the software design
chapter [38]. Industrial courses and certificate programs
are also widely available (e.g., [88], [16], [37], [42]).

Finally, “software architect” is a job title that one
would expect to find in any company that builds software-
intensive systems, and professional organizations such as
the Worldwide Institute of Software Architects [96] and
the International Association of Software Architects [40]
allow communication, foster networking, encourage
professional practice, and (one hopes) help their members
sort out the avalanche of books – over 50 – now available
on the topic.

Conferences continue to thrive, not only for the
research community but for user networks. In late 2005,
the SEI listed 25 upcoming conferences explicitly listing
“software architecture” in their calls for participation[89].
These include user network meetings as well as research
conferences.

4. Current status
It is fair to say that the broad concept of software

architecture has run the full course of the Redwine-Riddle
model, pretty much right on schedule. The result is a
breathtaking capability for reliably designing systems of
unprecedented size and complexity verging on a true
engineering discipline. Consider the resources readily
available to a contemporary software architect:

• Off-the-shelf industrial training and certification
programs that reflect a converging sense of what
software architecture is and why it is a critical
discipline

• Standard architectures for countless domains and
applications. For example, nobody will ever again
have to design from scratch a banking system, an
avionics system, a satellite ground system, a web-
based e-commerce system, or a host of other varieties
of systems.

The Golden Age of Software Architecture: A Comprehensive Survey 8

• Where total architectural solutions do not yet exist,
partial ones certainly do in the form of catalogs of
architectural patterns and tactics that have been used
to solve a myriad of problems, many of which involve
the achievement of quality attributes.

• End-to-end lifecycle models (industry-wide or, more
likely, company-specific) that are centered on
architectural principles.

• Robust and repeatable approaches to architecture
evaluation and validation

• Practical approaches to architecture documentation,
supported by standards for artifacts and standards for
languages in which to render the artifacts.

• Robust tool environments to capture designs
• Commercial-quality architectural infrastructure

layers to handle inter-component communication and
coordination distributed generic computing
environments

• Commercial-quality application layers (and tooling)
to handle business logic, user interface, and support
function layers

• Career tracks and professional societies for software
architects.

• An active pipeline of journals and conferences
devoted to software architecture, serving as a conduit
between research and practice communities.

These and other indicators indicate that software
architecture is integrated in the fabric of software
engineering.

5. What’s next?
Software engineering research is often motivated by

problems that arise in the production and use of real-world
software. Technical ideas often begin as qualitative
descriptions of problems or practice and gradually become
more precise – and more powerful – as practical and
formal knowledge grow in tandem. Thus, as some aspect
of software development comes to be better understood,
more powerful specification mechanisms become viable,
and this in turn enables more powerful technology.

We see that software architecture has followed this
approach, growing from its adolescence in research
laboratories to the responsibilities of maturity. This brings
with it additional responsibility for researchers to show
not just that new ideas are promising (a sufficient grounds
to continue research) but also that they are effective (a
necessary grounds to move into practice).

As a result, software architecture researchers must not
be content with simply doing more research in the style of
the past decade. Certainly there are new ideas yet to be

explored in that form, but the last decade has opened even
more opportunities in the form of research to make
existing results more robust, more rigorously understood,
and more ready to move into application. For example,
there was a time when it seemed that a new ADL emerged
almost monthly. Now someone proposing a new language
has to ask themselves (or be prepared to be asked by their
funding agency) “Does what you’re proposing have any
chance of unseating UML? What tooling will you provide
with it?”

Nevertheless, there are significant opportunities for
new contributions in software architecture. Some of the
more promising areas seem to be:

• Continuing to explore formal relationships between
architectural design decisions and quality attributes.
This could one day lead to a practical and
sophisticated automated architecture design assistant.
In addition, it could enable earlier and more accurate
predictions of the value a system would deliver to
specific types of users.

• Finding the right language in which to represent
architectures. UML 2.0 was a marginal improvement
over its predecessor, but it still lacks basic
architectural concepts such as “layer” or a faithful
notion of “connector”; it lacks the ability to analyze
interactions among views; it too easily mixes design
concepts with implementation directives; and it lacks
the ability to make strong connections to code.

• Finding ways to assure conformance between
architecture and code. Lack of conformance dooms
an architecture to irrelevance as the code sets out on
its own independent trajectory. We should work to
find ways to establish conformance by construction
(via generation, refinement, and augmentation), and
by extraction (analyzing an artifact statically or
dynamically to determine its architecture). Early work
exists in both of these approaches, but we are a long
way from reducing conformance to a solved problem,
especially in recovery/enforcement of runtime views
and architectural rules that go beyond structure.

• Re-thinking our approach to software testing, based
on software architecture. An architecture can let us
generate a wide variety of test plans, test cases, and
other test artifacts. For code that originates in the
architecture (such as implementations of connections
and interaction mechanisms) automatic testing is
possible. It should be possible to discriminate
between code that originates in the architecture (such
as that which implements connections and interaction
mechanisms) and code that is non-architectural in
nature (such as that which implements hidden
functionality private to a component). We should

The Golden Age of Software Architecture: A Comprehensive Survey 9

have different confidence levels in architectural
versus non-architectural code, and we should be able
to take advantage of that at test time. And it should
also be possible to generate test plans, test cases, and
other test artifacts from an architectural description of
a system. A strong model of architecture-based
testing, backed up by formal reasoning and easy-to-
use tooling, could have a major economic impact on
software system development.

• Organizing architectural knowledge to create
reference materials. Mature engineering disciplines
are characterized by handbooks and other reference
materials that provide engineers with access to the
systematic knowledge of the field. Cataloging
architectural patterns [17] is a first step in this
direction. But in addition, we need reference materials
for analysis of realized architectures for evaluation of
designs to predict properties of their implementation.
Grady Booch’s handbook on software architecture
“codifying the architecture of a large collection of
interesting software-intensive systems, presenting
them in a manner that exposes their essential patterns
and that permits comparisons across domains and
architectural styles,” [15] can provide important
exemplars, but engineers also need reference material
that organizes what we know about architecture into
an accessible, dependable body of knowledge.

• Developing architectural support for systems that
dynamically adapt to changes in resources and each
user’s expectations and preferences. As computing
becomes ubiquitous and integrated in everyday
devices, both base resources such as bandwidth and
information resources such as location-specific data
change dynamically. Moreover, each individual user
has different needs that change with time. Developing
architectures that can dynamically anticipate and react
to these changes would help to maximize the benefit
each user can obtain. Achieving this will require not
only adaptive architectures but also component
specifications that reflect variability in user needs as
well as intrinsic properties of the component.

6. The golden age
It will be interesting to see how these ideas fare over

the next ten years or – more likely – to see what ideas now
undreamed of will have emerged. But one thing seems
clear. The last decade and a half has seen a phenomenal
growth of software architecture as a discipline. It started
in the late 1980s as an academic idea, based on venerable
foundations, that was aimed at understanding and
codifying system descriptions observed in industrial
practice. From there it has grown to a relatively mature

engineering discipline complete with standard and
repeatable practices, a rich catalog of pre-packaged design
solutions, an enormous commercial market supplying
tools and components, and a universal recognition that
software architecture is an indispensable part of software
system development.

A “golden age” is a period of prosperity and excellent
achievement [6], often marked by numerous advances that
rapidly move the technology from speculative to
dependable. Consider, for example, the golden age of
aviation: “Perhaps the most exciting years of aviation
history span the period from the end of World War I to
[the United States’] entry into World War II. This period
is referred to as golden because of the countless advances
in aviation technology that occurred, the many expeditions
undertaken, and the numerous records set.” [85] The last
15 years or so – roughly the middle four stages of the
Redwine-Riddle model – truly have been the golden age
for software architecture. Like the golden age of air travel
in the 1930’s, it has been an exciting time of discovery,
unfettered imagination, great progress, great setbacks, and
a sense of the possible.

But all golden ages come to a close, and as software
architecture moves from being novel to being
indispensable, its golden age is receding. This is as it
should be. Because software architecture, like air travel
after its golden age, is entering a period where it can be
taken for granted. We rely on it, we cannot imagine our
technological culture without it, and we are compelled to
continually refine and improve it because it is
indispensable.

The end of a golden age should not be taken to mean
that the time for research, innovation, and improvement
has passed. In aviation, enormous achievements such as
jet engines, supersonic flight, pinpoint navigation, and
space travel all happened well after its golden age had
passed. So it will be with software architecture. The
strong foundations laid by the early phases of software
architecture maturation, coupled with ongoing research to
make new ideas practical, will enable even more
breathtaking system-building capabilities in the future.
For us, the intriguing question is this: What new software
engineering technology and its golden age will the
solidly-established field of software architecture help to
usher in?

7. Acknowledgements
Our thanks go to the program committee for the 2001

International Conference on Software Engineering for
stimulating the original version of this paper. Thanks to
Judy Stafford and Henk Obbink for commissioning this
update for IEEE Software [79]. We appreciate invaluable

The Golden Age of Software Architecture: A Comprehensive Survey 10

assistance from Sheila Rosenthal and Isaac Councill in
helping us gather and analyze citation counts. Thanks to
David Garlan and Jonathan Aldrich for helpful comments,
and Dale Strok of IEEE Software for editing suggestions
and for granting permission to use Figure 1. Mary Shaw’s
work is supported by the Software Industry Center, the AJ
Perlis Chair of Computer Science, and the National
Science Foundation under Grant CCF-0438929. The
Software Engineering Institute is sponsored by the U.S.
Department of Defense.

8. Appendix: Citation Analysis
To analyze the growth of the field, we analyzed

citation patterns for books and papers with “software
architecture” in the title. We obtained the results of a full
search for such papers in the CiteSeer database [67]. We
consolidated variant citations for papers and ignored self-
citations, yielding a sample of about 5500 citations to
about 750 books and papers. At the 2005 Working
IEEE/IFIP Conference on Software Architecture
(WICSA5), about 20% of the papers had “software
architecture” in their titles. If this ratio holds for the
literature at large, then these 750 represent about 20% of
the software architecture papers.

This table lists the top two dozen books and papers in
this sample, along with the top two dozen works in a
similar (but unordered) sample from 2001. The table is
ordered by 2005 rank, with membership in the 2001 set
shown in the second column.

2005
rank

2001
set

Pub
year

Topic
area

Authors

1 yes 95 book Shaw, Garlan. SA:
Perspectives on an
Emerging Discipline[82]

2 yes 96 book Buschmann et al. Pattern-
Oriented SA vol 1 [17]

3 yes 92 survey,
model

Perry, Wolf. Foundations
for the study of SA [68]

4 yes 93 survey,
model

Garlan, Shaw. An
introduction to SA [34]

5 yes 95 ADL Shaw et al. Abstractions
for SA and tools to support
them [80]

6 yes 98 book Bass, Clements, Kazman.
SA in Practice [12]

7 94 formaliz
ation

Magee et al. Specifying
distributed SAs [54]

8 yes 94 specific
domains

Macedonia et al.
NPSNET: A Network SA
for Large Scale Virtual
Environments [53]

9 96 formaliz
ation

Magee, Kramer. Dynamic
structure in SAs [55]

10 92 formaliz
ation

Allen, Garlan. A formal
approach to SA [3]

2005
rank

2001
set

Pub
year

Topic
area

Authors

11 95 formaliz
ation

Inverardi, Wolf. Formal
specification and analysis
of SA [43]

12 yes 95 survey,
model

Garlan, Perry. Intro to the
Special Issue on SA [33]

13 98 specific
domain

Decasper et al. Router
Plugins: a SA for next
generation routers [24]

14 yes 93 formaliz
ation

Abowd, Allen, Garlan.
Using style to understand
descriptions of SA [1]

15 97 survey,
model

Medvedovic, Taylor. A
classification and compari-
son framework for SA
description languages [57]

16 yes 95 formaliz
ation

Abowd, Allen, Garlan.
Formalizing style to
understand descriptions of
SA [2]

17 94 analysis
tech

Kazman et al. SAAM: a
method for analyzing the
properties of SAs [46]

18 yes 92 specific
domains

Locke. SA for hard real-
time applications [51]

19 98 specific
domain

Frigo, Johnson. FFTW: an
adaptive SA for the FFT
[27]

20 yes 91 specific
domains

Chiola: GreatSPN 1.5 SA
[19]

21 yes 95 book Walden, Nerson. Seamless
Object-Oriented SA [94]

22 94 formaliz
ation

Moriconi, Qian.
Correctness and
composition of SAs [62]

23 yes 94 specific
domains

Chapman et al. A SA for
multidisciplinary
applications [18]

24 00 book Schmidt et al. Pattern-
oriented SA vol 2 [72]

25 yes 92 survey,
model

Mettala, Graham. The
domain-specific SA
program [60]

29 yes 94 survey,
model

Shaw, Garlan.
Characteristics of higher-
level languages for SA
[81]

30 yes 96 formaliz
ation

Le Metayer. SA styles as
graph grammars [49]

35 yes 95 survey,
model

Shaw, Garlan.
Formulations and
formalisms in SA [83]

36 yes 90 specific
domains

Leung et al. A SA for
Workstations supporting
multimedia conferencing
in packet switching
Networks [50]

38 yes 97 rev eng Yeh, Harris, Chase.
Manipulating recovered
SA views [97]

The Golden Age of Software Architecture: A Comprehensive Survey 11

2005
rank

2001
set

Pub
year

Topic
area

Authors

47 yes 97 survey,
model

Garlan. Research
directions in SA [28]

54 yes 93 specific
domains

Cremer et al. The SA for
scenario control in the
Iowa driving simulator
[23]

92 yes 95 specific
domains

Kruchten. The 4+1 view
model of software
architecture [48]

125 yes 92 specific
domains

Coglianese, Goodwin,
Kushner, Domain analysis
for the avionics domain
[22]

9. References
[1] Gregory Abowd, Robert Allen, David Garlan. Using Style

to Understand Descriptions of Software Architecture, Proc.
1st ACM SIGSOFT Symposium on the Foundations of
Software Engineering, December 1993

[2] Gregory Abowd, Robert Allen, and David Garlan.
Formalizing style to understand descriptions of software
architecture. ACM Tr on Software Engineering and
Methodology, 1995.

[3] Robert Allen and David Garlan. A formal approach to
software architectures. Proc IFIP'92, Elsevier, September
1992, pp. 134-141.

[4] Robert Allen and David Garlan. Formalizing architectural
connection. Proc 16th International Conference on Software
Engineering, May 1994, pp. 71-80.

[5] Robert Allen, David Garlan, and James Ivers. Formal
modeling and analysis of the HLA component integration
standard. Proc 6th Intl Symposium on the Foundations of
Software Engineering, FSE-6, November 1998.

[6] Christine Ammer. The American Heritage® Dictionary of
Idioms. Houghton Mifflin Company, 1997.

[7] Gregory Andrews. Paradigms for process interaction in
distributed programs. ACM Computing Surveys, vol 23 no
1, March 1991, pp. 49-90.

[8] AT&T. "Best Current Practices: Software Architecture
Validation." Internal report. Copyright 1993, AT&T.

[9] Felix Bachmann, Len Bass, and Mark Klein. Deriving
Architectural Tactics: A Step Toward Methodical
Architectural Design (CMU/SEI-2003-TR-004).

[10] Felix Bachmann, Len Bass, and Mark Klein. Preliminary
Design of ArchE: A Software Architecture Design Assistant
(CMU/SEI-2003-TR-021).

[11] Mario R. Barbacci, Mark H. Klein, and Charles B.
Weinstock. Principles for Evaluating the Quality Attributes
of a Software Architecture (CMU/SEI-96-TR-036), 1996.

[12] Len Bass, Paul Clements, and Rick Kazman. Software
Architecture in Practice. Addison-Wesley, 1998. Second
edition, 2003.

[13] P. Blinn and S. Vestal. Formal real-time architecture
specification and analysis. 10th IEEE Workshop on Real-
Time Operating Systems and Software, May 1993.

[14] Grady Booch. UML Users Guide. Addison Wesley,
Chicago, Il, 1998.

[15] Grady Booch, Handbook of Software Architecture
http://www.booch.com/architecture/index.jsp (accessed
October 2005).

[16] Bredemeyer Consulting. Training for Software Architects,
System Architects and Enterprise Architects. (Accessed
October 2005.) http://bredemeyer.com/training.htm.

[17] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System
of Patterns. Wiley and Sons, 1996

[18] B. Chapman, P. Mehrotra,, J. Van Rosendale, and H. Zima.
A software architecture for multidisciplinary applications:
Integrating task and data parallelism. Tech. Rep. 94-18,
ICASE, NASA Langley Research Center, Hampton, VA,
Mar. 1994.

[19] G. Chiola: GreatSPN 1.5 Software Architecture; Proc. 5th
Int. Conf. on Modeling Techniques and Tools for Computer
Performance Evaluation, Torino, 13-15 Feb. 1991.

[20] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Nord, J. Stafford: Documenting Software Architectures:
Views and Beyond, Addison Wesley, 2002.

[21] P. Clements, R. Kazman, and M. Klein: Evaluating
Software Architectures: Methods and Case Studies,
Addison Wesley, 2001.

[22] Louis Coglianese, Mark Goodwin, Marty Kushner. Domain
Analysis for the Avionics Domain Application Generation
Environment of the Domain-Specific Software Architecture
Project, ADAGE-IBM-92-11, Version 2.0, November, 1993

[23] J. Cremer, J. Kearney, Y. Papelis, and R. Romano. The
software architecture for scenario control in the Iowa
driving simulator. Proc Conf on Computer Generated
Forces and Behavioral Representation, 1993.

[24] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner. Router
Plugins: A Software Architecture for Next Generation
Routers In. Sigcomm, 1998.

[25] Norman Delisle and David Garlan. Formally specifying
electronic instruments. Proc. Fifth International Workshop
on Software Specification and Design, May 1989.

[26] E. W. Dijkstra. The structure of the THE
multiprogramming system. Comm ACM, 1968.

[27] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive
software architecture for the FFT. Proc IEEE International
Conference on Acoustics, Speech, and Signal Processing,
volume 3, pages 1381-1384, May 1998.

[28] D. Garlan. Research directions in software architecture.
ACM Computing Surveys, vol 27, no 2, pp. 257-261, 1995

[29] David Garlan. Software architecture: a roadmap. The
Future of Software Engineering 2000, Proceedings 22nd
International Conference on Software Engineering, ACM
Press 2000.

The Golden Age of Software Architecture: A Comprehensive Survey 12

[30] David Garlan, Robert Allen, and John Ockerbloom.
Exploiting style in architectural design environments. Proc
SIGSOFT ’94: 2nd ACM SIGSOFT Symposium on the
Foundations of Software Engineering, December 1994, pp.
170-185.

[31] David Garlan, Robert Monroe, and David Wile. Acme: An
architecture description interchange language. Proc
CASCON ’97, November 1997, pp.169-183.

[32] David Garlan, Frances Paulisch, and Walter Tichy.
Software Architectures, Report of the Dagstuhl Seminar
9508. Dagstuhl-Seminar-Report No 105, Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany, 1995.

[33] David Garlan and Dewayne Perry. Introduction to the
Special Issue on Software Architecture, IEEE Tr on
Software Engineering, vol 21 no 4, April 1995, pp 269-274.

[34] David Garlan and Mary Shaw. An introduction to software
architecture. In Advances in Software Engineering and
Knowledge Engineering, volume 1. World Scientific
Publishing Co., 1993.

[35] Mark Goodwin and Marty Kushner, Domain Analysis for
the Avionics Domain Architecture Generation Environment
of Domain Specific Software Architecture. ADAGE-IBM-
92-11.

[36] C. Hofmeister, R. Nord, and D. Soni. Applied software
architecture. Addison-Wesley, 1999

[37] iCMG. Architecture Lab: Training. (Accessed October
2005).http://www.icmgworld.com/corp/Developer/dev.cour
seoverview.asp

[38] IEEE Computer Society Professional Practices Committee..
Guide to the Software Engineering Body of Knowledge –
SWEBOK. 2004. (accessed October 2005)
http://www.swebok.org/

[39] IEEE-Std-1471-2000, Recommended Practice for Architec-
tural Description of Software-Intensive Systems. IEEE,
2000.

[40] IASA: International Association of Software Architects
(accessed March 2006) http://www.iasahome.org

[41] IFIP WG 2.10: International Federation of Information
Processing Societies Working Group 2.10 on Software
Architecture (accessed March 2006)
http://www.softwarearchitectureportal.org/

[42] International Software Quality Institute. Training for
Professional for Software Architecture. (Accessed October
2005). http://www.isqi.org/isqi/eng/cert/ca/

[43] P. Inverardi and A. Wolf. Formal Specification and
Analysis of Software Architectures Using the Chemical
Abstract Machine Model. IEEE Transactions on Software
Engineering, vol 21, no 4, 1995, 373--386.

[44] Joint Task Force on Computing Curricula, IEEE Computer
Society and ACM. Software Engineering 2004, Guidelines
for Undergraduate. Degree Programs in Software
Engineering. August 2004. (accessed October 2005)
http://sites.computer.org/ccse/SE2004Volume.pdf

[45] R. Kazman, M. Barbacci, M. Klein, S.J. Carrière,
Experience with Performing Architecture Tradeoff
Analysis, Proc ICSE ‘99, May 1999, 54-63.

[46] R. Kazman, L. Bass, G. Abowd and M. Webb. SAAM: A
method for analysing the properties of software
architectures, Proc. 16th Int. Conf. Software Engineering,
pp. 81-90, 1994.

[47] R. Kazman, P. Clements, L. Bass, and G. Abowd..
Classifying Architectural Elements as a Foundation for
Mechanism Matching, Proc. COMPSAC ’97 International
Computer Software and Applications Conference, August
1997, pp. 1417.

[48] P. Kruchten. The 4+1 View Model of Software
Architecture. IEEE Software (Nov. 1995): 42-50.

[49] D. Le Metayer. Software architecture styles as graph
grammars. In Proc ACM SIGSOFT '96 4th Symposium on
the Foundations of Software Engineering, 1996, pp. 15-23.

[50] Wu-Hon F. Leung, Thomas J. Baumgartner, Yeou H.
Hwang, Mike J Morgan, ShiChuan Tu, A Software
Architecture for Workstations Supporting Multimedia
Conferencing in Packet Switching Networks, IEEE Journal
on Selected Areas in Communications, vol 8, no 3, pp. 380-
390, April 1990

[51] C. Locke. Software architecture for hard real-time
applications: Cyclic executives vs. fixed priority
executives. Journal of Real-Time Systems, vol 4 no 1,
March 1992, pp. 37-53.

[52] D.C. Luckham, L.M. Augustin, J.J. Kenny, J. Veera, D.
Bryan, W. Mann. Specification and analysis of system
architecture using Rapide. IEEE Tr on Software
Engineering vol 21 no 4, April 1995, pp 336-355.

[53] Michael R. Macedonia, Michael J. Zyda, David R. Pratt,
Paul T. Barham, and Steven Zeswitz, NPSNET: A Network
Software Architecture for Large Scale Virtual
Environments. Presence, Teleoperators, and Virtual
Environments, vol. 3, no. 4. Fall 1994.

[54] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying distributed software architectures. Proc 5th
European Software Engineering Conference, September
1994.

[55] J. Magee and J. Kramer: Dynamic Structure in software
architectures. Proc. ACM SIFSOFT'96: Fourth Symposium
on the foundations of software engineering (FSE4), pp. 3-
14, ACM Press 1996. Online reference:
http://portal.acm.org/citation.cfm?id=239104

[56] N. Medvidovic et al. Using Object-Oriented Typing to
Support Architectural Design in the C2 Style. In
Proceedings of the ACM SIGSOFT '96 Fourth Symposium
on the Foundations of Software Engineering. p.24-32,
ACM SIGSOFT. San Francisco, CA, October 1996.

[57] N. Medvedovic, R.N. Taylor, A Classification and
Comparison Framework for Software Architecture
Description Languages. Tech. Report UCI-ICS-97-02,
Department of Information and Computer Science,
University of California, Irvine, Feb. 1997.

The Golden Age of Software Architecture: A Comprehensive Survey 13

[58] N. Medvidovic and R.N. Taylor. A Framework for
Classifying and Comparing Architecture Description
Languages. Proc 6th European Software Engineering
Conference, Lecture Notes in Computer Science 1301,
pages 60--76, September 1997.

[59] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a
taxonomy of software connectors. Proc. International
Conference on Software Engineering, 2000.

[60] E. Mettala and M. Graham (eds.), The Domain-Specific
Software Architecture Program, Technical Report
CMU/SEI-92-SR-9, Software Engineering Institute,
Carnegie Mellon University, 1992.

[61] Microsoft .NET home (accessed March 2006)
http://www.microsoft.com/net/basics.mspx

[62] M. Moriconi and X. Qian. Correctness and Composition of
Software Architectures. Proc Second ACM SIGSOFT
Symposium on Foundations of Software Engineering,
Software Engineering Notes, December 1994

[63] H. Penny Nii. Blackboard Systems. AI Magazine vol 7, no
3, 1986, pp:38-53 and vol 7, no 4, 1986, pp. 82-107.

[64] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM, vol.
15, no. 12, December 1972, pp. 1053-1058.

[65] D. L. Parnas. On a “buzzword”: hierarchical structure. Proc
IFIP Congress 74, 1974.

[66] D.L. Parnas, P.C. Clements, and D.M. Weiss. The Modular
Structure of Complex Systems. IEEE Tr on Software
Engineering, Vol. SE-11, No. 3, March 1985, pp. 259-266.

[67] Penn State School of Information Sciences and Technology.
CiteSeer.IST Scientific Literature Digital Library (formerly
ResearchIndex). Public online search engine and digital
library. (accessed October 2005) http://citeseer.ist.psu.edu/

[68] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software
Engineering Notes, 17:pp. 40-52, October 1992.

[69] Raytheon Company. Raytheon Enterprise Architecture
Process (accessed October 2005).
http://wwwxt.raytheon.com/technology_today/v3_i2/featur
e_ent_arch.html, 2004

[70] Roger Pressman. Software Engineering: A Practitioner’s
Approach. McGraw Hill 2004.

[71] Samuel Redwine and William Riddle. Software technology
maturation. Proc 8th International Conference on Software
Engineering, May 1985, pp. 189-200.

[72] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. Pattern-
Oriented Software Architecture, Vol. 2: Patterns for
Concurrent and Networked Objects. Wiley 2000.

[73] Selby, Richard W. & Reimer, Ronald M. Interconnectivity
Analysis for Large Software Systems. Proceedings of the
California Software Symposium. California. (March 1995):
3-17

[74] Mary Shaw. Toward Higher-Level Abstractions for
Software Systems. Proc. Tercer Simposio Internacional del
Conocimiento y su Ingerieria, October 1988 (printed by
Rank Xerox) (invited), pp.55-61. Reprinted in Data &

Knowledge Engineering, vol. 5, no 2, July 1990, pp. 119-
128 Elsevier Science Publisher 1990, online reference
http://portal.acm.org/citation.cfm?id=87367. Revised as
Larger-Scale Systems Require Higher-Level Abstractions,
Proc. 5th Int'l Workshop on Software Specification and
Design, Pittsburgh, May 1989, pp.143-146.

[75] Mary Shaw. Elements of a Design Language for Software
Architecture, Position Paper for IEEE Design Automation
Workshop, January 1990.

[76] Mary Shaw. Heterogeneous Design Idioms for Software
Architecture, Proc. Sixth International Workshop on
Software Specification and Design, pp. 158-165, IEEE
Press, October 1991.

[77] Mary Shaw. The Coming-of-Age of Software Architecture
Research. Proc 23rd International Conference on Software
Engineering, 2001, pp. 656-664a.

[78] Mary Shaw and Paul Clements. A Field Guide to
Boxology: Preliminary Classification of Architectural
Styles for Software Systems. COMPSAC ’97 International
Computer Software and Applications Conference, August
1997, pp 6-13.

[79] Mary Shaw and Paul Clements. The golden age of software
architecture. IEEE Software, vol 23, no 2, March/April
2006, pp. 31-19.

[80] M. Shaw, R. DeLine, V. Klein, T.L. Ross, D.M. Young, G.
Zelesnik. Abstractions for Software Architecture and Tools
to Support Them. IEEE Tr on Software Engineering, vol.
21, no 4, April 95.

[81] Mary Shaw and David Garlan. Characteristics of Higher-
level Languages for Software Architecture. Carnegie
Mellon University Computer Science Technical Report
CMU-CS-94-210, December 1994.

[82] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[83] Mary Shaw and David Garlan. Formulations and
formalisms in software architecture. Invited for special
volume of Lecture Notes in Computer Science, Computer
Science Today: Recent Trends and Developments, Jan van
Leeuwen (Ed) Springer-Verlag 1996, pp.307-323.

[84] C. Smith, Performance Engineering,. 794-810.
Encyclopedia of Software Engineering, Vol. 2. New York,
NY: Wiley, 1994

[85] Smithsonian National Air and Space Museum. The Golden
Age of Flight. (accessed March 2006)
http://www.nasm.si.edu/exhibitions/gal105/gal105.html

[86] Society for Automotive Engineers, Architecture Analysis &
Design Language (Aadl), SAE Standard AS5506,
November 2004, (accessed December 2005)
http://www.sae.org/servlets/productDetail?PROD_TYP=ST
D&PROD_CD=AS5506

[87] Software Engineering Institute. How Do You Define
Software Architecture? (accessed October 2005)
.http://www.sei.cmu.edu/architecture/definitions.html

[88] Software Engineering Institute. Software Architecture
Curriculum and Certificate Programs (accessed October

The Golden Age of Software Architecture: A Comprehensive Survey 14

2005).
http://www.sei.cmu.edu/architecture/arch_curriculum.html

[89] Software Engineering Institute. Upcoming Events in
Software Architecture? (accessed December 2005)
.http://www.sei.cmu.edu/architecture/events.html

[90] D. Soni, R. Nord, and C. Hofmeister. Software Architecture
in Industrial Applications, Proc. Seventeenth Intl. Conf.
Software Engineering, pp. 196-207, ACM Press, 1995.

[91] Kevin Sullivan, M. Marchukov and D. Socha. Analysis of a
conflict between interface negotiation and aggregation in
Microsoft's component object model. IEEE Trans on
Software Engineering, July/August, 1999.

[92] Clemens Szyperski. Component Software – Beyond Object-
Oriented Programming, Addison Wesley, 1997.

[93] Hans van Vliet. Software Engineering: Principles and
Practice, 2nd Edition, Wiley, Sept 2000.

[94] Kim Walden and Jean-Marc Nerson. Seamless Object-
Oriented Software Architecture - Analysis and Design of
Reliable Systems. Prentice Hall, 1995.

[95] WICSA: The Working IEEE/IFIP Conference on Software
Architecture (accessed March 2006)
http://www.softwarearchitectureportal.org/WICSA/confere
nces/index.htm

[96] WWISA: The Worldwide Institute of Software Architecture
(accessed March 2006) http://www.wwisa.org

[97] A. Yeh, D. Harris, and M. Chase. Manipulating recovered
software architecture views. Proc 19th Int’l Conf on
Software Engineering, 1997

