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Abstract

A long-standing challenge for data management is the ability to correctly relate information corresponding
to the same entity distributed across databases. Traditional research into record linkage has concentrated on
string comparator metrics for records with common, or relatable, attributes. However, spatially distributed
data are often devoid of such crucial information for database schema integration. Rather than directly re-
late schemas, spatially distributed data can be related throughlocation-basedlinkage algorithms, which link
patternsin location-specific attributes (e.g. visit). In this paper we focus on two fundamental algorithms for
location-based linkage and we investigate how different distributions of how entities visit locations influence
linkage performance. We begin by studying algorithm accuracy for linking real-world data. We then outline
a theoretical framework rooted in information theory that allows us to provide insight into observed phe-
nomena. Our framework also provides a useful basis for studying the performance of location-based linkage
algorithms: we analyze two opposing cases where location visit patterns arise from uniform and power dis-
tributions of entities to locations. We carry out our investigations under both the assumption of complete
and incomplete information. Our findings suggest that low skew distributions are more easily linked when
complete information is known. In contrast, when information is incomplete high skew distributions lead to
higher linkage rates.
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1 Introduction

The ability to link, merge, and integrate data corresponding to a particular entity is a fundamental criterion
for successful data management. Support and discovery of linkages assists various critical processes such as
data fusion, cleaning, profiling, and deduplication. [2, 10, 23, 31] To facilitate this process, research in data
warehousing and relational database management has produced sound architectures for storage, relational
modelling, retrieval, and the aggregation of mass amounts of entity-specific data [9]. Yet, these models tend
to concentrate on databases where schemas are fully specified, or fuzzy relational schemas are supplied by
a user or learned from the databases’ attributes. [5, 17, 18, 14] Yet, technological advances have sustained
a continuing increase in our abilities to gather and store information at the entity-specific1 level. [27] As a
result, an entity’s data is often scattered across databases maintained at a large number of disparate locations
with a vast range of schemas. Current methods for database schema matching are time consuming, error
prone, and subject to semantic constraints which need to be supplied on a case-by-base basis, and as a result
do not scale well in large distributed environments. A less expensive alternative is to take advantage of
attributes which express simple events, such as location-based attributes (e.g. visit made to locationx). The
linkage of an entity’s data is achieved via location access patterns (i.e. who went where). An outline of the
main goals for this paper are:

• Introduce several simple algorithms for location-based record linkage and provide intuition for algo-
rithm performance in real world scenarios, and

• Abstract real world location access strategies and design a simple framework where such strategies
can be studied formally in a controlled setting.

1.1 Record Linkage

An entity’s information can be distributed across databases for a number of reasons, including 1) temporal:
collection at different times, 2) attributional: collection on different sets of attributes, and 3) spatial: col-
lection at different locations. In the first two data distribution types, linkage methods must be designed to
account for incomplete, distorted, or possibly corrupt entity-specific information. The latter can manifest in
the form of typographical errors, such as when the name “John” is represented by “Jon”. In addition, such
methods need to be wary of ambiguous values, as well as variations of an entity’s information. For example,
the name “Jonathan Doe” and “Jon Doe” could refer to the same entity.

Research into methods which resolve these confusions tend to be studied under the label of “record
linkage” [13, 29, 30] or “identity uncertainty”. [25] Most techniques for linkage of this type of distribution,
concentrate on string comparator metrics [11, 32], and methods for comparing tuples over common [3, 24,
4], or relatable [28], attributes. In certain cases, such as free text analysis, the goal remains the construction
of a common set of semantic attributes to input into record linkage techniques. [6, 12] In general, these
methods are based on a rich history into the study and characterization of linguistic regularities and syntactic-
specific aspects of natural language distributions.

1.2 Location-Based Linkage

However, if an entity’s data is distributed across tuples such that the tuples’ attributes are unrelated, then
the traditional methods of record linkage and string comparators are of no assistance for linkage. In such
environments, location-based linkage methods function as a complement to traditional record linkage and
provide linkage capabilities that previously appeared impossible. [20] There are two main factors of data

1In this paper anentity is a unit object of interest which a database records data on, such as a person, a company, a country.



and data collection/release strategies which location-based linkage methods employ. The first factor is
related to traditional to record linkage. Specifically, an entities’ information of a certain type, such as that
studied by the previous methods (e.g. strings, names, etc.) is traceable across locations. The second factor is
that an individual’s information is collected or released from location where the entity visited. Thus, though
there is no common attribute between an data types of say “name” and “ip address”, there exists an implicit
relationship in the location where the information was collected. Subsequently, as the number of locations
collecting and sharing data increases, the number of location-visit patterns, or trails, for an entity’s data
increase and each specific entity’s pattern tends toward uniqueness. It is through these visit patterns that
linkages can occur.

Unlike record linkage over common string-based attributes, the formalization of trail linkage has only
recently been introduced. As a result, there has been little research to further our understanding into how
different distributions regarding an entity’s ability for mobility in a multiple location environment affects the
linkage capabilities of basic location-based linkage methods. In this paper, we begin to provide insight into
the underlying processes governing location-based linkage and how we can formally model its process. We
investigate several fundamental types of visit strategies employed by individuals in real world populations.
These strategies have been observed in both the physical and the virtual medium (i.e. Internet users), which
in comparison yield distinct access strategies. In general, this paper investigates the problem of trail linkage
through several types of entity to location distributions.

To study location access in a more controlled fashion, based on observed and known behaviors of spe-
cific populations, we simulate location visit distributions for different types of strategies. Based on readily
available data, for the physical world we consider the sets of hospitals that diseased individuals choose to
visit for treatment. In this environment, we find that individuals tend to visit locations on according to a
uniform or weak Gaussian distribution. In comparison, online users tend to visit locations in a pattern of
high skew that adhere to power function (i.e. self similarity) laws. We simulate both of these environments
and consider how they can be modelled by intuitive and by information theory and simple metrics.

The remainder of this paper is organized as follows. In the following section we review the formal
concept of location-based linkage, as well as several simple methods for the linkage process. The methods
introduced are algorithmic, and theoretical analysis suggests that linkage capability grows at a certain rate
given the number of subjects and locations. However, this theoretical rate is not guaranteed to be observed in
the real-world. This we demonstrate with a simple proof of concept using the population of hospital visiting
patients. In addition, we show the power law feature of online environments, as well as how highskew
populations are generated. Next, we simulate and perform linkage analysis on several types of simulated
datasets corresponding to a range of distributions, including various parameterizations of power-law, such
as the Zipf distribution, and uniform distributions. In addition, we investigate and formalize the relationship
of location-based linkage to the concept of entropy in information theory. Finally, this work addresses
limitations and possible extensions to our findings.

2 Problems and Issues

In this section we describe the terminology, data structures, and algorithms studied in this paper.
We review and generalize a simple model of location-based linkage for an environment where multiple

locations collect similar types of data as follows. [20] LetL be a set of locations collecting data andE
be a set of entities contributing data. Each locationl ∈ L stores data in a tableτA

l (A1, . . . , An), with
attributes{A1, . . . , An}. Each tuplet[a1, . . . , an] ∈ τA

l references a unique entity inE, wherea1 ∈ A1,
. . . , an ∈ An. Without loss of generality, we consider an environment where all locations’ tables have an
equivalent of attributes. The attributes of disparate locations tables need not be equivalent, but they must be
relatable.



E Set of entities.
L Set of locations.
τA
l Locationl’s table, with attribute setA.

t[a1, . . . , an] Tuplet’s values for attributesA1 . . . An.
X Table with location specific attributes.

trail(x,X) Trail of tupley in location-based tableX.
x � y x is a subtrail ofy
x � y x is a supertrail ofy

Table 1:Summary of symbols.

τX
1 τY

1 τX
2 τY

2

Name IP Address Name IP Address
John 128.2.41.234 Bob 128.2.41.234
Mary 167.92.182.1 Kate 32.221.5.15

114.32.70 167.92.182.1

τX
3 τY

3 τX
4 τY

4

Name IP Address Name IP Address
John 32.221.5.15 Bob 32.221.5.15
Mary 167.92.182.1 Kate 128.2.41.234
Kate 114.32.70 114.32.70

Table 2: Sample tables for four locations and two types of information.

Several tables are depicted in Table 2. All locations can collaborate and share their tables to construct a
location-representative tableX, referred to as a track. Basically, trackX is the resulting join from linking all
locations tables over a set of related attributes. This join can be constructed from traditional record linkage
algorithms for tables with common attributes. [31, 29] In addition to being linked, a notable aspect of this
table is that the latter|L| attributes are “location-specific” attributes, such that the value of a particular tuple
specifies the presence or absence of the tuple’s underlying entity’s presence or absence at a location. For a
tuple t, the location-based attributes comprise the trail of the data, ortrail(x,X). Examples of tracks and
trails are depicted in Table 3. The number of tuples in a track is depicted by its cardinality|X|.

The basis behind trail linkage is there exists two different types of data collected at the set of locations
in the environment. Thus two different types of tracks,X andY, can be constructed, which consist of the
following necessary conditions. The first condition is that both tracks are drawn from the same population
of entitiesE. The second condition is the non-location-based attributes fromX are unrelatable to those from
Y . The main distinguishing feature of trail linkage algorithms is their characterization of data completeness.
A track X is said to beunreservedto a trackY, if for every entity, the data trails corresponding to the entity
in both tracks are equivalent.

In some situations, a location can collects data of both types, but it undercollects (or underreports) data of
one type (i.e. the data is not in the location’s table). In this case, trackX is said to bereservedto trackY if the
trail of each entity in matrixX, trail(x,X) can be transformed into the entity’s correspondingtrail(y,Y) in
matrixY by flipping only Boolean values of 0 to 1. When this transformation can be performed,trail(x,X)
is said to be a subtrail (represented with the� symbol) oftrail(y,Y). Similarly, trail(y,Y) is said to be



the supertrail oftrail(x,X), or trail(y,Y) � trail(x,X). Figure 3 provides an example of location-based
tracks where trackX is reserved to matrixY. In this example, bothtrail (Mary, X ) � trail (167.92.182.1, Y)
andtrail (Mary, X ) � trail (114.32.40.81, Y).

X Y
Name l1 l2 l3 l4 IP Address l1 l2 l3 l4
John 1 0 1 1 128.2.41.234 1 1 0 1
Mary 1 0 1 1 167.92.182.1 1 1 1 0
Bob 1 0 1 1 32.221.5.15 0 1 1 1
Kate 1 0 1 1 114.32.70.81 1 0 1 1

Table 3: Two sample location-based tracks from four location’s tables.X is reserved toY.

Here we summarize two basic linkage problems:unreserved trail linkageandreserved trail linkage.

Problem 1 (Unreserved Trail Linkage) Given two unreserved tablesX, Y with location-based attributes
referencing a common set of entitiesE, find the set of tuple pairs〈x, y〉, x ∈ X , y ∈ Y , such thatx andy
reference the same entitye ∈ E. �

Intuitively, unreserved trail linkage corresponds to the case when both types data of the entity is recorded
at every location visited. Thus, a linkage in this scenario is established when every location-based value in
the trails of tuplesx andy are equivalent.

Problem 2 (Reserved Trail Linkage) Given two tablesX, Y with location-based attributes referencing a
common set of entitiesE, such thatX is reserved toY , find the set of tuple pairs〈x, y〉, x ∈ X , y ∈ Y ,
such thatx andy reference the same entitye ∈ E. �

Basically, the reserved trail linkage problem is similar to the previous problem, with one caveat. Since
one table is reserved, the trails need not be equivalent to be linked. Specifically, trailx can be a subtrail of
trail y and a correct link can still be established.

3 Methods

In this section we describe two fundamental algorithms to perform location-based record linkage, that deal
with both the case of complete information and the case of incomplete information, and we present an
application to medical data. We then subsume location-based linkage problems under a general framework
with roots in information theory, and we study the theoretical performance of our algorithms under uniform
and power law location access strategies and different assumption about the quality of data.

3.1 Location-Based Record Linkage Algorithms

Linkage oftrail(x,X) to trail(y,Y) occurs whentrail(x,X) is correctly matched withtrail(y,Y). The
REIDIT (RE-identification of Data in Trails) links only true linkages when location-based attributes consist
of Boolean values, where 1 and 0 represent the presence and absence of information at a location, respec-
tively. [20]

The first trail linkage algorithm is known as REIDIT-Complete (REIDIT-C), the pseudocode of which is
provided in Algorithm 1. REIDIT-C performs exact matching on the trails in tablesX andY. It assumes that



Algorithm 1 REIDIT-C (X, Y)
Assumes: X and Y are unreserved
REID ⇐ ∅
for x = 1 to |X| do

if there is one and only oney, such that(trail(x,X) ≡ trail(y,Y)) then
//Link x and y and remove both from further consideration
REID⇐ 〈(y,Y), (n,X)〉 ∪ REIDIT-C(X-x, Y-y)

end if
end for
return REID

Algorithm 2 REIDIT-I (X, Y)
Assumes: X is reserved to Y
REID ⇐ ∅
for n = 1 to |X| do

if there is one and only oney, such thattrail(n,X) � trail(y,Y) then
//Remove n and y from further consideration
REID⇐ 〈(y,Y), (n,X)〉 ∪ REIDIT-I(X- n, Y- y)

end if
end for
if |X| ≡ |Y| then

for m = 1 to |Y| do
if there is one and only onex, such thattrail(m,Y) � trail(x,X) then

//Remove x and m from further consideration
REID⇐ 〈(m,Y), (x,X)〉 ∪ REIDIT-I(X- x, Y- m)

end if
end for

end if
return REID



bothX andY are unreserved. For every tuplex ∈ X, REIDIT-C determines if there is only one equivalent
trail in Y. If there is, then a unique linkage is made, however, when there is ambiguity no linkage is made.

The REIDIT-Incomplete (REIDIT-I) algorithm, pseudocode of which is provided in Algorithm 2, is
applicable when one table is reserved to the other. For each trail in the table containing incomplete trails, the
set of its supertrails from the table containing complete trails are found2. If there is only one supertrail, then
a correct trail linkage has occurred. The linked trails fromX and fromY are removed. Processing continues
until no more linkages can be made.

Figure 1: Maximum (left) and observed (right) linkage capability as a function of system size for genetic
data and hospital discharge data trails. As the shade of the surface plot becomes darker, linkage capability
decreases.

4 Experiments

For both REIDIT-C and REIDIT-I, the maximum number of trail linkages is dependent both on the number
of unique permutations of a binary string and, continuing the examples above, on the location access profiles
of individuals. Given a tableX, containing references to entities and the locations visited, and a set of data-
collecting locationsL, the number of linkages is bounded above by the maximum number of unique patterns,
2|L| − 1. If the number of records in the tableX is |X| ≤ 2|L|, then the maximum number of trail linkages
is at most|X|, the number of subjects, which implicates that all trails could possibly be linked. However,
when|X| > 2|L|, the maximum number of trail linkages is bounded by the exponential, or2|L| − 1 and it is
be impossible to link all trails.

Though linkage capability scales exponentially in a perfect environment, such growth is not guaranteed
to be achieved in the real world. One of the main reasons is that individual entities are not random agents
who generate binary strings with uniform probabilities. On the contrary, research in many diverse areas,
including demography, e-commerce, and web personalization suggests that there are trends in the manner
that individuals choose locations to visit. This aspect of non-random trails we validate with two real world
different datasets.

2We assume that one of the tales may have incomplete information, but reports it properly, e.g., a zero means absence and
another code is used to report missing data.



4.1 Case Study: Illinois Medical Records

The first dataset consists of hospital discharge data for the state of Illinois from 1990 to 1997. [15] In this
dataset, the entities are hospital patients and the locations are in-patient hospitals. In the medical commu-
nity, these algorithms have been applied to link data on entities distributed across hospitals. For the proof
of concept analysis presented below we validate these findings on a sampled entity population where the
number of entities is on the order of 10,000 patients and the total number of locations visited is over 200
hospitals.

Figure 2: REIDIT-C mean linkability of simulated entities distributed to 10 (left), 15 (center), and 20 (right)
locations according to uniform distribution. Error bars correspond to one standard deviation of the simulated
populations. The upper and lower lines correspond to entropy and percent of entities linked, respectively.

Figure 3: REIDIT-C mean linkability of simulated entities distributed to 10 (left), 15 (center), and 20 (right)
locations according to Zipf distribution. Error bars correspond to one standard deviation of the simulated
populations. The upper and lower lines correspond to entropy and percent of entities linked, respectively.

The ability for a trail linkage algorithm to discover a unique trail is dependent on more than the dis-
tribution of entities to locations. In addition, there is a dependence on the actual numbers of entities and
locations in the system being analyzed. Intuitively, one would expect that a system with 50 patients and
50 hospitals would yield more linkages than in a system with 50 patients and 20 hospitals. A similar result
would be expected if we varied the number of patients while holding the number of hospitals constant. This
was analyzed as follows and found to be true. The number of patients visiting a certain number of hospitals
was analyzed with respect percent of the subpopulation linked. We considered the number of patients with
respect to the number of available trails that could exist given the number of hospitals. Specifically, the num-
ber of trails was computed as the number of possible trails for the number of hospitals visited. For example,
consider a population that could visit any of 150 hospitals. If only one hospital were visited, then

(
150
1

)
,

or 150, possible unique trails exist. If two hospitals were visited, then
(
150
2

)
, or 11175, trails possible trails

exist. In actuality, the number of unique trails observed is less than the number available to the population.



The general result is depicted in Figure 1, where both the number of patients and the number of trails are
considered, on a logarithmic scale for conciseness. While all possible trails are available for each patient to
satisfy, only a small fraction are actually observed in the dataset. This is due to the fact that as the number
of hospitals visited increases, less patients actually visit this increased number. So, while the number of
available trails increases, less trails are used than when a lesser number were available.

In the hospital discharge dataset, the distribution of individuals to locations varies from uniform to
approximately Guassian. Yet, these distributions consist of relatively low skew and do not account for the
range of distributions in the real world.

4.2 Case Study: Online Browsing Profiles

In addition, we also consider entities in an online environment, where a completely different type of location
access phenomena is found. For instance, it has been observed that the popularity of webpages within a
particular website varies widely with high-skew [7] - much higher than that observed in the discharge data.
The distribution of the “popularity” of locations (i.e. the number of distinct people visiting a location)
adheres to a power-law function, namely the Zipf distribution. In general for a Zipf, the probability of
occurrence of an event (which we consider to be data collection at a location),fi, is inversely proportional
to the event’s rank (as determined by its frequency)ri via the equationZ × fi = r−α

i , whereα is a constant
between [0,1] andZ is the number of observations. Given the rank of a set of pagesX and the number of
usersY who visit those pages, the two dimensional plot of log(X) vs. log(Y ) will follow an inverse linear
trend. A similar finding has been observed with traffic over websites and, subsequently, has been employed
for more efficient search engines [8].

The dataset used to study this phenomena with respect to online information was compiled by the Home-
net project at Carnegie Mellon University, who provide families in the Pittsburgh area with Internet services
in exchange for the monitoring and recording of the families’ online services and transactions. [16] We
studied URL access data collected over a two-month period that included 86 households and 144 individu-
als. Each individual was provided with a unique login and password for fine-grained monitoring. Overall,
approximately 5000 distinct website domains and 66,000 distinct pages were accessed. For the following
analysis, we employ the simplifying assumption that all websites collect two types of data: 1) identifying
information, such as name or address on the purchaser at the time of purchase; and, 2) the IP address of
computers visiting their site on each visit. For our studies, we considerfi to be the probability that an
individual visits websitei andZ is the set of households in the dataset. To determine if the online dataset
is representative of a real world environment, we analyzed the traffic at each domain with respect to the
number of distinct visitors. In comparison to a Zipf distribution ofα = 0.6, a linear fit of observed log
frequencies to expected log frequencies yields a correlation coefficient of 0.98. As such, it can be inferred
that the high-skew location access trend holds in the online environment.

4.3 Simulation Study: Uniform and Power-Law Location Access Strategies

Zipf distributions explain high skew environments. For example, consider an environment whereL is a set
of locations andS is a population of subjects visiting those locations. The probability that any particular
entity visits locationli ∈ L is equal tor−α

i , whereri is the rank ofli’s popularity andα is a coefficient
between 0 and 1. Whenα equals 1, then the distribution is a true Zipf and whenα < 1 the Zipf distribution
is said to be in a generalized form. Given the high skew of the distribution, the log-log plot of ”number of
visitors” to ”location rank” is linear, while the coefficient functions as a dampening factor on the slope of
the plotted curve.

There are many aspects of location-based information which influence the linkage capability of a system.



Figure 4: REIDIT-I mean linkability of simulated entities distributed to according to uniform distribution
with probability p.

Figure 5: REIDIT-I mean linkability of simulated entities distributed to according to Zipf distribution with
probability p.

The main contributing components include the number of subjects, the number of locations, the distribution
of subjects to locations, as well as the parameters controlling said distributions. For this research, we
concentrate on the number of locations and the distributions guiding subject access to these locations. Thus,
for the analyses herein, the number of subjects is fixed as 1000. For these synthetic populations, we generate
two types of systems, the first according to uniform access and the second using a Zipf access distribution.

Am entity’s trail in a uniform distribution is controlled by a single parameterp. Basically, the probability
that any arbitrary valuetrail(l, t,X) equals 1 isp. For our experiments we samplep from the range[0, 1] at
equidistant intervals of 0.1 (i.e. p = {0.1, 0.2, . . . , 1}).3 Similarly, populations that are guided by the Zipf
distribution are generated using the formula described above. As with the uniform distribution, the Zipf is
studied by varying the parameterα over the same interval[0, 1], and sample points, as thep parameter of the
uniform distribution. For each tested data point, such as〈|L| = 10, p = 0.3〉, we generate 100 populations.
Each population is subjected to either the REIDIT-C or REIDIT-I algorithm. For each distribution type and
parameterization, these populations are allocations to sets of locations over the range of 3 to 40 locations.

For the analysis of the REIDIT-I algorithm, we only consider the trails as generated by the aforemen-
tioned distributions. In other words, while the reserved to track can contain a greater number of subjects’
trails than the other track, we work under the assumption that it is a closed population and that the track
sizes are equivalent. This aspect of the simulation has certain limitations, but is useful for an exploratory
investigation of the REIDIT-I response to varying distributions. Several limitations and concerns of this
simplification will be discussed in the following section.

The resulting 10-point plots for REIDIT-C and REIDIT-I are depicted in Figures 2 through 5. In these
plots the mean percentage and plus/minus one standard deviation of mean for the 100 simulated popula-
tions are depicted in the lower of the two plotted curves. Thex-axis corresponds to the parameter of the
distribution in question, while the lefty-axis corresponds to values of the mean percentage linked. For
completeness, and to dispel confusion, the upper curve corresponds to entropy - which will be addressed in

3In theory, any number of points on the[0, 1] range will suffice. We choose 10 equidistant points for equal coverage of the
distributions in consideration for this research.



a moment. Our analyses are reported and depicted for both the mean and the standard deviation for each
point.

4.4 Distributional Effect on Linkage

From the linkage plots, though there is no direct way to compare the parameterizations of the uniform and
Zipf distribution, there are several interesting observations that can be made. First with respect to both the
REIDIT-C and REIDIT-I linkage algorithms, it is apparent that the uniform distribution consistently yields
a larger number of linkages than the Zipf distribution. This is observable, even by visual inspection, by
considering the maximum linkability of the distribution type. For example, when considering 10 locations,
REIDIT-C links a maximum of approximately 40% of the subjects distributed uniformly (which occurs
whenp = 0.5), as opposed to around 16% of the subjects that are distributed in Zipf high skew (which occurs
whenα = 0.4). This finding is consistent across all systems as the number of the locations in consideration
is increased.

Second, we consider a less readily observable feature that directly relates to the general linkage capabil-
ity of a distribution type. To compare distributional types (i.e. uniform vs. Zipf), we consider the area under
the linkage curve. This is calculated as the total area under the 10-point mean linkage curve (average number
of linkages in 100 simulated populations). The results of this calculation with respect to distributions and
algorithm results are presented in Figures 6 and 7. Tough the uniform distribution always yields the larger
maximum number of linkages, the Zipf distribution is almost always the more linkable when considering all
parameterizations. This is obviously so in the case of REIDIT-I linkage, where Figure 7 shows that the Zipf
always dominates. Similarly, under REIDIT-C, Zipf is both the initial and inevitable dominant. However,
this analysis reveals an unanticipated and intriguing finding. In certain ranges, the uniform distribution is
dominant to the Zipf! In Figure 6, this finding is observed between approximately 8 and 18 locations.

The flip in distribution linkage capability dominance occurs for two reasons. First, Zipf dominates when
there are not many locations in consideration because it is more difficult to realize complete vectors of all
1’s. Second, Zipf dominates as the number of locations increase because it is easier for lesser accessed
locations, which is what the newly considered locations are, to convert an unlikely trail into an extremely
unlikely trail.

4.5 Calibrating Information Theory for System Linkage

The synthetic trails generated for the experiments are Boolean vectors of 0’s and 1’s. As such, it seems fea-
sible that each trail can be likened to a measure of information available on a subject. Continuing along this
line of thought, it is plausible that the trail linkage capability of a system is related to the Shannon entropy,
as defined in information theory. [26] From a general standpoint, the entropy provides a characterization of
the total amount of randomness in the distribution of 1’s and 0’s for a variable. In a sense, the entropy of the
track (subjects to locations) is a general predictor of linkage capability of a system.

For our purposes, letX be the track that maps a population of subjectsS to a set of locationsL. Also,
let fl be the fraction of subjects inS that visit locationl. This term is calculated as

fl =
∑|X|

s trail(l, s, |X|)
|X|

Given this information, the entropy for a single locationl,H(l), is equivalent to:

H(l) = −fllog(fl)− (1− fl)log(1− fl)



Figure 6: Area under the mean linkage curves for simulated populations and REIDIT-C linkage. “Zipf” and
“uni” correspond to the Zipf and uniform distributions, respectively.

For synthetic populations generated during the experiments, each location is allocated individuals indepen-
dently. Thus, the entropy measure for the entire systemX is computed asH(X) =

∑|L|
l=1H(l).

Both the entropy of the system and the linkage of populations over different distributions produce re-
sponse curves in terms of how linkage capability is influenced. Visually, the results can be observed in
Figures 2 and 4. As stated above, the entropy is the upper line, while actual linkages is the lower line. The
scale for the entropy is provided on the righty-axis.

It is apparent from these graphs that there exists a general relational trend between the actual linkage
curve (R) and the expected linkage curve as predicted by entropy (E). At the most general level, it is visually
verifiable that, as the number of locations increases, the actual linkage curve tends towards the entropy
prediction. From a mathematical standpoint, we consider these curves as functions, such thatR(x) = y.

To determine howE andR relate to each other, we define several basic metrics for comparison. Though
it is desirable to use known techniques for comparison, the curves generated for linkage analysis do not
relate to standard probability (or cumulative) distribution function. As a result, there is no statistical or
numerical test to compare the resulting curves to one another. Thus, we define several metrics based on
intuitive and observable features relating the curves. The first measure is called theshift σ of the curves,
which measures the distance along thex-axis between the maximumy-value peaks of the two curves. The
second measure is calledshapeψ, which relates the general shape of the two curves to one another. Shape
is calculated as the scaled difference between the 10-point plot ofE andR. More formally, both metrics are
computed as:

σ(E,R) = |maxxR(x)−maxxE(x)|



Figure 7: Area under the mean linkage curves for simulated populations and REIDIT-I linkage.

and

ψ(E,R) = −
10∑
i=1

|E(i)
max(R)
max(E)

−R(i)|

The resulting information from these metrics is summarized in Figure 4.5. Both of these metrics are a
characterization of features that measure the distance between the distributions. As values for the metrics
tends toward 0, the curves converge. As expected, the curves tend toward convergence as the number of lo-
cations increase. Yet after convergence begins to come into the line of sight, a counter-intuitive phenomenon
occurs. Specifically, phenomenon is that, after a certain number of locations are considered for a particular
distribution and trail linkage algorithm, theE andR curves begin to diverge from each other. This is an
artifact of the limits of linkage. Notice that in Figures 2 through 5, when a lesser number of locations are
considered the linkage curve has a well defined peak. This peak corresponds to the parameter at which the
distribution is most amenable to linkage. But this peak is only discernible when less than all of the trails are
linked. Thus, when the system is fully linked at multiple parameterizations of the distribution, the linkage
curve plateaus at 100% at its peak, while the entropy continues to be well defined. This limit to linkage
causes the observed linkage curve to be improperly matched to the entropy of the system. So, in a sense,
there is no divergence observed, but rather a limit to independent use of the entropy metric.

The shape metric allows for the discovery of another notable feature that captures how the distribution
type influence different trail linkage algorithms. Note that via REIDIT-C, the uniform distribution converges
earlier than the Zipf distribution. In contrast, when subjected to the REIDIT-I algorithm, the uniform dis-



tribution converges after the Zipf distribution. Ah, a paradox! At first consideration, one would expect that
one distribution type, either uniform or Zipf, would converge earlier in both algorithms. However, this para-
dox results from both how trails are generated under the two distributions as well as how the trail linkage
algorithms leverage information. First, consider the linkage algorithms. REIDIT-C looks for a unique bit
pattern. In this sense, both 1’s and 0’s are contribute evenly to the trail linkage process. This is why the link-
age curve for the uniform distribution is balanced, or has no shift around the midpoint ofp . In other words,
the % linked is approximately equivalent for +/-x around the parameterization ofp = 0.5. With respect to
REIDIT-I tough, a 0 value in a trail functions as fuzzy bit, since it can be used as either a 0 or a 1. Thus, as
p tends toward 1, trails with a lesser number of 1’s than thep ∗ |L| become extremely difficult to link, and
the linkage curve shifts away from high values ofp which allow for trails with large amounts of 1’s. This
is only one part of the problem though. In effect, the Zipf distribution should be hindered by this problem
as well. But because the Zipf distribution allows for locations to have different entropy values (due to being
a system of single uniform distributions), the Zipf systems ends up revealing more linkages. Thus, the total
amount of linkage the Zipf is capable of tends to be greater. If one wanted to validate this claim, it is simple
to observe that the average linkage, but not the maximum, for the Zipf is greater than the uniform.

Figure 8: Shape metric for similarity in actual and entropy linkage curves. The valley characterizes when
there the actual number of linkages curve begins to plateau.

4.5.1 Probabilistic Intuitions for REIDIT-C

In order to gain some intuition on what goes on during the simulations consider the case of uniform location
access strategy with complete information. In this case the parameter governing the access behavior isp, that



Figure 9: Shift metric for distance between max peak of re-identifiability curves.

is, the probability that a given entity visits a given location. An entity visits different locations independently
and its behavior does not depend on what other entities do. Then, the number of locations visited by any
given entity, sayV , follows a Binomial distribution with parametersL, the number of locations, andp, and
the expected number of visits isE(V ) = L · p. In this scenario, the quantity of interest is the expected
number of unique assignments,E(U), since REIDIT-C will accurately link those.

Before getting into the computation of the quantity of interest is worth noting an interesting trade-
off, which qualitatively explains the results we observed during the simulations. Specifically, the expected
number of unique trails—not assignments—is given by the binomial coefficient

(
L

E(V )

)
=

(
L
Lp

)
. The trade-

off is between the number of locations, more locations means more possible trails for given a number of
visits, and the entropy of the location access strategy as captured byp, asp → 0 (p → 1) the expected
number of visits decreases (increases) which means less possible trails for a given number of locations. In
the simulations above

(
L
Lp

)
grows fast withL for a relatively stable access behaviorp and a fixed number of

entities, leading to a very sparse mapping of entities to trails, and eventually to an increasing performance
of location-based linkage for every value ofp.

In the simple case of uniform access and complete information it is possible to analytically characterize
the simulated behavior of REIDIT-C and compute the expected number of unique assignments,E(U). In
order to do so, we need to define a two-dimensional Markov process that mimics the assignment process of
trails to individuals. DefineU as the number of trails uniquely assigned to an entity, and defineN as the
number of trails non-uniquely assigned to an entity, that is, trails assigned to two or more entitiesIt is now
sufficient to write down the transition matrices that govern the processP (Ut, Nt|Ut−1, Nt−1) and use that
properly to obtainE(U).



For example, forL = 10, p = 0.5 and |P| = 1000, the expected number of visits for each entity is
E(L) = 5 and this leads to

(
10
5

)
= 252 possible trails. In order to compute the expected number of unique

trails assignment,E(U), we have to define the two stationary transition matrices

PU =



0 1 0 . . . . . . 0 0
0 1

U 0 U−1
U . . . . . . 0

...
... . . . . . . 0

0 . . . . . . U−1
U 0 1

U 0
0 0 . . . . . . 0 1 0


and

PN =



0 1 0 . . . . . . 0 0
0 1

N 0 N−1
N . . . . . . 0

...
... . . . . . . 0

0 . . . . . . N−1
N 0 1

N 0
0 0 . . . . . . 0 1 0


.

BothPU andPN are253× 253 matrices and contain the probabilities of passing fromU = ut toU = ut+1

and of passing fromN = nt to N = nt+1, respectively. After obtaining the stable distribution of this
system,P (U∞, N∞) we can sum outN∞ to obtain the desired marginal expectation,E(U∞).

5 Discussion

The above analyses provide a wealth of insight into the capabilities of the REIDIT linkage algorithms. In
this section we briefly address some findings of particular interest. After discussing revelations from our
investigations, we consider some of the limitations of our framework and how future research can extend
the framework.

5.1 Distribution Parameter Estimation and Linkage Certainty

One of the most interesting of our findings is that high-skew distributions yield higher overall linkage capa-
bility in comparison to low-skew distributions. This is especially the case in light of the fact that low-skew
distributions always provide the potential for a larger number of linkages for any given number of locations
in the data collection environment. This finding has profound implications on the design of a system of
locations that collects multiple types of data, unrelated in their attributes, from a population of entities. This
implication is directly related to risk management theory. For instance, if it can be validated that data col-
lection will always be complete, and thus susceptible to the REIDIT-C algorithm, then setting up locations
in a manner that allow for high-skew distribution of data to location distributions is always a superior choice
to low-skew distributions. Regardless of the parameterization of the high-skew, it will always yield more
linkages than the corresponding low-skew distribution.

When the data collection environment provides less certainty in the relationship between tracks of differ-
ent data types, our strategy for optimizing linkage capability changes. Firstly, the optimal choice for location



allocation can be to distribute locations such that data collection is low-skew distributed. However, it should
be noted that low-skew distributions should be approached with a bit of trepidation. The main reason is
because low-skew distributions bear a greater risk regarding the ability to capture data from the population
of entities. Consider an incomplete data collecting environment, in which case REIDIT-I is employed for
trail linkage. If the system reverts into a best case location access scenario, such that the parameterization
of the distribution maximizes linkage capability, then the low-skew distribution will permit more linkages.
Yet, when there is uncertainty as to whether the parameterization will actually yield maximum linkage capa-
bility, then the locations are actually better off capturing data according to a high-skew distribution. This is
justified by the finding that the average number of linkages, across the range of parameterizations, is greater
in the high-skew distributions. Thus, it appears that the question of which type of distribution will yield
more linkages is a matter of how confidently the parameter of the entity to location data distribution can be
estimated.

The latter concern, regarding certainty in parameter estimation of location access and completeness of
data collection poses several complications. These aspects of the problem are not directly addressed in this
paper, but they can be considered in extensions to this research. In the following section, we shed some light
on these areas and provide suggestions on directions for future research.

5.2 Limitations and Extensions

Though this research provides a theoretical investigation regarding how particular distributions influence
trail linkage potential, there are certain caveats of the simulation design which limit the extension of these
results. First, to a certain extent, this research is biased in that it does not completely represent real world
populations in our simulations. This is because in the real world most entities are not random agents visiting
locations independent, but rather they can play an active role in choosing which locations to visit which
manifests in the form of correlations between locations in the patterns of access. These patterns can be
different than the unique features we exploit in the REIDIT algorithms. Instead, entities tend to visit multiple
locations in co-location patterns. As a result of such location access, the linkage capabilities of the synthetic
populations used in this research may be inflated.

Therefore, one clear extension to this research is to investigate linkage under different types of collation
patterns. Generating synthetic datasets to adhere to complex patterns is still very much an open question in
the statistics and data mining communities. However, there is some research that points in the direction of
utility, including multivariate distributional theory, genetic algorithms for binary string evolution, and market
basket data synthesis. Expanding on the latter, several groups have introduced an approaches for generating
synthetic market baskets [1, 19] and, in some respects, the Boolean trail linkage problem can be framed as
a market basket problem. Each location can be considered a different product that an individual decides
to purchase or not. Thus, if one was to define a set of purchasing patterns, possibly as association rules,
then it is possible that useful tracks could be constructed using synthetic market baskets. The foreseeable
limitations lie in the fact that market basked generation is useful for studying interesting patterns, but may
not facilitate the consideration of outliers, which the trail linkage algorithms are interested in studying.
Therefore, before synthetic market basket data can be used, there needs to be some validation performed on
the feasibility of how realistically outliers can be represented.

Second, the distributions used in this study consist of homogenous populations, such that visit access to
all locations adheres to a single distribution. However, we should ask, “What is the effect of mixture models
of populations on linkage?” For instance, to what extent is linkage facilitated when half the population is
uniformly distributed while the other half is Zipf distributed? It is possible, and one could speculate on
the results, but it is a complex problem that is difficult to reason. As a result, this offers another feasible
direction for research into the fundamentals of trail linkage.



6 Conclusions

This research introduced methods and metrics for studying the effect of location access distributions on
location-based, or trail, linkage algorithms for data with non-common attributes. Our finding reveal that
completeness of information (i.e. whether an entity’s leaves data behind at the location) plays a critical role
in an algorithm’s linkage capabilities. Specifically, low-skew distributions always provide greater potential
for linkage when trails are completely truthful (i.e. for each location, the trail reveals if an entity did or
did not visit the location). Moreover, when a trail is incomplete, then high-skew distributions yield greater
linkage potential. The previous statements account for all parameterizations of location access distributions,
but when there exists certainty in the parameterization, then low-skew distributions can yield a greater
linkage capabilities. This research was situated in an information theoretic framework, which explicitly
models how trail linkage can be represented as a communication problem. Though our models are theoretical
and based on simulation, this work provides a foundation for both basic and applied trail linkage research.
To extend our models, future researchers should build on our theoretical findings. One direct extension to
this work is to study distributions with location dependencies, as well as mixture models of location access
distributions.
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