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Abstract

As architecture-based techniques become more widely adopted, softwarecascface the problem of reconciling
different versions of architectural models. However, existing approachéiferencing and merging architectural views
are based on restrictive assumptions, such as requiring view elerodmsée unique identifiers or explicitly log changes
between versions.

To overcome some of the above limitations, we propose differencing agitigrerchitectural views based on structural
information. To that effect, we generalize a published polynomial-timetdigee correction algorithm (that detects
inserts, renames and deletes) into a novel algorithm to additionally degsticted moves and support forcing and
preventing matches between view elements. We implement aeas dbtcompare and merge component-and-connector
(C&QC) architectural views, incorporating the algorithm. Finally, we provadeempirical evaluation of the algorithm and
the tools on case studies with real software, illustrating the pradticaf the approach to find and reconcile interesting
divergences between architectural views.
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1. INTRODUCTION

The software architecture of a system defines its high-teganization as a collection of runtime components, connectors
and constraints on their interaction, along with their additional properties defieirxpected behavior, commonly referred
to as a component-and-connector (C&C) view. Over the past decadepnsmaechitecture description languages (ADLS)
have been developed and applied to real-world systems.

As architecture-based techniques become more widely adopted, saftelitects face the problem of reconciling different
versions of architectural models, including differencing and sometimerging architectural views— i.e., using the
difference information from two versions to produce a new versioniribhtdes changes from both earlier versions. For
instance, during analysis, a software architect may want emcée two C&C views representing two variants in a product
line architecture [CCG+03]. Once the system is implementedrditect may want to compare a high-level conceptual
C&C view with a C&C view retrieved from the implementati(using a variety of architectural recovery techniques): the
architect might be interested in implementation-level viotetiof the architectural styles or other intent [AAGO05], or in a
change impact analysis [KPS+99]. At runtime, the difference irdtbom could be used to perform architectural repair
[DHTO2]. Finally, during evolution, the architect may use the diffeeeinformation to better focus regression testing
efforts [MDRO5].

A number of techniques and tools for differencing and merging C&Csvimwe been proposed. Some of these techniques
detect only a small number of differences. For instance, ArcffO@G+03] only detects insertions and deletions, possibly
leading to the loss of information when elements are moved or eghaiany of these techniques are also limited in their
ability to detect differences based purely on structural infoomathey assume that elements have unique identifiers (every
time an element is changed, even when only its type changess ia geew unique identifier [APO3][OWKO03]), or only
match two elements if both their labels and their types matCiGHD3]. Other approaches (e.g., Mae [RHM+04]) rely on
the environment tracking all changes using fine-grained eleraegityersioning. Although such environments may provide
the ability to infer high-level operations such as merges, gplitdones, in addition to the low-level operations such as
inserts and deletes, they require a heavy upfront investment ibuidihg and integration, and have not become widely
adopted. Similarly, one can maintain a record of the structural chamgeduced to a view and replay it against another
view [JimO05].

In this paper, we propose an approach that overcomes some of the above limitationsn@antributions are:

< An approach for differencing and merging two architectural viewedyan structural information, using tree-to-tree
correction algorithms to identify matches and classify the clsabgiveen the two views. Optional type information
can prevent matches between incompatible view elements, speeding execution avidgntipe quality of the output.

e A generalization of a recently published tree-to-tree correetigorithm for unordered labeled trees [THPO5] (that
detects renames, inserts and deletes) into a novel polynomialréao-tree correction algorithm that additionally
detects restricted moves and supports forcing and preventing matches betwedanaents.

e Aset of tools incorporating such algorithms for the semi-automated synchronifa@&¢C views.
* An empirical evaluation of the algorithms and the associated tools on cezdisé studies.

The paper is organized as follows. Section 2 describes the cleallénglifferencing and merging structural views, the
underlying assumptions and the limitations of our approach. Section 3ogssgour novel tree-to-tree correction algorithm.
Section 4 describes tools that incorporate tree-to-tree corredgjorithms to synchronize C&C views. Sections 5 and 6
present two case studies on real systems. Finally, we discuss related waskcndec

2. CHALLENGES

A view can generally be described as a graph. View differeraithmerging can then be cast as a problem in graph
matching. Hierarchical architectural views have aspects ¢f dpatphs and trees—i.e., they have a tree-like hierarchy but
there are cross-links that form a general graph. In thisoseatie consider the benefits of both graph and tree differencing



approaches, with graph algorithms being more general, but treetlalgormore scalable. Having chosen trees for
scalability, we describe a new algorithm in the next section that meetgjairersents.

2.1 Differencing and Merging

Graph matching, in the general case, is NP-complete [CFS+04].Mdoveertain classes of graphs do not suffer from the
exponential complexity. For instance, graphs characterized by thermdasbf unique node labels can be processed
efficiently [DBB+04]. In addition, efficient algorithms have beproposed for trees. A widely used measure of the
similarity between two graphs is the notion of graph edit distf@E&+04]. The approach relies on using a set of edit
operations that model inconsistencies by transforming one graph inteean®ypical graph edit operations include the
deletion, insertion and substitution of nodes and edges. Often a cosigisedsto each edit operation. The costs are
application dependent and used to model the likelihood of the correspondingstesanas (typically, the more likely a
certain inconsistency is to occur, the lower is its cost).clbst is assigned to each edit operation, then the edit distance of
two graphsy; andg, is found by searching for the sequence of edit operations with themnmncost that transforigy into

0z- A similar problem formulation can be used for trees; however,gdi distance differs from graph edit distance in that
operations are carried out only on nodes and never directly on ed@etion 3, we describe a novel algorithm based on
tree edit distance that meets the requirements of the problem domain.

2.2 Assumptions

Before we do that, we discuss some of the assumptions in our approatiovarttiey generalize those of existing
approaches.

No Unique Identifiers. For maximum generality, we match elements based on their structure and dquiretelements to
have unique identifiers, as in ArchDiff. In many applications, such undgrifiers do not exist. Adding this assumption
gives the problem of graph edit distance a polynomial-time comyplestrecently shown in [DBB+04]. As an optimization,
persistent unique identifiers could be assigned to view elements to quicklytherichetween invocations.

No Ordering. In the general case, an architectural view has no inherent ordmriogg its elements. Assuming an
architectural view is represented as a tree, this suggmgtan unordered tree-to-tree correction algorithm might perform
better than one for ordered trees. Ordered labeled trees (i.e., te@edn which the children of each node are ordered)
have been studied extensively with many efficient algorithmgadle (e.g., [SZ97]). However, tree-to-tree correction for
unordered trees is MAX SNP-hard [Z2J94]. Some algorithms for unortieresiachieve polynomial-time complexity, either
through heuristic methods (e.g., [WDCO3][CG97]) or through an exact solutiorr @lditional assumptions (e.g.,
[THPOS5]).

Support Disconnected/Stateless Operatiorz-or maximum generality, we assume a disconnected and statelessoope
i.e., no monitoring of structural changes is taking place while tteisisnodifying a given view (e.g., Mae [RHM+04]) and
no trace is kept of the set of changes made to a view (e.g., [Jim05]).

Detect RenamesFor maximum generality, we do not require labels to match exattimes are often modified during
software development and maintenance: a hame may turn out to be ingppropmisleading due to either careless initial
choice or name conflicts from separately developed sub-syskeDgl]. In some application domains, some view elements
may not have persistent names or may be assigned automaj@ahated names. This suggests that the algorithms should
be able to handle sparse or incomplete labels and handle renames. A otimkisting algorithms detect renames, but
either assume that a strong majority of nodes will have exawttghing semantic information (labels and types) or have
only been tested under such a condition: e.qg., at least 80% of nodes&etiyeraatching semantic information in [CG97],
and at least 99% of nodes have exactly matching semantic information in [RRL+04].

Detect Hierarchical Moves.Architects often use hierarchy to control complexity, and manysvae hierarchical: e.g., in
C&C views, the hierarchy corresponds to the system’s decompositiovevdr, architects differ in their use of hierarchy:
components expressed at the top level in one view could be nested avitthrer component in some other view. A
hierarchical move shifts a node up or down N levels in the treagiitpits parent. The ability to detect hierarchical moves
is one of the main features which distinguish our proposed algorithm from the algoritnbetkg [THPO5].



Allow Manual Overrides. Since having a correct mapping between view elements isatfibr the merge operation, user
control over the structural matching process is important: incpdati the user should be able to force a match between
elements that cannot be structurally matched, as well as prasohes between elements that, although structurally
similar, are in fact incompatible. Note that manual overrided beisaken into account by the algorithm itself, and cannot
happen as a post-processing step since there are dependenciesapping ite.g., two view elemends anda, in View A

may not both map to the same elemianin view B, even ifa; is forced to match;). This feature also distinguishes our
algorithm from existing ones.

Type Information for Optimization Only. Unlike other approaches (e.g., ArchDiff), matching the type infoonas not
critical to the operation of the algorithm; it should be able to @éhlviews containing untyped elements, as well as views
at different levels of abstraction with possibly different tgystems. The algorithm should be able to recover a correct
mapping from structure alone if necessary, or structure and tygengtion if type information is available. However, the
algorithm can take advantage of the type information (whenad)l to prune the search tree, significantly speed
convergence towards the optimal solution and improve the quality ofdhehing. If the view elements are represented as
typed nodes, at the very least, the algorithm should not match nodesmipiatible types (e.g., do not match connector
componenty). In some cases, additional architectural type information magvhiable and could be used for similar
purposes (e.g., do not match a component of §iffter from a Pipe-and-Filter style to a component representing a
Repositoryfrom a Shared Data style).

In order to remain tractable, our approach makes the following restrictingzgsisn

Hierarchical Views. In the general case, the differencing and merging of non-hierdraléses corresponds terror-
correctingor inexact subgraph isomorphisf@FS+04], a problem proved to be NP Complete. The most ambdajiimsal
algorithms (i.e., if a global minimum of the matching cost existgill be found) can handle at most a few dozen nodes. We
take advantage of the tree hierarchy in architectural véasrecast the problem into one that is more tractable, usisg tree
instead of graphs. In C&C views, hierarchy corresponds to nestedchiteetures or decomposition. Other architectural
views, such as module views [CBB+03], have similar characteristics.

Similar and Comparable Views.The two views being compared and merged have to be somewhat sityictimnilar.
When comparing two completely different views, the algorithm cowddye a trivial edit script that deletes all elements of
one view and then inserts all the elements in the other viewlditian, the two views being compared and merged must be
of the same type, i.e., comparable without any view transformation. This alse Hilmapproach to be more applicable than
just C&C views, at least in principle.

Merging/Splitting Not Supported. Our approach does not currently detect the merging or splitting of view elements.

3. TREE-TO-TREE CORRECTION

In this section, we describe in detail a novel tree-to-treeection algorithm for unordered labeled trees. The reader only
interested in its applications can skim this section. Our TreeMDi& Move-Delete-Insert-Rename) algorithm generalizes
a recently published algorithm [THPO5], denoted as THP. We alsorimepted THP for experimental comparison with our
implementation of TreeMDIR.

3.1 Problem Definition

Let us first give an unambiguous definition of the problem, adapted[8@87]. We denote thd' node of a labeled tree T
in the postorder node ordering of T by T[i]. [T| denotes the numberroéets of T. We define a triplelif, T,, T,) to be a
mapping from T to T,, wheresM is any set of pairs of integers (i,j) satisfying:

1) 1<=i <:|'[1|, ]_<:j <= |'E|'
2) For any pair of (ij;) and (b,j») in M,
a) ip= iy if and only if j = j, (one-to-one)

b) T4[i4] is an ancestor of i,] if and only if T,[j1] is an ancestor of Jj ;] (ancestor order preserved).
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We will use M instead of M, T, T,) if there is no r

confusion. To delete a node N in tree T, we remove nt/gmy\ o dﬁt% %\73 b

N and make its children become the children of the par /q\ / a

of N. To insert a node N in tree T as a child of node M, " € ¢ * ¢ ¢ % ® = SRR BE det_ ¢

make N one of the children of M, and we make a subse " @ =g e

the children of M become children of N (See Figure 1).

Renaming a node only updates its label. In the followipgyure 1: Edit operations in tree-to-tree correction [SZ97].
discussion, a matched node means a node with an exactly

matching label or a renamed node. The edit operations that wetoedsrrestricted moves correspond to deletion and
insertion operations in the middle of the tree: sequences of node deletions iddieeahthe tree result in nodes moving up
a number of levels in the hierarchy, and sequences of node inserttbesniiddle of the tree result in nodes moving down
in the hierarchy (by becoming children of the inserted nodes). TréeMBDes not currently support arbitrary node moves.
THP does not allow any insertions or deletions in the middle of ¢éeeatnd works under the assumption that if two nodes

match, so do their parents (i.e., only subtrees can be inserted or deleted).

N

Suppose we obtain a mappitgbetween trees fand . From this mapping we can deduce an edit script to tumtd T,.

First, we flag all unmatched nodes in the first tree as dkkte all unmatched nodes in the second tree as inserted. We
order the operations so that all deletion operations precede atlanseperations, delete the nodes in order of decreasing
depth (deepest node first), and insert them in increasing depth order.

We still have to define the cost of an edit script (which is a seguef edit operations): for each node in the source tree, we
choose a cost of deletion (not necessarily the same for all néoiesgch node in the destination tree we choose a cost of
insertion (again, not necessarily the same for all nodes), anddbrpair of node&, m)wheren is some node iit; andm

in T,, we choose a cost of changing the labeah @fto the label o (for example, to chand®anana” into “ananas’, we
might choose a cost of two using string-to-string correction [WET4{¢ cost of the edit script is then equal to the sum of
the costs of insertion, deletion, and renaming operations it containgfdreerany given mapping has a unique cost. So, in
order to find an optimal edit sequence, it is sufficient to find an optimal mapping.

3.2 Explanation of the Algorithm

The algorithm pseudocode is given in Section 3.3 below. Clig) be the cost of the optimal mapping from the subtree
rooted at to the subtree rooted jatA set of node$(i) is a successor set of nadié it is a subset of the set of descendents
of i and none of the elements i) is an ancestor of another, and each node of the subtree robteeittter a descendent
or an ancestor of an element3{f). Given two set$§(i) wherei belongs tar;, andS(j) wherej belongs tdr, it is possible to
define the optimal mapping &(i) to S(j) as a one to one function from a subse®@f into S(j) with least cost, where the
cost of mapping elemektof S(i) to element of S(j) is equal to cost of the optimal mapping of the subtree rootetbahe
subtree rooted df and the cost of leaving an elem&nof S(i) without image is equal to the cost of deleting the whole
subtree rooted &, and the cost of having an umatched elerh@émiS(j) is equal to the cost of inserting the entire subtree
rooted af. This suggests that if we know all the cdS{s,,d;) whered; is a descendent ofandd; is a descendent @fit is
possible to comput€(i, j) by considering all possible pairs of séi),S(j)) and for each such pair, getting the minimum
weight bipartite matching defined by the entries of the costim@tcorresponding to the elements3i{f) andS(j). Finally,

let L(i,j) be the cost of changing the label of nada the source tree to the label of ngdie the destination tree. The
minimum cost obtained added i@, j) will be equal toC(i, j). L(i,j) uses string-to-string correction to evaluate the intrinsic
degree of similarity between the labels of two nodes, usingahdatd dynamic programming algorithm to find the longest
common subsequence [WF74].

We choose the best paig(i),S(j)) using abranch-and-boundbacktracking algorithm. LeDesdi) denote the set of
descendents of We try to choose a subggtof DEsdi)xDesdj) with minimal cost. This is done by trying to addQmne
element ofDEsdi)XDEsdj) such that the new element@his consistent with the previous elements (no same node can be
matched to 2 different nodes, nor can a node appear in an elenigiitt @ther a descendent or an ancestor already appears
in some element of Q). The algorithm backtracks each time it deterthiaethere are no more valid pairs to add, or when it
determines that the cost of the current branch will be too largetch the best solution already discovered to date. As the
problem is NP-complete, the approach outlined above can quickly beconpaitationally infeasible without additional
constraints.



We chose to enforce an upper boudidn the sum of distances between elementS(gfand the closest child of
(respectively S(j) andj) with B typically a small integer. The reasoning behind this constsithiat nodes are not usually
moved too far from their original positions in a hierarchy, arisl ielatively rare for several non-leaf siblings to be teele

at the same time. The bouBdhas the additional benefit that only relatively small neighborhooéadti node have to be
considered for the computation of the optimal cost of a single subtieeenabling us to perform many operations very
efficiently using bit manipulation. For example, during the backtrackearch, checking whether a node is still available is
a single bitwise AND operation instead of a time-consuming loop over an array.

TreeMDIR can be considered a generalization of THP because THRamtles the case wheBeO (i.e., only the children

of a node can be in a successor set of that node), producing a fully piallytiora algorithm that is typically much faster
than our generalized algorithm. But being able to handle non-zero wdlBeallows our algorithm to detect hierarchical
moves. TreeMDIR is guaranteed to find the optimal matching within theraaris of the boun®, provided it is allowed to
run long enough. Unfortunately, on a number of instances (especially, snwiteemore than a few hundred nodes and
when the average degree of a non-leaf node is greater than fasiecessary to limit the running time by enforcing a
boundR on the number of recursive calls of the backtracking searckspamding to a given subtree pair. This bound
removes the guarantee of optimality. Nevertheless, we foundhéhatgorithm still obtains good results when we limit the
number of recursive calls, because usually the backtrackinghsié@ishes very quickly when we compare similar subtrees.
Since the algorithm uses the branch-and-bound technique, a good matcHallbgést bounds and therefore early cutting
of branches. The search terminates normally for matrix entrieslly corresponding to good matches, and is interrupted
only when the match is not good, which often allows the algorithmuonran optimal match even though the backtracking
search was interrupted for the computation of some of the coskreatries (as these matrix entries correspond to bad
matches which are not part of the optimal solution).

3.3 Pseudo Code of the Algorithm

In the following pseudo code of the TreeMDIR algorithm, argumentsatieapassed by reference are indicated éf. In
order to reduce the complexity of the pseudo-code, the paraReded the ability to force and prevent matches are not
reflected here. For efficiency reasons, bit vectors are storiaiegers (with 0 meaninfglse, and 1 meaningrue) in and
bitwise manipulations are used heavily.

Procedure: TREEMDIR // MAIN PROCEDURE

Input:

Tree Ti: first tree to compare

Tree T2: second tree to compare (turn Ti1 into T2)

Output:

BestGlobalMatch: contains the best mapping from T: to T:

Declare:

CostMatrix: CostMatrix[i][j] is the cost of the optimal mapping from the subtree rooted at i

to the subtree rooted at j

BestGlobalmatch[]: array of pairs of nodes corresponding to the least cost mapping from T1 to T

BestSuccessor[][]: a 2D array of sets of pairs of nodes
(m, n)[] BestSuccessor[1][J] means (m,n) is a match between one element of the
successors of i and one element of the successors of j in an optimal mapping
from the subtree rooted at i to the subtree rooted at j

L(i,j): cost of changing the label of node i in T: to the Tabel of node j in T

using string-to-string correction

Begin

Postorder Ti1 and T2 nodes

for(i = 1 to Ti.size)

for(J =1 to T:.size)
BestSuccessor[i][j] = Searci(i, j, ref CostMatrix)
CostMatrix[i][j]= Bestsuccessor[i][j].cost + L(i,])
GEI?ESTMATGHNG(BestSUCCGSSOF, ref BestGlobalmatch, Ti.size, T..size)
En

Procedure: SEARCH // SETUP DATA STRUCTURES FOR CALLING BACKTRACK

Input:

i: index in tree T

j: index in tree T

CostMatrix: cost matrix, same as for TREEMDIR

Output:

CostMatrix[i][j]: updated entry in the cost matrix

return a set of node pairs representing the best found mapping of the nodes of a successor set of i to

the nodes of a successor set of j

Declare:

Asci[], Desi[]: arrays of integers where the nt bit in the mth integer indicates whether mth node is an
ascendant (respectively, descendent) of nth node in T:

Asc:[], Desc:[]: same as above, for T



BestSolution[]: set of optimal matches, implemented as a Boolean array: nth entry is true if the nt node
pair in the set of all node pairs sorted by merit belongs to the best matching
(merit is a measure of the quality of the matching)
CurrentSolution[]: set of matches being built, encoded in the same way as BestSolution[]
BestCost: variable
Unavailablei: integer where the nth bit is set if the nt node in tree T: is unavailable for inclusion in
CurrentSolution because an ascendant or descendent is already included in CurrentSolution
Unavailable;: same as Unavailable: but for tree T
Begin
Geg the Tist L of all pairs (p,q) where p is a descendent of i and q is a descendent of j
Sort the Tist by decreasing match merit
(merit represents the percentage of subtree weight that is matched when two nodes are compared)

foreach node among the descendents of i and j

Associate an integer. Make the bit sequence correspond

to the set of of descendents/ascendents of the nodes

Store the integers in the Desc/Asc arrays, respectively
Initialize BestSolution and CurrentSolution arrays to O
Initialize BestCost to an infinite value
Initialize Unavailable: to 0, Unavailable; to 0
BACKTRACK(O /* index*/, L, ASC1, Asc2, Desci, Descz, Unavailablei,Unavailable,, CostMatrix,

/* CurrentCost* / ref BestCost, ref BestSolution, ref currentSolution)

Convert BestSolution bit vector to a set of node pairs
return set of node pairs
End

Procedure: BACKTRACK //SEARCH FOR A GOOD MAPPING BETWEEN SUBTREES
Input:
index: position reached in Tlist L
L: list of pairs of nodes (m,n) sorted by merit
Asci[], Ascz2[], Desci[], DeSCz[] same as for SEARCH
Unava11ab1e1, Unava11ab1ez same as for SEARcH
costMatrix: cost matrix, same as for SEARCH
CurrentCost: current cost of the mapping being built
(i.e., the subset of Cartesian product of the set of
descendents of i and j)
ref BestCost: same as for SEARcH
ref BestSolution[]: same as for SearcH
ref CurrentSolution[] : same as for SEARcH
Output: BestCost, BestSolution, Currentsolution: updated
Begin
?f (no element of L can be added to CurrentSolution) /* Base Case */
if (CurrentCost + cost of deleted subtrees < BestCost)
BestSolution = CurrentSolution
BestCost = CurrentCost
return
foreach element 1= (m,n) in L starting at position index
Check whether 1.first and 1.second are still available
if not continue
if ( adding 1 to current mapping violates bound B )
continue
Add cost of match to CurrentCost to obtain NewCost
Get a Tower bound E of remaining cost using match merit
1f ( E + NewCost >= BestCost ) continue
Add 1 to CurrentSolution (by setting the corresponding
entry in CurrentSolution to 1)
NewUnavailable: = uUnavailablei OR Desci(m) OR Asci(m)
NewUnavailable, = Unavailable: OR Desc:(n) OR Asc:(n)
BAckTRACK (index+1, L, Asci, Asc2, Desci, Descz, NewUnavailablei, NewUnavailablez,
costMatrix, NewCost, ref BestCost, ref BestSolution,ref CurrentSolution);
ﬁemove 1 from CurrentSolution
En

Procedure: GETBESTMATCHING // DEDUCE THE OPTIMAL MAPPING
Input:
BestSuccessor[][]: same as for TREEMDIR
ref BestGlobalMatch[]: same as for TREeMDIR
i, j: indices of a pair of nodes that belong to the best possible mapping between the two trees
Output: BestGlobalMatch: updated
Begin
foreach e = (m, n) in BestSuccessor[i][j]

Add e to BestGlobalMatch

gmBEmMATouNG(BestSuccessor, ref BestGlobalmatch, m, n)
En

3.4 Forcing and Preventing Matches
Manual overrides are not a standard operation in most tree-toamaetion algorithms. We added to TreeMDIR the ability

to force and prevent matches between a node in fraadranother node in treg. Preventing a match between two nodes
andj is easy—just assign a very large cost to the corresponding iantine cost matrixC[i][j] . But forcing a match



between two nodes is more difficult. At first glance, it wouldmsehat preventing the match of either of these two nodes
with any node other than the required one, and making the cost of delediamsartion of these nodes very high, would be
enough. It would be enough if the algorithm did not have to handle the addad@msdtaint concerning the distance to the
subtree root. Since this constraint exists, it is often necessdglete entire subtrees at a time. So we have to prevent that
one of the nodes involved in the forced match is deleted in one of thioiseesdeletions. A possible solution would be to
prevent the deletion of all the ancestors of the forcibly matched node. This id thdd®est solution if we used THP. But in
our case, this solution could produce a very sub-optimal edit scriptideedais quite possible that a few ancestors got
deleted, while the forcibly matched node isn't deleted. This reqistsguishing between individual delete operations and
mass delete operations.

We therefore allow the deletion of ancestors of the forcibly matched node, on théadhdit this deletion operation is not
part of a subtree deletion operation, i.e., whenever an ancestorteddelkeleast one of its descendents which is itself an
ancestor of the forcibly matched node must be part of the success@esenforce that constraint in the base case of the
recursive BCKTRACK procedure. When computing the best cost for(itfjeentry of the cost matrix, ifis an ancestor of a
forcibly matched node, BKTRACK does not record iBestSolutionany mapping that deletes the branch leading to the
forcibly matched node, although it records a mapping that deletesiatéemediate nodes on the path froto the forcibly
matched node. This feature is not shown in the pseudo-code to keep it manageable.

3.5 Time and Memory Complexity

An upper bound on the running time of the TreeMDIR algorithm is as followX:Hetthe set of nodes of both treebe an
element ofX, p be the maximum allowable size of a connected subgraph of thénateeah be deleted or inserted in the
middle of the treef(x,p) be the number of nodes that lie within a distanog®1) from x, andF(a) = max{f(x,p): XJX and

p=a}.

TreeMDIR has a worst case running timeQ{f2*F(a))! N9). In our implementation, pruning the search tree by using both
tree structure and additional semantic information (e.g., type informaand being able to limit the running time by
returning a possibly suboptimal solution, make the average caselemady faster than the worst case. In practice, the
observed runtime i©(K N?) whereK is a large constant, but not quite as large as the theonetirstl case bound would let
one imagine. In comparison, THP has a running timn@(dtN?).

Regarding memory requirements: although both THP and TreeMDIR camplEnented irO(\) space at the expense of
increased implementation complexity, we implemented THB(thN’) whered is the max degree of a tree, and TreeMDIR
in O(b N), whereb is the number of bits in an integer.

3.6 Empirical Evaluation

In this section, we present an empirical evaluation of the perfarenand the accuracy of TreeMDIR. Evaluating the
accuracy of the algorithm is necessary because baiadsiR remove the guarantee of optimality. The test data was built
as follows: 1) generate a random tree with random labels (taken from a pool of 1Cepuamsibs so as to be non-unique); 2)
copy the tree; 3) delete a random number of nodes in the copy (bothliatetriaaf nodes); 4) rename a number of nodes

in the copy; 5) and finally, compare the two trees using THPaple 1: Empirical evaluation of TreeMDIR (R = 100K)

and TreeMDIR. Case # Ops THP TreeMDIR
The deletion operations in the middle of the tree correspond to Nodes

h icted hat TreeMDIR d In the intefest Ops | Time] Ops| Time
the rgstrlcte moves that ree etects. In the int \LR%name &40 T69 770 > 569 o4
full disclosure, however, we did not check that at least some 0

the randomly generated test cases do not violate THP’s 1280 857 | 1509 ! 963 442

assumption, namely, that if two nodes match, so do thelRelete | 640 | 492 | 701 2 492 50

parents. Additional details can be found in Appendix A. 1280 | 1113 1397 5 1114 169

, , , , Move 640 441 | 1076 3 | 1098 215

The length of an optimal edit script must necessarily be efual 280 | 652 | 2407 3 735 71
to the sum of the number of deletion added to the numberof

640 288 712 2 288 65

renaming operations, since there is a tree which lacks ancertge9ree
number of nodes, and it has a number of nodes which doesn't 1280 | 576 | 1194 10| 57§ 248
exactly match any of the nodes in the other tree and each of




these nodes needs at least one edit operation to be taken into atablmi shows for different tree node sizes, the length
of the optimal edit script, the length of the edit script producedHf {including the time), and the length of the edit script
produced by TreeMDIR (including the time). All times are in seconds.

On average, THP produced edit scripts sub-optimal by about 120%, whieeedDIR produced edit scripts sub-optimal
by about 7%. In the worst case, THP produced a suboptimal edit scritolny 400% whereas TreeMDIR's worst case
performance resulted in an edit script sub-optimal by around 150%. Inds#h, @ccuracy deteriorated significantly when
nodes of large degree were allowed or when the trees waréifferent. TreeMDIR’s worst case was on a source tree of
640 nodes separated from its target by an optimal edit script of 448tiope containing both deletions and renames. In
that case, the returned edit script was 2.5 times longer than fheloedit script. This behavior, however, was far from
typical and TreeMDIR produced good results with most trees, evem tivheoptimal edit script involved 2/3 of the number
of nodes. Finally, with up to 85% of the nodes renamed (no deletions), TreeMDIR produdkesheadé scripts within less
than 1% of the optimal script length on trees of 640 nodes, providing lusheitevidence that it can recover the mapping
from tree structure alone.

The improved match quality comes at a heavy runtime cost. With Hewed to a large value (100 K), TreeMDIR was
about 60 times slower than THP on average and up to 200 times siaveniorst case. As predicted, setting boRBrid a
much smaller value often produced only slightly sub-optimal edptscior a noticeably reduced running time: on a tree of
1280 nodes with an optimal edit script of 396 edits, THP produced an éplitadct775 edit in 7 seconds. TreeMDIR (with
R=100K) produced an edit script of size 459 in 6 minutes, whereas Tréekith R = 5K) produced an edit script of size
479 in 4 minutes. Finally, we would like to point out that we have avoptedhature optimization in our current
implementation to allow for easier debugging, so we think that the running time caproged.

4. SYNCHRONIZING C&C VIEWS

We illustrate an application of the algorithm by incorporating it in a set ddldeaiools to synchronize C&C views.
4.1 C&C View Differencing and Merging

We represent the structural information in a C&C view asasselinked tree structure that mirrors the hierarchical
decomposition of the system. The tree also includes information tovepine accuracy of the structural comparison. For
instance, the subtree of a node corresponding to a port or role inclutles pbrt's or the role’s involvements, i.e., all
components (and their ports) or connectors (and their roles) reachaletifat port or role through attachments or
bindings. Cross-links refer back to the defining occurrence of daoteet and allow the user to navigate the architectural
graph. We also add to each element various properties (such asfoypetion). The type information, if provided, is used
to build a matrix of incompatible elements that may not be matched.

A graph representing a C&C view can generally have cynlés Representing an architectural graph as a tree cauges eac
shared node in the architectural graph to appear several tirsesdaral subtrees, with cross-links referring back to their
defining occurrences. These redundant nodes greatly improve the ganfuttae tree-to-tree correction; however, they may
be inconsistently matched with respect to their defining occurrgedégr in what they refer to, or in the associated edit
operations). We post-process the edit script to eliminate incamsisgtches using two passes. During the first pass, we
synchronize the strictly hierarchical information (e.g., components, ctmvaeports, roles, and representations); during the
second pass, we synchronize attachments and bindings. The post-prodegsisgvery simple, since at that point, the
mapping between the nodes in the two graphs is known.

4.2 Tool Support

Synchronization follows the following five-step process: 1) Setugsyhehronization; 2) View and match types (optional);
3) View and match instances; 4) View and modify the edit sasjticnal); 5) Confirm and apply the edit script (optional).
Because steps 1 and 5 are straightforward, we will only discuss steps 2-4 in mbbeldeta

In Step 2, matching the type structures between the two views—{@are 2), currently a manual step, can produce semantic
information that speeds up the comparison, but is otherwise optionab ltegluces the amount of data entry for assigning
types to the elements to be created by the edit script.
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In Step 3, matching instances uses tree-to-tree correction to 1N acme Types: wg Archlava Types:

the tree-structured data from the two views to find Structl [ & achosveram  Mach | 88 archiava
differences and produce an edit script. It consists of: a) rettiee- |= & #cFan w #-(3 Component Types
structured data from the first C&C view; b) retrieve tetictured | - 5 coreorent Pes unmateh | = () Gomoadr Tiees
data from the second C&C view; c) use the tree-to-tree at@ne =4~ CalReturnConnT (3 Roles
algorithm for unordered labeled trees to identify matches e £ Roes - i
structural differences (classified as inserts, deletes, emnand £3 Roles Show PR OVIDE. ONLY
moves— See Figure 3), and obtain an edit script to make one -3 Port Types . © REQUIRE_OMLY

. . o commandT Order -7 Role Types
more consistent with the other. Iy R

o provideT

The differences found during structural matching are shown in ¢ © pubsubT
tree by overlaying icons on the affected elements (see FRyuiean o anle”;i;es
element is renamed, the tool automatically selects and hightiut: @ providerT
matching element in the other tree; for inserted or deletedeatsm L=

the tool automatically selects the insertion point by navigatindep

. Figure 2: Matching Types Structures: the user
tree until it reaches a matched ancestor. 9 g 'y

manually specifies arbitrary matches in a view that

. . ) . shows the type hierarchies in both views flattened and
The tool provides various features to restrict the size ofréles and gpo\n side-by-side: e.g., the user assigns any ArchJava

therefore, significantly reduce the comparison time: port with only provided methods the provideT Acme

.« Start at Component: the architect can have the tree ple defined in theMVCFam, a Model-View-Controller
corresponding to the system decomposition start at certain’
selected components to significantly reduce their sizes.

« Restrict Tree Depth: an architect is often interested, at least initially, in onlyparing the top-level elements. So the
trees can be restricted to not include elements beyond a certain tree depth.

« Elide Elements:the architect can selectively exclude entire subtrees frompamson. Elision can be instance-based or
type-based, where all elements of a given type are excludedeafeagg only match components and ports). Elision is
temporary and does not generate any edit actions.

Various features give the user additional manual control:

» Forced matches:the architect can manually force a matcame mstances: g Archdava Instances:
between two elements that cannot be structurally matche (5 ashyds_stepsa Compars [ &5 Aphyds
=23 Components =23 Components
) ) ] +-(& channelRauteviewer Ay +-(& channelRouteviewer
« Manual overrides: the architect can override any ed| = @cDircuitMode' x gﬂoogn:anma'og
. . + Port: T =
action suggested by the comparison, e.g., cancel a de o repmodel Show it
1 =23 Components - =3 repmodel
aCtlon' + C-)channel Order = (£ Components
. . . +- (5} circuit L +- (5 channelfouk
In Step 4, the edit script is used to produce a common supe # @ floorPlanner serol #- @) creuitata
. h d . Th t b d t I +- (& partitioner = + C-)Floorplanner
to preview the merged view. This step can be used to suppler 5 G place Report 51 ©) globaRoter
the edit script with additional semantic information. For instan : @ route o ‘ gnfrtitioner
. = ol ({ +
the user can assign types to elements to be created, chanc -4y conn, floorplanne Il NS S
types of existing elements, or override automatically inferr 44y conn_partitioner. -7 Gl cor_cicul
. . . + conn_place_rout: +-(& placeRouteviewer
types. Finally, the user can cancel any unwanted edit actions. +-<y conn_route_chan -G privateAphyds
+|-~¢y starConnector -3 Ports
i iali * EEuitR +- g wind
Acme and ArchJava C&C Views.One specialized tool base(| gﬁzﬁf;f,:':ﬁj.ﬁ,er @ viewer
on this approach can synchronize a C&C view described in ég?«nlacte%utewewer #-(23 Connectors
. . . o | [# Onnectors
Architectural Description Language (ADL), Acme [GMWO0O

with a C&C view retrieved from an implementation in ArchJa: - . = . = . . >.
. . igure 3: Structural comparison of architectural instances in
[ACNOZ]' We chose Acme, since it is a general_purpc_)se AEJ &C view retrieved from Acme and a C&C view retrieved
with good tool support; we chose ArchJava since it alloysy Archava: component privateAphyds exists in ArchJava
recovering a C&C view from an existing implementatioput not in Acme; similarly, connector starConnector matches
Furthermore, both AcmeStudio [SGO04], a domain-neutsatonnector in ArchJava with an automatically generated
architecture modeling environment for Acme, and ArchJavase (highlighted nodes).

development environment are Eclipse plugins [Ecl03], tHegnbols: Match (v), Insert (H), Delete §), Rename §)
reducing the tool integration barrier. We have completed the
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functionality needed to make an Acme model incrementally consisimtan ArchJava implementation. We still need to
change the ArchJava infrastructure to support making incremental changes &tiag AxchJava implementation.

This problem domain clearly requires going beyond insertions andathaldtdy support renames and moves. There will
always be name differences of the same structural informattarede Acme and ArchJava. As an illustration, even if code
generation is used to automatically produce a skeleton implenoenfedim an architectural model, connector names and
role names are lost during code generation (since ArchJava doesemohame those elements). Identifying a renamed
element in one view as being deleted and then re-inserted, while ingdtrwicturally equivalent views, results in losing
properties about view elements that are crucial for archidcamalyses (such style and type information, or other
architectural properties).

Matching the type structures in this context is particularlyulsétme has a predicate-based type system: an element is an
instance of any type whose properties and rules it satisfies, artgipenis a subtype of another if the predicate of the first
type implies the predicate of the second type. Implementatiohtigwe systems such as the ones provided by C2SADL
[MOR+96] or ArchJava are more like programming-language typeems. We allow the user to manually specify arbitrary
matches between the two type hierarchies in the two systemsview that shows the type hierarchies in both views
flattened and shown side-by-side (See Figure 2).

Matching type structures between Acme and ArchJava can take several forms
e Match explicit types when possible: e.g., match an ArchJava component type with one Acmereomponent types;

» Assign types to instances when no explicit type is available: &gign types to individual ports on an ArchJava
component type;

» Assign types to special wildcards: e.g., using the ArchJava camnggie ANY, one can assign the Acme type
CallReturnTto all ArchJava implicit connector instances; similarly, oae assign a specific Acme type to a port with
only required and no provided methods (eugeT) or with only provided and no required methods (g@gpyideT);

» Finally, infer types when possible: e.g., infer the types of imiplicthJava roles based on Acme connection patterns
optionally defined for an architectural style: if the archigesgigns types to components, ports and connectors, the role
type (e.g.providerT) is inferred based on the source component type f\Y), source port type (e.grovideT), and
connector type (e.gANY).

Two Acme C&C Views. Another specialized tool can more generally synchronize two C&®sviepresented in Acme:
one view could correspond to a documented architecture, and the second caslplormt to a C&C view recovered using
any architectural recovery technique (e.g., [YGS+04]), anotherovedsithe Acme model retrieved from a configuration
management system or to another variant in a product line.

Detecting moves across levels of the hierarchy is often helpful, tsiocarchitects will often differ in their use of hierarchy,
so that components expressed at the top level in one C&C viewstesl wéthin another component in some other C&C
view. For example, one architect may use hierarchy to hide rcettagision decisions from some parts of the system
[Par72], but a designer may flatten the hierarchy for efficiam@asons. In an Acme system, this would correspond to
replacing an architectural element with its representation (a nestethyyst

5. CASE STUDY: APHYDS

We illustrate the first tool on an ArchJava implementation of a pedadjogimait layout application, Aphyds [ACNO02]. The
goal of this case study is to compare the architecture based mfioemal drawing by the developer to the extracted
architecture from the ArchJava implementation.
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Building the Conceptual Architecture. The starting point was an . ,
informal drawing (See Figure 4) of the desired concepl g Viewe Uses '”"f‘j{"‘? <
architecture which loosely followed the Model-View-Controll '
style, with theviewsconsisting of user interface elements and
model consisting of a circuit database and a set of computati
components. The architect converted the informal diagram in
C&C view (See Figure 5a): he created a single Acme comptme
represent thecircuitModel and added all the computation:
components to a representatiorcotuitModel (See Figure 5b). In
the informal diagram, some arrows were meant to represent ca
flow and others data flow. The architect did not want to distingt
between data and control flow, so he converted all the arrows i
original diagram to connectors in the Acme model.

Matching Types. The architect was interested in the control flc
so he assigned therovideT, useT, provreqgAcme types to
ArchJava ports which only provide, only require, or have b
methods, respectively; he assigned the geriBecNodeTAcme
type to all components and ti@allReturnT Acme type to all the
implicit ArchJava connectors.

Matching Instances. The architect let the synchronization to

compare the two views: he noticed a few renames, e.g., Arch}l_%\ﬁare 4: Original Java developer's model

uses model instead ofcircuitModel, and in that representatior

ArchJava useglobalRouterinstead ofroute (See Figure 3)The channelRoute\Viwer
placeRouteViewer

Acme architect was the least sure about how he represente
circuitModel component in Acme; facing a number of nar
differences certainly did not raise his confidence level. So,
decided to focus on theircuitModel Acme component instanct
which was matched to thenodel ArchJava component instanct
Running the structural comparison showed that the Ac
representation forcircuitModel had more connectors than tr circutModel
ArchJava implementation, i.e., the tool only match
starConnectorin the middle of Figure 5, modulo renaming (SQ_(?gure 5a: Original developer's model in Acme.
Figure 3). The architect investigated this further and confirmed 1’ || || || ||

the dataflow arrows in the informal Aphyds boxes-and-lin
diagram are not actually in the implementation, so he acceptec
edit actions to delete the extra connectors from the Acme mi
(See Figure 5b). u From b % ||

[}
# partitioner |

» channel

Merging Instances.The architect next turned his attention to tt
additional top level component, shown @ssateAphydsn Figure
3). privateAphydsepresents a privateindowport in ArchJava and figyre 5b: Acme representation for the circuitModel

the corresponding glue. By looking at the control flow, the architegiponent. Extra connectors are marked witHs3.

decided to assign that subsystem the publish-subscribe style, so he

renamed componergrivateAphydsas window and renamed the

added connector taindowBus and assigned it thEBventBusTconnector type from the Publish-Subscribe stylee
architect also decided to use the same component names as the dnetplementation to avoid future confusion, so he let
the tool apply the edit script.

Discussion.Figure 6 shows the resulting C&C view after it has been maniaédl out in AcmeStudio. Unlike the original
architect's model (Figure 4), Figure 6 shows bi-directional commatinit taking place between components
placeRouteVieweand mode| upon further investigation, the architect traced that to a c#lli&ince Aphyds is a multi-
threaded application with long running operations moved onto worker thré@dsydhitect made note of the fact that
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developers should not carelessly add callbacks from a wc sindow
thread onto the user interface thread. Finally, the archi ~
decided to use the up-to-date C&C view with types and style | windt;rwBus

the basis for evolving the system in the future.
7
Ty "
“I:ceRautEVizwer

.

-
ichannelRouteViewer

Performance Evaluation. On an Intel Pentium4® CPU 3GH. —
with 1GB of RAM, comparing an Acme tree of around 650 not
with an ArchJava tree of around 1,150 nodes (as in Figur >
currently took under 2 minutes, whereas our implementatiol

Ports
) use

@ provreq
P provide

floorplanDialog

THP took around 30 seconds but produced less accurate re Roles
in particular, THP did not treat compongtvateAphydsas an ¢ e E“’hv‘d”
insertion and mismatched all the top-level components. In z UZ;

case study, the edit script consisted of over 300 renames, IR — Y =
600 inserts and over 100 deletes.

6. CASE STUDY: DUKE'S BANK _ :
Figure 6: Acme model with styles and types.

We llustrate the tool to compare two C&C views using the

Duke’s Bank Application, a simple Enterprise JavaBeans (EJBjirma application created as a demonstration of EJB
functionality [EJB]. Duke’s Bank allows bank customers to actesis account information and transfer balances from one
account to another. It also provides an administration interfacedioaging customers and accounts. In this case study, the
architect wanted to compare the architecture presented in the ddatiore with the actual architecture discovered by
instrumenting the running system as explained in [YGS+04].

The architect defined an Acme family (or style) and typesdas the EJB specification. The architect converted a boxes-
and-lines diagram documented in a tutorial [J2EE] (See Figure 7) into an Acme SBeel€igure 8).

As mentioned earlier, the two views must be comparable withouvianytransformation. Since the model recovered by
instrumentation includes each session and entity bean instance createohe, the architect post-processed it to eliminate
duplicates and consolidate multiple instances into one instance pitiparty indicating multiplicity (not shown) in Figure
9, to match the documented architecture where each component instance represents @ numtie components.

The architect ran the synchronization tool between the two Acme W&/@. The tool was able to match all the elements
between the two views, despite the large number of renames (diotdin@enerated by the recovery tool). Furthermore,
the tool correctly detected all the moves corresponding to replawingJBcontainer component in one view with its

representation in the other view (See Figure 10). The tool aldueenthe architect to quickly detect the additional
undocumented port onAccount_Controller_Begn

which is communicating to theDB component EJB Container
through anerte_r connector. Figure 8_ does nc Session Entity Database
show any connections between the session beans Beans Beans Tables
the database, which implies that all database acce: /—\

. Account-
through the entity beans, as recommended by the | [ ControllerEJB AccountEJB account

specification: the architect planned to investigate t| | Client ‘i
apparent violation using source code analy:

techniques. (:—\
ustomer-

CustomerEJB
Performance Evaluation. On an Intel Pentium4® N
CPU 3GHz with 1GB of RAM, TreeMDIR took 2EE.
around 30 seconds to compare the two Acme tre [*PRication | ,
one with around 330 nodes, and one with around : ControNerEJB
nodes. In this case, the edit script consisted of o
250 renames and over 50 inserts. As expected, T

did not correctly identify any of the moved view o
elements in this case. Figure 7: The Duke's Bank Application (J2EE])
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In addition to the related work previously mentione = e N
throughout the paper, we point out a few related results. @ A S

Program Differencing. Tree-to-tree correction algorithme || rcorompss ok D:) @

have been used for finding differences between progra

most approaches consider abstract syntax trees (ASTs|
ordered trees with several polynomial time algorithrhigure 8: Duke’s Bank documented architecture in Acme;
available (e.qg., [SZ97]). the components were added inside the Acme

representation of an EJB container (shown as a thick

The Difference Extract (Dex) [RRL+04] includes an algorithPerder).

that supports two kinds of move operations: a move t E:MCWEEEWW‘ ——
changes parents (a match between nodes whose parents a g R
]

matched to each other), and a move that changes orde
match between two nodes with matching parents but differ [tereomtssen rosssf 13 an @

sibling ranks). This work is probably the closest to ou ) i
Although intended to solve the differencing problem g | o o @s
ordered trees, Dex includes a bottom-up algorithm whick
vaguely similar to THP as a subroutine that solves s
unordered tree problem. Dex purports to support arbitr '
moves, but the authors warn that no guarantee can be ¢ O
that the obtained edit script is optimal because Dex is on e
heuristic. This is a reasonable choice for Dex as it typic: -
handles trees that are several orders of magnitude larger @

Figure 9: Duke’s Bank recovered architecture in Acme.

our typical inputs.
There are several important differences between TreeMDIR
and Dex, one being that Dex targets inputs where less thar jeamees:

*

Connectors Ports

1 BeanChannel

Dbiwrite

’ DbRead

Roles

RespanssPortT RespanseRaleT

RequestfortT DbRequestRoleT
DbPortT role

RequestRoleT

15 = Instances:

of the nodes are affected by edit operations (e.g., at MOst [bukessankapp_bocumented A Compare " [DukesBankhpp A
changed nodes with tree sizes reaching 200,000 nodes 01|~ & eonaner S| 2 @ nccmrusian essi
The remaining nodes are matched exactly, including tt| Er_ntj g e Q
labels. The labels or the semantic information associated 1 =-Ca Components A 5 o,p
the nodes, which represent the control flow and data c i order T
computer program, have very few duplicates, if any. T = (3 Ports %  dy Custome

. . . . -0, p Scral = --m@ DataSo
enables a linear time subroutine in Dex, called top-do % Customer_Bean = % (@ Dak
matching, to identify 94% of the matches, and the remain 8 tustomer_Lontroler_jif Sriport : BZ';:

. ) - () — =g
matches can be deduced by other subroutines. This make % () Tn_Bean s 1 Binds
running time of Dex grow linearly until around 100,000 node| [ ™"~ o PR e
In contrast, our implementation of THP, while much slow +:j;;geang:anne:ila B : g}}[c)usttognerContrEIIerBean
. . L a) eanLhannel i+ atasource_|
than Dex, would still work even in the total absence +-= BeanChannelz + () TuBean_433461
semantic information (i.e., using tree structure only) withc “j;“ea“"‘a““e"‘ 500 15 crliclominen.slot
. . . . 7 . N + BeanChannel5 (23 Connectars
S|gn|f|cant Impact on running time. Our |mplementat|on # =4y DbRead0 9 AccountControllerBean_
. N . . . . + 49 DbWriteD w ¥ ¢7 AccountControllerBean_

TreeMDIR would see its running time increase in practice, |, . il .

it would still work. And if semantic information is only preser.. _ _
on few nodes or is otherwise incomplete, TreeMDIR woditgure 10: Comparison of the documented and the

still be able to make full use of it. Typical inputs for o@covered C&C views for the Duke's Bank application.

algorithms often have more than half of their nodes renamadPo's: Match (), Insert (), Delete &), Rename {)

and may have a large number of duplicates (for example if thesermgntic information we have about the nodes is their
type) which would make the Dex top-down subroutine ineffectual, be@awsald lack the information that lets it quickly
match a node to another. Also, TreeMDIR provides the capability c@hfpand preventing matches manually, and can find
the optimal matching within these user-imposed constraints, asstirasgconstraints are consistent. This feature does not
exist in Dex and we are not sure how difficult it might be to adEirtally, Dex converts an Abstract Syntax Graph (ASG)
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into a tree simply by removing non-tree edges corresponding tonfgpenation; through empirical evaluation, adding sub-
tree information greatly improves the accuracy of the tree-to-treectiorr@lgorithm.

[CG97] proposes a heuristic solution with a worst-cagé®) time that supports arbitrary move, copy and glue operations.
However, the approach was only tested on instances of a few hundred nodes where 80% ahmamzles were matching
exactly (same semantic information) without any indication of howynw these labels were unique. Also the largest
instance over which the accuracy of the heuristic was testedadidontain more than six edit operations (including
renames): even on that, the heuristic returned a suboptimal amss@neé cases (about 15% larger than the optimal edit
script).

JDIFF [AOHO04] bears some vague similarity to TreeMDIR hammock graphs can be turned into trees without loss of
information or structure. We think that it would be trivial to add dbdity to prevent matches to JDIFF, but adding the
ability to force matches would be substantially more complicate#RJB faster than TreeMDIR since it relies on matching
labels exactly, but it loses the ability to detect renames, one of our requirements.

Tree Alignment vs Tree Edit. Tree differences can be represented using tree alignmertdraftéree edit distance. Each
alignment of trees actually corresponds to a restricted dieameavhich all the insertions precede all the deletions. There are
algorithms based on tree alignment that can detect unbounded delptds\(¢295]). Another advantage of tree alignment
is that it can easily generalize to more than two trees, thongenot easily done with tree edit distance. But the memory
requirements of such algorithms are prohibitive for the trees sind branching factors that are typical of our inputs: the
memory requirements would typically be several orders of magnitighier than those of TreeMDIR3{ 2° N %) whered

is the maximum degree of the tree. Due to the prohibitive spgagements, there's no need to prefer tree alignment to an
algorithm based on tree edit distance.

8. CONCLUSIONS

In this paper, we presented a novel algorithm for finding differeaoelsmerging tree-structured data. Given two tree-
structured representations, our algorithm identifies, in addition ertg)sdeletes, and renames, restricted moves across
levels of the hierarchy. The algorithm also supports manually forcing and preyvergiches between view elements.

We also presented tools that use the tree-to-tree correctimnittaiy to compare and merge architectural component-and-
connector (C&C) views. Finally, we provided an empirical evaduadf the algorithms and tools with case studies on real
programs. The case studies show the practicality of the algodtiunthe tool, as they enabled us to find interesting
architectural divergences in both cases.
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Appendix A

The test cases were built as follows:

1) generate a random tree with random labels (taken from a pool of 10 possible nanteshsonas-unique);

2) copy the tree;

3) delete a random number of nodes in the copy (both internal and leaf nodes);

4) rename a number of nodes in the copy;

5) and finally, compare the two trees using THP and TreeMDIR.

TreeMDIR was run once with bouritl= 100K, and another time with bouRd= 5K. BoundR was left unchanged from its
default value in all runs.

This appendix contains the test results.

Table 1: List of abbreviations

Abbreviation | Description

N Number of Nodes

R Number of Renames

D Number of Deletes

ID% Percentage of Internal Deletes

DE Tree Degree

O Number of Optimal Edit Operations
AE Actual Number of Edit Operations
S% Percentage by which the generated edit script is suboptimal
T Running time (in seconds)

F Slow down factor (compared to THP)

Table 2: List of tables.

Table 2 Testing Renames
Table 3 Testing Deletes

Table 4 Testing Internal Deletes
Table 5 Testing Node Degree
Table 6 Summary
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Table 2: Testing Renames.

N [R o THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
AE S% AE [ sS% T F AE [s% [T

320 0 96 350 265% 0594 114  19% 17.781 29| 114| 19% 15.074 24
320 3 99 460 365% 0438 143 44% 34.625 7g| 143 44% 16.265 36
320 6 102 367 260% 0.484 112  10% 19111 3g| 112] 10% 16.609 33
320 9 105 526 401% 0484 109 4% 27109 55| 109 4% 16.141 32
320 12 108 240 122% 0.484 109 1% 14.625 29| 109 1% 14563 29
320 19 115 326 183% 0469 116 1% 15593 3o | 116 1% 15.141 31
320 25 121 402 232% 0.4d4 125 3% 16.135 34| 125 3% 15.843 33
320 35 131 473 2619 05 138 5% 31.672 2| 138 5% 16.297 32
320 44 140 334 140% 0.469 141 1% 14296 29| 141 1% 14.266 29
320 57 153 368 141% 0484 158 % 19.234 39| 158 3% 17.329 35
320 73 169 437 159%  0.453 171 1% 26.375 57| 171 1% 17.265 37
320/ 92 188 360 919 0485 188 0% 16.437 33| 188 0% 15.684 31
320 118 214 433 102% 0.469 214 0% 16.156 33| 214 0% 15.489 33
320 150 246 480 95%  0.468 250 2% 25125 53| 250 2% 16.563 34
320 188 284 516 820 0453 295 4% 32375 70| 295 4% 17.391 37
640 0 192 895 366% 2032 309  61% 67.312 3p| 309| 61%| 56.766 27
640 6 198 586 1969 176 221 12% 71172 49| 221 12% 64.79 36
640 | 12 204 707 247% 1875 216 6% 85.219 44| 216 6%| 64547 33
640 | 19 211 789 274% 1.906 239  13% 80.563 41| 239 13% 64] 33
640 | 25 217 827 281% 1.907 239  10% 140421 73| 239| 10%| 71.423 3¢
640| 38 230 1058 360% 1.906 266  16%  136.812 71| 266| 16%| 64.063 33
640| 51 243 883 263% 1.907 248 % 88.687 46| 248 2%| 65.922 34
640 | 70 262 817 212% 1.968 310 18% 126 g3| 310| 18%| 64.141] 32
640 | 89 281 1041 270%  1.828 323  15%  158.297 gg| 323| 15%| 70.797 38
640 | 115 307 634 107% 1.829 307 0% 74578 40| 307 0%| 65484 35
640 | 147 339 983 190% 1.782 400  18% 8664 48| 400| 18%| 61906 34
640| 185 377 802 113% 1.984 405 7%  109.125 54| 405 7%  74.422 37
640 | 236 428 924 116% 1.906 445 4% 109579 5g| 445 4%|  65.735 33
640 | 300 492 994 102%  1.891 529 8% 98.609 51| 529 8%| 65.625 34
640 | 377 569  103( 81% 1.875 591 4% 95.765 50| 591 4%  69.141 36
1280 0 384 1879 3899 8.4 552  44% 446141 54| 552| 44%| 260.641 31
1280 12 396 1879 374% 7.141 408 3%  341.891 47| 408 3%| 26439 36
1280 25 409 2111 416% 7.125 413 1%  334.703 4| 413 1%| 259.375 3%
1280 38 422 1689 300% 7.672 775  84% 431578 55| 775| 84%| 252.907 32
1280| 51 435 2095 3829 711 471 8%  419.687 sg| 471 8%| 281.922 39
1280 76 460 2097 356% 7.063 483 5%  454.547 g3 | 483 5%| 256.687 3%
1280 102 486 2041 320% 7.469  6p8  29% 390 51| 628] 29%| 261.328 34
1280 140 524 1891 261% 7.125 789  41%  360.891 50| 739| 41%| 255875 3%
1280 179 563 2138 280% 7.109 747  33%  596.25 g3| 747| 33%| 266.203 36
1280 230 614 1792 192%  7.422 1306 11B%  357[156 47| 1310| 113%| 257.73% 34
1280 | 294 678 1930 185%  7.297 849  25% 344875 46| 849 25%| 246313 33
1280 371 755 1819 141% 7.266 867  15%  427.359 5g| 867 | 15%| 266.625 36
1280 | 473 857 2114 147% 7.172  8Y5 2%  480.828 gg| 875 2%| 279.674 38
1280| 601 985  183] 86% 8.359 1058 1%  413.069 49 | 1058 7%| 259.891 30
1280| 755] 1139 2133 87% 7.235 1166 2%  468.197 4| 1166 2%| 292422 39
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Table 3: Testing Deletes.

N [D o) THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
AE S% AE S% | T F AE S% T

320 0| 128 128 0% 0.62p 178 ope 19.578 30 128 0% 19.60 34
320 3] 131 131] 0% 0.98p 141 ope 19.859 19 131 0% 19.891] 14
320 6| 134 134 0% 0.59B 134 ope 19157 31 134 0% 19.171 31
320 9| 137 137 0% 0.590 137 ope 19.081 31 137 0% 19.047] 31
320 12| 140 144 0% o0.59% 140 op6 20453 33 140 0% 20.485 33
320 19| 147 147 0% 0.56p 147 op6 19.409 34 147 0% 19.628 34
320 25| 153 153 0% 0579 153 op6 18.d78 30 153 0% 18.128 3
320 35| 163 166 2%  0.54F 163 op6 16.165 30 163 0% 16.781 3
320 44| 172 184 7%  0.54F 1712 op6 17419 31 172 0% 17.79 31
320 57| 185 194 3% o0.48h 145 op6 15922 32 185 0% 15.93 33
320 73| 201 215 7%  0.458 201 op6 15469 33 201 0% 155 33
320 92| 220 276 250  0.437 220 % 13922 31 220 0% 13.93d 31
320 118| 246 264 8% 0.4d6 246 % 11.391 27 246 0% 11.454 2}
320 150| 278 372 34% 0.344 218 doo 10.916 28 278 0% 10.031] 24
640 0| 256 256 0% 2.32B 256 ope 80 33 256 0% 795794 33
640 6| 262 262 0% 2.42p 262 ope 79.672 32 262 0% 79.674 34
640 12| 268 268 0% 2.81p 248 op6 76.781 26 268 0% 76.813 24
640 19| 275 275 0% 2.40b 215 op6 71.328 29 275 0% 71453  2d
640| 25| 281 281 0% 2297 282 op6 79.963 34 282 0% 79.703 34
640 38| 294 294 0% 2.28p 244 op6 76.459 33 294 0% 76.453 33
640 51| 307 309 1% 2.21b 347 op6 74343 33 307 0% 7425 33
640 70| 326 33] 2% 2531 346 op6 72953 g 326 0% 72953 2§
640| 89| 345 352 2% 2126 345 op6 67.907 31 345 0% 67.437 3]
640 115 371 384 2% 2203 371 % 67.494 30 371 0% 67579  3(
640 147| 403 44 9% 1.844 403 % 64.047 34 403 0% 64.093 34
640 185 441 495 129 2.031 an doe 56.375 27 441 0% 56.344 21
640 236| 492 745 51%  1.562 493 doe 50.469 31 493 0% 50.60d 31
640 300| 556 804 45% 1.313 5%6 doo 42103 32 556 0% 42484 3]
1280 o| 512 512 0% 1081 513 o 330953 30 513 0%| 330719  3(
1280 12| 524 524 0% 1041 525 dw 322434 30 525 0%| 322329  3(
1280 25| 537 537 0%  10.59 537 % 308[75 o8 537 0%| 308235 24
1280 38| 550 553 19 103 540 o 322415 30 550 0%| 321.469  3(
1280 51| 563 567 19 103 543 o 313907 29 563 0%| 308574 29
1280 76| 588 584 0% 10.19 588 % 301 29 588 0%| 299.766 24
1280 102[ 614 614 19 1P 614 o 289.472 o8 614 0%| 289.424 24
1280 140[ 652 661 1% 8675 654 dw 285172 32 654 0% 285.14 31
1280 179] 691 694 19 9.%5 691 % 278[86 29 691 0%| 278657 29
1280 230| 742 774 2% 7.765 743 dw 274485 34 743 0%| 274604 34
1280 294 806 874 89 85 8d6 o 243425 g 806 0% 24364 24
1280 371 883  103( 17%  6.781 883 0%  230.453 33 883 0%| 230.01§ 3
1280 473[ o989 1379 40% 6.044 986 9%  200.§03 32 986 0%| 200.01§ 32
1280 601] 1119  143% 29% 5734 1145 % 16894 »g| 1115 0%| 167.43§ 28
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Table 4: Testing Internal Deletes.

N ID% (0] THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
AE S% T AE S% T F AE S% T
320 0 128 128 09 0.62b 128 Opo 2104 33 128 0% 21.125
320 1 131 135 39 0.6 131 07 21.265 34 131 0% 21.281
320 2 134 244 829 0.626 134 0po 21.032 33 134 0% 20.734
320 3 137 213 559 0.626 137 0opo 19.234 30 137 0% 19.282
320 4 140 193 389 0.60P 140 0po 18.475 30 140 0% 18.859
320 6 147 278 899 0.57P 149 1% 26.031 44 149 1% 23.015
320 8 153 4071  166% 0.563 154 1% 24469 42 154 1% 22.062
320 11 163 409 151% 0.592 192 18% 23.922 42 192 18% 18.927
320 14 172 552 221% 0.531 176 2% 42.906 80 176 2% 26.014
320 18 185 524 183% 0.531 200 8% 50.328 o4 200 8% 23.328
320 23 201 510 154% 0.453 308 53% 57.%32 126 308 53% 19.265
320 29 220 523 138% 0.641 3%0 59% 51|25 79 350 59% 19.578
640 0 256 256 09 2.43) 296 Opo 78.828 31 256 0% 79.032
640 1 262 294 129 2.848 242 0opo 75.969 26 262 0% 76.031
640 2 268 433 629 2.51p 248 0po 80.609 31 268 0% 79.875
640 3 275 409 499 2.48b 215 0po 79.5 31 275 0% 79.187
640 4 281 474 699 2.6 282 Opo 78.782 29 282 0% 78.687
640 6 294 484 659 2.43/7 296 1% 90.472 36 296 1% 83.654
640 8 307 915  198% 2.344 307 0% 112.234 47 307 0% 91.813
640 11 326| 1104 239% 2.391 392 20% 109.062 45 392 20% 83.0471
640 14 345 907 161% 2.516 394 14% 174.125 68 394 14% 89.781
640 18 371 84§ 129% 2.015 415 12% 199.297 98 415 12% 89.203
640 23 403 1097 171% 2.031 982  131% 202.516 99 933 | 132% 82.031
640 29 441 1033 134% 1.844 612 39% 240.921 130 614 39% 76.875
1280 0 512 517 09 11.8p 512 0opo 316453 26 512 0% 316.641
1280 1 524 664 27% 10.08 524 0% 328.969 32 524 0% 323.813
1280 2 537 675 26% 10.19 537 0% 329.5947 31 537 0% 326.39
1280 3 550 897 62% 9.906 5%0 0% 340.197 33 550 0% 330.359
1280 4 563| 1783 217% 11.37 563 Q% 400.562 35 563 0% 342.172
1280 6 588 1104 88% 9.797 589 g% 345.984 34 589 0% 337.547
1280 8 614 1241 102% 9.518 618 1% 442.875 45 618 1% 340.641
1280 11 652 2153 230% 9.203 685 5% 515969 55 685 5% 361.514
1280 14 691 1911 177% 9.437 765 11% 706.813 74 765 11% 374.25 9
1280 18 742 2244 203% 8.437 23p8  214% 6279022 73| 2328| 214% 323.406 v
1280 23 806/ 2193 172% 8.188 11p5 48% 1028.66 125 1195 48% 365.124 44
1280 29 883 2112  139% 7.687 1459 66% 1026.74 133 | 1477 67% 360.187 b




Table 5: Testing Degree.

N [D o) THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
AE [ s% T AE S% T F AE [sw [T
320 2 144 392 1729% 0578 144 % 17.141 9| 144 0% 17.203
320 3 144 229 549 0.59 144 op6 21487 35| 144 0% 21.453
320 4 144 261 819 0.65p 150 a6 44da7  es| 150 4% 23.797
320 5 144 259 799 0.65[7 144 op6 68406 103| 144 0% 26.158
320 6 144 254 759 0.6 145 16 10986 171| 146 1% 27531
320 7 144 1038 349 0.625 144 op6 98.H47 157| 144 0% 25.408
320 8 144 2794 939 0.600 181 506 B2 134| 151 5% 22.329
320 9 144 48q 233% 0578 144 dw  100.172 172| 144 0% 25.768
320 10 144 23§  63%  0.609 144 oo 60.938 g9 | 144 0% 23515
320 11 144] 224 54% o0.891 144 O  113.641 107| 144 0% 24.453
320 12 144] 214 50%  0.562 146 1o 80.475 143| 146 1% 23.469
320 13 144] 403 180% 0593 144 doe 70394 11g| 144 0% 23.125
320 14 144] 354 147% 0.61 278 93w 67.456 110| 278| 93% 20.375
640 2 288 693 1419%  2.063 289 oo 62969 30| 289 0% 63.156
640 3 288 489 699 2.656 248 opo 75.d94 7| 288 0% 74578
640 4 288 804 179%  2.266 393 3% 204531 gg| 393 36% 85.189
640 5 288 699 143% 2.625 318 10w  345.166 131| 318| 10%| 112.10d
640 6 288 63d 119%  2.609 289 oo 272|25 103| 289 0% 91.329
640 7 288 989 243% 2.718 329 14%  306.282 112| 329| 14% 88.927
640 8 288 1007 250%  2.547 296 d%  370.031 144| 296 3% 92.203
640 9 288 68d 136%  2.609 380 3Jw  337.532 128 380 32% 97.437
640| 10 288] 1024 255% 2544 300  11% 293656 112| 320 11% 87.219
640 11 288] 39 38% 2.766 288 o 315409 113| 288 0% 94.922
640| 12 288 514 79% 2593 300 d%  442.844 170| 300 4%  106.954
640| 13 288] 544 90% 2578 294 2% 255265 og| 294 2% 91.11]
640 14 288 750 160% 2.578 394 31% 320391 123| 394| 3% 87.843
1280 2 576| 1571 173% 8.945 518 d% 246.937 26| 578 0%| 246.781
1280 3 576| 1434 149%  9.042 516 dw 309.172 33| 576 0%| 294.313
1280 4 576 155 169%  9.444 518 dw 863.906 oo| 578 0%| 386.375
1280 5 576| 1514 163%  9.641 600 4% 129305 133| 600 4%|  390.156
1280 6 576 12904 125%  10.41 519 1% 152769 143| 579 1%| 414.984
1280 7 576] 954 66%  10.06 579 1%  1517]95 150| 581 1%| 416.703
1280 8 576 2321 304%  9.743 516 d 142003 145| 576 0%| 397.813
1280 9 576] 2233 288%  9.235 2164  274%  1208.19 130| 2154| 274%|  362.184
1280 10 576 1194 107% 9515 687  19%  1314.38 137| 687| 19%| 360.514
1280 11 576| 1021 77%  9.375 586 4% 117348 124| 586 2% 361.86
1280 12 576 1160 101%  9.593 72 28% 132464 137| 683| 19%| 352.625
1280| 13 576] 1186 106%  9.516 705  22%  134§.83 141| 705| 22%| 374.453
1280| 14 576] 1988 245%  9.375 604  20%  1688.02 179| 697| 21%| 404.674




Table 6: Summary.

THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
Sub-Optimal % Sub-Optimal % Slowdown Sub-Optimal Slowdown
Factor % Factor
Average | 121% 13% 61.86| 13% 34
Min 0% 0% 19.160 0% 14
Max 416% 274% 179.06 274% 4
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