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Abstract

In a time of information glut, observations about complex systems and phenomena of interest are
available in several applications areas, such as biology and text. As a consequence, scientists have
started searching for patterns that involve interactions among the objects of analysis, to the effect
that research on models and algorithms for network analysis has become a central theme for KDD.
The intuitions behind the plethora of approaches rely upon few basic types of networks, identified
by specific local and global topological properties, which we term “pure” topology types. In this
paper, (1) we survey pure topology types along with existing sampling algorithms that generate
them, (2) we introduce novel algorithms that enhance the diversity of samples, and address the case
of cellular topologies, (3) we perform statistical studies of the stability of the properties of pure
types to alternative generative algorithms, and a joint study of the separability of pure types, in
terms of their embedding in a space of metrics for network analysis, widely adopted in the social and
physical sciences. We find that the sampling algorithms entail low stability of topological properties
entailed by alternative algorithms, and lead to weakly separability topology types. We spell out
the implications for the practitioners. We conclude that real world networks hardly present the
variability profile of a single pure type, and suggest the assumption of “mixtures of types” as a
better starting point for developing models and algorithms for network analysis.
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1 Introduction

In recent years, researchers in application areas such as bioinformatics, computational biology,
and those that rotate around the processing of electronic texts have made available huge amount of
“networked data,” to the data mining community at large, to the effect that models and algorithms
for network analysis have become a central theme for KDD [29, 15, 18, 24, 28] On the other hand,
in the social and mathematical sciences, (social and complex) networks have been an object of
research for a few decades now [19, 37, 10, 21, 6, 7, 12, 11]. Over the years, the communication across
communities has increased, the major results of each discipline have been shared and assimilated by
the others, and, occasionally, old ideas have resurfaced under a different disguise. In particular, the
notion of “network topology” has recently gained attractiveness, as several complex phenomena of
scientific interest tend to manifest in those networks that are characterized by specific “topological
properties” [19, 47, 5, 20, 9]. Thus, it is not surprising to find that a fundamental characteristic
shared by recent approaches to network analysis is the central role played by a set of basic types
of networks, identified by specific local and global topological properties of interest, which we term
“pure” topology types.

In data mining and machine learning, the study of real world networks is essential for the
development of sound theoretical models, which ultimately lead to unbiased inferences and robust
predictions [35, 40, 44, 25, 26, 30, 36, 2, 45, 31, 3]. Analyses of real networks rely upon two
crucial tasks: (1) that of “generating,” or “sampling,” networks that display realistic properties
of interest, and (2) that of “determining” which pure topology type(s) a given network is close
to. For example, models that generate networks with realistic properties given few parameters can
be used for compression, simulations and testing, models of pure types can be used to compare
ideal properties to those of observed networks, and so on. Given an observed network, the ability
to discriminate between pure topology types can be used to predict which phenomena the system
under scrutiny is expected to display, e.g., in a dynamic setting. Last, in order to apply the large
body of type-specific results present in the literature to real world problems, it is crucial to map
an observed network to the corresponding pure type(s). In this paper,

1. we survey the pure topology types, along with the existing sampling algorithms for generating
each of them;

2. we introduce novel algorithms aimed at enhancing the diversity of sampled networks, and at
addressing the case of cellular topology type;

3. we perform statistical studies of the stability of the properties of pure topology types to
alternative generative algorithms, and a we perform joint study of the separability of pure
topology types, in terms of their embedding in a space of metrics for network analysis, widely
adopted in the social and physical sciences.

2 Problems

The utility and appeal of sampling algorithms stems from the following implication. If we can gener-
ate a network at random that displays the properties of interest, it is “possible” that the imaginary
generative process we posited actually outlines a latent phenomenon that is truly happening in the
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data. This implication can be very convincing, depending on the soundness of the semantics that
inform the imaginary process, in a specific application, to the effect that the latent phenomenon is
perceived as “plausible.” For example, the “six degrees of separation” among individuals observed
by Milgram (1967) is captured by the “small world” topology of Watts and Strogatz (1998) where
the semantic that informs the sampling algorithm is that “individuals form local acquaintances,
few of which relocate to places far away.” This stylized model of behavior is enough to replicate
the phenomenon observed by Milgram, and it “sounds” like a plausible explanation [38, 47]. In
section 3.1 we address the following problem.

Problem 1 (Sampling) How can we generate topologies that have a set of desired properties with
high probability?

Sampling algorithms can be both deterministic and probabilistic, and typically depend on a
small set of parameters. To fully exploit their power, it is important to provide ways to estimate
such parameters from observed quantities.

As we discussed above, a related practical problem is that of determining which properties
we should expect to observe in a network under analysis. The pure topology types are used by
practitioners to this extent, e.g., homeland security officers are interested in determining whether
an observed social network is cellular, given partial measurements about it. If so the conclusion
will be drawn that destabilization strategies that are successful on pure cellular topologies will be
successful in destabilizing the given network. In section 3.2 we address the following problem.

Problem 2 (Typing) How can we determine which pure topology type a given network is closest
to?

In order for the “homeland security argument” above to be reasonable, it is important for
alternative algorithms for the same pure type to be “stable,” i.e., to produce networks that close, in
some reference space1, and for algorithms for different pure types to be “separable,” i.e., to produce
networks that are far apart, in some reference space, see Figure 1. The stability of topological
properties, to alternative sampling algorithms for the same topology type, suggests that choosing
one specific algorithm over another2 does not harm the validity of the conclusions. The separability
of topological properties, entailed by sampling algorithms for different topology types, implies that
any set of observed topological properties uniquely indicates a pure topology type. In other words,
separability suggests that it is logically possible to answer questions like ”is the given network of
type X?” Most of the experiments in section 4 are devoted to assess stability and separability of
the sampling algorithms surveyed or introduced in section 3.1.

2.1 Related Work

The pure topology types we consider in the next section have been introduced separately over the
years [19, 38, 47, 5, 20, 9, 4, 39, 22]. To the best of our knowledge neither exploratory nor compre-

1The reference space used in this paper is defined by 47 metrics widely adopted in the social and physical sciences.
We embed all sampled networks in this space.

2Note that there are possibly infinitely many sampling algorithms that, although different, produce networks with
topological properties typical of the same pure type.
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Figure 1: Sampling algorithms for pure topology types 1, 2, and 3 are mapped to the corresponding
sets of all possible network samples, in the metric space X1 × X2. If these sets overlap the pure
types are not separable and the logic implication between properties and topologies is broken. That
is, topology types still imply observed properties, but observed properties do not imply a specific
topology type, rather the lack of properties implies the absence of topology types.

hensive studies exist, which attempt to compare the stability of alternative sampling algorithms, or
to assess the separability of the sampled networks, in terms of the collection of metrics commonly
used for network analysis.

Typing network topologies form data is a fairly novel area of research. Initial explorations are
present in specific application domains such as cover network analysis [17].

Related research efforts aim at providing intuitions and mathematical theory that describe what
happens to topological properties when only partial information is available, e.g., sub-samples
of scale free networks are not scale free [43], at exploring the effectiveness of search strategies,
e.g., greedy search finds short chains of acquaintances in small world networks [33, 34, 32, 1], at
developing models of information flow [41, 42] and information exchange [16], or at exploring the
robustness of metrics for network analysis to variations in the topological properties [23, 8].

3 Pure Topology Types

We begin with a heuristic description of the pure topology types. The sampling algorithms in the
next section provide these intuitive notions with a precise meaning. Without loss of generality we
specify the sampling algorithms for the pure topology types on a ring lattice. Note that in a ring
lattice there is a natural notion of distance, DRL, that is distinct from the one entailed by shortest
paths, DSP . In words, the DRL distance between nodes A and B is proportional to the length of
the arc that joins them, along the circle outlined by the ring. Figure 2 shows some examples.

Topology 1 (Ring Lattice) Each node is connected to its neighbors, according to DRL.

Topology 2 (Small World) Each node is connected to several of its neighbors and few distant
nodes, according to DRL [47].
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Figure 2: A glance at the relevant topologies on a ring. Note that in a ring there is a natural notion
of distance that is distinct from the one entailed by shortest paths, i.e., the distance between nodes
A and B is proportional to the arc-length that joins them, along the circle outlined by the ring.

Topology 3 (Erdös Random) Each node is connected to a random set of the remaining nodes
[19].

Topology 4 (Core-Periphery) Nodes belong exclusively to either the core or the periphery. Core
and periphery nodes are connected to core nodes, while there are no edges among periphery nodes
[9].

Topology 5 (Scale Free) Most of the nodes are connected to few other nodes, while few nodes are
connected to many other nodes. This relation is formally described with a power law, between the
number of edges and the number of connections [4].

Topology 6 (Cellular) Nodes are divided into cells. Connections are frequent between nodes
within each cell, and rare between nodes in different cells [22].

In the rest of this paper we represent a network in terms of a graph G = (V,E), where V is a
set of vertices and E is a set of edges, undirected and of unit weight.

3.1 Sampling Algorithms

We now survey the existing sampling algorithms for each of the pure topology types above. To
complement the survey, we introduce novel algorithms aimed at enhancing the diversity of sam-
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pled networks, and at addressing the case of cellular topology type. The following algorithms are
available in C++ as part of ORA [13].

3.1.1 Ring Lattice

A ring lattice with parameters (n, k) is sampled as follows.

Ring Lattice 1 Define n as the number of nodes in the graph, and k as the number of neighbors
for each node. Given (n, k) do as follows.

1. for: each node v=1,...,n

1.1. do: add an edge from v to its k closest neighbors.

Note, this is a deterministic algorithm, and there is no variability in the sampled networks.

3.1.2 Small World

A streamlined definition of a small world topology is one that negatively correlates the probability
of two nodes being connected to their distance, for some notion of distance.

Watts and Strogatz (1998) propose a way to generate a small world topology on a ring lattice
with undirected edges. In a ring lattice with parameters (n, k) the nodes are placed in a circular
fashion, and each node is connected with its k/2 closest neighbor clockwise and counter-clockwise
by means of undirected edges. In order to generate a small-world topology with parameters (n, k, p)
the following algorithm is used.

Small World 1 Define n as the number of nodes in the graph, k as the number of neighbors for
each node, and p as the probability of rewiring. Given (n, k, p) do as follows.

1. for: k=1,..., k/2

1.1. for: each node v=1,...,n

1.1.1. do: with probability p, substitute the edge from v to (v+k) with an edge from v to u; where u
is selected uniformly at random over the entire ring, with duplicate edges forbidden.

This algorithm is useful for generating topologies and to study their properties for p ∈ [0, 1];
specifically, for p = 0 we retain the original ring lattice topology and for p = 1 we generate a
random graph, see below. Watts and Strogatz (1998) also define intuitive measures of connectivity.
The number of edges in the shortest path between two nodes, averaged over all pairs nodes, is L(p).
The fraction of edges that exist among neighbors of v, that is, the number of edges among the kv
neighbors of v over kv(kv − 1)/2, the maximum number of edges, averaged over all nodes, is C(p).
They use these two quantities to profile small world topologies by computing the observed values of
L and C and comparing them to those of a random graph—see discussion point no.1. In particular,
Lobserved < Lrandom and Cobserved > Crandom would constitute evidence to support a small world
topology.
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Kleinberg (2001) proposes a model to generate small world topologies on a two-dimensional
grid with directed edges. In the two-dimensional grid lattice with parameters (n, k) each one of the
n2 nodes is connected with k of its close neighbors, where the lattice distance between two nodes is
defined as the number of lattice steps that separate them, that is, d((i, j), (k, l)) = |k − i|+ |l − j|.
In order to build a small world topology with parameters (n, k, l, r) the following algorithm is used.

Small World 2 Define n as the number of nodes in the graph, k as the number of neighbors for
each node, l as the number of long-range contacts, and r as the exponent of the power law. Given
(n, k, l, r) do as follows.

1. do: build a grid lattice (n,k)

2. for: each node v=1,...,n

2.1. repeat: l times

2.1.1. do: add a directed edge from v to u, where u is selected with probability proportional to
d(u, v)−r, with duplicate edges forbidden.

This algorithm is easier to deal with than the previous one, analytically, in that the parameters
(k, l) determine the number of close neighbors and long-range contacts, and in that we do not break
the symmetry of the problem by substituting neighbors for long-range contracts but we add the
latter on top of the former instead.

We propose a different model to generate small world topologies from a ring-lattice with directed
edges. In the ring lattice with parameters (n, k) each one of the n nodes is connected with each
of its close neighbors with probability p1 and to all of its long-range contacts with probability
proportional to p2. In our formulation the control is not on the number of neighbors and long-range
contacts, but rather on the probability of having a neighbor and a long-range contacts as in a proper
Erdös random graph. In order to build a small world topology with parameters (n, k, p1, p2, r) the
following algorithm is used.

Small World 3 Define n as the number of nodes in the graph, k as the number of neighbors for
each node, p1 as the probability of neighbor, p2 as the probability of a long-range contacts, and r as
the exponent of the power law. Given (n, k, p1, p2, r) do as follows.

1. do: build a grid lattice (n,k)

2. for: each node v=1,...,n

2.1. repeat: k times

2.1.1. do: remove a directed edge from v to u, where u is each of the k close neighbors in turn, with
probability 1 − p1, with duplicate edges forbidden.

2.1.2. do: with probability p2 add a directed edge from v to u, where u is selected with probability
proportional to d(u,v)-r, with duplicate edges forbidden.

Remark 1. It is important to note that in the small-world networks the interactions directed
out of each node are generated according to the same probability distribution, and independently
of other nodes.
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3.1.3 Erdös Random

We generate Erdös random graph (Bollobás 2001) using two algorithms. The first algorithm de-
pends on the number of nodes (n) and the probability of a connection (p): it simply scans through
the n2 ordered pairs of nodes and connects each of them with probability p.

Random 1 Define n as the number of nodes in the graph, and p as the probability of an edge.
Given (k, p) do as follows.

1. for: each node pair (u, v) ∈ [1, n]2

1.1. do: with probability p, add an edge from u to v.

The second algorithm depends on the number of nodes (n) and the number of edges (m): it
simply samples m ordered pairs of nodes, among the n2 possibilities, with equal probability and
without repetition, and connects them.

Random 2 Define n as the number of nodes in the graph, and m as the number of edges. Given
(k,m) do as follows.

1. do: order all node pairs (u, v) ∈ [1, n]2 in a vector e

2. do: set equal to 1 m components of e, uniformly at random with probability 1
n2 and without

repetition.

3. do: add an edge from u to v if I(u,v)(e) = 1.

3.1.4 Scale Free

For an undirected network, a scale free topology is one where the degree distribution for all edges
is identical and follows a log-normal profile. For a directed network, a scale-free topology entails
that the in and out degree distributions of all edges is identical and follows a log-normal profile.
In order to build a scale-free topology with parameters (n, n0, p, p0) we can use the algorithm by
Albert & Barabasi (2001):

Scale Free 1 Define n as the number of nodes in the graph, n0 as the number of nodes in the
initial graph, p as the probability of an edge, and p as the probability of an edge between initial
nodes. Given (n, n0, p, p0) do as follows.

1. do: build a random graph (n0, p0)

2. for: each of the remaining nodes v = n0 + 1, ..., n

2.1. do: add node v

2.2. repeat: v-1 times

2.2.1. do: add a directed edge from v to u with probability p, where u is selected among the nodes
in the graph with probability proportional to the total degree, with duplicate edges forbidden.
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Remark 2. This is our version of the algorithm in Albert & Barabasi (2001), which leaves out
exact details about how many edges each new node should have.

Alternatively we propose a different algorithm, that controls the variability of the final degree
distribution directly, rather than adding nodes aiming at obtaining a degree distribution with the
desired parameters in the infinite limit. Our approach is more effective for modest network sizes,
and allows for control on the parameter values “exactly” rather than depending on an infinite limit
that is never reached. The algorithm depends on parameters (n,m, r) and works as follows.

Scale Free 2 Define n as the number of nodes in the graph, m as the number of edges, and r as
the exponent of the power law. Given (n,m, r) do as follows.

1. for: each pair of nodes (u, v) ∈ [i, n]2

1.1. do: set p(u,v) = d(u, v)−r

2. repeat: m times

2.1. do: sample (u,v) with probability p(u,v)

2.2. do: add an edge from u to v

Remark 3. An analytic result that describes sets of parameter values for these two algorithms
that lead to the same degree distribution is not presented here.

3.1.5 Core-Periphery

We give two algorithms to generate this type of networks that differ in the way periphery nodes
are connected to core nodes. Both algorithms depend on the number of nodes (n), the proportion
of core nodes (p) and the connectivity among core nodes (pin): we scan through each node and
assign it to the core with probability p or to the periphery with probability 1 − p, and we connect
the core nodes with a random topology. At this point the random attachment algorithm connects
each of the periphery nodes to a core node chosen at random with equal probability—this is the
algorithm implicit in Borgatti and Everett (1999)—whereas the preferential attachment algorithm
connects each of the periphery nodes to a core node chosen according to a probability proportional
its total degree—in the same fashion of our version of the scale-free topology.

3.1.6 Cellular

We give two algorithms to generate cellular networks [22] that differ in the way the nodes are
distributed among cells. Both algorithms depend on the number of nodes (n), the number of cells
(k), the average connectivity among nodes within the same cell (pin) and the average connectivity
among cells (pout): briefly the algorithms create a random graph (k, pout) that represents the
interconnections among cells and then for each cell they create a random graph (nk, pin). Any
connection between two cells in the random graph (k, pout) is specified to the node level by choosing
to random pair (i, j) of nodes, where node i and node j belong to the interconnected cells. In the
first algorithm the size of the cell is uniform, that is, each node is assigned to one of k cells with
probability 1/k. In the second algorithm an extra parameter controls the distribution of the size
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Type Proposed by Parameters

Ring Lattice n (number of nodes), k (number of neighbors)

Random 1. (prob.) Erdös & Renyi n (number of nodes), p (prob. of an edge)

Random 2. (number) Erdös & Renyi n (number of nodes), m (number of edges)

Small World 1. (rewire) Watts & Strogatz n (number of nodes), k (number of neighbors), p (prob. of
rewire)

Small World 2. (number) Kleinberg n (number of nodes), k (number of neighbors), l (number of
distant contacts), r (exponent of power law)

Small World 3. (prob.) Airoldi n (number of nodes), k (init. number of neighbors), p (prob.
of neighbor), q (prob. of distant contact), r (exponent of
power law)

Scale Free 1. (pref.) Albert & Barabasi n (number of nodes), n0 (init. number of nodes), p (prob.
of edge), p0 (prob. of edge between init. nodes)

Scale Free 2. (power) Airoldi n (number of nodes), m (number of edges), r (exponent of
power law)

Cellular 1. (uniform) Airoldi & Carley n (number of nodes), k (number of cells), p (prob. of edge
within), q (prob. of edge between)

Cellular 2. (power) Airoldi & Carley n (number of nodes), k (number of cells), p (prob. of edge
within), q (prob. of edge between), r (exponent of power
law)

Core-Periphery 1. (uniform) Borgatti & Everett n (number of nodes), p0 (proportion of core nodes), p (porb.
of edge)

Core-Periphery 2. (pref.) Airoldi n (number of nodes), p0 (proportion of core nodes), p (porb.
of edge)

Table 1: Summary of generative algorithms.

of the cells (r), nodes are assigned to cell i with probability pi = 1/ir, which entails a power-law
distribution for the cell size.

In Table 1 we summarize the 13 algorithms, their inputs and their author.

3.2 Determining Topology Types

In order to determine the type of topology of a network or a sub-network there are two main
approaches: generative and discriminative. According to the generative approach, given an observed
network we use its adjacency matrix to estimate the parameters underlying the sampling algorithms
associated with the pure types. We then compare the estimates; the pure type associated with the
“best” estimates is chosen as the pure topology type for the given network. The notion of “good”
estimate can be made precise in both a probabilistic and a deterministic fashion, in terms of
likelihood or distance, respectively. According to the discriminative approach, given an observed
network we disregard the possible ways it may be sampled and we focus on the topological properties
instead, as captured by a set of metrics for network analysis, widely adopted in the social and
physical sciences. In particular, we sample a large quantity of networks, with different parameter
values, for each pure type. We then compute the corresponding metrics for each of them, and we
train Bayesian classifiers that are good at discriminating between the types. Given an observed
network we classify it into a type according to the posterior probability of types given its adjacency
matrix. In this paper we follow the discriminative approach.

The generative approach is more desirable, in principle, because it allows for a clean inter-
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pretation of the type assignments in terms of the parameters underlying sampling algorithms.
Unfortunately, it is hard to establish a comprehensive framework for all pure types. For example,
multiple algorithms exist that generate the same topology type. These algorithms involve different
parameters that can be difficult to estimate from the adjacency matrix in a consistent fashion,
without bias. Different algorithms differ in crucial dimensions, e.g., the a small-world topology
requires the existence of two metrics, as we noted above. It is not possible to posit a simple genera-
tive model that is able to generate all topologies as a smooth function of its underlying parameters.
Further obstacles exist.

The discriminative approach leads to less interpretable result, as it disregards the way a given
network topology arises and focuses on its measurable properties instead. This approach is very
useful in practice, though. We can sample a large quantity of networks, as we explore the full
parameter space for each one of the sampling algorithms, in order to obtain a representative sample
of instances of pure topology types. We then compute the metrics on the networks in the sample
to obtain profiles for each topology type in terms of the metrics of interest. At this point, we can
learn the mapping from metrics of interest to pure topology types using our favorite classification
method. Classification errors indicate the degree to which pairs of pure topology types overlap in
the reference space of metrics, see Figure 1.

4 Experiments

Here we present the experiments to assess stability and separability of pure topology types. The
classification methods we used are off-the-shelf classifiers, such as näıve Bayes (based on Multinomial
and Poisson distributions), logistic regression, maximum entropy, SVM (with a linear kernel), voted
perceptron, decision trees and k-nearest neighbor [14].

The results below correspond to the Poisosn flavor of näıve Bayes classifier that turned out to
be more accurate in predicting the topology type of a given network [3]. In order to estimate the
prediction errors we used a stratified five-fold cross validation scheme. The stratification controls
that in every one of the five folds the proportions of networks by type are the same as the proportions
of networks by type in the overall sample. The stratification aims at balancing the bias in those
experiments where the simpler topologies are under-represented [27].

4.1 Network Metrics

We focused our analysis on a set of metrics widely adopted in the social and physical sciences.
The metrics we computed for each of the instances of the pure network topology types were the
following.

1-4. Degree centrality (min, max, average, standardized).

5-8. Betweenness centrality (min, max, avg, std).

9-12. Closeness centrality (min, max, avg, std).

13-16. Inverse closeness centrality (min, max, avg, std).
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17-20. Eigenvector centrality (min, max, avg, std).

21-24. Clustering coefficient (min, max, avg, std).

25-28. Effective network size (min, max, avg, std).

29-32. Network constraint (min, max, avg, std).

33-36. Node levels (min, max, avg, std).

37-40. Triad count (min, max, avg, std).

41. Global efficiency.

42. Local efficiency.

43. Efficiency.

44. Connectedness.

45. Hierarchy.

46. Upper boundedness.

47. Average distance.

48-51. All pairs shortest path (min, max, avg, std).

Formal definitions are available in Wasserman and Faust (1994) [46]. The metrics above are avail-
able in ORA [13].

4.2 Design of Experiments

Overall, the hypotheses we wish to test are: (1) stability, i.e., to what extent different sampling
algorithms for the same pure topology type lead to consistent topological properties, as captured
by the set of metrics of interest, and (2) separability, i.e., to what extent the embedding of ideal
networks into the reference space of metrics of interest can uniquely determine the pure topology
types.

In order to control for possible sources of variations we were not interested in, such as size of
the network and density, we devised a design of experiments structured as follows. There are six
topology types. For each topology we explore the parameter space using an evenly spaced grid; we
sampled at least ten topologies for each parameter configuration, which resulted in more example
networks the more complex generating algorithms. We attempted to control density and size of
networks, across topologies, to make the discrimination as hard as possible, and ultimately get
estimates of separability as low as possible. Further, we attempted to control for other relevant
parameters when generating the same topology type using different algorithms, with the goal of
making sampled topologies of a same type very consistent across the various generating algorithms,
and ultimately get estimates of stability as high as possible.
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Algorithm Samples Parameters

Ring Lattice 25 n = 250, k = 2, 4, .., 50

Random 1. (prob.) 17 n = 250, p = 0.10, 0.15, ..0.90

Random 2. (number) 17 n = 250, m = 311, 622, .., 28012

Small World 1. (rewire) 484 n = 250, k = 2, 4, .., 50, p = 0.10, 0.15, .., 0.90

Small World 2. (number) 1250 n = 250, k = 2, 4, .., 50, l = 1, 2, .., 10, r = 1, 2, .., 5

Small World 3. (prob.) 2670 n = 250, k = 2, 4, .., 50, p = 0.20, 0.30, .., 0.80, q = 0.20, 0.30, .., 0.80,
r = 1, 2, .., 5

Scale Free 1. (pref.) 729 n = 250, n0 = 10, 15, .., 50, p = 0.10, 0.20, .., 0.90, p0 =
0.10, 0.20, .., 0.90

Scale Free 2. (power) 45 n = 250, m = 311, 622, .., 28012, r = 1, 2, .., 5

Cellular 1. (uniform) 360 n = 250, k = 2, 4, .., 20, p = 0.25, 0.35, .., 0.75, q = 0.25, 0.35, .., 0.75

Cellular 2. (power) 360 n = 250, k = 2, 4, .., 20, p = 0.25, 0.35, .., 0.75, q = 0.25, 0.35, .., 0.75,
r = 1

Core-Periphery 1. (uniform) 54 n = 250, p0 = 0.10, 0.20, .., 0.90, p = 0.25, 0.35, .., 0.75

Core-Periphery 2. (pref.) 54 n = 250, p0 = 0.10, 0.20, .., 0.90, p = 0.25, 0.35, .., 0.75

Table 2: Design of experiments.

4.3 Results: Stability and Separability

We start by reporting the stability of topological properties corresponding to single pure topology
types generated with different algorithms. The figures quoted are five-fold cross-validated errors in
a classification task, the lower the error is, the less stable topological properties are, since a slight
variation in the sampling algorithm leads to distinguishable sets of measurements.

Random Graphs. Using the set of metrics we can distinguish almost exactly which topology
was generated by which algorithm. The extremal statistics (min, max) are very powerful discrimi-
nators in this case. The area under the Receiver Operating Characteristic (ROC) curve is about 1
and the classification error about is 0.00%.

Core-Periphery. Using the set of metrics we cannot discriminate which topology was gen-
erated from which algorithm. The classification error is about 50% and the area under the ROC
curve is 0.501.

Cellular. Using the set of metrics we can discriminate fairly well which topology was generated
from which algorithm. The area under the ROC curve is 0.928 and the classification error is 17.64%.

Scale-Free. Using the set of metrics we can discriminate almost exactly which topology was
generated from which algorithm. The area under the ROC curve is about 1 and the classification
error is 0.07%.

Small-World. Using the set of measures we can poorly discriminate which topology was
generated from which algorithm. The area under the ROC curve is not available (this is a three-
way classification problem) and the classification error is 24.78% (base error is at 33.33%). Pairwise
comparisons suggest that our classifiers may be too simple, in fact, they can not distinguish the
three algorithms at the same time, even as pairs of them are fairly distinguishable.

We now report the overall stability and separability of sampling algorithms for different pure
topology types. Table 4 below summarizes the five-fold cross-validated errors in the corresponding
classification tasks. Diagonal cells replicate the stability results discussed above. Off-diagonal cells
quote separability results. The lower the error is, the more separable topological properties are,
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SW 1. SW 2. SW 3.

SW 1. 16.04% 21.12%
SW 2. 13.31%
SW 3.

Table 3: Stability of small world topology types.

since the instances of different pure types entail distinguishable sets of metrics.

RL Rnd SW SF Cel CP
RL N/A 27.00% 7.45% 0.00% 0.00% 0.00%
Rnd 0.00% 41.22% 27.94% 32.55% 25.00%
SW 24.78% 8.66% 13.12% 5.31%
SF 0.07% 26.45% 33.33%
Cel 17.64% 37.15%
CP 50.00%

Table 4: Joint study of stability and separability of pure topology types. The column labels are:
RL for ring lattice, Rnd for Erdös random, SW for small world, SF for scale free, Cel for cellular
and CP for core-periphery.

5 Discussion

Our experiments point out few limitations of the sampling algorithms in section 3.1, which we
discuss below.

1. Unrealistic variability profiles.

Both the generative algorithms we surveyed and those we introduced are very simple. Algo-
rithms may entail “no variability” for a specific metric over a fairly large range of parameter values,
or by construction, e.g., all instances of an Erdös random (n,m) have the same number of edges,
i.e., m. While these algorithms are of theoretical value and help us grasp insights about phenomena
of interest, it is very dangerous to employ them for statistical testing purposes, e.g., to compute
p-values, as it is often done in practice.

This is because rich variability profiles are crucial in determining the stability of topological
properties of a pure type to alternative sampling algorithms that generate it. In other words, low
variability profiles lead to high sensitivity of topological properties, as captured by the metrics
of interest, and ultimately to high sensitivity of relevant statistics to the specific version of the
algorithms adopted. For example, the variability profile of the clustering coefficient is extremely
sensitive to the specific algorithm used to sample both random and scale free types. As a conse-
quence the p-value, e.g., of small-world-ness, will vary.

A simple suggestion to overcome this problem is to sample topology types according to different
algorithms, and then to mix the networks, somehow. This directly aims at increasing the variability
profiles of the metrics of interest, and possibly leads to more robust, e.g., p-values.
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Figure 3: Profiles of 47 metrics of interest, excluding shortest path 48-51, as measured over the
sampled networks. The left panel refers to Erdös random topology, whereas the right panel refers
to cellular topology. Within each panel, each small plot shows two histograms in different colors,
which summarize the metric values of the two different sampling algorithms for each topology type.
Metrics are numbered left to right, top to bottom.

2. Two main flavors of topological properties.

Table 4 suggests that cellular, core-periphery and scale free types are weakly separable, and
share common topological properties with random types. These types are separable from small
world topologies that, in turn, shares a set of different topological properties with random types.
Note that, key differences between cellular, core-periphery, scale free and random are that (a) more
apparent at moderate density ( apx .25 range) and (b) certain metrics can be used to separate these
four types of networks.

3. Low stability and low separability.

Overall, alternative sampling algorithms we considered for the same type appear very similar.
Yet topological properties are neither stable to alternative algorithms that are meant to generate
the same topology type, nor separable across different topology types.

The low stability (not desirable) is likely to be a consequence of the fact that the algorithms
are too simple and do not lead to rich enough variability profiles for the metrics of interest. In fact,
we find that the extremal statistics (min and max) have high information gain with respect to the
topology type categories, and drive the classification in several cases.

The low separability (not desirable) it means that pure types are stylized models of behavior
at the sampling level, which lead to networks that share topological properties, as captured by the
network metrics of interest. Aside from the simplicity of the algorithms, this is consistent with
what we would expect to see in the real world, i.e., observed networks display multiple stylized
behaviors to different degrees. This translates into the more realistic hypothesis of “mixtures of
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Figure 4: Profiles of 47 metrics of interest, excluding shortest path 48-51, as measured over the
sampled networks. The left panel refers to scale free topology, whereas the right panel refers to core-
periphery topology. Within each panel, each small plot shows two histograms in different colors,
which summarize the metric values of the two different sampling algorithms for each topology type.
Metrics are numbered left to right, top to bottom.

Figure 5: Profiles of 47 metrics of interest for small world topology, excluding shortest path 48-
51, as measured over the sampled networks. Each small plot shows three histograms in different
colors, which summarize the metric values of the three different sampling algorithms. Metrics are
numbered left to right, top to bottom.

types,” at the sampling level, as a better starting point for developing models and algorithms for
network analysis.
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6 Concluding Remarks

We surveyed pure topology types along with existing sampling algorithms that generate them. We
introduced novel algorithms that enhance the diversity of samples, and address the case of cellular
topologies. We performed statistical studies of the stability and separability of the topological
properties of pure types, as captured by a set of network metrics of interest, widely adopted in the
social and physical sciences.

We find that the sampling algorithms considered are neither stable to alternative specifications,
nor separable in terms of the topological properties they entail. The lack of stability is a cause of
concern, and we suggest the practitioners that employ the simple sampling algorithms discussed in
this paper to consider more variable schemes, for example, mixtures, in order to obtain more robust
p-values and statistics in general. The lack of separability was somewhat anticipated, as real world
networks hardly present the variability profile of a single pure type. We conclude by suggesting the
assumption of “mixtures of types” as a better starting point for developing models and algorithms
for network analysis.
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