

TCP Connections for P2P Apps:
A Software Approach to Solving the NAT Problem

Jeffrey L. Eppinger
January 2005

CMU-ISRI-05-104

Institute for Software Research International
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract
Many P2P applications need to connect to each other via TCP, but are increasingly stymied by NAT boxes.
Some popular P2P applications do not address NAT traversal or do so poorly. A few newer ones route com-
munications between NATed peers through relay servers or through non-NATed peers, or they ask users to
reconfigure their NAT boxes. Some emerging solutions suggest using SIP to set up tunneling over UDP, us-
ing UPnP, or even deploying IPv6. This paper argues that the above approaches suffer from scalability prob-
lems, do not address mobility issues, require deploying new network infrastructure, or require using non-
standard communications interfaces, non-standard communication stacks, and non-standard security proto-
cols. We advocate direct TCP connections between peers. We present NatTrav, our NAT Traversal Java
package that makes TCP connections between NATed peers and addresses all of the above concerns. We
then compare NatTrav with some of the other current and emerging solutions.

Keywords: P2P, peer-to-peer, NAT Traversal, TCP, network address translation.

3

1. The Problem
We are building some really cool peer-to-peer (P2P)
applications. If you’re reading this paper, we’ll bet
you are, too. Among the first problems we encoun-
tered was how to connect our P2P applications to-
gether. We want TCP connections between instances
of our application running on mobile (or even desk-
top) machines that (i) connect to the Internet from
various places so they don’t have a fixed network ad-
dress, and (ii) often connect to the Internet via a Net-
work Address Translation (NAT) box. We must solve
problem (ii) in light of problem (i). Here’s a scenario:
our applications run on notebook computers and
PDAs that are sporadically connected to the Internet
from a home network, the office, “free high-speed
Internet” in a hotel room, or WiFi in a coffee shop. In
most if not all of these scenarios, our application re-
quires TCP connections between two machines that
are both behind NAT boxes. The problem is that
computers attached to the Internet via NAT boxes can
make outbound connections to non-NATed computers,
but typically cannot receive inbound connections.

NAT boxes allow several computers to share one
public IP address [1]. The computers get private IP
addresses and must send their communication to the
public Internet through the NAT box. The NAT box
uses port translation in order to determine which com-
puter should receive the responses [2]. For example,
when the NAT box receives communication from a
private IP address and port, say A:X, it sends the
communication out via its public IP address on a
proxy port, say NA:Y. The NAT maintains a table of
mappings. When responses come back to the NAT on
NA:Y it forwards them back to A:X. Also, when A:X
sends additional communication the NAT can (de-
pending on the destination and the NAT’s implemen-
tation) use the same proxy port Y.

Using the classifications in [3], there are four dif-
ferent ways NAT boxes implement the mapping be-
tween A:X and its proxy port NA:Y which we sum-
marize below. Assume we initiate communication
from A:X to a non-NATed computer at IP address and
port B:J via NA:Y:

1) With a Full Cone mapping, NA:Y will handle
communications between A:X and any other com-
puter. Specifically, a computer C, knowing or guess-
ing NA:Y would be able to communicate with A:X.

2) With a Restricted Cone mapping, communi-

cation sent from a computer C to NA:Y would only be
forwarded to A:X if A had previously sent communi-
cation from port X to computer C.

3) With a Port Restricted Cone mapping, com-
munication sent from a computer C using port M to
NA:Y would only forward to A:X if A had previously
sent communication from port X to C:M.

4) With a Symmetric mapping, the NAT allo-
cates a different proxy port for each IP address and
port with which A:X communicates. For example, if
A:X subsequently communicates with B:Q, another
NAT proxy port would be used, such as Z.

In the first three cases, which we call cone-type
mappings, the NAT uses NA:Y for all future commu-
nications from A:X until the mapping is removed
from the its internal tables. Mappings are only re-
moved after a period of inactivity on NA:Y.

2. Current Approaches
Popular P2P applications have addressed the NAT
Traversal Problem in different ways. Below we enu-
merate our concerns about how these applications ad-
dress NAT Traversal:

1) If only one peer is NATed, have the NATed
peer set up the connections (e.g., Kazaa [4], LimeWire
[5]). This is only a partial solution: in a majority of
the scenarios in which our applications run both peers
will be NATed.

2) Recommend users configure their NAT boxes
to forward incoming requests on specific ports to one
computer behind the NAT (e.g., BitTorrent [6]). This
is unacceptable because (a) several computers behind
the NAT may need to run this application and (b) us-
ers may not have the technical capability or adminis-
trative access to configure the NAT.

3) Route P2P communication through central re-
lay servers (e.g., Groove [7]). This approach is too
expensive. As our application scales, we cannot af-
ford to provide the CPU and network bandwidth.

4) Route TCP connections through instances of
the application that happen to be running on open,
non-NATed computers (e.g., Skype [8]). We believe
users who happen to be running our applications on
non-NATed machines will not want to bare the CPU
and network costs either. Moreover most machines
running our applications will be NATed so there may
be shortage of non-NATed machines to help out.

5) Use a proprietary session initiation protocol to
exchange UDP ports between the peers and then tun-

4

nel TCP over UDP (e.g., Newrong [9]). We want to
use a standard TCP stack with standard TCP stacks
and interfaces so that we can capitalize on the benefits
of the years of work optimizing TCP and building ap-
plication packages for it. Also many networks do not
allow UDP.

Finally, we have a security concern: our applica-
tion requires the peers authenticate each other. We
want to use SSL. Approaches 3, 4, & 5 require some
sort of custom-made authentication scheme.

In Section 7, we discuss emerging solutions in-
cluding UPnP, IPv6, and SIP.

3. Solution Requirements
Summarizing our concerns described above, our NAT
Traversal solution should permit applications to talk to
each other with:

a) Scalability – We want to incur minimal (if not
zero) cost as the number of instances of our applica-
tions grows.

b) Standard Interfaces – For ease of develop-
ment, we want to use standard interfaces for network
communication, e.g., Sockets. This is more familiar
to developers and allows many existing software
packages/libraries to be used without modification.

c) Standard Stacks – Many years and tears have
gone into optimizing TCP. We don’t want to reinvent
and/or debug this. Furthermore, many networks do
not allow the use of UDP.

d) Security – We want to use SSL with standard
interfaces and X.509 certificates. We don’t want to
have to re-invent this complex wheel, either.

e) Mobility – We want peers to communicate
with each other even though they move from network
to network. Often these networks are not controlled
by the user who cannot reconfigure the NAT to add
port mappings, allow UDP, or turn on UPnP.

4. Our Approach
Our approach is called NatTrav. In NatTrav, “recipi-
ent” peers willing to receive connections from “initia-
tor” peers register with an intermediate connection
broker by providing a network address and a URI – a
Universal Resource Indicator to identify uniquely the
recipient peer.

Connection brokers facilitate connections to recip-
ients by (i) providing the current network address for
the recipient and (ii) facilitating NAT Traversal if the
recipient is NATed. Connection brokers are replica-
ted for availability and scalability. See Figure 1.

Connection
Brokers

Initiator

NATI

Recipient

NATR

Figure 1: NatTrav Architecture

Direct TCP
Connection

The NAT Traversal Protocol for cone-type map-

pings is shown in Figure 2. It may be possible to use
port prediction to extend our solution to symmetric
mappings as described by [16] in Section 7, but recent
studies show that NAT boxes in the retail market
place rarely use symmetric mappings [10].† Since
Internet phones also do not work well on NAT boxes
that create symmetric mappings, we believe that the
industry is moving away from this approach.

Recipient Registration – In Steps 1 & 2, a recipi-
ent peer registers with a connection broker providing
its URI name. It can either use UDP or TCP for regis-
tering. Using UDP (as shown in Figure 2) permits
large numbers of recipients to register with each con-
nection broker, however recipients must regularly
send these Registration messages to the connection
broker so that the connection broker can subsequently
be able to send Connection Request messages to the
Recipient through its NAT (Step 4). Using TCP for
registration would normally require connection bro-
kers maintain large numbers of open TCP sessions.
Not shown in the figure, we can deputize UDP-
capable recipients to act as proxies. (In true P2P fash-
ion, each TCP-only recipient uses NatTrav as an ini-
tiator to set up TCP connections to proxies.)

† Of the 42 different versions of NAT boxes in the

study, 4 do not follow the IETF Specification for
NATs [2] and 1 always uses symmetric mappings. Of
the remaining 37, including those dominant by retail
market share, most use cone-type mappings all the
time. A few use cone-type mappings unless the port
number is already in use by another computer behind
the NAT in which case they revert to creating a sym-
metric mapping. In this scenario, NatTrav fails to
connect, but our when applications retry, NatTrav uses
different ports and likely succeeds.

5

Listen
on R:J

TCP: ConnectionReqAck(corr, R:J)
[R:J > NR:K > B:Z]

TCP: ConnectionReqDetails(NI:Y, punchHole)
close conn [B:Z > NR:K > R:J]

UDP: RegistrationResp [B:V > NR:U > R:T]

UDP: Registation(URI) [R:T > NR:U > B:V]

New TCP: ConnnectionResp(corr)
close conn [R:G > R:H >B:Z]

TCP: LookupRequest(URI) [I:X > NI:Y > B:Z]

TCP: LookupResponse(NR:K)
close conn [B:Z > NI:Y > I:X]

Connection
Broker (B)

UDP: ConnectionReq(corr, B:Z) [B:V > NR:U > R:T]

TCP SYN (dest=NR:K, src=I:X) to establish connection for data transfer [I:X > NI:Y > NR:K > R:J]

Step 3

Step 1

Step 2

Step 4

Step 5

Creation of hole by sending unsolicited TCP
SYN to NI:Y [R:J > NR:K > NI:Y]

Step 7

Step 8
Error returned depends on NAT type and implementation

Step 9
Step 10

Step 11

NATI (NI)
Initiator (I) Recipient (R)

Step 6

Server receives step 5:
If NR=R, punchHole=false

Figure 2: NAT Traversal Protocol

NATR (NR)

Note: The IP addresses and ports used for communication are shown in square brackets. For example: [I:X > NI:Y > B:Z] denotes communica-
tion from the Initator’s IP address I and port X to the connection broker’s IP address B on port Z via NATI’s public address NI and public port Y.

Lookup – In Step 3, when an initiator peer wants
to make a TCP connection to a recipient peer, it sends
a Lookup Request to a connection broker. The con-
nection broker eventually replies (Step 10) with a
public IP address and port that the initiator can use
(in Step 11) for a direct TCP connection from initia-
tor to recipient (via their NAT boxes) as shown in
Figure 1.

The connection broker checks to see if there is an
active registration for the recipient. The connection
broker may need to contact other connection brokers
to determine this. If so, it sends a Connection Re-
quest to the recipient on the UDP address and port
the recipient (or its proxy) used to register (Step 4).
The Connection Request contains a correlator (corr)

to track which Lookup Request subsequent steps are
working on and the IP address and port of the con-
nection broker that the recipient should use for the
subsequent steps.

Punching the Hole – In Steps 5 & 6 the recipient
uses TCP to exchange network address information
with the connection broker specified in the Connec-
tion Request. The connection broker compares the
recipient’s private IP address (R) and its public IP
address (NR). If they match, the recipient is not
NATed. If they do not match, the recipient is NATed
and the recipient is told to punch a hole in its NAT
for messages coming from the initiator’s public IP
address and port (NI:Y).

6

The trick here is that we use the same IP ad-

dresses and ports for TCP communication with the
connection broker and for the direct TCP connection
between initiator and recipient. Because we are
punching holes in cone-type NATs, we know that the
NATs will use the same proxy ports for communica-
tion with the connection broker and the peers. In the
example shown in Figure 2, the initiator uses port X
when communicating with the connection broker
(Step 3), but the connection broker sees it coming
from NATI’s port Y. Similarly, the recipient uses
port J (Step 5) and the connection broker sees
NATR’s port K. To punch the hole, the recipient
closes its TCP connection with the connection broker
used in Steps 5 & 6 and in Step 7 uses port J to at-
tempt to open a TCP connection to NI:Y. Depend-
ing on the type and implementation of NATI, Step 8
may be a timeout, a TCP reset response, or (if NATI
is a full-cone NAT) a port-in-use error (because
NATI forwarded the TCP SYN on to I:X). In any
case, the TCP connection will not succeed but the
attempt enables NATR to forward communication
from NI:Y sent to NR:K on to R:J.

Between Steps 8 & 9, we set up a Server-
Socket to listen on R:J. Then we send a Connec-
tion Response message to the connection broker
(Step 9). In Step 10, the connection broker tells the
initiator that it can now set up a direct TCP connec-

tion to the recipient (via the NAT boxes) by using
NR:K. In Step 11, the TCP connection is set up.

Our P2P applications use a Java package called
nattrav. The nattrav package contains classes
that parallel the style of the standard Java class librar-
ies for setting up TCP Sockets between applications.
Not only this, but the objects returned by the nat-
trav package are instances of the standard Java
Socket class directly connecting the initiator and
recipient peers. Figures 3 & 4 are code excerpts
showing the interfaces for the most basic methods.

5. Security Extensions
In many cases, we want our P2P applications to use
SSL connections between the peers. This is for pri-
vacy of the communication and to authenticate the
peers. We use our own certification authority (CA)
to sign X.509 certificates for connection brokers and
the peers. The CA’s signing certificate is pre-
installed into our applications’ key stores. We can
then use the signed X.509 certificates to make SSL
connections in Figure 2, Step 11.

The interesting security problem for our NAT
Traversal Protocol as shown in Figure 2 is that noth-
ing prevents a rogue peer from registering as a recipi-
ent thereby redirecting Connection Requests to itself.
To guard against this, we also have developed a se-
cure registration protocol that uses the X.509 certifi-
cates (and the corresponding private keys) to imple-

 public class NatTravServerSocket {
 public NatTravServerSocket(String connectionBrokerName,
 String myURI) throws IOException {
 // Implementation
 }

 public Socket accept() throws IOException {
 // Implementation
 }
 }

Figure 4: Java Class to Receive TCP Connections from Initiator Peers

 public class NatTravSocket extends Socket {
 public NatTravSocket(String connectionBrokerName,
 String recipientURI) throws IOException {
 // Implementation
 }
 }

Figure 3: Java Class to Initiate a TCP Connection to a Recipient Peer

7

ment a simple challenge/response to authenticate
connection brokers and recipients during registration.

6. Evaluation
To date, we have built two P2P applications using
NatTrav: (1) a Remote Desktop Proxy that allows
Remote Desktop Connections to Windows machines
located by URI, and (2) a replicated, incremental
backup service. At the time of this writing, these ap-
plications are in limited deployment.

In these deployments, the observed elapsed time
to setup a TCP connection from an initiator to a re-
cipient using NatTrav ranges from 1.1 to 21.2 sec-
onds depending on many factors, including the speed
of the network between the computers and the behav-
ior of NATI in Step 8 of the protocol. The initial con-
nection time was no problem for the more often used
backup application as the replication occurs in the
background.

Upon further investigation, we added a configur-
able timeout when setting up the TCP connection in
Step 7. We currently run with this timeout set to 2
seconds and have now seen connection times under 5
seconds in all cases observed.

We note that in both applications, the ability to
have direct TCP connections between the peers is
very important. We are using standard Java Socket
(and SSL) classes for easy development and efficient
network performance.

A test of a connection broker running on an 800
MHz laptop driven by simulated client loads proc-
essed over 5,000 UDP Registrations (Steps 1 & 2)
per second. UDP recipients re-register every minute,
so a connection broker should support about 300,000
recipients. This does not measure the cost of replica-
tion or occasional Lookup Requests and Connection
Requests. We believe these costs to be minimal.
Since connection brokers provide an application spe-
cific service, running connection brokers to support
instances of our applications is not a significant cost.

7. Other Emerging Solutions
UPnP is a new standard to support the ability to plug
devices into a home network [11]. An application
could use UPnP to configure a NAT box to forward
to it incoming requests received on specific ports
(thereby achieving NAT Traversal). Unfortunately,
early UPnP implementations had highly publicized
security issues and many NAT boxes that support
UPnP ship with it turned off by default. Furthermore,
UPnP enables any application on the LAN to create

port mappings. Many savvy consumers continue to
have security concerns. Anecdotally, we have found
that WiFi hotspots tend not to enable UPnP. Users
should not have to reconfigure their NAT boxes to
turn on UPnP as they may not be technically capable,
might not have administrative access, or their NAT
might not support UPnP.

Nevertheless, UPnP support can be easily added
to NatTrav. When available, recipients would use
UPnP to configure port mappings on the NAT. The
recipient would register the NAT’s public IP address
and a mapped port with a connection broker. Lookup
Requests would still be used to find these recipients.

IPv6 is a new standard that specifies 128 bit IP
addresses [12]. It is possible that the new, longer
IPv6 addresses will reduce the need for NAT boxes;
however we are skeptical. NAT boxes abound as
IPv6 adoption has been slow and there is an expecta-
tion that protocol translating NAT boxes (NAT-PT)
will be used to bridge between IPv4 and IPv6 net-
works. Other projects such as [13] are working on
general solutions for NAT Traversal without any ap-
plication changes, but they require deployment of
significant additional network infrastructure.

SIP is a new IETF Session Initiation Protocol
that can be used to initiate UDP connections for te-
lephony and multimedia applications [14]. Except
for security and NAT Traversal, it standardizes the
communication formats for functions similar to our
connection brokers. We chose not to use SIP be-
cause: (i) it has a tremendous amount of mechanism
we do not need for our application, (ii) it does not
provide NAT Traversal, and (iii) beyond standardiz-
ing how user ids and passwords are sent, it does not
address our security concerns. Even if we were to
include all the above capabilities in a SIP implemen-
tation, whether or not we use SIP internally in our
applications is transparent to our users.

NUTSS is a new research project at Cornell [15].
As its acronym suggests, it proposes to combine NAT
Traversal, URIs, Tunnelling over UDP, SIP, and
STUN. STUN [3] is a UDP-based Protocol that an
application can use to talk with intermediate STUN
servers to determine if it is NATed and if so, via what
type of NAT. Again, we have several concerns about
tunneling over UDP. Recently, the NUTSS research-
ers have proposed a TCP based approach [16] con-
sisting of (i) STUNT: TCP extensions to STUN, and
(ii) a TCP hole punching protocol. Their hole punch-
ing protocol is much more complex than ours requir-
ing use of port prediction, STUNT, spoofing, and

8

sending TCP SYNs with low TTLs. However, they
are attempting to traverse symmetric NATs.

8. Conclusions
Our P2P applications require direct TCP connections
between peers. By using a NAT Traversal solution,
such as NatTrav, we are able to directly connect our
peers across cone-type NATs: (i) using standard TCP
Socket and SSL packages, (ii) with minimal cost per
new peer, (iii) without routing through non-NATed
peers, (iv) without requiring users to reconfigure their
NATs, and (v) locating specific peers wherever they
are connected to the Internet.

While we could not afford to wait for prevalent
UPnP utilization and IPv6 deployment (which may
never happen) or the future standardization activities
initiated by NUTSS, we look forward to their future
successes. Should support for symmetric NATs be-
come important to our applications, NUTSS may be
very important to us. As NAT box makers start sup-
porting UPnP and enabling it by default, it may be
useful to add UPnP support to our arsenal.

A final note: our NAT Traversal solution is ap-
plication specific. So is Skype’s approach of routing
calls through non-NATed peers. Their approach
works well because it’s a low bandwidth application
(less than 16 kbps during a call with custom encryp-
tion) [17]. But they likely will need to use direct
TCP connections when they add video.

9. Acknowledgements
Special thanks to Mukund Gopalan and Kamal Sau-
rabh who, with the author, created algorithms and
their implementation for NAT Traversal described
herein.

References
[1] K. Egevang & P. Francis. The IP Network Ad-

dress Translator (NAT). IETF RFC 1631.
[2] P. Srisuresh & K. Egevang. Traditional IP Net-

work Address Translator. IETF RFC 3022.
[3] J. Rosenberg, et al. STUN - Simple Traversal of

User Datagram Protocol Through Network Ad-
dress Translators. IETF RFC 3489.

[4] T. Jessup. How Kazaa Works. Utah Education
Network Summit, Oct 2003.
(http://www.ndnn.org/blog/downloads/summit/
UENSummit_Peer_2_Peer.ppt)

[5] Lime Wire LLC. Frequently Asked Questions.

(http://www.limewire.com/english/content/faq.shtml)
[6] BitTorrent. FAQ. (http://bittorrent.com/FAQ.html)
[7] Groove Networks. Groove Web Services. Nov

2002. (http://www.groove.net/pdf/wp-
groove_web_services.pdf)

[8] Skype Technologies S.A. Skype Explained.
(http://www.skype.com/products/explained.html)

[9] Newrong Inc. NAT Traversal SDK.
(http://www.newrong.com/en/product/index.html)

[10] C. Jennings. NAT Classification Results using
STUN. IETF Internet Draft. Oct 2004.
(http://www.ietf.org/internet-drafts/draft-
jennings-midcom-stun-results-02.txt)

[11] T. Fout. Universal Plug and Play in Windows
XP. Microsoft Corporation.

[12] S. Deering & R. Hinden. Internet Protocol, Ver-
sion 6 (IPv6) Specification. IETF RFC 2460.
Dec 1998.

[13] T.S. Ng, et al. A Waypoint Service Approach to
Connect Heterogeneous Internet Address
Spaces. USENIX Annual Technical Confer-
ence, Boston, MA, Jun 2001.

[14] J. Rosenberg, et al. SIP: Session Initiation Pro-
tocol. IETF RFC 3261. Jun 2002.

[15] P. Francis. Is the Internet Going NUTSS? IEEE
Computing, Nov-Dec 2003.

[16] S. Guha, et al. NUTSS: A SIP-based Approach
to UDP and TCP Network Connectivity.
SIGCOMM'04 Workshops, Aug 2004.

[17] Skype Technologies S.A. Skype Technical
FAQ. (http://www.skype.com/help/faq/technical.html)

