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Abstract 
Many P2P applications need to connect to each other via TCP, but are increasingly stymied by NAT boxes.  
Some popular P2P applications do not address NAT traversal or do so poorly.  A few newer ones route com-
munications between NATed peers through relay servers or through non-NATed peers, or they ask users to 
reconfigure their NAT boxes.  Some emerging solutions suggest using SIP to set up tunneling over UDP, us-
ing UPnP, or even deploying IPv6.  This paper argues that the above approaches suffer from scalability prob-
lems, do not address mobility issues, require deploying new network infrastructure, or require using non-
standard communications interfaces, non-standard communication stacks, and non-standard security proto-
cols.  We advocate direct TCP connections between peers.  We present NatTrav, our NAT Traversal Java 
package that makes TCP connections between NATed peers and addresses all of the above concerns.  We 
then compare NatTrav with some of the other current and emerging solutions. 
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1.  The Problem 
We are building some really cool peer-to-peer (P2P) 
applications.  If you’re reading this paper, we’ll bet 
you are, too.  Among the first problems we encoun-
tered was how to connect our P2P applications to-
gether.  We want TCP connections between instances 
of our application running on mobile (or even desk-
top) machines that (i) connect to the Internet from 
various places so they don’t have a fixed network ad-
dress, and (ii) often connect to the Internet via a Net-
work Address Translation (NAT) box.  We must solve 
problem (ii) in light of problem (i).  Here’s a scenario: 
our applications run on notebook computers and 
PDAs that are sporadically connected to the Internet 
from a home network, the office, “free high-speed 
Internet” in a hotel room, or WiFi in a coffee shop.  In 
most if not all of these scenarios, our application re-
quires TCP connections between two machines that 
are both behind NAT boxes.  The problem is that 
computers attached to the Internet via NAT boxes can 
make outbound connections to non-NATed computers, 
but typically cannot receive inbound connections. 

NAT boxes allow several computers to share one 
public IP address [1].  The computers get private IP 
addresses and must send their communication to the 
public Internet through the NAT box.  The NAT box 
uses port translation in order to determine which com-
puter should receive the responses [2].  For example, 
when the NAT box receives communication from a 
private IP address and port, say A:X, it sends the 
communication out via its public IP address on a 
proxy port, say NA:Y.  The NAT maintains a table of 
mappings. When responses come back to the NAT on 
NA:Y it forwards them back to A:X.  Also, when A:X 
sends additional communication the NAT can (de-
pending on the destination and the NAT’s implemen-
tation) use the same proxy port Y. 

Using the classifications in [3], there are four dif-
ferent ways NAT boxes implement the mapping be-
tween A:X and its proxy port NA:Y which we sum-
marize below.  Assume we initiate communication 
from A:X to a non-NATed computer at IP address and 
port  B:J via NA:Y: 

1) With a Full Cone mapping, NA:Y will handle 
communications between A:X and any other com-
puter.  Specifically, a computer C, knowing or guess-
ing NA:Y would be able to communicate with A:X. 

2) With a Restricted Cone mapping, communi-

cation sent from a computer C to NA:Y would only be 
forwarded to A:X if A had previously sent communi-
cation from port X to computer C. 

3) With a Port Restricted Cone mapping, com-
munication sent from a computer C using port M to 
NA:Y would only forward to A:X if A had previously 
sent communication from port X to C:M. 

4) With a Symmetric mapping, the NAT allo-
cates a different proxy port for each IP address and 
port with which A:X communicates.  For example, if 
A:X subsequently communicates with B:Q, another 
NAT proxy port would be used, such as Z. 

In the first three cases, which we call cone-type 
mappings, the NAT uses NA:Y for all future commu-
nications from A:X until the mapping is removed 
from the its internal tables.  Mappings are only re-
moved after a period of inactivity on NA:Y. 

2.  Current Approaches 
Popular P2P applications have addressed the NAT 
Traversal Problem in different ways.  Below we enu-
merate our concerns about how these applications ad-
dress NAT Traversal: 

1) If only one peer is NATed, have the NATed 
peer set up the connections (e.g., Kazaa [4], LimeWire 
[5]).  This is only a partial solution: in a majority of 
the scenarios in which our applications run both peers 
will be NATed. 

2) Recommend users configure their NAT boxes 
to forward incoming requests on specific ports to one 
computer behind the NAT (e.g., BitTorrent [6]).  This 
is unacceptable because (a) several computers behind 
the NAT may need to run this application and (b) us-
ers may not have the technical capability or adminis-
trative access to configure the NAT. 

3) Route P2P communication through central re-
lay servers (e.g., Groove [7]).  This approach is too 
expensive.  As our application scales, we cannot af-
ford to provide the CPU and network bandwidth. 

4) Route TCP connections through instances of 
the application that happen to be running on open, 
non-NATed computers (e.g., Skype [8]).  We believe 
users who happen to be running our applications on 
non-NATed machines will not want to bare the CPU 
and network costs either.  Moreover most machines 
running our applications will be NATed so there may 
be shortage of non-NATed machines to help out.   

5) Use a proprietary session initiation protocol to 
exchange UDP ports between the peers and then tun-
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nel TCP over UDP (e.g., Newrong [9]).  We want to 
use a standard TCP stack with standard TCP stacks 
and interfaces so that we can capitalize on the benefits 
of the years of work optimizing TCP and building ap-
plication packages for it.  Also many networks do not 
allow UDP. 

Finally, we have a security concern: our applica-
tion requires the peers authenticate each other.  We 
want to use SSL.  Approaches 3, 4, & 5 require some 
sort of custom-made authentication scheme. 

In Section 7, we discuss emerging solutions in-
cluding UPnP, IPv6, and SIP. 

3.  Solution Requirements 
Summarizing our concerns described above, our NAT 
Traversal solution should permit applications to talk to 
each other with: 

a) Scalability – We want to incur minimal (if not 
zero) cost as the number of instances of our applica-
tions grows. 

b) Standard Interfaces – For ease of develop-
ment, we want to use standard interfaces for network 
communication, e.g., Sockets.  This is more familiar 
to developers and allows many existing software 
packages/libraries to be used without modification. 

c) Standard Stacks – Many years and tears have 
gone into optimizing TCP.  We don’t want to reinvent 
and/or debug this.  Furthermore, many networks do 
not allow the use of UDP. 

d) Security – We want to use SSL with standard 
interfaces and X.509 certificates.  We don’t want to 
have to re-invent this complex wheel, either. 

e) Mobility – We want peers to communicate 
with each other even though they move from network 
to network.  Often these networks are not controlled 
by the user who cannot reconfigure the NAT to add 
port mappings, allow UDP, or turn on UPnP. 

4.  Our Approach 
Our approach is called NatTrav.  In NatTrav, “recipi-
ent” peers willing to receive connections from “initia-
tor” peers register with an intermediate connection 
broker by providing a network address and a URI – a 
Universal Resource Indicator to identify uniquely the 
recipient peer. 

Connection brokers facilitate connections to recip-
ients by (i) providing the current network address for 
the recipient and (ii) facilitating NAT Traversal if the 
recipient is NATed.  Connection brokers are replica-
ted for availability and scalability.  See Figure 1. 

Connection
Brokers

Initiator

NATI

Recipient

NATR

Figure 1: NatTrav Architecture

Direct TCP 
Connection

 
The NAT Traversal Protocol for cone-type map-

pings is shown in Figure 2.  It may be possible to use 
port prediction to extend our solution to symmetric 
mappings as described by [16] in Section 7, but recent 
studies show that NAT boxes in the retail market 
place rarely use symmetric mappings [10].†  Since 
Internet phones also do not work well on NAT boxes 
that create symmetric mappings, we believe that the 
industry is moving away from this approach. 

Recipient Registration – In Steps 1 & 2, a recipi-
ent peer registers with a connection broker providing 
its URI name.  It can either use UDP or TCP for regis-
tering.  Using UDP (as shown in Figure 2) permits 
large numbers of recipients to register with each con-
nection broker, however recipients must regularly 
send these Registration messages to the connection 
broker so that the connection broker can subsequently 
be able to send Connection Request messages to the 
Recipient through its NAT (Step 4).  Using TCP for 
registration would normally require connection bro-
kers maintain large numbers of open TCP sessions.  
Not shown in the figure, we can deputize UDP-
capable recipients to act as proxies.  (In true P2P fash-
ion, each TCP-only recipient uses NatTrav as an ini-
tiator to set up TCP connections to proxies.) 

                                                      
† Of the 42 different versions of NAT boxes in the 

study, 4 do not follow the IETF Specification for 
NATs [2] and 1 always uses symmetric mappings.  Of 
the remaining 37, including those dominant by retail 
market share, most use cone-type mappings all the 
time.  A few use cone-type mappings unless the port 
number is already in use by another computer behind 
the NAT in which case they revert to creating a sym-
metric mapping.  In this scenario, NatTrav fails to 
connect, but our when applications retry, NatTrav uses 
different ports and likely succeeds. 
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Listen
on R:J

TCP: ConnectionReqAck(corr, R:J)
[R:J > NR:K > B:Z]

TCP: ConnectionReqDetails(NI:Y, punchHole)
close conn [B:Z > NR:K > R:J]

UDP: RegistrationResp [B:V > NR:U > R:T]

UDP: Registation(URI)   [R:T > NR:U > B:V]

New TCP: ConnnectionResp(corr)
close conn [R:G > R:H >B:Z]

TCP: LookupRequest(URI)  [I:X > NI:Y > B:Z]

TCP: LookupResponse(NR:K)
close conn [B:Z > NI:Y > I:X]

Connection 
Broker (B)

UDP: ConnectionReq(corr, B:Z)  [B:V > NR:U > R:T]

TCP SYN (dest=NR:K, src=I:X) to establish connection for data transfer  [I:X > NI:Y > NR:K > R:J]

Step 3

Step 1

Step 2

Step 4

Step 5

Creation of hole by sending unsolicited TCP 
SYN to NI:Y  [R:J > NR:K > NI:Y]

Step 7

Step 8
Error returned depends on NAT type and implementation

Step 9
Step 10

Step 11

NATI (NI)
Initiator (I) Recipient (R)

Step 6

Server receives step 5:
If NR=R, punchHole=false

Figure 2: NAT Traversal Protocol

NATR (NR)

Note: The IP addresses and ports used for communication are shown in square brackets.  For example: [I:X > NI:Y > B:Z] denotes communica-
tion from the Initator’s IP address I and port X to the connection broker’s IP address B on port Z via NATI’s public address NI and public port Y.

Lookup – In Step 3, when an initiator peer wants 
to make a TCP connection to a recipient peer, it sends 
a Lookup Request to a connection broker.  The con-
nection broker eventually replies (Step 10) with a 
public IP address and port that the initiator can use 
(in Step 11) for a direct TCP connection from initia-
tor to recipient (via their NAT boxes) as shown in 
Figure 1. 

The connection broker checks to see if there is an 
active registration for the recipient.  The connection 
broker may need to contact other connection brokers 
to determine this.  If so, it sends a Connection Re-
quest to the recipient on the UDP address and port 
the recipient (or its proxy) used to register (Step 4).  
The Connection Request contains a correlator (corr) 

to track which Lookup Request subsequent steps are 
working on and the IP address and port of the con-
nection broker that the recipient should use for the 
subsequent steps. 

Punching the Hole – In Steps 5 & 6 the recipient 
uses TCP to exchange network address information 
with the connection broker specified in the Connec-
tion Request.  The connection broker compares the 
recipient’s private IP address (R) and its public IP 
address (NR).  If they match, the recipient is not 
NATed.  If they do not match, the recipient is NATed 
and the recipient is told to punch a hole in its NAT 
for messages coming from the initiator’s public IP 
address and port (NI:Y). 
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The trick here is that we use the same IP ad-

dresses and ports for TCP communication with the 
connection broker and for the direct TCP connection 
between initiator and recipient.  Because we are 
punching holes in cone-type NATs, we know that the 
NATs will use the same proxy ports for communica-
tion with the connection broker and the peers.  In the 
example shown in Figure 2, the initiator uses port X 
when communicating with the connection broker 
(Step 3), but the connection broker sees it coming 
from NATI’s port Y.  Similarly, the recipient uses 
port J (Step 5) and the connection broker sees 
NATR’s port K.  To punch the hole, the recipient 
closes its TCP connection with the connection broker 
used in Steps 5 & 6 and in Step 7 uses port J to at-
tempt to open a TCP connection to NI:Y.  Depend-
ing on the type and implementation of NATI, Step 8 
may be a timeout, a TCP reset response, or (if NATI 
is a full-cone NAT) a port-in-use error (because 
NATI forwarded the TCP SYN on to I:X).  In any 
case, the TCP connection will not succeed but the 
attempt enables NATR to forward communication 
from NI:Y sent to NR:K on to R:J. 

Between Steps 8 & 9, we set up a Server-
Socket to listen on R:J.  Then we send a Connec-
tion Response message to the connection broker 
(Step 9).  In Step 10, the connection broker tells the 
initiator that it can now set up a direct TCP connec-

tion to the recipient (via the NAT boxes) by using 
NR:K.  In Step 11, the TCP connection is set up. 

Our P2P applications use a Java package called 
nattrav.  The nattrav package contains classes 
that parallel the style of the standard Java class librar-
ies for setting up TCP Sockets between applications.  
Not only this, but the objects returned by the nat-
trav package are instances of the standard Java 
Socket class directly connecting the initiator and 
recipient peers.  Figures 3 & 4 are code excerpts 
showing the interfaces for the most basic methods. 

5.  Security Extensions 
In many cases, we want our P2P applications to use 
SSL connections between the peers.  This is for pri-
vacy of the communication and to authenticate the 
peers.  We use our own certification authority (CA) 
to sign X.509 certificates for connection brokers and 
the peers.   The CA’s signing certificate is pre-
installed into our applications’ key stores.  We can 
then use the signed X.509 certificates to make SSL 
connections in Figure 2, Step 11. 

The interesting security problem for our NAT 
Traversal Protocol as shown in Figure 2 is that noth-
ing prevents a rogue peer from registering as a recipi-
ent thereby redirecting Connection Requests to itself.  
To guard against this, we also have developed a se-
cure registration protocol that uses the X.509 certifi-
cates (and the corresponding private keys) to imple-

 
    public class NatTravServerSocket { 
        public NatTravServerSocket(String connectionBrokerName, 
                                   String myURI) throws IOException { 
            // Implementation 
        } 
  
        public Socket accept() throws IOException { 
            // Implementation 
        } 
    } 

Figure 4: Java Class to Receive TCP Connections from Initiator Peers 

 
    public class NatTravSocket extends Socket { 
        public NatTravSocket(String connectionBrokerName, 
                             String recipientURI) throws IOException { 
            // Implementation 
        } 
    } 

Figure 3: Java Class to Initiate a TCP Connection to a Recipient Peer 
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ment a simple challenge/response to authenticate 
connection brokers and recipients during registration. 

6.  Evaluation 
To date, we have built two P2P applications using 
NatTrav: (1) a Remote Desktop Proxy that allows 
Remote Desktop Connections to Windows machines 
located by URI, and (2) a replicated, incremental 
backup service.  At the time of this writing, these ap-
plications are in limited deployment. 

In these deployments, the observed elapsed time 
to setup a TCP connection from an initiator to a re-
cipient using NatTrav ranges from 1.1 to 21.2 sec-
onds depending on many factors, including the speed 
of the network between the computers and the behav-
ior of NATI in Step 8 of the protocol.  The initial con-
nection time was no problem for the more often used 
backup application as the replication occurs in the 
background. 

Upon further investigation, we added a configur-
able timeout when setting up the TCP connection in 
Step 7.  We currently run with this timeout set to 2 
seconds and have now seen connection times under 5 
seconds in all cases observed. 

We note that in both applications, the ability to 
have direct TCP connections between the peers is 
very important.  We are using standard Java Socket 
(and SSL) classes for easy development and efficient 
network performance. 

A test of a connection broker running on an 800 
MHz laptop driven by simulated client loads proc-
essed over 5,000 UDP Registrations (Steps 1 & 2) 
per second.  UDP recipients re-register every minute, 
so a connection broker should support about 300,000 
recipients.  This does not measure the cost of replica-
tion or occasional Lookup Requests and Connection 
Requests.  We believe these costs to be minimal.  
Since connection brokers provide an application spe-
cific service, running connection brokers to support 
instances of our applications is not a significant cost. 

7.  Other Emerging Solutions 
UPnP is a new standard to support the ability to plug 
devices into a home network [11].  An application 
could use UPnP to configure a NAT box to forward 
to it incoming requests received on specific ports 
(thereby achieving NAT Traversal).  Unfortunately, 
early UPnP implementations had highly publicized 
security issues and many NAT boxes that support 
UPnP ship with it turned off by default.  Furthermore, 
UPnP enables any application on the LAN to create 

port mappings.  Many savvy consumers continue to 
have security concerns.  Anecdotally, we have found 
that WiFi hotspots tend not to enable UPnP.  Users 
should not have to reconfigure their NAT boxes to 
turn on UPnP as they may not be technically capable, 
might not have administrative access, or their NAT 
might not support UPnP. 

Nevertheless, UPnP support can be easily added 
to NatTrav.  When available, recipients would use 
UPnP to configure port mappings on the NAT.  The 
recipient would register the NAT’s public IP address 
and a mapped port with a connection broker.  Lookup 
Requests would still be used to find these recipients. 

IPv6 is a new standard that specifies 128 bit IP 
addresses [12].  It is possible that the new, longer 
IPv6 addresses will reduce the need for NAT boxes; 
however we are skeptical.  NAT boxes abound as 
IPv6 adoption has been slow and there is an expecta-
tion that protocol translating NAT boxes (NAT-PT) 
will be used to bridge between IPv4 and IPv6 net-
works.  Other projects such as [13] are working on 
general solutions for NAT Traversal without any ap-
plication changes, but they require deployment of 
significant additional network infrastructure. 

SIP is a new IETF Session Initiation Protocol 
that can be used to initiate UDP connections for te-
lephony and multimedia applications [14].  Except 
for security and NAT Traversal, it standardizes the 
communication formats for functions similar to our 
connection brokers.  We chose not to use SIP be-
cause: (i) it has a tremendous amount of mechanism 
we do not need for our application, (ii) it does not 
provide NAT Traversal, and (iii) beyond standardiz-
ing how user ids and passwords are sent, it does not 
address our security concerns.  Even if we were to 
include all the above capabilities in a SIP implemen-
tation, whether or not we use SIP internally in our 
applications is transparent to our users. 

NUTSS is a new research project at Cornell [15].  
As its acronym suggests, it proposes to combine NAT 
Traversal, URIs, Tunnelling over UDP, SIP, and 
STUN.  STUN [3] is a UDP-based Protocol that an 
application can use to talk with intermediate STUN 
servers to determine if it is NATed and if so, via what 
type of NAT.  Again, we have several concerns about 
tunneling over UDP.  Recently, the NUTSS research-
ers have proposed a TCP based approach [16] con-
sisting of (i) STUNT: TCP extensions to STUN, and 
(ii) a TCP hole punching protocol.  Their hole punch-
ing protocol is much more complex than ours requir-
ing use of port prediction, STUNT, spoofing, and 
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sending TCP SYNs with low TTLs.  However, they 
are attempting to traverse symmetric NATs. 

8.  Conclusions 
Our P2P applications require direct TCP connections 
between peers.  By using a NAT Traversal solution, 
such as NatTrav, we are able to directly connect our 
peers across cone-type NATs: (i) using standard TCP 
Socket and SSL packages, (ii) with minimal cost per 
new peer, (iii) without routing through non-NATed 
peers, (iv) without requiring users to reconfigure their 
NATs, and (v) locating specific peers wherever they 
are connected to the Internet. 

While we could not afford to wait for prevalent 
UPnP utilization and IPv6 deployment (which may 
never happen) or the future standardization activities 
initiated by NUTSS, we look forward to their future 
successes.  Should support for symmetric NATs be-
come important to our applications, NUTSS may be 
very important to us.  As NAT box makers start sup-
porting UPnP and enabling it by default, it may be 
useful to add UPnP support to our arsenal. 

A final note: our NAT Traversal solution is ap-
plication specific.  So is Skype’s approach of routing 
calls through non-NATed peers.  Their approach 
works well because it’s a low bandwidth application 
(less than 16 kbps during a call with custom encryp-
tion) [17].  But they likely will need to use direct 
TCP connections when they add video. 
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