

Empirical Evaluation of Defect

Projection Models for Widely-deployed
Production Software Systems

Paul Luo Li, Mary Shaw, Jim Herbsleb,
Bonnie Ray* , and P. Santhanam*

August 2004
CMU-ISRI-04-130

Institute for Software Research International
School of Computer Science
Carnegie Mellon University

Pittsburgh PA, 15213

This paper is an expanded version of the paper titled: Empirical Evaluation of Defect Projection Methods for
Widely-deployed Production Software Systems, in SIGSOFT 2004/FSE-12, November, 2004.

*Bonnie Ray and P. Santhanam are researchers at the Center for Software Engineering at IBM T. J. Watson
Research Center.

This research was supported by the National Science Foundation under Grand CCR-0086003, by the Sloan
Software Industry Center at Carnegie Mellon University, and by the NASA High Dependability Computing
Program under cooperative agreement NCC-2-1298.

Keywords: Empirical Studies, Metrics, Reliability Engineering, Defect modeling, empirical research, COTS,
open source software, maintenance resource planning, software insurance

ABSTRACT

Defect-occurrence projection is necessary for the development of methods to mitigate the risks of software defect
occurrences. In this paper, we examine user-reported software defect-occurrence patterns across twenty-two
releases of four widely-deployed, business-critical, production, software systems: a commercial operating system,
a commercial middleware system, an open source operating system (OpenBSD), and an open source middleware
system (Tomcat). We evaluate the suitability of common defect-occurrence models by first assessing the match
between characteristics of widely-deployed production software systems and model structures. We then evaluate
how well the models fit real world data. We find that the Weibull model is flexible enough to capture defect-
occurrence behavior across a wide range of systems. It provides the best model fit in 16 out of the 22 releases.
We then evaluate the ability of the moving averages and the exponential smoothing methods to extrapolate
Weibull model parameters using fitted model parameters from historical releases. Our results show that in 50%
of our forecasting experiments, these two naïve parameter-extrapolation methods produce projections that are
worse than the projection from using the same model parameters as the most recent release. These findings
establish the need for further research on parameter-extrapolation methods that take into account variations in
characteristics of widely-deployed, production, software systems across multiple releases.

1. INTRODUCTION
Defect occurrences not only create problems for software consumers, but also cause problems in maintenance

planning for software producers. The costly consequences of defect occurrences have increased interest in
insuring software consumers against the associated risks.

Defect-occurrence projection is crucial to the development of methods for managing the risks associated with
defect occurrences. Accurate defect-occurrence projections can help software maintenance planners to better
allocate resources and will be a major step towards novel risk-mitigation techniques for software consumers, such
as software insurance.

We examine software systems that businesses are increasingly dependent upon. These systems are multi-
release, multi-platform, and widely-deployed, such as COTS and open source software. It is generally accepted
that these widely-deployed, production, software systems (WPSSs) are not defect free and that there is a need to
manage the risks associated with the defect occurrences.

We empirically address two questions that are important for defect-occurrence projection:
• Is there a type of defect occurrence model that provides a good fit to defect-occurrence patterns across

multiple releases and in many organizations?
• Given such a model, how can model parameters for a new release be extrapolated using historical

information?
Our findings provide a basis for a defect-occurrence projection method for WPSSs that is robust across many
organizations and development styles.

We use data from a diverse sample of WPSSs including two different types of software systems (middleware
and operating systems) developed with two different development styles (commercial and open source). We
gather data from twenty-two releases: eight releases of a commercial operating system, three releases of a
commercial middleware system, eight releases of an open source operating system (OpenBSD), and three
releases of an open source middleware system (Tomcat).

We examine characteristics of WPSSs that can change between releases and that may cause variations in
defect-occurrence patterns. The characteristics we consider are release content, development process, adoption
and usage patterns, and software and hardware configurations in use. These considerations are not modeled well
in prior research in this field.

We examine how parameterizations of a set of candidate defect-occurrence models taken from the literature
account for possible variations in defect-occurrence patterns across multiple releases and how two commonly-
used naïve parameter-extrapolation methods account for the variations. We hypothesize:
• The Weibull model is better than other candidate models at modeling defect-occurrence patterns for multiple

releases of WPSSs.
• Naïve parameter-extrapolation methods, moving averages and exponential smoothing, extrapolate model

parameters that produce inadequate defect-occurrence projections for new releases of WPSSs.
Determining the preferred defect model is important for defect-occurrence projection because it may allow us to
understand and quantify the effects of changes in characteristics of WPSSs across multiple organizations and
development styles. Verifying that naïve parameter-extrapolation methods are inadequate is important because it
will motivate additional research questions on new methods for parameter extrapolation. Our results show that
the Weibull model is the preferred model and that naïve parameter-extrapolation methods are inadequate.

We begin by providing background and descriptions in Section 2. We present analyses that support our two
hypotheses and the empirical results in Sections 3 and 4. We conclude with validity issues and future work in
Section 5.

2. BACKGROUND AND DESCRIPTIONS
We are interested in real-world software systems deployed today that are of key business interest to users,

such that there are users who pay for maintenance contracts and who may be willing to pay to insure against
defect occurrences.

2.1 Defect occurrence
We define a defect occurrence as a user-reported problem that requires developer intervention to correct.

This is the observable event of interest for both maintenance and insurance purposes.
The operational definition of a defect occurrence varies across organizations. In this paper, we use the same

approach to analyze defect occurrences in different organizations and show that our approach is resilient to
organizational differences. The commercial software development organizations measure faults and failures,
described in Section 2.2.1, while open source software projects track user-submitted bug-reports, described in
Section 2.2.2. Our findings support the idea that a common defect-occurrence projection method for WPSSs can
be used across many organizations and development styles.

We are interested the defect-occurrence pattern, which is the rate of defect occurrence as a function of time
over the lifetime of a release. We define the lifetime of a release as the duration of time between when a release
becomes generally available and when there are no defect occurrences reported to the software development
organization for three consecutive time intervals. Determining the lifetime of a release is discussed in detail in
[Appendix C].

Our focus on the defect occurrence pattern is different from previous research on the total number of defects
[5] and the normalized defect-occurrence rate. The normalized defect-occurrence rate is the rate of defect
occurrences normalized with respect to the number of deployed systems and the usage amount over the lifetime
of a release [4][18][19][20][28]. Knowing only the total number of defects is inadequate because resource
allocation for maintenance planning and cash reserve management for insurance both require knowledge of how
many defects are going to occur in a given time period. The normalized defect-occurrence rate is unsuitable
because it requires accurate measurements of deployment and usage patterns. As we explain in the next section,
unknown deployment and usage patterns are properties of WPSSs.

2.2 Widely-deployed production software systems
We are interested in widely-deployed, production, software systems (WPSSs), which are software systems

with the following properties:
• The software system is used in many software and hardware configurations (some unforeseen).
• The deployment and usage patterns of the software system are unknown.
• The development process of software system has constraints (such as scheduling and resource constraints).
• The contents of the software system change over time.
• The software system has multiple releases.

2.2.1 Commercial software systems
Nearly all COTS software systems have the properties of WPSSs. COTS software systems are not developed

with one client in mind but rather to be sold on the open market and to be used by many clients [2]. The systems
are typically built to run on multiple hardware platforms, to be compatible with many different hardware devices,
and to be compatible with many other software systems. Constraints exist on the development process, such as
pre-set release dates and limited resources. The software development organization has limited information on
who is going to purchase the software system and puts out successive versions of the software system, which
implements new functionality and improvements [12].

The two COTS software systems we examine are developed by two different divisions of IBM. The operating
system is a mature product with many years of presence in the marketplace. The commercial middleware system
has a few years of deployment history and a growing customer base.

The defect-occurrence data collected are code-related problems discovered and reported by customers after
deployment. A more detailed description of the data collection process is in [Appendix E]. The defect-occurrence
data for the operating system contain unique field defects that led to code changes by the product support
organization. The defect-occurrence data for the middleware system contain all field defects (which may not be
unique) that lead to code changes. The defect-occurrence data are processed and aggregated, so for each data set
we use the interval in that data set. The time interval for the middleware system is a month and the time interval
for the operating system is a quarter.

2.2.2 Open source software systems
Open source software systems have all the properties of WPSSs. A consortium of user-developers with

different needs (generally with one person or a core group leading development) develops an open source
software system. A successful project has diverse user-developers that develop and test the software system, port
the software system to many platforms, make it operable with many devices, and make it compatible with other
software systems. Hence, the number of active user-developers constrains an open source project. The software
system can be downloaded and used anonymously, so there is limited knowledge about the users. Open source
software systems usually evolve in successive releases to satisfy the needs of its user-developers [25].

The open source software systems we examine are developed by successful open source projects with many
user-developers from around the world. The open source operating system is OpenBSD. OpenBSD is a Unix-like
operating system that emphasizes portability, standardization, correctness, proactive security, and integrated
cryptography [21]. The open source middleware system is Tomcat, which is one of the products developed by the
Jakarta Project. Tomcat is the servlet container used in the official reference implementation for the Java Servlet
and JavaServer Pages technologies [7].

The defect-occurrence data collected are bug reports submitted by users via the web based bug-tracking
system. A more detailed description of the data collection process is in [Appendix E]. Unlike users of a
commercial software system, user-developers of an open source software system can obtain the software system
anytime during development and submit bug reports. Many bugs are duplicates, user mistakes, or otherwise
invalid submissions that do not require code changes. However, we include all user-reported bug reports in our
data set because a member of the core development team examines each bug submission and decides upon a
course of action. The time interval used for both open source software systems is a month.

2.2.3 Related work
Much of the prior research in software reliability has been conducted on systems where the testing

environment and the deployment environment are similar. Similarities like software and hardware configurations
and usage patterns have allowed researchers to extend defect-occurrence patterns from development into the
field. Lyu in [16] provides a comprehensive review of previous works. Lyu explains model origins, states
modeling assumptions, and classifies commonly used reliability models. We borrow mathematical models and
statistical tools from prior research, however extending defect-occurrence patterns is inappropriate for WPSSs
given properties discussed in Section 2.2.

Current efforts to certify software are very similar to prior research in software reliability engineering. Voas
advocates certifying commercial software for use in a customer’s environment [28], and Wallnau et. al. at the
Software Engineering Institute are conducting research on predictable assembly from certified components [14].
Both approaches test software in the customer’s environment then extend results into usage. These approaches
account for several environmental variables and make statistical guarantees about various properties. However,
we feel that cost, variance, and unforeseen confounds at the single-customer level might make such methods
impractical. We do however, leverage relationships between characteristics of software systems and defect
occurrences discovered in their research.

Several on-going research efforts examine defect occurrences across multiple releases. Ostrand and Weyuker
use software content and development process measures to predict faulty files in multiple releases of two
software systems at AT&T [22]. Their model predicts the top 20% faultiest files, which they show to capture
around 80% of faults found during development and in the field. The COQUALMO project at USC uses
COCOMO II data to estimate the total number of defects in a software system [5]. Their model uses size metrics
and various process modifiers. The process modifiers measure aspects of the defect injection process and the
defect removal process. Jones et. al at Nortel use the percentage of deployed systems with a module installed as a
surrogate for usage along with software content measures to predict the likelihood that a module will be faulty in
the field [10]. They correctly identify approximately 70% of the faulty modules while misidentifying less than
26% of the faulty modules. These research projects contribute knowledge about the important predictors of
defect occurrences. However, none of the projects examines the defect-occurrence pattern. As noted in Section

2.1, risk mitigation techniques need to know both the expected total number of defect occurrences as well as
when those defect occurrences happen in the lifetime of a release.

Mockus et. al. use software content and development process information captured in the change
management and CVS systems to predict the amount of repair effort and the delay until the effort is needed for
eleven releases of a telecommunications software system at Avaya [17]. They assume that field repair effort is
proportional to development effort and estimate a delay factor and an effort multiplier. Our work is similar.
However, our focus is on defect-occurrence patterns, while the focus at Avaya is on effort.

Popstajanova et. al in [23]uses architecture, utilization, and control flow information to predict the likelihood
of defect occurrences. Unlike their white box approach, our approach is black box.

Previous works have also compared defect-occurrence models. Jones compares various models and the MLE
and least squares model fitting methods for ten releases of a telecommunications software system at Northern
Telecom and Bell Canada [9]. He concludes that the Logarithmic model, fitted using the least squares method,
produces the best results and that the least squares method is superior to the MLE method overall. Jones
considers a Weibull process model. Wood compares eight mathematical models fitted using the least squares
method for four releases of a software system at Tandem computers [28]. Wood considers the Weibull model but
finds that the Exponential is the best model in his environment. Their works lack an underlying theory explaining
why a model is superior in their environment, and they do not replicate their experiment at other organizations.
We develop a theory for the causes of variation in defect-occurrence patterns for WPSSs and compare models
across multiple releases, multiple organizations, and multiple products.

There appears to be no published work on projecting defect-occurrence patterns for open source projects. We
note that software systems are becoming so complex and expensive that few organizations have the resources to
build custom systems. More and more organizations reply on COTS or open source software systems, which is
the focus of this paper.

2.3 Character istics of WPSSs
Content, development process, deployment and usage patterns, and software and hardware configurations in

use are characteristics of WPSSs that tend to change, sometimes dramatically, between releases. The effect of
changes on defect-occurrence patterns will dictate which defect-occurrence model is best suited to model defect-
occurrence patterns in multiple releases and which parameter-extrapolation methods are effective. We use results
from previous work in software reliability engineering and intuitive arguments to provide evidence that the
characteristics listed above can influence defect-occurrence patterns across multiple releases.

2.3.1 Content
Software content affects defect-occurrence patterns across multiple releases [11][17]. Successive releases

incrementally add features and implement internal changes, such as refactoring. Some modifications may be
more difficult and defect prone than others, which may cause more defect occurrences over a longer time period.
Depending on the similarity of content changes, the defect-occurrence pattern of a release may be similar to one
release but be substantially different from another.

2.3.2 Development process
The development process affects defect-occurrence patterns across multiple releases [12][7]. Although the

development process of most organizations changes slowly over time, when combined with other factors the
development process may have significant impact on defect-occurrence patterns. Insufficient and varying testing
resources and schedule pressure may lead to ineffective defect removal. This can cause defects to linger in the
system and can cause blocking, which occurs when one defect masks the presence of other defects. However,
problems with the development process may not be present to the same degree in every release, which may cause
defect-occurrence patterns to vary.

2.3.3 Deployment and usage patterns
Deployment and usage patterns affect defect-occurrence patterns across multiple releases [3][16]. The total

number of deployed systems and the pattern of deployment dictate how much usage and how many usage patterns
are possible. Deployment may be different for each release because users cannot be forced to adopt the latest

release. Some users may adopt every release, while others may only adopt releases that contain important
functionality. In addition, some users may adopt a release immediately, while other may delay adoption. The
usage patterns may also be different from release to release and from user to user. Some users may not heavily
exercise the software until the software has shown to be satisfactory under normal operating conditions.
Deployment and usage patterns dictate how heavily the system is exercised, which may cause variations in
defect-occurrence patterns.

2.3.4 Software and hardware configurations in use
Software and hardware configurations in use affect defect-occurrence patterns across multiple releases

[14][28]. The software development organization has limited knowledge about users, and thus may not be able to
test all possible hardware and software configurations. Furthermore, comprehensive testing may not be feasible
given economic and scheduling constraints. Therefore, the software may have defects that are specific to certain
configurations, software interactions, and other special conditions, such as malicious attacks.

3. DEFECT-OCCURRENCE MODELS
A single type of defect-occurrence model may be able to model defect-occurrence patterns across multiple

releases of a wide variety of WPSSs. We believe such a model exists despite possible changes in characteristics
discussed in Section 2.3 because of similarities between releases and properties common to all WPSSs. Bassin
and Santhanam at IBM have shown that successive releases have similarities in the functionalities implemented,
the development organization, and users with similar usage patterns [1]. All WPSSs also share common
properties mentioned in Section 2.2.

In order for a model to be widely applicable, it needs to have parameterization that can account for variations
in defect-occurrence patterns. In this section, we develop and use real-world data to empirically test the
hypothesis that the Weibull model is better than other candidate models in modeling defect-occurrence patterns
for multiple releases of WPSSs.

3.1 Candidate models
We are interested in the defect-occurrence pattern. Therefore, we are interested in models that model the

number of defect occurrences in each time period over the lifetime of a release. We consider the Exponential
model, the Gamma model, the Logarithmic model, the Power model, and the Weibull model. These models are
promising because prior research in software reliability engineering has shown each model to be effective at
modeling defect-occurrence patterns at a software development organization [9][16][28]. Each model is
parametric. The number of defect occurrences during the t-th time interval is determined by the model
parameterization and the current time interval. The number of defect occurrences within a time interval is
modeled as a non-homogenous Poisson process with a stationary defect rate (t). Table 1 lists the models. Lyu
[16] provides details about the models, including researchers who have developed and applied the models in
practice.

Table 1. Candidate models

3.2 The Weibull model
The Weibull model can account for different increasing and decreasing trends, which reflect initial increases

and eventual decreases in defect occurrences. We generally expect early defect occurrences to show a primarily
increasing trend as users migrate to the release, exercise the software, and report defects, and we expect later

Model type Model name Model form Researchers/users of the model

Exponential Non-homogenous Poisson process model
�
(t) = N � e

– � t Goel & Okumoto

Weibull Weibull �
(t) = N � � t

� -1
 e

– � t �
 Schick-Wolverton

Gamma S-shaped reliability growth model
�
(t) = N � �

 t
� -1

 e
– � t

 Yamada, Ohba & Osaki

Power Duane Model
�
(t) = � � e

– � t
 Duane

Logarithmic Musa-Okumoto logarithmic Poisson model
�
(t) = � (� � t +1)

– 1
 Musa-Okumoto

defect occurrences to show a primarily decreasing trend as the rate of adoption declines and the release becomes
more reliable due to defect removal.

The Weibull model has three parameters N, , and . Intuitively, the Weibull model can be broken down into
three interacting pieces: N, representing the total number of defect occurrences in the lifetime of the release, a

generally increasing component t � -1
 , which dominates early, and a decreasing component e

–
�
 t �

 , which
dominates as time increases.

N can be different for each release, which can account for differences in the total number of defect
occurrences between releases. The differences may be caused by changes in software content or development
processes.

In general, t � -1 increases as a function of time and can account for increases in defect occurrences. The
rate of growth is controlled by a combination of the and parameters. The increasing component is flexible
enough to describe both concave and convex increasing patterns. Concave increasing patterns can occur when the
growth in the rate of defect occurrences is faster at the beginning of the release, which may occur if many users
quickly adopt and use a release. Convex increasing patterns can occur when the rate of defect occurrences
increase slowly. This may occur if users slowly migrate to the release or if constraints on development and
problematic content cause blocking, which prevents defects from being discovered.

The term e
–

�
 t �

 decreases as a function of time and can account for decreases in defect occurrences. Again,
the rate of decrease is controlled by a combination of the and parameters. The decreasing component can
describe concave or convex decreasing patterns. Convex decreasing patterns can occur when the rate of defect
occurrences decrease rapidly, which may occur if there is fast migration to a new release. Concave patterns can
occur when the rate of defect occurrences decrease slowly, which may occur if defect occurrences remain high
over a longer time period due to constraints on development or problematic content.

It is reasonable to expect a model with parameterization that can describe varying defect-occurrence patterns
such as the Weibull model to be better than other candidate models. The Exponential, the Power, and the
Logarithmic models do not have both decreasing and increasing components. They cannot describe the interplay
of increasing and decreasing trends. Although the Gamma model has both increasing and decreasing components,
its decreasing component is generally convex. Thus, the Gamma model is unable to describe situations in which
the decreasing pattern is concave. Kenny [11] has studied the interaction of increasing and decreasing trends in
defect-occurrence patterns in commercial software systems and recommends using the Weibull model to model
defect-occurrence patterns.

We hypothesize that the Weibull model is better than other candidate models at modeling defect-occurrence
patterns for multiple releases of WPSSs.

3.3 Model fitting and model selection
We fit the best set of parameters for each candidate model for each release using Non-linear Least Squares

(NLS) regression then compare the candidate models using the Akaike Information Criterion (AIC) model
selection criterion[27].

NLS is a well-established model fitting procedure that selects model parameters by minimizing the square of
the difference between fitted values and actual values [27]. It is widely used in defect modeling research [9][28].
We use the open source statistical computing package R [24]. After we select the best parameters for each
candidate model for a given release, we use the AIC model selection criterion to evaluate the fit of the different
candidate models; lower AIC scores are better. The AIC score is defined as:

AIC = n log 2 + 2 |S|
where 2 is the residual squared error divided by the difference of the number of observations, n, and the number
of model parameters, S [27]. The AIC model selection criterion penalizes models with more parameters to offset
the advantage models with more parameters have in comparisons.

Our hypothesis stated in Section 3.2 would be supported if the Weibull model consistently produces lower
AIC score.

Tables 2-5 present the AIC scores. The best AIC scores for each release are highlighted (shaded cells
highlight the best AIC scores among fitted candidate models). INF and Singular Gradient indicate that the model-
fitting algorithm is unable to fit parameters for the model, which suggests that the model is inappropriate. A
detailed explanation of the failure to fit model parameters and why it suggests a model is inappropriate is given in
[Appendix B].

Table 2. AIC scores for commercial OS

Release/ Model Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model

i 158 131 144 164 160

i + 1 119 110 111 131 126

i + 2 159 150 155 175 169

i + 3 104 105 111 113 109

i + 4 116 111 109 121 118

i + 5 104 87 89 105 104

i + 6 62 64 64 62 62

i + 7 Singular Gradient 63 63 66 Singular Gradient

 Table 3. AIC scores for commercial middleware system

Release/ Model Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model

i 153 134 134 163 157

i + 1 Singular Gradient 173 171 195 Singular Gradient

i + 2 Singular Gradient 116 116 129 Singular Gradient

Table 4. AIC scores for open source OS

Release \Model Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model

2.6 167 124 129 173 170

2.7 162 91 103 176 171

2.8 182 134 136 188 185

2.9 135 97 88 143 139

3.0 110 83 90 113 112

3.1 170 168 166 173 171

3.2 88 84 85 101 99

3.3 91 73 76 93 91

Table 5. AIC scores for open source middleware system

Release /Model Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model

3.3 INF 157 157 193 192

4.0 INF 215 219 275 275

4.1 INF 77 78 92 93

Figure 1 shows fitted candidate models for a representative sample of releases from each of the four WPSSs.

Due to confidentiality agreements, only the figures for open source software systems have numbered axes. Plots
of all fitted candidate models are in [Appendix A].

Tables 2-5 show that the Weibull model has the best AIC score or one of the best AIC scores in 16 out of 22
or 73% of the releases. This is considerably better than the next best model, which is the Gamma model with the
best AIC score or one of the best AIC scores in 8 out of 22 or 36% of the releases. Furthermore, since the AIC is
a measure of deviance, it roughly follows a 2 (chi-squared) distribution, which makes 4 a rough 95% confidence
band around an AIC score. We note that the Weibull is within the 95% confidence band of the best AIC score in
all but one of the releases. These results support our hypothesis that the Weibull model is the preferred model.

Figure 1. Samples of fitted candidate models

3.4 Validation of the Weibull model
We have shown that the Weibull is better than other candidate models. However, we still need to show that

the Weibull model adequately describes the defect-occurrence pattern. We use the Theil forecasting statistic to
validate the Weibull model.

The Theil statistic compares the forecast for each time interval i against a no-change forecast based on the
previous time interval's value [26].

The Theil statistic U is greater or equal to zero. The term Pi is the projected change and Ai is the actual

change in interval i. A Theil statistic of zero indicates perfect forecasts with Pi = Ai. A Theil statistic of one
indicates that forecasts are no better than no-change forecasts with Pi = 0. Values greater than one indicate
forecasts are worse than no-change forecasts.

The Theil statistics shown in Figure 2 indicate that the best-fit Weibull is always better than the no-change
forecast.

U 2=

�
 (Pi – Ai)

2

�
 Ai

2

Figure 2. Plots of best-fit Weibull models

We conclude that the Weibull model is the preferred model because the Weibull model is better than other
candidate models based on AIC scores in Section 3.3 and is good at projecting defect occurrences based on Theil
statistics. Further validation is in [Appendix F].

4. NAÏVE MODEL PARAMETER EXTRAPOLATION METHODS
Section 3.4 establishes the Weibull model as the preferred model. However, in order to project defect

occurrences we still need to extrapolate model parameters for each new release. Naïve parameter-extrapolation
methods that do not consider the changes in characteristics described in section 2.3 may extrapolate parameters
that result in poor forecasts. In this section, we develop and empirically test the hypothesis that the moving
averages and exponential smoothing methods are inadequate.

4.1 The moving averages method and the exponential smoothing method
Both the moving averages and exponential methods are well-established time series methods that represent

intuitive, reasonable, and fairly common methods for extrapolating model parameters. The moving averages
method extrapolates parameters by taking the average of the best-fit model parameters from the previous k
releases. Exponential smoothing is similar, except more recent releases are given more weight, since intuitively
more recent releases should be better predictors of the current release. Eick et. al. [6] have used a similar method
to predict software defect rates for various software modules.

4.2 Inadequacies of naïve methods
Naïve parameter-extrapolation methods may not account for variations in defect-occurrence patterns because

the methods do not consider changes in content, development process, deployment and usage patterns, and
software and hardware configurations in use between releases. For example, consider a major release and a minor
release. A major release that implements new functionality can have significant changes in content, production,
and usage. New functionality can lead to substantial code changes and additions. If the schedule is fixed or if
there is an insufficient number of trained testers then development constraints may cause inadequate testing.
Finally, there may be many more adopters if the functionality being implemented is important to the users. A
minor release that offers only minimal improvements over a previous release would have none of the above-
mentioned conditions. We expect defect-occurrence patterns in the two releases to be drastically different.
However, naïve parameter-extrapolation methods do not account for the differences.

We hypothesize that the two naïve parameter-extrapolation methods extrapolate model parameters that
produce inadequate defect-occurrence projections for multiple releases of WPSSs.

4.3 Model parameter extrapolation and forecast evaluation
We evaluate naïve parameter-extrapolation methods by extrapolating model parameters and then examining

the Theil forecasting statistics of the projected defect occurrences. Our hypothesis in section 4.2 will be
supported if the two naïve parameter-extrapolation methods fail to consistently produce Theil statistics that are
less than one and if the Theil statistics do not consistently improve with more data.

We increase the validity of our results by making the simplifying assumption that the total number of defect
occurrences is known. Prior research has already shown that two different software releases are likely to have
different total numbers of defect occurrences [5][17]. We remove the possible confound by providing estimates
of the total number of defects. We show that naïve parameter-extrapolation methods are inadequate even with
this simplification. This topic is discussed in detail in [Appendix D].

Tables 6-9 present fitted and parameters and Figure 2 presents plots of the best-fit Weibull models. We
theorize that changes in characteristics described in Section 2.3 cause the variation in the parameter values.

Table 6. Model parameters for commercial OS

Parameter /Release i i+1 i+2 i+3 i+4 i+5 i+6 i+7
� 2.58 1.56 1.38 1.11 1.57 1.90 0.89 2.12

�
 9.00 7.07 6.91 6.45 7.37 8.63 131.37 10.97

Table 7. Model parameters for commercial middleware system

Parameter /Release i i+1 i+2
� 1.72 2.05 2.81

�
 10.58 17.75 14.97

Table 8. Model parameters for open source OS

Parameter /Release 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
� 2.70 2.22 2.79 2.28 2.51 1.86 1.37 2.40

�
 6.69 5.33 6.83 4.66 5.69 5.45 3.65 5.99

Table 9. Model parameters for open source middleware system

Parameter /Release 3.3 4.0 4.1
� 4.19 3.84 2.21

�
 15.44 16.89 8.39

Table 10 and 11 present Theil statistics resulting from using the moving averages and exponential smoothing
methods to select the and model parameters of the Weibull model. The total number of defects is assumed to
be given and is approximated by the total number of defects generated by the best-fit Weibull model.

Table 10. Theil forecasting statistics for projections with the moving averages method

Releases/
System

one release two releases three releases four releases five releases six releases seven releases

Commercial MW R i+1 2.26

Commercial MW R i+2 1.00 1.11

Open source MW R4.0 0.94

Open source MW R4.1 2.07 2.07

Commercial OS R i+1 0.98

Commercial OS R i+2 0.50 0.88

Commercial OS R i+3 0.56 0.61 0.86

Commercial OS R i+4 0.74 0.66 0.61 0.56

Commercial OS R i+5 0.94 1.30 1.29 1.22 0.89

Commercial OS R i+6 7.33 7.44 7.43 7.46 7.52 7.63

Commercial OS R i+7 3.67 3.76 3.54 3.21 2.98 2.79 2.74

Open source OS R2.7 1.13

Open source OS R2.8 1.06 0.70

Open source OS R2.9 1.32 0.93 1.04

Open source OS R3.0 0.87 0.42 0.43 0.44

Open source OS R3.1 0.72 0.70 0.73 0.71 0.73

Open source OS R3.2 0.76 0.91 0.87 0.99 0.97 1.02

Open source OS R3.3 1.56 1.10 0.85 0.86 0.66 0.66 0.57

Table 11. Theil forecasting statistics for projections with the exponential smoothing method

Releases/
System

one release two releases three releases four releases five releases six releases seven releases

Commercial MW R i+1 2.26

Commercial MW R i+2 1.00 1.05

Open source MW R4.0 0.94

Open source MW R4.1 2.07 2.07

Commercial OS R i+1 0.98

Commercial OS R i+2 0.50 0.81

Commercial OS R i+3 0.56 0.60 0.77

Commercial OS R i+4 0.74 0.67 0.63 0.57

Commercial OS R i+5 0.94 1.24 1.24 1.21 1.06

Commercial OS R i+6 7.33 7.42 7.41 7.43 7.46 7.50

Commercial OS R i+7 3.67 3.77 3.68 3.56 3.50 3.47 3.48

Open source OS R2.7 1.13

Open source OS R2.8 1.06 0.76

Open source OS R2.9 1.32 1.00 1.06

Open source OS R3.0 0.87 0.43 0.44 0.42

Open source OS R3.1 0.72 0.70 0.72 0.71 0.72

Open source OS R3.2 0.76 0.88 0.86 0.93 0.93 0.95

Open source OS R3.3 1.56 1.18 0.99 0.98 0.87 0.86 0.82

We evaluate the benefits of including more historical information for naïve parameter-extrapolation methods
by comparing the Theil statistics produced using multiple releases against the Theil statistics produced using
model parameters of the most recent release as the model parameters for a new release. Improvements are
possible since Theil statistics in tables 10 and 11 indicate that in 9 out of 18 or 50% of the forecasting
experiments, using model parameters from the most recent release result in projections that are no better than no-
change forecasts. (The exponential smoothing and moving averages methods are identical when extrapolating
parameters using only data from the most recent release, thus their results are the same.) However, results show
that projections do not improve if we incorporate additional historical information. There are 88 total forecasting
experiments for the two naïve parameter-extrapolation methods using data from two or more releases. In 44 out
of 88 or 50% of the forecasting experiments, Theil statistics show no improvement over values from column one
release (shaded cells in tables 10 and 11 highlight values showing no improvement). Incorporating additional
historical information failed to improve Theil statistics.

Not only do naïve parameter-extrapolation methods fail to improve forecasts with additional data, they
produce poor projections overall. Theil statistics are greater than or equal to one in 39 out of 88 or 44% of the
forecasting experiments. Moving averages produced poor projections in 43% of the forecasting experiments.
Exponential smoothing produced poor projections in 45% of the forecasting experiments. Similar results are
produced when we use the naïve parameter-extrapolation methods to extrapolated model parameters for the
Gamma model. The details are in [Appendix F].

We conclude that there is strong empirical evidence that the Weibull model is the preferred model for
modeling defect-occurrence patterns of WPSSs across multiple releases and that the naïve parameter-
extrapolation methods, moving averages and exponential smoothing, are inadequate in extrapolating model
parameters of the Weibull model for defect-occurrence projection.

5. VALIDATION AND FUTURE WORK
Our research aims to deal with the real world consequences of defect occurrences in WPSSs. Maintenance

planning and software insurance are two methods that can deal with the consequences [13], and both need
accurate defect-occurrence projections. This paper set out to address two questions that are important for defect-
occurrence projection: is there a type of defect model that provides a good fit to defect-occurrence patterns across
multiple releases and in many organizations, and how can model parameters for a new release be extrapolated
using historical information.

We have examined historically effective defect-occurrence models. There is extensive defect-occurrence
modeling research history to support our belief that our collection of models is well-suited for modeling software
defect-occurrence patterns. Despite these efforts, it is possible that a better defect model exists, and we strongly
encourage others to replicate our approach using a wider array of models.

The difference in definition of defect occurrences and the time interval used between the software systems
strengthens our finding that the Weibull model is the preferred model, since despite the differences in definition,
the Weibull model still proved superior. There may be other meaningful ways of counting defects where the
Weibull model does not perform as well. Only future research can address this issue.

We have attempted to establish the external validity by including two different types of software systems
(middleware and operating systems) developed with two different development styles (commercial and open
source). It is not yet clear how adequately this sample represents the population of WPSSs. We regard this as a
promising start, but future research should sample additional parts of the WPSS space.

The goal of our research is to develop a defect-occurrence projection method that produces defect-occurrence
projections that are better than post-facto fits. Our results show that naïve parameter-extrapolation methods are
never better than the post-facto, best-fit, Weibull model (Theil statistics in Figure 2 and Tables 10 and 11).
However, a post-facto fit chooses model parameters that minimize the residual error for all data points
simultaneously, which does not necessarily produce the best model parameters for each data point. It may be
possible to produce better projections than the post-facto fit by updating a-priori projections as more information
becomes available, such as after the arrival of field defect-occurrence data or after the release of software
patches.

Our results in this paper indicate that the Weibull model is the preferred model for modeling defect-
occurrence patterns for multiple releases of WPSSs and that the naïve parameter-extrapolation methods are
inadequate. We have claimed that we expected the naïve parameter-extrapolation methods to fail because they do
not account for differences in content, development process, deployment and usage patterns, and software and
hardware configurations in use. The next step should be to improve parameter-extrapolation methods by
predicting the effects on model parameters resulting from changes in characteristics of widely-deployed,
production, software systems.

6. ACKNOWLEDGEMENTS
This research was supported by the National Science Foundation under Grand CCR-0086003, by the Sloan

Software Industry Center at Carnegie Mellon University, and by the NASA High Dependability Computing
Program under cooperative agreement NCC-2-1298. Thanks to IBM for making this work possible, Larry
Wasserman for his guidance, and Audris Mockus for his insights.

7. REFERENCES
[1] K. Bassin and P. Santhanam. Use of software triggers to evaluate software process effectiveness and capture customer usage profiles.
In Eighth International Symposium on Software Reliability Engineering, Case Studies, p103-114, 1997.
[2] B. Boehm and et. al. Cost models for future software life cycle processes: COCOMO 2.0. In Annals of Software Engineering Special
Volume on Software Process and Product Measurement, Chapter 1,1995.

[3] M. Buckley and R. Chillarege. Discovering relationships between service and customer satisfaction. In The International Conference
on Software Maintenance, p192-200 1995.
[4] R. Chillarege, S. Biyani, and J. Rosenthal. Measurement of failure rate in widely distributed software. In Twenty-Fifth International
Symposium on Fault-Tolerant Computing, p424-433, 1995.
[5] S. Chulani. COQUALMO (constructive quality model) a software defect density prediction model. In Project Control for Software
Quality, 1999.
[6] S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does code decay? assessing the evidence from change management
data. In IEEE Transactions on Software Engineering, Volume 27, p1-12, 2001.
[7] D.E. Harter, M.S. Krishnan, S.A. Slaughter. Effects of process maturity on quality, cycle time, and effort in software product
development. Management Science, Volume 46, p451-466, 2000.
[8] Jakarta Tomcat. http://jakarta.apache.org/tomcat/index.html
[9] W. Jones. Reliability models for very large software systems in industry. In International Symposium Software Reliability
Engineering, p17-18, 1991.
[10] W. Jones, J. Hudepohl, T. M. Khoshgoftaar, and E. B. Allen. Application of a usage profile in software quality models. In Third
European Conference on Software Maintenance and Reengineering, p148-157, 1999.
[11] G. Kenny. Estimating defects in commercial software during operational use. In IEEE Transactions on Reliability, Volume 42, p107-
115, 1993.
[12] M. Lehman and L. Belady. Program Evolution: Processes of Software Change. Academic Press, USA, 1985.
[13] P. Li, M. Shaw, and J. Herbsleb. Selecting a defect prediction model for maintenance resource planning and software insurance. In
EDSER-5 affiliated with ICSE, p32-37, 2003.
[14] P. Li, M. Shaw, K. Stolarick, and K. Wallnau. The potential for synergy between certification and insurance. In International
Workshop on Reuse Economics in conjunction with ICSR, 2002.
[15] P.Li, M.Shaw, J.Herbsleb, B. Ray, and P.Santhanam. Empirical evaluation of defect projection models for widely-deployed
production software systems. In CMU tech report CMU-ISRI-04-130, 2004
[16] M. R. Lyu. Handbook of Software Reliability Engineering. IEEE Society Press, USA, 1996.
[17] A. Mockus, D. Weiss, and P. Zhang. Understanding and predicting effort in software projects. In ICSE, p274-284, 2003.
[18] P. Mora and Z. Jelinski. Final report on software reliability study. In McDonell Douglas Astronautic Company Report Number 63921,
1972.
[19] J. Musa. A theory of software reliability and its applications. In IEEE Transaction on Software Engineering, Volume 3, p312-327,
1975.
[20] J. Musa. Operational profiles in software reliability engineering. In IEEE Software, Volume 10, p14-32, 1993.
[21] OpenBSD. http://www.openbsd.org
[22] T. Ostrand and E. Weyuker. The distribution of faults in a large industrial software system. In ISSTA, p55-64, 2002
[23] K.Popstajanova and K. Trivedi. Architecture based approach to reliability assessment of software systems. Performance Evaluation,
Volume 45, 2001.
[24] R project for statistical computing. http://www.r-project.org
[25] E. Raymond. Cathedral and the Bazaar. O'Reily & Associates, USA, 1999.
[26] H. Theil. Applied Economic Forecasting. North-Holland Publishing Company, Netherlands, 1966.
[27] W. Venables and B. Ripley. Modern Applied Statistics with S-plus. Springer Verlag, USA, 1996.
[28] J. Voas. User participation-based software certification. In Eurovav, p267-276, 1999.
[29] A. Wood. Predicting software reliability. In IEEE Computer, Volume 9, p69-77, 1999.

APPENDIX A. FITTED CANDIDATE MODELS FOR ALL RELEASES
 This section presents fitted candidate models and residual standard errors of the 22 releases of
WPSS. The residual standard error is the average error of fitted values for a given model. The NLS
model-fitting algorithm uses the residual standard error to fit model parameters. However, the residual
standard error does not explicitly penalize models with more parameters to offset their advantage in
comparisons. Therefore, to compare candidate models we use the AIC model selection criterion. Some
models cannot be fitted for a given release (see Appendix B). Their model curves and residual standard
errors will be missing.

Figure A1. Legend for the candidate models

A1. Fitted candidate models for commercial OS

Figure A2. Fitted candidate models for commercial OS Release i

Table A1. Residual standard er ror for fitted candidate models for commercial OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Commercial OS R
i

6.26 on 22 df 3.47 on 21 df 3.652 on 21 df 7.016 on 22 df 6.571 on 22 df

Figure A3. Fitted candidate models for commercial OS Release i+1

Figure A4. Fitted candidate models for commercial OS Release i+2

Table A2. Residual standard er ror for fitted candidate models for commercial OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Commercial OS R
i+1 3.475 on 20 df 2.786 on 19 df 2.961 on 19 df 4.554 on 20 df 4.102 on 20 df

Commercial OS R
i+2 12.22 on 18 df 9.576 on 17 df 10.34 on 17 df 18.34 on 18 df 15.82 on 18 df

Figure A5. Fitted candidate models for commercial OS Release i+3

Figure A6. Fitted candidate models for commercial OS Release i+4

Table A3. Residual standard er ror for fitted candidate models for commercial OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Commercial OS R
i+3 4.093 on 16 df 4.161 on 15 df 4.172 on 15 df 5.34 on 16 df 4.733 on 16 df

Commercial OS R
i+4 8.446 on 14 df 7.077 on 13 df 7.198 on 13 df 9.881 on 14 df 9.001 on 14 df

Figure A7. Fitted candidate models for commercial OS Release i+5

Figure A8. Fitted candidate models for commercial OS Release i+6

Table A4. Residual standard er ror for fitted candidate models for commercial OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Commercial OS R
i+5 9.229 on 12 df 4.932 on 11 df 4.886 on 11 df 9.508 on 12 df 9.279 on 12 df

Commercial OS R
i+6 3.016 on 10 df 3.176 on 9 df 3.176 on 9 df 3.013 on 10 df 3.015 on 10 df

Figure A9. Fitted candidate models for commercial OS Release i+7

Table A5. Residual standard er ror for fitted candidate models for commercial OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Commercial OS R
i+7 INF 4.943 on 7 df 4.811 on 7 df 6.039 on 8 df Singular Gradient

A2. Fitted candidate models for commercial middleware system

Figure A10. Fitted candidate models for commercial middleware system Release i

Figure A11. Fitted candidate models for commercial middleware system Release i+1

Table A6. Residual standard er ror for fitted candidate models for commercial middleware system

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Commercial MW
R i

4.446 on 24 df 3.003 on 23 df 3.014 on 23 df 5.317 on 24 df 4.77 on 24 df

Commercial MW
R i+1 Singular Gradient 5.023 on 25 df 4.9 on 25 df 7.585 on 26 df Singular Gradient

Figure A12. Fitted candidate models for commercial middleware system Release i+2

Table A7. Residual standard er ror for fitted candidate models for commercial middleware system

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Commercial MW
R i+2 Singular Gradient 5.677 on 15 df 5.588 on 15 df 8.287 on 16 df Singular Gradient

A3. Fitted candidate models for open source OS

Figure A13. Fitted candidate models for open source OS Release 2.6

Figure A14. Fitted candidate models for open source OS Release 2.7

Table A8. Residual standard er ror for fitted candidate models for open source OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Open source
OS R2.6

10.22 on 20 df 3.839 on 19 df 4.266 on 19 df 11.74 on 20 df 10.93 on 20 df

Open source
OS R2.7 5.946 on 23 df 1.423 on 22 df 1.811 on 22 df 7.92 on 23 df 7.109 on 23 df

Figure A15. Fitted candidate models for open source OS Release 2.8

Figure A16. Fitted candidate models for open source OS Release 2.9

Table A9. Residual standard er ror for fitted candidate models for open source OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Open source
OS R2.8 12.24 on 21 df 4.187 on 20 df 4.371 on 20 df 13.92 on 21 df 13.02 on 21 df

Open source
OS R2.9 9.693 on 16 df 3.332 on 15 df 2.607 on 15 df 12.14 on 16 df 11 on 16 df

Figure A17. Fitted candidate models for open source OS Release 3.0

Figure A18. Fitted candidate models for open source OS Release 3.1

Table A10. Residual standard er ror for fitted candidate models for open source OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Open source
OS R3.0 15.72 on 11 df 5.313 on 10 df 7.035 on 10 df 17.68 on 11 df 16.52 on 11 df

Open source
OS R3.1 16.1 on 18 df 15.1 on 17 df 14.37 on 17 df 17.23 on 18 df 16.62 on 18 df

Figure A19. Fitted candidate models for open source OS Release 3.2

Figure A20. Fitted candidate models for open source OS Release 3.3

Table A11. Residual standard er ror for fitted candidate models for open source OS

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Open source
OS R3.2 4.325 on 13 df 3.686 on 12 df 3.746 on 12 df 6.671 on 13 df 6.163 on 13 df

Open source
OS R3.3 9.823 on 10 df 4.477 on 9 df 5.252 on 9 df 10.71 on 10 df 10.12 on 10 df

A4. Fitted candidate models for open source middleware System

Figure A21. Fitted candidate models for open source middleware Release 3.3

Figure A23. Fitted candidate models for open source middleware Release 4.0

Table A12. Residual standard er ror for fitted candidate models for open source middleware system

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Open source MW
R3.3

INF 2.711 on 29 df 2.699 on 29 df 4.76 on 30 df 4.736 on 30 df

Open source MW
R4.0 INF 6.014 on 30 df 6.359 on 30 df 15.19 on 31 df 15.15 on 31 df

Figure A24. Fitted candidate models for open source middleware Release 4.1

Table A13. Residual standard er ror for fitted candidate models for open source middleware system

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model

Open source MW
R4.1 INF 4.223 on 10 df 4.329 on 10 df 7.774 on 11 df 7.933 on 11 df

APPENDIX B. THE INABILITY TO FIT MODEL PARAMETERS
 A candidate model is inappropriate for modeling defect occurrences of a given release when either
the infinity or the singular gradient error occurs. The infinity and singular gradient errors indicate that
the model-fitting algorithm is unable to fit model parameters for the model. The releases for which at
least one candidate model failed to be fitted are in figure B1. We provide an intuitive explanation of why
candidate models that fail to be fitted are inappropriate for modeling defect occurrences by examining
the relationship between the parameterizations of the models and the data.

Figure B1. Commercial OS Release i+7, which failed to fit the Exponential and Logar ithmic models

Figure B2. Commercial middleware system Release i+1, which failed to fit the Exponential and

Logar ithmic models

Figure B3. Commercial middleware system Release i+2, which failed to fit the Exponential and

Logar ithmic models

Figure B4. Open source middleware system Release 3.3, which failed to fit the Exponential model

Figure B5. Open source middleware system Release 4.0, which failed to fit the Exponential model

Figure B6. Open source middleware system Release 4.1, which failed to fit the Exponential model

B1. The exponential model
 The exponential model has the model form:

(t) = N e – � t
 , > 0 , t > 0, N > 0 (1)

The model is strictly decreasing with respect to t. The important variable is , which dictates the rate of
decrease. Plot of exponential models with varying is shown in figure B7.

Figure B7. Plots of exponential models with varying

There are increasing trends in releases for which the exponential model failed to fit. We use open source
middleware system (Tomcat) release 4.1, which has an INF error, as an example. The plot of release 4.1
is shown in figure B8.

Figure B8. Plot of open source MW system Tomcat Release 4.1

 The two errors, infinity and singular gradient, indicate that the exponential model failed to be fitted
to the data. The data has an increasing trend, therefore the model fitting algorithm correctly tries to
minimize the residuals by reducing the rate of decrease. This translates to making , the variable that
dictates the rate of decrease, as close to zero as possible (= 0 is impossible since that would mean the
number of defect occurrences is zero for all time-intervals). Since is outside of the exponent in the
model in (1), smaller values of requires correspondingly larger values of N. The infinity error occurs
when N is pushed toward infinity. The singular gradient error occurs when is pushed towards zero, like
in release 4.1.

B2. The logar ithmic model
 The logarithmic model has the model form:

(t) = (t +1) – 1, > 0 , t > 0, > 0 (2)
The model is strictly decreasing with respect to t. The important variable is , which dictates the rate of
decrease. Plot of logarithmic models with varying is shown in figure B9.

Figure B9. Plots of logar ithmic models with varying

There are increasing trends in releases for which the logarithmic model failed to fit. We use commercial
middleware release i+2, which has a singular gradient error, as an example. The plot is shown in figure
B10.

Figure B10. Plot of commercial MW system Release i+2

 The singular gradient error indicates that the logarithmic model failed to be fitted to the data. The
data exhibits an increasing trend, therefore the model-fitting algorithm correctly tries to minimize the
residuals by reducing the rate of decrease in the model. This translates into making , the variable that
dictates the rate of decrease, as close to zero as possible (= 0 is impossible since that would mean the
number of defect occurrences is zero for all time-intervals). The singular gradient error occurs when is
pushed towards zero, like in release i+2.

APPENDIX C. THE LIFETIME OF A RELEASE
 We designate the lifetime of a release as the duration of time after the release becomes generally
available in which defect occurrences are being reported. Users can continue to report defect occurrences
for an older release long after newer releases are available because no user can be forced to migrate away
from an older release. We assume that all users eventually migrate to newer releases and no more defect
occurrences will be reported an older release. The time after release when this occurs varies. Consider
two releases of the open source OS in figure C1 and C2. The last defect occurrence is in the 20th time
interval for release 2.8, but for release 2.9 the last defect occurrence is in the 15th time interval.

Figure C1. Plot of the open source OS Release 2.8

Figure C2. Plot of the open source OS Release 2.9

 Operationally, we mark the end of a lifetime when we observe three successive time-intervals with
zero defect occurrences. We used three successive time-intervals because releases will sometimes have
more defect occurrences after several time-intervals with no defect occurrences. This is evident in the
releases shown in figure C1 and C2.

 Marking the end of a release as opposed to allowing the lifetime to extend until the present time
increases the validity of our results. Allowing the lifetime to continue until the present time gives an
advantage to the Weibull model. Consider open source release 2.6 in figure C3. There are no more
defect occurrences after the 19th time-interval. Using the method described above, we mark the end of
the lifetime at 22nd time-interval, which produces the candidate model fits shown in figure C3.

Figure C3. Plot of open source OS release 2.6

 If the lifetime is extended to the present, the power, exponential, and logarithmic models would
project more defect occurrences even though there are no more defect occurrences. Not marking the end
of a release would offer an advantage to the Weibull model, which projects no more defect occurrences
after the 22nd time-interval. Figure C4 shows fitted models with the lifetime extended to the present.
Table C1 shows the AIC scores with the extended lifetime. The results show an improvement in the
Weibull model’s AIC score compared with other models.

Figure C4. Plot of open source OS release 2.6 with extended lifetime

Table C1. AIC scores of open source OS Release 2.6 with extended lifetime

Model/Method Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model

Extended lifetime 345 241 252 367 358

Early ending lifetime 167 124 129 173 170

APPENDIX D. THE ASSUMPTION THAT THE TOTAL NUMBER OF
DEFECTS IS KNOWN
 We make the simplifying assumption that the total number of defect occurrences is known because it
increases the validity of our results. We are interested in the defect occurrence pattern, which involves
both the total number of defect occurrences and when those defect occurrences happen in the lifetime of
a release. We do not want our results to be attributed to poor extrapolation of the total number of defects,
since prior research have shown that two different software releases will probably have different total
numbers of defect occurrences. By providing estimates of the total number of defects, we provide
evidence that the characteristics discussed in section 2.2 cause the inadequacies in forecasts.
 The Theil statistics in tables D1 and D2 show that results are generally even worse if we use naïve
parameter extrapolation methods to extrapolate all Weibull model parameters. They now produce
projections with Theil statistics greater than one in 57 out of 88 or 64.8% of the forecasting experiments.
Moving averages produces forecasts with Theil statistics greater than one in 27 out of 44 or 61.36% of
the forecasting experiments. Exponential smoothing method produces forecasts with Theil statistics
great than one in 30 out of 44 or 68.18% of the forecasting experiments. There are now 14 out of 18 or
77.78% forecasting experiments in which the results from the using the model parameters from the most
recent release result in projections that are almost no better than no change forecasts. In 32 out of 88 or
36.36% of the forecasting experiments, additional data failed to improve forecasts. These results are
worse than the results in section 4.3, which increases the validity of our results.

Table D1. Theil forecasting statistics using moving averages method

Release/System one release two releases three releases four releases five releases six releases seven releases

Commercial MW
R i+1 2.111

Commercial MW
R i+2 0.971 1.367

Open source MW
R 4.0 1.886

Open source MW
R 4.1 2.289 2.091

Commercial OS
R i+1 1.075

Commercial OS
R i+2 1.688 1.681

Commercial OS
R i+3 3.781 1.802 1.464

Commercial OS
R i+4 0.828 1.133 0.708 0.571

Commercial OS
R i+5 0.989 1.388 1.433 1.201 0.895

Commercial OS
R i+6 4.298 3.905 3.366 4.916 4.233 3.868

Commercial OS
R i+7 3.633 3.810 3.691 3.525 3.207 3.175 3.220

Open source OS
R 2.7 1.354

Open source OS
R 2.8 1.101 0.806

Open source OS
R 2.9 1.453 0.931 1.039

Open source OS R3.0 0.897 0.558 0.680 0.696

Open source OS
R 3.1 0.797 0.728 0.760 0.729 0.738

Open source OS
R 3.2 0.860 1.248 1.175 1.334 1.239 1.285

Open source OS
R 3.3 1.469 1.093 0.967 0.988 0.843 0.784 0.702

Table D2. Theil forecasting statistics using exponential smoothing method

Release/System one release two releases three releases four releases five releases six releases seven releases

Commercial MW
R i+1 2.111

Commercial MW
R i+2 0.971 1.275

Open source MW
R 4.0 1.886

Open source MW
R 4.1 2.289 2.115

Commercial OS
R i+1 1.075

Commercial OS
R i+2 1.688 1.680

Commercial OS
R i+3 3.781 2.145 1.813

Commercial OS
R i+4 0.828 0.962 0.730 0.611

Commercial OS
R i+5 0.989 1.318 1.250 1.185 1.041

Commercial OS
R i+6 4.298 3.974 3.594 4.398 4.148 4.030

Commercial OS
R i+7 3.633 3.811 3.767 3.702 3.621 3.615 3.636

Open source OS
R 2.7 1.354

Open source OS
R 2.8 1.101 0.856

Open source OS
R 2.9 1.453 1.012 1.067

Open source OS R3.0 0.897 0.574 0.657 0.657

Open source OS
R 3.1 0.797 0.739 0.758 0.740 0.743

Open source OS
R 3.2 0.860 1.175 1.142 1.234 1.202 1.220

Open source OS
R 3.3 1.469 1.163 1.047 1.041 0.956 0.931 0.895

APPENDIX E. THE DATA COLLECTION PROCESS
 The data come from IBM as summarized reports and is harvested from web-based bug reporting
systems for open source software systems. IBM uses a tiered support organization described in detail by
Buckley and Chillarege. We received summarized defect occurrence information from two different
organizations at IBM. The data contain the release of the software systems, the time intervals, and the
number of defect occurrences in each interval. The two open source software systems use web-based bug
reporting systems. We obtained a copy of the mysql database containing the bug-report data for the open
source middleware system. Figure E1 shows a sample bug reported for the open source middleware
system (Jakarta Tomcat). We parse the bug reports into releases and time intervals using the Product, the
Version, and the Opened fields circled in figure E1.

Figure E1. Sample bug repor ted for the open source middleware system

We used web queries to gather bug report data for the open source OS. Figure E2 shows a sample bug
reported for the open source OS (OpenBSD). We selected only ones that are of class, sw-bug, which
signifies software bug, and parsed the bug reports into releases and time intervals using the System
description in the Environment field and the Arrival-Date field circled in figure E2.

Figure E2. Sample bug repor ted for the open source OS

APPENDIX F. COMPARING FORECASTE ACCURACY AND NAÏVE
PARAMETER EXTRAPOLATION METHOD ADEQUACY OF THE WEIBULL
AND GAMMA MODELS
 We conduct another validity check on using the Weibull model as the preferred model by comparing
the Theil statistic produced by the best-fit Weibull model against the Theil statistic produced by the best-
fit Gamma model. We also verify that the naïve parameter extrapolation methods are inadequate by
using the naïve parameter extrapolation methods outlined in section 4 to extrapolate model parameters
for the Gamma model and examining the resulting Theil statistics. This investigates the possibility that
extrapolating model parameters for the Weibull model is inherently difficult and that the naïve parameter
estimation methods are adequate for other models.
 The results show that the best-fit Weibull model produces better Theil statistics than the best-fit
Gamma model in 55.56% or 10 of the 18 releases. Table F1 shows the Theil statistic of the best fit
Weibull and Gamma models. In the 10 releases in which the Weibull model is better, the average
advantage over the Gamma model is .103. In the 8 releases in which the Gamma model is better, the
average advantage over the Weibull model is .054. These results shows that the best-fit Weibull model is
the better than the best-fit Gamma model based on the Theil statistic a majority of the time. When the
Gamma is better the average margin by which the Weibull model is inferior is less than the average
margin when the Gamma model is inferior.
 Table F2 shows the Theil statistic using the exponential smoothing method to extrapolate the model
parameters for the Gamma model. In 69.813% or 74 out of 106 of the forecasting experiments, the naïve
parameter extrapolation methods produce Theil statistics greater than 1. The results are worse than the
Weibull model reported in section 4.3. In 66.037% or 70 out of 106 of the forecasting experiments, the
extrapolated Gamma model has worse Theil statistics than the Weibull model (shaded and bold faced
values).

Table F1. Theil statistic of best fit Weibull and Gamma models

Release
Best fit Weibull

model
Best fit Gamma

model

CMW R i+1 0.870 0.849

CMW R i+2 0.602 0.593

OMW R4.0 0.701 0.741

OMW R4.1 0.554 0.568

COS R i+1 0.503 0.635

COS R i+2 0.460 0.535

COS R i+3 0.482 0.497

COS R i+4 0.554 0.564

COS R i+5 0.544 0.539

COS R i+6 0.576 0.576

COS R i+7 0.547 0.533

OOS R2.7 0.319 0.549

OOS R2.8 0.478 0.406

OOS R2.9 0.387 0.499

OOS R3.0 0.420 0.303

OOS R3.1 0.676 0.555

OOS R3.2 0.345 0.643

OOS R3.3 0.479 0.351

Table F2. Theil forecasting statistics using moving averages method

Release/System one release two releases three releases four releases five releases six releases seven releases

Commercial MW
R i+1 2.427

Commercial MW
R i+2 0.836 1.227

Open source MW
R 4.0 1.883

Open source MW
R 4.1 2.602 2.319

Commercial OS
R i+1 1.145

Commercial OS
R i+2 1.693 1.718

Commercial OS
R i+3 3.752 1.769 1.573

Commercial OS
R i+4 0.832 1.144 0.713 0.627

Commercial OS
R i+5 1.013 1.386 1.437 1.219 0.768

Commercial OS
R i+6 4.281 3.871 3.311 4.823 4.159 3.760

Commercial OS
R i+7 3.632 1.709 1.773 2.069 1.998 2.042 1.699

Open source OS
R 2.7 1.302

Open source OS
R 2.8 1.094 0.815

Open source OS
R 2.9 1.467 0.956 1.038

Open source OS
 R3.0 0.912 0.655 0.751 0.768

Open source OS
R 3.1 0.744 0.688 0.724 0.695 0.705

Open source OS
R 3.2 1.212 1.489 1.377 1.479 1.364 1.382

Open source OS
R 3.3 1.482 1.331 1.281 1.251 1.090 0.995 0.901

Table F3. Theil forecasting statistics using exponential smoothing method

Release/System one release two releases three releases four releases five releases six releases seven releases

Commercial MW
R i+1 2.264

Commercial MW
R i+2 0.999 1.098

Open source MW
R 4.0 0.942

Open source MW
R 4.1 2.065 2.364

Commercial OS
R i+1 1.145

Commercial OS
R i+2 1.693 1.715

Commercial OS
R i+3 3.752 2.111 1.859

Commercial OS
R i+4 0.832 0.974 0.736 0.592

Commercial OS
R i+5 1.013 1.317 1.253 1.196 0.956

Commercial OS
R i+6 4.281 3.941 3.541 4.316 5.414 3.947

Commercial OS
R i+7 3.632 1.857 1.822 1.963 2.492 1.920 1.820

Open source OS
R 2.7 1.302

Open source OS
R 2.8 1.094 0.861

Open source OS
R 2.9 1.467 1.040 1.076

Open source OS
 R3.0 0.912 0.665 0.728 0.731

Open source OS
R 3.1 0.744 0.696 0.717 0.702 0.705

Open source OS
R 3.2 1.212 1.442 1.382 1.433 1.385 1.387

Open source OS
R 3.3 1.482 1.312 1.256 1.242 1.162 1.129 1.095

