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ABSTRACT 

Defect-occurrence projection is necessary for the development of methods to mitigate the risks of software defect 
occurrences. In this paper, we examine user-reported software defect-occurrence patterns across twenty-two 
releases of four widely-deployed, business-critical, production, software systems: a commercial operating system, 
a commercial middleware system, an open source operating system (OpenBSD), and an open source middleware 
system (Tomcat). We evaluate the suitability of common defect-occurrence models by first assessing the match 
between characteristics of widely-deployed production software systems and model structures. We then evaluate 
how well the models fit real world data. We find that the Weibull model is flexible enough to capture defect-
occurrence behavior across a wide range of systems. It provides the best model fit in 16 out of the 22 releases. 
We then evaluate the ability of the moving averages and the exponential smoothing methods to extrapolate 
Weibull model parameters using fitted model parameters from historical releases. Our results show that in 50% 
of our forecasting experiments, these two naïve parameter-extrapolation methods produce projections that are 
worse than the projection from using the same model parameters as the most recent release. These findings 
establish the need for further research on parameter-extrapolation methods that take into account variations in 
characteristics of widely-deployed, production, software systems across multiple releases.



1. INTRODUCTION 
Defect occurrences not only create problems for software consumers, but also cause problems in maintenance 

planning for software producers. The costly consequences of defect occurrences have increased interest in 
insuring software consumers against the associated risks.  

Defect-occurrence projection is crucial to the development of methods for managing the risks associated with 
defect occurrences. Accurate defect-occurrence projections can help software maintenance planners to better 
allocate resources and will be a major step towards novel risk-mitigation techniques for software consumers, such 
as software insurance. 

We examine software systems that businesses are increasingly dependent upon. These systems are multi-
release, multi-platform, and widely-deployed, such as COTS and open source software. It is generally accepted 
that these widely-deployed, production, software systems (WPSSs) are not defect free and that there is a need to 
manage the risks associated with the defect occurrences. 

We empirically address two questions that are important for defect-occurrence projection: 
• Is there a type of defect occurrence model that provides a good fit to defect-occurrence patterns across 

multiple releases and in many organizations? 
• Given such a model, how can model parameters for a new release be extrapolated using historical 

information? 
Our findings provide a basis for a defect-occurrence projection method for WPSSs that is robust across many 
organizations and development styles. 

We use data from a diverse sample of WPSSs including two different types of software systems (middleware 
and operating systems) developed with two different development styles (commercial and open source). We 
gather data from twenty-two releases: eight releases of a commercial operating system, three releases of a 
commercial middleware system, eight releases of an open source operating system (OpenBSD), and three 
releases of an open source middleware system (Tomcat). 

We examine characteristics of WPSSs that can change between releases and that may cause variations in 
defect-occurrence patterns. The characteristics we consider are release content, development process, adoption 
and usage patterns, and software and hardware configurations in use. These considerations are not modeled well 
in prior research in this field. 

We examine how parameterizations of a set of candidate defect-occurrence models taken from the literature 
account for possible variations in defect-occurrence patterns across multiple releases and how two commonly-
used naïve parameter-extrapolation methods account for the variations. We hypothesize: 
• The Weibull model is better than other candidate models at modeling defect-occurrence patterns for multiple 

releases of WPSSs. 
• Naïve parameter-extrapolation methods, moving averages and exponential smoothing, extrapolate model 

parameters that produce inadequate defect-occurrence projections for new releases of WPSSs. 
Determining the preferred defect model is important for defect-occurrence projection because it may allow us to 
understand and quantify the effects of changes in characteristics of WPSSs across multiple organizations and 
development styles. Verifying that naïve parameter-extrapolation methods are inadequate is important because it 
will motivate additional research questions on new methods for parameter extrapolation. Our results show that 
the Weibull model is the preferred model and that naïve parameter-extrapolation methods are inadequate. 

We begin by providing background and descriptions in Section 2. We present analyses that support our two 
hypotheses and the empirical results in Sections 3 and 4. We conclude with validity issues and future work in 
Section 5. 

2. BACKGROUND AND DESCRIPTIONS 
We are interested in real-world software systems deployed today that are of key business interest to users, 

such that there are users who pay for maintenance contracts and who may be willing to pay to insure against 
defect occurrences. 



2.1 Defect occurrence 
We define a defect occurrence as a user-reported problem that requires developer intervention to correct. 

This is the observable event of interest for both maintenance and insurance purposes.  
The operational definition of a defect occurrence varies across organizations. In this paper, we use the same 

approach to analyze defect occurrences in different organizations and show that our approach is resilient to 
organizational differences. The commercial software development organizations measure faults and failures, 
described in Section 2.2.1, while open source software projects track user-submitted bug-reports, described in 
Section 2.2.2. Our findings support the idea that a common defect-occurrence projection method for WPSSs can 
be used across many organizations and development styles. 

We are interested the defect-occurrence pattern, which is the rate of defect occurrence as a function of time 
over the lifetime of a release. We define the lifetime of a release as the duration of time between when a release 
becomes generally available and when there are no defect occurrences reported to the software development 
organization for three consecutive time intervals. Determining the lifetime of a release is discussed in detail in 
[Appendix C].  

Our focus on the defect occurrence pattern is different from previous research on the total number of defects 
[5] and the normalized defect-occurrence rate. The normalized defect-occurrence rate is the rate of defect 
occurrences normalized with respect to the number of deployed systems and the usage amount over the lifetime 
of a release [4][18][19][20][28]. Knowing only the total number of defects is inadequate because resource 
allocation for maintenance planning and cash reserve management for insurance both require knowledge of how 
many defects are going to occur in a given time period. The normalized defect-occurrence rate is unsuitable 
because it requires accurate measurements of deployment and usage patterns. As we explain in the next section, 
unknown deployment and usage patterns are properties of WPSSs.  

2.2 Widely-deployed production software systems 
We are interested in widely-deployed, production, software systems (WPSSs), which are software systems 

with the following properties: 
• The software system is used in many software and hardware configurations (some unforeseen). 
• The deployment and usage patterns of the software system are unknown. 
• The development process of software system has constraints (such as scheduling and resource constraints). 
• The contents of the software system change over time. 
• The software system has multiple releases. 

2.2.1 Commercial software systems 
Nearly all COTS software systems have the properties of WPSSs. COTS software systems are not developed 

with one client in mind but rather to be sold on the open market and to be used by many clients [2]. The systems 
are typically built to run on multiple hardware platforms, to be compatible with many different hardware devices, 
and to be compatible with many other software systems. Constraints exist on the development process, such as 
pre-set release dates and limited resources. The software development organization has limited information on 
who is going to purchase the software system and puts out successive versions of the software system, which 
implements new functionality and improvements [12]. 

The two COTS software systems we examine are developed by two different divisions of IBM. The operating 
system is a mature product with many years of presence in the marketplace. The commercial middleware system 
has a few years of deployment history and a growing customer base. 

The defect-occurrence data collected are code-related problems discovered and reported by customers after 
deployment. A more detailed description of the data collection process is in [Appendix E]. The defect-occurrence 
data for the operating system contain unique field defects that led to code changes by the product support 
organization. The defect-occurrence data for the middleware system contain all field defects (which may not be 
unique) that lead to code changes. The defect-occurrence data are processed and aggregated, so for each data set 
we use the interval in that data set. The time interval for the middleware system is a month and the time interval 
for the operating system is a quarter. 



2.2.2 Open source software systems 
Open source software systems have all the properties of WPSSs. A consortium of user-developers with 

different needs (generally with one person or a core group leading development) develops an open source 
software system. A successful project has diverse user-developers that develop and test the software system, port 
the software system to many platforms, make it operable with many devices, and make it compatible with other 
software systems. Hence, the number of active user-developers constrains an open source project. The software 
system can be downloaded and used anonymously, so there is limited knowledge about the users. Open source 
software systems usually evolve in successive releases to satisfy the needs of its user-developers [25]. 

The open source software systems we examine are developed by successful open source projects with many 
user-developers from around the world. The open source operating system is OpenBSD. OpenBSD is a Unix-like 
operating system that emphasizes portability, standardization, correctness, proactive security, and integrated 
cryptography [21]. The open source middleware system is Tomcat, which is one of the products developed by the 
Jakarta Project. Tomcat is the servlet container used in the official reference implementation for the Java Servlet 
and JavaServer Pages technologies [7]. 

The defect-occurrence data collected are bug reports submitted by users via the web based bug-tracking 
system. A more detailed description of the data collection process is in [Appendix E]. Unlike users of a 
commercial software system, user-developers of an open source software system can obtain the software system 
anytime during development and submit bug reports. Many bugs are duplicates, user mistakes, or otherwise 
invalid submissions that do not require code changes. However, we include all user-reported bug reports in our 
data set because a member of the core development team examines each bug submission and decides upon a 
course of action. The time interval used for both open source software systems is a month. 

2.2.3 Related work 
Much of the prior research in software reliability has been conducted on systems where the testing 

environment and the deployment environment are similar. Similarities like software and hardware configurations 
and usage patterns have allowed researchers to extend defect-occurrence patterns from development into the 
field. Lyu in [16] provides a comprehensive review of previous works. Lyu explains model origins, states 
modeling assumptions, and classifies commonly used reliability models. We borrow mathematical models and 
statistical tools from prior research, however extending defect-occurrence patterns is inappropriate for WPSSs 
given properties discussed in Section 2.2. 

Current efforts to certify software are very similar to prior research in software reliability engineering. Voas 
advocates certifying commercial software for use in a customer’s environment [28], and Wallnau et. al. at the 
Software Engineering Institute are conducting research on predictable assembly from certified components [14]. 
Both approaches test software in the customer’s environment then extend results into usage. These approaches 
account for several environmental variables and make statistical guarantees about various properties. However, 
we feel that cost, variance, and unforeseen confounds at the single-customer level might make such methods 
impractical. We do however, leverage relationships between characteristics of software systems and defect 
occurrences discovered in their research.  

Several on-going research efforts examine defect occurrences across multiple releases. Ostrand and Weyuker 
use software content and development process measures to predict faulty files in multiple releases of two 
software systems at AT&T [22]. Their model predicts the top 20% faultiest files, which they show to capture 
around 80% of faults found during development and in the field. The COQUALMO project at USC uses 
COCOMO II data to estimate the total number of defects in a software system [5]. Their model uses size metrics 
and various process modifiers. The process modifiers measure aspects of the defect injection process and the 
defect removal process. Jones et. al at Nortel use the percentage of deployed systems with a module installed as a 
surrogate for usage along with software content measures to predict the likelihood that a module will be faulty in 
the field [10]. They correctly identify approximately 70% of the faulty modules while misidentifying less than 
26% of the faulty modules. These research projects contribute knowledge about the important predictors of 
defect occurrences.  However, none of the projects examines the defect-occurrence pattern. As noted in Section 



2.1, risk mitigation techniques need to know both the expected total number of defect occurrences as well as 
when those defect occurrences happen in the lifetime of a release.  

Mockus et. al. use software content and development process information captured in the change 
management and CVS systems to predict the amount of repair effort and the delay until the effort is needed for 
eleven releases of a telecommunications software system at Avaya [17]. They assume that field repair effort is 
proportional to development effort and estimate a delay factor and an effort multiplier. Our work is similar. 
However, our focus is on defect-occurrence patterns, while the focus at Avaya is on effort.  

Popstajanova et. al in [23]uses architecture, utilization, and control flow information to predict the likelihood 
of defect occurrences. Unlike their white box approach, our approach is black box.   

Previous works have also compared defect-occurrence models. Jones compares various models and the MLE 
and least squares model fitting methods for ten releases of a telecommunications software system at Northern 
Telecom and Bell Canada [9]. He concludes that the Logarithmic model, fitted using the least squares method, 
produces the best results and that the least squares method is superior to the MLE method overall. Jones 
considers a Weibull process model. Wood compares eight mathematical models fitted using the least squares 
method for four releases of a software system at Tandem computers [28]. Wood considers the Weibull model but 
finds that the Exponential is the best model in his environment. Their works lack an underlying theory explaining 
why a model is superior in their environment, and they do not replicate their experiment at other organizations. 
We develop a theory for the causes of variation in defect-occurrence patterns for WPSSs and compare models 
across multiple releases, multiple organizations, and multiple products.  

There appears to be no published work on projecting defect-occurrence patterns for open source projects. We 
note that software systems are becoming so complex and expensive that few organizations have the resources to 
build custom systems. More and more organizations reply on COTS or open source software systems, which is 
the focus of this paper.  

2.3 Character istics of WPSSs 
Content, development process, deployment and usage patterns, and software and hardware configurations in 

use are characteristics of WPSSs that tend to change, sometimes dramatically, between releases. The effect of 
changes on defect-occurrence patterns will dictate which defect-occurrence model is best suited to model defect-
occurrence patterns in multiple releases and which parameter-extrapolation methods are effective. We use results 
from previous work in software reliability engineering and intuitive arguments to provide evidence that the 
characteristics listed above can influence defect-occurrence patterns across multiple releases. 

2.3.1 Content 
Software content affects defect-occurrence patterns across multiple releases [11][17]. Successive releases 

incrementally add features and implement internal changes, such as refactoring. Some modifications may be 
more difficult and defect prone than others, which may cause more defect occurrences over a longer time period. 
Depending on the similarity of content changes, the defect-occurrence pattern of a release may be similar to one 
release but be substantially different from another. 

2.3.2 Development process 
The development process affects defect-occurrence patterns across multiple releases [12][7]. Although the 

development process of most organizations changes slowly over time, when combined with other factors the 
development process may have significant impact on defect-occurrence patterns. Insufficient and varying testing 
resources and schedule pressure may lead to ineffective defect removal. This can cause defects to linger in the 
system and can cause blocking, which occurs when one defect masks the presence of other defects. However, 
problems with the development process may not be present to the same degree in every release, which may cause 
defect-occurrence patterns to vary. 

2.3.3 Deployment and usage patterns 
Deployment and usage patterns affect defect-occurrence patterns across multiple releases [3][16]. The total 

number of deployed systems and the pattern of deployment dictate how much usage and how many usage patterns 
are possible. Deployment may be different for each release because users cannot be forced to adopt the latest 



release. Some users may adopt every release, while others may only adopt releases that contain important 
functionality. In addition, some users may adopt a release immediately, while other may delay adoption. The 
usage patterns may also be different from release to release and from user to user. Some users may not heavily 
exercise the software until the software has shown to be satisfactory under normal operating conditions. 
Deployment and usage patterns dictate how heavily the system is exercised, which may cause variations in 
defect-occurrence patterns.  

2.3.4 Software and hardware configurations in use 
Software and hardware configurations in use affect defect-occurrence patterns across multiple releases 

[14][28]. The software development organization has limited knowledge about users, and thus may not be able to 
test all possible hardware and software configurations. Furthermore, comprehensive testing may not be feasible 
given economic and scheduling constraints. Therefore, the software may have defects that are specific to certain 
configurations, software interactions, and other special conditions, such as malicious attacks. 

3. DEFECT-OCCURRENCE MODELS  
A single type of defect-occurrence model may be able to model defect-occurrence patterns across multiple 

releases of a wide variety of WPSSs. We believe such a model exists despite possible changes in characteristics 
discussed in Section 2.3 because of similarities between releases and properties common to all WPSSs. Bassin 
and Santhanam at IBM have shown that successive releases have similarities in the functionalities implemented, 
the development organization, and users with similar usage patterns [1]. All WPSSs also share common 
properties mentioned in Section 2.2.  

In order for a model to be widely applicable, it needs to have parameterization that can account for variations 
in defect-occurrence patterns. In this section, we develop and use real-world data to empirically test the 
hypothesis that the Weibull model is better than other candidate models in modeling defect-occurrence patterns 
for multiple releases of WPSSs. 

3.1 Candidate models 
We are interested in the defect-occurrence pattern. Therefore, we are interested in models that model the 

number of defect occurrences in each time period over the lifetime of a release. We consider the Exponential 
model, the Gamma model, the Logarithmic model, the Power model, and the Weibull model. These models are 
promising because prior research in software reliability engineering has shown each model to be effective at 
modeling defect-occurrence patterns at a software development organization [9][16][28]. Each model is 
parametric. The number of defect occurrences during the t-th time interval is determined by the model 
parameterization and the current time interval. The number of defect occurrences within a time interval is 
modeled as a non-homogenous Poisson process with a stationary defect rate (t). Table 1 lists the models. Lyu 
[16] provides details about the models, including researchers who have developed and applied the models in 
practice. 

Table 1. Candidate models 

3.2 The Weibull model  
The Weibull model can account for different increasing and decreasing trends, which reflect initial increases 

and eventual decreases in defect occurrences. We generally expect early defect occurrences to show a primarily 
increasing trend as users migrate to the release, exercise the software, and report defects, and we expect later 

Model type Model name Model form Researchers/users of the model 

Exponential Non-homogenous Poisson process model 
�
(t) = N �  e 

– �  t Goel & Okumoto  

Weibull Weibull �
(t) = N �  �  t 

� -1
 e 

–  �  t �
 Schick-Wolverton  

Gamma S-shaped reliability growth model 
�
(t) = N  �  �

 t 
� -1

 e 
–  �  t

 Yamada, Ohba & Osaki  

Power Duane Model 
�
(t) = �  �  e 

– �  t
 Duane 

Logarithmic Musa-Okumoto logarithmic Poisson model 
�
(t) = �  ( �  �  t +1) 

– 1
 Musa-Okumoto  



defect occurrences to show a primarily decreasing trend as the rate of adoption declines and the release becomes 
more reliable due to defect removal. 

The Weibull model has three parameters N, , and . Intuitively, the Weibull model can be broken down into 
three interacting pieces: N, representing the total number of  defect occurrences in the lifetime of the release, a 

generally increasing component   t � -1
 , which dominates early, and a decreasing component e 

– 
�
 t �

 , which 
dominates as time increases. 

N can be different for each release, which can account for differences in the total number of defect 
occurrences between releases.  The differences may be caused by changes in software content or development 
processes. 

In general,   t � -1 increases as a function of time and can account for increases in defect occurrences. The 
rate of growth is controlled by a combination of the  and  parameters. The increasing component is flexible 
enough to describe both concave and convex increasing patterns. Concave increasing patterns can occur when the 
growth in the rate of defect occurrences is faster at the beginning of the release, which may occur if many users 
quickly adopt and use a release. Convex increasing patterns can occur when the rate of defect occurrences 
increase slowly. This may occur if users slowly migrate to the release or if constraints on development and 
problematic content cause blocking, which prevents defects from being discovered.  

The term e 
– 

�
 t �

 decreases as a function of time and can account for decreases in defect occurrences. Again, 
the rate of decrease is controlled by a combination of the  and  parameters. The decreasing component can 
describe concave or convex decreasing patterns. Convex decreasing patterns can occur when the rate of defect 
occurrences decrease rapidly, which may occur if there is fast migration to a new release. Concave patterns can 
occur when the rate of defect occurrences decrease slowly, which may occur if defect occurrences remain high 
over a longer time period due to constraints on development or problematic content. 

It is reasonable to expect a model with parameterization that can describe varying defect-occurrence patterns 
such as the Weibull model to be better than other candidate models. The Exponential, the Power, and the 
Logarithmic models do not have both decreasing and increasing components. They cannot describe the interplay 
of increasing and decreasing trends. Although the Gamma model has both increasing and decreasing components, 
its decreasing component is generally convex. Thus, the Gamma model is unable to describe situations in which 
the decreasing pattern is concave. Kenny [11] has studied the interaction of increasing and decreasing trends in 
defect-occurrence patterns in commercial software systems and recommends using the Weibull model to model 
defect-occurrence patterns. 

We hypothesize that the Weibull model is better than other candidate models at modeling defect-occurrence 
patterns for multiple releases of WPSSs. 

3.3 Model fitting and model selection 
We fit the best set of parameters for each candidate model for each release using Non-linear Least Squares 

(NLS) regression then compare the candidate models using the Akaike Information Criterion (AIC) model 
selection criterion[27]. 

NLS is a well-established model fitting procedure that selects model parameters by minimizing the square of 
the difference between fitted values and actual values [27]. It is widely used in defect modeling research [9][28]. 
We use the open source statistical computing package R [24]. After we select the best parameters for each 
candidate model for a given release, we use the AIC model selection criterion to evaluate the fit of the different 
candidate models; lower AIC scores are better. The AIC score is defined as: 

AIC =  n  log  2   + 2  |S| 
where 2 is the residual squared error divided by the difference of the number of observations, n, and the number 
of model parameters, S [27]. The AIC model selection criterion penalizes models with more parameters to offset 
the advantage models with more parameters have in comparisons. 

Our hypothesis stated in Section 3.2 would be supported if the Weibull model consistently produces lower 
AIC score.  



Tables 2-5 present the AIC scores. The best AIC scores for each release are highlighted (shaded cells 
highlight the best AIC scores among fitted candidate models). INF and Singular Gradient indicate that the model-
fitting algorithm is unable to fit parameters for the model, which suggests that the model is inappropriate. A 
detailed explanation of the failure to fit model parameters and why it suggests a model is inappropriate is given in 
[Appendix B]. 

Table 2. AIC scores for  commercial OS  

Release/ Model Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model 

i 158 131 144 164 160 

i + 1 119 110 111 131 126 

i + 2 159 150 155 175 169 

i + 3 104 105 111 113 109 

i + 4 116 111 109 121 118 

i + 5 104 87 89 105 104 

i + 6 62 64 64 62 62 

i + 7 Singular Gradient 63 63 66 Singular Gradient 

 Table 3. AIC scores for  commercial middleware system 

Release/ Model Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model 

i 153 134 134 163 157 

i + 1 Singular Gradient 173 171 195 Singular Gradient 

i + 2 Singular Gradient 116 116 129 Singular Gradient 

Table 4. AIC scores for  open source OS  

Release \Model Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model 

2.6 167 124 129 173 170 

2.7 162 91 103 176 171 

2.8 182 134 136 188 185 

2.9 135 97 88 143 139 

3.0 110 83 90 113 112 

3.1 170 168 166 173 171 

3.2 88 84 85 101 99 

3.3 91 73 76 93 91 

Table 5. AIC scores for  open source middleware system  

Release /Model Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model 

3.3 INF 157 157 193 192 

4.0 INF 215 219 275 275 

4.1 INF 77 78 92 93 

 
Figure 1 shows fitted candidate models for a representative sample of releases from each of the four WPSSs. 

Due to confidentiality agreements, only the figures for open source software systems have numbered axes. Plots 
of all fitted candidate models are in [Appendix A]. 

Tables 2-5 show that the Weibull model has the best AIC score or one of the best AIC scores in 16 out of 22 
or 73% of the releases. This is considerably better than the next best model, which is the Gamma model with the 
best AIC score or one of the best AIC scores in 8 out of 22 or 36% of the releases. Furthermore, since the AIC is 
a measure of deviance, it roughly follows a 2 (chi-squared) distribution, which makes 4 a rough 95% confidence 
band around an AIC score. We note that the Weibull is within the 95% confidence band of the best AIC score in 
all but one of the releases. These results support our hypothesis that the Weibull model is the preferred model. 

 
 



 
 
 
 

Figure 1. Samples of fitted candidate models 

3.4 Validation of the Weibull model 
We have shown that the Weibull is better than other candidate models. However, we still need to show that 

the Weibull model adequately describes the defect-occurrence pattern. We use the Theil forecasting statistic to 
validate the Weibull model.  



The Theil statistic compares the forecast for each time interval i against a no-change forecast based on the 
previous time interval's value [26]. 

 
The Theil statistic U is greater or equal to zero. The term Pi is the projected change and Ai is the actual 

change in interval i. A Theil statistic of zero indicates perfect forecasts with Pi = Ai. A Theil statistic of one 
indicates that forecasts are no better than no-change forecasts with Pi = 0. Values greater than one indicate 
forecasts are worse than no-change forecasts. 

The Theil statistics shown in Figure 2 indicate that the best-fit Weibull is always better than the no-change 
forecast.  

U 2= 

�
 (Pi – Ai )

2 

�
 Ai 

2 



Figure 2. Plots of best-fit Weibull models 

We conclude that the Weibull model is the preferred model because the Weibull model is better than other 
candidate models based on AIC scores in Section 3.3 and is good at projecting defect occurrences based on Theil 
statistics. Further validation is in [Appendix F]. 

4. NAÏVE MODEL PARAMETER EXTRAPOLATION METHODS  
Section 3.4 establishes the Weibull model as the preferred model. However, in order to project defect 

occurrences we still need to extrapolate model parameters for each new release. Naïve parameter-extrapolation 
methods that do not consider the changes in characteristics described in section 2.3 may extrapolate parameters 
that result in poor forecasts. In this section, we develop and empirically test the hypothesis that the moving 
averages and exponential smoothing methods are inadequate. 

4.1 The moving averages method and the exponential smoothing method 
Both the moving averages and exponential methods are well-established time series methods that represent 

intuitive, reasonable, and fairly common methods for extrapolating model parameters. The moving averages 
method extrapolates parameters by taking the average of the best-fit model parameters from the previous k 
releases. Exponential smoothing is similar, except more recent releases are given more weight, since intuitively 
more recent releases should be better predictors of the current release. Eick et. al. [6] have used a similar method 
to predict software defect rates for various software modules. 

4.2 Inadequacies of naïve methods 
Naïve parameter-extrapolation methods may not account for variations in defect-occurrence patterns because 

the methods do not consider changes in content, development process, deployment and usage patterns, and 
software and hardware configurations in use between releases. For example, consider a major release and a minor 
release. A major release that implements new functionality can have significant changes in content, production, 
and usage. New functionality can lead to substantial code changes and additions. If the schedule is fixed or if 
there is an insufficient number of trained testers then development constraints may cause inadequate testing. 
Finally, there may be many more adopters if the functionality being implemented is important to the users. A 
minor release that offers only minimal improvements over a previous release would have none of the above-
mentioned conditions. We expect defect-occurrence patterns in the two releases to be drastically different. 
However, naïve parameter-extrapolation methods do not account for the differences. 

We hypothesize that the two naïve parameter-extrapolation methods extrapolate model parameters that 
produce inadequate defect-occurrence projections for multiple releases of WPSSs. 

4.3 Model parameter extrapolation and forecast evaluation  
We evaluate naïve parameter-extrapolation methods by extrapolating model parameters and then examining 

the Theil forecasting statistics of the projected defect occurrences. Our hypothesis in section 4.2 will be 
supported if the two naïve parameter-extrapolation methods fail to consistently produce Theil statistics that are 
less than one and if the Theil statistics do not consistently improve with more data. 

We increase the validity of our results by making the simplifying assumption that the total number of defect 
occurrences is known. Prior research has already shown that two different software releases are likely to have 
different total numbers of defect occurrences [5][17]. We remove the possible confound by providing estimates 
of the total number of defects.  We show that naïve parameter-extrapolation methods are inadequate even with 
this simplification. This topic is discussed in detail in [Appendix D]. 

Tables 6-9 present fitted  and  parameters and Figure 2 presents plots of the best-fit Weibull models. We 
theorize that changes in characteristics described in Section 2.3 cause the variation in the parameter values. 

Table 6. Model parameters for  commercial OS 

Parameter /Release i i+1 i+2  i+3 i+4 i+5 i+6 i+7 
�  2.58  1.56  1.38  1.11  1.57  1.90  0.89  2.12 

�
 9.00  7.07  6.91  6.45 7.37  8.63  131.37 10.97 

 

 



Table 7. Model parameters for  commercial middleware system 

Parameter /Release i i+1  i+2 
�  1.72 2.05 2.81 

�
 10.58 17.75 14.97 

Table 8. Model parameters for  open source OS 

Parameter /Release 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 
�  2.70  2.22 2.79  2.28  2.51  1.86  1.37  2.40 

�
 6.69  5.33  6.83  4.66  5.69  5.45  3.65  5.99 

Table 9. Model parameters for  open source middleware system 

Parameter /Release 3.3 4.0 4.1 
�  4.19  3.84 2.21 

�
 15.44  16.89 8.39 

Table 10 and 11 present Theil statistics resulting from using the moving averages and exponential smoothing 
methods to select the  and  model parameters of the Weibull model. The total number of defects is assumed to 
be given and is approximated by the total number of defects generated by the best-fit Weibull model. 

Table 10. Theil forecasting statistics for  projections with the moving averages method 

Releases/ 
System 

one release two releases three releases four releases five releases six releases seven releases 

Commercial MW R i+1 2.26             

Commercial MW R i+2 1.00 1.11           

Open source MW R4.0 0.94             

Open source MW R4.1 2.07 2.07           

Commercial OS R i+1 0.98             

Commercial OS R i+2 0.50 0.88           

Commercial OS R i+3 0.56 0.61 0.86         

Commercial OS R i+4 0.74 0.66 0.61 0.56       

Commercial OS R i+5 0.94 1.30 1.29 1.22 0.89     

Commercial OS R i+6 7.33 7.44 7.43 7.46 7.52 7.63   

Commercial OS R i+7 3.67 3.76 3.54 3.21 2.98 2.79 2.74 

Open source OS R2.7 1.13             

Open source OS R2.8 1.06 0.70           

Open source OS R2.9 1.32 0.93 1.04         

Open source OS R3.0 0.87 0.42 0.43 0.44       

Open source OS R3.1 0.72 0.70 0.73 0.71 0.73     

Open source OS R3.2 0.76 0.91 0.87 0.99 0.97 1.02   

Open source OS R3.3 1.56 1.10 0.85 0.86 0.66 0.66 0.57 

 

 



Table 11. Theil forecasting statistics for  projections with the exponential smoothing method 

Releases/ 
System 

one release two releases three releases four releases five releases six releases seven releases 

Commercial MW R i+1 2.26             

Commercial MW R i+2 1.00 1.05           

Open source MW R4.0 0.94             

Open source MW R4.1 2.07 2.07           

Commercial OS R i+1 0.98             

Commercial OS R i+2 0.50 0.81           

Commercial OS R i+3 0.56 0.60 0.77         

Commercial OS R i+4 0.74 0.67 0.63 0.57       

Commercial OS R i+5 0.94 1.24 1.24 1.21 1.06     

Commercial OS R i+6 7.33 7.42 7.41 7.43 7.46 7.50   

Commercial OS R i+7 3.67 3.77 3.68 3.56 3.50 3.47 3.48 

Open source OS R2.7 1.13             

Open source OS R2.8 1.06 0.76           

Open source OS R2.9 1.32 1.00 1.06         

Open source OS R3.0 0.87 0.43 0.44 0.42       

Open source OS R3.1 0.72 0.70 0.72 0.71 0.72     

Open source OS R3.2 0.76 0.88 0.86 0.93 0.93 0.95   

Open source OS R3.3 1.56 1.18 0.99 0.98 0.87 0.86 0.82 

We evaluate the benefits of including more historical information for naïve parameter-extrapolation methods 
by comparing the Theil statistics produced using multiple releases against the Theil statistics produced using 
model parameters of the most recent release as the model parameters for a new release. Improvements are 
possible since Theil statistics in tables 10 and 11 indicate that in 9 out of 18 or 50% of the forecasting 
experiments, using model parameters from the most recent release result in projections that are no better than no-
change forecasts. (The exponential smoothing and moving averages methods are identical when extrapolating 
parameters using only data from the most recent release, thus their results are the same.) However, results show 
that projections do not improve if we incorporate additional historical information. There are 88 total forecasting 
experiments for the two naïve parameter-extrapolation methods using data from two or more releases. In 44 out 
of 88 or 50% of the forecasting experiments, Theil statistics show no improvement over values from column one 
release (shaded cells in tables 10 and 11 highlight values showing no improvement). Incorporating additional 
historical information failed to improve Theil statistics.  

Not only do naïve parameter-extrapolation methods fail to improve forecasts with additional data, they 
produce poor projections overall. Theil statistics are greater than or equal to one in 39 out of 88 or 44% of the 
forecasting experiments. Moving averages produced poor projections in 43% of the forecasting experiments. 
Exponential smoothing produced poor projections in 45% of the forecasting experiments. Similar results are 
produced when we use the naïve parameter-extrapolation methods to extrapolated model parameters for the 
Gamma model. The details are in [Appendix F]. 



We conclude that there is strong empirical evidence that the Weibull model is the preferred model for 
modeling defect-occurrence patterns of WPSSs across multiple releases and that the naïve parameter-
extrapolation methods, moving averages and exponential smoothing, are inadequate in extrapolating model 
parameters of the Weibull model for defect-occurrence projection. 

5. VALIDATION AND FUTURE WORK  
Our research aims to deal with the real world consequences of defect occurrences in WPSSs. Maintenance 

planning and software insurance are two methods that can deal with the consequences [13], and both need 
accurate defect-occurrence projections. This paper set out to address two questions that are important for defect-
occurrence projection: is there a type of defect model that provides a good fit to defect-occurrence patterns across 
multiple releases and in many organizations, and how can model parameters for a new release be extrapolated 
using historical information. 

We have examined historically effective defect-occurrence models. There is extensive defect-occurrence 
modeling research history to support our belief that our collection of models is well-suited for modeling software 
defect-occurrence patterns. Despite these efforts, it is possible that a better defect model exists, and we strongly 
encourage others to replicate our approach using a wider array of models. 

The difference in definition of defect occurrences and the time interval used between the software systems 
strengthens our finding that the Weibull model is the preferred model, since despite the differences in definition, 
the Weibull model still proved superior.  There may be other meaningful ways of counting defects where the 
Weibull model does not perform as well.  Only future research can address this issue. 

We have attempted to establish the external validity by including two different types of software systems 
(middleware and operating systems) developed with two different development styles (commercial and open 
source). It is not yet clear how adequately this sample represents the population of WPSSs.  We regard this as a 
promising start, but future research should sample additional parts of the WPSS space. 

The goal of our research is to develop a defect-occurrence projection method that produces defect-occurrence 
projections that are better than post-facto fits. Our results show that naïve parameter-extrapolation methods are 
never better than the post-facto, best-fit, Weibull model (Theil statistics in Figure 2 and Tables 10 and 11). 
However, a post-facto fit chooses model parameters that minimize the residual error for all data points 
simultaneously, which does not necessarily produce the best model parameters for each data point. It may be 
possible to produce better projections than the post-facto fit by updating a-priori projections as more information 
becomes available, such as after the arrival of field defect-occurrence data or after the release of software 
patches. 

Our results in this paper indicate that the Weibull model is the preferred model for modeling defect-
occurrence patterns for multiple releases of WPSSs and that the naïve parameter-extrapolation methods are 
inadequate. We have claimed that we expected the naïve parameter-extrapolation methods to fail because they do 
not account for differences in content, development process, deployment and usage patterns, and software and 
hardware configurations in use. The next step should be to improve parameter-extrapolation methods by 
predicting the effects on model parameters resulting from changes in characteristics of widely-deployed, 
production, software systems. 
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APPENDIX A. FITTED CANDIDATE MODELS FOR ALL RELEASES 
 This section presents fitted candidate models and residual standard errors of the 22 releases of 
WPSS. The residual standard error is the average error of fitted values for a given model. The NLS 
model-fitting algorithm uses the residual standard error to fit model parameters. However, the residual 
standard error does not explicitly penalize models with more parameters to offset their advantage in 
comparisons. Therefore, to compare candidate models we use the AIC model selection criterion. Some 
models cannot be fitted for a given release (see Appendix B). Their model curves and residual standard 
errors will be missing.  

 
Figure A1. Legend for  the candidate models 

 
A1. Fitted candidate models for  commercial OS 

 

Figure A2. Fitted candidate models for  commercial OS Release i 

Table A1. Residual standard er ror  for  fitted candidate models for  commercial OS  

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Commercial OS R 
i 

6.26 on 22 df 3.47 on 21 df 3.652 on 21 df 7.016 on 22 df 6.571 on 22 df 

 



 
Figure A3. Fitted candidate models for  commercial OS Release i+1 

 
Figure A4. Fitted candidate models for  commercial OS Release i+2 

Table A2. Residual standard er ror  for  fitted candidate models for  commercial OS  

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Commercial OS R 
i+1 3.475 on 20 df 2.786 on 19 df 2.961 on 19 df 4.554 on 20 df 4.102 on 20 df 

Commercial OS R 
i+2 12.22 on 18 df 9.576 on 17 df 10.34 on 17 df 18.34 on 18 df 15.82 on 18 df 



 
Figure A5. Fitted candidate models for  commercial OS Release i+3 

 
Figure A6. Fitted candidate models for  commercial OS Release i+4 

Table A3. Residual standard er ror  for  fitted candidate models for  commercial OS  

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Commercial OS R 
i+3 4.093 on 16 df 4.161 on 15 df 4.172 on 15 df 5.34 on 16 df 4.733 on 16 df 

Commercial OS R 
i+4 8.446 on 14 df 7.077 on 13 df 7.198 on 13 df 9.881 on 14 df 9.001 on 14 df 



 
Figure A7. Fitted candidate models for  commercial OS Release i+5 

 
Figure A8. Fitted candidate models for  commercial OS Release i+6 

Table A4. Residual standard er ror  for  fitted candidate models for  commercial OS  

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Commercial OS R 
i+5 9.229 on 12 df 4.932 on 11 df 4.886 on 11 df 9.508 on 12 df 9.279 on 12 df 

Commercial OS R 
i+6 3.016 on 10 df 3.176 on 9 df 3.176 on 9 df 3.013 on 10 df 3.015 on 10 df 



 
Figure A9. Fitted candidate models for  commercial OS Release i+7 

Table A5. Residual standard er ror  for  fitted candidate models for  commercial OS  

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Commercial OS R 
i+7 INF 4.943 on 7 df 4.811 on 7 df 6.039 on 8 df Singular Gradient 

 



A2. Fitted candidate models for  commercial middleware system 

 

Figure A10. Fitted candidate models for  commercial middleware system Release i 

 
Figure A11. Fitted candidate models for  commercial middleware system Release i+1 

Table A6. Residual standard er ror  for  fitted candidate models for  commercial middleware system 

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Commercial MW 
R i 

4.446 on 24 df 3.003 on 23 df 3.014 on 23 df 5.317 on 24 df 4.77 on 24 df 

Commercial MW 
R i+1 Singular Gradient 5.023 on 25 df 4.9 on 25 df 7.585 on 26 df Singular Gradient 



 

 
Figure A12. Fitted candidate models for  commercial middleware system Release i+2 

Table A7. Residual standard er ror  for  fitted candidate models for  commercial middleware system 

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Commercial MW 
R i+2 Singular Gradient 5.677 on 15 df 5.588 on 15 df 8.287 on 16 df Singular Gradient 

 



A3. Fitted candidate models for  open source OS 

 
Figure A13. Fitted candidate models for  open source OS Release 2.6 

 
Figure A14. Fitted candidate models for  open source OS Release 2.7 

Table A8. Residual standard er ror  for  fitted candidate models for  open source OS 

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Open source  
OS R2.6 

10.22 on 20 df 3.839 on 19 df 4.266 on 19 df 11.74 on 20 df 10.93 on 20 df 

Open source  
OS R2.7 5.946 on 23 df 1.423 on 22 df 1.811 on 22 df 7.92 on 23 df 7.109 on 23 df 



 
Figure A15. Fitted candidate models for  open source OS Release 2.8 

 
Figure A16. Fitted candidate models for  open source OS Release 2.9 

Table A9. Residual standard er ror  for  fitted candidate models for  open source OS 

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Open source  
OS R2.8 12.24 on 21 df 4.187 on 20 df 4.371 on 20 df 13.92 on 21 df 13.02 on 21 df 

Open source  
OS R2.9 9.693 on 16 df 3.332 on 15 df 2.607 on 15 df 12.14 on 16 df 11 on 16 df 



 
Figure A17. Fitted candidate models for  open source OS Release 3.0 

 
Figure A18. Fitted candidate models for  open source OS Release 3.1 

Table A10. Residual standard er ror  for  fitted candidate models for  open source OS 

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Open source  
OS R3.0 15.72 on 11 df 5.313 on 10 df 7.035 on 10 df 17.68 on 11 df 16.52 on 11 df 

Open source  
OS R3.1 16.1 on 18 df 15.1 on 17 df 14.37 on 17 df 17.23 on 18 df 16.62 on 18 df 



 
Figure A19. Fitted candidate models for  open source OS Release 3.2 

 
Figure A20. Fitted candidate models for  open source OS Release 3.3 

Table A11. Residual standard er ror  for  fitted candidate models for  open source OS 

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Open source  
OS R3.2 4.325 on 13 df 3.686 on 12 df 3.746 on 12 df 6.671 on 13 df 6.163 on 13 df 

Open source  
OS R3.3 9.823 on 10 df 4.477 on 9 df 5.252 on 9 df 10.71 on 10 df 10.12 on 10 df 



A4. Fitted candidate models for  open source middleware System 

 
Figure A21. Fitted candidate models for  open source middleware Release 3.3 

 
Figure A23. Fitted candidate models for  open source middleware Release 4.0 

Table A12. Residual standard er ror  for  fitted candidate models for  open source middleware system 

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Open source MW 
R3.3 

INF 2.711 on 29 df 2.699 on 29 df 4.76 on 30 df 4.736 on 30 df 

Open source MW 
R4.0 INF 6.014 on 30 df 6.359 on 30 df 15.19 on 31 df 15.15 on 31 df 



 
Figure A24. Fitted candidate models for  open source middleware Release 4.1 

Table A13. Residual standard er ror  for  fitted candidate models for  open source middleware system 

Model/Release Exponential model Weibull model Gamma model Power model Logarithmic model 

Open source MW 
R4.1 INF 4.223 on 10 df 4.329 on 10 df 7.774 on 11 df 7.933 on 11 df 

 
APPENDIX B. THE INABILITY TO FIT MODEL PARAMETERS 
 A candidate model is inappropriate for modeling defect occurrences of a given release when either 
the infinity or the singular gradient error occurs. The infinity and singular gradient errors indicate that 
the model-fitting algorithm is unable to fit model parameters for the model. The releases for which at 
least one candidate model failed to be fitted are in figure B1. We provide an intuitive explanation of why 
candidate models that fail to be fitted are inappropriate for modeling defect occurrences by examining 
the relationship between the parameterizations of the models and the data.  



 
Figure B1. Commercial OS Release i+7, which failed to fit the Exponential and Logar ithmic models 

 
Figure B2. Commercial middleware system Release i+1, which failed to fit the Exponential and 

Logar ithmic models 



 
Figure B3. Commercial middleware system Release i+2, which failed to fit the Exponential and 

Logar ithmic models 

 
Figure B4. Open source middleware system Release 3.3, which failed to fit the Exponential model 



 
Figure B5. Open source middleware system Release 4.0, which failed to fit the Exponential model 

 
Figure B6. Open source middleware system Release 4.1, which failed to fit the Exponential model 

B1. The exponential model 
 The exponential model has the model form: 
 

(t) = N  e – �  t
  ,  > 0 , t > 0, N > 0     (1) 



The model is strictly decreasing with respect to t. The important variable is , which dictates the rate of 
decrease. Plot of exponential models with varying  is shown in figure B7. 

 
Figure B7. Plots of exponential models with varying  

There are increasing trends in releases for which the exponential model failed to fit. We use open source 
middleware system (Tomcat) release 4.1, which has an INF error, as an example. The plot of release 4.1 
is shown in figure B8.  

 
Figure B8. Plot of open source MW system Tomcat Release 4.1 



 The two errors, infinity and singular gradient, indicate that the exponential model failed to be fitted 
to the data. The data has an increasing trend, therefore the model fitting algorithm correctly tries to 
minimize the residuals by reducing the rate of decrease. This translates to making , the variable that 
dictates the rate of decrease, as close to zero as possible (  = 0 is impossible since that would mean the 
number of defect occurrences is zero for all time-intervals). Since  is outside of the exponent in the 
model in (1), smaller values of  requires correspondingly larger values of N. The infinity error occurs 
when N is pushed toward infinity. The singular gradient error occurs when  is pushed towards zero, like 
in release 4.1.  
 
B2. The logar ithmic model 
 The logarithmic model has the model form: 
 

(t) =  (   t +1) – 1,  > 0 , t > 0,  > 0    (2) 
The model is strictly decreasing with respect to t. The important variable is , which dictates the rate of 
decrease. Plot of logarithmic models with varying  is shown in figure B9. 

 
Figure B9. Plots of logar ithmic models with varying  

There are increasing trends in releases for which the logarithmic model failed to fit. We use commercial 
middleware release i+2, which has a singular gradient error, as an example. The plot is shown in figure 
B10.  



 
Figure B10. Plot of commercial MW system Release i+2 

 The singular gradient error indicates that the logarithmic model failed to be fitted to the data. The 
data exhibits an increasing trend, therefore the model-fitting algorithm correctly tries to minimize the 
residuals by reducing the rate of decrease in the model. This translates into making , the variable that 
dictates the rate of decrease, as close to zero as possible (  = 0 is impossible since that would mean the 
number of defect occurrences is zero for all time-intervals). The singular gradient error occurs when  is 
pushed towards zero, like in release i+2.  
 
APPENDIX C. THE LIFETIME OF A RELEASE 
 We designate the lifetime of a release as the duration of time after the release becomes generally 
available in which defect occurrences are being reported. Users can continue to report defect occurrences 
for an older release long after newer releases are available because no user can be forced to migrate away 
from an older release. We assume that all users eventually migrate to newer releases and no more defect 
occurrences will be reported an older release. The time after release when this occurs varies. Consider 
two releases of the open source OS in figure C1 and C2. The last defect occurrence is in the 20th time 
interval for release 2.8, but for release 2.9 the last defect occurrence is in the 15th time interval.  
 



 
Figure C1. Plot of the open source OS Release 2.8 

 
Figure C2. Plot of the open source OS Release 2.9 

 
 Operationally, we mark the end of a lifetime when we observe three successive time-intervals with 
zero defect occurrences. We used three successive time-intervals because releases will sometimes have 
more defect occurrences after several time-intervals with no defect occurrences. This is evident in the 
releases shown in figure C1 and C2.  



 Marking the end of a release as opposed to allowing the lifetime to extend until the present time 
increases the validity of our results. Allowing the lifetime to continue until the present time gives an 
advantage to the Weibull model. Consider open source release 2.6 in figure C3.  There are no more 
defect occurrences after the 19th time-interval. Using the method described above, we mark the end of 
the lifetime at 22nd time-interval, which produces the candidate model fits shown in figure C3. 

 
Figure C3. Plot of open source OS release 2.6 

 If the lifetime is extended to the present, the power, exponential, and logarithmic models would 
project more defect occurrences even though there are no more defect occurrences. Not marking the end 
of a release would offer an advantage to the Weibull model, which projects no more defect occurrences 
after the 22nd time-interval.  Figure C4 shows fitted models with the lifetime extended to the present. 
Table C1 shows the AIC scores with the extended lifetime. The results show an improvement in the 
Weibull model’s AIC score compared with other models.  



 
Figure C4. Plot of open source OS release 2.6 with extended lifetime 

Table C1. AIC scores of open source OS Release 2.6 with extended lifetime 

Model/Method Exponential Model Weibull Model Gamma Model Power Model Logarithmic Model 

Extended lifetime 345 241 252 367 358 

Early ending lifetime   167 124 129 173 170 

APPENDIX D. THE ASSUMPTION THAT THE TOTAL NUMBER OF 
DEFECTS IS KNOWN 
 We make the simplifying assumption that the total number of defect occurrences is known because it 
increases the validity of our results. We are interested in the defect occurrence pattern, which involves 
both the total number of defect occurrences and when those defect occurrences happen in the lifetime of 
a release. We do not want our results to be attributed to poor extrapolation of the total number of defects, 
since prior research have shown that two different software releases will probably have different total 
numbers of defect occurrences. By providing estimates of the total number of defects, we provide 
evidence that the characteristics discussed in section 2.2 cause the inadequacies in forecasts.  
 The Theil statistics in tables D1 and D2 show that results are generally even worse if we use naïve 
parameter extrapolation methods to extrapolate all Weibull model parameters. They now produce 
projections with Theil statistics greater than one in 57 out of 88 or 64.8% of the forecasting experiments. 
Moving averages produces forecasts with Theil statistics greater than one in 27 out of 44 or 61.36% of 
the forecasting experiments. Exponential smoothing method produces forecasts with Theil statistics 
great than one in 30 out of 44 or 68.18% of the forecasting experiments.  There are now 14 out of 18 or 
77.78% forecasting experiments in which the results from the using the model parameters from the most 
recent release result in projections that are almost no better than no change forecasts.  In 32 out of 88 or 
36.36% of the forecasting experiments, additional data failed to improve forecasts. These results are 
worse than the results in section 4.3, which increases the validity of our results. 



Table D1. Theil forecasting statistics using moving averages method 

Release/System one release two releases three releases four releases five releases six releases seven releases 

Commercial MW  
R i+1 2.111       

Commercial MW  
R i+2 0.971 1.367      

Open source MW  
R 4.0 1.886       

Open source MW  
R 4.1 2.289 2.091      

Commercial OS  
R i+1 1.075       

Commercial OS  
R i+2 1.688 1.681      

Commercial OS  
R i+3 3.781 1.802 1.464     

Commercial OS  
R i+4 0.828 1.133 0.708 0.571    

Commercial OS  
R i+5 0.989 1.388 1.433 1.201 0.895   

Commercial OS  
R i+6 4.298 3.905 3.366 4.916 4.233 3.868  

Commercial OS  
R i+7 3.633 3.810 3.691 3.525 3.207 3.175 3.220 

Open source OS  
R 2.7 1.354       

Open source OS  
R 2.8 1.101 0.806      

Open source OS  
R 2.9 1.453 0.931 1.039     

Open source OS R3.0 0.897 0.558 0.680 0.696    

Open source OS  
R 3.1 0.797 0.728 0.760 0.729 0.738   

Open source OS  
R 3.2 0.860 1.248 1.175 1.334 1.239 1.285  

Open source OS  
R 3.3 1.469 1.093 0.967 0.988 0.843 0.784 0.702 

 
 
 
 
 
 
 
 
 
 
 



Table D2. Theil forecasting statistics using exponential smoothing method 

Release/System one release two releases three releases four releases five releases six releases seven releases 

Commercial MW  
R i+1 2.111       

Commercial MW  
R i+2 0.971 1.275           

Open source MW  
R 4.0 1.886             

Open source MW  
R 4.1 2.289 2.115           

Commercial OS  
R i+1 1.075             

Commercial OS  
R i+2 1.688 1.680           

Commercial OS  
R i+3 3.781 2.145 1.813         

Commercial OS  
R i+4 0.828 0.962 0.730 0.611       

Commercial OS  
R i+5 0.989 1.318 1.250 1.185 1.041     

Commercial OS  
R i+6 4.298 3.974 3.594 4.398 4.148 4.030   

Commercial OS  
R i+7 3.633 3.811 3.767 3.702 3.621 3.615 3.636 

Open source OS  
R 2.7 1.354             

Open source OS  
R 2.8 1.101 0.856           

Open source OS  
R 2.9 1.453 1.012 1.067         

Open source OS R3.0 0.897 0.574 0.657 0.657       

Open source OS  
R 3.1 0.797 0.739 0.758 0.740 0.743     

Open source OS  
R 3.2 0.860 1.175 1.142 1.234 1.202 1.220   

Open source OS  
R 3.3 1.469 1.163 1.047 1.041 0.956 0.931 0.895 

APPENDIX E. THE DATA COLLECTION PROCESS 
 The data come from IBM as summarized reports and is harvested from web-based bug reporting 
systems for open source software systems. IBM uses a tiered support organization described in detail by 
Buckley and Chillarege. We received summarized defect occurrence information from two different 
organizations at IBM. The data contain the release of the software systems, the time intervals, and the 
number of defect occurrences in each interval. The two open source software systems use web-based bug 
reporting systems. We obtained a copy of the mysql database containing the bug-report data for the open 
source middleware system. Figure E1 shows a sample bug reported for the open source middleware 
system (Jakarta Tomcat). We parse the bug reports into releases and time intervals using the Product, the 
Version, and the Opened fields circled in figure E1. 



 
Figure E1. Sample bug repor ted for  the open source middleware system  



We used web queries to gather bug report data for the open source OS. Figure E2 shows a sample bug 
reported for the open source OS (OpenBSD). We selected only ones that are of class, sw-bug, which 
signifies software bug, and parsed the bug reports into releases and time intervals using the System 
description in the Environment field and the Arrival-Date field circled in figure E2.  
 

 
Figure E2. Sample bug repor ted for  the open source OS  



APPENDIX F. COMPARING FORECASTE ACCURACY AND NAÏVE 
PARAMETER EXTRAPOLATION METHOD ADEQUACY OF THE WEIBULL 
AND GAMMA MODELS 
 We conduct another validity check on using the Weibull model as the preferred model by comparing 
the Theil statistic produced by the best-fit Weibull model against the Theil statistic produced by the best-
fit Gamma model. We also verify that the naïve parameter extrapolation methods are inadequate by 
using the naïve parameter extrapolation methods outlined in section 4 to extrapolate model parameters 
for the Gamma model and examining the resulting Theil statistics. This investigates the possibility that 
extrapolating model parameters for the Weibull model is inherently difficult and that the naïve parameter 
estimation methods are adequate for other models.  
 The results show that the best-fit Weibull model produces better Theil statistics than the best-fit 
Gamma model in 55.56% or 10 of the 18 releases. Table F1 shows the Theil statistic of the best fit 
Weibull and Gamma models. In the 10 releases in which the Weibull model is better, the average 
advantage over the Gamma model is .103. In the 8 releases in which the Gamma model is better, the 
average advantage over the Weibull model is .054. These results shows that the best-fit Weibull model is 
the better than the best-fit Gamma model based on the Theil statistic a majority of the time. When the 
Gamma is better the average margin by which the Weibull model is inferior is less than the average 
margin when the Gamma model is inferior.  
 Table F2 shows the Theil statistic using the exponential smoothing method to extrapolate the model 
parameters for the Gamma model. In 69.813% or 74 out of 106 of the forecasting experiments, the naïve 
parameter extrapolation methods produce Theil statistics greater than 1. The results are worse than the 
Weibull model reported in section 4.3. In 66.037% or 70 out of 106 of the forecasting experiments, the 
extrapolated Gamma model has worse Theil statistics than the Weibull model (shaded and bold faced 
values). 

Table F1. Theil statistic of best fit Weibull and Gamma models 

Release 
Best fit Weibull 

model 
Best fit Gamma 

model 

CMW R i+1 0.870 0.849 

CMW R i+2 0.602 0.593 

OMW R4.0 0.701 0.741 

OMW R4.1 0.554 0.568 

COS R i+1 0.503 0.635 

COS R i+2 0.460 0.535 

COS R i+3 0.482 0.497 

COS R i+4 0.554 0.564 

COS R i+5 0.544 0.539 

COS R i+6 0.576 0.576 

COS R i+7 0.547 0.533 



OOS R2.7 0.319 0.549 

OOS R2.8 0.478 0.406 

OOS R2.9 0.387 0.499 

OOS R3.0 0.420 0.303 

OOS R3.1 0.676 0.555 

OOS R3.2 0.345 0.643 

OOS R3.3 0.479 0.351 

 
Table F2.  Theil forecasting statistics using moving averages method 

Release/System one release two releases three releases four releases five releases six releases seven releases 

Commercial MW  
R i+1 2.427       

Commercial MW  
R i+2 0.836 1.227      

Open source MW  
R 4.0 1.883       

Open source MW  
R 4.1 2.602 2.319      

Commercial OS  
R i+1 1.145       

Commercial OS  
R i+2 1.693 1.718      

Commercial OS  
R i+3 3.752 1.769 1.573     

Commercial OS  
R i+4 0.832 1.144 0.713 0.627    

Commercial OS  
R i+5 1.013 1.386 1.437 1.219 0.768   

Commercial OS  
R i+6 4.281 3.871 3.311 4.823 4.159 3.760  

Commercial OS  
R i+7 3.632 1.709 1.773 2.069 1.998 2.042 1.699 

Open source OS  
R 2.7 1.302       

Open source OS  
R 2.8 1.094 0.815      

Open source OS  
R 2.9 1.467 0.956 1.038     

Open source OS 
 R3.0 0.912 0.655 0.751 0.768    

Open source OS  
R 3.1 0.744 0.688 0.724 0.695 0.705   

Open source OS  
R 3.2 1.212 1.489 1.377 1.479 1.364 1.382  

Open source OS  
R 3.3 1.482 1.331 1.281 1.251 1.090 0.995 0.901 

 
 
 
 
 



Table F3. Theil forecasting statistics using exponential smoothing method 

Release/System one release two releases three releases four releases five releases six releases seven releases 

Commercial MW  
R i+1 2.264       

Commercial MW  
R i+2 0.999 1.098      

Open source MW  
R 4.0 0.942       

Open source MW  
R 4.1 2.065 2.364      

Commercial OS  
R i+1 1.145       

Commercial OS  
R i+2 1.693 1.715      

Commercial OS  
R i+3 3.752 2.111 1.859     

Commercial OS  
R i+4 0.832 0.974 0.736 0.592    

Commercial OS  
R i+5 1.013 1.317 1.253 1.196 0.956   

Commercial OS  
R i+6 4.281 3.941 3.541 4.316 5.414 3.947  

Commercial OS  
R i+7 3.632 1.857 1.822 1.963 2.492 1.920 1.820 

Open source OS  
R 2.7 1.302       

Open source OS  
R 2.8 1.094 0.861      

Open source OS  
R 2.9 1.467 1.040 1.076     

Open source OS 
 R3.0 0.912 0.665 0.728 0.731    

Open source OS  
R 3.1 0.744 0.696 0.717 0.702 0.705   

Open source OS  
R 3.2 1.212 1.442 1.382 1.433 1.385 1.387  

Open source OS  
R 3.3 1.482 1.312 1.256 1.242 1.162 1.129 1.095 

 
 

 
 


