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Abstract

Consider a set of players who wish to randomly arrange themselves without a trusted third-party.
For example, if there are 3 players, a, b and ¢, then a trusted third party could order them as abc, ach,
bac, bca, cab, or cha. In the absence of a trusted third party, the players want to select one of these
permutations for themselves at random. In this writing, a protocol (named “RandomSelect”) is
presented using multiplayer computation. From a bag of all possible ways the players could be
ordered, RandomSelect provides a means for players to make local choices that when combined,
jointly select a permutation randomly. The RandomSelect protocol supports any number (n) of two
or more players and computes properly even if n-1 players collude. Communication is O(n) using a
broadcast channel. More generally, necessary and sufficient conditions for a class of functions
called “RandomOrder” functions are defined. A RandomOrder function uses n inputs to make a
random selection of a string from a bag of n! strings where all possible selections are uniformly
distributed over the possible inputs and over the strings. Any RandomOrder function can be used
in the RandomSelect protocol. Bio-terrorism surveillance is used as an example application.
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1. Motivation and Background

This work presents a multiparty protocol named RandomSelect in which a set of players make local
choices that combine to jointly make a random selection from a uniform distribution of choices in
the absence of a trusted third party and in the face of colluding players. The reader familiar with
multiparty computation and not in need of a motivating application may elect to skip ahead to
section 2 to begin discussions of protocol methods.

1.1. Secure Multiparty Computation

This section describes the basic tenets of multiparty computation pertinent to this work. For
general reference, see [1, 2].

1. In “distributed computing” a number of networked players carry out a joint computation of a
function on their inputs. The aim of “secure multiparty computation” (or simply, multiparty
computation), in contrast, is to enable players to carry out distributed computing tasks on their
private information while under attack by an external entity (“the adversary”) and/or by a subset of
malicious players (“the colluding players”). The purpose of the attack is to learn the private
information of non-colluding, honest players or to cause the computation to be incorrect. As a
result, there are two important requirements of a multiparty computation protocol: privacy and
correctness.

2. The privacy requirement of a multiparty computation states that information deemed private
should not be learned.

3. The correctness reguirement states that the result of a multiparty computation should be
correct. The adversary or colluding players must not be able to cause the result of the computation
to deviate from the function that the players had set out to compute.

4. It is assumed throughout that when a message is sent, it arrives before some time bound. More
specifically, a protocol proceeds in “rounds.” In each round, a player may send a message to other
players, and all messages are delivered before the next round begins.

5. The work presented in this writing assumes that each player can send a message to all other
players using a broadcast channel. It cannot usually be verified that any player actually received
the broadcast message however. An example of a broadcast channel is a satellite in which
messages sent to the satellite during one round are transmitted in the next round so that any parties
seeking to receive the messages can do so. Low-level infrastructure in computer networks can also
provide a broadcast channel.

6. It is sometimes convenient to consider operation in which each pairs of players can communicate
secretly, point-to-point, over perfectly private and authenticated channels (called secure channels).
Clearly, secure channels can be used for broadcasting by having a player send a message directly to
every other player. In this case, each player’s receipt of the broadcast can be verified.




7. A colluding player is one that may misbehave “passively” or “actively.” Passive corruption
means that the adversary and colluding players obtain the complete information held by corrupted
players, but all players execute the protocol correctly. Active corruption means that the adversary
and colluding players may misbehave in an arbitrary manner.

8. Another assumption made throughout this work is that the adversary and colluding players are
“static.” Players can be corrupted and become colluders before the protocol starts, but during
protocol execution, non-colluding players cannot be corrupted.

9. It is assumed by the use of secure channels that the adversary has bounded computing power. [3]
introduced a general protocol that allows n players to securely compute an arbitrary function even
if an adversary actively corrupts any t < n/2 of the players and makes them misbehave maliciously.
In a model with secure channels, [4, 5] proved that unconditional security is possible if at most t <
n/3 of the players are actively corrupted. This bound was improved by [6, 7] to t < n/2 by
additionally using a broadcast channel.

10. In this work the notion of “private information” as it relates to a multiparty computation refers
to a player not revealing his local choice prior to broadcasting that choice to all players. Collusion
refers to a subset of players sharing their choices prior to broadcast or more generally, not making
random local decisions. For n players, a random selection of a permutation of the players must
compute properly even of n-1 players collude.

1.2. Example of Trivial Secret Sharing

1. A protocol to randomly select a permutation of players may be useful within a larger protocol
that solves a particular task. Details of bio-terrorism surveillance as a sample application appear in
Appendix A. A brief summary appears in this section. Trivial secret sharing, a well-known
multiparty computation, is compared to a randomized version in which players make joint random
choices. The purpose is to identify efficiency tradeoffs afforded by randomization.

2. The problem addressed in this sample application is as follows. A set of players and a reporting
authority operate over secure channels. Each player holds a private number. The players wish to
compute the sum of their numbers in a manner that preserves the secrecy of their individual values
while providing the sum to the reporting authority, even if some of the players collude passively.

3. Trivial secret sharing offers a solution. For n players, each player’s private number is
represented as a set of n values (called “shares”) that sum to the player’s original private number.
Each pair of players exchanges shares. Then, each player adds the shares he receives with his
remaining share and sends his total to the reporting authority, who adds the totals received from
each player and announces the final sum.

4. An alternative solution involves randomly arranging n players in m rings, where 1< m <n. Each
ring has all n players, but the order in which a player appears around any ring is determined
randomly. Each player has m shares that sum to her private value, and contributes one share to each
ring as follows. The reporting authority provides a random number to the first players of each ring,
who in turn add one share and send their sums to the second players, who add one share, and so on,
around the rings. The last players send their sums to the reporting authority, which adds them and
subtracts the random numbers provided originally to get the overall total.



5. For n players with each player having 1< m < n shares, the number of communications improved
with randomization from O(n*) to O(men), but the randomized version assumes random orderings
of players can be done within this bound. Providing a method for players to jointly select random
orderings of themselves within O(n) communication is the subject of the remainder of this writing.
Doing so completes the randomized solution in this sample application.

6. The broader goal of this work is to introduce the notion of a “randomized multiparty protocol” as
a multiparty protocol in which a subset of 2 or more players jointly make a random choice based on
a given probability distribution.

2. General Approach

Ways in which n players might jointly select a random permutation of themselves are informally
explored in this section by examining a game (Section 2.1), an approach using exclusive-OR
(Section 2.2), and an approach using modulus and addition (Section 2.3). This section provides an
informal preamble to the formal methods of Section 3 by sketching out the basic requirements
desired.

2.1. The Rock Paper Scissors Game

1. Inspiration for a method to randomly order players was found in the childhood game known as
“Rock Paper Scissors,” which is commonly used to decide who goes first [12]. The game is played
with only two players. Prior to play, a set of token gestures known as rock, paper, and scissors are
understood. A hand in a fist represents rock, a horizontal flat hand represents paper, and two
horizontal fingers represent scissors. These tokens are circularly ordered such that rock beats
SCisSsOrs, SCissors beats paper, and paper beats rock in determining which player goes first. Play
consists of synchronous display of a token gesture by each player. Figure 1 shows the possible
outcome for players Alice and Bob. Notice how a player cannot select a token that assures a
resulting order. For example, Alice displaying rock can have her appear first if Bob displays
scissors, or last if Bob displays paper. Both players’ tokens in combination determine the final
ordering. When both players select the same token, a “collision” occurs and no order can be
determined. In that case, the players perform additional rounds as needed until no collision is
encountered.

Alice Bob Outcome
rock rock none
rock paper Bob, Alice
rock SCiSSOrs Alice, Bob

paper rock Alice, Bob

paper paper none

paper SCiSSors Bob, Alice
SCiSSOrs rock Bob, Alice
SCiSSOrs paper Alice, Bob
SCiSSOrs SCiSSOrs none

Figure 1. Possible outcome sequences to determine who goes first and who goes second, Alice then Bob
or Bob then Alice, based on the Rock Paper Scissors game.




2. The work reported herein expands the notion of Rock Paper Scissors for use with an arbitrary
number of players (two or more) operating over a network to achieve the following. Each player is
given a set of tokens from which to draw. Collisions are avoided. Just as occurred in the original
game, the assignment of tokens to outcomes is provided to each player beforehand with uniform
distribution of outcomes assigned to token choices. During a round of play, each player provides a
token. The outcome is a permutation of the players selected by the joint choices of tokens.

2.2. Basic math notation used

1. Before informally exploring two ad hoc extensions to Rock Paper Scissors, some basic bath
notation must be presented.

2. Given an integer b, the “factorial of b” is the product: b e (b-1) e ... @ 1, and is written b!.
Example. The factorial of 6 (written 6!)is6e5e4 e3e2 e ] =720.

3. Given integers a, b and r, if a divided by b has remainder r, then “r is congruent to a modulo b,”
which is written r =a mod b. If r is 0, then “a is divisible by b,” which is written b|a, and there
exists an integer d such that a =bed.

Example. The integer 6 divided by 3 has a quotient of 2 and a remainder of 0. This is denoted by
the following expressions 0=6 mod 3 and 3|6.

2.3. Using Exclusive-OR

1. Consider an extension of Rock Paper Scissors to n > 2 players using bitwise exclusive-or
(denoted x @ Y) to jointly select a possible permutation. The exclusive-OR of two 1-bit values X
and y is 1 if exactly one of x and y is 1 and is 0 otherwise. IfX and Y are r-bit numbers, then the 1-bit
exclusive-or operation is performed on corresponding bits in the two values, respectively.

2. Here is a protocol named “RandomXOR” that uses bitwise exclusive-or. In a preliminary round,
all possible permutations of the players are enumerated. A table containing these enumerations (or
an equivalent algorithm) is distributed to each player prior to play commencing. Each player
receives the same table. Rounds of play utilize the same table with no further distribution of a table
needed. The protocol has one round. Each player P; selects a number v; (token), where v is between
1 and the number of permutations, and broadcasts the pair (P;, vi). Each player then performs
bitwise exclusive-or to determine the joint selection (S), where S=v; @ ... @ v,. The permutation
associated with s in the table is the selected permutation.

Example. Given n=3 players, a, b and ¢, RandomXOR can be used to select one of the 6 possible
permutations of {a, b, ¢} as follows. Before any rounds of play commence, the permutations are
associated with the values 1 to 6 as shown in Figure 2(a) and distributed to each player. The players
use this table in all rounds of play. To make a random selection, each player selects a value
between 1 and 6. Suppose Player a selects va=3, Player b selects vy=2 and Player c selects V=5, then
Va @ Vy @D Vve=3@ 2 @5 =4. This computation is detailed in Figure 2(b). The permutation
associated with 4 in Figure 2(a) is ach, so acb is the joint selection.



1. cha
2. bca ta=3=011
3. cab t,=2=010
4. ach t.=5=101
5. bac S =100=4 —ach
6. abc
(a) (b)

Figure 2. Enumeration of permutations for 3 players (a, b, and c) is shown in (a). An example
selection of acb using bitwise exclusive-OR is shown in (b) where player a selects 3 (bit pattern 011), b
selects 2 (bit pattern 010), and c selects 5 (bit pattern (101). The resultis ach because 3@ 2 @ 5 =4 (bit
pattern (100), and 4 is assigned the permutation ach in (a).

3. Some selections by players in RandomXOR can result in values not listed in the enumerated
permutations. These are considered collisions and require re-plays to occur until no collision is
encountered.

Example. Given n=3 players, a, b and ¢, suppose RandomXOR is used to select one of the 6
possible permutation enumerated in Figure 2(a). Let Player a select va=3, Player b select v,=1 and
Player ¢ select V=5, then va @ v, ® vc =3 @ 1 @ 5 =7, which has no associated permutation. The
combination of choices, (3, 1, 5), provides an undeterminable result.

4. Players can collude in RandomXOR to influence the final result so that some outcomes are less
likely than others.

Example. Given n=3 players, a, b and ¢, let RandomXOR be used to select one of the 6 possible
permutation enumerated in Figure 2(a). Suppose Players b and ¢ collude to limit the placement of
Player a so that either Player a or b appears last. Player b agrees to always select vy=2 and Player c
agrees to always select ve=1. If Player a selects 1 or 2, then permutations cba and bca result in
which Player a appears last. If Player a selects 3 or 4, a collision results. Finally, if Player a selects
5 or 6, then permutations bac or abc result in which Player ¢ appears last. See the highlighted
entries in Figure 23(a).

5. While RandomXOR provides many desirable characteristics, problems with collisions and with
colluding players exist. The nature of these shortcomings will be analyzed in Section 5 after formal
methods are introduced in Sections 3 and 4.

2.4. Using the Modulus of the Sum

1. Consider using the modulus (mod) of the sum of player choices as a way to jointly select a
possible permutation for n > 2 players. Here is a protocol named “ModSum” that operates very
similar to RandomXOR. In a preliminary round, each of the permutations of the players are
enumerated and distributed to each player. For n players, there are n! permutations. The protocol
has one round. Each player P; selects a number vi, where 0 <v; <n!, and broadcasts the pair (P;, v)).
Each player then sums the broadcasted values and uses the mod of the sum divided by n! to
determine the joint selection (r); that is, r = (2 vi) mod n!. The permutation associated with r in the
table is the selected permutation.

Example. Given n=3 players, a, b and c, let ModSum be used to select one of the n! = 6
permutations of {a, b, c}. Before any rounds of play, the permutations are associated with the
values 0 to 5 as shown in Figure 2(a) and distributed to each player. To make a random selection,



each player selects a value between 0 and 5. Suppose Player a selects v.=3, Player b selects vy=2
and Player ¢ selects V¢=5, then Va + Vp + Ve =3 + 2 + 5 =10, and 10 mod 6 is 4. The permutation
associated with 4 in Figure 2(a) is bac, so bac is the joint selection.

2. All selections based on ModSum provide a legal selection with no collisions because the
modulus operation guarantees that the final result will be in the range 0 to (n!-1). Recall selection r
= (X vi) mod n!, where V; is the choice of each player, 0 < v; < n!, and n! is the total number of
permutations. Each play yields a selection 0 <r <n!.

3. Unlike RandomXOR above, colluding players gain no advantage using ModSum. (This will be
examined further in Section 5 after formal methods are introduced.)

Example. Let n=3 players, a, b and ¢, use ModSum to select one of the 6 possible permutation
enumerated in Figure 2(a). Suppose Players b and ¢ collude. Player b agrees to always select vy=2
and Player c agrees to always select ve=1. The final outcome is equally likely to be any of the
permutations depending on the selection made by Player a. If v=0, acb results; if v=1, bac results;
if vo=2, abc results; if v,=3, cba results; if va=4, bca results; and, if va=5, cab results.

4. The informal discussions in this section introduced the basic requirements for a protocol that
allows n players to make local choices that combine to make a joint random selection with uniform
distribution of outcomes to choices. There should be no collisions, and the protocol should perform
properly in the face of n-1 colluding players. In the next section, formal definitions and sufficient
and necessary conditions are provided for acceptable solutions. In Section 5, after the formal
presentation of Section 3, attention returns to RandomXOR and SumMod for formal assessment.

3. Model and Definitions

This section and the next provide a formal presentation of the RandomSelect protocol. First,
general terms and notation (Section 3.1) are introduced. In Section 3.2, conditions for choosing
values appropriately are investigated. In Section 4, the class of RandomOrder functions is defined,
the RandomSelect protocol is presented, and effects of collusion are examined.

3.1. General terms and notation

1. Let P={Py, ..., P,} be the n players seeking to be arranged randomly, where n > 2. There must be
at least 2 players.

Example. P={a, b, ¢} represents the 3 players a, b, and c.

2. Let O={o0y, ..., 0} be the n! distinct permutations of size n in which the players of P may be
arranged. Each 0; permutation has no repetition of players. These 0;’s are termed the sequences of
P. The idea is that a permutation Py,...,P; expresses the random ordering in which the players of P
will be arranged. Py will appear first, and so on, with P, appearing last.



Example. Given P={a, b, ¢}, then the sequences of P are O={abhc, ach, bac, bca, cab, cha}. There
are 3 players and 3!=3e2=6 permutations of size 3. Each permutation contains all players and each
player appears only once in a permutation. The sequence abc has player a appearing first, player b
appearing second, and player ¢ appearing last, whereas the sequence cba has player c first, player b
second and player a last.

3. Each player P; has k, token values, {Vvi, ..., Vix}. The idea is that player P; will select one of its K,
tokens as its contribution to determining the final random arrangement of players. For generality,
assume each value viq, where 1 < g <X, is unique across all players; that is, unless otherwise noted,
for each P;, Pj, there does not exist Viq and Vj; such that vi=Vj,.

Example. In Figure 3, player a has tokens a; and a; from which to choose; player b has choices by,
b2, and bs, and player ¢ has choices ¢; and ;. Notice that no token is the same for any two players in
this example.

Player Tokens from which to choose
a {a1, &}
b {by, by, b3}
C {Cy, C2}

Figure 3. Choices for players a, b, and c are the tokens a: and az for player a; by, b2, and bs for player b;
and, c: and c: for player c.

4. The number of possible ways n players can jointly make selections by each choosing one of its
tokens is ITk;, for i=1,.., n. Each such way is termed a configuration, and is written as an n-tuple
(Vix ..., Vny) Where vy, is Player 1’s chosen token and vy is Player n’s chosen token.

Example. Given choices for ato be {ai, az}, choices for b to be {b1, by, b3}, and choices for ¢ to be
{C1, C2}, there are 20302=12 possible configurations. These are itemized in Figure 4.

1. (al b1 Cl) 7. (az b1 C1)
2. (al bz Cl) 8. (az bz C1)
3. (a1 b3 ¢1) 9. (a2 bs ¢1)
4, (al bz Cz) 10. (8.2 bz Cz)
5. (al b1 Cz) 11. (az b1 Cz)
6. (al b3 Cz) 12. (az b3 Cz)

Figure 4. Possible configurations for players a, b, and ¢ where choices for a are {a, a2}, choices for b are
{b1, bz, b3}, and choices for c are {c1, ¢z}

5. Configurations are assigned to sequences. The idea is that the players jointly determine a
configuration based on their individual choices of values; then, the sequence, which is associated
with that configuration, is the final randomized arrangement of players.

Example. Given the possible configurations in Figure 4 and the sequences {abc, ach, bac, bca, cab,
cba}, Figure 5 provides an assignment of configurations to sequences. Other assignments are
possible.

In the example provided in Figure 5, the configuration aibiC; is assigned to the sequence abc. The
idea is that if player a chooses ai, player b chooses by and player ¢ chooses €1, then the sequence abc
results. But, if instead player a chooses a;, player b chooses bz and player ¢ chooses ¢, then the
sequence cha results.

10



Sequences | Configurations

abc a; b ¢ a br ct
ach a; ¢ by a C1 by
bac bs a1 ¢1 bs a c1
bca b, ¢ & b, ¢ a
cab C; a1 by C a by
cba C2 by & C2 bs &

Figure 5. An assignment of all configurations to all sequences for players a, b, and ¢ where choices for a
are {a1, az}, choices for b are {b1, b2, bs}, and choices for c are {c1, c2}.

6. A token has a position within a sequence that is dictated by the assignment of the configuration
to a sequence. If a configuration is not assigned to a sequence, then the set of tokens chosen by the
players has no sequence ordering. But once a configuration is assigned to a sequence, the order in
which the players appear in the sequence imposes an ordering on the configuration. A token’s
position in its configuration is the position of the player in the sequence assigned to the
configuration. Once assigned, the tokens of the configuration generated by the choices of the n
players, (Vii, ..., Vnj), can be written in the order of the sequence, Py...Py, thereby producing Vys...Vy
where V,s has player X’s token V,s appearing first, and player y’s token vy appearing last.

Example. If player a chooses a,, player b chooses bz and player ¢ chooses €1, then the configuration
(az, bs, ¢1) results. This configuration in isolation provides no ordering. Now assume the
assignments shown in Figure 5. The configuration (&, bs, ¢1) is assigned to the sequence bac, which
means the sequence imposes the ordering b then a then ¢. The configuration can be written as bza,C;
to identify the tokens chosen and the ordering of the sequence that results.

7. For n players, a sequence is a string of length n. When a configuration is assigned to a sequence,
the assigned configuration is a string. The token t in position x of the assigned configuration S is
written as Pos(s, X) =t, where 1 <x<n.

Example. In Figure 5, the configuration (a,, by, C;) is assigned to the sequence cab providing the
ordered configuration C,ab1. pos(c.a2by, 1) = o, pos(c.a2bi, 2) = az, and pos(c.a2bi, 3) = b.

8. Given assignments of configurations to sequences, the number of occurrences of a token t in a
position X for a particular sequence S is denoted as count(s, t, X) =Y, or for the set of all sequences
is written as count(t, X) =y.

Example. In Figure 5, count(abc, by, 2) = 2, count(abc, a;, 1) = 1, and count(abc, a;, 2) = 0. Also,

count(by, 2) =2, count(ai, 1) =2, and count(ay, 2) = 2.

3.2. Conditions for Choosing Values Appropriately

Five conditions for appropriately choosing the number of configurations, the number of choices,
and the assignment of configurations to sequences are provided in this section. These principles
help assure “randomness” in determining the final sequence of players by making sure there is no
bias in each of these characteristics.

1. For all possible configurations of n players to be evenly distributed over all sequences, the
number of choices for each player (k;) must be selected such that 0 = (ke...e ky) mod (n!). This is
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identified as Condition 1, “the Configurations Condition.”

Condition 1 (“Configurations”). Assignments are performed such that the set of all possible
configurations are evenly distributed over the set of all possible sequences. In order to satisfy this
condition, it is sufficient and necessary that 0 = (ke...® k,) mod (n!).

NUMBER OF PARTIES =3 NUMBER OF PARTIES =4
k1 k2 k3 k1*k2*k3 (k1*k2*k3) mod (n) k1 k2 k3 k4 k1*k2*k3*k4 (k1*k2*k3*kd)mod (n!)
1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 1 1 1 2 2 2
1 2 2 4 4 1 1 2 2 4 4
2 2 2 8 212 2 2 8 8
2 2 3 12 of 2 2 2 2 16 16
2 3 3 18 Off 2 2 2 3 24 0
3 3 3 27 3 2 2 3 3 36 12
3 3 4 36 of 2 3 3 3 54 6
3 4 4 48 of 3 3 3 3 81 9
4 4 4 64 4 3 3 3 4 108 12
4 4 5 80 2 3 3 4 4 144 0
4 5 5 100 40 3 4 4 4 192 0
5 5 5 125 5 4 4 4 4 256 16
5 5 6 150 of 4 4 4 5 320 8
5 6 6 180 of 4 4 5 5 400 16
6 6 6 216 0| 4 5 5 5 500 20
5 5 5 5 625 1
5 5 5 6 750 6
5 5 6 6 900 12
5 6 6 6 1080 0
6 6 6 6 1296 0

Figure 6. Different number of choices (k;) for 3 players (left side) and 4 players (right side). The
highlighted rows identify those numbers of choices that satisfy Condition 1.

Example. Consider the sequences and configurations in Figure 5. Notice that the 12
configurations are distributed evenly over the 6 sequences for the 3 players, thereby satisfying
Condition 1. The remainder of the number of configurations (k;e...e k;) divided by the number of
sequences (n!) is 0. Specifically, let r be the remainder: r = (203¢2) mod (3!). This simplifies to r
=12mod 6, sor=0.

Example. In Figure 5, there are 2 ways the players may jointly select any specific sequence. This
results because the number of configurations is divisible by the number of sequences, and the
quotient is 2. That is, 6|12 and 12/6 = 2.

Example. Consider the sequences and configurations in Figure 5. Notice that if the number of
choices for player b was 2 and not 3, then the total number of possible configurations would be
2e2e2=8. But there are only 6 sequences. The configurations cannot be evenly distributed over the
sequences in this case, so Condition 1 cannot be satisfied. Some sequences will appear more often
despite each player making configuration choices randomly.

Example. Figure 6 shows the relationship of Condition 1, the Configurations Condition, to
different numbers of choices for n=3 players (left side) and n=4 players (right side). Each row in
Figure 6 identifies the number of choices each player may have (k;), the product of the number of
choices, which is the total number of possible configurations, and the remainder (modulus) of the
total number of configurations divided by the total number of sequences (which is the factorial of n).
In the fourth row on the left side, k;=2, k,=2, and k3=2. There are 2202 = 8 possible configurations.
There are 3!= 302 = 6 sequences. Because 2 =8 mod 6 is number of choices for the players and it
is not congruent to 0, this number of choices for players fails to satisfy Condition 1.

12



Example. Consider the fifth row on the left side of Figure 6. This is the topmost highlighted row.
k=2, k=3 and ks=3. There are 20203 = 12 possible configurations. There are 3!= 362 = 6
sequences and 0 = 12 mod 6. This number of choices for the players therefore satisfies Condition
1; the set of all possible configurations can be evenly distributed over the set of all possible
sequences. Each of the highlighted rows in Figure 6 satisfies Condition 1.

2. The number of tokens (K) for each of the n players should be the same and should be more than
one. This is identified as Condition 2, “the Choices Condition.” If a player has only one token,
then the player has no choice. If one player has more tokens (or choices) than the other players,
then that player may gain an ability to reliably restrict the final sequence to be drawn from one of a
limited number of sequences rather than being equally likely from all possible sequences.

Condition 2 (“Choices”)". Each player has the same number of tokens (k), where k>2.

Example. Consider the sequences and configurations in Figure 5. Notice the configurations
containing a;. Player a’s selection of a; cannot improve the likelihood of any particular sequence
being determined. This is also true of Player a’s choice of ;. Any selection of a; or a; by Player a
can lead to any final sequence. But unlike Player a, Player b has 3 choices. Player b’s selection of
by restricts the final sequences to being either abc or cab. In these sequences, b never appears in the
1™ position. Likewise, Player b’s choice of b, restricts the final sequences to ach and bca in which b
never appears in the middle position. Finally, Player b’s selection of bs restricts the final sequences
to bac or cha, in which b never appears in the last position. In order for each player to have the same
lack of determination over the final sequence, each player should have the same number of choices.
The configurations in Figure 5 do not satisfy Condition 2.

Example. Figure 7 lists all 216 possible configurations for 3 players having 6 choices each. There
are 6 possible sequences to which each of these 216 configurations could be assigned. If the
configurations are evenly distributed over the sequences, there would be 36 configurations per
sequence. The selection of k=6 as the number of choices for each of the n=3 players satisfies
Condition 1, as shown in this computation of r. Let r = (6e6e6) mod (3!), which simplifies to r =
216 mod 6, so r=0. The selection of k=6 also satisfies Condition 2 because each of the players has
the same number of k=6 choices.

3. The number of tokens (K) for each of the n players should be selected so that the total number of
tokens (combining all tokens from all players) is evenly distributed over the number of
configurations. In order for this to occur, 0 = T[Tk mod Zk. This is identified as Condition 3, “the
Tokens Condition.”

Condition 3 (“Tokens”). The set of tokens from all players (having size XK) should evenly
distribute over the set of all possible configurations (having size T1K). In order for this condition to
be satisfied, it is sufficient and necessary that 0 = ITk mod Xk. Since each of the n players has k
choices (Condition 2), this is the same as: 0 = k" mod nek.

Example. Figure 7 lists all 216 possible configurations for 3 players having 6 choices each. This
selection of k=6 choices for n=3 players satisfies Condition 3, as shown in this computation of r.
Let r = 6° mod (36), which simplifies to r =216 mod 18, so r = 0.

! Condition 2 is updated to include the constraint 0 = k mod n! in paragraph 10 of this subsection.
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Example. Figure 5 lists all 12 possible configurations for 3 players, where two of the players have
2 choices and one player has 3 choices. This selection fails to satisfy Condition 3, as shown in this
computation of r. Let r =(202e3) mod (2+2+3), which simplifies to r = 12 mod 7, so r=5, which is
not 0.

1: (arbica) 37: (arhico) 73: (a1 b1cs) 109: (a1 bacq) 145: (a1 b cs) 181: (a1 ba ce)
2: (@a2b1c) 38: (azh1c2) 74: (az2b1 c3) 110: (azb1ca) 146: (azb1cs) 182: (a2 b ce)
3: (azhicy) 39: (azhico) 75: (asb1 c3) 111: (azhica) 147: (azbacs) 183: (azba ce)
4: (aubicy) 40: (asb1co) 76: (a4 b1 C3) 112: (asbica) 148: (a4 b1 cs) 184: (a4 b co)
5: (ashic) 41 (ashico) 77: (asbi cs) 113: (ashica) 149: (as b cs) 185: (as ba ce)
6: (asbacy) 42: (asbico) 78: (as b1 C3) 114: (asbacq) 150: (as b cs) 186: (as b Ce)
7:(a1hzc) 43: (a1hz2¢2) 79: (a1 b2 c3) 115: (a1 b2 c4) 151: (a1 bz cs) 187: (a1 b2 ce)
8: (azbz2¢1) 44: (azbz2¢2) 80: (azb2c3) 116: (azb2c4) 152: (a2 b2 cs) 188: (a2 b2 ce)
9: (ashzcy) 45: (ashz2¢2) 81: (ashzcs) 117: (azbzc4) 153: (azbzcs) 189: (a3 ce)
10: (a4 b2¢a) 46: (aub2c2) 82: (asb2c3) 118: (a4b2c4) 154: (as b2 cs) 190: (a4 b2 ce)
11: (ashzca) 47: (asbz2c2) 83: (ashzcs) 119: (ashzca) 155: (as bz cs) 191: (as b2 ce)
12: (ash2¢1) 48: (ashz2¢2) 84: (asb2c3) 120: (asb2c4) 156: (as b2 Cs) 192: (as b2 ce)
13: (a1bscy) 49: (a1bs o) 85: (a1hscs) 121: (a1 hsc) 157: (a1 bscs) 193: (a1 bz ce)
14: (a2bs ) 50: (azbs c2) 86: (az2bs ca) 122: (azbsca) 158: (azbs cs) 194: (a2 b3 ce)
15: (ashscy) 51: (ashscz) 87: (ashsca) 123: (azhsca) 159: (ashscs) 195: (a3bs ce)
16: (as bz ca) 52: (a4 b3 C2) 88: (a4 s Cs) 124 (aabsca) 160: (a4 bs cs) 196: (a4bs Ce)
17: (ashscy) 53: (ashscz) 89: (ashscs) 125: (ashscs) 161: (asbscs) 197: (ashs ce)
18: (ashscy) 54: (as b3 C2) 90: (as b3 C3) 126: (as b3 c4) 162: (as b3 cs) 198: (as b3 o)
19: (a1hsca) 55: (a1hac2) 91: (a1hacs) 127: (a1 bsca) 163: (a1 bacs) 199: (a1 b4 ce)
20: (azbac1) 56: (azb4c2) 92: (azbacs) 128: (azbsca) 164: (a2 b4 cs) 200: (a2 ba Cs)
21: (ashac1) 57: (ashsco) 93: (ashacs) 129: (azbsca) 165: (a3 b4 cs) 201: (asbaCs)
22: (aubacr) 58: (a4hscz) 94: (a4 bacs) 130: (asbaca) 166: (a4 bacs) 202: (a4 bacs)
23: (ashac1) 59: (ashacz) 95: (asbacs) 131: (ashaca) 167: (asbacs) 203: (asbs cs)
24: (ashac1) 60: (ashac2) 96: (as ba C3) 132: (as b4 ca) 168: (as b4 cs) 204: (as ba Cs)
25: (a1 bsc1) 61: (a1bsc2) 97: (a1 bs ca) 133: (a1 bscq) 169: (a1 bs cs) 205: (a1 bs Cs)
26: (az2bs c1) 62: (a2bsC2) 982 (a2bscs) 134: (az2bs cq) 170: (azbs cs) 206: (a2 bs cs)
27: (asbsc1) 63: (a3bscz) 9: (ashscs) 135: (azbs c4) 171: (azbscs) 207: (asbscs)
28: (a4 bsc1) 64: (a4bs C2) 100 (a4bscs) 136: (asbsca) 172: (a4 bs cs) 208: (a4 bs cs)
29: (asbs c1) 65: (asbs c2) 101: (asbs cs) 137: (asbs cq) 173: (asbs cs) 209: (as bs cs)
30: (ashsca) 66: (as bs C2) 102: (as bs c3) 138: (asbs c4) 174: (as bs Cs) 210: (as bs Cs)
31: (arhscy) 67: (a1bsC2) 103: (a1 bs c3) 139: (a1 bs c4) 175: (a1 bs Cs) 211: (a1 bs Cs)
32: (azbs ) 68: (a2bs C2) 104: (az2bs c3) 140: (az2bs c4) 176: (az2bs Cs) 212: (a2 bs Cs)
33: (ashscy) 69: (a3bs C2) 105: (ashs cs) 141: (a3bs c4) 177: (a3bs Cs) 213: (asbs Cs)
34: (a4bs ) 70: (a4bs o) 106: (a4 bs 3) 142: (a4bs ca) 178: (a4 bs Cs) 214: (a4 bs Cs)

5: (ashsC1) 1: (ashs C2) 107: (asbs C3) 143: (asbs c4) 179: (as bs Cs) 215: (as bs Cs)
36 (ashscy) 72 (asbs C2) 108: (as bs C3) 144 (as bs C4) 180: (as bs Cs) 216: (as bs Cs)

Figure 7. All 216 possible configurations for k=6 choices and n=3 players. These configurations have
not yet been assigned to any sequences, so the ordering is not determined.

4. If Condition 3 is satisfied, the number of occurrences of each token in assigned configurations is
the number of configurations times the number of players, divided by the total number of tokens.
This can be expressed as (nek")+(Zk).

Example. Figure 7 lists all 216 possible configurations for n=3 players, where each player has k=6
choices. There are 18 distinct tokens, a, @y, ..., Cs, Cs. The number of occurrences of each token in
the set of configurations is (3¢6°)/(6+6+6) =648/18 = 36. Each of the 18 tokens, a, ..., Cs, appears
in 36 configurations.

5. In order for Conditions 1, 2 and 3 to be satisfied for n players, a selection for k (the number of
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choices for each player) must be made such that 0 = k" mod n! (Condition 1), k>2 (Condition 2),
and 0 = k" mod nek (Condition 3). The theorem below claims there always exist such a k for any
n>2. The associated lemma identifies one such k as n!.

Theorem A. For any number of players (n), where n > 2, there exists a selection for k satisfying 0
=k" mod n! (Condition 1), k>2 (Condition 2), and 0 = k" mod nek (Condition 3).

Proof. Letk=n!. Because n >2, and k=n!, k> 2. This satisfies Condition 2. For Condition 1 to be
satisfied, 0 = k" mod n!. Letr; =k" mod n!. Substituting n! for k yields ry = (n!)" mod n!. Because
(n!)"is divisible by n!, as shown below, Condition 1 is satisfied.

)" _ ()™

n! is an integer value. There is no remainder, r;=0.

For Condition 3 to be satisfied, 0 = k" mod nek. Let r3 =k" mod nek. Substituting n! for k yields rs
= (n!)" mod ne(n!). Because (n!)" is divisible by nen!, as shown below, Condition 3 is satisfied.

() O (e ey

nen! n is an integer value, so r;=0.

Lemma B. For any number of players (n), where n > 2, a selection of k=n! satisfies 0 = k" mod n!
(Condition 1), k>2 (Condition 2), and 0 = k" mod nek (Condition 3).

Example. Figure 8 shows the minimum selection for K that satisfies Conditions 1, 2 and 3, for n=
2 to 6 players. For n=2 players, where each player has k=2 choices, there are k=4 possible
configurations, namely {a;b;, a;b, a)by, a;b,}. There are nek=4 tokens in total and n!=2 possible
sequences, namely ab and ba. The number of configurations is divisible by the number of
sequences (0 =4 mod 2) and the number of configurations is divisible by the number of token (0 =
4 mod 4).

Example. In Figure 8, the selection of k for n=2 and 3 are n!, but for n=4, 5 and 6, a value for k
smaller than n! was found to satisfy Conditions 1, 2 and 3. In these cases, selecting k to be n! would
also satisfy the Conditions 1, 2 and 3. Results where k=n! are shown in Figure 20.

6. Once the members of the set of all possible configurations are assigned to members of the set of
all possible sequences, the tokens should be evenly distributed across all token positions in
sequences. There should not exist a token appearing in more positions than any other token. This is
identified as Condition 4, “the Token Position Condition.”

Condition 4 (*Token Position™). For all tokens tj to be evenly distributed over the positions py of
the set of sequences, it is sufficient and necessary that: count(tj, px)= k"/(ken), for each token
j=1,...,k (assuming each player has k distinct tokens) and for each position X=1,...,Nn.
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Condition 2 Condition 1 Condition 3
n k K" nek n! k" mod n! k"™ mod nek
2 2 4 4 2 0 0
3 6 216 18 6 0 0
4 6 1296 24 24 0 0
5 30 24300000 150 120 0 0
6 30 729000000 180 720 0 0

Figure 8. Minimum selection for k that satisfies Conditions 1, 2 and 3, for n = 2 to 6 players. For n=2
and 3, k=n!, but for n=4, 5, and 6, k < nl!.

7. In comparison, Condition 3 assures there are a proper number of tokens to evenly distribute over
the set of all possible configurations. It does not address the positions of the tokens within those
configurations. This is addressed by Condition 4. Suppose Condition 4 is grossly ignored even
though Conditions 1, 2 and 3 are satisfied, and a token appears in only one position. Then, the
player that chooses that token can reliably predict its placement in the final sequence.

Example. Figure 9 shows an assignment, of all 216 configurations k=6 choices for n=3 players.
These configurations satisfy Conditions 1, 2 and 3, as described earlier. In Figure 9, the
configurations are assigned to sequences cha, bca, cab, ach, bac and abc. Other assignments are
possible. The assignments shown do not satisfy Condition 4 because bz and bs appear in the last
position only, b; and bs appear in the middle position only, and b, and bs appear in the first positions
only. Player b’s token are not evenly distributed across the positions. As a result, player b can
dictate his position in the final sequence.

Example. Figure 10 reports the frequency of each player’s token in each of the token position
listed in the sequences in Figure 9. All 36 copies of each token for Players a and ¢ appear evenly
distributed across the sequence positions — satisfying Condition 3. But all 36 copies of each of
Player b’s tokens only appear in single position — failing to satisfy the count requirement of
Condition 4, which is k"/(ken) = 12, not 36.

Example. Figure 11 shows a different assignment of the configurations from Figure 9 such that
Conditions 1, 2, 3 and 4 are all satisfied. The frequencies of each player’s token in each token
position are reported in Figure 12. Each token, au,...,as, b,..., Ds,..., C1, ..., Cs, appear 12 times in
each position, which agrees with the count requirement of Condition4, which is 12.

Example. Figure 13 shows another assignment of the same configurations from Figure 9 and
Figure 11. The assignments in Figure 13, like those in Figure 11, satisfy all four conditions.

8. In order to defeat up to n-1 colluding players, assume all but one player agrees to specific values,
Vi, ..., Vng. The K possible choices for Player n should allow any of the sequences to be equally
selected by Player n. If so, the collusion provided no advantage. All configurations (V, ..., Vq-1, Vi)
for x=1,...,k, should be evenly distributed over the sequences. This requirement is identified as
Condition 5, “the Anti-Collusion Condition.”

Condition 5 (“Anti-Collusion”). Given n players with each player having Kk choices, let vi be
Player 1’s choice, ..., Vo1 be Player (n-1)’s choice. There are k configurations containing these
specific values, which are characterized by the k choices, Vai, ..., V. It is sufficient and necessary
that each configuration of the form (vi, ..., Va1, Vi), for Xx=1,... k, be assigned such that all sequences
have an equal number of one or more such configurations assigned.
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Example. Given 3 players, a, b, and ¢, with each player having 6 choices, and the assignment of
configurations to sequences shown in Figure 11, collusion by Players b and ¢ dictates the final
selection no matter the choice made by Player a. If Player b selects bs and Player ¢ selects c1, the
result is abc regardless of the choice of Player a. This bias occurs even though the assignments in
Figure 11 satisfy Conditions 1, 2, 3 and 4. Figure 11 does not satisfy Condition 5.

cha0] bcal] cab [2] achb [3] bac [4] abc [5]

[1] l:cibra 7:baciar 13:ciasbs  19:aicibs 25:bsaici  3liaibsca

2] 2:ciha 8:b2ciaz  14:ciazbs  20:a2cihs 26:bsazci 32 axbsca

| [3] 3. cibias 9:b2cias  15:ciasbs  2liascibs  27:bsasci 33:ashec:
[4] 4:cibras 10:baciae 16:craubs 22:ascaibs 28:bsasci 34 asheca
[5] 5 cibias  1libecias  17:ciashs  23:ascibs 29:bsasci 35:ashsca
[6] 6:cibias  12:bpcias  18:ciashs  24:@scibs 30:bsasci  36:asbsca
[7] 37:cebiar 43:baccar 49:ccanbs  55:aicabs 6libsaice  67:asbsce

[8] 38:cobiaz 44:baccaz 50:coazbs  56:a2c2bs 62:bsazce  68:azbsce

1 [9] 39:cobias  45:b2ccas  Sliceasbs  S57:ascebs 63:bsasce  69:ashece
[10] 40: c2bias 46:b2coas 52:cCoashbs  58:ascobs  64:bsasce  70:ashsca

[11] 41:cobias  47:b2c2as  53:ceashs 59 ascobs  65:bsasc;  71:ashsce

[12] 42:cobias  48:2Coas  54:coashs 60 asCobs  66:bsasc  72:ashsce

[13] 73:csbiar 79:bacsar 85:csasbs  9l:aicshs  97:bsaics  103:aibscs

[14] 74:csbiaz 80:b2csaz  86:cCsaebs  92:@2c3hbs 98:bsazcs  104: a2becs

1 [15] 75:Ccsbias  8libacsas  87:csasbs  93:ascsbs 99:bsascs  105:ashecs
[16] 76:Csbias  82:b2csas  88:ciasbs  94:ascshbs  100:bsascs  106: asbecs

[17] 77:Ccsbias  83:b2csas  89:csasbs  95:ascshbs  101:bsascs  107:ashecs

[18] 78:Csbias  84:bacsas  90:csashs  96:a8sC3hs  102:bsascs  108: ashecCs

[19] 109: cabrar  115:b2csan 121:csarhs  127:a@icCsbs  133:bsaics  139:aibscs

[20] 110: cabraz  116:bacsae  122:csazhs  128:a@2csbs 134:bsazcs  140: azbgcs

v [21] 111:cabmas  117:b2csas  123:csashs  129:ascabs  135:bsascs 141 asbscs
[22] 112:cabras  118:bo2csas  124:csasbs  130:a@sCabs  136:bsascs 142 asbscs

[23] 113:cabras  119:b2ceas  125:csashs 131:ascabs 137:bsascs 143:asbecs

[24] 114:cabias  120:bocsas  126:caashs  132:a@scabs  138:bsascsa 144: ashscs

[25] 145:cshiar 151:bacsar  157:csaibs  163:aicshs  169:bsaics  175:aibecs

[26] 146: csbiaz  152:b2csaz  158:csazbs  164:@2csbs  170:bsazcs  176: a2bsCs

\% [27] 147: csbias  153:b2csas  159:csashs  165:ascsbs  171:bsascs  177:asbsCs
[28] 148: cshias  154:bacsas  160: csaubs  166:ascshs  172:bsascs  178:asbecs

[29] 149:csbias  155:b2csas  161:csashs  167:ascshs  173:bsascs  179:ashscs

[30] 150: cshias  156:b2csas  162:csashs  168:a@sCsbs  174:bsascs  180: asbsCs

[31] 181:cebiar  187:bacsar  193:csarhs 199:aicsbs 205 bsaice 211:aibeCs

[32] 182: cebiaz  188:bacsaz  194:csazhs  200:azcsbs  206: bsazcs  212: a2beCs

VI [33] 183:cebias  189:b2ceas  195:ceashs 201 ascshs 207:bsasce 213:ashsCe
[34] 184:cobias  190:b2Ceas  196:Coashs 202 ascshs 208:bsasce 214:asbsce

[35] 185:csbias  191:bocsas 197:cesashs 203:ascebs 209:bsascs  215: asbsCo

[36] 186: csbias  192:boceas  198:coashs 204 ascshs 210:bsascs  216: ashsCe

Figure 9. All 216 possible configurations for k=6 choices and n=3 players from Figure 7 are assigned to
the n!=6 sequences (columns numbered [0] to [5]) imposing an ordering on each configuration. The
assignments form a 2-dimensional array (or table) having 5 columns and 36 rows.

Player a Player b Player c
Token [ Pos1 | Pos2 | Pos3 Token | Pos1 | Pos2 | Pos3 Token | Pos1 | Pos2 | Pos3
a1 12 12 12 b1 0 36 0 C1 12 12 12
a 12 12 12 1)) 36 0 0 C2 12 12 12
as 12 12 12 b3 0 0 36 C3 12 12 12
a 12 12 12 b4 0 0 36 C4 12 12 12
as 12 12 12 bs 36 0 0 Cs 12 12 12
as 12 12 12 bs 0 36 0 Co 12 12 12

Figure 10. Counts of the number of times the tokens of each player appears in each sequence position
in the configuration assignments shown in Figure 9.
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cba [0] bca[1] cab [2] acb [3] bac [4] abc [5]
[1] 1:cibras 7:brcran 13:crarba 19:a1ciba 25 bsaic 31:arheca
[2] 2:cbra 8 bacraz 14:crazbs  20:a2cibs  26:bsaxcy | 32:azxbsc:
| [3] 3:cibias 9:bacras 15:crashs  2l:ascibs  27:bsascy | 33:asbsc:
[4] 4:cibras 10:b2cias  16:crashs  22:ascibs 28 bsasci | 34:asbsc:
[5] 5. cibias 11:b2cias  17:ciashs  23:ascibs  29:bsasci | 35:ashsc:
[6] 6: C1bias 12:bpcias  18:ciashs  24:ascibs  30:bsasci | 36:asbscs
[71 37:cobaan 43: bicra 49:coarh>  55:aicobz 61:bsaicy  67:aibsco
8] 38:cobsaz | 44:biccaz  50:Ccoaeh2  56:a2c2bs  62:bsazce 68 axbsce
1 9] 39:cobsas | 45:biccas  51icoash.  57:ascebs 63:bsascz 69:ashbsce
[10] 40: cobgas | 46:biccas  52:coasba 58 ascabs 64:bsasce  70:asbsce
[11] 41: cobgas | 47:biccas  53:ceasba 59:ascaobs 65:bsasce 7liasbsce
[12] 42: Cobsas | 48:bicoas  54:coash:  60:asCobs  66:bsasce  72:ashsce
[13] 73: cabsan 79: becaan 85: caai b 91:arcaby  97:bzaica  103:arhaca
[14] 74:csbsaz  80:bscsaz | 86:csazhi  92:a2c3b: 98:bsaxcs  104:azhscs
1l [15] 75:cshsas  8l:ibscsas | 87:csash:  93:ascsb:  99:bsascs  105:ashscs
[16] 76: csbsas  82:becsas | 88:csashy  94:ascsb:  100:bsascs  106:ashscs
[17] 77:csbsas  83:bscsas | 89:csash:  95:ascsb:  101:hsascs 107:ashscs
[18] 78:cshsas  84:bscsas | 90:csashy  96:ascCsb2  102:bhsascs  108:ashscs
[19] 109: cabsar  115:bscaar  121:caarbs | 127:a1cabt 133:brarca  139:a1baca
[20] 110: cabsaz  116:bscsar  122:csazbe | 128:@2¢sb1 134:b2a2cs  140: a2bscs
v [21] 111: cabsas  117:bscsas  123:csasbe | 129:ascsbr  135:b2ascs 141 asbscs
[22] 112: cabsas  118:bscsas  124:csasbe | 130: ascsbr  136:b2ascs  142:asbscs
[23] 113: csbsas  119:bscsas  125:csashe | 131:ascabr  137:h2ascs  143:asbscs
[24] 114:cabsas  120:bscsas  126:csashs | 132:ascaby  138:b2ascs  144:achscs
[25] 145:csbzar 151:bacsar  157:csarbs  163:ai1csbs | 169:biaics  175:ai1bocs
[26] 146: csbsaz  152:bscsar,  158:csazbs  164:azcshe | 170: biazcs  176: azbacs
\Y [27] 147:csbsas  153:bscsas  159:csasbs  165:ascshe | 171:biascs  177:ashacs
[28] 148: csbsas  154:bscsas  160:csasbs  166:ascshe | 172:brascs  178:ashacs
[29] 149: csbsas  155:bscsas  161:csasbs  167:ascshe | 173:biascs  179:ashacs
[30] 150: cshsas  156:bsacsas  162:csashs  168:ascshe | 174:biascs  180:aghacs
[31] 181:caboar  187:bacear  193:cearbs 199:ai1cabs  205:bsaice | 211:ai1bica
[32] 182: csb2a2  188:bscsar 194:csazbs  200:a2cshs  206: bsazcs | 212: a2bics
VI [33] 183: csb2as  189:bscsas 195:csashs 201:ascehs 207:hsascs | 213:asbics
[34] 184: csb2as  190:bscsas 196:csasbs 202:ascshs 208:bsascs | 214: asbics
[35] 185: csb2as  191:bsceas 197:ceashs 203:ascehs 209: bsascs | 215: asbics
[36] 186: Coboas  192:bacsas 198:csashs 204:ascebs  210:bsascs | 216: aghics

Figure 11. Assignments of the 216 possible configurations from k=6 token choices for n=3 players, a, b
and ¢, to the n!'=6 sequences (columns numbered [0] to [5]) such that Condition 4 (and Conditions 1,2
and 3) is satisfied.

Player a Player b Player c
Token | Pos1 | Pos2 | Pos3 Token | Pos1 | Pos2 | Pos3 Token [ Pos1 | Pos2 | Pos3
ai 12 12 12 b1 12 12 12 C1 12 12 12
a 12 12 12 ) 12 12 12 C2 12 12 12
as 12 12 12 bs 12 12 12 C3 12 12 12
as 12 12 12 b4 12 12 12 C4 12 12 12
as 12 12 12 bs 12 12 12 Cs 12 12 12
a6 12 12 12 bs 12 12 12 Co 12 12 12

Figure 12. Counts of the number of times the tokens of each player appears in each sequence position
in the configuration assignments shown in Figure 11. Each token, ay,...,as,bs,...,0s,C1,...,Cs, appears 12
times in each token position.
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cba [0] bca [1] cab [2] acb [3] bac [4] abc [5]

Lcihia T:b2cras 13:cratbs  19:aicibs  25:bsaic: 31:aihsc:

2. C1heaz 8:bicia 14:crazb2  20:a2cibs  26:bsazc: 32 azxbscy

[3] 3:cibsas 9: bsCias 15:ciashy  2l:ascib2  27:bszasci  33:ashsci
4

5

:Cthsas 10:bscias  16:ciasbs  22:ascibi 28:brasci 34 asbscy
:Cihzas 11:bscias  17:ciasbs  23:ascibs  29:biasci  35:ashac:

[6] 6: c1bzas 12:bscias  18:ciashs  24:ascibs  30:bsasci  36:ashics
[71 37:c2bsar  43:biccar  49:coarbe  55:aicebs 6libsaic 67:aibsce
8] 38:c2bsaz  44:bsccaz 50:coazbr  56:a2c2b2 62:bzaxc.  68:azbsce
I 9] 39:cobsas  45:bsccas Slicoasbs  57:ascebr 63:bpasca 69:ashsce

[10] 40: cobsas  46:bsccas  52:ceasbs 58 aucebs  64:biasca  70:ashzce
[11] 41:cobras  47:bsceas 53:c2ashs 59:ascebs  65:bsasce 7liashice
[12] 42:cobias  48:bacoas  54:ceashs  60:asCobs  66:bsasCa  72:ashsce
[13] 73:cshsar 79:bscsar  85:csarb:  9liarcsb:  97:bsaics  103:aibscs
[14] 74:cshsaz 80:bscsaz  86:csazbe  92:ascsby 98:b2a2cs 104:axbscs
1] [15] 75:cshsas  8l:bsczas  87:csashbs  93:ascsbs  99:biascs  105:ashacs
[16] 76: cshbras  82:bscsas  88:csasbs  94rascsbs  100:bsascs 106:asbics
[17] 77:csbias  83:b2csas  89:csasbs  95:ascsbs  101:bsascs  107:ashbscs
[18] 78:cshsas  84:bicsas  90:csash,  96:ascabs  102:bsascs  108:ashscs
[19] 109: csbsar  115:bscsar  121:csarhe 127:aicsab:r  133:b2aics 139:aibscs
[20] 110: csbsaz  116:bacsdz  122:csdzbs  128:@2Cabs  134:biazca  140:azbzca
v [21] 111:cabras  117:bscsas  123:csashs  129:ascsbs  135:bgascs 141:asbics
[22] 112:cabras 118 bocsas  124:csashs  130:ascsbs  136:bsascs 142:asbscs
[23] 113:cabsas  119:bicsas 125:csash.  131:ascsbs  137:bsascs 143:asbsce
[24] 114:cabsas  120:bscsas  126:csdshs  132:@scsby  138:bszascs 144:asbace
[25] 145:csbsar  151:bacsar  157:csaibs 163:aicshs  169:biaics 175:aibacs
[26] 146:cshpaz  152:bscsaz  158:csazbs  164:@2csbs  170:bsazcs  176:azbics
V [27] 147:csbias  153:b2csas  159:csashs  165:ascsbs  171:bsascs 177:asbscs
[28] 148:cshsas  154:bicsas  160:csashe  166:@4cshs  172:bsascs 178 asbscs
[29] 149:cshsas  155:bscsas 161:csash:  167:ascsha  173:bsascs  179:ashacs
[30] 150: cshaas  156:bscsas  162:Csashs  168:asCshy  174:brascs  180:ashscs
[31] 181:ceb2ar  187:bacsar 193:csairhs 199:aicsbs 205:bsaics 211:aibics
[32] 182:csbiaz  188:b2csaz  194:csazbs  200:a2Csbs  206:bsazcs  212: azbscCe
VI [33] 183:cebsas 189:biceas 195:csash. 201:ascsbs 207:bsascs 213:asbsce
[34] 184:csbsas  190:bsCsas 196:cCsashr 202:a4csb2  208:bsascs 214:ashace
[35] 185:cshaas 191:bsceas 197:csashs 203:ascshn  209:b2asce  215: ashsce
[36] 186: cshsas 192:bacsas 198:Csashs 204:asCsbs  210:biascs 216: ashzCe

Figure 13. Assignments of the 216 configurations for n=3 players (a, b, ¢), with each player having 6
choices, to the n!=6 sequences such that Condition 1, 2, 3, 4 and 5 are all satisfied. This table describes
a RandomOrder function.

9. Satisfying Condition 4 assures that no sequence has a token appearing more often than any other
token. But it does not address a situation in which 2 or more tokens appear in more configurations
than any other 2 tokens.

Example. Figure 13 shows another assignment of the same configurations in Figure 11, but in
Figure 13 the assignments satisfy Condition 5, as well as Conditions 1 through 4. Collusion by
Player b and ¢ does not dictate the outcome. If Player b selects bs and Player ¢ selects Ci, the results
depends on Player a. If Player a selects: a1, abc results; ay, cba results; as, bca results; as, cab results;
as, ach results; and, as, bac results.

10. A corollary to Condition 5 id 0 = k mod n! because there must be sufficient numbers of choices
to distribute the configurations described in Condition 5. Condition 2 is updated so that all players
have an equal number of choices congruent to n!.
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1. Configurations 0= (kye ... k,) modn!
2. Choices k=ki=...=k,

3. Tokens 0=k"mod (n e k)

4.

Token Position  count(t;, px) =k" / (ke n)
for each token j=1,...,ken; and for each position x=1,...,n
5. Anti-Collusion Let vy, ..., Vn1 be selected choices for Players 1,..., n-1. Distribute
configurations (V,...,Vn-1,Vnx), for X=1,...,n where vnx are choices for
Player n, evenly over the sequences.
Figure 14. Summary of the 5 conditions that help assure random selection by n players.

11. Figure 14 lists a summary of the 5 conditions presented in this subsection. Adherence to these
conditions helps assure overall random selection.

12. The first three conditions make sure the choices available to players combine into
configurations that are evenly distributed over the set of possible selections. Condition 5 assures
the selections cannot be biased by collusion. Together, Conditions 1, 2, 3, and 5 (not including 4)
are generally applicable and are not specific to the selection of sequences. For example, a function
satisfying Conditions 1, 2, 3 and 5 can be used to enable n players to select a random integer
between 0 and (n!-1).

13. Condition 4, however, is specific to the semantics of selecting sequences. The relationship
between the position of players occurring within a selected sequence and the choices made by
players to select the sequence must not be related.

14. A function satisfying the five conditions summarized in Figure 14 is termed a “RandomOrder
function,” the details of which are the presented in the next section.

4. Class of RandomOrder Functions

This section begins (Section 4.1) by constructing a function that adheres to the 5 conditions
presented in the previous section. In Section 4.2, the class of RandomOrder functions is introduced.
This section ends with a proof that the probability of a RandomOrder function selecting any
particular permutation is not zero and is the same for all permutations. Additional discussion about
collusion is also provided.

4.1. Construction of a Function That Satisfies the 5 Conditions

1. In this subsection, a function is constructed in three parts that adheres to the 5 conditions
presented in the previous section. First, an algorithm is introduced that generates all possible
configurations and assigns them to sequences such that Conditions 1, 2, and 3 are satisfied. The
algorithm is then modified to also satisfy Condition 4. Finally, the algorithm is modified again to
satisfy all 5 conditions.

2. Figure 15 lists an algorithm named BasicAssign() that given n players, with each player having
n! choices, produces a 2-dimensional array (or table) in which all possible combinations of token
choices are assigned to sequences with an even distribution. The 2-dimensional array is named
assigns, and it has n! columns, one for each sequence, and (k"/n!) rows. A cell, assigns[row,col]
contains a configuration.
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3. The primary construction of BasicAssign() consists of n nested counting loops (lines 2 through
6). Each loop cycles through a player’s token choices. By nesting these loops, each possible
combination of choices is enumerated, one at a time, and processed in lines 7 through 10.

Method:  BasicAssign()

Input: (1) nplayers, n > 2; (2) each player has k=n! choices; (3) player choices are enumerated
as tokens Vy for player p’s choice of token X, for 1 <x <n!; and, (4) an array of the
permutations of players named sequences having one permutation per array position.

Output: a table (2-dimensional array) named assigns having n! columns, one for each
sequence, and (K"/n!) rows. A cell, assigns[row, col], contains a configuration
assigned to the sequence associated with col.

I.leti=1,j=0
2. for p,=1ton! do:
3. ..
4. for p;=1ton! do:
5. for p,=1ton! do:
6. for p, =1 ton! do:

7. Configi = (Vpl, Vpo, ..., Vpn)
8. assigns[j/n!, jmod n!]= config;  // uses only integer part of j/n
9.i=i+1
10. j=j+1

Figure 15. BasicAssign() Algorithm. This algorithm assigns configurations to sequences for n players,
with each player having n! choices using n nested counting loops to generate each possible
combination.

4. Line 7 temporarily stores the combination generated within an iteration of the loops as the i-th
configuration. The i-th configuration is then stored in assigns at row int((i-1)/n!), where int()
refers to the integer part of the division, and at column (i-1) mod n!. See line 8 in which j is i-1.
The first n! configurations are assigned to column [0], the first sequence. The second batch of
configurations, for i=(n!+1),..., 2en! are stored in column [1], the second sequence. These batch
assignments continue through the sequences. The configurations generated for i=(n!-1)en!+1,...,
n!* are stored in column [n!-1], the last sequence. Afterwards, batch assignments begin again with
column [0] and continue cycling through the sequences in this manner until i=(n!)".

Example. Anexample of assignments made by BasicAssign() is shown in Figure 9 for n=3 players,
where pl (line 6 in Figure 15) is player a, p2 (line 5 in Figure 15) is player b, and p3 (line 4 in
Figure 15) is player c. Only those three loops are used. Figure 9 lists the contents of the resulting
assigns array. There are 6 columns indexed [0] to [5], one for each sequence. There are 36 rows.
Each cell shows the assigned configuration along with the order (i) in which the configuration was
assigned (see line 8 in Figure 15). assigns[1,0] has cibia; and was entered in the array first;
assigns[1,1] has bycia; and was entered 7™; and, assigns[36,5] has ashsCs and was entered last.

Lemma C. Executing the BasicAssign() algorithm with n players, where each player has n! token

choices, produces a table of configurations assigned to sequences that satisfies Conditions 1, 2 and
3.
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Proof sketch.

Because the number of choices was selected to be n!, there are sufficient number of tokens and
configurations to be evenly distributed; see Lemma B. All possible combinations of choices are
generated by the nested loops, totaling (n!)" configurations. Batches of sequentially generated
unique configurations are assigned to sequences, where the size of each batch is n!. Because 0 =
()" mod n!, there is an even distribution of batches to sequences.

6
5
o 4
g ——P1
(o]
=3
2
(a)
1
0 36 72 108 144 180 216
Configuration
6 -
5 1
c 4
< ——P2
=3
2
1
0 36 72 108 144 180 216
Configuration
c
£ ——P3
(o]
'_
(c)
0 36 72 108 144 180 216
Configuration

Figure 16. The frequencies at which BasicAssigns() in Figure 15 cycles through tokens for Player P1
(a), Player P2 (b) and Player P3 (c) while enumerating all possible combinations (configurations).
These frequencies are 1 token for each configuration for Player P1, 1 token for every 6 configurations
for Player P2, and 1 token for every 36 configurations for Player P3.
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5. The nested loops in BasicAssign() provide regularity in the frequency at which a player’s tokens
are cycled. The resulting pattern appears in the configuration assignments, thereby thwarting the
“randomness” of the assignments of tokens to token positions. Because BasicAssign() assigns
batches of configurations to the same sequence, where each batch contains n! configurations,
players having tokens cycled at a frequency congruent to 1 token for every n! configurations (e.g.,
Player 2) will not have tokens evenly distributed over token positions within sequences.

Example. Figure 16 shows the frequencies at which BasicAssign() cycles through player tokens in
generating the table in Figure 9. Player P2 (b) has a frequency of 1 token for every 6 (which is n!)
configurations. As a result, each batch of configurations has the same token for Player P2 (b) and
these are configurations are all assigned to the same sequence. Figure 10 reports the frequencies of
tokens in sequences and shows Player P2 (b) failing to have its tokens evenly distributed over token
positions. As discussed in Section 3.2, the table in Figure 9 therefore fails to satisfy Condition 4.

6. The ShiftGroups() algorithm, listed in Figure 17, corrects the improper distribution of tokens
resulting from BasicAssign(). This is done by shifting batches of configurations so they are
reassigned to different sequences. In BasicAssign(), there will exist a player for which a specific
token appears exclusively with a specific sequence, for all tokens and sequences. These tokens
need to be redistributed across the sequences. ShiftGroups() accomplishes this by shifting batches
of configurations (of size n!) to other sequences, in a horizontal rotary pattern. so that a batch
originally assigned to the sequence having column [X] will be reassigned to all other sequences for
x=0,...,(n!-1).

Example. An example of assignments made by BasicAssign(), listed in Figure 15, is shown in
Figure 9 for n=3 players, a, b, and c. Figure 9 lists the contents of the resulting assigns array.
There are 6 columns indexed [0] to [5], one for each sequence, and 36 rows. As noted in Section
3.2, the tokens for player b are not evenly distributed in token positions. Summary counts are
available in Figure 10. Figure 11 then shows the contents of the assigns array after ShiftGroups(),
listed in Figure 17, executes. Batches of configurations are reassigned to sequences. As
summarized in Figure 12, the tokens are now even distributed across token positions, thereby
satisfying Condition 4.

Method:  ShiftGroups()

Input: 2-dimensional array assigns resulting from BasicAssign() algorithm in Figure 15 for n
players, having n! columns, one for each sequence, and (n!)™™ /n! rows.

Output: modified assigns table such that batches of configurations are reassigned (“shifted”)
to different sequences in order to evenly distribute token positions (Condition 4).

1. let shift=1
2. letrow=n!
3. for x =1 to shift do: // increasing number of shifts

4. let temp = assigns[row+1, n!-1] ... assigns[row+n!, n!-1]  // save batch of configurations
5. for col = n!-2 down to 0 do:
6. move assigns[row+1, col] ... assigns[row-+n!, col] // shift right one column
to assigns[row+1, col+1] ... assigns[row+n!, col+1]
7. move temp to assigns[row+1, 0] ... assigns[row+n!, 0]  // store in first column
8. shift = shift+1
9. row = row+n!
10. if row < ()™ then go to step 3

Figure 17. ShiftGroups() Algorithm redistributes tokens in the assigns table from BasicAssign() in
Figure 15, by reassigning batches of configurations to other sequences in a rotary horizontal shift.
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Example. Figure 9 shows the contents of assigns before ShiftGroups(), listed in Figure 17,
executes and Figure 11 shows the contents of assigns afterwards. The rightmost column in the
before listing (Figure 9) has been highlighted to show how batches of configurations are shifted in
ShiftGroups(). For illustration, rows are grouped and numbered I through VI where each group has
n! rows. Group I has no shifting performed. Group II has a single right shift performed. The effect
of shifting a group involves moving the batch from column [0] to column [1], the batch from
column [1] to column [2], and so on. The batch in the last column [5] shifts to the first column [0].
As the groups advance, more iterations of shifting is done. Group III has two right shifts
performed; Group IV has three, and so on. Group VI, the final group, has five shifts.

Lemma D. Executing the BasicAssign() algorithm with n players, where each player has n! token
choices, and then executing ShiftGroups() produces a table of configurations assigned to sequences
that satisfies Conditions 1, 2, 3 and 4.

Proof sketch:

BasicAssign() satisfies Conditions 1, 2 and 3; see Lemma C. The shifting operations performed by
ShiftGroups() does not alter the number of configurations, choices or tokens, or the fact that all
configurations are distributed evenly across the sequences. For each player having its tokens
specific to a sequence, the effect of redistributing n! batches of these configurations to every other
sequence assures the tokens are no longer specific to a particular sequence and that the tokens are
evenly distributed across the sequences. Further, the sequences themselves, by virtue of being
permutations, distribute the assigned tokens across each token position.

7. The nested loops in BasicAssign() provide another regularity in the frequency at which a player’s
tokens are cycled that is problematical. Because BasicAssign() assigns batches of configurations to
the same sequence, where each batch contains n! configurations, a player having tokens cycled at a
frequency of 1 token for each configuration (e.g., Player 1) is vulnerable to collusion by n-1 players,
because all of its tokens appear in the configurations of the batch and all the configurations in the
batch are assigned to the same sequence. This makes the player’s choice unnecessary to
determining the outcome.

Method:  ShiftRows()

Input: 2-dimensional array assigns resulting from ShiftGroups() algorithm in Figure 17 for n
players, having n! columns, one for each sequence, and (n!)"/n! rows.

Output: modified assigns table such that configurations are reassigned (“shifted”) to different
sequences on the same row in order to combat collusion (Condition 5).

1. let shift=10
2. for row = 1 to (n!)™" do:
3. for x =1 to shift mod n! do:
4. let temp = assigns[row, n!-1]
5. for col = n!-2 down to 0 do:
6. move assigns[row, col] to assigns[row, col+1]
7. move temp to assigns[row, 0]
8. shift = shift+1

Figure 18. ShiftRows() Algorithm redistributes configurations that were originally assigned as a
batch of size n!. to one sequence so that the configurations are reassigned across all sequences.
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8. The ShiftRows() algorithm, listed in Figure 18, provides anti-collusion protection by
redistributing configurations within batches (of size n!) across sequences. Configurations within
the batch are redistributed so that one configuration in the batch is assigned to each sequence.
Without this redistribution, each batch is of the form (vix, Vo, ..., Vn) Where Vy,...,Vn are the same
exact tokens in each configuration in the batch, and v for x=1,...,n! are the tokens of Player 1. If
Players 2 through n all collude and select tokens Vvo,...,Vs, then no matter the token selected by
Player 1, the same sequence results. By redistributing the configurations within the batch, such
collusion is thwarted.

Example. Figure 11 shows the contents of the assigns array after ShiftGroups(), listed in Figure
17, executes for n=3 players, with each player having 6 choices. Notice the topmost batch of n!
configurations assigned to sequence [5] abc. Each of these configurations are of the form (aj, bs, C1)
for j=1,...,6. If Player b selects bs and Player a selects €1, the outcome is abc no matter the selection
of Player a. Figure 13 shows the contents of the assigns array after ShiftRows(), listed in Figure
18, executes. The configurations that had previously been within the batch are now distributed
across the sequences. Now, no two players can dictate the outcome. As long as any one player
makes a random local choice, the outcome will be randomly selected.

Lemma E. Executing the BasicAssign() algorithm with n players, where each player has n! token
choices, and then executing ShiftGroups() followed by ShiftRows() produces a table of
configurations assigned to sequences that satisfies Conditions 1, 2, 3, 4, and 5.

Proof sketch.

BasicAssign() and ShiftGroups() satisfies Conditions 1, 2, 3 and 4; see Lemma D. The shifting of
configuration batches across sequences performed in ShiftRows() does not alter the number of
configurations, tokens, or choices, or the fact that all configurations are evenly distributed across all
sequences. Token position assignments are preserved because specific tokens are further
distributed evenly from within a batch to a single sequence to one configuration for each sequence.
Therefore, Condition 4 is satisfied.

Finally, there no longer exists any set of configurations of size n! assigned to the same sequence in
which all but one token remains the same. Further, for every subset of tokens, all combinations of
the remaining tokens are distributed across the sequences. This is guaranteed by the frequencies of
the cycles in the original assignments and the subsequent shifting.

9. Figure 19 provides the complete function that sequentially executes BasicAssign(),
ShiftGroups(), and then ShiftRows(). The function is called Table-f. While the construction of
Table-f in this subsection provided insight into how to satisfy the conditions, Table-f itself is not
practical for real-world use. Listing all possible input-outcome pairs is prohibitive, even for
relatively small values of n. Figure 20 shows how the size of the table (which has k" cells) grows as
n increases when k=n!. More practical functions are needed, so after the introduction of the class of
RandomOrder functions and some related theoretical discussion in the next subsections, attention
returns to examining RandomXOR (bitwise exclusive-OR from Section 2.3) and ModSum
(modulus of the sum from Section 2.4) as possible real-world solutions.

25



Method: Table-f

Input: (1) nplayers, n > 2; (2) each player has k=n! choices; (3) player choices are enumerated
as tokens Vy for player p’s choice of token X, for 1 < x <n!; and, (4) an array of the
permutations of players named Sequences having one permutation per array position.

Output: a table (2-dimensional array) named assigns having n! columns, one for each
sequence, and (K"/n!) rows. A cell, assigns[row, col], contains a configuration
assigned to the sequence associated with col. The assignments of configurations to
sequences in assigns satisfies Conditions 1, 2, 3, 4 and 5.

1. BasicAssigns() // see Figure 15
2. ShiftGroups() // see Figure 17
3. ShiftRows() // see Figure 18

Figure 19. Table-f, a RandomOrder function.

n K k" n*k n! k"modn! k" modn*k
2 2 4 4 2 0 0
3 6 216 18 6 0 0
4 24 331776 96 24 0 0
5 120 24883200000 600 120 0 0
6 720 139314069504000000 4320 720 0 0
7 5040 82606411253903500000000000 35280 5040 0 0

Figure 20. Given n players, each player having n! choices, the number of configurations (k") grows
quickly ever for small values of n.

4.2. RandomOrder Functions

1. This subsection introduces the class of RandomOrder functions. Let TOKS be the set of player
choices, CONFIGS be the set of all possible configurations realized from the combinations of those
choices, and SEQS be the set of the permutations of the players. Let f be a function from TOKS to

SEQS (f:TOKS—SEQS) satisfying Conditions 1, 2, 3, 4 and 5. Figure 21 denotes these sets and the
mapping of f.

Figure 21. A RandomOrder function (f) maps player choices (TOKS) to sequences (SEQS). f can also
be the composition of h, which maps configurations to sequences (SEQS), and g, which maps player
choices (TOKS) to configurations (CONFIGS).

2. For n players, a RandomOvrder function, f, is an n-ary function of the form f(vi,...,vq) =r, where
f satisfies Conditions 1, 2, 3, 4 and 5, v1e TOKS is a token chosen by Player 1, ..., and v, TOKS is a
token chosen by Player n, and re SEQS is a permutation of the n players. The inverse of f, written f,
is defined such that f':SEQS—TOKS and vi,...,Voe f'(f(v1,...,vn)) for vieTOKS, ..., voe TOKS.
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Example. Figure 13 lists in tabular form a RandomOrder function, f, for 3 players, a, b, and c,
where each player has 6 choices, ai,...,as,01,...,06,C1,...,C6. It shows that f(a;, bs, cs)=cba; f(az, bs,
C)=cab; and, f(as, b1, c1)=cba. Figure 19 defines Table-f, which is a RandomOrder function that
generates the table in Figure 13.

3. Players select tokens from subsets of TOKS. Given n players, each player P; selects tokens from
the set TOKS;, 1< i <n and TOKS — LnJTOKSj .

=1

4. Let g be an n-ary function on TOKS; x ... x TOKS, (g:TOKS —CONFIGS) such that g maps all
legal combinations of the elements of TOKS to CONFIGS. The inverse of g, written g”', is defined
such that g'l:CONFIGS—>TOKS and vi,...,Vhe g'l(g(vl,. ..,Vn)) for vieTOKS, ..., voe TOKS.

5. Let h be a function, h:CONFIGS—SEQS, satisfying Conditions 4 and 5. The function h is
responsible for assigning configurations to sequences. The inverse of h, written h™', is defined such
that h™:SEQS—CONFIGS and ce h’'(h(c)) for ce CONFIGS.

6. A RandomOrder function, f, is the composition of h and g defined by f(vi,...,vn) = h(g(V1,...,Vn)).
The mappings of these functions are shown in Figure 21. It is sometimes convenient to think of the
properties of f by considering those of g and h separately.

4.3. Theoretical Test of Randomness

1. The primary goal of a RandomOrder function is to assist n players in selecting permutations of
themselves without bias. It is important to therefore predict how well a RandomOrder function will
behave. Theorem F claims that a RandomOrder function can select a permutation with probability
I/n!.

Theorem F. Let f be a RandomOrder function for n players, each player having n! local choices
that combine to jointly select one of n! permutations of themselves. Let v; be the choice made by
Player 1, ..., Vs be the choice made by Player n. Assuming at least one player, Player i, selects V;
randomly, 1 < i < n, the probability of a permutation, r; = f(vi,...,Vn), being selected is 1/n! for
i=1,...,nl.

Proof Sketch.
This is a proof by contradiction. There are several cases to consider. The definitions found in
Section 4.2 and the conditions described in Section 3.2 are used throughout this proof.

Assume the probability of r; = f(v,...,vn) being selected is not 1/n!.

Case 1. The number of sequences is not n!.
By definition, SEQS is the set of all permutations of the players. For n players, |SEQS| = n!.
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Case 2. Either: (a) not all combinations of tokens appear in CONFIGS; or, (b) not all combinations of
tokens map from CONFIGS to SEQS.

Let CONFIGS' be the union of all h'(r;) for all r;eSEQS. The idea is to determine the size of
CONFIGS' to see if any combinations are missing. Because f is a RandomOrder function, f satisfies
Condition 4: the number of occurrences of each token tj appearing in each position py is count(t;, py)
=k"/(ken), for j=1,....k and x=1,...n. Itis given that each player has k=n! tokens. So, |CONFIGS’|
= >3 count(tj, px) = k"/(ken) = (k"/(ken)) o (ken) = k™. But k" is also the total number of possible
combinations of token choices, so all combinations are present and mapped.

Case 3. Not all elements of CONFIGS are evenly distributed over the elements of SEQS.

If so, [h'(r;)| # |'(r;)| for some r;, r;eSEQS. Let x; = |n''(ry)| and x, = |h™'(r;). The idea is to
determine whether x;=x,. Let h(cy)=ri, where ¢, CONFIGS and Cn=(V1,...,Vn1,Vny) for vie TOKS,,
... ,Vn1€ TOKSy1, Vaye TOKS,. Because f satisfies Condition 5, there exists n! versions of Cn, one for
each y=1,...,n!, and one of each of these is mapped to a sequence. One version is mapped to rj and
another version to rj. This condition holds for each player’s contribution to each configuration. So,
X1 =X = (k”)/n'

Case 4. There are not enough tokens for player choices to combine to evenly distribute over the
elements of CONFIGS.

It is given that each player has n! choices. And f, as a RandomOrder function, satisfies Condition 3.
So, Lemma B assures there are sufficient player choices.

Case 5. Not all combinations of tokens map from TOKS to CONFIGS.

It is given that each player has n! choices. The number of combinations of size n
(“ n-combinations”) of these choices is (n!)". The idea is to compare this to the size of CONFIGS. In
the discussion of Case 2 above, it was shown that [CONFIGS| = (n!)", thereby accounting for all
possible n-combination of tokens.

Case 6. Not all combinations of TOKS are evenly distributed over the elements of CONFIGS.
From the definition of g, and the discussion in Case 5, all n-combinations of tokens appear in
CONFIGS and |CONFIGS| = k". Therefore, for every vi,...,Vn, where VieTOKS;,...,vae TOKS;,
g(V1,...,vn)eCONFIGS.  And conversely, because [TOKS| < |CONFIGS|, there cannot exist
(V1,...,Vn) € CONFIGS such that |g™(g(V1,...,Vn))| > 1 else g would not be a function.

2. Another way to test a RandomOrder function is through empirical experimentation. Results of
specific statistical tests are reported in Appendix B.

4.4. The RandomSelect Protocol

1. RandomOrder functions can be used within the RandomSelect protocol listed in Figure 22 to
allow n players to make local choices that combine to make a joint random selection with uniform
distribution of outcomes to choices. Collisions are avoided, and the protocol performs properly if
at least one player makes local decisions randomly.
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Preliminary round:
Each player receives a table of assignments of
sequences, a list of tokens from which to make
selections, and a RandomOrder function.
Round of play:
Each player selects a token, broadcasts the chosen
token, and records all tokens broadcast by all players.
Aftermath:
Each player applies the RandomOrder function to the
broadcast tokens to determine the joint selection.
Figure 22. RandomSelect Protocol

2. In a preliminary round, each player receives an enumeration of the permutations, a set of tokens
from which players make selections, and a RandomOrder function. Once the preliminary round
concludes, there can be an indefinite number of plays with no further modification of preliminary
materials. The protocol has one round of play. Each player selects one of its tokens and broadcasts
it. The final outcome is determined by applying the RandomOrder function to the tokens broadcast
by each player.

4.5. Collusion by Players

1. If all players trust one another, then there is no reason to use RandomSelect. One player can
simply use a random number generator on her local machine and broadcast the results. So,
RandomSelect is used in situations of distrust. In this section, the effect of different forms and
amounts of distrust on RandomSelect are examined.

2. As was discussed in Section 3.2 regarding Condition 5, Anti-Collusion, and proven in Theorem
F, RandomSelect can compute properly if at least one player makes a local choice randomly. Forn
players therefore, RandomSelect can compute properly even if n-1 playes collude. But if all n
players collude, there is no randomness at all.

3. Attention must be paid to “inadvertent collusion.” This occurs when players are not necessarily
joining together a priori to agree on choices, but when players are not making local choices
randomly. In inadvertent collusion, players exhibit bias in making their local choices. For example,
suppose for convenience, each player independently adopts a strategy of selecting the first token on
the first round of play, the second token on the second round of play, and so on. The outcomes can
then be predicted! While the RandomSelect protocol protects against the traditional multiparty
view of collusion (a malicious attack), care must be taken that at least one non-colluding player
does not engage in inadvertent collusion.

5. Results

Sections 2.3 and 2.4 provided informal discussions of two operations to consider as RandomOrder
functions. These were RandomXOR, which used bitwise exclusive-or, and ModSum, which used
the modulus of the sum. These functions are now re-examined in this section to determine whether
they qualify as RandomOrder functions.
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5.1. RandomXOR Revisited

1. Consider using RandomXOR (first introduced in Section 2.3) as a RandomOrder function in the
RandomSelect protocol. Given n players, each player P;, for i=1,...,n, selects a number Vi (as a
token), where 1 <v; < n!, and broadcasts it. The outcome is determined by each player performing
bitwise exclusive-or on the broadcast values of all players.

2. When n > 2, as was demonstrated in Section 2.3, not all combinations of tokens map to values in
the range 1,...,n!. Those that do not map are collisions. In RandomXOR, the total number of
combinations is determined by the number of significant bits required to represent (n!-1), assuming
the range of token values is 0,...,(n!-1) rather than 1,...,n!. The constraint 2" = n! is satisfied only
when n=2 (or m=1). There is no other integer value satisfying this constraint. As a result, when n
>2, RandomXOR fails Condition 4 (Token Position) and Condition 5 (Anti-Collusion).

Example. Figure 23(a) lists all non-collision combinations possible using RandomXOR for 3
players (a, b and c), with each player selecting a value between 1 and 6. Of the 216 possible
configurations, only 168 (or 78%) are not collisions. Figure 23(b) shows that tokens are not evenly
distributed over token positions.

5.2. ModSum Revisited

1. Theorem G claims that ModSum (first introduced in Section 2.4) is a RandomOrder function. As
such, ModSum can be used in RandomSelect as follows. Given n players, each player P; selects a
number V; (as a token), where 0 <v; < (n!-1), and broadcasts it. The outcome is determined by each
player computing (2v;) mod n! for i=1,...,n.

Theorem G. For n players, n>2, with each player P; selecting a token vi, where 0 <v; < (n!-1) and
i=1,...,n, ModSum(Vs,...Vyn) is a RandomOrder function.

Proof.
Condition 2 is trivially satisfied: k=k;=...=k=n!.

Condition 1. Letr=(ky ® ... # k) mod n! and show ris 0. Because k=k;=...=k,=n!, r=n!" mod n.
So, ris 0.

Condition 3. Let r =k" mod (nek) and show r is 0. Because kis n!, r=n!"mod (nen!). So, ris 0 for
n>2.

Conditions 4 and 5. Consider configurations of the form (vi,...,Vr1,Vnx) for x=0,...,(n!-1). Let D be
the constant vi+...+Vvn1. These configurations are mapped to sequences based on (D+x ) mod n! for
x=0,...,(n!-1). Therefore, these configurations map one-to-one to sequences.

Example. Figure 24(a) lists all combinations using ModSum for 3 players (a, b and ¢), with each
player selecting a value between 1 and 6. There are no collisions. Figure 23(b) shows that tokens
are evenly distributed across token positions.
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2. The outcomes of the RandomOrder function Table-f can be equivalently expressed as a variant of
ModSum. Given n players, n >2, with each player P; selecting a token Vi, where 0 <v; < (n!-1) and
i=1,...,n, and the permutations of the players enumerated in an array sequences[pos] for
p0s=0,...,(n!-1), then the outcomes from Table-f can be expressed as sequences[pos] such that 0
= ((2 vi) — (n+pos)) mod n!.

Example. Figure 13 contains the assignments of Table-f for 3 players, a, b, and ¢, with each player
having 6 choices. Let sequences|0],...,sequences[5] be the enumeration of the permutations of
the players, as they appear as column headings in Figure 13. The assignments of configurations to
sequences shown in Figure 13 can be derived by the following algorithm:

n
1. let sum = ZVi
i=1

. if ((sum-3) mod 6) is 0 then return sequences [0].

. else if ((sum-4) mod 6) is 0 then return sequences [1]
. else if ((sum-5) mod 6) is 0 then return sequences [2].
. else if ((sum-6) mod 6) is 0 then return sequences [3].
. else if ((sum-7) mod 6) is 0 then return sequences [4].
. else if ((sum-8) mod 6) is 0 then return sequences [5].

NN AW

6. Future Work

1. Randomness has proven itself useful in a wide variety of applications, algorithms and protocols.
This writing ends with a historical survey of randomness in computing because the work presented
herein introduced randomness into secure multiparty computation in a new way. Perhaps this will
be another venue in which randomness will prove itself useful.

2. The construction of machines that can generate a sequence of random values dates back as early
as 1939 [13]. Shortly after computers were introduced, methods were sought for efficiently
providing random numbers to computer programs [14]. By 1969, random numbers allowed
computers to simulate natural phenomena, provide random samples, solve complicated numerical
problems, and develop optimal decision-making strategies.

3. Among the first pseudo-random number generators for computers was the linear congruential
algorithm [14], which has the form of ModSum. As random number generators moved beyond
being the modulus of a sum, future work on RandomOrder functions promises to reveal other kinds
of formulations.

4. In the late 1980’s studies on the paradigm of “randomized algorithms” ignited. These are
algorithms in which random choices are made during the execution of the algorithm. Significant
benefits emerged. These can be grossly described as providing faster and/or simpler algorithms
than their deterministic counterparts [15].

5. More recently, “randomized protocols” have been used for many tasks, including contract

signing [16] and asynchronous consensus [17]. In randomized protocols one or more players
involved in the protocol make random choices.
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6. The work presented in this paper extends the notion of randomized protocols in such a way that
a subset of 2 or more players make local decisions that combine to jointly make a random choice of
a permutation of themselves in the absence of a third party and in the face of colluding players.
Future work may be more generalized to allow a set of players to jointly make random choices
based on some probability distribution. This work terms these protocols randomized multiparty
computation. An aim is for randomized multiparty computations to provide to multiparty
computation the kinds of complexity efficiencies, simplicities, and insights that randomized
algorithms afforded deterministic algorithms.

cha[1] bca[2] cab [3] acb [4] bac [5] abc [6]
1:clblal 2:blcla2 3:cla3bl 4:a4clbl 5:bla5cl 6:a6 bl cl
8:cl b2 a2 7:b2clal 13:clalb3 18:a6clb3 12:b2a6cl 1l:a5b2cl
15:clb3a3 30:b5clabé 24:clabb4 19:alclb4 25:b5alcl 16:a4b3cl
22:clbda4 35:b6clab 34:cladb6 33:a3clb6 32:b6a2cl 21:a3bdcl
29:clb5a5 37:blc2al 45:c2a3b2 46:a4c2b2 42:blab6c2 26:a2b5cl
36:clb6ab6 44:b2c2a2 50:c2a2b3 53:a5c2b3 47:b2a5c2 3l:alb6cl
38:c2bla2 b51:b3c2a3 59:c2abb4 56:a2c2bd4 52:b3adc2 41:a5blc2
43:c2b2al 58:b4c2ad4 64:c2adb5 63:a3c2b5 57:bdal3c2 48:a6b2c2
66:c2b5a6 65:b5c2a5 73:c3albl 78:a6c3bl 62:b5a2c2 61:alb5c2
71:c2b6a5 72:b6c2ab6 80:c3a2b2 83:a5c3b2 67:b6alc2 68:a2b6c2
75:c3bla3 81:b2c3a3 87:c3a3b3 88:a4c3b3 82:b2adc3 76:a4blc3
85:c3b3al 86:b3c3a2 94:c3adb4d 93:a3c3b4 89:b3a5c3 90:a6b3c3

(a) 96:c3b4a6 95:b4c3a5 101:c3a5hb5 98:a2c3b5 92:b4a2c3 91:albdc3
106: c3b6 a4 100:b5c3 a4 108:c3a6b6 103:alc3 b6 99:b5a3c3 105:a3b6c3
112:c4bl a4 118:b2cd4 a4 1l4:cdabbl 109:alcdbl 117:b2a3c4 111:a3blc4d
126:c4 b3 a6 125:b3cd4a5 119:c4a5b2 116:a2c4b2 122:b3a2c4 121:alb3ch
127:c4bd4al 128:b4cd4a2 124:c4a4b3 123:a3c4b3 131:bda5cd4 132:a6 b4 ch
141:c4 b6 a3 135:b5c4 a3 129:c4a3bd4 130:a4c4 b4 136:b5a4 c4 142: a4 b6 c4
149:c5bla5 150:blc5a6 134:c4a2b5 137:a5c4b5 145:blalcs 146:a2blch
156:c5b2a6 155:b2c5a5 139:c4alb6 144:a6c4b6 152:b2a2c5 151:alb2ch
169:c5b5al 160:b3c5a4 154:c5a4b2 153:a3c5b2 159:b3a3c5 174: a6 b5c5
176:c5b6 a2 165:b4c5a3 161:c5a5b3 158:a2c5b3 166: b4 a4 c5 179: a5 b6 c5
186:c6bl a6 170:b5c5a2 164:c5a2b4 167:a5c5b4 173:b5a5c5 181:alblc6
191:c6b2a5 175:b6c5al 171:c5a3b5 172:a4c5b5 180: b6 a6 c5 188:a2b2c6
196:c6 b3 a4 185:blc6a5 184:c6a4bl 183:a3c6bl 182:bla2c6 195:a3 b3 c6
201:c6b4 a3 192:b2c6 a6 198:c6 abb3 193:alc6hb3 187:b2alc6 202: a4 b4 c6
206:c6b5a2 205:b5c6al 199:c6alb4 204:a6c6bd 210: b5a6c6 209: a5 b5 c6
211:c6b6al 212:b6c6a2 213:c6a3b6 214:a4c6hb6 215:b6a5c6 216: a6 b6 c6

Player a Player b Player
C
Token | Pos | Pos | Pos Token | Pos | Pos | Pos Token | Pos | Pos | Pos
1 2 3 1 2 3 1 2 3
(b) a1 10 |8 10 b1 8 12 |8 C1 10 |8 10
a 8 10 |10 b2 12 |8 8 C2 8 10 |10
as 10 [10 |8 bs 8 8 12 C3 10 |10 |8
a 10 (10 |8 b4 8 8 12 C4 10 |10 |8
as 8 10 |10 bs 12 |8 8 Cs 8 10 |10
as 10 |8 10 bs 8 12 |8 Co 10 |8 10

Figure 23. (a) Assignments by RandomXOR for 3 players, a, b, and ¢, with each player having 6
choices. Only 168 of the 216 possible combinations are used. The others are collisions. (b) counts of
the number of times the tokens of each player appears in each sequence position.
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cbha [0] bca[1] cab [2] acb [3] bac [4] abc [5]
4:clblad 5:blclab 6:cla6 bl l:alclbl 2:bla2cl 3:a3blcl
9:clb2a3 10:b2clad4 11:cla5hb2 12:a6clb2 7:b2alcl 8:a2b2cl
14:clb3a2 15:b3cla3 16:clad4db3 17:a5clb3 18:b3a6cl 13:alb3cl
19:clbd4al 20:b4cla2 21:cla3bd4 22:ad4clbd4 23:bda5cl 24:a6bdcl
30:clb5a6 25:b5clal 26:cla2b5 27:a3clb5 28:b5ad4cl 29:a5b5cl
35:clb6a5 36:b6cla6é 3l:iclalb6 32:a2clb6 33:b6a3cl 34:a4b6cl
39:c2bla3 40:blc2ad4 41:c2abbl 42:a6c2bl 37:blalc2 38:a2blc2
44:c2b2a2 45:b2c2a3 46:c2adb2 47:a5c2b2 48:b2a6c2 43:alb2c2
49:c2b3al 50:b3c2a2 51:c2a3b3 52:a4c2b3 53:b3a5c2 54:a6b3c2
60:c2b4a6 55:b4c2al 56:c2a2bd4 57:a3c2b4 58:bdadc2 59:a5bsc2
65:c2b5a5 66:b5c2a6 61:c2alb5 62:a2c2b5 63:b5a3¢c2 64:adb5c2
70:c2b6a4 71:b6c2a5 72:c2abb6 67:alc2b6 68:b6a2c2 69:a3b6c2

(a) 74:c3bla2 75:blc3a3 76:c3ad4bl 77:a5c3bl 78:bla6c3 73:alblc3
79:c3b2al 80:b2c3a2 81l:c3a3b2 82:a4c3b2 83:b2a5c3 84:a6b2c3
90:c3b3a6 85:b3c3al 86:c3a2b3 87:a3c3b3 88:b3a4c3 89:a5hb3c3
95:c3b4a5 96:b4c3a6 91:c3albd 92:a2c3b4 93:b4a3c3 94:adb4c3
100: c3b5a4 101:b5c3a5 102:c3a6b5 97:alc3b5 98:b5a2c3 99: a3 b5c3
105: c3 b6 a3 106: b6 c3 a4 107:c3a5b6 108:a6c3 b6 103: b6 alc3 104: a2 b6 c3
109:c4blal 110:blc4a2 111:c4a3bl 112:a4c4bl 113:bla5c4 114:a6blca
120: c4 b2 a6 115:b2c4al 116:c4a2b2 117:a3c4b2 118:b2ad4c4 119:a5b2ca
125:c4 b3 a5 126:b3c4a6 121:c4alb3 122:a2c4b3 123:b3a3c4 124:a4 b3 ca
130:c4 b4 a4 131:bdcdab5 132:c4abbd 127:alcdbd 128:b4a2c4 129:a3 b4 ca
135:c4b5a3 136:b5c4ad4 137:c4a5b5 138:a6c4 b5 133:b5alcd 134:a2b5c4
140: c4 b6 a2 141:b6cd a3 142:c4ad b6 143:a5c4 b6 144:b6ab6cd 139:al bb6ca
150: c5bl a6 145:blc5al 146:c5a2bl 147:a3c5bl 148:bla4c5 149:a5blch
155:c5hb2 a5 156:b2c5a6 151:c5alb2 152:a2c5b2 153:b2a3c5 154: a4 b2 c5
160: c5b3 a4 161:b3c5a5 162:c5a6 b3 157:alc5b3 158:b3a2c5 159: a3 b3 c5
165:c5b4 a3 166: b4 c5a4 167:c5a5b4 168:a6c5bd 163:bdalc5 164: a2 b4 cs
170:c5b5a2 171:b5c5a3 172:c5a4 b5 173:a5c5b5 174:b5a6c5 169: al b5 c5
175:c5b6al 176:b6c5a2 177:c5a3b6 178:a4c5b6 179: b6 a5c5 180: a6 b6 c5
185:c6blab 186:blc6a6 181:c6albl 182:a2c6bl 183:bla3c6 184: a4 blc6
190: c6 b2 a4 191:b2c6a5 192:c6abb2 187:alc6b2 188:b2a2c6 189: a3 b2 c6
195:c6 b3 a3 196: b3 c6 a4 197:c6a5b3 198:a6c6 b3 193: b3 alc6 194: a2 b3 c6
200: c6 b4 a2 201: b4 c6 a3 202:c6 a4 b4 203:a5c6 b4 204: b4 a6 c6 199: al b4 c6
205:c6b5al 206:b5c6a2 207:c6a3 b5 208:a4 c6 b5 209:b5a5c6 210: a6 b5 c6
216:c6b6ab 211:b6c6al 212:c6a2b6 213:a3c6b6 214:b6 a4 c6 215: a5 b6 c6

Player a Player b Player
C
Token | Pos | Pos | Pos Token | Pos | Pos | Pos Token | Pos | Pos | Pos
1 2 3 1 2 3 1 2 3
ai 12 12 12 b1 12 12 12 C1 12 12 12
b a2 12 12 12 17) 12 12 12 C2 12 12 12
( ) as 12 12 12 bs 12 12 12 C3 12 12 12
a 12 12 12 bs 12 12 12 C4 12 12 12
as 12 12 12 bs 12 12 12 Cs 12 12 12
as 12 12 12 bs 12 12 12 Cs 12 12 12

Figure 24. (a) Assignments by ModSum for 3 players, a, b, and c, with each player having 6 choices.
(b) counts of the number of times the tokens of each player appears in each sequence position.
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Appendix A. Example of Trivial Secret Sharing

A motivating example is provided in this section. Trivial secret sharing, a simple multiparty
computation, is compared to a randomized version in which players make joint random choices.
The purpose is to see what kind of efficiency tradeoffs might be afforded by such randomization.
Further motivation stems from using trivial secret sharing (or its randomized alternative) for
real-world bio-terrorism surveillance.

1. Consider a set of players and a reporting authority operating over secure channels. Each player
holds a private number. The players wish to compute the sum of their inputs in a manner that
would preserve the secrecy of their individual values while providing the sum to the reporting
authority. The players need to perform the computation even if some of the players collude
passively.

2. Trivial secret sharing offers a solution. Rounds are described in Figure W for n players. Each
player’s private number is represented as a set of n values (called “shares™) that sum to the player’s
original private number. Each pair of players exchanges shares. Then, each player adds the shares
it received with its remaining share and sends its total to the reporting authority, who adds the totals
it receives and announces the final sum. Communication is O(n?), characterized by having each
player sending shares to every other player. Proof of correctness and of privacy protection can be
found in [8].

3. The scenario described above has many real-world applications, including in bio-terrorism
surveillance. Several biological agents, such as anthrax, when inhaled have initial symptoms
resembling the flu [9, 10]. It is therefore expected that in the early days of an airborne release,
victims will believe they have the flu and will behave accordingly. Yet, the earlier authorities
realize a biological agent has been released, the more lives likely to be saved. Bio-terrorism
surveillance systems therefore seek to determine whether an unusual number of people are acting
ill by counting daily hospital visits, over-the-counter medication purchases, numbers of students
absent from schools, etc. [11]. The example of monitoring absenteeism at schools is further
modeled below, though the described approach is generally analogous to all these monitoring
efforts.

Round 1. | Each player generates a set of n random integers that sum to the player’s private value.
These values are called “shares.” Each player sends a distinct share to every other
player and keeps one share.

Round 2. | As a consequence of Round 1, each player received a share from every other player.
Each player now adds all the shares received to its remaining share and sends the total
to the reporting authority.

Round 3. | As aconsequence of Round 2, the reporting authority received a total from each player.
The reporting authority adds these totals and broadcasts the final sum.

Figure W. Rounds of trivial secret sharing in which n players, each having a private value, provide
the sum of the n privately held values to a reporting authority such that the private values are not
revealed.
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4. The local public health department, as a reporting authority, wants to know whether there are
unusual numbers of students absent from local area schools. Schools in the United States are
subject to the Family Educational Rights and Privacy Act (FERPA), and as such, may refuse to
provide the names of students who are absent because of privacy responsibilities expressed in
FERPA. Schools may also consider daily absenteeism counts confidential because of possible
political and funding consequences related to school absenteeism. Concerned schools will only
participate if both the privacy of the students (no student can be identified) and the confidentiality
of school absenteeism (the number of students absent at a particular school) are not revealed.

5. Figure X shows how this real-world problem can be solved with trivial secret sharing. Each of
the 6 schools produces a set of 6 random integers that sum to the school’s private number. In
Figure X(a), School; has the private value 125. It generates the shares {304, 45, -150, 10, -17, -67},
which sum to 125, and then distributes a distinct share to each of the other schools, keeping one
share (304) for itself. As a result of this distribution, each school receives a share from every other
school. In Figure X(b). School; receives shares 23, -134, 75, -45 and 631 from other schools. In the
final steps, each school adds the shares it received to its remaining share and then sends the subtotal
to Public Health. In Figure X(d), School; sends the subtotal 854, which is 23-134+75-45+631+304.
Public Health then adds the values it receives and broadcasts the final sum (417). Notice that 417 is
the sum of the original numbers of absentees from each school (417 = 125+12+34+132+39+75),
even though no private values were revealed.

school, -67 29" 50*}?‘3'1 school, 1 :SChOOH
Ee 30 Ee S
17 45
P— — =15 23
o |10 = 75 |-134 Ny
—* school (2T —t . 2
oy ° school ;‘. =g -_‘.
_‘ @/ school, yd Sy
M‘Wﬁ% < mw‘%wg@%, - school,
Public Health Public Health
school4 g school4 {
o 3. —Ta 2.
L) \/{@ school, L) \/{@ school,
(a) (b)
S;ﬁfme : 631 school, schools school,
] T S y
-124 NS -282
—= A6 134 —
‘l - 7 23 45 507 854 -
N [ e - schoo t
scho/ol > Li‘? = sch(@ ‘ 478 2
278 \\iag/ T7s <y ° [ 854+478-854+728-507-282=417 | ’
A\ g P e > fso s 728,/ tomamm \ g5
PublieEalth 5 67 162 Public Health
= ¥7-15 N =
school,! ‘ 341 23} school,| 37" ‘:
63 L=t z2—=24 school, Loy £—2%4 school
L) o > dEmg 513 - 4 S ’
(c) (d)

Figure X. Execution of trivial secret sharing by n=6 schools. In the first round (a), each school sends a
share every other school. So, each school receives a share from every other school (b). Communication
is O(n?) as shown in (c). In the final round (d), each school sends its total to public health where they
are added and the final sum broadcast.
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6. In terms of communication costs, Figure X(c) shows that each of the n=6 schools sent a share to
the other 5 schools, yielding 30 communications, which is ne(n-1) — O(n?). Additionally as shown
in Figure X(d), there were n communications, one from each of the 6 schools to the reporting
authority. The broadcast of the final sum required another N communications. In summary, overall
communication is ne(n-1)+n+n — O(n?).

7. Now consider the following alternative approach to trivial secret sharing. Players are arranged
sequentially in a “ring” and respond asynchronously around the ring to compute the sum. Figure
Y (a) provides an illustration. The ordering of the players around the ring is determined beforehand.
The reporting authority starts by providing a random number ry to the first player, who in turns adds
her private value and sends the sum to the second player, and so on, around the ring. The last player
sends his sum to the reporting authority, who subtracts the original random value r to get the actual
total.” In each round, a single player sends a sum, so for n players and a reporting authority, there
are n+1 rounds. The overall number of communications is O(n), which is an improvement over the
O(n*) communication found in the traditional approach.
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j 2 I <)
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r5—l’5+p6@/ 15=1 05 LB/
player players
(a)
|[5)" g ‘
5 hool [175
school =, school, schoolg ool;
1367 1442 1025 1150 1367 1442 150
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Figure Y. Alternative version of trivial secret sharing consists of asynchronous ring computations as
shown in (a). An example with n=6 schools is shown in (b). A ring has O(n) communication.
Collusion is possible in a ring computation if surrounded by colluding players, as shown in (c).

% The idea of a ring computation was first introduced by Manuel Blum and the theory group at Carnegie
Mellon University in casual communications about bio-terrorism surveillance in 2002.
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8. However, the version described above can be subject to a collusion attack. Figure Y(b) shows
the protocol with 6 schools. School,’s private number is 12. If School; and School; collude by
subtracting the number School; provided to School; (1150) from the number School, provided to
Schools (1162), they can learn Schooly’s private number (12=1162-1150). This is shown in Figure
Y(c).

9. To combat collusion, randomization can be added. The ordering of n players around the ring
could be determined randomly. Then, the probability that a non-colluding player will be
sandwiched between two colluding players can be determined. The likelihood of successful
collusion can be further reduced by having m distinct rings compute in parallel. Under this scheme,
each player provides m random values (shares) that sum to her private value, where 1I<m <n. The
order in which the players are arranged around each of the m rings is determined randomly. During
computation, each player provides a share to each ring. The reporting authority adds the totals from
all m rings to get the final sum. Overall communication is O(men). The value m can be selected
based on the amount of probabilistic privacy protection desired. The larger the value of m, the less
likely collusion will be successful.

10. Figure Z provides an example of n=6 schools performing the randomized protocol with m=3
rings. Each school has 3 shares, one for each ring. There are n!=720 possible ways to possibly
order the schools, 3 of which are shown in Figure Z. All 3 rings begin and end with Public Health.
The 3 routes are [School,, School,, Schools, Schools, Schools, Schools], [Schools, School,, School,
Schools, Schools, Schools], and [School,, Schools, Schools, Schools, Schools, School;]. In the first round,
Public Health sends a random value to Schooli, Schools, and School; to seed the computations. In the
final round, Schools, Schools, and School; sends their sums to Public Health, which sums the values
received and subtracts the original seeds.

11. In this example, for n players with each player having 1< m < n shares, the number of
communications improved with randomization from O(n?) to O(men), but the actual time to
complete the protocol changed from 3 rounds (non-randomized) to n+1 rounds (randomized).
Privacy protection changed from deterministic (non-randomized) to probabilistic (randomized).’

12. The randomized version assumes random orderings of players can be done with communication
no worse than men. A method for players to jointly select random orderings of themselves is the
subject of the remainder of this writing.

® PrivaSum is a non-randomized protocol that extends trivial secret sharing for n players, each player having
2 <m < nshares. The m shares are distributed in order to provide probabilistic privacy protection [8]. For m
shares, the randomized version above offers better privacy protection than does PrivaSum.
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Figure Z Three simultaneous ring computations in which the order of the players in each ring is
determined randomly. All 3 rings are shown in (a) and each distinct ring is shown in (b), (c) and (d).
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Appendix B. Experimental Tests

This section reports on empirical tests of the RandomOrder function ModSum. The purpose is to
determine how random selections are made in practice. Statistics provides some quantitative
measures for randomness, but frankly, there is no limit to the number of tests that can be performed.
In this section, experimental results are reported for a frequency test and a chi-square test.

B.1. Materials

Materials include a Java implementation of ModSum to simulate play by 3 players. The
pseudo-random number generator available through the Java Programming languages is used to
make a random local decision by a player.

B.2. Equidistribution or Frequency test

1. The first experiment consisted of 1000 simulated plays in which each player made a random
local choice. The requirement is that each sequence should appear as often as any other sequence.
Figure A shows the distribution of the results over the possible permutations. The results show a
relatively even distribution of selections of permutations (determining whether this is good enough
is the subject of the analysis in the next subsection).

200 200
180 A 180

160 160

. 140 1 o 140

8 120 8 120

$ 100 $ 100 |
g 80 g 80
60 4 “ 60
40 40
20 + 20
0 0

0 1 2 3 4 5 0 1 2 3 4 5
Sequence Sequence

Figure A. Results from 1000 simulated plays of Figure B. Results from 1000 simulated plays of
ModSum with 3 players, with each player having | ModSum with 3 players, with each player having
6 choices. All 3 players made local choices 6 choices. The simulation has two players collude
randomly. by always providing choices 5 and 3. The third
player makes random local choices.

2. The second experiment consisted of 1000 simulated plays in which two players collude and
make the same choice (), but the third player makes random local choices. The requirement is that
each sequence should appear as often as any other sequence. Figure B shows an even distribution
of the results over the possible permutations, demonstrating performance when at least one player
makes local random choices.

B.3. Chi-square test

1. For n players, Theorems F and G state that the probability of any particular sequence being
selected by ModSum is 1/n!. Using actual observations of outcomes reported in Figure C, the
square of the differences between the observed frequencies and the expected frequencies can be
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computed. This is the basis of the “chi-square” statistic.

2. The Chi-square statistic informs as to how probable or improbable certain sets of outcomes are.
A natural way to compute such a statistic is to consider the sum of the squares of the differences
between the observed frequencies and the expected frequencies. For example, for 1000 plays of
ModSum for 3 players, with each player having 6 choices, the expected frequencies are
1000/6=167. Each sequence is expected to be selected 167 times.

3. The Chi-Square statistic, V, appears below, for n players, and a test having nruns as the total
number of plays for the test, and Y; is the frequency at which sequence i was observed, where
i=0,...,(n!-1).

(Y, —(nruns)/nt)’
0

V=2, (nruns)/n!

4. The test results in Figure C can be summarized as follows. For each of the 9 tests, the following
was done. 1000 independent observations of ModSum play were simulated. A count of the
number of observations for which play resulted in each of the 6 sequences, labeled [0] to [5], is
reported. The Chi-Square statistic, V, is computed, as described above. Then, V is compared with
the numbers in a published Table of Values of the Chi-Square Distribution [18], with 5 degrees of
freedom. In these tests there are 6 possible outcomes, providing 6-1=5 degrees of freedom. If V is
between 95 and 99 percent, or between 1 or 5 percent, the protocol would be considered “suspect.”
If V lies between 90 and 95 percent, or between 5 and 10 percent, the protocol might be “almost
suspect.” If at least 2 or 3 of the tests provided results that are suspect, then the protocol would not
be regarded as sufficiently random. As shown in Figure C, the outcomes are satisfactory random
with respect to the tests.

Sequences Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

[0] 175 149 163 173 157 178 181 176 178
[1] 170 172 173 173 168 172 150 150 170
[2] 155 186 158 180 177 178 180 162 176
[3] 163 165 164 162 169 153 178 169 139
[4] 147 160 177 154 149 167 150 159 163
[5] 190 168 165 158 180 152 161 184 174
\ 6.554 2.719 1.392 2.853 3.627 3.358 5.371 3.988 5.590
p 2510 50% 50to 75% 75t095% 50to 75% 50to 75% 50to 75% 25to 50% 50 to 75% 25 to 50%

Figure C. Results from 9 tests. Each test 1000 simulated plays of ModSum with 3 players, with each
player having 6 choices, [0] to [5], and each player making local choices randomly. The chi-square
statistic ,V, is reported for each test, along with the chi-square distribution, p.
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