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Abstract 

 
 
Consider a set of players who wish to randomly arrange themselves without a trusted third-party.  
For example, if there are 3 players, a, b and c, then a trusted third party could order them as abc, acb, 
bac, bca, cab, or cba.  In the absence of a trusted third party, the players want to select one of these 
permutations for themselves at random.  In this writing, a protocol (named “RandomSelect”) is 
presented using multiplayer computation.  From a bag of all possible ways the players could be 
ordered, RandomSelect provides a means for players to make local choices that when combined, 
jointly select a permutation randomly.  The RandomSelect protocol supports any number (n) of two 
or more players and computes properly even if n-1 players collude.  Communication is O(n) using a 
broadcast channel.  More generally, necessary and sufficient conditions for a class of functions 
called “RandomOrder” functions are defined.  A RandomOrder function uses n inputs to make a 
random selection of a string from a bag of n! strings where all possible selections are uniformly 
distributed over the possible inputs and over the strings.  Any RandomOrder function can be used 
in the RandomSelect protocol.  Bio-terrorism surveillance is used as an example application. 
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1. Motivation and Background 
 
This work presents a multiparty protocol named RandomSelect in which a set of players make local 
choices that combine to jointly make a random selection from a uniform distribution of choices in 
the absence of a trusted third party and in the face of colluding players.  The reader familiar with 
multiparty computation and not in need of a motivating application may elect to skip ahead to 
section 2 to begin discussions of protocol methods. 
 

1.1. Secure Multiparty Computation 
 
This section describes the basic tenets of multiparty computation pertinent to this work.  For 
general reference, see [1, 2]. 
 
1. In “distributed computing” a number of networked players carry out a joint computation of a 
function on their inputs.  The aim of “secure multiparty computation” (or simply, multiparty 
computation), in contrast, is to enable players to carry out distributed computing tasks on their 
private information while under attack by an external entity (“the adversary”) and/or by a subset of 
malicious players (“the colluding players”).  The purpose of the attack is to learn the private 
information of non-colluding, honest players or to cause the computation to be incorrect.  As a 
result, there are two important requirements of a multiparty computation protocol: privacy and 
correctness.   
 
2. The privacy requirement of a multiparty computation states that information deemed private 
should not be learned.   
 
3. The correctness requirement states that the result of a multiparty computation should be 
correct.  The adversary or colluding players must not be able to cause the result of the computation 
to deviate from the function that the players had set out to compute. 
 
4. It is assumed throughout that when a message is sent, it arrives before some time bound.  More 
specifically, a protocol proceeds in “rounds.”  In each round, a player may send a message to other 
players, and all messages are delivered before the next round begins. 
 
5. The work presented in this writing assumes that each player can send a message to all other 
players using a broadcast channel.  It cannot usually be verified that any player actually received 
the broadcast message however.  An example of a broadcast channel is a satellite in which 
messages sent to the satellite during one round are transmitted in the next round so that any parties 
seeking to receive the messages can do so.  Low-level infrastructure in computer networks can also 
provide a broadcast channel. 
 
6. It is sometimes convenient to consider operation in which each pairs of players can communicate 
secretly, point-to-point, over perfectly private and authenticated channels (called secure channels).  
Clearly, secure channels can be used for broadcasting by having a player send a message directly to 
every other player.  In this case, each player’s receipt of the broadcast can be verified. 
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7.  A colluding player is one that may misbehave “passively” or “actively.”  Passive corruption 
means that the adversary and colluding players obtain the complete information held by corrupted 
players, but all players execute the protocol correctly.  Active corruption means that the adversary 
and colluding players may misbehave in an arbitrary manner.   
 
8.  Another assumption made throughout this work is that the adversary and colluding players are 
“static.”  Players can be corrupted and become colluders before the protocol starts, but during 
protocol execution, non-colluding players cannot be corrupted.   
 
9. It is assumed by the use of secure channels that the adversary has bounded computing power.  [3] 
introduced a general protocol that allows n players to securely compute an arbitrary function even 
if an adversary actively corrupts any t < n/2 of the players and makes them misbehave maliciously.  
In a model with secure channels, [4, 5] proved that unconditional security is possible if at most t < 
n/3 of the players are actively corrupted.  This bound was improved by [6, 7] to t < n/2 by 
additionally using a broadcast channel. 
 
10. In this work the notion of “private information” as it relates to a multiparty computation refers 
to a player not revealing his local choice prior to broadcasting that choice to all players.  Collusion 
refers to a subset of players sharing their choices prior to broadcast or more generally, not making 
random local decisions.  For n players, a random selection of a permutation of the players must 
compute properly even of n-1 players collude.   
 

1.2. Example of Trivial Secret Sharing 
 
1. A protocol to randomly select a permutation of players may be useful within a larger protocol 
that solves a particular task.  Details of bio-terrorism surveillance as a sample application appear in 
Appendix A.  A brief summary appears in this section.  Trivial secret sharing, a well-known 
multiparty computation, is compared to a randomized version in which players make joint random 
choices.  The purpose is to identify efficiency tradeoffs afforded by randomization. 
 
2. The problem addressed in this sample application is as follows.  A set of players and a reporting 
authority operate over secure channels.  Each player holds a private number.  The players wish to 
compute the sum of their numbers in a manner that preserves the secrecy of their individual values 
while providing the sum to the reporting authority, even if some of the players collude passively.    
 
3. Trivial secret sharing offers a solution.  For n players, each player’s private number is 
represented as a set of n values (called “shares”) that sum to the player’s original private number.  
Each pair of players exchanges shares.  Then, each player adds the shares he receives with his 
remaining share and sends his total to the reporting authority, who adds the totals received from 
each player and announces the final sum. 
 
4. An alternative solution involves randomly arranging n players in m rings, where 1≤ m ≤ n.  Each 
ring has all n players, but the order in which a player appears around any ring is determined 
randomly.  Each player has m shares that sum to her private value, and contributes one share to each 
ring as follows.  The reporting authority provides a random number to the first players of each ring, 
who in turn add one share and send their sums to the second players, who add one share, and so on, 
around the rings.  The last players send their sums to the reporting authority, which adds them and 
subtracts the random numbers provided originally to get the overall total.   
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5. For n players with each player having 1≤ m ≤ n shares, the number of communications improved 
with randomization from O(n2) to O(m•n), but the randomized version assumes random orderings 
of players can be done within this bound.  Providing a method for players to jointly select random 
orderings of themselves within O(n) communication is the subject of the remainder of this writing.  
Doing so completes the randomized solution in this sample application. 
 
6. The broader goal of this work is to introduce the notion of a “randomized multiparty protocol” as 
a multiparty protocol in which a subset of 2 or more players jointly make a random choice based on 
a given probability distribution.   
 

2. General Approach 
 
Ways in which n players might jointly select a random permutation of themselves are informally 
explored in this section by examining a game (Section 2.1), an approach using exclusive-OR 
(Section 2.2), and an approach using modulus and addition (Section 2.3).  This section provides an 
informal preamble to the formal methods of Section 3 by sketching out the basic requirements 
desired. 
 

2.1. The Rock Paper Scissors Game 
 
1. Inspiration for a method to randomly order players was found in the childhood game known as 
“Rock Paper Scissors,” which is commonly used to decide who goes first [12].  The game is played 
with only two players.  Prior to play, a set of token gestures known as rock, paper, and scissors are 
understood.  A hand in a fist represents rock, a horizontal flat hand represents paper, and two 
horizontal fingers represent scissors.  These tokens are circularly ordered such that rock beats 
scissors, scissors beats paper, and paper beats rock in determining which player goes first.  Play 
consists of synchronous display of a token gesture by each player.  Figure 1 shows the possible 
outcome for players Alice and Bob.  Notice how a player cannot select a token that assures a 
resulting order.  For example, Alice displaying rock can have her appear first if Bob displays 
scissors, or last if Bob displays paper.  Both players’ tokens in combination determine the final 
ordering.  When both players select the same token, a “collision” occurs and no order can be 
determined.  In that case, the players perform additional rounds as needed until no collision is 
encountered. 
 
 Alice Bob Outcome  
 rock  rock none  
 rock paper Bob, Alice  
 rock scissors Alice, Bob  
 paper rock Alice, Bob  
 paper paper none  
 paper scissors Bob, Alice  
 scissors rock Bob, Alice  
 scissors paper Alice, Bob  
 scissors scissors none  
Figure 1.  Possible outcome sequences to determine who goes first and who goes second, Alice then Bob 
or Bob then Alice, based on the Rock Paper Scissors game. 
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2. The work reported herein expands the notion of Rock Paper Scissors for use with an arbitrary 
number of players (two or more) operating over a network to achieve the following.  Each player is 
given a set of tokens from which to draw.  Collisions are avoided.  Just as occurred in the original 
game, the assignment of tokens to outcomes is provided to each player beforehand with uniform 
distribution of outcomes assigned to token choices.  During a round of play, each player provides a 
token.  The outcome is a permutation of the players selected by the joint choices of tokens.   
 

2.2. Basic math notation used 
 
1. Before informally exploring two ad hoc extensions to Rock Paper Scissors, some basic bath 
notation must be presented. 
 
2. Given an integer b, the “factorial of b” is the product: b • (b-1) • … • 1, and is written b!.  
 
Example.  The factorial of 6 (written 6!) is 6 • 5 • 4 • 3 • 2 • 1 = 720.   
 
3. Given integers a, b and r, if a divided by b has remainder r, then “r is congruent to a modulo b,” 
which is written r ≡ a mod b.  If r is 0, then “a is divisible by b,” which is written b|a, and there 
exists an integer d such that a =b•d.   
 
Example.  The integer 6 divided by 3 has a quotient of 2 and a remainder of 0.  This is denoted by 
the following expressions 0≡6 mod 3 and 3|6.   
 

2.3. Using Exclusive-OR 
 
1. Consider an extension of Rock Paper Scissors to n ≥ 2 players using bitwise exclusive-or 
(denoted x ⊕ y) to jointly select a possible permutation.  The exclusive-OR of two 1-bit values x 
and y is 1 if exactly one of x and y is 1 and is 0 otherwise.  If x and y are r-bit numbers, then the 1-bit 
exclusive-or operation is performed on corresponding bits in the two values, respectively. 
 
2. Here is a protocol named “RandomXOR” that uses bitwise exclusive-or.  In a preliminary round, 
all possible permutations of the players are enumerated.  A table containing these enumerations (or 
an equivalent algorithm) is distributed to each player prior to play commencing.  Each player 
receives the same table.  Rounds of play utilize the same table with no further distribution of a table 
needed.  The protocol has one round.  Each player Pi selects a number vi (token), where vi is between 
1 and the number of permutations, and broadcasts the pair (Pi, vi).  Each player then performs 
bitwise exclusive-or to determine the joint selection (s), where s = v1 ⊕  … ⊕ vn.  The permutation 
associated with s in the table is the selected permutation.   
 
Example.  Given n=3 players, a, b and c, RandomXOR can be used to select one of the 6 possible 
permutations of {a, b, c} as follows.  Before any rounds of play commence, the permutations are 
associated with the values 1 to 6 as shown in Figure 2(a) and distributed to each player.  The players 
use this table in all rounds of play.  To make a random selection, each player selects a value 
between 1 and 6.  Suppose Player a selects va=3, Player b selects vb=2 and Player c selects vc=5, then 
va ⊕ vb ⊕ vc = 3 ⊕ 2 ⊕ 5 =4.  This computation is detailed in Figure 2(b).  The permutation 
associated with 4 in Figure 2(a) is acb, so acb is the joint selection. 
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1. cba  
2. bca 
3. cab 
4. acb 
5. bac 
6. abc 

  
ta = 3 = 011 
tb = 2 = 010 
tc = 5 = 101 
s        = 100 = 4 →acb 

(a)  (b) 
Figure 2.  Enumeration of permutations for 3 players (a, b, and c) is shown in (a).  An example 
selection of acb using bitwise exclusive-OR is shown in (b) where player a selects 3 (bit pattern 011), b 
selects 2 (bit pattern 010), and c selects 5 (bit pattern (101).  The result is acb because 3 ⊕ 2 ⊕ 5 = 4 (bit 
pattern (100), and 4 is assigned the permutation acb in (a). 
 
3. Some selections by players in RandomXOR can result in values not listed in the enumerated 
permutations.  These are considered collisions and require re-plays to occur until no collision is 
encountered.  
 
Example.  Given n=3 players, a, b and c, suppose RandomXOR is used to select one of the 6 
possible permutation enumerated in Figure 2(a).  Let Player a select va=3, Player b select vb=1 and 
Player c select vc=5, then va ⊕ vb ⊕ vc = 3 ⊕ 1 ⊕ 5 =7, which has no associated permutation.  The 
combination of choices, (3, 1, 5), provides an undeterminable result. 
 
4. Players can collude in RandomXOR to influence the final result so that some outcomes are less 
likely than others.   
 
Example.  Given n=3 players, a, b and c, let RandomXOR be used to select one of the 6 possible 
permutation enumerated in Figure 2(a).  Suppose Players b and c collude to limit the placement of 
Player a so that either Player a or b appears last.  Player b agrees to always select vb=2 and Player c 
agrees to always select vc=1.  If Player a selects 1 or 2, then permutations cba and bca result in 
which Player a appears last.  If Player a selects 3 or 4, a collision results.  Finally, if Player a selects 
5 or 6, then permutations bac or abc result in which Player c appears last.  See the highlighted 
entries in Figure 23(a).   
 
5. While RandomXOR provides many desirable characteristics, problems with collisions and with 
colluding players exist.  The nature of these shortcomings will be analyzed in Section 5 after formal 
methods are introduced in Sections 3 and 4. 
 

2.4. Using the Modulus of the Sum 
 
1. Consider using the modulus (mod) of the sum of player choices as a way to jointly select a 
possible permutation for n ≥ 2 players.  Here is a protocol named “ModSum” that operates very 
similar to RandomXOR.  In a preliminary round, each of the permutations of the players are 
enumerated and distributed to each player.  For n players, there are n! permutations.  The protocol 
has one round.  Each player Pi selects a number vi, where 0 ≤ vi < n!, and broadcasts the pair (Pi, vi).  
Each player then sums the broadcasted values and uses the mod of the sum divided by n! to 
determine the joint selection (r); that is, r = (∑ vi) mod n!.   The permutation associated with r in the 
table is the selected permutation.   
 
Example.  Given n=3 players, a, b and c, let ModSum be used to select one of the n! = 6 
permutations of {a, b, c}.  Before any rounds of play, the permutations are associated with the 
values 0 to 5 as shown in Figure 2(a) and distributed to each player.  To make a random selection, 
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each player selects a value between 0 and 5.  Suppose Player a selects va=3, Player b selects vb=2 
and Player c selects vc=5, then va + vb + vc = 3 + 2 + 5 =10, and 10 mod 6 is 4.  The permutation 
associated with 4 in Figure 2(a) is bac, so bac is the joint selection. 
 
2. All selections based on ModSum provide a legal selection with no collisions because the 
modulus operation guarantees that the final result will be in the range 0 to (n!-1).  Recall selection r 
= (∑ vi) mod n!, where vi is the choice of each player, 0 ≤ vi < n!, and n! is the total number of 
permutations.  Each play yields a selection 0 ≤ r < n!. 
 
3. Unlike RandomXOR above, colluding players gain no advantage using ModSum. (This will be 
examined further in Section 5 after formal methods are introduced.) 
 
Example.  Let n=3 players, a, b and c, use ModSum to select one of the 6 possible permutation 
enumerated in Figure 2(a).  Suppose Players b and c collude.  Player b agrees to always select vb=2 
and Player c agrees to always select vc=1.  The final outcome is equally likely to be any of the 
permutations depending on the selection made by Player a.  If va=0, acb results; if va=1, bac results; 
if va=2, abc results; if va=3, cba results; if va=4, bca results; and, if va=5, cab results. 
 
4. The informal discussions in this section introduced the basic requirements for a protocol that 
allows n players to make local choices that combine to make a joint random selection with uniform 
distribution of outcomes to choices.  There should be no collisions, and the protocol should perform 
properly in the face of n-1 colluding players.  In the next section, formal definitions and sufficient 
and necessary conditions are provided for acceptable solutions.  In Section 5, after the formal 
presentation of Section 3, attention returns to RandomXOR and SumMod for formal assessment. 
 

3. Model and Definitions 
 
This section and the next provide a formal presentation of the RandomSelect protocol.  First, 
general terms and notation (Section 3.1) are introduced.  In Section 3.2, conditions for choosing 
values appropriately are investigated.  In Section 4, the class of RandomOrder functions is defined, 
the RandomSelect protocol is presented, and effects of collusion are examined.  
 

3.1. General terms and notation 
 
1. Let P={P1, ..., Pn} be the n players seeking to be arranged randomly, where n ≥ 2.  There must be 
at least 2 players. 
 
Example. P={a, b, c} represents the 3 players a, b, and c.   
 
2. Let O={o1, ..., on!} be the n! distinct permutations of size n in which the players of P may be 
arranged.  Each oi permutation has no repetition of players.  These oi’s are termed the sequences of 
P.  The idea is that a permutation Px,…,Pz expresses the random ordering in which the players of P 
will be arranged.  Px will appear first, and so on, with Pz appearing last. 
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Example.  Given P={a, b, c}, then the sequences of P are O={abc, acb, bac, bca, cab, cba}.  There 
are 3 players and 3!=3•2=6 permutations of size 3.  Each permutation contains all players and each 
player appears only once in a permutation.  The sequence abc has player a appearing first, player b 
appearing second, and player c appearing last, whereas the sequence cba has player c first, player b 
second and player a last. 
 
3. Each player Pi has kx token values, {vi1, …, vix}. The idea is that player Pi will select one of its kx 
tokens as its contribution to determining the final random arrangement of players.  For generality, 
assume each value viq , where 1 ≤ q ≤ x, is unique across all players; that is, unless otherwise noted, 
for each Pi, Pj, there does not exist viq and vjr such that viq=vjr.   
 
Example.  In Figure 3, player a has tokens a1 and a2 from which to choose; player b has choices b1, 
b2, and b3, and player c has choices c1 and c2.  Notice that no token is the same for any two players in 
this example. 
 
 Player Tokens from which to choose  
 a {a1, a2}  
 b {b1, b2, b3}  
 c {c1, c2}  
Figure 3. Choices for players a, b, and c are the tokens a1 and a2 for player a; b1, b2, and b3 for player b; 
and, c1 and c2 for player c.  
 
4. The number of possible ways n players can jointly make selections by each choosing one of its 
tokens is Πki, for i=1,.., n.  Each such way is termed a configuration, and is written as an n-tuple 
(v1x, …, vny) where v1x is Player 1’s chosen token and vny is Player n’s chosen token.   
 
Example.  Given choices for a to be {a1, a2}, choices for b to be {b1, b2, b3}, and choices for c to be 
{c1, c2}, there are 2•3•2=12 possible configurations.  These are itemized in Figure 4. 
 
 1.  (a1  b1  c1) 

2.  (a1  b2  c1) 
3.  (a1  b3  c1) 
4.  (a1  b2  c2) 
5.  (a1  b1  c2) 
6.  (a1  b3  c2) 

7.   (a2  b1  c1) 
8.   (a2  b2  c1) 
9.   (a2  b3  c1) 
10. (a2  b2  c2) 
11. (a2  b1  c2) 
12. (a2  b3  c2) 

Figure 4. Possible configurations for players a, b, and c where choices for a are {a1, a2}, choices for b are 
{b1, b2, b3}, and choices for c are {c1, c2} 
 
5. Configurations are assigned to sequences.  The idea is that the players jointly determine a 
configuration based on their individual choices of values; then, the sequence, which is associated 
with that configuration, is the final randomized arrangement of players.   
 
Example.  Given the possible configurations in Figure 4 and the sequences {abc, acb, bac, bca, cab, 
cba}, Figure 5 provides an assignment of configurations to sequences.  Other assignments are 
possible.   
 
In the example provided in Figure 5, the configuration a1b1c1 is assigned to the sequence abc.  The 
idea is that if player a chooses a1, player b chooses b1 and player c chooses c1, then the sequence abc 
results.  But, if instead player a chooses a2, player b chooses b3 and player c chooses c2, then the 
sequence cba results. 
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 Sequences Configurations  
 abc 

acb 
bac 
bca 
cab 
cba 

a1  b1  c1 
a1  c1  b2 
b3  a1  c1 
b2  c2  a1 
c2  a1  b1 
c2  b3  a1 

a2  b1  c1 
a2  c1  b2 
b3  a2  c1 
b2  c2  a2 
c2  a2  b1 
c2  b3  a2 

Figure 5. An assignment of all configurations to all sequences for players a, b, and c where choices for a 
are {a1, a2}, choices for b are {b1, b2, b3}, and choices for c are {c1, c2}. 
 
6. A token has a position within a sequence that is dictated by the assignment of the configuration 
to a sequence.  If a configuration is not assigned to a sequence, then the set of tokens chosen by the 
players has no sequence ordering.  But once a configuration is assigned to a sequence, the order in 
which the players appear in the sequence imposes an ordering on the configuration.  A token’s 
position in its configuration is the position of the player in the sequence assigned to the 
configuration.  Once assigned, the tokens of the configuration generated by the choices of the n 
players, (v1i, …, vnj), can be written in the order of the sequence, Px…Py, thereby producing  vxs…vyt 
where vxs has player x’s token vxs appearing first, and player y’s token vyt appearing last.   
 
Example.  If player a chooses a2, player b chooses b3 and player c chooses c1, then the configuration 
(a2, b3, c1) results.  This configuration in isolation provides no ordering.  Now assume the 
assignments shown in Figure 5.  The configuration (a2, b3, c1) is assigned to the sequence bac, which 
means the sequence imposes the ordering b then a then c.  The configuration can be written as b3a2c1 
to identify the tokens chosen and the ordering of the sequence that results.  
 
7. For n players, a sequence is a string of length n.  When a configuration is assigned to a sequence, 
the assigned configuration is a string.  The token t in position x of the assigned configuration s is 
written as pos(s, x) = t, where 1 ≤ x ≤ n. 
 
Example.  In Figure 5, the configuration (a2, b1, c2) is assigned to the sequence cab providing the 
ordered configuration c2a2b1.  pos(c2a2b1, 1) = c2, pos(c2a2b1, 2) = a2, and pos(c2a2b1, 3) = b1.  
 
8. Given assignments of configurations to sequences, the number of occurrences of a token t in a 
position x for a particular sequence s is denoted as count(s, t, x) = y, or for the set of all sequences 
is written as count(t, x) = y. 
 
Example.  In Figure 5, count(abc, b1, 2) = 2, count(abc, a1, 1) = 1, and count(abc, a1, 2) = 0.  Also, 
count(b1, 2) = 2, count(a1, 1) = 2, and count(a1, 2) = 2. 
 

3.2. Conditions for Choosing Values Appropriately 
 
Five conditions for appropriately choosing the number of configurations, the number of choices, 
and the assignment of configurations to sequences are provided in this section.  These principles 
help assure “randomness” in determining the final sequence of players by making sure there is no 
bias in each of these characteristics.   
 
1. For all possible configurations of n players to be evenly distributed over all sequences, the 
number of choices for each player (ki) must be selected such that 0 ≡ (k1•…• kn) mod (n!).  This is 
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identified as Condition 1, “the Configurations Condition.” 
 
Condition 1 (“Configurations”). Assignments are performed such that the set of all possible 
configurations are evenly distributed over the set of all possible sequences.  In order to satisfy this 
condition, it is sufficient and necessary that 0 ≡ (k1•…• kn) mod (n!). 
 

NUMBER OF PARTIES = 3 NUMBER OF PARTIES = 4
k1 k2 k3 k1*k2*k3 (k1*k2*k3) mod (n!) k1 k2 k3 k4 k1*k2*k3*k4 (k1*k2*k3*k4) mod (n!)

1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 1 1 1 2 2 2
1 2 2 4 4 1 1 2 2 4 4
2 2 2 8 2 1 2 2 2 8 8
2 2 3 12 0 2 2 2 2 16 16
2 3 3 18 0 2 2 2 3 24 0
3 3 3 27 3 2 2 3 3 36 12
3 3 4 36 0 2 3 3 3 54 6
3 4 4 48 0 3 3 3 3 81 9
4 4 4 64 4 3 3 3 4 108 12
4 4 5 80 2 3 3 4 4 144 0
4 5 5 100 4 3 4 4 4 192 0
5 5 5 125 5 4 4 4 4 256 16
5 5 6 150 0 4 4 4 5 320 8
5 6 6 180 0 4 4 5 5 400 16
6 6 6 216 0 4 5 5 5 500 20

5 5 5 5 625 1
5 5 5 6 750 6
5 5 6 6 900 12
5 6 6 6 1080 0
6 6 6 6 1296 0  

Figure 6. Different number of choices (ki) for 3 players (left side) and 4 players (right side).  The 
highlighted rows identify those numbers of choices that satisfy Condition 1. 
 
Example.  Consider the sequences and configurations in Figure 5.  Notice that the 12 
configurations are distributed evenly over the 6 sequences for the 3 players, thereby satisfying 
Condition 1.  The remainder of the number of configurations (k1•…• kn) divided by the number of 
sequences (n!) is 0.  Specifically, let r be the remainder: r ≡ (2•3•2) mod (3!).  This simplifies to r 
≡ 12 mod 6, so r = 0. 
 
Example.  In Figure 5, there are 2 ways the players may jointly select any specific sequence.  This 
results because the number of configurations is divisible by the number of sequences, and the 
quotient is 2.  That is, 6|12 and 12/6 = 2. 
 
Example.  Consider the sequences and configurations in Figure 5.  Notice that if the number of 
choices for player b was 2 and not 3, then the total number of possible configurations would be 
2•2•2=8.  But there are only 6 sequences.  The configurations cannot be evenly distributed over the 
sequences in this case, so Condition 1 cannot be satisfied.  Some sequences will appear more often 
despite each player making configuration choices randomly. 
 
Example.  Figure 6 shows the relationship of Condition 1, the Configurations Condition, to 
different numbers of choices for n=3 players (left side) and n=4 players (right side).  Each row in 
Figure 6 identifies the number of choices each player may have (ki), the product of the number of 
choices, which is the total number of possible configurations, and the remainder (modulus) of the 
total number of configurations divided by the total number of sequences (which is the factorial of n).  
In the fourth row on the left side, k1=2, k2=2, and k3=2.  There are 2•2•2 = 8 possible configurations.  
There are 3!= 3•2 = 6 sequences.  Because 2 ≡ 8 mod 6 is number of choices for the players and it 
is not congruent to 0, this number of choices for players fails to satisfy Condition 1. 
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Example.  Consider the fifth row on the left side of Figure 6.  This is the topmost highlighted row.  
k1=2, k2=3 and k3=3.  There are 2•2•3 = 12 possible configurations.  There are 3!= 3•2 = 6 
sequences and 0 ≡ 12 mod 6.  This number of choices for the players therefore satisfies Condition 
1; the set of all possible configurations can be evenly distributed over the set of all possible 
sequences.  Each of the highlighted rows in Figure 6 satisfies Condition 1. 
 
2. The number of tokens (k) for each of the n players should be the same and should be more than 
one.  This is identified as Condition 2, “the Choices Condition.”  If a player has only one token, 
then the player has no choice.  If one player has more tokens (or choices) than the other players, 
then that player may gain an ability to reliably restrict the final sequence to be drawn from one of a 
limited number of sequences rather than being equally likely from all possible sequences.   
 
Condition 2 (“Choices”)1. Each player has the same number of tokens (k), where k≥2.   
 
Example.  Consider the sequences and configurations in Figure 5.  Notice the configurations 
containing a1.  Player a’s selection of a1 cannot improve the likelihood of any particular sequence 
being determined.  This is also true of Player a’s choice of a2.  Any selection of a1 or a2 by Player a 
can lead to any final sequence.  But unlike Player a, Player b has 3 choices.  Player b’s selection of 
b1 restricts the final sequences to being either abc or cab.  In these sequences, b never appears in the 
1st position.  Likewise, Player b’s choice of b2 restricts the final sequences to acb and bca in which b 
never appears in the middle position.  Finally, Player b’s selection of b3 restricts the final sequences 
to bac or cba, in which b never appears in the last position.  In order for each player to have the same 
lack of determination over the final sequence, each player should have the same number of choices.  
The configurations in Figure 5 do not satisfy Condition 2. 
 
Example.  Figure 7 lists all 216 possible configurations for 3 players having 6 choices each.  There 
are 6 possible sequences to which each of these 216 configurations could be assigned.  If the 
configurations are evenly distributed over the sequences, there would be 36 configurations per 
sequence.  The selection of k=6 as the number of choices for each of the n=3 players satisfies 
Condition 1, as shown in this computation of r.  Let r ≡ (6•6•6) mod (3!), which simplifies to  r ≡ 
216 mod 6, so r=0.  The selection of k=6 also satisfies Condition 2 because each of the players has 
the same number of k=6 choices. 
 
3. The number of tokens (k) for each of the n players should be selected so that the total number of 
tokens (combining all tokens from all players) is evenly distributed over the number of 
configurations.  In order for this to occur, 0 ≡ Πk mod Σk.  This is identified as Condition 3, “the 
Tokens Condition.” 
 
Condition 3 (“Tokens”).  The set of tokens from all players (having size Σk) should evenly 
distribute over the set of all possible configurations (having size Πk).  In order for this condition to 
be satisfied, it is sufficient and necessary that 0 ≡ Πk mod Σk.  Since each of the n players has k 
choices (Condition 2), this is the same as: 0 ≡ kn mod n•k. 
 
Example.  Figure 7 lists all 216 possible configurations for 3 players having 6 choices each.  This 
selection of k=6 choices for n=3 players satisfies Condition 3, as shown in this computation of r.  
Let r ≡ 63 mod (3•6), which simplifies to r ≡ 216 mod 18, so r = 0.   
 

                                            
1 Condition 2 is updated to include the constraint 0 ≡ k mod n! in paragraph 10 of this subsection. 
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Example.  Figure 5 lists all 12 possible configurations for 3 players, where two of the players have 
2 choices and one player has 3 choices. This selection fails to satisfy Condition 3, as shown in this 
computation of r.  Let r ≡ (2•2•3) mod (2+2+3), which simplifies to r ≡ 12 mod 7, so r=5, which is 
not 0.   
 
1: (a1 b1 c1) 
2: (a2 b1 c1) 
3: (a3 b1 c1) 
4: (a4 b1 c1) 
5: (a5 b1 c1) 
6: (a6 b1 c1) 
7: (a1 b2 c1) 
8: (a2 b2 c1) 
9: (a3 b2 c1) 
10: (a4 b2 c1) 
11: (a5 b2 c1) 
12: (a6 b2 c1) 
13: (a1 b3 c1) 
14: (a2 b3 c1) 
15: (a3 b3 c1) 
16: (a4 b3 c1) 
17: (a5 b3 c1) 
18: (a6 b3 c1) 
19: (a1 b4 c1) 
20: (a2 b4 c1) 
21: (a3 b4 c1) 
22: (a4 b4 c1) 
23: (a5 b4 c1) 
24: (a6 b4 c1) 
25: (a1 b5 c1) 
26: (a2 b5 c1) 
27: (a3 b5 c1) 
28: (a4 b5 c1) 
29: (a5 b5 c1) 
30: (a6 b5 c1) 
31: (a1 b6 c1) 
32: (a2 b6 c1) 
33: (a3 b6 c1) 
34: (a4 b6 c1) 
35: (a5 b6 c1) 
36: (a6 b6 c1) 

37: (a1 b1 c2) 
38: (a2 b1 c2) 
39: (a3 b1 c2) 
40: (a4 b1 c2) 
41: (a5 b1 c2) 
42: (a6 b1 c2) 
43: (a1 b2 c2) 
44: (a2 b2 c2) 
45: (a3 b2 c2) 
46: (a4 b2 c2) 
47: (a5 b2 c2) 
48: (a6 b2 c2) 
49: (a1 b3 c2) 
50: (a2 b3 c2) 
51: (a3 b3 c2) 
52: (a4 b3 c2) 
53: (a5 b3 c2) 
54: (a6 b3 c2) 
55: (a1 b4 c2) 
56: (a2 b4 c2) 
57: (a3 b4 c2) 
58: (a4 b4 c2) 
59: (a5 b4 c2) 
60: (a6 b4 c2) 
61: (a1 b5 c2) 
62: (a2 b5 c2) 
63: (a3 b5 c2) 
64: (a4 b5 c2) 
65: (a5 b5 c2) 
66: (a6 b5 c2) 
67: (a1 b6 c2) 
68: (a2 b6 c2) 
69: (a3 b6 c2) 
70: (a4 b6 c2) 
71: (a5 b6 c2) 
72: (a6 b6 c2) 

73: (a1 b1 c3) 
74: (a2 b1 c3) 
75: (a3 b1 c3) 
76: (a4 b1 c3) 
77: (a5 b1 c3) 
78: (a6 b1 c3) 
79: (a1 b2 c3) 
80: (a2 b2 c3) 
81: (a3 b2 c3) 
82: (a4 b2 c3) 
83: (a5 b2 c3) 
84: (a6 b2 c3) 
85: (a1 b3 c3) 
86: (a2 b3 c3) 
87: (a3 b3 c3) 
88: (a4 b3 c3) 
89: (a5 b3 c3) 
90: (a6 b3 c3) 
91: (a1 b4 c3) 
92: (a2 b4 c3) 
93: (a3 b4 c3) 
94: (a4 b4 c3) 
95: (a5 b4 c3) 
96: (a6 b4 c3) 
97: (a1 b5 c3) 
98: (a2 b5 c3) 
99: (a3 b5 c3) 
100: (a4 b5 c3) 
101: (a5 b5 c3) 
102: (a6 b5 c3) 
103: (a1 b6 c3) 
104: (a2 b6 c3) 
105: (a3 b6 c3) 
106: (a4 b6 c3) 
107: (a5 b6 c3) 
108: (a6 b6 c3) 

109: (a1 b1 c4) 
110: (a2 b1 c4) 
111: (a3 b1 c4) 
112: (a4 b1 c4) 
113: (a5 b1 c4) 
114: (a6 b1 c4) 
115: (a1 b2 c4) 
116: (a2 b2 c4) 
117: (a3 b2 c4) 
118: (a4 b2 c4) 
119: (a5 b2 c4) 
120: (a6 b2 c4) 
121: (a1 b3 c4) 
122: (a2 b3 c4) 
123: (a3 b3 c4) 
124: (a4 b3 c4) 
125: (a5 b3 c4) 
126: (a6 b3 c4) 
127: (a1 b4 c4) 
128: (a2 b4 c4) 
129: (a3 b4 c4) 
130: (a4 b4 c4) 
131: (a5 b4 c4) 
132: (a6 b4 c4) 
133: (a1 b5 c4) 
134: (a2 b5 c4) 
135: (a3 b5 c4) 
136: (a4 b5 c4) 
137: (a5 b5 c4) 
138: (a6 b5 c4) 
139: (a1 b6 c4) 
140: (a2 b6 c4) 
141: (a3 b6 c4) 
142: (a4 b6 c4) 
143: (a5 b6 c4) 
144: (a6 b6 c4) 

145: (a1 b1 c5) 
146: (a2 b1 c5) 
147: (a3 b1 c5) 
148: (a4 b1 c5) 
149: (a5 b1 c5) 
150: (a6 b1 c5) 
151: (a1 b2 c5) 
152: (a2 b2 c5) 
153: (a3 b2 c5) 
154: (a4 b2 c5) 
155: (a5 b2 c5) 
156: (a6 b2 c5) 
157: (a1 b3 c5) 
158: (a2 b3 c5) 
159: (a3 b3 c5) 
160: (a4 b3 c5) 
161: (a5 b3 c5) 
162: (a6 b3 c5) 
163: (a1 b4 c5) 
164: (a2 b4 c5) 
165: (a3 b4 c5) 
166: (a4 b4 c5) 
167: (a5 b4 c5) 
168: (a6 b4 c5) 
169: (a1 b5 c5) 
170: (a2 b5 c5) 
171: (a3 b5 c5) 
172: (a4 b5 c5) 
173: (a5 b5 c5) 
174: (a6 b5 c5) 
175: (a1 b6 c5) 
176: (a2 b6 c5) 
177: (a3 b6 c5) 
178: (a4 b6 c5) 
179: (a5 b6 c5) 
180: (a6 b6 c5) 

181: (a1 b1 c6) 
182: (a2 b1 c6) 
183: (a3 b1 c6) 
184: (a4 b1 c6) 
185: (a5 b1 c6) 
186: (a6 b1 c6) 
187: (a1 b2 c6) 
188: (a2 b2 c6) 
189: (a3 b2 c6) 
190: (a4 b2 c6) 
191: (a5 b2 c6) 
192: (a6 b2 c6) 
193: (a1 b3 c6) 
194: (a2 b3 c6) 
195: (a3 b3 c6) 
196: (a4 b3 c6) 
197: (a5 b3 c6) 
198: (a6 b3 c6) 
199: (a1 b4 c6) 
200: (a2 b4 c6) 
201: (a3 b4 c6) 
202: (a4 b4 c6) 
203: (a5 b4 c6) 
204: (a6 b4 c6) 
205: (a1 b5 c6) 
206: (a2 b5 c6) 
207: (a3 b5 c6) 
208: (a4 b5 c6) 
209: (a5 b5 c6) 
210: (a6 b5 c6) 
211: (a1 b6 c6) 
212: (a2 b6 c6) 
213: (a3 b6 c6) 
214: (a4 b6 c6) 
215: (a5 b6 c6) 
216: (a6 b6 c6) 

Figure 7. All 216 possible configurations for k=6 choices and n=3 players.  These configurations have 
not yet been assigned to any sequences, so the ordering is not determined. 
 
4. If Condition 3 is satisfied, the number of occurrences of each token in assigned configurations is 
the number of configurations times the number of players, divided by the total number of tokens.  
This can be expressed as (n•kn)÷(Σk).   
 
Example.  Figure 7 lists all 216 possible configurations for n=3 players, where each player has k=6 
choices.  There are 18 distinct tokens, a1, a2, …, c5, c6.  The number of occurrences of each token in 
the set of configurations is (3•63)/(6+6+6) =648/18 = 36.  Each of the 18 tokens, a1, …, c6, appears 
in 36 configurations. 
 
5. In order for Conditions 1, 2 and 3 to be satisfied for n players, a selection for k (the number of 
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choices for each player) must be made such that 0 ≡ kn mod n! (Condition 1), k≥2 (Condition 2), 
and 0 ≡ kn mod n•k (Condition 3).  The theorem below claims there always exist such a k for any 
n≥2.  The associated lemma identifies one such k as n!. 
 
Theorem A.  For any number of players (n), where n ≥ 2, there exists a selection for k satisfying 0 
≡ kn mod n! (Condition 1), k≥2 (Condition 2), and 0 ≡ kn mod n•k (Condition 3). 
 
Proof.  Let k = n!.  Because n ≥ 2, and k=n!, k ≥ 2.  This satisfies Condition 2.  For Condition 1 to be 
satisfied, 0 ≡ kn mod n!.  Let r1 ≡ kn mod n!.  Substituting n! for k yields r1 ≡ (n!)n mod n!. Because 
(n!)n is divisible by n!, as shown below, Condition 1 is satisfied. 

( ) ( ) 1!
!
! −= n

n

n
n
n

 is an integer value.  There is no remainder, r1=0. 
 
For Condition 3 to be satisfied, 0 ≡ kn mod n•k.  Let r3 ≡ kn mod n•k.  Substituting n! for k yields r3 
≡ (n!)n mod n•(n!). Because (n!)n is divisible by n•n!, as shown below, Condition 3 is satisfied. 

( ) ( ) ( ) ( ) 2
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n
nn
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n

n
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n
 is an integer value, so r3=0. 

 
 
Lemma B.  For any number of players (n), where n ≥ 2, a selection of k=n! satisfies 0 ≡ kn mod n! 
(Condition 1), k≥2 (Condition 2), and 0 ≡ kn mod n•k (Condition 3). 
 
Example.  Figure 8 shows the minimum selection for k that satisfies Conditions 1, 2 and 3, for n = 
2 to 6 players. For n=2 players, where each player has k=2 choices, there are kn=4 possible 
configurations, namely {a1b1, a2b1, a2b1, a2b2}.  There are n•k=4 tokens in total and n!=2 possible 
sequences, namely ab and ba.  The number of configurations is divisible by the number of 
sequences (0 ≡ 4 mod 2) and the number of configurations is divisible by the number of token (0 ≡ 
4 mod 4).   
 
Example.  In Figure 8, the selection of k for n=2 and 3 are n!, but for n=4, 5 and 6, a value for k 
smaller than n! was found to satisfy Conditions 1, 2 and 3.  In these cases, selecting k to be n! would 
also satisfy the Conditions 1, 2 and 3.  Results where k=n! are shown in Figure 20.   
 
6. Once the members of the set of all possible configurations are assigned to members of the set of 
all possible sequences, the tokens should be evenly distributed across all token positions in 
sequences.  There should not exist a token appearing in more positions than any other token.  This is 
identified as Condition 4, “the Token Position Condition.”   
 
Condition 4 (“Token Position”).  For all tokens tj to be evenly distributed over the positions px of 
the set of sequences, it is sufficient and necessary that:  count(tj, px)= kn/(k•n), for each token 
j=1,…,k (assuming each player has k distinct tokens) and for each position x=1,…,n. 
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  Condition 2    Condition 1 Condition 3  
 n k kn n•k n! kn mod n! kn mod n•k  
 2 2 4 4 2 0 0  
 3 6 216 18 6 0 0  
 4 6 1296 24 24 0 0  
 5 30 24300000 150 120 0 0  
 6 30 729000000 180 720 0 0  
Figure 8.  Minimum selection for k that satisfies Conditions 1, 2 and 3, for n = 2 to 6 players.  For n=2 
and 3, k=n!, but for n=4, 5, and 6, k < n!. 
 
7. In comparison, Condition 3 assures there are a proper number of tokens to evenly distribute over 
the set of all possible configurations.  It does not address the positions of the tokens within those 
configurations.  This is addressed by Condition 4.  Suppose Condition 4 is grossly ignored even 
though Conditions 1, 2 and 3 are satisfied, and a token appears in only one position.  Then, the 
player that chooses that token can reliably predict its placement in the final sequence. 
 
Example.  Figure 9 shows an assignment, of all 216 configurations k=6 choices for n=3 players.  
These configurations satisfy Conditions 1, 2 and 3, as described earlier.  In Figure 9, the 
configurations are assigned to sequences cba, bca, cab, acb, bac and abc.  Other assignments are 
possible.  The assignments shown do not satisfy Condition 4 because b3 and b4 appear in the last 
position only, b1 and b6 appear in the middle position only, and b2 and b5 appear in the first positions 
only.  Player b’s token are not evenly distributed across the positions.  As a result, player b can 
dictate his position in the final sequence. 
 
Example.  Figure 10 reports the frequency of each player’s token in each of the token position 
listed in the sequences in Figure 9.  All 36 copies of each token for Players a and c appear evenly 
distributed across the sequence positions – satisfying Condition 3.  But all 36 copies of each of 
Player b’s tokens only appear in single position – failing to satisfy the count requirement of 
Condition 4, which is kn/(k•n) = 12, not 36. 
 
Example.  Figure 11 shows a different assignment of the configurations from Figure 9 such that 
Conditions 1, 2, 3 and 4 are all satisfied.  The frequencies of each player’s token in each token 
position are reported in Figure 12.  Each token, a1,…,a6, b1,…, b6,…, c1, …, c6, appear 12 times in 
each position, which agrees with the count requirement of Condition4, which is 12. 
 
Example.  Figure 13 shows another assignment of the same configurations from Figure 9 and 
Figure 11.  The assignments in Figure 13, like those in Figure 11, satisfy all four conditions. 
 
8. In order to defeat up to n-1 colluding players, assume all but one player agrees to specific values, 
v1, …, vn-1.  The k possible choices for Player n should allow any of the sequences to be equally 
selected by Player n.  If so, the collusion provided no advantage.  All configurations (v1, …, vn-1, vnx) 
for x=1,…,k, should be evenly distributed over the sequences.  This requirement is identified as 
Condition 5, “the Anti-Collusion Condition.” 
 
Condition 5 (“Anti-Collusion”).  Given n players with each player having k choices, let v1 be 
Player 1’s choice, …, vn-1 be Player (n-1)’s choice.  There are k configurations containing these 
specific values, which are characterized by the k choices, vn1, …, vnk.  It is sufficient and necessary 
that each configuration of the form (v1, …, vn-1, vnx), for x=1,…,k, be assigned such that all sequences 
have an equal number of one or more such configurations assigned. 
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Example.  Given 3 players, a, b, and c, with each player having 6 choices, and the assignment of 
configurations to sequences shown in Figure 11, collusion by Players b and c dictates the final 
selection no matter the choice made by Player a.  If Player b selects b6 and Player c selects c1, the 
result is abc regardless of the choice of Player a.  This bias occurs even though the assignments in 
Figure 11 satisfy Conditions 1, 2, 3 and 4.  Figure 11 does not satisfy Condition 5. 
 

  cba [0] bca [1] cab [2] acb [3] bac [4] abc [5] 
 [1]     1: c1 b1 a1      7: b2 c1 a1   13: c1 a1 b3   19: a1 c1 b4   25: b5 a1 c1    31: a1 b6 c1 
 [2]     2: c1 b1 a2      8: b2 c1 a2   14: c1 a2 b3   20: a2 c1 b4   26: b5 a2 c1    32: a2 b6 c1 

I [3]     3: c1 b1 a3      9: b2 c1 a3   15: c1 a3 b3   21: a3 c1 b4   27: b5 a3 c1    33: a3 b6 c1 
 [4]     4: c1 b1 a4    10: b2 c1 a4   16: c1 a4 b3   22: a4 c1 b4   28: b5 a4 c1    34: a4 b6 c1 
 [5]     5: c1 b1 a5    11: b2 c1 a5   17: c1 a5 b3   23: a5 c1 b4   29: b5 a5 c1    35: a5 b6 c1 
 [6]     6: c1 b1 a6    12: b2 c1 a6   18: c1 a6 b3   24: a6 c1 b4   30: b5 a6 c1    36: a6 b6 c1 
 [7]   37: c2 b1 a1    43: b2 c2 a1   49: c2 a1 b3   55: a1 c2 b4   61: b5 a1 c2    67: a1 b6 c2 
 [8]   38: c2 b1 a2    44: b2 c2 a2   50: c2 a2 b3   56: a2 c2 b4   62: b5 a2 c2    68: a2 b6 c2 

II [9]   39: c2 b1 a3    45: b2 c2 a3   51: c2 a3 b3   57: a3 c2 b4   63: b5 a3 c2    69: a3 b6 c2 
 [10]   40: c2 b1 a4    46: b2 c2 a4   52: c2 a4 b3   58: a4 c2 b4   64: b5 a4 c2    70: a4 b6 c2 
 [11]   41: c2 b1 a5    47: b2 c2 a5   53: c2 a5 b3   59: a5 c2 b4   65: b5 a5 c2    71: a5 b6 c2 
 [12]   42: c2 b1 a6    48: b2 c2 a6   54: c2 a6 b3   60: a6 c2 b4   66: b5 a6 c2    72: a6 b6 c2 
 [13]   73: c3 b1 a1    79: b2 c3 a1   85: c3 a1 b3   91: a1 c3 b4   97: b5 a1 c3  103: a1 b6 c3 
 [14]   74: c3 b1 a2    80: b2 c3 a2   86: c3 a2 b3   92: a2 c3 b4   98: b5 a2 c3  104: a2 b6 c3 

III [15]   75: c3 b1 a3    81: b2 c3 a3   87: c3 a3 b3   93: a3 c3 b4   99: b5 a3 c3  105: a3 b6 c3 
 [16]   76: c3 b1 a4    82: b2 c3 a4   88: c3 a4 b3   94: a4 c3 b4 100: b5 a4 c3  106: a4 b6 c3 
 [17]   77: c3 b1 a5    83: b2 c3 a5   89: c3 a5 b3   95: a5 c3 b4 101: b5 a5 c3  107: a5 b6 c3 
 [18]   78: c3 b1 a6    84: b2 c3 a6   90: c3 a6 b3   96: a6 c3 b4 102: b5 a6 c3  108: a6 b6 c3 
 [19] 109: c4 b1 a1  115: b2 c4 a1 121: c4 a1 b3 127: a1 c4 b4 133: b5 a1 c4  139: a1 b6 c4 
 [20] 110: c4 b1 a2  116: b2 c4 a2 122: c4 a2 b3 128: a2 c4 b4 134: b5 a2 c4  140: a2 b6 c4 

IV [21] 111: c4 b1 a3  117: b2 c4 a3 123: c4 a3 b3 129: a3 c4 b4 135: b5 a3 c4  141: a3 b6 c4 
 [22] 112: c4 b1 a4  118: b2 c4 a4 124: c4 a4 b3 130: a4 c4 b4 136: b5 a4 c4  142: a4 b6 c4 
 [23] 113: c4 b1 a5  119: b2 c4 a5 125: c4 a5 b3 131: a5 c4 b4 137: b5 a5 c4  143: a5 b6 c4 
 [24] 114: c4 b1 a6  120: b2 c4 a6 126: c4 a6 b3 132: a6 c4 b4 138: b5 a6 c4  144: a6 b6 c4 
 [25] 145: c5 b1 a1  151: b2 c5 a1 157: c5 a1 b3 163: a1 c5 b4 169: b5 a1 c5  175: a1 b6 c5 
 [26] 146: c5 b1 a2  152: b2 c5 a2 158: c5 a2 b3 164: a2 c5 b4 170: b5 a2 c5  176: a2 b6 c5 

V [27] 147: c5 b1 a3  153: b2 c5 a3 159: c5 a3 b3 165: a3 c5 b4 171: b5 a3 c5  177: a3 b6 c5 
 [28] 148: c5 b1 a4  154: b2 c5 a4 160: c5 a4 b3 166: a4 c5 b4 172: b5 a4 c5  178: a4 b6 c5 
 [29] 149: c5 b1 a5  155: b2 c5 a5 161: c5 a5 b3 167: a5 c5 b4 173: b5 a5 c5  179: a5 b6 c5 
 [30] 150: c5 b1 a6  156: b2 c5 a6 162: c5 a6 b3 168: a6 c5 b4 174: b5 a6 c5  180: a6 b6 c5 
 [31] 181: c6 b1 a1  187: b2 c6 a1 193: c6 a1 b3 199: a1 c6 b4 205: b5 a1 c6  211: a1 b6 c6 
 [32] 182: c6 b1 a2  188: b2 c6 a2 194: c6 a2 b3 200: a2 c6 b4 206: b5 a2 c6  212: a2 b6 c6 

VI [33] 183: c6 b1 a3  189: b2 c6 a3 195: c6 a3 b3 201: a3 c6 b4 207: b5 a3 c6  213: a3 b6 c6 
 [34] 184: c6 b1 a4  190: b2 c6 a4 196: c6 a4 b3 202: a4 c6 b4 208: b5 a4 c6  214: a4 b6 c6 
 [35] 185: c6 b1 a5  191: b2 c6 a5 197: c6 a5 b3 203: a5 c6 b4 209: b5 a5 c6  215: a5 b6 c6 
 [36] 186: c6 b1 a6  192: b2 c6 a6 198: c6 a6 b3 204: a6 c6 b4 210: b5 a6 c6  216: a6 b6 c6 

Figure 9. All 216 possible configurations for k=6 choices and n=3 players from Figure 7 are assigned to 
the n!=6 sequences (columns numbered [0] to [5]) imposing an ordering on each configuration.  The 
assignments form a 2-dimensional array (or table) having 5 columns and 36 rows. 
 
Player a     Player b     Player c    
Token Pos 1 Pos 2 Pos 3  Token Pos 1 Pos 2 Pos 3  Token Pos 1 Pos 2 Pos 3 

a1 12 12 12  b1 0 36 0  c1 12 12 12 
a2 12 12 12  b2 36 0 0  c2 12 12 12 
a3 12 12 12  b3 0 0 36  c3 12 12 12 
a4 12 12 12  b4 0 0 36  c4 12 12 12 
a5 12 12 12  b5 36 0 0  c5 12 12 12 
a6 12 12 12  b6 0 36 0  c6 12 12 12 

Figure 10. Counts of the number of times the tokens of each player appears in each sequence position 
in the configuration assignments shown in Figure 9. 
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  cba [0] bca [1] cab [2] acb [3] bac [4] abc [5]

[1] 1: c1 b1 a1 7: b2 c1 a1 13: c1 a1 b3 19: a1 c1 b4 25: b5 a1 c1 31: a1 b6 c1
 [2] 2: c1 b1 a2  8: b2 c1 a2 14: c1 a2 b3 20: a2 c1 b4 26: b5 a2 c1  32: a2 b6 c1 
I [3] 3: c1 b1 a3  9: b2 c1 a3 15: c1 a3 b3 21: a3 c1 b4 27: b5 a3 c1  33: a3 b6 c1 
 [4] 4: c1 b1 a4  10: b2 c1 a4 16: c1 a4 b3 22: a4 c1 b4 28: b5 a4 c1  34: a4 b6 c1 
 [5] 5: c1 b1 a5  11: b2 c1 a5 17: c1 a5 b3 23: a5 c1 b4 29: b5 a5 c1  35: a5 b6 c1 
 [6] 6: c1 b1 a6  12: b2 c1 a6 18: c1 a6 b3 24: a6 c1 b4 30: b5 a6 c1  36: a6 b6 c1 

[7] 37: c2 b6 a1 43: b1 c2 a1 49: c2 a1 b2 55: a1 c2 b3 61: b4 a1 c2 67: a1 b5 c2
 [8] 38: c2 b6 a2  44: b1 c2 a2 50: c2 a2 b2 56: a2 c2 b3 62: b4 a2 c2  68: a2 b5 c2 

II [9] 39: c2 b6 a3  45: b1 c2 a3 51: c2 a3 b2 57: a3 c2 b3 63: b4 a3 c2  69: a3 b5 c2 
 [10] 40: c2 b6 a4  46: b1 c2 a4 52: c2 a4 b2 58: a4 c2 b3 64: b4 a4 c2  70: a4 b5 c2 
 [11] 41: c2 b6 a5  47: b1 c2 a5 53: c2 a5 b2 59: a5 c2 b3 65: b4 a5 c2  71: a5 b5 c2 
 [12] 42: c2 b6 a6  48: b1 c2 a6 54: c2 a6 b2 60: a6 c2 b3 66: b4 a6 c2  72: a6 b5 c2 

[13] 73: c3 b5 a1 79: b6 c3 a1 85: c3 a1 b1 91: a1 c3 b2 97: b3 a1 c3 103: a1 b4 c3
 [14] 74: c3 b5 a2  80: b6 c3 a2 86: c3 a2 b1 92: a2 c3 b2 98: b3 a2 c3  104: a2 b4 c3 

III [15] 75: c3 b5 a3  81: b6 c3 a3 87: c3 a3 b1 93: a3 c3 b2 99: b3 a3 c3  105: a3 b4 c3 
 [16] 76: c3 b5 a4  82: b6 c3 a4 88: c3 a4 b1 94: a4 c3 b2 100: b3 a4 c3  106: a4 b4 c3 
 [17] 77: c3 b5 a5  83: b6 c3 a5 89: c3 a5 b1 95: a5 c3 b2 101: b3 a5 c3  107: a5 b4 c3 
 [18] 78: c3 b5 a6  84: b6 c3 a6 90: c3 a6 b1 96: a6 c3 b2 102: b3 a6 c3  108: a6 b4 c3 

[19] 109: c4 b4 a1 115: b5 c4 a1 121: c4 a1 b6 127: a1 c4 b1 133: b2 a1 c4 139: a1 b3 c4
 [20] 110: c4 b4 a2 116: b5 c4 a2 122: c4 a2 b6 128: a2 c4 b1 134: b2 a2 c4  140: a2 b3 c4 

IV [21] 111: c4 b4 a3 117: b5 c4 a3 123: c4 a3 b6 129: a3 c4 b1 135: b2 a3 c4  141: a3 b3 c4 
 [22] 112: c4 b4 a4 118: b5 c4 a4 124: c4 a4 b6 130: a4 c4 b1 136: b2 a4 c4  142: a4 b3 c4 
 [23] 113: c4 b4 a5 119: b5 c4 a5 125: c4 a5 b6 131: a5 c4 b1 137: b2 a5 c4  143: a5 b3 c4 
 [24] 114: c4 b4 a6 120: b5 c4 a6 126: c4 a6 b6 132: a6 c4 b1 138: b2 a6 c4  144: a6 b3 c4 

[25] 145: c5 b3 a1 151: b4 c5 a1 157: c5 a1 b5 163: a1 c5 b6 169: b1 a1 c5 175: a1 b2 c5
 [26] 146: c5 b3 a2 152: b4 c5 a2 158: c5 a2 b5 164: a2 c5 b6 170: b1 a2 c5  176: a2 b2 c5 

V [27] 147: c5 b3 a3 153: b4 c5 a3 159: c5 a3 b5 165: a3 c5 b6 171: b1 a3 c5  177: a3 b2 c5 
 [28] 148: c5 b3 a4 154: b4 c5 a4 160: c5 a4 b5 166: a4 c5 b6 172: b1 a4 c5  178: a4 b2 c5 
 [29] 149: c5 b3 a5 155: b4 c5 a5 161: c5 a5 b5 167: a5 c5 b6 173: b1 a5 c5  179: a5 b2 c5 
 [30] 150: c5 b3 a6 156: b4 c5 a6 162: c5 a6 b5 168: a6 c5 b6 174: b1 a6 c5  180: a6 b2 c5 

[31] 181: c6 b2 a1 187: b3 c6 a1 193: c6 a1 b4 199: a1 c6 b5 205: b6 a1 c6 211: a1 b1 c6
 [32] 182: c6 b2 a2 188: b3 c6 a2 194: c6 a2 b4 200: a2 c6 b5 206: b6 a2 c6  212: a2 b1 c6 

VI [33] 183: c6 b2 a3 189: b3 c6 a3 195: c6 a3 b4 201: a3 c6 b5 207: b6 a3 c6  213: a3 b1 c6 
 [34] 184: c6 b2 a4 190: b3 c6 a4 196: c6 a4 b4 202: a4 c6 b5 208: b6 a4 c6  214: a4 b1 c6 
 [35] 185: c6 b2 a5 191: b3 c6 a5 197: c6 a5 b4 203: a5 c6 b5 209: b6 a5 c6  215: a5 b1 c6 
 [36] 186: c6 b2 a6 192: b3 c6 a6 198: c6 a6 b4 204: a6 c6 b5 210: b6 a6 c6  216: a6 b1 c6 

Figure 11. Assignments of the 216 possible configurations from k=6 token choices for n=3 players, a, b 
and c,  to the n!=6 sequences (columns numbered [0] to [5]) such that Condition 4 (and Conditions 1,2 
and 3) is satisfied.   
 
 
Player a     Player b     Player c    
Token Pos 1 Pos 2 Pos 3  Token Pos 1 Pos 2 Pos 3  Token Pos 1 Pos 2 Pos 3 

a1 12 12 12  b1 12 12 12  c1 12 12 12 
a2 12 12 12  b2 12 12 12  c2 12 12 12 
a3 12 12 12  b3 12 12 12  c3 12 12 12 
a4 12 12 12  b4 12 12 12  c4 12 12 12 
a5 12 12 12  b5 12 12 12  c5 12 12 12 
a6 12 12 12  b6 12 12 12  c6 12 12 12 

Figure 12. Counts of the number of times the tokens of each player appears in each sequence position 
in the configuration assignments shown in Figure 11.  Each token, a1,…,a6,b1,…,b6,c1,…,c6,  appears 12 
times in each token position. 
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  cba [0] bca [1] cab [2] acb [3] bac [4] abc [5]
 [1] 1: c1 b1 a1  7: b2 c1 a1 13: c1 a1 b3 19: a1 c1 b4 25: b5 a1 c1  31: a1 b6 c1 
 [2] 2: c1 b6 a2  8: b1 c1 a2 14: c1 a2 b2 20: a2 c1 b3 26: b4 a2 c1  32: a2 b5 c1 
I [3] 3: c1 b5 a3  9: b6 c1 a3 15: c1 a3 b1 21: a3 c1 b2 27: b3 a3 c1  33: a3 b4 c1 
 [4] 4: c1 b4 a4  10: b5 c1 a4 16: c1 a4 b6 22: a4 c1 b1 28: b2 a4 c1  34: a4 b3 c1 
 [5] 5: c1 b3 a5  11: b4 c1 a5 17: c1 a5 b5 23: a5 c1 b6 29: b1 a5 c1  35: a5 b2 c1 
 [6] 6: c1 b2 a6  12: b3 c1 a6 18: c1 a6 b4 24: a6 c1 b5 30: b6 a6 c1  36: a6 b1 c1 
 [7] 37: c2 b6 a1  43: b1 c2 a1 49: c2 a1 b2 55: a1 c2 b3 61: b4 a1 c2  67: a1 b5 c2 
 [8] 38: c2 b5 a2  44: b6 c2 a2 50: c2 a2 b1 56: a2 c2 b2 62: b3 a2 c2  68: a2 b4 c2 
II [9] 39: c2 b4 a3  45: b5 c2 a3 51: c2 a3 b6 57: a3 c2 b1 63: b2 a3 c2  69: a3 b3 c2 
 [10] 40: c2 b3 a4  46: b4 c2 a4 52: c2 a4 b5 58: a4 c2 b6 64: b1 a4 c2  70: a4 b2 c2 
 [11] 41: c2 b2 a5  47: b3 c2 a5 53: c2 a5 b4 59: a5 c2 b5 65: b6 a5 c2  71: a5 b1 c2 
 [12] 42: c2 b1 a6  48: b2 c2 a6 54: c2 a6 b3 60: a6 c2 b4 66: b5 a6 c2  72: a6 b6 c2 
 [13] 73: c3 b5 a1  79: b6 c3 a1 85: c3 a1 b1 91: a1 c3 b2 97: b3 a1 c3  103: a1 b4 c3 
 [14] 74: c3 b4 a2  80: b5 c3 a2 86: c3 a2 b6 92: a2 c3 b1 98: b2 a2 c3  104: a2 b3 c3 

III [15] 75: c3 b3 a3  81: b4 c3 a3 87: c3 a3 b5 93: a3 c3 b6 99: b1 a3 c3  105: a3 b2 c3 
 [16] 76: c3 b2 a4  82: b3 c3 a4 88: c3 a4 b4 94: a4 c3 b5 100: b6 a4 c3  106: a4 b1 c3 
 [17] 77: c3 b1 a5  83: b2 c3 a5 89: c3 a5 b3 95: a5 c3 b4 101: b5 a5 c3  107: a5 b6 c3 
 [18] 78: c3 b6 a6  84: b1 c3 a6 90: c3 a6 b2 96: a6 c3 b3 102: b4 a6 c3  108: a6 b5 c3 
 [19] 109: c4 b4 a1 115: b5 c4 a1 121: c4 a1 b6 127: a1 c4 b1 133: b2 a1 c4  139: a1 b3 c4 
 [20] 110: c4 b3 a2 116: b4 c4 a2 122: c4 a2 b5 128: a2 c4 b6 134: b1 a2 c4  140: a2 b2 c4 

IV [21] 111: c4 b2 a3 117: b3 c4 a3 123: c4 a3 b4 129: a3 c4 b5 135: b6 a3 c4  141: a3 b1 c4 
 [22] 112: c4 b1 a4 118: b2 c4 a4 124: c4 a4 b3 130: a4 c4 b4 136: b5 a4 c4  142: a4 b6 c4 
 [23] 113: c4 b6 a5 119: b1 c4 a5 125: c4 a5 b2 131: a5 c4 b3 137: b4 a5 c4  143: a5 b5 c4 
 [24] 114: c4 b5 a6 120: b6 c4 a6 126: c4 a6 b1 132: a6 c4 b2 138: b3 a6 c4  144: a6 b4 c4 
 [25] 145: c5 b3 a1 151: b4 c5 a1 157: c5 a1 b5 163: a1 c5 b6 169: b1 a1 c5  175: a1 b2 c5 
 [26] 146: c5 b2 a2 152: b3 c5 a2 158: c5 a2 b4 164: a2 c5 b5 170: b6 a2 c5  176: a2 b1 c5 

V [27] 147: c5 b1 a3 153: b2 c5 a3 159: c5 a3 b3 165: a3 c5 b4 171: b5 a3 c5  177: a3 b6 c5 
 [28] 148: c5 b6 a4 154: b1 c5 a4 160: c5 a4 b2 166: a4 c5 b3 172: b4 a4 c5  178: a4 b5 c5 
 [29] 149: c5 b5 a5 155: b6 c5 a5 161: c5 a5 b1 167: a5 c5 b2 173: b3 a5 c5  179: a5 b4 c5 
 [30] 150: c5 b4 a6 156: b5 c5 a6 162: c5 a6 b6 168: a6 c5 b1 174: b2 a6 c5  180: a6 b3 c5 
 [31] 181: c6 b2 a1 187: b3 c6 a1 193: c6 a1 b4 199: a1 c6 b5 205: b6 a1 c6  211: a1 b1 c6 
 [32] 182: c6 b1 a2 188: b2 c6 a2 194: c6 a2 b3 200: a2 c6 b4 206: b5 a2 c6  212: a2 b6 c6 

VI [33] 183: c6 b6 a3 189: b1 c6 a3 195: c6 a3 b2 201: a3 c6 b3 207: b4 a3 c6  213: a3 b5 c6 
 [34] 184: c6 b5 a4 190: b6 c6 a4 196: c6 a4 b1 202: a4 c6 b2 208: b3 a4 c6  214: a4 b4 c6 
 [35] 185: c6 b4 a5 191: b5 c6 a5 197: c6 a5 b6 203: a5 c6 b1 209: b2 a5 c6  215: a5 b3 c6 
 [36] 186: c6 b3 a6 192: b4 c6 a6 198: c6 a6 b5 204: a6 c6 b6 210: b1 a6 c6  216: a6 b2 c6 

Figure 13.  Assignments of the 216 configurations for n=3 players (a, b, c), with each player having 6 
choices, to the n!=6 sequences such that Condition 1, 2, 3, 4 and 5 are all satisfied.  This table describes 
a RandomOrder function. 
 
9. Satisfying Condition 4 assures that no sequence has a token appearing more often than any other 
token.  But it does not address a situation in which 2 or more tokens appear in more configurations 
than any other 2 tokens.   
 
Example.  Figure 13 shows another assignment of the same configurations in Figure 11, but in 
Figure 13 the assignments satisfy Condition 5, as well as Conditions 1 through 4.  Collusion by 
Player b and c does not dictate the outcome.  If Player b selects b6 and Player c selects c1, the results 
depends on Player a.  If Player a selects: a1, abc results; a2, cba results; a3, bca results; a4, cab results; 
a5, acb results; and, a6, bac results. 
 
10. A corollary to Condition 5 id 0 ≡ k mod n! because there must be sufficient numbers of choices 
to distribute the configurations described in Condition 5.  Condition 2 is updated so that all players 
have an equal number of choices congruent to n!. 
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1. Configurations 0 ≡ (k1 • … • kn) mod n! 
2. Choices k = k1 = … = kn 
3. Tokens 0 ≡ kn mod (n • k) 
4. Token Position count(tj, px) = kn / (k• n)  

for each token j=1,…,k•n; and for each position x=1,…,n 
5. Anti-Collusion Let v1, …, vn-1 be selected choices for Players 1,…, n-1. Distribute 

configurations (v1,…,vn-1,vnx), for x=1,…,n where vnx are choices for 
Player n, evenly over the sequences. 

Figure 14.  Summary of the 5 conditions that help assure random selection by n players. 
 
11. Figure 14 lists a summary of the 5 conditions presented in this subsection.  Adherence to these 
conditions helps assure overall random selection.   
 
12. The first three conditions make sure the choices available to players combine into 
configurations that are evenly distributed over the set of possible selections.  Condition 5 assures 
the selections cannot be biased by collusion.  Together, Conditions 1, 2, 3, and 5 (not including 4) 
are generally applicable and are not specific to the selection of sequences.  For example, a function 
satisfying Conditions 1, 2, 3 and 5 can be used to enable n players to select a random integer 
between 0 and (n!-1). 
 
13. Condition 4, however, is specific to the semantics of selecting sequences.  The relationship 
between the position of players occurring within a selected sequence and the choices made by 
players to select the sequence must not be related. 
 
14. A function satisfying the five conditions summarized in Figure 14 is termed a “RandomOrder 
function,” the details of which are the presented in the next section. 
 

4. Class of RandomOrder Functions 
 
This section begins (Section 4.1) by constructing a function that adheres to the 5 conditions 
presented in the previous section.  In Section 4.2, the class of RandomOrder functions is introduced.  
This section ends with a proof that the probability of a RandomOrder function selecting any 
particular permutation is not zero and is the same for all permutations.  Additional discussion about 
collusion is also provided. 
 

4.1. Construction of a Function That Satisfies the 5 Conditions 
 
1. In this subsection, a function is constructed in three parts that adheres to the 5 conditions 
presented in the previous section.  First, an algorithm is introduced that generates all possible 
configurations and assigns them to sequences such that Conditions 1, 2, and 3 are satisfied.  The 
algorithm is then modified to also satisfy Condition 4.  Finally, the algorithm is modified again to 
satisfy all 5 conditions. 
 
2. Figure 15 lists an algorithm named BasicAssign() that given n players, with each player having 
n! choices, produces a 2-dimensional array (or table) in which all possible combinations of token 
choices are assigned to sequences with an even distribution.  The 2-dimensional array is named 
assigns, and it has n! columns, one for each sequence, and (kn/n!) rows.  A cell, assigns[row,col] 
contains a configuration. 
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3. The primary construction of BasicAssign() consists of n nested counting loops (lines 2 through 
6).  Each loop cycles through a player’s token choices.  By nesting these loops, each possible 
combination of choices is enumerated, one at a time, and processed in lines 7 through 10. 
 
Method: BasicAssign() 

 
 

Input: (1) n players, n ≥ 2; (2) each player has k=n! choices; (3) player choices are enumerated 
as tokens vpx for player p’s choice of token x, for 1 ≤ x ≤ n!; and, (4) an array of the 
permutations of players named sequences having one permutation per array position. 
 

 

Output: a table (2-dimensional array)  named assigns having n! columns, one for each 
sequence, and (kn/n!) rows.  A cell, assigns[row, col], contains a configuration 
assigned to the sequence associated with col. 
 

 

 1. let i = 1, j = 0  
 2. for pn = 1 to n! do:  
 3. ...  
 4. for p3 = 1 to n! do:  
 5. for p2 = 1 to n! do:  
 6. for p1 = 1 to n! do:  
 7. configi = (vP1, vP2, …, vPn)  
 8. assigns[j/n!, j mod n!] =  configi  // uses only integer part of j/n 
 9. i = i+1  
 10. j = j+1  
Figure 15.  BasicAssign() Algorithm.  This algorithm assigns configurations to sequences for n players, 
with each player having n! choices using n nested counting loops to generate each possible 
combination.   
 
4. Line 7 temporarily stores the combination generated within an iteration of the loops as the i-th 
configuration.  The i-th configuration is then stored in assigns at row int((i-1)/n!), where int() 
refers to the integer part of the division, and at column (i-1) mod n!.  See line 8 in which j is i-1.  
The first n! configurations are assigned to column [0], the first sequence.  The second batch of 
configurations, for i=(n!+1),…, 2•n! are stored in column [1], the second sequence.  These batch 
assignments continue through the sequences.  The configurations generated for i=(n!-1)•n!+1,…, 
n!2 are stored in column [n!-1], the last sequence.  Afterwards, batch assignments begin again with 
column [0] and continue cycling through the sequences in this manner until i=(n!)n. 
 
Example.  An example of assignments made by BasicAssign() is shown in Figure 9 for n=3 players, 
where p1 (line 6 in Figure 15) is player a, p2 (line 5 in Figure 15) is player b, and p3 (line 4 in 
Figure 15) is player c.  Only those three loops are used.  Figure 9 lists the contents of the resulting 
assigns array.  There are 6 columns indexed [0] to [5], one for each sequence.  There are 36 rows.  
Each cell shows the assigned configuration along with the order (i) in which the configuration was 
assigned (see line 8 in Figure 15).  assigns[1,0] has c1b1a1 and was entered in the array first; 
assigns[1,1] has b2c1a1 and was entered 7th; and, assigns[36,5] has a6b6c6 and was entered last. 
 
Lemma C. Executing the BasicAssign() algorithm with n players, where each player has n! token 
choices, produces a table of configurations assigned to sequences that satisfies Conditions 1, 2 and 
3. 
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Proof sketch. 
Because the number of choices was selected to be n!, there are sufficient number of tokens and 
configurations to be evenly distributed; see Lemma B.  All possible combinations of choices are 
generated by the nested loops, totaling (n!)n configurations.  Batches of sequentially generated 
unique configurations are assigned to sequences, where the size of each batch is n!.  Because 0 ≡ 
(n!)n mod n!, there is an even distribution of batches to sequences. 
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Figure 16.  The frequencies at which BasicAssigns() in Figure 15 cycles through tokens for Player P1 
(a), Player P2 (b) and Player P3 (c) while enumerating all possible combinations (configurations).  
These frequencies are 1 token for each configuration for Player P1, 1 token for every 6 configurations 
for Player P2, and 1 token for every 36 configurations for Player P3. 
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5. The nested loops in BasicAssign() provide regularity in the frequency at which a player’s tokens 
are cycled.  The resulting pattern appears in the configuration assignments, thereby thwarting the 
“randomness” of the assignments of tokens to token positions.  Because BasicAssign() assigns 
batches of configurations to the same sequence, where each batch contains n! configurations, 
players having tokens cycled at a frequency congruent to 1 token for every n! configurations (e.g., 
Player 2) will not have tokens evenly distributed over token positions within sequences.   
 
Example.  Figure 16 shows the frequencies at which BasicAssign() cycles through player tokens in 
generating the table in Figure 9.  Player P2 (b) has a frequency of 1 token for every 6 (which is n!) 
configurations.  As a result, each batch of configurations has the same token for Player P2 (b) and 
these are configurations are all assigned to the same sequence.  Figure 10 reports the frequencies of 
tokens in sequences and shows Player P2 (b) failing to have its tokens evenly distributed over token 
positions.  As discussed in Section 3.2, the table in Figure 9 therefore fails to satisfy Condition 4. 
 
6. The ShiftGroups() algorithm, listed in Figure 17, corrects the improper distribution of tokens 
resulting from BasicAssign().  This is done by shifting batches of configurations so they are 
reassigned to different sequences.  In BasicAssign(), there will exist a player for which a specific 
token appears exclusively with a specific sequence, for all tokens and sequences.  These tokens 
need to be redistributed across the sequences.  ShiftGroups() accomplishes this by shifting batches 
of configurations (of size n!) to other sequences, in a horizontal rotary pattern. so that a batch 
originally assigned to the sequence having column [x] will be reassigned to all other sequences for 
x=0,…,(n!-1). 
 
Example.  An example of assignments made by BasicAssign(), listed in Figure 15, is shown in 
Figure 9 for n=3 players, a, b, and c.  Figure 9 lists the contents of the resulting assigns array.  
There are 6 columns indexed [0] to [5], one for each sequence, and 36 rows.  As noted in Section 
3.2, the tokens for player b are not evenly distributed in token positions.  Summary counts are 
available in Figure 10. Figure 11 then shows the contents of the assigns array after ShiftGroups(), 
listed in Figure 17, executes.  Batches of configurations are reassigned to sequences.  As 
summarized in Figure 12, the tokens are now even distributed across token positions, thereby 
satisfying Condition 4.   
 
Method: ShiftGroups() 

 
 

Input: 2-dimensional array assigns resulting from BasicAssign() algorithm in Figure 15 for n 
players, having n! columns, one for each sequence, and (n!)(n-1) /n! rows. 

 

Output: modified assigns table such that batches of configurations are reassigned (“shifted”) 
to different sequences in order to evenly distribute token positions (Condition 4). 
 

 

 1. let shift = 1  
 2. let row = n!  
 3. for x = 1 to shift do: // increasing number of shifts  
 4. let temp = assigns[row+1, n!-1] … assigns[row+n!, n!-1] // save batch of configurations 
 5. for col = n!-2 down to 0 do:  
 6. move assigns[row+1, col] … assigns[row+n!, col]  

    to assigns[row+1, col+1] … assigns[row+n!, col+1] 
// shift right one column 

 7. move temp to assigns[row+1, 0] … assigns[row+n!, 0] // store in first column 
 8. shift = shift+1  
 9. row = row+n!  
 10. if row < (n!)(n-1) then go to step 3  
Figure 17.  ShiftGroups() Algorithm redistributes tokens in the assigns table from BasicAssign() in 
Figure 15, by reassigning batches of configurations to other sequences in a rotary horizontal shift. 
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Example.  Figure 9 shows the contents of assigns before ShiftGroups(), listed in Figure 17, 
executes and Figure 11 shows the contents of assigns afterwards.  The rightmost column in the 
before listing (Figure 9) has been highlighted to show how batches of configurations are shifted in 
ShiftGroups().  For illustration, rows are grouped and numbered I through VI where each group has 
n! rows.  Group I has no shifting performed.  Group II has a single right shift performed.  The effect 
of shifting a group involves moving the batch from column [0] to column [1], the batch from 
column [1] to column [2], and so on.  The batch in the last column [5] shifts to the first column [0].  
As the groups advance, more iterations of shifting is done.  Group III has two right shifts 
performed; Group IV has three, and so on.  Group VI, the final group, has five shifts. 
 
Lemma D. Executing the BasicAssign() algorithm with n players, where each player has n! token 
choices, and then executing ShiftGroups() produces a table of configurations assigned to sequences 
that satisfies Conditions 1, 2, 3 and 4. 
 
Proof sketch: 
BasicAssign() satisfies Conditions 1, 2 and 3; see Lemma C.  The shifting operations performed by 
ShiftGroups() does not alter the number of configurations, choices or tokens, or the fact that all 
configurations are distributed evenly across the sequences.  For each player having its tokens 
specific to a sequence, the effect of redistributing n! batches of these configurations to every other 
sequence assures the tokens are no longer specific to a particular sequence and that the tokens are 
evenly distributed across the sequences.  Further, the sequences themselves, by virtue of being 
permutations, distribute the assigned tokens across each token position.   
 
 
7. The nested loops in BasicAssign() provide another regularity in the frequency at which a player’s 
tokens are cycled that is problematical.  Because BasicAssign() assigns batches of configurations to 
the same sequence, where each batch contains n! configurations, a player having tokens cycled at a 
frequency of 1 token for each configuration (e.g., Player 1) is vulnerable to collusion by n-1 players, 
because all of its tokens appear in the configurations of the batch and all the configurations in the 
batch are assigned to the same sequence.  This makes the player’s choice unnecessary to 
determining the outcome. 
 
Method: ShiftRows() 

 
 

Input: 2-dimensional array assigns resulting from ShiftGroups() algorithm in Figure 17 for n 
players, having n! columns, one for each sequence, and (n!)n /n! rows. 
 

 

Output: modified assigns table such that configurations are reassigned (“shifted”) to different 
sequences on the same row in order to combat collusion (Condition 5). 
 

 

 1. let shift = 0  
 2. for row = 1 to (n!)(n-1) do:  
 3. for x = 1 to shift mod n! do:  
 4. let temp = assigns[row, n!-1]  
 5. for col = n!-2 down to 0 do:  
 6. move assigns[row, col] to assigns[row, col+1]  
 7. move temp to assigns[row, 0]  
 8. shift = shift+1  
Figure 18.  ShiftRows() Algorithm redistributes configurations that were originally assigned as a 
batch of size n!. to one sequence so that the configurations are reassigned across all sequences. 
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8. The ShiftRows() algorithm, listed in Figure 18, provides anti-collusion protection by 
redistributing configurations within batches (of size n!) across sequences.  Configurations within 
the batch are redistributed so that one configuration in the batch is assigned to each sequence.  
Without this redistribution, each batch is of the form (v1x, v2, …, vn) where v2,…,vn are the same 
exact tokens in each configuration in the batch, and v1x for x=1,…,n! are the tokens of Player 1.  If 
Players 2 through n all collude and select tokens v2,…,vn, then no matter the token selected by 
Player 1, the same sequence results.  By redistributing the configurations within the batch, such 
collusion is thwarted. 
 
Example. Figure 11 shows the contents of the assigns array after ShiftGroups(), listed in Figure 
17, executes for n=3 players, with each player having 6 choices.  Notice the topmost batch of n! 
configurations assigned to sequence [5] abc.  Each of these configurations are of the form (aj, b6, c1) 
for j=1,…,6.  If Player b selects b6 and Player a selects c1, the outcome is abc no matter the selection 
of Player a.  Figure 13 shows the contents of the assigns array after ShiftRows(), listed in Figure 
18, executes.  The configurations that had previously been within the batch are now distributed 
across the sequences.  Now, no two players can dictate the outcome.  As long as any one player 
makes a random local choice, the outcome will be randomly selected. 
 
Lemma E. Executing the BasicAssign() algorithm with n players, where each player has n! token 
choices, and then executing ShiftGroups() followed by ShiftRows() produces a table of 
configurations assigned to sequences that satisfies Conditions 1, 2, 3, 4, and 5. 
 
Proof sketch. 
BasicAssign() and ShiftGroups() satisfies Conditions 1, 2, 3 and 4; see Lemma D.  The shifting of 
configuration batches across sequences performed in ShiftRows() does not alter the number of 
configurations, tokens, or choices, or the fact that all configurations are evenly distributed across all 
sequences.  Token position assignments are preserved because specific tokens are further 
distributed evenly from within a batch to a single sequence to one configuration for each sequence.  
Therefore, Condition 4 is satisfied.   
 
Finally, there no longer exists any set of configurations of size n! assigned to the same sequence in 
which all but one token remains the same.  Further, for every subset of tokens, all combinations of 
the remaining tokens are distributed across the sequences.  This is guaranteed by the frequencies of 
the cycles in the original assignments and the subsequent shifting. 
 
 
9. Figure 19 provides the complete function that sequentially executes BasicAssign(), 
ShiftGroups(), and then ShiftRows().  The function is called Table-f.  While the construction of 
Table-f in this subsection provided insight into how to satisfy the conditions, Table-f itself is not 
practical for real-world use.  Listing all possible input-outcome pairs is prohibitive, even for 
relatively small values of n.  Figure 20 shows how the size of the table (which has kn cells) grows as 
n increases when k=n!.  More practical functions are needed, so after the introduction of the class of 
RandomOrder functions and some related theoretical discussion in the next subsections, attention 
returns to examining RandomXOR (bitwise exclusive-OR from Section 2.3) and ModSum 
(modulus of the sum from Section 2.4) as possible real-world solutions. 
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Method: Table-f 
 

 

Input: (1) n players, n ≥ 2; (2) each player has k=n! choices; (3) player choices are enumerated 
as tokens vpx for player p’s choice of token x, for 1 ≤ x ≤ n!; and, (4) an array of the 
permutations of players named sequences having one permutation per array position. 
 

 

Output: a table (2-dimensional array)  named assigns having n! columns, one for each 
sequence, and (kn/n!) rows.  A cell, assigns[row, col], contains a configuration 
assigned to the sequence associated with col.  The assignments of configurations to 
sequences in assigns satisfies Conditions 1, 2, 3, 4 and 5. 
 

 

 1. BasicAssigns() // see Figure 15 
 2. ShiftGroups() // see Figure 17 
 3. ShiftRows() // see Figure 18 
Figure 19.  Table-f, a RandomOrder function.  
 
 

n k k n n*k n ! k n mod n ! k n mod n *k
2 2 4 4 2 0 0
3 6 216 18 6 0 0
4 24 331776 96 24 0 0
5 120 24883200000 600 120 0 0
6 720 139314069504000000 4320 720 0 0
7 5040 82606411253903500000000000 35280 5040 0 0  

Figure 20.  Given n players, each player having n! choices, the number of configurations (kn) grows 
quickly ever for small values of n. 
 

4.2. RandomOrder Functions 
 
1. This subsection introduces the class of RandomOrder functions.  Let TOKS be the set of player 
choices, CONFIGS be the set of all possible configurations realized from the combinations of those 
choices, and SEQS be the set of the permutations of the players.  Let f be a function from TOKS to 
SEQS (f:TOKS→SEQS) satisfying Conditions 1, 2, 3, 4 and 5.  Figure 21 denotes these sets and the 
mapping of f. 
 

f

g hTOKS CONFIGS SEQS

 
Figure 21.  A RandomOrder function (f) maps player choices (TOKS) to sequences (SEQS).  f can also 
be the composition of h, which maps configurations to sequences (SEQS), and g, which maps player 
choices (TOKS) to configurations (CONFIGS). 
 
2. For n players, a RandomOrder function, f, is an n-ary function of the form f(v1,…,vn) = r , where 
f satisfies Conditions 1, 2, 3, 4 and 5, v1∈TOKS is a token chosen by Player 1, …, and vn∈TOKS is a 
token chosen by Player n, and r∈SEQS is a permutation of the n players.  The inverse of f, written f-1, 
is defined such that f-1:SEQS→TOKS and v1,…,vn∈ f-1(f(v1,…,vn)) for v1∈TOKS, …, vn∈TOKS. 
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Example. Figure 13 lists in tabular form a RandomOrder function, f,  for 3 players, a, b, and c, 
where each player has 6 choices, a1,…,a6,b1,…,b6,c1,…,c6.  It shows that f(a1, b3, c5)=cba; f(a2, b1, 
c2)=cab; and, f(a1, b1, c1)=cba.  Figure 19 defines Table-f, which is a RandomOrder function that 
generates the table in Figure 13. 
 
3. Players select tokens from subsets of TOKS.  Given n players, each player Pi selects tokens from 
the set TOKSi, 1≤ i ≤n and  U

n

j
j

1=

= TOKSTOKS . 

 
4. Let g be an n-ary function on TOKS1 × … × TOKSn (g:TOKS →CONFIGS) such that g maps all 
legal combinations of the elements of TOKS to CONFIGS.  The inverse of g, written g-1, is defined 
such that g-1:CONFIGS→TOKS and v1,…,vn∈ g-1(g(v1,…,vn)) for v1∈TOKS, …, vn∈TOKS. 
 
5. Let h be a function, h:CONFIGS→SEQS, satisfying Conditions 4 and 5.  The function h is 
responsible for assigning configurations to sequences. The inverse of h, written h-1, is defined such 
that h-1:SEQS→CONFIGS and c∈ h-1(h(c)) for c∈CONFIGS. 
 
6. A RandomOrder function, f, is the composition of h and g defined by f(v1,…,vn) = h(g(v1,…,vn)).  
The mappings of these functions are shown in Figure 21.  It is sometimes convenient to think of the 
properties of f by considering those of g and h separately. 
 

4.3. Theoretical Test of Randomness 
 
1. The primary goal of a RandomOrder function is to assist n players in selecting permutations of 
themselves without bias.  It is important to therefore predict how well a RandomOrder function will 
behave.  Theorem F claims that a RandomOrder function can select a permutation with probability 
1/n!.  
 
Theorem F.  Let f be a RandomOrder function for n players, each player having n! local choices 
that combine to jointly select one of n! permutations of themselves.  Let v1 be the choice made by 
Player 1, …, vn be the choice made by Player n.  Assuming at least one player, Player i, selects vi 
randomly, 1 ≤  i ≤ n, the probability of a permutation, ri = f(v1,…,vn), being selected is 1/n! for 
i=1,…,n!. 
 
Proof Sketch. 
This is a proof by contradiction.  There are several cases to consider.  The definitions found in 
Section 4.2 and the conditions described in Section 3.2 are used throughout this proof. 
 
Assume the probability of ri = f(v1,…,vn) being selected is not 1/n!. 
 
Case 1. The number of sequences is not n!. 
By definition, SEQS is the set of all permutations of the players. For n players, |SEQS| = n!. 
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Case 2. Either: (a) not all combinations of tokens appear in CONFIGS; or, (b) not all combinations of 
tokens map from CONFIGS to SEQS. 
Let CONFIGS′ be the union of all h-1(rj) for all rj∈SEQS.  The idea is to determine the size of 
CONFIGS′ to see if any combinations are missing.  Because f is a RandomOrder function, f satisfies 
Condition 4: the number of occurrences of each token tj appearing in each position px is count(tj, px) 
= kn/(k•n), for j=1,…,k and x=1,…n.  It is given that each player has k=n! tokens.  So, |CONFIGS′ | 
= ∑∑ count(tj, px) = kn/(k•n) = (kn/(k•n)) • (k•n) = kn.  But kn is also the total number of possible 
combinations of token choices, so all combinations are present and mapped. 
 
Case 3. Not all elements of CONFIGS are evenly distributed over the elements of SEQS. 
If so, |h-1(ri)| ≠ |h-1(rj)| for some ri, rj∈SEQS.  Let x1 = |h-1(ri)| and x2 = |h-1(rj)|.  The idea is to 
determine whether x1=x2.  Let h(cm)=ri, where cm∈CONFIGS and cm=(v1,…,vn-1,vny) for v1∈TOKS1, 
…,vn-1∈TOKSn-1, vny∈TOKSn.  Because f satisfies Condition 5, there exists n! versions of cm, one for 
each y=1,…,n!, and one of each of these is mapped to a sequence.  One version is mapped to ri and 
another version to rj.  This condition holds for each player’s contribution to each configuration.  So, 
x1 = x2 = (kn)/n!.   
 
Case 4. There are not enough tokens for player choices to combine to evenly distribute over the 
elements of CONFIGS. 
It is given that each player has n! choices.  And f, as a RandomOrder function, satisfies Condition 3.  
So, Lemma B assures there are sufficient player choices.  
 
Case 5. Not all combinations of tokens map from TOKS to CONFIGS.  
It is given that each player has n! choices.  The number of combinations of size n 
(“ n-combinations”) of these choices is (n!)n.  The idea is to compare this to the size of CONFIGS.  In 
the discussion of Case 2 above, it was shown that |CONFIGS| = (n!)n, thereby accounting for all 
possible n-combination of tokens. 
 
Case 6.  Not all combinations of TOKS are evenly distributed over the elements of CONFIGS. 
From the definition of g, and the discussion in Case 5, all n-combinations of tokens appear in 
CONFIGS and |CONFIGS| = kn.  Therefore, for every v1,…,vn, where v1∈TOKS1,…,vn∈TOKSn, 
g(v1,…,vn)∈CONFIGS.  And conversely, because |TOKS| < |CONFIGS|, there cannot exist 
(v1,…,vn)∈CONFIGS such that |g-1(g(v1,…,vn))| > 1 else g would not be a function. 
 
 
2. Another way to test a RandomOrder function is through empirical experimentation.  Results of 
specific statistical tests are reported in Appendix B. 
 

4.4. The RandomSelect Protocol 
 
1. RandomOrder functions can be used within the RandomSelect protocol listed in Figure 22 to 
allow n players to make local choices that combine to make a joint random selection with uniform 
distribution of outcomes to choices.  Collisions are avoided, and the protocol performs properly if 
at least one player makes local decisions randomly.   
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 Preliminary round:   
  Each player receives a table of assignments of 

sequences, a list of tokens from which to make 
selections, and a RandomOrder function. 

 

 Round of play:   
  Each player selects a token, broadcasts the chosen 

token, and records all tokens broadcast by all players. 
 

 Aftermath:   
  Each player applies the RandomOrder function to the 

broadcast tokens to determine the joint selection. 
 

Figure 22.  RandomSelect Protocol 
 
2. In a preliminary round, each player receives an enumeration of the permutations, a set of tokens 
from which players make selections, and a RandomOrder function.  Once the preliminary round 
concludes, there can be an indefinite number of plays with no further modification of preliminary 
materials.  The protocol has one round of play.  Each player selects one of its tokens and broadcasts 
it.  The final outcome is determined by applying the RandomOrder function to the tokens broadcast 
by each player. 

4.5. Collusion by Players 
 
1. If all players trust one another, then there is no reason to use RandomSelect.  One player can 
simply use a random number generator on her local machine and broadcast the results.  So, 
RandomSelect is used in situations of distrust.  In this section, the effect of different forms and 
amounts of distrust on RandomSelect are examined. 
 
2. As was discussed in Section 3.2 regarding Condition 5, Anti-Collusion, and proven in Theorem 
F, RandomSelect can compute properly if at least one player makes a local choice randomly.  For n 
players therefore, RandomSelect can compute properly even if n-1 playes collude.  But if all n 
players collude, there is no randomness at all. 
 
3. Attention must be paid to “inadvertent collusion.”  This occurs when players are not necessarily 
joining together a priori to agree on choices, but when players are not making local choices 
randomly.  In inadvertent collusion, players exhibit bias in making their local choices.  For example, 
suppose for convenience, each player independently adopts a strategy of selecting the first token on 
the first round of play, the second token on the second round of play, and so on.  The outcomes can 
then be predicted!  While the RandomSelect protocol protects against the traditional multiparty 
view of collusion (a malicious attack), care must be taken that at least one non-colluding player 
does not engage in inadvertent collusion. 
 

5. Results 
 
Sections 2.3 and 2.4 provided informal discussions of two operations to consider as RandomOrder 
functions.  These were RandomXOR, which used bitwise exclusive-or, and ModSum, which used 
the modulus of the sum.  These functions are now re-examined in this section to determine whether 
they qualify as RandomOrder functions. 
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5.1. RandomXOR Revisited 
 
1. Consider using RandomXOR (first introduced in Section 2.3) as a RandomOrder function in the 
RandomSelect protocol.  Given n players, each player Pi, for i=1,…,n, selects a number vi (as a 
token), where 1 ≤ vi ≤ n!, and broadcasts it.  The outcome is determined by each player performing 
bitwise exclusive-or on the broadcast values of all players. 
 
2. When n > 2, as was demonstrated in Section 2.3, not all combinations of tokens map to values in 
the range 1,…,n!.  Those that do not map are collisions.  In RandomXOR, the total number of 
combinations is determined by the number of significant bits required to represent (n!-1), assuming 
the range of token values is 0,…,(n!-1) rather than 1,…,n!.  The constraint 2m = n! is satisfied only 
when n=2 (or m=1).  There is no other integer value satisfying this constraint.  As a result, when n 
>2, RandomXOR fails Condition 4 (Token Position) and Condition 5 (Anti-Collusion). 
 
Example. Figure 23(a) lists all non-collision combinations possible using RandomXOR for 3 
players (a, b and c), with each player selecting a value between 1 and 6.  Of the 216 possible 
configurations, only 168 (or 78%) are not collisions.  Figure 23(b) shows that tokens are not evenly 
distributed over token positions. 
 

5.2. ModSum Revisited 
 
1. Theorem G claims that ModSum (first introduced in Section 2.4) is a RandomOrder function.  As 
such, ModSum can be used in RandomSelect as follows.  Given n players, each player Pi selects a 
number vi (as a token), where 0 ≤ vi ≤ (n!-1), and broadcasts it.  The outcome is determined by each 
player computing (∑vi) mod n! for i=1,…,n.   
 
Theorem G. For n players, n≥2, with each player Pi selecting a token vi, where 0 ≤ vi ≤ (n!-1) and 
i=1,…,n, ModSum(v1,…vn) is a RandomOrder function. 
 
Proof. 
Condition 2 is trivially satisfied: k=k1=…=kn=n!. 
 
Condition 1.  Let r ≡ (k1 • … • kn) mod n! and show r is 0.  Because k=k1=…=kn=n!, r ≡ n!n mod n.  
So, r is 0. 
 
Condition 3. Let r ≡ kn mod (n•k) and show r is 0.  Because k is n!, r ≡ n!n mod (n•n!).  So, r is 0 for 
n ≥ 2.  
 
Conditions 4 and 5.  Consider configurations of the form (v1,…,vn-1,vnx) for x=0,…,(n!-1).  Let D be 
the constant v1+…+vn-1.  These configurations are mapped to sequences based on (D+x ) mod n! for 
x=0,…,(n!-1).  Therefore, these configurations map one-to-one to sequences. 
 
 
Example. Figure 24(a) lists all combinations using ModSum for 3 players (a, b and c), with each 
player selecting a value between 1 and 6.  There are no collisions.  Figure 23(b) shows that tokens 
are evenly distributed across token positions. 
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2. The outcomes of the RandomOrder function Table-f can be equivalently expressed as a variant of 
ModSum.  Given n players, n ≥2, with each player Pi selecting a token vi, where 0 ≤ vi ≤ (n!-1) and 
i=1,…,n, and the permutations of the players enumerated in an array sequences[pos] for 
pos=0,…,(n!-1), then the outcomes from Table-f can be expressed as sequences[pos] such that 0 
≡ ((∑ vi) – (n+pos)) mod n!.   
 
Example.  Figure 13 contains the assignments of Table-f for 3 players, a, b, and c, with each player 
having 6 choices.  Let sequences[0],…,sequences[5] be the enumeration of the permutations of 
the players, as they appear as column headings in Figure 13.  The assignments of configurations to 
sequences shown in Figure 13 can be derived by the following algorithm: 
 

1. let sum = ∑
=

n

i
i

1
v  

 

 2. if ((sum-3) mod 6) is 0 then return sequences [0].  
 3. else if ((sum-4) mod 6) is 0 then return sequences [1].  
 4. else if ((sum-5) mod 6) is 0 then return sequences [2].  
 5. else if ((sum-6) mod 6) is 0 then return sequences [3].  
 6. else if ((sum-7) mod 6) is 0 then return sequences [4].  
 7. else if ((sum-8) mod 6) is 0 then return sequences [5].  
 

6. Future Work 
1. Randomness has proven itself useful in a wide variety of applications, algorithms and protocols.  
This writing ends with a historical survey of randomness in computing because the work presented 
herein introduced randomness into secure multiparty computation in a new way.  Perhaps this will 
be another venue in which randomness will prove itself useful.   
 
2. The construction of machines that can generate a sequence of random values dates back as early 
as 1939 [13].  Shortly after computers were introduced, methods were sought for efficiently 
providing random numbers to computer programs [14].  By 1969, random numbers allowed 
computers to simulate natural phenomena, provide random samples, solve complicated numerical 
problems, and develop optimal decision-making strategies.   
 
3. Among the first pseudo-random number generators for computers was the linear congruential 
algorithm [14], which has the form of ModSum.  As random number generators moved beyond 
being the modulus of a sum, future work on RandomOrder functions promises to reveal other kinds 
of formulations. 
 
4. In the late 1980’s studies on the paradigm of “randomized algorithms” ignited.  These are 
algorithms in which random choices are made during the execution of the algorithm.  Significant 
benefits emerged.  These can be grossly described as providing faster and/or simpler algorithms 
than their deterministic counterparts [15].   
 
5. More recently, “randomized protocols” have been used for many tasks, including contract 
signing [16] and asynchronous consensus [17].  In randomized protocols one or more players 
involved in the protocol make random choices.   
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6.  The work presented in this paper extends the notion of randomized protocols in such a way that 
a subset of 2 or more players make local decisions that combine to jointly make a random choice of 
a permutation of themselves in the absence of a third party and in the face of colluding players.  
Future work may be more generalized to allow a set of players to jointly make random choices 
based on some probability distribution.  This work terms these protocols randomized multiparty 
computation.  An aim is for randomized multiparty computations to provide to multiparty 
computation the kinds of complexity efficiencies, simplicities, and insights that randomized 
algorithms afforded deterministic algorithms.   
 

 
 
 
 
 
 
 
 
 

(a) 
 

cba [1] bca [2] cab [3] acb [4] bac [5] abc [6]
1: c1 b1 a1 2: b1 c1 a2 3: c1 a3 b1 4: a4 c1 b1 5: b1 a5 c1 6: a6 b1 c1
8: c1 b2 a2 7: b2 c1 a1 13: c1 a1 b3 18: a6 c1 b3 12: b2 a6 c1 11: a5 b2 c1
15: c1 b3 a3 30: b5 c1 a6 24: c1 a6 b4 19: a1 c1 b4 25: b5 a1 c1 16: a4 b3 c1
22: c1 b4 a4 35: b6 c1 a5 34: c1 a4 b6 33: a3 c1 b6 32: b6 a2 c1 21: a3 b4 c1
29: c1 b5 a5 37: b1 c2 a1 45: c2 a3 b2 46: a4 c2 b2 42: b1 a6 c2 26: a2 b5 c1
36: c1 b6 a6 44: b2 c2 a2 50: c2 a2 b3 53: a5 c2 b3 47: b2 a5 c2 31: a1 b6 c1
38: c2 b1 a2 51: b3 c2 a3 59: c2 a5 b4 56: a2 c2 b4 52: b3 a4 c2 41: a5 b1 c2
43: c2 b2 a1 58: b4 c2 a4 64: c2 a4 b5 63: a3 c2 b5 57: b4 a3 c2 48: a6 b2 c2
66: c2 b5 a6 65: b5 c2 a5 73: c3 a1 b1 78: a6 c3 b1 62: b5 a2 c2 61: a1 b5 c2
71: c2 b6 a5 72: b6 c2 a6 80: c3 a2 b2 83: a5 c3 b2 67: b6 a1 c2 68: a2 b6 c2
75: c3 b1 a3 81: b2 c3 a3 87: c3 a3 b3 88: a4 c3 b3 82: b2 a4 c3 76: a4 b1 c3
85: c3 b3 a1 86: b3 c3 a2 94: c3 a4 b4 93: a3 c3 b4 89: b3 a5 c3 90: a6 b3 c3
96: c3 b4 a6 95: b4 c3 a5 101: c3 a5 b5 98: a2 c3 b5 92: b4 a2 c3 91: a1 b4 c3
106: c3 b6 a4 100: b5 c3 a4 108: c3 a6 b6 103: a1 c3 b6 99: b5 a3 c3 105: a3 b6 c3
112: c4 b1 a4 118: b2 c4 a4 114: c4 a6 b1 109: a1 c4 b1 117: b2 a3 c4 111: a3 b1 c4
126: c4 b3 a6 125: b3 c4 a5 119: c4 a5 b2 116: a2 c4 b2 122: b3 a2 c4 121: a1 b3 c4
127: c4 b4 a1 128: b4 c4 a2 124: c4 a4 b3 123: a3 c4 b3 131: b4 a5 c4 132: a6 b4 c4
141: c4 b6 a3 135: b5 c4 a3 129: c4 a3 b4 130: a4 c4 b4 136: b5 a4 c4 142: a4 b6 c4
149: c5 b1 a5 150: b1 c5 a6 134: c4 a2 b5 137: a5 c4 b5 145: b1 a1 c5 146: a2 b1 c5
156: c5 b2 a6 155: b2 c5 a5 139: c4 a1 b6 144: a6 c4 b6 152: b2 a2 c5 151: a1 b2 c5
169: c5 b5 a1 160: b3 c5 a4 154: c5 a4 b2 153: a3 c5 b2 159: b3 a3 c5 174: a6 b5 c5
176: c5 b6 a2 165: b4 c5 a3 161: c5 a5 b3 158: a2 c5 b3 166: b4 a4 c5 179: a5 b6 c5
186: c6 b1 a6 170: b5 c5 a2 164: c5 a2 b4 167: a5 c5 b4 173: b5 a5 c5 181: a1 b1 c6
191: c6 b2 a5 175: b6 c5 a1 171: c5 a3 b5 172: a4 c5 b5 180: b6 a6 c5 188: a2 b2 c6
196: c6 b3 a4 185: b1 c6 a5 184: c6 a4 b1 183: a3 c6 b1 182: b1 a2 c6 195: a3 b3 c6
201: c6 b4 a3 192: b2 c6 a6 198: c6 a6 b3 193: a1 c6 b3 187: b2 a1 c6 202: a4 b4 c6
206: c6 b5 a2 205: b5 c6 a1 199: c6 a1 b4 204: a6 c6 b4 210: b5 a6 c6 209: a5 b5 c6
211: c6 b6 a1 212: b6 c6 a2 213: c6 a3 b6 214: a4 c6 b6 215: b6 a5 c6 216: a6 b6 c6  

 

 
 
 
 
 

(b) 

 
Player a     Player b     Player 

c 
   

Token Pos 
1 

Pos 
2 

Pos 
3 

 Token Pos 
1 

Pos 
2 

Pos 
3 

 Token Pos 
1 

Pos 
2 

Pos 
3 

a1 10 8 10  b1 8 12 8  c1 10 8 10 
a2 8 10 10  b2 12 8 8  c2 8 10 10 
a3 10 10 8  b3 8 8 12  c3 10 10 8 
a4 10 10 8  b4 8 8 12  c4 10 10 8 
a5 8 10 10  b5 12 8 8  c5 8 10 10 
a6 10 8 10  b6 8 12 8  c6 10 8 10  

 

Figure 23. (a) Assignments by RandomXOR for 3 players, a, b, and c, with each player having 6 
choices.  Only 168 of the 216 possible combinations are used.  The others are collisions.  (b) counts of 
the number of times the tokens of each player appears in each sequence position. 
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(a) 
 

cba [0] bca [1] cab [2] acb [3] bac [4] abc [5]
4: c1 b1 a4 5: b1 c1 a5 6: c1 a6 b1 1: a1 c1 b1 2: b1 a2 c1 3: a3 b1 c1
9: c1 b2 a3 10: b2 c1 a4 11: c1 a5 b2 12: a6 c1 b2 7: b2 a1 c1 8: a2 b2 c1
14: c1 b3 a2 15: b3 c1 a3 16: c1 a4 b3 17: a5 c1 b3 18: b3 a6 c1 13: a1 b3 c1
19: c1 b4 a1 20: b4 c1 a2 21: c1 a3 b4 22: a4 c1 b4 23: b4 a5 c1 24: a6 b4 c1
30: c1 b5 a6 25: b5 c1 a1 26: c1 a2 b5 27: a3 c1 b5 28: b5 a4 c1 29: a5 b5 c1
35: c1 b6 a5 36: b6 c1 a6 31: c1 a1 b6 32: a2 c1 b6 33: b6 a3 c1 34: a4 b6 c1
39: c2 b1 a3 40: b1 c2 a4 41: c2 a5 b1 42: a6 c2 b1 37: b1 a1 c2 38: a2 b1 c2
44: c2 b2 a2 45: b2 c2 a3 46: c2 a4 b2 47: a5 c2 b2 48: b2 a6 c2 43: a1 b2 c2
49: c2 b3 a1 50: b3 c2 a2 51: c2 a3 b3 52: a4 c2 b3 53: b3 a5 c2 54: a6 b3 c2
60: c2 b4 a6 55: b4 c2 a1 56: c2 a2 b4 57: a3 c2 b4 58: b4 a4 c2 59: a5 b4 c2
65: c2 b5 a5 66: b5 c2 a6 61: c2 a1 b5 62: a2 c2 b5 63: b5 a3 c2 64: a4 b5 c2
70: c2 b6 a4 71: b6 c2 a5 72: c2 a6 b6 67: a1 c2 b6 68: b6 a2 c2 69: a3 b6 c2
74: c3 b1 a2 75: b1 c3 a3 76: c3 a4 b1 77: a5 c3 b1 78: b1 a6 c3 73: a1 b1 c3
79: c3 b2 a1 80: b2 c3 a2 81: c3 a3 b2 82: a4 c3 b2 83: b2 a5 c3 84: a6 b2 c3
90: c3 b3 a6 85: b3 c3 a1 86: c3 a2 b3 87: a3 c3 b3 88: b3 a4 c3 89: a5 b3 c3
95: c3 b4 a5 96: b4 c3 a6 91: c3 a1 b4 92: a2 c3 b4 93: b4 a3 c3 94: a4 b4 c3
100: c3 b5 a4 101: b5 c3 a5 102: c3 a6 b5 97: a1 c3 b5 98: b5 a2 c3 99: a3 b5 c3
105: c3 b6 a3 106: b6 c3 a4 107: c3 a5 b6 108: a6 c3 b6 103: b6 a1 c3 104: a2 b6 c3
109: c4 b1 a1 110: b1 c4 a2 111: c4 a3 b1 112: a4 c4 b1 113: b1 a5 c4 114: a6 b1 c4
120: c4 b2 a6 115: b2 c4 a1 116: c4 a2 b2 117: a3 c4 b2 118: b2 a4 c4 119: a5 b2 c4
125: c4 b3 a5 126: b3 c4 a6 121: c4 a1 b3 122: a2 c4 b3 123: b3 a3 c4 124: a4 b3 c4
130: c4 b4 a4 131: b4 c4 a5 132: c4 a6 b4 127: a1 c4 b4 128: b4 a2 c4 129: a3 b4 c4
135: c4 b5 a3 136: b5 c4 a4 137: c4 a5 b5 138: a6 c4 b5 133: b5 a1 c4 134: a2 b5 c4
140: c4 b6 a2 141: b6 c4 a3 142: c4 a4 b6 143: a5 c4 b6 144: b6 a6 c4 139: a1 b6 c4
150: c5 b1 a6 145: b1 c5 a1 146: c5 a2 b1 147: a3 c5 b1 148: b1 a4 c5 149: a5 b1 c5
155: c5 b2 a5 156: b2 c5 a6 151: c5 a1 b2 152: a2 c5 b2 153: b2 a3 c5 154: a4 b2 c5
160: c5 b3 a4 161: b3 c5 a5 162: c5 a6 b3 157: a1 c5 b3 158: b3 a2 c5 159: a3 b3 c5
165: c5 b4 a3 166: b4 c5 a4 167: c5 a5 b4 168: a6 c5 b4 163: b4 a1 c5 164: a2 b4 c5
170: c5 b5 a2 171: b5 c5 a3 172: c5 a4 b5 173: a5 c5 b5 174: b5 a6 c5 169: a1 b5 c5
175: c5 b6 a1 176: b6 c5 a2 177: c5 a3 b6 178: a4 c5 b6 179: b6 a5 c5 180: a6 b6 c5
185: c6 b1 a5 186: b1 c6 a6 181: c6 a1 b1 182: a2 c6 b1 183: b1 a3 c6 184: a4 b1 c6
190: c6 b2 a4 191: b2 c6 a5 192: c6 a6 b2 187: a1 c6 b2 188: b2 a2 c6 189: a3 b2 c6
195: c6 b3 a3 196: b3 c6 a4 197: c6 a5 b3 198: a6 c6 b3 193: b3 a1 c6 194: a2 b3 c6
200: c6 b4 a2 201: b4 c6 a3 202: c6 a4 b4 203: a5 c6 b4 204: b4 a6 c6 199: a1 b4 c6
205: c6 b5 a1 206: b5 c6 a2 207: c6 a3 b5 208: a4 c6 b5 209: b5 a5 c6 210: a6 b5 c6
216: c6 b6 a6 211: b6 c6 a1 212: c6 a2 b6 213: a3 c6 b6 214: b6 a4 c6 215: a5 b6 c6  

 

 
 
 
 
 

(b) 

Player a     Player b     Player 
c 

   

Token Pos 
1 

Pos 
2 

Pos 
3 

 Token Pos 
1 

Pos 
2 

Pos 
3 

 Token Pos 
1 

Pos 
2 

Pos 
3 

a1 12 12 12  b1 12 12 12  c1 12 12 12 
a2 12 12 12  b2 12 12 12  c2 12 12 12 
a3 12 12 12  b3 12 12 12  c3 12 12 12 
a4 12 12 12  b4 12 12 12  c4 12 12 12 
a5 12 12 12  b5 12 12 12  c5 12 12 12 
a6 12 12 12  b6 12 12 12  c6 12 12 12  

 

Figure 24. (a) Assignments by ModSum for 3 players, a, b, and c, with each player having 6 choices.  
(b) counts of the number of times the tokens of each player appears in each sequence position. 
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Appendix A. Example of Trivial Secret Sharing 
 
A motivating example is provided in this section.  Trivial secret sharing, a simple multiparty 
computation, is compared to a randomized version in which players make joint random choices.  
The purpose is to see what kind of efficiency tradeoffs might be afforded by such randomization.  
Further motivation stems from using trivial secret sharing (or its randomized alternative) for 
real-world bio-terrorism surveillance. 
 
1. Consider a set of players and a reporting authority operating over secure channels.  Each player 
holds a private number.  The players wish to compute the sum of their inputs in a manner that 
would preserve the secrecy of their individual values while providing the sum to the reporting 
authority.  The players need to perform the computation even if some of the players collude 
passively.  
 
2. Trivial secret sharing offers a solution.  Rounds are described in Figure W for n players.  Each 
player’s private number is represented as a set of n values (called “shares”) that sum to the player’s 
original private number.  Each pair of players exchanges shares.  Then, each player adds the shares 
it received with its remaining share and sends its total to the reporting authority, who adds the totals 
it receives and announces the final sum.  Communication is O(n2), characterized by having each 
player sending shares to every other player.  Proof of correctness and of privacy protection can be 
found in [8]. 
 
3. The scenario described above has many real-world applications, including in bio-terrorism 
surveillance.  Several biological agents, such as anthrax, when inhaled have initial symptoms 
resembling the flu [9, 10].  It is therefore expected that in the early days of an airborne release, 
victims will believe they have the flu and will behave accordingly.  Yet, the earlier authorities 
realize a biological agent has been released, the more lives likely to be saved.  Bio-terrorism 
surveillance systems therefore seek to determine whether an unusual number of people are acting 
ill by counting daily hospital visits, over-the-counter medication purchases, numbers of students 
absent from schools, etc. [11].  The example of monitoring absenteeism at schools is further 
modeled below, though the described approach is generally analogous to all these monitoring 
efforts. 
 
 Round 1. Each player generates a set of n random integers that sum to the player’s private value.  

These values are called “shares.”  Each player sends a distinct share to every other 
player and keeps one share. 

 

 Round 2. As a consequence of Round 1, each player received a share from every other player.  
Each player now adds all the shares received to its remaining share and sends the total 
to the reporting authority. 

 

 Round 3. As a consequence of Round 2, the reporting authority received a total from each player.  
The reporting authority adds these totals and broadcasts the final sum. 

 

Figure W.  Rounds of trivial secret sharing in which n players, each having a private value, provide 
the sum of the n privately held values to a reporting authority such that the private values are not 
revealed. 
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4. The local public health department, as a reporting authority, wants to know whether there are 
unusual numbers of students absent from local area schools.  Schools in the United States are 
subject to the Family Educational Rights and Privacy Act (FERPA), and as such, may refuse to 
provide the names of students who are absent because of privacy responsibilities expressed in 
FERPA.  Schools may also consider daily absenteeism counts confidential because of possible 
political and funding consequences related to school absenteeism.  Concerned schools will only 
participate if both the privacy of the students (no student can be identified) and the confidentiality 
of school absenteeism (the number of students absent at a particular school) are not revealed.   
 
5. Figure X shows how this real-world problem can be solved with trivial secret sharing.  Each of 
the 6 schools produces a set of 6 random integers that sum to the school’s private number.  In 
Figure X(a), School1 has the private value 125.  It generates the shares {304, 45, -150, 10, -17, -67}, 
which sum to 125, and then distributes a distinct share to each of the other schools, keeping one 
share (304) for itself.  As a result of this distribution, each school receives a share from every other 
school.  In Figure X(b). School1 receives shares 23, -134, 75, -45 and 631 from other schools.  In the 
final steps, each school adds the shares it received to its remaining share and then sends the subtotal 
to Public Health.  In Figure X(d), School1 sends the subtotal 854, which is 23-134+75-45+631+304.  
Public Health then adds the values it receives and broadcasts the final sum (417).  Notice that 417 is 
the sum of the original numbers of absentees from each school (417 = 125+12+34+132+39+75), 
even though no private values were revealed. 
 

school1

school2

school3
school4

school5

school6 125

12

34132

39

75

45

-67
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school1

school2

school3
school4

school5

school6 125

12

34132

39

75

854
-282

-507

728 -854

478
854+478-854+728-507-282=417

Public Health

 
(c) (d) 

Figure X.  Execution of trivial secret sharing by n=6 schools.  In the first round (a), each school sends a 
share every other school. So, each school receives a share from every other school (b).  Communication 
is O(n2) as shown in (c).  In the final round (d), each school sends its total to public health where they 
are added and the final sum broadcast. 
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6. In terms of communication costs, Figure X(c) shows that each of the n=6 schools sent a share to 
the other 5 schools, yielding 30 communications, which is n•(n-1) → O(n2).  Additionally as shown 
in Figure X(d), there were n communications, one from each of the 6 schools to the reporting 
authority.  The broadcast of the final sum required another n communications.  In summary, overall 
communication is n•(n-1)+n+n → O(n2). 
 
7. Now consider the following alternative approach to trivial secret sharing.  Players are arranged 
sequentially in a “ring” and respond asynchronously around the ring to compute the sum.  Figure 
Y(a) provides an illustration.  The ordering of the players around the ring is determined beforehand.  
The reporting authority starts by providing a random number r0 to the first player, who in turns adds 
her private value and sends the sum to the second player, and so on, around the ring.  The last player 
sends his sum to the reporting authority, who subtracts the original random value r0 to get the actual 
total.2  In each round, a single player sends a sum, so for n players and a reporting authority, there 
are n+1 rounds.  The overall number of communications is O(n), which is an improvement over the 
O(n2) communication found in the traditional approach. 
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(b) (c) 

Figure Y.  Alternative version of trivial secret sharing consists of asynchronous ring computations as 
shown in (a).  An example with n=6 schools is shown in (b).  A ring has O(n) communication.  
Collusion is possible in a ring computation if surrounded by colluding players, as shown in (c). 
 

                                            
2 The idea of a ring computation was first introduced by Manuel Blum and the theory group at Carnegie 
Mellon University in casual communications about bio-terrorism surveillance in 2002. 
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8. However, the version described above can be subject to a collusion attack.  Figure Y(b) shows 
the protocol with 6 schools.  School2’s private number is 12.  If School1 and School3 collude by 
subtracting the number School1 provided to School2 (1150) from the number School2 provided to 
School3 (1162), they can learn School2’s private number (12=1162-1150).  This is shown in Figure 
Y(c). 
 
9. To combat collusion, randomization can be added.  The ordering of n players around the ring 
could be determined randomly.  Then, the probability that a non-colluding player will be 
sandwiched between two colluding players can be determined.  The likelihood of successful 
collusion can be further reduced by having m distinct rings compute in parallel.  Under this scheme, 
each player provides m random values (shares) that sum to her private value, where 1≤ m ≤ n.  The 
order in which the players are arranged around each of the m rings is determined randomly.  During 
computation, each player provides a share to each ring.  The reporting authority adds the totals from 
all m rings to get the final sum.  Overall communication is O(m•n).  The value m can be selected 
based on the amount of probabilistic privacy protection desired.  The larger the value of m, the less 
likely collusion will be successful.   
 
10.  Figure Z provides an example of n=6 schools performing the randomized protocol with m=3 
rings.  Each school has 3 shares, one for each ring.  There are n!=720 possible ways to possibly 
order the schools, 3 of which are shown in Figure Z.  All 3 rings begin and end with Public Health.  
The 3 routes are [School1, School2, School3, School4, School5, School6], [School4, School2, School1, 
School6, School5, School3], and [School2, School4, School5, School6, School3, School1]. In the first round, 
Public Health sends a random value to School1, School4, and School2 to seed the computations.  In the 
final round, School6, School3, and School1 sends their sums to Public Health, which sums the values 
received and subtracts the original seeds.   
 
11. In this example, for n players with each player having 1≤ m ≤ n shares, the number of 
communications improved with randomization from O(n2) to O(m•n), but the actual time to 
complete the protocol changed from 3 rounds (non-randomized) to n+1 rounds (randomized).  
Privacy protection changed from deterministic (non-randomized) to probabilistic (randomized).3 
 
12. The randomized version assumes random orderings of players can be done with communication 
no worse than m•n.  A method for players to jointly select random orderings of themselves is the 
subject of the remainder of this writing. 
 
 

                                            
3 PrivaSum is a non-randomized protocol that extends trivial secret sharing for n players, each player having 
2 ≤ m ≤ n shares.  The m shares are distributed in order to provide probabilistic privacy protection [8].  For m 
shares, the randomized version above offers better privacy protection than does PrivaSum. 
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Figure Z Three simultaneous ring computations in which the order of the players in each ring is 
determined randomly.  All 3 rings are shown in (a) and each distinct ring is shown in (b), (c) and (d). 
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Appendix B. Experimental Tests 
 
This section reports on empirical tests of the RandomOrder function ModSum.  The purpose is to 
determine how random selections are made in practice.  Statistics provides some quantitative 
measures for randomness, but frankly, there is no limit to the number of tests that can be performed.  
In this section, experimental results are reported for a frequency test and a chi-square test.   

B.1. Materials 
 
Materials include a Java implementation of ModSum to simulate play by 3 players.  The 
pseudo-random number generator available through the Java Programming languages is used to 
make a random local decision by a player. 

B.2. Equidistribution or Frequency test 
 
1. The first experiment consisted of 1000 simulated plays in which each player made a random 
local choice.  The requirement is that each sequence should appear as often as any other sequence.  
Figure A shows the distribution of the results over the possible permutations.  The results show a 
relatively even distribution of selections of permutations (determining whether this is good enough 
is the subject of the analysis in the next subsection). 
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Figure A.  Results from 1000 simulated plays of 
ModSum with 3 players, with each player having 
6 choices.  All 3 players made local choices 
randomly. 
 

Figure B.  Results from 1000 simulated plays of 
ModSum with 3 players, with each player having 
6 choices.  The simulation has two players collude 
by always providing choices 5 and 3.  The third 
player makes random local choices. 

 
2. The second experiment consisted of 1000 simulated plays in which two players collude and 
make the same choice (), but the third player makes random local choices.  The requirement is that 
each sequence should appear as often as any other sequence.  Figure B shows an even distribution 
of the results over the possible permutations, demonstrating performance when at least one player 
makes local random choices.   
 

B.3. Chi-square test 
 
1. For n players, Theorems F and G state that the probability of any particular sequence being 
selected by ModSum is 1/n!.  Using actual observations of outcomes reported in Figure C, the 
square of the differences between the observed frequencies and the expected frequencies can be 
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computed.  This is the basis of the “chi-square” statistic.   
 
2. The Chi-square statistic informs as to how probable or improbable certain sets of outcomes are.  
A natural way to compute such a statistic is to consider the sum of the squares of the differences 
between the observed frequencies and the expected frequencies.  For example, for 1000 plays of 
ModSum for 3 players, with each player having 6 choices, the expected frequencies are 
1000/6=167.  Each sequence is expected to be selected 167 times. 
 
3. The Chi-Square statistic, V, appears below, for n players, and a test having nruns as the total 
number of plays for the test, and Yi is the frequency at which sequence i was observed, where 
i=0,…,(n!-1). 
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4. The test results in Figure C can be summarized as follows.  For each of the 9 tests, the following 
was done.  1000 independent observations of ModSum play were simulated.  A count of the 
number of observations for which play resulted in each of the 6 sequences, labeled [0] to [5], is 
reported.  The Chi-Square statistic, V, is computed, as described above.  Then, V is compared with 
the numbers in a published Table of Values of the Chi-Square Distribution [18], with 5 degrees of 
freedom.  In these tests there are 6 possible outcomes, providing 6-1=5 degrees of freedom.  If V is 
between 95 and 99 percent, or between 1 or 5 percent, the protocol would be considered “suspect.”  
If V lies between 90 and 95 percent, or between 5 and 10 percent, the protocol might be “almost 
suspect.”  If at least 2 or 3 of the tests provided results that are suspect, then the protocol would not 
be regarded as sufficiently random.  As shown in Figure C, the outcomes are satisfactory random 
with respect to the tests. 
 

Sequences Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9
[0] 175 149 163 173 157 178 181 176 178
[1] 170 172 173 173 168 172 150 150 170
[2] 155 186 158 180 177 178 180 162 176
[3] 163 165 164 162 169 153 178 169 139
[4] 147 160 177 154 149 167 150 159 163
[5] 190 168 165 158 180 152 161 184 174
V 6.554 2.719 1.392 2.853 3.627 3.358 5.371 3.988 5.590
p 25 to 50% 50 to 75% 75 to 95% 50 to 75% 50 to 75% 50 to 75% 25 to 50% 50 to 75% 25 to 50%  

Figure C.  Results from 9 tests.  Each test 1000 simulated plays of ModSum with 3 players, with each 
player having 6 choices, [0] to [5], and each player making local choices randomly.  The chi-square 
statistic ,V, is reported for each test, along with the chi-square distribution, p. 
 
 


