
 
 

Learning Semantically Robust Rules from Data 
 

Yiheng Li  Latanya Sweeney 
February 2004 

CMU-CALD-04-100 
CMU-ISRI-04-107 

 
 
 

 
Center for Automated Learning and Discovery and 

Institute for Software Research International 
Data Privacy Laboratory 

 
School of Computer Science 
Carnegie Mellon University 
Pittsburgh, PA 15213-3890 

 

Abstract 
 

We introduce the problem of mining robust rules, which are expressive multi-dimensional generalized 
association rules.  Consider a large relational table, where associated with each attribute is a hierarchy 
whose base values are those originally represented in the data, and values appearing at higher levels in the 
hierarchy represent increasingly more general concepts of base values.  Attribute hierarchies provide 
meaningful levels of concept aggregation, such as the encoding of postal codes (ZIP) or dates, or the 
taxonomy of products.  We find the least general rules formed by combining mixed levels of 
generalizations across attributes to convey the maximum expression of information supported by attribute 
hierarchies, parameter settings and data tuples.  We term these “robust rules” and introduce a GenTree 
algorithm as a means to learn robust rules from a table.  An example of a robust rule from a table having 
base values {5-digit ZIP, gender, registration date (year/month/day), party} might be “women living in 
Cambridge (021**) and registered in the 1970’s (197*/xx/xx) tend to be Democrats.”  Previous studies on 
mining generalized association rules have been limited dimensionally (e.g., transactional data), by data 
type (e.g., quantitative data), and/or to rules expressed from either fixed-level or non-semantic 
abstractions.  Such approaches limit the kinds of rules that can be learned.  Experiments using GenTree 
with two real-world datasets, containing 10,000 six-attributed tuples and over 4,000 eight-attributed 
tuples each, show that learned rules convey more comprehensive information than possible with 
traditional association rule mining algorithms, because traditional approaches limit the expressivity of the 
rules they generate. 
 
 
This research was supported in part by the Data Privacy Laboratory, the Center for Automated Learning and 
Discovery, and the NSF Aladdin Center, all in the School of Computer Science at Carnegie Mellon University.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: Association rules, classification problems, data mining, knowledge acquisition, rule learning, 
hierarchical learning. 



1. Introduction 
The problem of discovering meaningful associations between data elements in a large sample of examples 
is important to marketing, management, and policy decision-making.  Learned associations, expressed as 
rules, are the basis of association rule learning, first introduced in 1993 [1].  Given sets of items in an 
information repository, an association rule is an expression of the form Body ⇒ Head, where Body and 
Head are sets of items.  An association rule can be stated as “Body tends to Head.”  An example of an 
association rule is: “People living in ZIP 02139, tend to be Democrats.”  An association rule is 
corroborated by the data from which it is observed by two measures – support and confidence.  Support is 
the probability that both Body and Head are satisfied: P( Body & Head ).  Confidence is the conditional 
probability that given Body is satisfied, Head is also satisfied: P( Head | Body ).  In a list of registered 
voters, the association rule “People living in ZIP 02139, tend to be Democrats” has 19% support and 
57.9% confidence. 
 Finding the most “meaningful” rules for decision makers requires not only quantifiable corroboration 
of the rule using support and confidence, but also the ability to express the rule in semantic terms that are 
most useful to the decision maker.  So, association rule learning can be formulated as a problem of 
searching through a predefined space of potential rules for the rules that best fits the examples 
quantifiably and semantically.   
 By selecting a rule representation, the human designer implicitly defines the space of all rules that an 
association rule learner (or “learner”) can ever represent and therefore can ever learn.  We use the symbol 
R to denote the set of all possible rules that a learner may consider regarding a relational table D.  R is 
determined by the human designer’s choice of representations to express the semantics associated with 
data values in D.  The simplest choice is to rely on values in D alone.  In this case, learned rules can only 
be expressed in the base values of D.  Even though some values in D may be semantically related to other 
values (e.g., both milk and juice are beverages) there is no representation provided by which the learner 
can consider joining related values (milk and juice) to attain more generalized rules (about beverages) that 
may be more corroborated or more generally expressed. 
 In 1995, the notion of associating a concept hierarchy with base values in transactional data was 
introduced [2, 8].  Rules could then be learned not only over the base values but also over generalized 
concepts that semantically related base values.  For example, given transactions of grocery purchases and 
an “is-a” hierarchy that related milk and juice as beverages, rules involving milk, juice and beverages 
could then be learned.  Such rules are called generalized association rules (or “cross-level” rules). 
 

Z3={*****}   *****  
     

Z2={021**}   021**  
   

Z1={0213*,0214*}  0213*  0214* 
  

Z0={02138, 02139, 02141, 02142} 02138 02139 02141 02142 
 DGHZ0      VGHZ0  
  

Figure 1. Attribute hierarchy for ZIP codes in Cambridge, Massachusetts, shown as domain generalization 
hierarchy on left and as value generalization hierarchy on right. 

 In the work presented herein, we allow the human designer to express a much larger and semantically 
extended rule space by associating membership hierarchies (e.g., “is-a”) with each attribute in a large 
relational table D.  The base values appearing in an attribute of D appear as base values in the attribute’s 
hierarchy.  Values appearing at higher levels in the hierarchy represent more general concepts that remain 
semantically consistent with the base values.  Therefore, attribute hierarchies impose a “more-general-
than” relation on their values.  Figure 1 has an example of an attribute hierarchy for postal codes (ZIP) in 
Cambridge, Massachusetts.  Attribute hierarchies provide meaningful levels of concept aggregation, 



which could be the encoding of ZIP codes or dates, or the taxonomy (“is-a”) of products.  Even 
quantitative data such as age or income, can have meaningful attribute hierarchies achieved by 
aggregating base values into increasing, non-overlapping ranges.  For example, dates of birth can be 
generalized to month and year of birth, year of birth, 5-year age ranges, and so forth. 
 Attribute hierarchies greatly expand the size of the space of potential rules (R) a learner must 
consider.  Rules can now express mixed levels of concept aggregation realized by combinations of values 
across different hierarchy tiers.  We term these multi-dimensional generalized association rules.  Figure 2 
provides examples. 
 

Figure 2. Multi-dimensional generalized association rules. Rule (A) is traditionally expressed in original base 
values.  Rules (B) and (C) have terms from higher levels in their hierarchies.  The source table for (A) and (B) 
has attributes {5-digit ZIP, gender, registration date (year/month/day), party}.  The table for (C) additionally 
includes {race/ethnicity, own home, number of children}. 

 Increasing the size of R yields additional rules to consider, but the learner’s task is to find 
“meaningful” rules, which are based on quantifiable corroboration and semantic expressiveness.  Support 
and confidence quantify corroboration, and attribute hierarchies structure the semantics of rule 
expressions. 
 Predefined attribute hierarchies embed a priori groupings of concepts considered useful to human 
decision-makers, who construct them and who must interpret learned rules based on them.  A learner can 
exploit the semantics of the “more-general-than” relation imposed by attribute hierarchies to assess the 
expressive power of potential rules to humans. 
 Each of the multi-dimensional generalized association rules in Figure 3 has the same quantified 
corroboration in data (e.g., the same support and confidence for the same tuples).  Yet, to human decision-
makers these statements do not equally convey the same expressive power. 
 

Figure 3. Multi-dimensional generalized association rules learned from a table having attributes {ZIP, 
registration date} and having equal support and confidence for the same corroborating tuples.  Of these, rule 
(C) is a robust rule, having the most general expression for the Body and the most specific expression for the 
Head. 

 The interpretation of association rules by humans is like an if-then implication.  In the mathematical 
implication p ⇒ q, p is the hypothesis, q is the conclusion, and p ⇒ q is translated in English as “if p then 
q” [5].  An association rule (written Body ⇒ Head), having a hypothesis (Body) with a large number of 
potential elements and a conclusion (Head) narrowly specific, is considered more useful, because the 
broadly stated hypothesis expands the scope of items subject to the hypothesis, and the specific 
conclusion provides exacting information about the subjects.  So, rules having the most generalized 

A. “People living in ZIP 02139, tend to be Democrats.” 
[Support: 19.0%, Confidence: 57.9%] 

B. “Women living in Cambridge (021**) and registered in the 1970’s (197*/**/**), tend to be Democrats.” 
[Support: 2.6%, Confidence: 83.0%] 

C. “Republican Whites living in ZIP 15213 and owning home, 
 tend to be females with no children.” 
[Support: 2.1%, Confidence: 55.4%] 

A. “People living in ZIP 1521*,  
tend to be registered in 1965 (1965/**/**).” 

B. “People living in ZIP 152**,  
tend to be registered in August 1965 (1965/08/**).” 

C. “People living in ZIP 152**,  
tend to be living in ZIP 1521* and registered in August 1965 (1965/08/**).” 



expressions in the Body and the most specific expressions in the Head are desired.  We term these robust 
rules.  Of the rules in Figure 3, only rule C is a robust rule. 
 A robust rule has quantifiable measures of support and confidence as well as semantic constraints.  A 
Body is more generally expressive in one rule than another if its terms appear at the same or higher levels 
in attribute hierarchies and/or if it has fewer terms.  Similarly, a Head is more specifically expressive in 
one rule than another if its terms appear at the same or lower levels in attribute hierarchies and/or it has 
more terms.  Rules having the most generally expressive Body and the most specifically expressive Head 
for the same corroborating tuples are the robust rules for those tuples.  A set of tuples will have at least 
one robust rule, which is a multi-dimensional generalized association rule.  It may have more than one 
robust rule. 
 The work described herein uses the structure imposed by attribute hierarchies and observed examples 
in D to organize the search of R for robust rules.  Before we describe how this search is efficiently 
achieved in technical terms (in Section 3), we discuss prior work (in Section 2).  After the GenTree 
structure and algorithm are presented (in Section 3), experimental results on real-world datasets are 
provided (in Section 4) that show the nature and number of robust rules learned.  This paper ends with a 
comparison of GenTree to foreseeable extensions to prior work that could attempt to learn robust rules. 
 

2. Background 
2.1 Partial Ordering and Learning 
The idea of using general-to-specific ordering in concept learning has been studied.  Given training 
examples, a concept learner recognizes similar instances not appearing in the training examples.  Plotkin 
(1971) provided an early formalization of the more-general-than relation [4].  Simon and Lea (1973) gave 
an early account of learning as search through a hypothesis space [7].  Version spaces and the Candidate-
Elimination algorithm were introduced by Mitchell (1982) in which a more-general-than partial ordering 
is used to maintain a set of consistent hypotheses and to incrementally refine this representation as each 
new positive training example is encountered [3].  Sebag (1996) presents a disjunctive version space 
approach to learn from noisy data [5].  A separate version space is learned for each positive training 
example, then new instances are classified by combining the votes of different version spaces.  In the 
work presented herein, we extend these notions to rule learning to define and structure a larger and richer 
rule space for learning robust rules from a relational table. 
 
2.2 Attribute Hierarchies and Semantics 
Recently, Sweeney (2002) introduced attribute hierarchies as a basis for generalizing data to achieve 
semantically useful, yet provably anonymous data [10].  In the work presented herein, we similarly 
exploit the semantics of predefined attribute hierarchies not only to improve human interpretation of 
results, but also to enrich rule representations and to determine the semantic utility of learned rules. 
 
2.3 Association Rule Learning 
Agrawal et al. (1993) introduced the notion of learning single concept associations, expressed as rules, 
from base values in transactional data [1].  Srikant and Agrawal (1995) added a pre-defined “is-a” concept 
hierarchy over all the items in a transactional database to learn generalized association rules [8].  Learned 
rules involved terms at cross-levels of the hierarchy.  Somewhat simultaneously, Han and Fu (1995) also 
introduced the use of a pre-defined “is-a” hierarchy to learn cross-level rules from transactional data, but 
the characterization was not one of learning more general rules by involving terms appearing increasingly 
higher in the hierarchy as was done in [8], but of “drilling down” to learn more specific rules by involving 
terms appearing increasingly lower in the hierarchy [2].  Srikant and Agrawal (1996) mined association 
rules from quantitative data in relational tables, thereby providing an early account of multi-dimensional 



rules [9].  Quantitative values appearing in the table were partitioned into intervals whose ranges were 
determined from the distribution of values appearing in the table.  Learned rules were expressed in terms 
of base values and intervals.  However, different tables having the same attributes may have rules 
expressed in different intervals because intervals are not pre-defined.  This can confound rule comparison 
across tables.   
 In the work presented herein, we associate pre-defined “more-greater-than” hierarchies with each 
attribute, categorical or quantitative, in a large relational table.  We then provide an efficient means to 
learn multi-dimensional rules from the table using the hierarchies.  Recognizing that many more rules can 
now be expressed, we provide a quantitative and semantic basis for determining the most useful (or 
“robust”) rules. 
   

3. Methods 
Prior to presenting methods to learn robust rules efficiently, we precisely define our terms and introduce 
the notion of a generalization tree. 
 
3.1 Technical Details of Attribute Hierarchies 
Given an attribute A of a table D, we define a domain generalization hierarchy DGHA for A as a set of 
functions fh : h=0,…,k-1 such that: 

k
fff

o AAA k→→→ −110
1 K  

A=A0 and |Ak| = 1. DGHA is over: U
k

h
hA

0=

 

 Clearly, the fh’s impose a linear ordering on the Ah’s where the minimal element is the base domain A0 
and the maximal element is Ak.  The singleton requirement on Ak ensures that all values associated with an 
attribute can eventually be generalized to a single value.  Because generalized values are used in place of 
more specific ones, it is important that all domains in the hierarchy be semantically compatible. 
 Given a domain generalization hierarchy DGHA for an attribute A, if vi∈Ai and vj∈Aj then we say vi ≤ 
vj if and only if i ≤ j and: 

( )( ) jiij vvff =− KK1  

This defines a partial ordering ≤ on: U
k

h
hA

0=

 

 Such a relationship implies the existence of a value generalization hierarchy VGHA for attribute A.  
Figure 1 illustrates a domain and value generalization hierarchy for domain Z0, representing ZIP codes for 
Cambridge, Massachusetts. 
 We recognize situations in which it may be advantageous to consider several different DGH’s for the 
same attribute.  However, as long as such DGH’s have the same singleton as their maximal elements, we 
may represent all of them in one corresponding VGH.  In this case, the VGH is a general Directed 
Acyclic Graph (DAG), instead of a simple tree structure. 
 The search for meaningful rules realized from a table can be efficiently organized by taking 
advantage of a naturally occurring structure over the rule space – a general-to-specific ordering of rules 
imposed by the domain generalization hierarchies.   
 For simplicity, let us assume only one DGH is associated with each attribute,  Given table D(A1, …, 
Am) and DGHAi’s, 1 ≤ i ≤ m, the set of all possible generalizations of values in D comprise a 
generalization hierarchy, GHD =  DGHA1 × ... × DGHAm, assuming the Cartesian product is ordered by 
imposing coordinate-wise order.  GHD defines a lattice whose minimal element has values in the same 
domains as D.  Each node in the lattice represents a unique combination of generalization concepts for 



expressing rules in D.  We know that the number of nodes in the lattice is the product of sizes of the 

attribute hierarchies: ∏
=

m

i
iDGH

1

. 

 We define a pair to be any two such nodes that can be connected through a set of function links (l1, 
…, lm), where 

li =∏ =

2

1

h

hh Aihf  or  ≡ (equal to self). 

 The total number of pairs in the lattice is the number of possible multi-dimensional cross-level rules 
that can be represented.  The number of possible rules is greater, being instantiated by values appearing in 
the table. 
 Because we view learning as a search, it is natural to consider exhaustive search through the entire 
rule space.  But even for a table having a few short attributes, these equations show exhaustive search 
prohibitive.  So, we are interested in efficient algorithms that search very larges rule spaces for robust 
rules. 
 
3.2 Notations in DAG 
Because the concept of Directed Acyclic Graph (DAG) is heavily involved in our methodology, we 
clarify the basic notations we use.  We use lower case letters, such as x, to denote nodes (or vertices) in a 
DAG.  We say “x is connected to y” or “there is a connection between x and y”, if there is an edge 
between x and y, regardless of direction.  We call p a parent of c and c a child of p, if there is an edge 
starting at p and ending at c.  We call “p′ an ancestor of c” and “c a descendant of p′ ” if there is an edge 
from p′ to c in the transitive-closure of the corresponding DAG. 
  
3.3 Rule Definition 
A generalized association rule in transaction databases is defined in [2].  We basically follow that 
definition and define the multi-dimensional generalized association rule in relational databases. 
 Let A = {A1, …, Am} be a set of attributes in a relational dataset D, where each Ai has an associated 
hierarchy, the VGH of which is a DAG.  A multi-dimensional generalized association rule is an 
implication of the form X ⇒ Y, where X = {v1

x, v2
x, …, vm

x}, Y = {v1
y, v2

y, …, vm
y}, and vi

x, vi
y are a values 

in Ai’s hierarchy.  It is required that no vi
y be an ancestor of vi

x, i.e. vi
y ≤ vi

x, for all 1 ≤ i ≤ m.  We call X 
the Body of a rule and Y the Head of a rule.  We follow the traditional definition of confidence and 
support for association rules.  Confidence equals c if c% of the data tuples in D that support Body also 
support Head; Support equals s if s% of data tuples in D support both Body and Head.  Given our 
definition, clearly, any data tuple that supports Head must also support Body, because each attribute value 
in Body is more-general-than (or equal to) the corresponding value in Head.  Hence, support for a multi-
dimensional generalized association rule is simply the percentage of data tuples that support Head. 
 Traditional association rules are special cases of our definition.  For example, a traditional rule of the 
form {v1

x} ⇒ {v2
y}, is equivalent to our form of {v1

x, *2, *3, …, *m} ⇒ {v1
y, v2

y, *3, …, *m}, where v1
x = v1

y 
and each *i represents the highest level of generalization in Ai’s hierarchy (root in corresponding VGHAi). 
 The benefit of our definition is its capability of expressing more interesting rules.  Consider the 
following example.  Let A = {5-digit ZIP, registration date (year/month/day), status}, we may have 
{021**, 1996/**/**, *} ⇒ {021**, 1996/08/**, active}, with 89.8% confidence and 4.5% support.  This 
rule learns both in “width”, i.e., from knowing nothing to learning something about an attribute (e.g., 
“*⇒active” for attribute status); and in “depth”, i.e., from knowing something to learning something 
more specific about an attribute (“1996/**/** ⇒ 1996/08/**” for attribute registration date). The latter 
type of learning (“in depth”) cannot be achieved traditionally. 
 



3.4 GenTree Definition 
A generalization tree (GenTree) is a DAG, which represents the multi-dimensional generalization 
relations among all data tuples in a relational dataset over a set of hierarchical attributes, and satisfies the 
properties of completeness and conciseness. 
 There are two types of nodes in GenTree: leaves and non-leaves.  Each leaf node represents a 
corresponding data tuple.  Each non-leaf node represents a multi-dimensional generalization form and the 
set of data tuples that can be generalized to that form.  Root is a special non-leaf node, which represents 
the overall generalization of all attributes (total suppression of all attributes) and the set of all data tuples. 

3.4.1 Notations in GenTree 
We use:  

Form(x) to denote the corresponding multi-dimensional generalization form (or expression form if x 
is a leaf) which x represents.  An example is Form(x) = (ab*, 1*) in Figure 4. 

Form(x)i to denote the value of the i’th attribute in Form(x); and, 
Tuples(x) to denote the set of tuples that can be expressed by, or can be generalized to Form(x). 

 
Table D 

 
Hierarchy (VGH) of an attribute 1 

 
Hierarchy (VGH) of an attribute 2 

 
GenTree based on D 

attribute 1 attribute 2
aba 11
aab 11
abb 10
abb 11
aaa 11

**

0* 1*

00 01 10 11

***

a** b**

aa* ab* ba* bb*

aaa aab aba abb baa bab bba bbb



***,**
5

a**,1*
5

a**,11
4

ab*,1*
3

ab*,11
2

aa*,11
2

abb,1*
2

aba,11
1
aab,11

1
abb,10

1
abb,11

1
aaa,11

1

***,**
5

***,**
5

a**,1*
5

a**,1*
5

a**,11
4

a**,11
4

ab*,1*
3

ab*,1*
3

ab*,11
2

ab*,11
2

aa*,11
2

aa*,11
2

abb,1*
2

abb,1*
2

aba,11
1

aba,11
1
aab,11

1
aab,11

1
abb,10

1
abb,10

1
abb,11

1
abb,11

1
aaa,11

1
aaa,11

1
 

Figure 4. A GenTree using the table and VGH’s shown. Tuples in the table appear as leaves. Parents are 
generalizations. The number associated with node x shows how many tuples are represented by it, i.e., 
|Tuples(x)|. 

3.4.2 Definitions in a Generalization Tree 
 We define Form(x)i < Form(y)i and Form(y)i > Form(x)i iff. Form(y)i is “more-general-than” Form(x)i 
in VGHi.  That is, the path from Form(x)i to Form(y)i in VGHi exists;  
 We define Form(x) = Form(y) iff. Form(x)i = Form(y)i for all 1 ≤ i ≤ m; 
 We define Form(x) < Form(y) (and Form(y) > Form(x)) iff. Form(x)i ≤ Form(y)i for all 1 ≤ i ≤ m, and 
Form(x)j < Form(y)j for at least one j, 1 ≤ j ≤ m; 
 We define x an ancestor of y (and y a descendant of x) if Form(x) > Form(y), and also define x a 
parent of y (y a child of x) if x and y are directly connected. Clearly, root is an ancestor of all other nodes 
and a leaf is never an ancestor.  
 Given node b, an ancestor a, and c, a parent of a, the rule Form(a′) ⇒ Form(b) is a robust rule iff: 
Form(a) ≤ Form(a′) < Form(c) and ∃/ Form(x), s.t. Form(a′) < Form(x) < Form(c) over the same tuples. 

3.4.3 Properties of a Generalization Tree 
 Completeness: Let Q be the set of all data tuple sets Tuples(z)’s, where z∈{all nodes in a GenTree}, 
∃/ Form(z’), s.t. Tuples(z’)∉Q. 
 That is, for any data tuple set that is not found in Q, you will not be able to use a generalization form 
based on attributes’ hierarchies to represent it accurately. 
 Conciseness: For ∀ node z∈{all nodes in a GenTree} (except root), ∃/ another form Form(z’), s.t. 
Tuples(z’) = Tuples(z) and Form(z’) < Form(z). 
 That is, each node’s form is the most concise one with regard to the tuples represented by it. Root is 
excluded because it has the most general generalization form, and serves as a foundation for tree 
construction. 

3.4.4 Multiple Parents and Children 
With regard to parent and child, since GenTree is a DAG, each node may have multiple parents as well as 
multiple children.  However, it is easy to prove that a node x’s possible maximal number of parents is the 
number of unsuppressed attributes in Form(x); and the possible maximal number of children is 

∑ ∈ ))((_
)(

xFormbasenonv
vFanout  

where non_base(Form(x)) is the set of Form(x)’s non-base attribute values (in corresponding hierarchies), 
Fanout(v) is the number values that can be generalized to v directly (in corresponding hierarchy).  For 
example, let’s look at the node of the form (aa*, 11) in Figure 4.  The value “aa*” of attribute 1, is an 
unsuppressed and non-base value with Fanout(“aa*”) = 2 in the attribute 1’s hierarchy; the value “11” of 
attribute 2, is an unsuppressed but base value in attribute 2’s hierarchy.  So the node could have at most 2 
parents and 2 children, while in the actual tree it has 1 parent and 2 children, which is determined by the 
property of conciseness. 

 



3.5 GenTree Construction 
The basic steps of GenTree construction algorithm are shown in Figure 5.  The main steps of this 
algorithm are step 2.6 and 2.7, which are shown in more detail in Figure 6 and 7, respectively. 
 In step 2.6, the algorithm searches the current tree in a top-down direction for possible new non-leaf 
nodes that could be created due to t.  It starts by setting a cursor x at root and comparing x with t: 1) If t 
will be a descendant of x, the algorithm moves x down to each of its children; 2) If Form(x)i ≥ Form(t)i 
for some attribute i, it determines whether each most concise common ancestor g of x and t is already 
created,  if not, g is created and is inserted in step 2.7, then x is moved down to its children; 3) In other 
situations, same actions as in 2) except that x will not move further down.  Step 2.6 guarantees the 
properties of completeness and conciseness. 
 

 
Figure 5. Basic Steps of GenTree Construction. 

In Step 2.7, the algorithm’s task is to find the proper parents and children for the new node x. The basic 
idea is starting from root, search downward for eligible parents of x.  The tricky part is to find x’s 
children, details are shown in Figure 7. 

3.5.1 Size of GenTree 
For simplicity, consider full tree-like hierarchies.  The maximum number of more-general values of a base 
value equals “the height of the hierarchy – 1”. 
 For a combination of hierarchical attributes, the maximum number of cross-level ancestors of a leaf 
representing a base-valued tuple, is related to the product of the heights of the hierarchies: 

∏ −
i

iH 1)(  

where Hi is the height of hierarchy associated with attribute i.  
 An extreme upper bound of GenTree size is: 

∏⋅
i

iHn  

where n is the number of data tuples. 
 This is huge!  BUT leaves have ancestors in common, and not all ancestors are necessary for a 
practical dataset, so actual GenTree size is much, much smaller than this upper bound! 
 

Algorithm GenTree Construction 
Input: Table D and a VGH for each attribute in D 
Output: the root of the GenTree 
1. create node root by generalizing all attributes to most general values, i.e., roots in hierarchies of all 
attributes; 
2. do the following until all tuples in database D are treated: 
      2.1. pick a new tuple from D; 
      2.2. create leaf node t corresponding to the tuple picked; 
      2.3. if (∃ a non-leaf node s, s.t. Form(s) = Form(t)) then do: 
                     2.3.1. connect t to s as its child; 
                     2.3.2. go to 2.1; 
      2.4. create set To_Insert; 
      2.5. add t to To_Insert; 
      2.6. use the current tree to find all of the most concise new generalizations involving t and any eligible 

subset of current leaves, create corresponding non-leaf nodes and add them to To_Insert; See Figure for 
details. 

      2.7. insert each node in To_Insert to current tree, as a descendant of root; See Figure for details. 
      2.8. delete set To-Insert; 
      2.9. go to 2.1; 
3 return root



 
Figure 6. Algorithms that perform Step 2.6 in GenTree construction. 

 
3.6 Rule Mining Algorithm 
Our goal is to efficiently mine robust rules from a table using a GenTree.  We begin by precisely defining 
a robust rule.  We then describe a conceptual algorithm for mining robust rules, and present an efficient 
one. 
 Definition: Given table D, attribute set A = {A1, …, Am}, associated hierarchies and minimum support 
and confidence thresholds minsup and minconf, a multi-dimensional generalized association rule X ⇒ Y, 
is a robust rule with respect to the VGHAi’s if the following conditions are satisfied: 

1. |Tuples(Y)|/|D| ≥ minsup and |Tuples(Y)|/|Tuples(X)| ≥ minconf; 
2. ∃/ Y’, s.t. Tuples(Y’) = Tuples(Y) and Y’ < Y; 
3. ∃/ X’, s.t. Tuples(X’) = Tuples(X) and X’ > X. 

 In order to learn robust rules, we start by finding Heads.  The property of conciseness of GenTree 
assures that the generalization form of each node (except root) is most explicit with regard to the tuple set 

Algorithm findNewNonLeafNodes 
Input: new leaf node t, node root. 
Output: set NewNonLeaves, containing non-leaf nodes representing the most concise new generalizations 
involving t and any eligible subset of current leaves rooted at root. 
1. let NewNonLeaves  Φ 
2. exploreNodePair(t, root, NewNonLeaves) 
3. return NewNonLeaves 
 
Algorithm exploreNodePair 
Input: new leaf node t, current node x, node set NewNonLeaves. 
Output: void. 
1. if (x has been called by another exploreNodePair(t, x, NewNonLeaves) then return 
2. compare Form(t) with Form(x) 
    2.1. case (Form(t) < Form(x)): 
        2.1.1. for each child y of x do exploreNodePair(t, y, NewNonLeaves) 
    2.2. case (Form(t)i ≤ Form(x)i for some i): 
        2.2.1. G  generalize(t, x) 
        2.2.2. for each node g in G, if (∃/ h in current tree, s.t. Form(h) = Form(g)) then add g to NewNonLeaves 
        2.2.3. for each child y of x do exploreNodePair(t, y, NewNonLeaves) 
    2.3. case (else): 
        2.3.1. G  generalize(t, x) 
        2.3.2. for each g in G, if (∃/ h in current tree, s.t. Form(h) = Form(g)) then add g to NewNonLeaves 
 
Algorithm generalize 
Input: node x, node y. 
Output: node Set G, containing all of such node g, that is one of the most concise generalizations of x and y, i.e., 
s.t. Form(g) ≥ Form(x), Form(g) ≥ Form(y), with a guarantee that∃/ g’ s.t. Form(g’) ≥ Form(x), Form(g’) ≥ 
Form(y) and Form(g’) < Form(g). 
1. for each i, 1 ≤ i ≤ m, do: 
    1.1. in the hierarchy of the i’th attribute, find the closest “more-general” values shared by Form(x)i and 

Form(y)i 
    1.2. add all found values in set Vi 
2. let G  Φ 
3. for each different generalization form, i.e., a combination of values chosen across Vi’s for all i, 1 ≤ i ≤ m, 

create a corresponding node g and add g to G 
4. return G 



it represents.  The property of completeness assures that the set of node forms (except that of root) in 
GenTree may serve as a complete candidate set of Heads.  Given minsup as a user-specified minimum 
support, we may prune the candidate set by removing ∀Form(p), s.t. |Tuples(p)| < |D|•minsup. 
 For each candidate Head Y (Form(y) = Y), how do we find a good corresponding Body X in order to 
complete a rule X ⇒ Y?  
 

 
Figure 7. Algorithms that perform step 2.7 in GenTree construction. 

 From the definition, we know that data tuples that support Body form a superset of those for Head.  
The structure of GenTree and the property of completeness assure that all possible generalization forms 
for the tuples are represented by the ancestors shared by the leaves (tuples).  We might falsely assume 
then that the forms of all such ancestors are useful Bodies.  The property of conciseness guarantees each 
of these ancestors has a most specific generalization form representing a corresponding superset , but on 
the contrary, a Body of a robust rule must be of a most generalized form.  So, the set of y’s ancestor nodes 
only provide an initial set of candidates for Bodies.  The node y itself is also included if rules with 
confidence of 100% are considered.  Given minconf a user-specified minimum confidence, we also prune 
candidates by removing all nodes p s.t. |Tuples(p)| > |Tuples(y)|/minconf.  
 Of the ancestors that are candidates for Bodies, how do we find most generalized form(s) for each of 
them?  For each node c taken from the candidates, examine each of its parent c′.  Usually, |Tuples(c′)| > 

Algorithm insertToTree 
Input: node x, node r. 
Output: void. 
Assume: Form(x) < Form(r), or Form(x) = Form(r) only if x is a leaf node and r is a non-leaf node 
1. if (r has been called by another insertToTree(x, r)) then return 
2. let ConnectAsChild = true  //show whether x needs to be connected to r as a child 
3. for each child s of r do: 

3.1. compare Form(x) with Form(s) 
    3.1.1. case ((Form(x) < Form(s)) or (Form(x) = Form(s), x is a leaf and s is a non-leaf)): 
        3.1.1.1. insertToTree(x, s) 
        3.1.1.2. let ConnectAsChild = false 
    3.1.2. case (x is a non-leaf, Form(x) > Form(s)): 
        3.1.2.1. insertBetween(s, x, r) 
        3.1.2.2. let ConnectAsChild = false 
    3.1.3. case (x and s are a non-leaves, Form(x)i ≤ Form(s)i or Form(x)i ≥ Form(s)i for each i, 1 ≤ i ≤ m): 
        3.1.3.1. addPossibleSubTree(s, x) 

4. if (ConnectAsChild = true) then connect x to r as its child 
 
Algorithm insertBetween 
Input: node s, node x, node r. 
Output: void. 
1. connect x to r as its child 
2. if (s is not a child of x yet) then connect s to x as its child 
3. disconnect s, a former child, from r 
 
Algorithm addPossibleSubTree 
Input: node s, node x. 
Output: void. 
1. if (s has been called by another addPossibleSubTree(s, x)) then return 
2. for each child u of s do: 

2.1. if (Form(u) < Form(x) and u is not a child of x) then connect u to x as its child 
2.2. else if (u is a non-leaf node, Form(x)i ≤ Form(u)i or Form(x)i ≥ Form(u)i for each i, 1 ≤ i ≤ m) then 

addPossibleSubTree(u, x) 



|Tuples(c) | because of the superset-set relation, and the pair(c, c′) bound the expression of a Body X such 
that Form(c ) ≤ X < Form(c′).  We generate the most generalized form(s) in terms of  c and c′, as 
described below. 
 We compose Body X = Form(x) such that Form(c) ≤ Form(x) < Form(c′) and ∃/ Form(r) where 
Form(x) < Form(r) < Form(c′).  This is done as follows using each ci, ci′ and VGHi.  Let S be the set of all 
possible generalization forms between c and c′, inclusive.  Remove all generalizations from S whose 
tuples would not be Tuples(c).  Remove each generalization G1 from S if there exists a G2 in S such that 
G2 > G1.  Each of the resulting forms in S is an expression for X.  
 This is a conceptual non-efficient algorithm for finding robust rules in a GenTree.  Figure 8 provides 
an efficient algorithm.  Starting at each child of root, we traverse the GenTree in a top-down direction and 
treat the generalization form of each node a candidate of Head Y (Form(y) = Y).  If the number of tuples 
which a node represents does not satisfy minsup, none of its descendants will be visited.  For each 
candidate node y, all eligible ancestor nodes (with regard to minconf) will be visited as a candidate of X’s 
foundation.  We create actual X’s by further generalizing them to most general forms that represent the 
same set of tuples. 
 

 
Figure 8. Algorithms for mining robust rules from a GenTree. 

 For some GenTree, there is a special situation: root has only one child q.  In this case, Tuples(q) = 
Tuples(root), representing all data tuples.  A rule “Form(root) ⇒ Form(q) with 100% support and 100% 
confidence” must be true.  This means the most specific generalization form for all tuples in the 
corresponding dataset is Form(q), i.e., the value of the i’th attribute for each tuple can be generalized to 
Form(q)i, for all i.  So, if any rule’s Body includes Form(q)i, in order to make it most general, a special 

Algorithm mineRobustRules 
Input: node root, rule parameters minsup and minconf. 
Output: association rule set R, which satisfies minsup and minconf. 
1. let R  Φ 
2. for each child s of root do findRulesFor(s, minsup, minconf, R) 
3. return R 
 
Algorithm findRulesFor 
Input: node s, rule parameters minsup and minconf, rule set R. 
Output: void. 
1. if (s has been called by another findRulesFor(s, minsup, minconf, R)) then return 
2. if (|Tuples(s)| does not satisfy minsup) then return 
3. findGoodPairs(s, s, minconf, R)  //rules with 100% confidence also considered 
4. for each child q of s do findRulesFor(q, minsup, minconf, R) 
 
Algorithm findGoodPairs 
Input: node s, node s’, rule parameter minconf, rule set R. 
Output: void. 
Assume: Form(s’) ≥ Form(s) 
1. if (s and s’ has been called by another findGoodPairs(s, s’, minconf, R)) then return 
2. if (|Tuples(s)|/|Tuples(s’)| does not satisfy minconf) then return 
3. let NewRules  Φ 
4. for each parent p of s’ do: 

3.1. for each pair of attribute values (Form(p)i, Form(s’)i) do: 
    3.1.1. if (Form(p)i > Form(s’)i) then for each value v which can be generalized directly to Form(p)i and v 

≥ Form(s’)i in the hierarchy of the i’th attribute do: 
        3.1.1.1. let FORM = Form(p) 
        3.1.1.2. replace FORMi with v 
        3.1.1.3. let new_rule be “FORM ⇒ Form(s)” with support = |Tuples(s)| /|D| and confidence = 

|Tuples(s)|/|Tuples(s’)| 
        3.1.1.4. if (new_rule∉NewRules) then add new_rule to NewRules 

4. add all rules contained in NewRules to R 
5. for each parent p of s’ do findGoodPairs(s, p, minconf, R) 



operation is needed: replace Form(q)i with Form(root)i, i.e., the i’th attribute should be suppressed in 
Body.  See Figure 9 for a rule mining example. 
 

*****,****/**/**
5

021**,199*/**/**
5

021**,1996/08/**
4

02139,199*/**/**
3

0214*,1996/08/**
2

02139,1996/08/**
2

02140,1996/08/23
1

02139,1996/08/12
1

02139,1992/07/17
1

02141,1996/08/19
1

02139,1996/08/07
1

node y

node c

node c’ (q)

*****,****/**/**
5

*****,****/**/**
5

021**,199*/**/**
5

021**,199*/**/**
5

021**,1996/08/**
4

021**,1996/08/**
4

02139,199*/**/**
3

02139,199*/**/**
3

0214*,1996/08/**
2

0214*,1996/08/**
2

02139,1996/08/**
2

02139,1996/08/**
2

02140,1996/08/23
1

02140,1996/08/23
1

02139,1996/08/12
1

02139,1996/08/12
1

02139,1992/07/17
1

02139,1992/07/17
1

02141,1996/08/19
1

02141,1996/08/19
1

02139,1996/08/07
1

02139,1996/08/07
1

node y

node c

node c’ (q)

 
Figure 9. Rule mining example: Head Y = Form(y), a possible Body X is bounded by c and c’.  Under usual 
GenTree mining conditions, Body X = (0213*, 199*/**/**) based on c and c’. However, in the above GenTree, 
c’ is the only child q of root, which is a special GenTree mining case in which we replace “199*/**/**” with 
“****/**/**” (supression).  So finally, Body X = (0213*, ****/**/**), and the corresponding robust rule is 
(0213*, ****/**/**) ⇒ (02139, 1996/08/**). 

 Theorem1: Given table D, attribute set A = {A1, …, Am}, associated hierarchies and minimum 
support and confidence thresholds minsup and minconf, a rule generated by the GenTree algorithm is a 
robust rule. 
 Proof sketch: Condition 1 is satisfied as stated above; the property of conciseness guarantees 
condition 2 and the algorithm “generalize” in Figure 6 ensures that the GenTree constructed is consistent 
with the property of conciseness; condition 3 is satisfied by algorithm “findGoodPairs” in Figure 8. 
 Theorem2: The set of rules generated by the GenTree algorithm is complete with regard to minsup 
and minconf. 
 Proof sketch: The theorem is guaranteed by the property of completeness, the algorithm 
“exploreNodePair” in Figure 6 ensures that the GenTree constructed is consistent with the property of 
completeness and the rule mining algorithm ensures that all possible Body-Head combinations are 
considered. 
 

4. Experimental Results 
4.1 Voter List for Pittsburgh, Pennsylvania 
We conducted the first experiment on dataset D1, The 2001 voter list for ZIP 15213 in Pittsburgh, 
Pennsylvania having a total of 4,316 records [12].  The values of 8 attributes for each record, i.e. {sex, 
birthdate (year/month/day), regis_date (year/month), party_code, ethnic_code, income (code), 
home_owner, havechild}, were selected as a tuple.  With rule parameters minsup = 2% and minconf = 
50%, 8160 robust rules were learned after applying the GenTree algorithm.  The following are rule 
examples: 
 {*, 196*/**/**, 198*/**, D, *, *, *, *} ⇒ {F, 196*/**/**, 198*/**, D, *, *, *, *} “Democrats born in 
1960’s and registered in 1980’s tend to be Female.” [Support: 2.2%, Confidence: 52.2%] 
 {*, ****/**/**, 19**/**, R, W, *, D, *} ⇒ {F, 19**/**/**, 19**/**, R, W, *, D, F} “Republican 
Whites owning home tend to be females with no children.” [Support: 2.1%, Confidence: 55.4%] 



 Of the 8160 robust rules, 167 of them learned information in “depth”.  The ratio is not high because 
only 2 attributes, i.e. birthdate and regis_date, have multi-level hierarchies; the remaining 6 attributes are 
treated as categorical, i.e. 1-level hierarchies, in original dataset. 
 Figure 10 shows the growth of GenTree Size for D1. It is clear that the actual GenTree size is much, 
much smaller than the “extreme upper bound” and grows linearly with the number of tuples. 
 
4.2 Voter List for Cambridge, Massachusetts 
We conducted the second experiment on the 1997 voter list for Cambridge, Massachusetts [11].  We 
randomly sampled 10,000 records as dataset D2, from the original 54,805 records.  The values of 6 
attributes for each record, i.e. {5-digit ZIP, sex, birthdate (year/month/day), regdate (year/month/day), 
party, status}, were selected as a tuple.  With rule parameters minsup = 2% and minconf = 50%, 4140 
robust rules were learned after applying the GenTree algorithm.  Figure 11 shows a part of rules that were 
learned. 
 Of the 4140 robust rules learned, 1117 of them learned information in “depth”.  Only 3 attributes in 
D2, i.e. 5-digit ZIP, birthdate and regdate, that are associated with multi-level hierarchies.  We may infer 
that even larger portion of rules would learn “in depth” if more attributes have multi-level hierarchies.  
 Figure 12 shows the growth of GenTree Size for D2. It also indicates that the actual GenTree size is 
much, much smaller than the “extreme upper bound” and grows linearly with the number of tuples. 
 

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

1 501 1001 1501 2001 2501 3001 3501 4001

Number of Tuples

G
en

Tr
ee

 S
iz

e

Upper Bound Actual Tree Size

 

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001

Number of Tuples

Tr
ee

 S
iz

e

Upper Bound Actual Tree Size

 

Figure 10. GenTree Size versus Number of Tuples  
for dataset “Voter List for ZIP 15213”. 

Figure 12. GenTree Size versus Number of Tuples 
for dataset “Cambridge Voter List, 1997”. 

  
ZIP Party Sex Birth Reg Status Infers ZIP Party Sex Birth Reg Status Support Confidence

***** * F 197*/**/** 1996/**/** * ==> 021** * F 197*/**/** 1996/**/** A 3.27% 99.70%
0213* * F 197*/**/** 1996/**/** * ==> 0213* * F 197*/**/** 1996/**/** A 2.53% 99.61%
***** R * 19**/**/** 1996/**/** * ==> 021** R * 19**/**/** 1996/**/** A 2.01% 99.50%
02138 D * 19**/**/** 1996/**/** * ==> 02138 D * 19**/**/** 1996/**/** A 3.90% 99.49%
***** * F 19**/**/** 197*/**/** A ==> 021** D F 19**/**/** 197*/**/** A 2.64% 83.02%
02139 * * ****/**/** 19**/**/** * ==> 02139 D * ****/**/** 19**/**/** * 18.98% 57.90%  
Figure 11. Sample from 4140 robust rules learned from Cambridge, Massachusetts voter data.  The topmost 
rule reads “Women voters in this list born in the 1970’s and registered in 1996, live in Cambridge (021**) 
and are active.”  The bottom rule reads “Voters living in ZIP 02139 and registered in last century 
(19**/**/**) tend to be Democrats.” 

 



16 

4.3 Discussion of Experimental Results 
The number of rules learned through D1 is almost twice that of D2, although |D1| is less than half of |D2|.  
This is not surprising because the former has 8 attributes while the latter has 6.  The number of rules is 
should grow exponentially with the number of attributes. 
 The ratio of rules that learned information in depth is much higher for D2 than for D1.  The reason is, 
D2 has 3 attributes with multi-level hierarchies (ZIP, birthdate, regdate), but D1 has only 2 (birthdate, 
regis_date). 
 For experiments with both datasets, it is shown that the actual tree sizes are much, much smaller than 
the “extreme upper bound!” 
   
4.4 Comparison to Fixed-Level Mining 
Because mining for robust rules is novel, we are unable to find other currently existing approaches against 
which to compare.  However, theoretical comparisons between our approach and an adapted traditional a 
priori algorithm can be done.  
 One way to adapt the traditional approaches that do not incorporate hierarchies to learn generalized 
rules is to replace base attribute values with generalized equivalents. 
 We experimented on D2 based on the following settings for attributes with multi-level hierarchies, i.e. 
{ZIP, birthdate, regdate}: Free cross-level and 8 Fixed-level settings, e.g., (5-digit, year, year), (3-digit, 
year, decade) and (5-digit, decade, year).  Figure 13 provides the comparison of the number of rules that 
can be learned based on the above settings.  We are not surprised to see that the number of rules coming 
from any Fixed-level settings is much smaller than that of free cross-level.  In order to analyze the 
distribution of these rules, we projected them on the support-confidence plane for each setting (Figure 
14).  After removing free cross-level rules which are overlapped by Fixed-level ones in terms of data 
corroboration, i.e. having the same set of supporting data tuples for Body and Head respectively, it turned 
out that there are as many as 2931 free cross-level left (Figure 15).  Notice the large numbers of high 
confidence and of low support rules learned only by our method. 
 

Number of rules learned, minsup=2% minconf=50%

4140

255 145
509 417 283 161

999
512

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 3 4 5 6 7 8 9

Setting

 
Figure 13. Number of rules from cross-level versus fixed-level mining, having minimum support of 2% and 
minimum confidence of 50% with attributes {ZIP, birthdate, regdate}. Legend: (1) free cross-level; (2) 5-digit, 
year, year; (3) 3-digit, year, year; (4) 5-digit, decade, year; (5) 5-digit, year, decade; (6) 3-digit, decade, year; 
(7) 3-digit, year, decade; (8) 5-digit, decade, decade; (9) 3-digit, decade, decade.  

 The total number of rules generated by those 8 Fixed-level settings is (255 + 145 + … + 512) = 3281, 
but in terms of data corroboration they only account for (4140 – 2931) = 1209 rules. This redundant 
overlapping is due to the limited expressivity of traditional rule forms, which we will discuss further in 
the next section. 
 



17 

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

1) 2) 3)

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

4) 5) 6)

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

7) 8) 9)  
Figure 14. Rules projected on support-confidence planes for different settings as described in Figure 11. 

 

50.00%
55.00%

60.00%
65.00%

70.00%
75.00%
80.00%

85.00%
90.00%

95.00%
100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

50.00%
55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

support

co
nf

id
en

ce

 
Figure 15. Before (left) and after (right) removing overlaps: 4140 robust rules (left),  2931 remaining (right). 

 

5. Discussion 
5.1 Comparison to Fixed-Level Mining 
Traditional rule mining methods, if adapted, are similar to mining fixed-level rules at all possible 
combination of levels.  In transaction database domain, there is a concept of “frequent itemset” (Figure 
16).  Adapting this idea to relational database domain, we have a concept of “frequent attribute-value set”.  
We use frequent attribute-value set with fixed levels of abstractions to demonstrate how traditional rule 



18 

mining approaches might be adapted to mine for multi-dimensional generalized association rules, though 
such rules are not necessarily robust. 
 Previous algorithms are mostly based on “Apriori”, if adapted:  

1. Scan database, for each attribute, find all “frequent 1-attribute-value sets” which satisfy minsup at 
different levels of corresponding hierarchies 
2. Generate “frequent 2-attribute-value set” candidates by combining “frequent 1-attribute-value sets” 
3. Scan database again for validation: find all “frequent 2-attribute-value sets” which satisfy minsup 
4. Continue to find eligible “frequent k-attribute-value sets” based on “frequent (k-1)-attribute-value 
sets” 

 
Items Bought
A,B,C
A,C
A,D
B,E,F

Frequent Itemset Support
{A} 75%
{B} 50%
{C} 50%
{A,C} 50%  

Figure 16. Example of “frequent itemset”. 

 This adapted method is computationally expensive if minsup is small, due to costly candidate 
generation for “frequent attribute-value sets” involving many attributes.  Of course, interesting rules are 
usually of small support.  The adapted method also requires multiple scans over the table, which is a 
burden. 
 Rules mined by the adapted method are based on “frequent attribute-value sets.”  For a rule Body ⇒ 
Head, Body and Head are selected from the same “frequent attribute-value set”.  We treat a “frequent 
attribute-value set” as a form of (Body & Head), with subsets as Bodies and corresponding 
complementary subsets as Heads.  An eligible pair must satisfy the minconf requirement.  This requires 
extra computation to calculate these subsets and determine confidence. 
 Rules mined from this adapted method can only learn additional attributes in Head, i.e., learning in 
“width,” and is unable to provide more specific attribute values in Body, i.e., learning in “depth.” 
 In our GenTree algorithm only the most concise multi-dimensional generalizations are found, so there 
is no redundancy.  Relations are expressed clearly by connections between nodes.  We implemented an 
efficient rule mining algorithm based on GenTree, so there is no extra computational cost and no 
redundant rules.  GenTree construction is computationally cheap for small minsup requirement, because 
there are no costly candidate generating and validating procedures to perform. 
 Multi-dimensional generalized association rules are richer in expressivity, capable of expressing 
robust rules through learning in “depth”.   
 

ZIP RegDate
02139 1996/08/07
02141 1996/08/19
02139 1992/07/17
02139 1996/08/12
02140 1996/08/23  

Figure 17. Dataset Example. 

 In the dataset shown in Figure 17, consider tuple set {(02139, 1996/08/07), (02139, 1996/08/12)} for 
example.  Using the adapted method: “frequent 2-attribute-value sets” were found and rules learned with 
minsup=40% and minconf=60%.  The results are as follows: 

 {0213*, 1996/**/**}, {0213*} ⇒ {1996/**/**} [40%, 66.7%] 
 {0213*, 1996/08/**}, {0213*} ⇒ {1996/08/**} [40%, 66.7%] 
 {02139, 1996/**/**}, {02139} ⇒ {1996/**/**} [40%, 66.7%] 



19 

 {02139, 1996/08/**}, {02139} ⇒ {1996/08/**} [40%, 66.7%] 
 The above rules have redundancy and need extra pruning.  The robust rule is: 
  {0213*, ****/**/**} ⇒ {02139, 1996/08/**} [40%, 66.7%] 
 Below is the rule in a compatible traditional form.  Our GenTree algorithm learns this rule 
automatically. 

{0213*} ⇒ {02139, 1996/08/**} 
 
5.2 Future Work 

Multiple Hierarchies for an Attribute.  Rather than using a single VGH for an attribute, there are 
situations in which multiple VGH’s seem natural because they capture different criteria for describing a 
value.  Even though these descriptions can be encoded into a single hierarchy and GenTree used to mine 
robust rules, different rules result depending on the level at which the encoding takes place.  Here is a 
simple example. Consider a relational table of customer demographics and purchased beverages.  An “is-
a” hierarchy associates both milk and juice as beverages in the top levels, and brands of juices and milks 
in the lower levels.  But some juices and milks have the same brands.  We could alternatively have the 
hierarchy organized first by brand and then by type of beverage.  Notice how the same rules learned from 
these two different hierarchies may have different values for support and confidence!  This happens 
because the ordering of characteristics within a hierarchy matters not only semantically, but also 
quantifiably.  Replacing this imposed ordering of characteristics with multiple hierarchies (e.g., separate 
beverage and brand hierarchies) for the same attribute poses another new exploration in rule mining.  An 
extension to GenTree construction seems particularly well suited to accommodate attributes having 
multiple hierarchies.  Additional nodes representing the various forms of cross-level generalizations using  
the hierarchies would be added.  Mining robust rules from the revised GenTree would then use the same 
algorithm as presented herein.   

Size of a GenTree.  The extreme upper bound of a GenTree is much, much larger than the size of a 
GenTree in practice because of the ways in which tuples combine.  In the real-world, tuples tend not to 
represent every possible combination of values.  Also, in real-world data the number of tuples tends to be 
much larger than the number of attributes, thereby increasing the number of tuples likely to share 
common values.  The actual size of a GenTree is related to the fractal dimension of the data.  Exploring 
this relationship further allows us to determine a tighter upper bound based on the fractal dimension. 
There will be two key components here: 1) how to estimate the fractal dimension of a dataset with 
attribute hierarchies in a fast yet accurate way, and 2) how to incorporate the fractal dimension in the 
upper bound formula. 

Privacy and k-anonymized data.  The notion of k-anonymized data is simple.  Given a table in 
which each tuple contains information about a single person and no two tuples relate to the same person, a 
table is k-anonymized if for every tuple there are at least k-1 other tuples in the table having the same 
values over the attributes considered sensitive for re-identification [10].  A k-anonymized table provably 
provides privacy protection by guaranteeing that for each tuple there are at least k individuals to whom 
the tuple could refer.  The use of k-anonymity fits nicely into stated laws and regulations because these 
expressions need only identify a population, attributes, and a value for k, all of which are easy to 
formulate in human language.  Despite its popularity, however, the use of k-anonymized data has been 
limited due to a lack of methods to learn from the data.  Because GenTree stores the number of tuples at 
each node that account for the generalized form of the node, it is easy to see that GenTree could be used 
to produce k-anonymized data.  More importantly, GenTree would be the first to mine association rules 
from k-anonymized data.  These are natural by-products of this work. 



20 

 In this paper, we have introduced the problem of mining robust rules from a large relational table.  
We used the partial ordering imposed by “more-general-than” attribute hierarchies to extend the rule 
space.  A GenTree, introduced herein, organizes search through the extended rule space for robust rules, 
which are cross-level generalizations based on quantifiable corroboration (support and confidence) and on 
semantic expressiveness.  In real-world data, many more and different kinds of useful rules are learned 
using GenTree than is possible with prior methods. 
 

6. Acknowledgements 
We thank Bradley Malin for comments, Diane Stidle for administrative assistance, and members of the 
Data Privacy Lab for a rich work environment.  This work was supported in part by the Data Privacy 
Laboratory, the Center for Automated Learning and Discovery, and the NSF Aladdin Center, all in the 
School of Computer Science at Carnegie Mellon University. 
 

References 
[1] Agrawal, R. Imielinski, T. and Swami, A. Mining association rules between sets of items in large 

databases. In Proc. of the ACM SIGMOD Conference on Management of Data, Washington, DC, 
May 1993. 

[2] Han, J. and Fu, Y. Discovery of multiple-level association rules from large databases. In Proc. of the 
21st Int'l Conference on Very Large Databases, Zurich, Switzerland, September 1995. 

[3] Mitchell, T. Generalization as search. Artificial Intelligence, 18, 2, 1982, 203-226. 
[4] Plotkin, G. A note on inductive generalization. In Meltzer & Michie (Eds.), Machine Intelligence, 5, 

1970 (pp.153-163). Edinburgh University Press. 
[5] Rosen, K. Discrete Mathematics and Its Applications, (pp.1-9). New York: McGraw-Hill 1991. 
[6] Sebag, M. Delaying the choice of bias: A disjunctive version space approach. In Proc. of the 13th 

Int'l Conference on Machine Learning, San Francisco: Morgan Kaufman1996. 
[7] Simon, H. and Lea, G. Problem solving and rule induction: a unified view. In Gregg (Ed.), 

Knowledge and Cognition, (pp.105-127). New Jersey: Lawrence Erlbaum Assoc 1973. 
[8] Srikant, R. and Agrawal, R. Mining Generalized Association Rules. In Proc. of the 21st Int'l 

Conference on Very Large Databases, Zurich, Switzerland, September 1995. 
[9] Srikant, R. and Agrawal, R. Mining quantitative association rules in large relational tables. In Proc. of 

the ACM SIGMOD Conference on Mgt of Data, Montreal,Canada, June 1996. 
[10] Sweeney, L. Achieving k-anonymity privacy protection using generalization and suppression. 

International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5), 2002; 571-
588. 

[11] Voter List for Cambridge, Massachusetts, Registry of Voters, Massachusetts, 1997. 
[12] Voter List for Pittsburgh, Pennsylvania ZIP15213, Registry of Voters, Pennsylvania, 2001. 


