
A Translation Proof of Nominal Wyvern
Soundness

Yu Xiang Zhu∗ Julian Mackay† Alex Potanin†
Jonathan Aldrich∗

October 2019
CMU-ISR-19-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Institute for Software Research, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA
†Victoria University of Wellington, Wellington, New Zealand

Abstract

This technical report proves type safety for Nominal Wyvern with a translation to pDOT, a DOT-
based system with general paths that has been proven to be type safe.

Keywords: Type Safety, Wyvern

1 Introduction
Nominal Wyvern [4] is a new core type system for Wyvern [1] based on the DOT calculus [2]. It
achieves a higher degree of nominality in a DOT-based system by semantically separating the def-
inition of structures and their subtype relations from arbitrary width refinements and type bounds.
This contributes to a system with more explicit meanings and relations, useful for both human
readers to reason about and programming tools to refer to. At the same time, nominality helps
achieve subtype decidability. In line with the theme of semantic separation, Nominal Wyvern
adapts material-shape separation so that decidability results from an intuitive separation of types
with different roles. This contributes to a restriction that is more easily understandable and artic-
ulable. The resulting system preserves the ability to express common patterns expressible with
DOT, at the same time allowing for patterns that will be familiar to programmers already used to
traditional functional or object-oriented programming languages.

This technical report proves type safety for a slightly updated version of the grammar. Section
2 presents the syntax, static semantics, and dynamic semantics of an updated version of Nomi-
nal Wyvern. Section 3 proves type safety with a type preserving translation to pDOT. Section 4
concludes the report.

2 Grammar
The version of Nominal Wyvern in this technical report has been updated from the thesis version
in [4]. The main difference lies in the semantics of refinements.

2.1 Refinements as Intersections
In the thesis version of Nominal Wyvern, refinements were treated as modifications to the base
type it refines. Formally, the type bounds in refinements were required to be no wider than the
corresponding bounds in the base type. However, this restriction is stricter than what is needed,
and is not always possible to check, especially after environment narrowing during reduction.
Therefore, this restriction is relaxed so that the type bound in a refinement does not have to be
related to the corresponding bound in the base type it refines.

As a result, a type is now treated as an intersection of its base type with its refinement. In fact,
a base type is allowed to be followed by more than one refinement during subtyping. We call a
type with multiple refinements an “extended type”. An extended type is considered an intersection
of its base type with all of its refinements.

2.2 Syntax
Figure 1 presents the syntax of the updated Nominal Wyvern. It is unchanged from the thesis
version except for the removal of the if expression. It was removed for conciseness since it is not
central to the purpose of this language design.

1

P ::= program:
D e

D ::= top-level decls:
name n {x⇒ σ} named type decl
subtype n r <: n subtype decl

B ::= type bound:
≤ upper bound
≥ lower bound
= exact bound

σ ::= member decl:
type t B τ type member decl
val v : τ field decl
def f : τ x→ τ method decl

r ::= refinement:
{δ}

δ ::= refinement member decl:
type t B τ

β ::= base type:
⊥ bottom type
> top type
n named type
p.t path type

τ ::= type:
β r

p ::= path:
x variable
l store location*
p.v val selection

e ::= expression:
p path
p.f(p) method application
new τ{x⇒ d} new object
let x = e in e let expr

d ::= object member defn:
type t = τ type member defn
val v : τv = e field defn
def f : τ x→ τ = e method defn

∆ ::= n : {x⇒ σ}
Σ ::= n r <: n
Γ ::= x : τ

S ::= l : τ

µ ::= l : {x⇒ d}

Name Definition Context
Name Subtype Relation Context
Variable Typing Context
Location Typing Context
Runtime Store

* Intermediate form only (not user accessible)

Figure 1: Nominal Wyvern Syntax

2

2.3 Static Semantics
2.3.1 Top Level Well-Formedness

P : τ

names(D) = ∆ ∀ n : {x⇒ σ} ∈ ∆. ∆Σ ` n : {x⇒ σ}wf
subs(D) = Σ ∀ n1 r1 <: n2 ∈ Σ. ∆Σ ` n1 r1 <: n2 ∆Σ · · ` e : τ

D e : τ
TL-WF

∆Σ ` n : {x⇒ σ} wf

∀ type t B τt ∈ σ. ∀ val v : τv ∈ σ. v /∈ τt and ∆Σ(x : n) · ` τt wf
∆Σ ` n : {x⇒ σ} wf

NAME-WF

∆Σ ` n1 r1 <: n2

∆(n1) = {x1 ⇒ σ1}
∆(n2) = {x2 ⇒ σ2} r1 = {δ1} ∆Σ(x1 : n1 r1) · ` σ1, δ1 <: [x1/x2]σ2

∆Σ ` n1 r1 <: n2

SUB-WF

∆ΣΓS ` τ wf

∆ΣΓS ` > wf
TYPE-WF-TOP

∆ΣΓS ` ⊥ r wf
TYPE-WF-BOT

∆ΣΓS ` β rβ ≺ n rn ∆(n) = {xn ⇒ σn}
∀ type t B τ ∈ r. ∆ΣΓS ` n rn 3x type t B′ τ ′

∆ΣΓS ` β r wf
TYPE-WF

names(D) = ∆ creates a names definition context ∆ from D by matching each name to its definition
verbatim.
subs(D) = Σ creates a name subtype relation context Σ by copying over each subtype declaration in D
verbatim.

Figure 2: Nominal Wyvern Top Level Well-Formedness

The top level declarations at the start of each Nominal Wyvern program defines all the named
types and subtype relations between them. Figures 2 and 3 present the rules that judge the well-
formedness of top level declarations. The changes from the thesis version are

1. The merge operation on δ, +δ, is replaced with concatenation (in line with the philosophy of
refinements as intersections).

3

∆ΣΓS ` σ <: σ

∆ΣΓS ` σ <: ·
SDL-EMP

r1 3 type t B1 τ1

∆ΣΓS ` type t B1 τ1 <: type t B2 τ2

∆ΣΓS ` σ1 <: σ2

∆ΣΓS ` σ1 <: σ2, type t B2 τ2

SDL-TYPE

r1 3 val v : τ1

∆ΣΓS ` val v : τ1 <: val v : τ2

∆ΣΓS ` σ1 <: σ2

∆ΣΓS ` σ1 <: σ2, val v : τ2

SDL-VAL

r1 3 def f : τa1 x1 → τr1
∆ΣΓS ` def f : τa1 x1 → τr1 <: def f : τa2 x2 → τr2

∆ΣΓS ` σ1 <: σ2

∆ΣΓS ` σ1 <: σ2, def f : τa2 x2 → τr2
SDL-DEF

∆ΣΓS ` σ <: σ is the subtype judgment on σs (defined later).

Figure 3: Nominal Wyvern Top Level Well-Formedness (continued)

2. The type well-formedness rules no longer require bounds in refinements to be no wider than
the corresponding bounds in the base type. The only requirement is that refinements do not
introduce new members not present in the base type.

2.3.2 Term Typing

Figure 4 presents the term typing rules of Nominal Wyvern. The main changes from the thesis
version are

1. Removed typing rule for if expressions as they were removed from the grammar.

2. A new well-formedness rule for new expressions. In particular, the exposed type of the
object is required to be non-bottom (NB). Non-bottomness ensures that the type is never
narrowed into ⊥ in the future by statically fixing the named type (and thus the structure) of
the new object. This is needed to ensure type preservation.

2.3.3 Subtyping

Figures 5 and 6 presents the updated subtyping rules. As mentioned in Section 2.1, refinements
are allowed to stack together during subtype checking (replacing the earlier behavior of discarding
older refinements upon conflict). Due to the possibility of multiple refinements to the same type
member, the member access rule is now non-deterministic in which refinement (or the base type)
to return the bounds from.

4

∆ΣΓS ` e : τ

Γ(x) = τ

∆ΣΓS ` x : τ
T-VAR

S(l) = τ

∆ΣΓS ` l : τ
T-LOC

∆ΣΓS ` p : τ ∆ΣΓS ` τ ≺ n r
∆ΣΓS ` n r 3x val v : τv

∆ΣΓS ` p.v : [p/x]τv
T-SEL

∆ΣΓS ` p : τ ∆ΣΓS ` τ ≺ n r
∆ΣΓS ` n r 3x def f : τa xa → τr

∆ΣΓS ` p′ : τ ′ ∆ΣΓS ` τ ′ <: [p/x]τa

∆ΣΓS ` p.f(p′) : [p, pa/x, xa]τr
T-APP

∆ΣΓS ` τ wf
∆ΣΓS ` τ{x⇒ d} wf

∆ΣΓS ` new τ{x⇒ d} : τ
T-NEW

∆ΣΓS ` ex : τ ′x ∆ΣΓS ` τ ′x <: τx
∆ΣΓ, x : τx S ` e : τ ′ ∆ΣΓ, x : τxS ` τ ′ <: τ x /∈ fv(τ)

∆ΣΓS ` let x = ex in e : τ
T-LET

∆ΣΓS ` τ {x⇒ d} wf

∆ΣΓS ` τ NB ∆ΣΓS ` τ ≺ n r ∆(n) = {xn ⇒ σn} τx = n ref(sig(d))

Γ′ = Γ, x : τx ∆ΣΓS ` sig(d) <: σn, r

∀ val v : τv = p ∈ d. ∆ΣΓS ` p : τ ′v ∧∆ΣΓS ` τ ′v <: τv
∀ def f : τa xa → τr = e ∈ d. ∆ΣΓ, x : τx, xa : τa S ` e : τ ′r ∧∆ΣΓ, x : τx, xa : τaS ` τ ′r <: τr

∆ΣΓS ` τ {x⇒ d} wf

∆ΣΓS ` τ NB

∆ΣΓS ` > NB
NB-TOP

∆ΣΓS ` n r NB
NB-NAME

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ np rp
∆ΣΓS ` np rp 3x type t = βt rt ∆ΣΓS ` βt NB

∆ΣΓS ` p.t r NB
NB-PATH

x /∈ fv(τ) is true if x is not a free variable in τ .
sig : d → σ transforms object member definitions into member declarations by removing the dynamic
expression part of fields and methods.
ref : σ → r filters member declarations by preserving only type member declarations.
∆ΣΓS ` τ ≺ τu is true if following the upper bound of τ leads to τu, whose upper bound is itself. Judgments
not formally defined here are defined with the subtyping rules.

Figure 4: Nominal Wyvern Term Typing

5

∆ΣΓS ` β r <: β r

∆ΣΓS ` n r <: >
S-TOP

∆ΣΓS ` ⊥ <: n r
S-BOT

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r ∆ΣΓS ` n r 3x type t ≤= βt rt
∆ΣΓS ` [p/x](βt rt, r1) <: β2 r2

∆ΣΓS ` p.t r1 <: β2 r2

S-UPPER

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r ∆ΣΓS ` n r 3x type t ≥= βt rt
∆ΣΓS ` β1 r1 <: [p/x](βt rt, r2)

∆ΣΓS ` β1 r1 <: p.t r2

S-LOWER

∆ΣΓS ` r1 <: r2

∆ΣΓS ` β r1 <: β r2

S-REFL

∆ΣΓS ` n1
r1−→ n2 n1 6= n2 ∆ΣΓS ` r1 <: r2

∆ΣΓS ` n1 r1 <: n2 r2

S-NAME

∆ΣΓS ` r <: r

∀δ2 .∆ΣΓS ` r2 3 δ2

∃δ1 s.t.∆ΣΓS ` r1 3 δ1 ∧∆ΣΓS ` δ1 <: δ2

∆ΣΓS ` r1 <: r2

SR-LIST

∆ΣΓS ` β r ≺ β r

∆ΣΓS ` > ≺ >
TE-TOP

∆ΣΓS ` ⊥ r ≺ ⊥ r
TE-BOT

∆ΣΓS ` n r ≺ n r
TE-NAME

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r
∆ΣΓS ` n r 3x type t ≤= βt rt ∆ΣΓS ` [p/x](βt rt, r1) ≺ β2 r2

∆ΣΓS ` p.t r1 ≺ β2 r2

TE-UPPER

∆ΣΓS ` p : τp ∆ΣΓS ` τp ≺ n r ∆ΣΓS ` n r 3x type t ≥ τt

∆ΣΓS ` p.t r1 ≺ p.t r1

TE-LOWER

where type t B1
B2
τ matches a type member declaration with either bound B1 or B2.

Figure 5: Nominal Wyvern Subtyping

6

∆ΣΓS ` n r−→ n

∆ΣΓS ` n r−→ n
SN-REFL

Σ 3 n1 r1 <: n2 ∆ΣΓS ` r′1 <: r1 ∆ΣΓS ` n2

r′1−→ n3

∆ΣΓS ` n1

r′1−→ n3

SN-TRANS

∆ΣΓS ` n r 3 δ

∆(n) = {x⇒ σn} ∆ΣΓS ` ref(sig(σn)), r 3 δ
∆ΣΓS ` n r 3x δ

M-NAME

∆ΣΓS ` r 3 δ

δ ∈ δ
∆ΣΓS ` {δ} 3 δ

M-ND

∆ΣΓS ` σ <: σ

∆ΣΓS ` τ1 <: τ2

∆ΣΓS ` type t ≤= τ1 <: type t ≤ τ2

SS-UPPER

∆ΣΓS ` τ2 <: τ1

∆ΣΓS ` type t ≥= τ1 <: type t ≥ τ2

SS-LOWER

∆ΣΓS ` τ1 <: τ2 ∆ΣΓS ` τ2 <: τ1

∆ΣΓS ` type t = τ1 <: type t = τ2

SS-EXACT

∆ΣΓS ` τ1 <: τ2

∆ΣΓS ` val v : τ1 <: val v : τ2

SS-VAL

∆ΣΓS ` τa2 <: τa1 ∆ΣΓ, x1 : τa2 S ` τr1 <: [x1/x2]τr2

∆ΣΓS ` def f : τa1 x1 → τr1 <: def f : τa2 x2 → τr2
SS-DEF

σ ∈ δ is true if σ is a type member declaration (i.e. δ), and is part of δ.
x /∈ Γ is true when x is a fresh variable under the current variable typing context.

Figure 6: Nominal Wyvern Subtyping (continued)

7

µ | e 7−→ µ | e

µ ` p → l µ(l) 3xs def f : τx x→ τr = ef

µ | p.f(pa) 7−→ µ′ | [p/xs, pa/x]ef
EV-APP

µ | let x = p1 in e2 7−→ µ | [p1/x]e2

EV-LET-PATH

l fresh in µ

µ | let x = new τ{xs ⇒ d} in e2 7−→ µ, l : {xs ⇒ d} | [l/x]e2

EV-LET-NEW

e1 not a path or new expression µ | e1 7−→ µ′ | e′1
µ | let x = e1 in e2 7−→ µ′ | let x = e′1 in e2

EV-LET

µ ` p → l

l ∈ µ
µ ` l → l

EVP-LOC

µ ` p → l µ(l) 3xs val v : τv = pv µ ` [p/xs]pv → lv

µ ` p.v → lv
EVP-PATH

where µ(l) 3x d is true if the definition d exists in the definition list stored at memory location l of µ, with
the self variable denoted by x,
and ∆ΣΓS ` µ is true if ∀l : {x⇒ d} ∈ µ ∃l : τ ∈ S s.t. ∆Σ · S ` τ{x⇒ d} wf.

Figure 7: Nominal Wyvern Reduction Rules

2.4 Dynamic Semantics
Figure 7 presents the small step dynamic semantics of Nominal Wyvern. The “runtime” includes
a heap storage µ that stores memory locations. Each memory location l contains the definition of
an object created via new.

The evaluation rules follow the straightforward interpretation of the expressions. Memory
locations represent real objects during runtime, and are treated as values: evaluation stops when
the entire program reduces into a location. Paths are evaluated by evaluating field accesses from
the root of the path to the leaf. Method applications are evaluated by first evaluating the path to
the object containing the method, and then evaluating the argument. Finally replacing all mentions
of the argument (and self variable) in the method body with the actual argument location (and the
method-containing object’s own location). New expressions create a new memory location in µ
and evaluate immediately to that location. Finally, let expressions evaluate the inner expression
into a value before substituting it into the outer expression.

8

3 Type Safety Proof
In proving type safety for Nominal Wyvern, we turn to existing type safe languages. In particular,
we look at pDOT [3], a DOT-based system that supports general paths (recall that DOT systems
did not used to support paths that are not just a variable). This translation target was chosen due to
its similarity to Nominal Wyvern in being related to DOT and supporting general-length paths.

Since pDOT is already proven to be type safe, soundness for Nominal Wyvern can be proven by
showing that a translation from Nominal Wyvern programs into pDOT programs exist, that a well-
typed program in Nominal Wyvern is well-typed in pDOT after this translation, and that reduction
steps taken in Nominal Wyvern correspond to the same reductions taken by the translation in
pDOT.

Figure 8 presents a translation from Nominal Wyvern programs into pDOT programs. Since
both languages are based on DOT and support general paths, the main job of a translation lies in
converting nominal types and their subtyping relations. All named types are encoded into a pDOT
object available at the start of the program called TL. Each named type becomes a type member
of TL, bounded on both sides by its named type definition. More effort is required to encode
subtype relations since Nominal Wyvern verifies nominal subtyping relations assuming all nominal
subtyping relations already hold. This means not all subtyping relations that can be verified in
Nominal Wyvern hold naturally in pDOT. To make this work, the translation takes advantage of
intersection types by intersecting onto the definition of each named type n all other named types
that are declared supertypes of n. Consequently, the concept of conditional subtyping is dropped
here. Refinements are broken into individual type declarations that intersect together with the base
type. Methods are translated into fields containing lambda objects. All other language constructs
map directly into the same construct in pDOT.

Note that the translated program allows more subtype relations to be true than those in Nominal
Wyvern due to the relaxation of nominal subtype restrictions (i.e. a program that may not typecheck
in Nominal Wyvern may typecheck in pDOT after translation). However, this does not influence
the evaluation of the program once it is typechecked in Nominal Wyvern first.

We first wish to prove that the translation is type preserving.
To simplify notation, assume for the rest of this section that the top level variable produced by

the translation for a programD e is already in the pDOT context ΓD = TL : v(TL : JDKT∆Σ)JDKt∆Σ.

Lemma 1 (Translation Preserves Typing). Given well-formed top-level D, if ∆ΣΓS ` e : τ , then
ΓD, JΓK∆, JSK∆ ` JeK∆ : JτK∆.

Proof. To simplify notation, denote ΓD, JΓK∆, JSK∆ with Γ′, and JeK∆ with t′.
Assume the premise ∆ΣΓS ` e : τ (1). Prove by induction on term typing:

• Case T-VAR:

Let e = x.

By the translation rules, t′ = x, and Γ′ contains x : JτK∆.

By VAR, Γ′ ` t′ : JτK∆

9

Top Level
P t JD eK∆Σ = let TL = v(TL : JDKT∆Σ)JDKt∆Σ

in JeK∆

D T Jname n {x⇒ σ}KT∆Σ = {n : Tn...Tn}
D t Jname n {x⇒ σ}Kt∆Σ = {n = Tn}

where Tn = µ(x : JσK∆) ∧ Tsub

and Tsub = ∧
subtype n r<:n′∈Σ

TL.n′

Types
σ T Jval v : τK∆ = {v : JτK∆}

Jdef f : τ1 x→ τ2K∆ = {f : ∀(x : Jτ1K∆)Jτ2K∆}
Jtype t ≤ τK∆ = {t : JτK∆...>}
Jtype t ≥ τK∆ = {t : ⊥...JτK∆}
Jtype t = τK∆ = {t : JτK∆...JτK∆}

β T J>K∆ = >
J⊥K∆ = ⊥
Jp.tK∆ = JpK∆.t
JnK∆ = TL.n

τ T Jβ{δ}K∆ = JβK∆ ∧ JδK∆

Terms
e t JxK∆ = x

JlK∆ = xl
Jp.vK∆ = JpK∆.v
Jp1.f(p2)K∆ = Jp1K∆.f Jp2K∆

Jnew τ{x⇒ d}K∆ = J{x⇒ d}K∆

Jlet x = e1 in e2K∆ = let x = Je1K∆ in Je2K∆

d d Jtype t = τK∆ = {t = JτK∆}
Jval v : τ = pK∆ = {v = JpK∆}
Jdef f : τ1 x→ τ2 = eK∆ = {f = λ(x : Jτ1K∆)JeK∆}

Contexts
Γ Γ J∅K∆ = ∅

JΓ, x : τK∆ = JΓK∆, x : JτK∆

S Γ (inert) J∅K∆ = ∅
JS, l : τK∆ = JSK∆, xl : JτK∆

µ γ J∅K∆ = ∅
Jµ, l : {x⇒ d}K∆ = JµK∆, xl 7→ J{x⇒ d}K∆

{x⇒ d} v J{x⇒ d}K∆ = v(x : Jsig(d)K∆)JdK∆

The translation of any list of construct is the intersection of the translation of each element:
JsK = ∧

s∈s
JsK for all meta-variables s.

Figure 8: Nominal Wyvern to pDOT translation

10

• Case T-LOC:

Similar to Case T-VAR.

• Case T-SEL:

Let e = p.v.

By the translation rules, t′ = JpK∆.v.

(1) implies:

∆ΣΓS ` p : τp (2)

∆ΣΓS ` τp ≺ n r (3)

∆ΣΓS ` n r 3x val v : τv (4)

and τ = [p/x]τv (5)

By IH,

(2)⇒ Γ′ ` JpK∆ : JτpK∆

⇒ Γ′ ` JpK∆ : Jn rK∆ [(3), expansion pres.]
⇒ Γ′ ` JpK∆ : µ(x : {v : JτvK∆}) [(4), access pres.]
⇒ Γ′ ` JpK∆ : [JpK∆/x]{v : JτvK∆}
⇒ Γ′ ` JpK∆ : {v : [JpK∆/x]JτvK∆}
⇒ Γ′ ` JpK∆.v : [JpK∆/x]JτvK∆ [FLD-E]
⇒ Γ′ ` JpK∆.v : J[p/x]τvK∆ [substitution pres.]
⇒ Γ′ ` JeK∆ : JτK∆ [(5)]

• Case T-APP:

Let e = p1.f(p2).

By the translation rules, t′ = p1.f p2.

(1) implies:

∆ΣΓS ` p1 : τ1 (2)

∆ΣΓS ` τ1 ≺ n1 r1 (3)

∆ΣΓS ` n1 r1 3x def f : τa xa → τr (4)

∆ΣΓS ` p2 : τ2 (5)

∆ΣΓS ` τ2 <: [p1/x]τa (6)

and τ = [p1, p2/x, xa]τr (7)

11

By IH,

(2)⇒ Γ′ ` Jp1K∆ : Jτ1K∆

⇒ Γ′ ` Jp1K∆ : Jn1 r1K∆ [(3), expansion pres.]
⇒ Γ′ ` Jp1K∆ : µ(x : {f : ∀(xa : JτaK∆)JτrK∆}) [(4), access pres.]
⇒ Γ′ ` Jp1K∆ : [Jp1K∆/x]{f : ∀(xa : JτaK∆)JτrK∆}
⇒ Γ′ ` Jp1K∆.f : [Jp1K∆/x]∀(xa : JτaK∆)JτrK∆

⇒ Γ′ ` Jp1K∆.f : ∀(xa : [Jp1K∆/x]JτaK∆)[Jp1K∆/x]JτrK∆

By IH,

(5)⇒ Γ′ ` Jp2K∆ : Jτ2K∆

(6)⇒ Γ′ ` Jτ2K∆ <: [Jp1K∆/x]JτaK∆ [subtype pres.]
⇒ Γ′ ` Jp2K∆ : [Jp1K∆/x]JτaK∆ [SUB]
⇒ Γ′ ` Jp1K∆.fJp2K∆ : [Jp2K∆/xa][Jp1K∆/x]JτrK∆

⇒ Γ′ ` JeK∆ : JτK∆

• Case T-NEW:

Let e = new τ{x⇒ d}.
By the translation rules, t′ = v(x : JτK∆)JdK∆.

(1) implies:

∆ΣΓS ` τ wf (2)

∆ΣΓS ` τ{x⇒ d} wf (3)

Case on the type of member:

– For vals:

(3)∀val v : τv = pv ∈ d.
∆ΣΓS ` n 3x′ val v : τ ′v (4)

∆ΣΓS ` pv : τva (5)

∆ΣΓS ` τva <: τv

∆ΣΓ, x′ : τxS ` τv <: τ ′v

By IH,

(5)⇒ Γ′ ` JpvK∆ : JτvaK∆

⇒ Γ′ ` JpvK∆ : JτvK∆ [subtype pres.]
⇒ Γ′, x : JτxK∆ ` JpvK∆ : J[x/x′]τvK∆ [weakening]
⇒ Γ′, x : JτxK∆ ` JpvK∆ : J[x/x′]τ ′vK∆ [subtype pres.]

12

Since Jval v : τv = pvK∆ = {v : JpvK∆}:

x; Γ′, x : JτxK∆ ` {v : JpvK∆} : {v : JpvK∆.type}
x; Γ′, x : JτxK∆ ` {v : JpvK∆} : {v : J[x/x′]τ ′vK∆} [section 4.2.4 of [3]]

– For defs:

(3)⇒∀def f : τa xa → τr = ef ∈ d.
∆ΣΓS ` n 3x′ def f : τ ′a x

′
a → τ ′r (4)

∆ΣΓ, x : τxS ` [x/x′]τ ′a <: τa (5)

∆ΣΓ, x : τx, xa : τaS ` τr <: [x, xa/x
′, x′a]τ

′
r (6)

∆ΣΓ, x : τx, xa : τa S ` ef : τra (7)

∆ΣΓ, x : τx, xa : τaS ` τra <: τr (8)

(5)⇒ Γ′, x : JτxK∆ ` J[x/x′]τ ′aK∆ <: JτaK∆

(6)⇒ Γ′, x : JτxK∆, xa : JτaK∆ ` JτrK∆ <: J[x, xa/x
′, x′a]τ

′
rK∆

(7, 8)⇒ Γ′, x : JτxK∆, xa : JτaK∆ ` JefK∆ : JτrK∆

⇒ Γ′, x : JτxK∆, xa : JτaK∆ ` JefK∆ : J[x, xa/x
′, x′a]τ

′
rK∆

Then Jdef f : τa xa → τr = efK∆ = {f = λ(xa : JτaK∆)JefK∆}, and
Γ′ ` {f = λ(xa : JτaK∆)JefK∆} : {f : ∀(xa : JτaK∆)JτrK∆}.

– For types:

(3)⇒∀type t = τt ∈ d.
∆ΣΓS ` n r 3x′ type t B′ τ ′t
∆ΣΓ, x : τxS ` type t = τt <: [x/x′]type t B′ τ ′t

⇒Γ′, x : JτxK∆ ` Jtype t = τtK∆ <: J[x/x′]type t B′ τ ′tK∆

If we gather all σ s.t. ∆ΣΓS ` n r 3x′ σ and put them into στ , then

Γ′ ` ∧
σ ∈στ

JσK∆ <: Jn rK∆

We’ve already shown that

∀σ ∈ στ
∃d ∈ d s.t.

x; Γ′, x : JτxK∆ ` JdK∆ : JσK∆

and each d is distinct

By ANDDEF-I,

x; Γ′, x : JτxK∆ ` ∧d∈dJdK∆ : ∧σ∈στ JσK∆

⇒Γ′ ` v(x : ∧σ∈στ JσK∆)∧d∈d : µ(x : ∧σ∈στ JσK∆)

⇒Γ′ ` Jnew τ{x⇒ d}K∆ : JτK∆

13

• Case T-LET:

Let e = let x : τ1 = e1 in e2.

By the translation rules, t′ = let x = Je1K∆ in Je2K∆.

(1) implies:

∆ΣΓS ` e1 : τ ′1 (2)

∆ΣΓS ` τ ′1 <: τ1 (3)

∆ΣΓ, x : τ1 S ` e2 : τ ′ (4)

∆ΣΓ, x : τ1S ` τ ′ <: τ (5)

x /∈ fv(τ) (6)

By IH,

(2)⇒ Γ′ ` Je1K∆ : Jτ ′1K∆

(3)⇒ Γ′ ` Je1K∆ : Jτ1K∆

(4)⇒ Γ′, x : Jτ1K∆ ` Je2K∆ : Jτ ′K∆

(5)⇒ Γ′, x : Jτ1K∆ ` Je2K∆ : JτK∆

(6)⇒ x /∈ fv(JτK∆)⇒ Γ′ ` JeK∆ : JτK∆ [LET]

This proof depended on the lemmas: expansion preservation, access preservation, substitution
preservation, and subtype preservation. They will be proved below.

Expansion preservation shows that if a pDOT term types to the translation of Nominal Wyvern
type τ , then it also types to the translation of the expansion of τ .

Lemma 2 (Translation Preserves Expansion). Given well-formed top-level D, if ∆ΣΓS ` τ ≺ n r
and ΓD, JΓK∆, JSK∆ ` t : JτK∆, then ΓD, JΓK∆, JSK∆ ` t : Jn rK∆.

This is true because expansion implies subtyping:

Lemma 3 (Expansion Implies Subtyping). Given well-formed top-level D, if ∆ΣΓS ` β1 r1 ≺
β2 r2, then ∆ΣΓS ` β1 r1 <: β2 r2.

The rules of expansion shows that this lemma is trivially true for all cases except for TE-UPPER

due to S-REFL. However, the premises for TE-UPPER are exactly the same as the premises for S-
UPPER with all recursive subtype judgments replaced with recursive type expansion judgments. An
induction proof on the derivation of a type induction judgment will show that subtyping holds as
well. Combined with subtype preservation (proved below), we can thus prove that type expansions
are preserved by the translation.

Access preservation shows that if a member σ exists in a type n r, then the translated member
exists in the translated type as well. This is clear from the translation rules since all members
of a type (fields, methods, and types) are mapped one-to-one to a corresponding member in the
translated type.

14

Lemma 4 (Translation Preserves Access). Given well-formed top-level D, if ∆ΣΓS ` n r 3x σ,
then µ(x : JσK∆) ∈ Jn rK∆.

Substitution preservation shows that substituting a variable for a path can be done before or
after a translation. This is clear from the translation rules since variables and paths are unchanged.

Lemma 5 (Substitution Preserving Translation). [JpK∆/x]JτK∆ = J[p/x]τK∆

Subtype preservation shows that if two types are subtypes in Nominal Wyvern, then their trans-
lations are subtypes in pDOT as well. We first prove this for the nominal subset of types.

Lemma 6 (Translation Preserves Nominal Subtyping). Given well-formed top-levelD, if ∆ΣΓS `
n1

r1−→ n2, then ΓD, JΓK∆, JSK∆ ` Jn1K∆ <: Jn2K∆.

Proof. To simplify notation, denote ΓD, JΓK∆, JSK∆ with Γ′.
Assume the premise ∆ΣΓS ` n1

r1−→ n2 (1). Prove by induction on nominal subtyping:

• Case SN-REFL:

This means n2 = n1, which implies Jn2K∆ = Jn1K∆. By REFL, Γ′ ` Jn1K∆ <: Jn2K∆.

• Case SN-TRANS:

(1) implies:

Σ 3 n1 r
′
1 <: n′ (2)

∆ΣΓS ` r1 <: r′1

∆ΣΓS ` n′ r1−→ n2 (3)

(2) implies TL.n′ is part of the definition of TL.n1

i.e. the definition n1 in TL is n1 = ... ∧ TL.n′ ∧
By AND1-<: and AND2-<: , Γ′ ` Jn1K∆ <: Jn′K∆.

Now we can prove the general version of subtype preservation. Note that this proof depends
on path typing preservation, a subset of typing preservation. There is, however, not a cyclic depen-
dency because path typing preservation (the first 3 cases in the typing preservation proof) does not
depend on subtype preservation nor the other cases of typing preservation.

Lemma 7 (Translation Preserves Subtyping). Given well-formed top-level D, if ∆ΣΓS ` τ1 <:
τ2, then ΓD, JΓK∆, JSK∆ ` Jτ1K∆ <: Jτ2K∆.

Proof. To simplify notation, denote ΓD, JΓK∆, JSK∆ with Γ′, Jτ1K∆ with T1, and Jτ2K∆ with T2.
Assume the premise ∆ΣΓS ` τ1 <: τ2 (1). Prove by induction on subtyping:

15

• Case S-TOP:

Then τ2 = >, so T2 = >, so Γ′ ` T1 <: T2.

• Case S-BOT:

Then τ1 = ⊥, so T1 = ⊥, so Γ′ ` T1 <: T2.

• Case S-UPPER:

Let τ1 = p.t r1.

(1) implies:

∆ΣΓS ` p : τp (2)

∆ΣΓS ` τp ≺ n r

∆ΣΓS ` n r 3x type t ≤= τt
∆ΣΓS ` [p/x]τr r1 <: τ2 (3)

(2)⇒ Γ′ ` JpK∆ : JτpK∆ [path typing pres.]
⇒ Γ′ ` JpK∆ : Jn rK∆ [expansion pres.]
⇒ Γ′ ` JpK∆ : µ(x : {t : T...JτtK∆}) [for some T , access pres.]
⇒ Γ′ ` JpK∆ : [JpK∆/x]{t : T...JτtK∆}
⇒ Γ′ ` JpK∆.t <: [JpK∆/x]JτtK∆ [SEL-<:]
⇒ Γ′ ` JpK∆.t ∧ Jr1K∆ <: [JpK∆/x]JτtK∆ [AND-<: ,TRANS-<:]
⇒ Γ′ ` JpK∆.t ∧ Jr1K∆ <: ([JpK∆/x]JτtK∆) ∧ Jr1K∆ [<: -AND]
⇒ Γ′ ` Jp.t r1K∆ <: ([JpK∆/x]JτtK∆) ∧ Jr1K∆

IH & (3)⇒ Γ′ ` [JpK∆/x]Jτt r1K∆ <: Jτ2K∆

⇒ Γ′ ` ([JpK∆/x]JτtK∆) ∧ Jr1K∆ <: Jτ2K∆

⇒ Γ′ ` JJpK∆.t r1K∆ <: Jτ2K∆

i.e. Γ′ ` Jτ1K∆ <: Jτ2K∆

• Case S-LOWER:

Follows the same procedure as the S-UPPER case, except uses <: -SEL instead of SEL-<: .

• Case S-REFL:

Let τ1 = β r1, and τ2 = β r2.

16

(1) implies:

∆ΣΓS ` r1 <: r2

⇒∀∆ΣΓS ` r2 3 type t B2 τt2.

∃∆ΣΓS ` r1 3 type t B1 τt1 s.t.

∆ΣΓS ` type t B1 τt1 <: type t B2 τt2

⇒∀{t : S2...T2} ∈ Jr2K∆.

∃{t : S1...T1} ∈ Jr1K∆ s.t.

Γ′ ` {t : S1...T1} <: {t : S2...T2} [member subtype pres.]
⇒Γ′ ` Jr1K∆ <: Jr2K∆

⇒Γ′ ` JβK∆ ∧ Jr1K∆ <: JβK∆ ∧ Jr2K∆

⇒Γ′Jβ r1K∆ <: Jβ r2K∆

⇒Γ′Jτ1K∆ <: Jτ2K∆

• Case S-NAME:

Let τ1 = n1 r1, and τ2 = n2 r2.

(1) implies:

∆ΣΓS ` n1
r1−→ n2 (2)

∆ΣΓS ` r1 <: r2 (3)

Case S-REFL implies that

(3)⇒ Γ′ ` Jr1K∆ <: Jr2K∆

⇒ Γ′ ` Jn1K∆ ∧ Jr1K∆ <: Jr2K∆ [AND2-<:]

Also,

(2)⇒ Γ′ ` Jn1K∆ <: Jn2K∆ [nominal subtype pres.]
⇒ Γ′ ` Jn1K∆ ∧ Jr1K∆ <: Jn2K∆ [AND1-<:]

Applying <: -AND we get

Γ′ ` Jn1K∆ ∧ Jr1K∆ <: Jn2K∆ ∧ Jr2K∆

i.e.
Γ′ ` Jn1 r1K∆ <: Jn2 r2K∆

17

This proof depends on member subtype preservation, proved below.

Lemma 8 (Translation Preserves Member Subtype). Given well-formed top-level D, if ∆ΣΓS `
σ1 <: σ2, then ΓD, JΓK∆, JSK∆ ` Jσ1K∆ <: Jσ2K∆.

Proof. To simplify notation, denote ΓD, JΓK∆, JSK∆ with Γ′, Jσ1K∆ with T1, and Jσ2K∆ with T2.
Assume the premise ∆ΣΓS ` σ1 <: σ2 (1). Prove by induction on member subtyping:

• Case: σ is a type member:

Let σ1 = type t B1 τ1 and σ2 = type t B2 τ2.

– Subcase SS-UPPER:
Then B1 is ≤=, B2 is ≤, and ∆ΣΓS ` τ1 <: τ2. By subtype preservation (not a cyclic
dependency due to subtype decidability):

Γ′ ` Jτ1K∆ <: Jτ2K∆

, which implies

⇒T1 = {S1...Jτ1K∆} [S1 is ⊥ or Jτ1K∆]
T2 = {⊥...Jτ2K∆}
⇒Γ′ ` T1 <: T2 [TYP-<: -TYP]

– Subcase SS-LOWER:
Then B1 is ≥=, B2 is ≥, and ∆ΣΓS ` τ2 <: τ1. Similarly, by subtype preservation:

Γ′ ` Jτ2K∆ <: Jτ1K∆

, which implies

⇒T1 = {Jτ1K∆...S1} [S1 is Jτ1K∆ or >]
T2 = {Jτ2K∆...>}
⇒Γ′ ` T1 <: T2 [TYP-<: -TYP]

– Subcase SS-EXACT:
Then B1 is =, B2 is =, and ∆ΣΓS ` τ1 <: τ2 and ∆ΣΓS ` τ2 <: τ1. Similarly, by
subtype preservation:

Γ′ ` Jτ1K∆ <: Jτ2K∆ and Γ′ ` Jτ2K∆ <: Jτ1K∆

, which implies

⇒T1 = {Jτ1K∆...Jτ1K∆}
T2 = {Jτ2K∆...Jτ2K∆}

⇒Γ′ ` T1 <: T2 [TYP-<: -TYP]

18

• Case: σ is a field

Let σ1 = val v : τ1 and σ2 = val v : τ2.

By the translation rules, T1 = {v : Jτ1K∆} and T2 = {v : Jτ2K∆}.
(1) implies:

∆ΣΓS ` τ1 <: τ2

⇒Γ′ ` Jτ1K∆ <: Jτ2K∆

⇒Γ′ ` {v : Jτ1K∆} <: {v : Jτ2K∆} [FLD-<: -FLD]

• Case: σ is a method

Let σ1 = def f : τa1 x → τr1 and σ2 = def f : τa2 x → τr2 (method argument name
pre-normalized via substitution).

By the translation rules,

T1 = {f : ∀(x : Jτa1K∆)Jτr1K∆}
T2 = {f : ∀(x : Jτa2K∆)Jτr2K∆}

(1) implies:

∆ΣΓS ` τa2 <: τa1 (2)

∆ΣΓ, x : τa2S ` τr1 <: τr2 (3)

(2)⇒ Γ′ ` Jτa2K∆ <: Jτa1K∆

(3)⇒ Γ′, x : Jτa2K∆ ` Jτr1K∆ <: Jτr2K∆

⇒ Γ′ ` ∀(x : Jτa1K∆)Jτr1K∆ <: ∀(x : Jτa2K∆)Jτr2K∆ [ALL-<: -ALL]
⇒ Γ′ ` T1 <: T2 [FLD-<: -FLD]

Since the translation is proven to preserve typing and subtyping relations, we can prove type
safety by showing that every reduction step taken in Nominal Wyvern matches with a reduction
step in pDOT.

The first step is to show that the Nominal Wyvern path reduction judgments (µ ` p → l)
match pDOT’s path lookup judgments. For the rest of the soundness proof, we use γ ` s ;+ s
to refer to a series of single step lookup judgments that transitively chain together. This gives a
more flexible way of expressing ;∗ without strictly following pDOT’s explicit right-associative
definition of ;∗. As a result, we ignore the rules LOOKUP-REFL and LOOKUP-TRANS, and
instead modify the remaining three rules to use ;+ instead of plain ;. This makes the proof
clearer while maintaining the semantics of path lookup.

19

Lemma 9 (Translation Preserves Path Lookup). If µ ` p → l, then JµK∆ ` JpK∆ ;+ v where
v = Jµ(l)K∆.

Proof. Assume the premise µ ` p → l (1).
Prove by induction on path lookup (1):

• Case EVP-LOC:

In this case, p = l. Therefore JpK∆ = xl.

(1) implies that l ∈ µ. Therefore, the translation rules show that JµK∆ includes xl 7→ Jµ(l)K∆,
i.e. JµK∆(xl) = Jµ(l)K∆.

Thus, we can apply LOOKUP-STEP-VAR to get γ ` xl ;+ Jµ(l)K∆.

• Case EVP-PATH:

Let p = p′.v. Therefore JpK∆ = p′.v.

(1) implies that

µ ` p′ → l′ (2)

µ(l′) 3xs val v : τv = pv (3)

µ ` [p′/xs]pv → l (4)

By IH,

(2)⇒JµK∆ ` Jp′K∆ ;+ Jµ(l′)K∆ (5)

(4)⇒JµK∆ ` J[p′/xs]pvK∆ ;+ Jµ(l)K∆

⇒JµK∆ ` [Jp′K∆/xs]JpvK∆ ;+ Jµ(l)K∆ (6)

(3) implies that l′ : {xs : d} ∈ µ and val v : τv = pv ∈ d. By the translation rules,

Jµ(l′)K∆ = J{xs : d}K∆

, i.e.
Jµ(l′)K∆ = v(xs : Jsig(d)K∆)JdK∆

, where
JdK∆ 3 Jval v : τv = pvK∆

, i.e.
JdK∆ 3 {v = JpvK∆}

Plugging this back into (5), we get

JµK∆ ` p′ ;+ v(xs : Jsig(d)K∆)...{v = JpvK∆}...

Applying LOOKUP-STEP-VAL gets JµK∆ ` Jp′K∆.v ;+ [Jp′K∆/xs]JpvK∆. Chaining this
with (6) we get JµK∆ ` Jp′K∆.v ;+ Jµ(l)K∆, i.e. JµK∆ ` JpK∆ ;+ Jµ(l)K∆

20

Now we can prove that each reduction step taken in Nominal Wyvern corresponds to a reduc-
tion step in pDOT.

Lemma 10 (Reduction Correspondence). If ∆Σ · S ` e : τ , ∆Σ · S ` µ, and µ | e 7−→ µ′ | e′,
then JµK∆|JeK∆ 7−→ Jµ′K∆|Je′K∆.

Proof. Assume the premises

∆Σ · S ` e : τ (1)

∆Σ · S ` µ (2)

µ | e 7−→ µ′ | e′ (3)

Prove by induction on reduction:

• Case EV-APP:

Let e = p.f(pa).

(3) implies that

µ ` p → l (4)

µ(l) 3xs def f : τx x→ τr = ef (5)

e′ = [p, pa/xs, x]ef (6)

By the translation rules,

JeK∆ = JpK∆.fJpaK∆

Je′K∆ = J[p, pa/xs, x]efK∆

= [JpK∆, JpaK∆/xs, x]JefK∆

By path lookup preservation, (4) implies that JµK∆ ` JpK∆ ;+ Jµ(l)K∆ (7).

(5) implies that l : {xs : d} ∈ µ, and def f : τx x→ τr = ef ∈ d. By the translation rules,

Jµ(l)K∆ = J{xs : d}K∆

, i.e.
Jµ(l)K∆ = v(xs : Jsig(d)K∆)JdK∆

, where
JdK∆ 3 Jdef f : τx x→ τr = efK∆

, i.e.
JdK∆ 3 {f = λ(x : JτxK∆)JefK∆}

Plugging this back into (7) we get

JµK∆ ` JpK∆ ;+ v(xs : Jsig(d)K∆)...{f = λ(x : JτxK∆)JefK∆}...

21

Therefore, applying LOOKUP-STEP-VAL on this we get

JµK∆ ` Jp.fK∆ ;+ [JpK∆/xs]λ(x : JτxK∆)JefK∆

Now, following the pDOT reduction step on JµK∆ | JeK∆ arrives at:

JµK∆ | JeK∆

=JµK∆ | JpK∆.f JpaK∆

7−→JµK∆ | [JpaK∆/x][JpK∆/xs]JefK∆ [APPLY]
=Jµ′K∆ | Je′K∆

• Case EV-LET-PATH:

Let e = let x = p1 in e2.

Then e′ = [p1/x]e2, and µ = µ′.

By the translation rules,

JeK∆ = let x = Jp1K∆ in Je2K∆

Je′K∆ = [Jp1K∆/x]Je2K∆

Jµ′K∆ = JµK∆

Following the pDOT reduction step on JµK∆ | JeK∆ arrives at:

JµK∆ | JeK∆

=JµK∆ | let x = Jp1K∆ in Je2K∆

7−→JµK∆ | Je2K∆[Jp1K∆/x] [LET-PATH]
=JµK∆ | [Jp1K∆/x]Je2K∆

=Jµ′K∆ | Je′K∆

• Case EV-LET-NEW:

Let e = let x = new τ{xs ⇒ d} in e2.

(3) implies that

l fresh in µ (4)

e′ = [l/x]e2 (5)

µ′ = µ, l : {xs ⇒ d} (6)

22

By the translation rules,

JeK∆ = let x = Jnew τ{xs ⇒ d}K∆ in Je2K∆

= let x = J{xs ⇒ d}K∆ in Je2K∆

= let x = v(xs : Jsig(d)K∆)JdK∆ in Je2K∆

Je′K∆ = J[l/x]e2K∆

= [xl/x]Je2K∆

Jµ′K∆ = JµK∆, xl 7→ J{x⇒ d}K∆

= JµK∆, xl 7→ v(xs : Jsig(d)K∆)JdK∆

Following the pDOT reduction step on JµK∆ | JeK∆ arrives at:

JµK∆ | JeK∆

=JµK∆ | let x = v(xs : Jsig(d)K∆)JdK∆ in Je2K∆

7−→JµK∆, x 7→ v(xs : Jsig(d)K∆)JdK∆ | Je2K∆ [LET-VALUE, x /∈ JµK∆]
=[x/xl]Jµ

′K∆ | Je2K∆

=Jµ′K∆ | [xl/x]Je2K∆

=Jµ′K∆ | Je′K∆

The reduction step is legal because x is guaranteed to not be a key in JµK∆ because µ only
contains ls, so JµK∆ only contains xls.

• Case EV-LET:

Let e = let x = e1 in e2.

(3) implies

e′ = let x = e′1 in e2 (4)

e1 not a path or new expression (5)

µ | e1 7−→ µ′ | e′1 (6)

By the translation rules,

JeK∆ = let x = Je1K∆ in Je2K∆

Je′K∆ = let x = Je′1K∆ in Je2K∆

By IH,

(6)⇒JµK∆ | Je1K∆ 7−→ Jµ′K∆ | Je′1K∆ (7)

23

Following the pDOT reduction step on JµK∆ | JeK∆ arrives at:

JµK∆ | JeK∆

=JµK∆ | let x = Je1K∆ in Je2K∆

7−→JµK∆ | let x = Je′1K∆ in Je2K∆ [CTX, (7)]
=Jµ′K∆ | Je′K∆

Reduction correspondence together with type preservation of translation shows that every well-
typed program in Nominal Wyvern is well-typed in pDOT, and that every time the translated pro-
gram takes a step, the original program takes the same step (i.e. reaching the same result after
every step). Therefore, since pDOT’s type safety guarantees that reduction will either diverge or
stop at some value, we can also guarantee that Nominal Wyvern reduction of the original program
will either diverge or stop at some irreducible value at the same time. In other words, evaluation
will not go wrong.

Theorem 1 (Nominal Wyvern is Type Safe). For any well-typed Nominal Wyvern program, term
reduction does not get stuck.

4 Conclusion
This technical report provides an updated version of Nominal Wyvern with dynamic semantics, and
proves type safety of Nominal Wyvern by providing a type preserving translation from Nominal
Wyvern to pDOT, a DOT-based language already proven to be sound.

24

References
[1] Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin, and Jonathan

Aldrich. Wyvern: A simple, typed, and pure object-oriented language. In Proceedings
of the 5th Workshop on MechAnisms for SPEcialization, Generalization and inHerItance,
MASPEGHI ’13, pages 9–16, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2046-
7. doi: 10.1145/2489828.2489830. URL http://doi.acm.org/10.1145/2489828.
2489830. 1

[2] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal theory of
objects with dependent types. In ECOOP, 2003. 1

[3] Marianna Rapoport and Ondřej Lhoták. A path to dot: formalizing fully path-dependent types.
Proceedings of the ACM on Programming Languages, 3(OOPSLA):145:1–145:29, Oct 2019.
doi: 10.1145/3360571. 3, 3

[4] Yu Xiang Zhu. Nominal wyvern: Employing semantic separation for usability. Master’s thesis,
Carnegie Mellon University, 4 2019. 1, 2

25

http://doi.acm.org/10.1145/2489828.2489830
http://doi.acm.org/10.1145/2489828.2489830

	1 Introduction
	2 Grammar
	2.1 Refinements as Intersections
	2.2 Syntax
	2.3 Static Semantics
	2.3.1 Top Level Well-Formedness
	2.3.2 Term Typing
	2.3.3 Subtyping

	2.4 Dynamic Semantics

	3 Type Safety Proof
	4 Conclusion

