
Software Developers Using Signals in
Transparent Environments

Jason Tsay
CMU-ISR-17-102

April 2017

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
James D. Herbsleb, Co-chair

Laura Dabbish, Co-chair
Claire Le Goues

André van der Hoek, U.C. Irvine

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

Copyright c© 2017 Jason Tsay

This research was sponsored by the Center for the Future of Work at Carnegie Mellon University’s Heinz
College and by the National Science Foundation, under NSF awards IIS-1111750, ACI-1322278, IIS-
1633083, and IIS-1546393. Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of the Center for the Future of Work or the National Science Foundation

Keywords: Transparency, GitHub, transparent development environments, signaling
theory, computer-support cooperative work, open source software, activity traces

Abstract

One of the main challenges that modern software developers face is the coordination of
dependent agents such as software projects and other developers. Transparent develop-
ment environments that make low-level software development activities visible hold much
promise for assisting developers in making coordination decisions. However, the wealth
of information that transparent environments provide is potentially overwhelming when
developers are wading through information from potentially millions of developers and
millions of software repositories when making decisions around tasks that require coor-
dination with projects or other developers. Overcoming the risk of overload and better
assisting developers in these environments requires a principled understanding of what
exactly developers need to know about dependencies to make their decisions.

My approach to a principled understanding of how developers use information in
transparent environments is to model the process using signaling theory as a theoretical
lens. Developers making key coordination decisions often must determine qualities about
projects and other developers that are not directly observable. Developers infer these unob-
servable qualities through interpreting information in their environment as signals and use
this judgment about the project or developer to inform their decision. In contrast to current
software engineering literature which focuses on technical coordination between modules
or within projects such as modularity or task assignment mechanisms, this work aims to
understand how developers use signals to information coordination decisions with depen-
dencies such as other projects or developers. Through this understanding of the signaling
process, I can create improved signals that more accurately represent desired unobservable
qualities.

My dissertation work examines the qualities and signals that developers use to inform
specific coordination tasks through a series of three empirical studies. The specific key
coordination tasks studied are evaluating code contributions, discussing problems around
contributions, and evaluating projects. My results suggest that when project managers
evaluate code contributions, they prefer social signals over technical signals. When project
managers discuss contributions, I found that they attend to political signals regarding in-
fluence from stakeholders to prioritize which problems need solutions. I found that devel-
opers evaluating projects tend to use signals that are related to how the core team works
and the potential utility a project provides. In a fourth study, using signaling theory and
findings from the qualities and signals that developers use to evaluate projects, I create and
evaluate an improved signal called “supportiveness” for community support in projects. I
compare this signal against the current signal that developers use, stars count, and find
evidence suggesting that my designed signal is more robust and is a stronger indicator of

iii

support. The findings of these studies inform the design of tools and environments that
assist developers in coordination tasks through suggestions of what signals to show and
potentially improving existing signals. My thesis as a whole also suggests opportunities
for exploring useful signals for other coordination tasks or even in different transparent
environments.

iv

Acknowledgments

I first would like to thank my advisors Jim Herbsleb and Laura Dabbish for everything
they have done for me during my time in the PhD program. I greatly value all of the
many, many discussions we have had over the years as well as all of the support, advice,
and feedback. I consider myself extremely fortunate to have had Jim and Laura as my
advisors.

I also thank my committee members Claire Le Goues and André van der Hoek for their
always insightful feedback and support. I’ve greatly enjoyed all of our discussions over
the years.

As somebody I have worked closely with and also had many discussions with, I also
would like to thank Colleen Stuart. Some of my fondest memories of working on research
projects are the long discussions about GitHub between the four of us.

I also want to thank all of the PhD students and postdocs that have taken the time to
help me, whether it’s through writing groups or helping me practice for talks: Ben Towne,
Ivan Ruchkin, Hanan Hibshi, Vishal Dwivedi, Arun Kalyanasundaram, Erik Trainer, Chris
Bogart, Anna Filippova, Amber McConahy, and many others. Thank you all for reading
my (sometimes very) rough drafts and/or sitting through talks (even multiple times!).

I would also like to thank and remember Chalalai ”Jib” Chaihirunkarn. I wish that I
could have helped her practice for a talk like she has done for me.

I want to thank all of the students, postdocs, and faculty in the Institute for Software
Research and the Software Engineering PhD program. All of the people who have sup-
ported me through hallway conversations, SSSG questions and feedback, and so on are
too numerous to name. In particular though, I would like to thank Josh Sunshine for his
invaluable advice in progressing through the program and my officemates who I’ve had
many long discussions with about life, job hunting, research: Wei Wei, Ashwini Rao, and
Marat Valiev.

I also have had the privledge of working with people across various research groups

v

such as SCALE, Jim’s research group, and Laura’s CoEx Lab: Linda Argote, David Red-
miles, Anita Sarma, Jonathan Kush, Jenn Marlow, Thomas LaToza, Mary Nguyen, Min
Lee, Tatiana Vlahovic, Joseph Seering, Fannie Liu, and many, many others.

I would also like to thank all of the people I have met through organizing CMU eSports
and CMUken. Managing the fighting game community in Pittsburgh has allowed me to
make great friends and has given me many excuses to travel and make even more friends.
I would like to thank of all my friends in Pittsburgh and the various cities, coasts, and
countries for all of the good memories that we’ve shared.

Finally, I’d like to thank my family for always supporting me through everything.
Coming from a family of engineers, I have my parents to thank for developing an interest
in computers and software at an early age.

My time in the PhD program have been some of the best years of my life, thanks to all
of the relationships and social links that I have been lucky enough to establish.

vi

Contents

1 Developers Using Signals in Transparent Development Environments 1

1.1 Transparency Enables Decentralized Coordination 2

1.2 Challenges in Using and Understanding Transparency 3

1.3 Approach: Signaling Theory to Model Information Usage in Transparent
Environments . 5

1.4 Thesis: Software Developers Using Signals in Transparent Environments 6

1.5 Contributions . 6

1.6 Outline . 7

2 Related Work 9

2.1 Online Communities . 9

2.2 Open Source Software . 11

2.3 Transparent Development Environments 13

2.4 Signaling Theory . 15

2.5 Summary . 17

3 Research Context: GitHub 19

3.1 Transparency Features in GitHub . 20

3.2 Contributions in GitHub: Pull Requests, Issues, Comments 21

4 Signals for Evaluating Contributions in GitHub 27

4.1 Contributions in Transparent Development Environments 30

vii

4.1.1 Contributions in Open Source Software 30

4.1.2 Contribution in Online Communities 31

4.1.3 Evaluating Contributions in Transparent Development Environments 31

4.1.4 Hypotheses Development . 32

4.2 Methods . 35

4.2.1 Pull Request Selection . 35

4.2.2 Signal Measures . 36

4.2.3 Analysis . 39

4.3 Results . 40

4.3.1 Pull Request-Level Measures . 40

4.3.2 User-Level Measures . 42

4.3.3 Repository-Level Measures . 43

4.4 Discussion . 43

4.4.1 Technical Norms and Social Connection 43

4.4.2 Decision-Making and Highly Discussed Contributions 45

4.4.3 Audience Pressures . 47

4.4.4 Limitations . 49

4.5 Conclusion . 49

5 Negotiating Contributions through Discussion in GitHub 51

5.1 Contribution and Discussion in Online Work 54

5.1.1 Discussions around Contributions in Online Communities 54

5.1.2 Discussions around Contributions in Open Source Software . . . 55

5.1.3 Social Signals in Transparent Development Environments 56

5.1.4 Development of Research Questions 57

5.2 Method . 58

5.2.1 Data Collection . 58

5.2.2 Data Analysis . 60

5.3 Results . 60

viii

5.3.1 Issues Raised Around Code Contributions 60

5.3.2 Methods of Influencing the Decision Process for Code Contributions 64

5.3.3 Outcomes for Proposed Code Contributions 67

5.3.4 Submitter’s Prior Experience . 69

5.4 Discussion . 70

5.4.1 Stakeholders Influencing the Outcome 70

5.4.2 Power Relationships in Evaluating Contributions 72

5.4.3 Developing Software Requirements through Discussion 74

5.5 Conclusion . 75

6 Signals for Evaluating Projects for Use or Contribution 77

6.1 Open Source Software and Signaling . 80

6.1.1 Awareness and Open Source Software 80

6.1.2 Signal Usage in Transparent Development Environments 80

6.1.3 Signaling Theory as a Theoretical Lens 81

6.1.4 Research Questions Development 82

6.2 Qualitative Exploratory Interview Study 83

6.2.1 Methods . 83

6.2.2 Results . 84

6.3 Quantitative Validation Analysis . 92

6.3.1 Methods . 93

6.3.2 Results . 98

6.4 Discussion . 100

6.4.1 Evaluating Projects and Signal Fit 100

6.4.2 Implications for Transparent Development Environments 103

6.4.3 Limitations . 104

6.5 Conclusion . 105

7 Evaluating and Creating Signals for Community Support in Software Projects107

ix

7.1 Community Support in Open Source . 110

7.1.1 Community Involvement in Open Source Software 110

7.1.2 Community Involvement in Online Communities 111

7.1.3 Developers Using Information in Transparent Environments . . . 112

7.2 Preliminary Interview Study . 112

7.2.1 Interview Methodology . 112

7.2.2 Community Support in Open Source Software Projects 113

7.2.3 Research Question Development 114

7.3 Community Support Modeling . 116

7.3.1 Dataset Collection . 116

7.3.2 Measure Development . 117

7.3.3 Analysis . 120

7.4 Results . 120

7.4.1 Model Fit . 120

7.4.2 Community Support Predictors 121

7.4.3 Project State Measures . 122

7.5 Discussion . 123

7.5.1 Predicting Community Support 123

7.5.2 Project State Affecting Community Support 124

7.5.3 Implications for Software Engineering 125

7.5.4 Limitations . 126

7.6 Conclusion . 127

8 Future Work 129

8.1 Methodology for Eliciting and Improving Signals 129

8.2 Designing Improved Signals for Software Developers 131

8.3 Designing Developer Tools and Transparent Development Environments . 133

8.4 Dynamic Signals for Tasks, Projects, and Users 134

x

9 Conclusions 137

A Pull Request Extended Discussion Sample 141

Glossary 143

Bibliography 145

xi

xii

List of Figures

2.1 Diagram of Signaling Process . 16

3.1 Example of GitHub Project Page with Watch, Star, and Fork Buttons High-
lighted . 21

3.2 Example of GitHub User Profile Page 22

3.3 Example of GitHub Activity Feed . 23

3.4 Example of GitHub Pull Request . 24

3.5 Example of GitHub Issue . 25

3.6 Example of Inline Code Comment in GitHub 25

4.1 Interaction Plot of Test Inclusion and Contribution Discussion 47

4.2 Interaction Plot of Social Distance and Contribution Discussion 47

4.3 Interaction Plot of Prior Interaction and Contribution Discussion (prior
interaction values are standardized) . 48

xiii

xiv

List of Tables

1.1 Overview of Dissertation Studies . 7

4.1 Descriptives of Contribution Evaluation Signal Measures (Pre-transformation) 36

4.2 Multi-level Mixed Effects Logistic Model for Pull Request Acceptance . . 41

5.1 Description of Pull Request Sample . 59

5.2 Distributions of Pull Request Sample . 59

6.1 Interview Study Summary . 86

6.2 Unobservable Quality Types Summary 86

6.3 Summary of Signal Types and Characteristics 92

6.4 Descriptives of Project Evaluation Measures (Pre-transformation) 94

6.5 Quantitative Hypotheses for Project Evaluation Signals 97

6.6 Usage Model Analysis Summary . 99

6.7 Contribution Model Analysis Summary 101

7.1 Descriptives of Community Support Measures (Pre-transformation) (JavaScript
Dataset) . 118

7.2 Comparison of Fit for Community Support Hierarchical Models (JavaScript
Dataset)* . 121

7.3 Summary of Predictive Models for Community Support* 123

8.1 Overview of Signaling Implications From Dissertation Studies 129

xv

xvi

Chapter 1

Developers Using Signals in Transparent
Development Environments

One of the main challenges of modern software development is coordination. In contrast
to traditional software development, the widespread availability of reusable open source
libraries and frameworks greatly increases the efficiency of creating software systems and
the quality of the resulting systems [Ajila and Wu, 2007]. Rather than implementing ad-
ditional features in-house or through approved vendors, it is possible to simply establish
a dependency with the appropriate external software project and integrate its functionality
into a given software system. While this reuse is efficient, these external software projects
are usually managed by their own independent developers. Establishing a dependency
then involves giving up some control to this external project. For example, if a bug related
to the dependency is found, it usually is not possible to directly fix the bug in the external
project. The software developer in this case then needs to make a decision: create a (often
brittle) workaround in their software system to account for this bug or coordinate with
the external project and its developers to fix the bug [Shah, 2006]. For many developers,
software development is not simply writing code but managing these dependencies. This
management of dependencies between activities is the challenge of coordination [Malone
and Crowston, 1994]. These coordination challenges extend beyond deciding to incor-
porate external software projects. Dependencies that developers must manage range from
software projects to external code contributions to developers, designers, and other people.
Developers must coordinate with these dependencies during various software development
tasks, such as deciding whether to accept external code contributions, to recruit develop-
ers, how to handle bugs that are reported, and many others. While developers have long
faced these coordination challenges, the nature of coordination evolves along with changes

1

to how software is developed.

The coordination challenges of software development are increasingly decentralized.
For traditional software development, coordination decisions were often alleviated by cen-
tral management. For the example of external software dependencies, in a centrally man-
aged system, the decisions of which projects to use are prescribed top-down through road-
mapping. As the pace of software development increases, these dependencies also develop
and change independently, often outpacing what central management can control. Without
central control, software developers and teams must increasingly make their coordination
decisions independently. To make these decisions effectively, developers require infor-
mation such as the potential dependencies available and the tradeoffs for interacting with
certain dependencies. Returning to the example of a developer deciding whether to create
a local workaround or coordinate with an external project to fix a bug, information about
the external project and how its core team works is crucial towards informing this decision.
For example, if the external project does not respond to outside code contributions, then
any time spent attempting to coordinate with this project may be wasted. This information
about dependencies is often difficult to directly observe, even for open source projects.
Even if the codebase is freely available for an open source project, it may be difficult
to observe useful qualities of the project such as their openness to outside contributions,
ease-of-use, and maturity. However, the advent of transparency may enable new sources
of information for developers making decentralized coordination decisions.

1.1 Transparency Enables Decentralized Coordination

With the advent of modern development environments, the resulting wealth of informa-
tion about software projects and developers enables transparency of development work.
Transparency is the “accurate observability of an organization’s low-level activities, rou-
tines, behaviors, output, and performance” [Bernstein, 2012]. In the case of transparent
development environments, the “organization” may be a software project or a particular
developer. Modern development environments make visible low-level development ac-
tivities such as code commits and bug reports. This quality is present in open source
software (OSS) and increasingly in engineering-focused companies such as Google where
the development activity of all projects is visible to most developers. Modern transparent
environments such as GitHub1, in contrast to traditional open source software projects, in-
crease the scale of what activities are visible. Rather than only monitoring all the activity
in a single project, transparent development environments make visible development ac-

1https://github.com/

2

tivity of entire communities of software projects, the activities of the developers who work
on them, the projects these developers work on, and so on [Dabbish et al., 2012]. For ex-
ample, along with viewing all of the commits and commit authors for a project, transparent
environments also make visible the other projects these developers have worked on.

Transparency enables developers to make independent, informed coordination deci-
sions with dependencies through observing their activities. By freely observing how
projects or developers work, software developers have the opportunity to enhance their
own work by using this information to decide how they should coordinate with said
projects or developers. For example, when a project manager receives a contribution from
a newcomer, they choose whether to interact with the developer and their code contri-
bution. In a transparent environment, project managers are able to view all of the prior
projects that a newcomer might have participated in and evaluate them as signals of de-
veloper skill before deciding whether to accept a contribution or even potentially recruit
the developer. Conversely, newcomers looking for open source projects to join may need
to decide which projects are worth their time. In a transparent environment, these new
developers might investigate what prior contribution attempts look like and how they have
fared, as signals of openness and project norms.

1.2 Challenges in Using and Understanding Transparency

The visibility of development activity that enables transparency also comes with the risk
of overloading developers with information. The social media systems these transparent
environments are based on are also associated with an overwhelming amount of infor-
mation [Singer et al., 2014]. Many developers in these systems find it challenging to
effectively consume the sheer amount of content, developing ad-hoc strategies to filter
and skim. However, whereas missing content on Twitter often has little consequence,
missing important work-related information in transparent environments may have nega-
tive impacts on productivity or project management. Especially with how visible work is,
missing important cues in the environment such as submitted contributions or important
discussions potentially creates negative impressions of the project or developer [Dabbish
et al., 2012]. This is especially true at “web scale”, where developers are potentially wad-
ing through information from potentially millions of developers and millions of software
repositories when making work decisions. Even if information is overwhelmingly avail-
able through these systems about specific projects or developers, they often do not directly
answer questions developers have about projects or other developers. For example, a de-
veloper evaluating a project as a potential dependency may want to know how mature the

3

project is. Though a project’s maturity is not directly visible, a developer might look at
various signals the project broadcasts such as recent commit activity, number of versions,
and the community size to infer the project’s maturity indirectly. Due to the cost of nav-
igating the firehose of development-related information in transparent environments and
then additionally interpreting and making inferences, developers may be forced to develop
ineffective ad-hoc techniques such as constantly checking feeds [Dabbish et al., 2012] or
even refusing to participate in social aspects of development.

Overcoming risks such as information overload requires a principled understanding of
how exactly information is used by developers in transparent environments. Though trans-
parent environments generate an overwhelming amount of development-related informa-
tion, there is an opportunity to target what is most informative for developers in making
independent decisions. By exploring how developers use information in these environ-
ments, we further our understanding of what pieces of information are most informative
for making coordination decisions. By doing so, I have the opportunity to design tools and
practices and even new transparent environments that assist developers in making specific
coordination decisions rather than simply making all work activity visible. Although we
know much about the coordination challenges software developers face [Cataldo et al.,
2006, Malone and Crowston, 1994], much of current software engineering literature fo-
cuses on either technical coordination between software modules or coordination within
projects such as modularity or task assignment mechanisms [Crowston et al., 2008]. We
know comparatively little about how developers coordinate with other projects or devel-
opers and even less about the decision process behind these coordination decisions. What
are the coordination decisions that developers must make independently in these envi-
ronments? How does the information that transparency provides about these potential
dependencies assist in these coordination decisions? What do developers need to know
in order to make these decisions? What are developers currently using in their environ-
ment to inform themselves? Most importantly, can we use theory to derive relationships
between developers’ coordination needs and the information that transparency makes visi-
ble? Rather than design for specific tasks or developers, certain types of information might
be more generally useful for developers making coordination decisions. For example, sig-
naling theory has a concept of “honest signals” [Connelly et al., 2010] that are resistant
to deception which may be useful for developers wishing to obtain accurate information
from their environment.

4

1.3 Approach: Signaling Theory to Model Information
Usage in Transparent Environments

My approach to a principled understanding of how developers use information to coordi-
nate in this new environment is to apply signaling theory as a theoretical lens and to use
mixed empirical methods to explore and validate theories.

Signals are observable pieces of information that are used by a receiver to infer an un-
observable quality of the signaler [Donath, 2005]. Signaling theory is used in economics
to describe how parties behave in an environment with information asymmetry. Insiders
(signalers) have information that they are privileged to (unobservable quality) and may
emit signals indicating this information to outsiders (receivers). In Spence [1973]’s clas-
sic example, potential employees indicate their unobservable ability level to employers
through the signal of educational credentials.

Signaling theory is a useful theoretical lens for coordination in transparent environ-
ments as it allows for describing the relationships between specific pieces of information
(signals) about dependencies (signalers) and the unobservable qualities developers (re-
ceivers) infer about these dependencies to make decisions. “Dependencies” here refers
to agents that developers may coordinate with, such as software projects and other devel-
opers. For example, a developer with commits to high-status projects may signal coding
expertise [Dabbish et al., 2012] or a project with quick responses to pull requests may
signal a culture open to outside contributions. By understanding what signals are used
and the qualities developers wish to infer, there is the opportunity to assist developers in
a principled manner by targeting specific qualities that inform coordination decisions. For
example, if the quality of a project’s maturity is crucial towards informing the decision
of whether to use this software project, then what signals most efficiently or accurately
indicate a project’s maturity?

Signaling theory as a lens also provides constructs to describe aspects of signals such
as cost, honesty, and fit [Connelly et al., 2010]. These constructs help explain why certain
signals may be more useful than others. For example, certifications are costly signals that
indicate the quality of a manufacture’s process. The high cost of producing such a signal
makes it useful because lower-quality manufacturers would need to implement many more
costly changes compared to high-quality manufacturers in order to obtain the certification.
Understanding both qualities that developers wish to know about dependencies and char-
acteristics that make signals more or less useful allows for principled improvements to
how developers use information in these environments.

5

1.4 Thesis: Software Developers Using Signals in Trans-
parent Environments

Thesis Statement:

Signaling theory is a useful lens to understand how developers use information made vis-
ible in transparent development environments. Developers making key coordination de-
cisions often must determine qualities about projects and other developers that are not
directly observable. Developers infer these unobservable qualities through interpreting
information in their environment as signals. Through this understanding of the signaling
process, I can create improved signals that more accurately represent desired unobserv-
able qualities.

To support this claim, my dissertation work includes a series of empirical studies that
aim to understand how developers in transparent development environments use signals.
In these studies, I identify key decisions where developers use signals to inform their
decision-making by inferring useful qualities about projects or other developers. These
studies describe in detail this signal usage process of: receiving a piece of information, de-
veloping inferences from the information, using these inferences to estimate an unobserv-
able quality about the project or developer that the developer actually wants to know, and
using this judgment about the project or developer to inform their decision. The specific
key decisions studied are evaluating code contributions [Tsay et al., 2014a], discussing
problems around contributions [Tsay et al., 2014b], and evaluating projects. Using find-
ings from the qualities and signals that developers use to evaluate projects, I create and
evaluate an improved signal for community support in projects that is grounded in signal-
ing theory. I compare this signal against the current signal that developers use, stars count,
in a longitudinal study of community support in projects.

1.5 Contributions

• The application of signaling theory to software engineering and transparent develop-
ment environments to model how developers use information in their environment
to make coordination decisions.

– Novel application of signaling theory to unintentional signals derived from
development activity.

6

• Three studies of the signals developers use in transparent environments for three key
tasks:

– Evaluating code contributions (Chapter 4)

– Discussing problems around contributions (Chapter 5)

– Evaluating projects for usage and contribution (Chapter 6)

• A study of community support in projects (Chapter 7)

• Development and evaluation of an improved signal for community support based on
signaling theory (Chapter 7)

1.6 Outline

Chapter 2 grounds my work by discussing prior literature in open source software, online
communities, and transparent development environments. In this chapter, I also give a
brief overview of signaling theory and its concepts and constructs. Chapter 3 describes
the popular transparent environment of GitHub which is the research setting for the stud-
ies described in this thesis. Chapter 4 is a quantitative study that examines the social and
technical signals that developers use when evaluating code contributions. Chapter 5 is a
qualitative study that explores problem-solving discussions around contributions. Chap-
ter 6 is a mixed-methods study of the signals and qualities developers use when evaluating
projects when deciding to use or contribute to the project. Chapter 7 is a quantitative
study of community support in projects. In this chapter, I use signaling theory to design
an improved signal for support which I compare against signals developers currently use.
Table 1.1 provides a summary of the studies. Finally, Chapter 8 discusses potential future
work, and Chapter 9 concludes.

Table 1.1: Overview of Dissertation Studies
Coordination Task Chapter Study Type

Evaluating Contributions 4 Quantitative
Negotiating Contributions 5 Qualitative
Evaluating Projects 6 Mixed
Inferring Community Support 7 Mixed + Improved Signal

7

8

Chapter 2

Related Work

This dissertation is grounded in prior literature around how participants of online com-
munities such as open source software projects coordinate. The coordination challenges
that online communities and software projects face when managing members and contri-
butions are well-studied and inform explorations of coordination challenges in transparent
development environments such as the studies described in the following chapters.

Transparent development environments reveal important information about projects
and users that developers can use to inform coordination decisions. Prior literature of how
developers coordinate in these environments suggests that developers use transparency in-
formation to make useful inferences about potential dependencies. The studies described
in the following chapters contribute directly to this literature by furthering our understand-
ing of how developers coordinate in these environments for specific coordination tasks.

My approach to understanding how developers use information to coordinate in trans-
parent environments makes use of signaling theory as a theoretical lens. Signaling theory
and its constructs are useful in describing and reasoning about the relationship between
specific pieces of information about projects or users and the inferences that developers
may derive from such information.

2.1 Online Communities

To survive and thrive, online communities regularly perform key coordination tasks of
managing community members and contributions. Successful online communities rely on
members contributing their unique resources to the community, such as users uploading

9

videos on YouTube or posting pictures or comments on Reddit.

Kraut and Resnick [2012] analyzed the coordination challenges that online commu-
nities face regarding membership and contributions. They developed a number of design
claims that assist online communities in addressing these challenges. Kraut and Resnick
suggest that online communities addressing the coordination task of encouraging contri-
butions have a number of methods to motivate members: matching members to contribu-
tions needed, making requests to members, using intrinsic and extrinsic motivators, and
grouping members together. They review evidence showing that constant feedback to
members, whether it be character levels in World of Warcraft or community comments in
YouTube, motivates members to create more contributions. Similarly, combining contribu-
tions with social contact also encourages further contributions, for example, the GNOME
software project encouraging socialization through forums and get-together conferences.
They claim using the collective effort model [Karau and Williams, 1993] that commit-
ment to an online community increases willingness to contribute. Kraut and Resnick also
claim that encouraging commitment is a combination of affective commitment (attach-
ment to the group or project), normative commitment (obligations to the community), and
needs-based commitment. Lastly, Kraut and Resnick also claim that when dealing with
newcomers, successful online communities must meet a number of challenges: attract-
ing newcomers, selecting among the newcomers, retaining newcomers, socializing new-
comers, and protecting existing members from potential problems newcomers may bring.
When evaluating newcomers, communities will often screen potential members by using
signals of whether or not a newcomer is a good fit. In order to gather information about
these signals, diagnostic tasks are often used such as solving CAPTCHAs to screen auto-
mated attackers or acquiring experience points and weapons to signal character prowess
in the online game World of Warcraft.

The online community of Wikipedia regularly faces the coordination challenges of
managing contributions and dealing with newcomers. The two challenges are often re-
lated, as the contribution evaluation process can have an important impact on contributor
motivation particularly for new members. In a study of the contributions of new editors on
Wikipedia, Halfaker et al. [2011] found that reverts decreased motivation for newcomers.
In particular, reverts from experienced editors were the most demotivating, suggesting that
certain social interactions around contributions may have a particularly negative influence
on the motivation of newcomers to contribute. Bryant et al. [2005] found that contribution
acceptance is an important step in a new editor’s socialization process. Newcomers learn
the conventions and contribution rules of the Wikipedia community through observation
(lurking) and direct mentoring from more experienced users. Related to this concept of
mentoring is a community-wide norm of “don’t bite the newcomers.”

10

“Talk pages” are an important coordination mechanism to manage contributions for
articles on Wikipedia. Viegas et al. [2007] found that the primary use for Talk pages were
requests for coordination where editors discussed editing activities in advance. Kittur et al.
[2007b] found that coordination work such as the discussions in these Talk pages were
growing at a much faster rate than direct edits to articles. They find that these discussions
also serve as a mechanism for building consensus and resolving conflicts. Towne et al.
[2013] examined how users’ perceptions of article quality declined when coordination
discussions were shown along with the article, especially if conflict was present in the Talk
page. Arazy et al. [2013] found that when these conflicts were not sufficiently resolved
in discussions, the disagreements would impede group performance through lower article
quality.

Wikipedia also regularly faces political challenges, particularly between classes of
users. Kittur et al. [2007a] suggested that there are two de facto classes of users on
Wikipedia: 1) ”elite” users such as administrators or high-edit users and 2) ”common”
low-edit users. Their study suggests that the influence of ”elite” users has waned as much
of the work on Wikipedia has shifted to ”common” users. Forte and Bruckman [2008] de-
scribed policy as the main governance mechanism on Wikipedia. Creating policy requires
building consensus across groups of users while enforcing policy is handled by admin-
istrators. Though enforcement power is concentrated in the relatively small population
of administrators, decisions by administrators are not enforced without widespread sup-
port from the larger community. Kriplean et al. [2007] found that during conflict, users
will engage in political maneuvering (termed ”power plays” in the work). These political
strategies include arguing or redefining the scope of the article, referencing past policy
or consensus in other articles, pointing to past work as an appeal to authority, and ”elite”
users threatening to leave articles.

2.2 Open Source Software

Open source software projects, similar to online communities, often regularly coordinate
with developers through managing code contributions and newcomers. For this disserta-
tion, I purposely disregard common coordination tasks for open source software projects
that are wholly internal to the project, such as division of labor and task assignment [Crow-
ston et al., 2008]. For the studies presented in the following chapters, I focus on coordina-
tion tasks that may be informed by transparency information. As much of the information
that transparency makes visible is around external projects or developers, I accordingly
focus on coordination tasks external to projects such as code contributions.

11

The distributed nature of open source software development [Mockus et al., 2002]
encourages open source software developers to seek out information about their fellow
developers in order to stay aware of their work activities. Gutwin et al. [2004] found that
developers in open source software projects informed their coordination needs through
seeking out information such as who is working on what part of the project. They found
that work awareness information from simple text communication such as mailing lists and
text chat was enough to satisfy most project coordination needs. Newcomer developers to
an open source software project also needed to seek similar awareness information from
text communication tools [Ducheneaut, 2005] in order to get “buy-in” from core project
developers towards supporting their contributions. Rigby and Storey [2011] found in their
study of peer review on open source software projects that project managers selecting
which code contributions to review used similar work awareness information from the
project’s mailing list. They also found in their study that developers also suffered from
“too much awareness” and needed filtering techniques to manage the information overload.
Guzzi et al. [2015] found that current awareness information in integrated development
environments (IDE) is sufficient for developers to overcome coordination challenges such
as simultaneous conflicting changes. However, breaking changes by developers on the
same team were particularly difficult to deal with using existing IDEs.

Literature suggests that managing newcomers and their contributions in open source
software projects is a complex social process. von Krogh et al. [2003] found in their study
of the contribution process in the Freenet open source project that successful newcom-
ers must follow ”joining scripts” before submitting a contribution. These joining scripts
involve participating in various aspects of the project such as lurking on the project’s mail-
ing list, participating in technical discussions, and reporting bugs. They also found that
the nature of discussions around contributions differed between developers that joined the
project versus developers who did not. For example, the detail and specificity of feedback
given was much more general for non-joiners. Ducheneaut [2005] found that developers
also underwent a progressive socialization process before successfully contributing to the
Python project. Core members on a project regularly evaluated contributions and contrib-
utors to ensure submitted code changes were technically sound. Successful socialization
allowed potential submitters to learn project norms and to identify members of the core
project team that participated in this evaluation process. In order to successfully start the
contribution evaluation process, a submitting developer needed to ”recruit” core members
of the project as a network of ”allies”, especially when proposing complicated or con-
troversial changes. Regarding the transition from one-time contributor to more involved
long-term contributors, Zhou and Mockus [2012] suggest that the difference is that long-
term contributors are possess more “willingness” to help the project. They suggest that the
nature of support actions these contributors participate in are a measure for willingness.

12

For example, the low cost of reporting an issue through a tool may be less involved than
the higher cost of applying for an account in GNOME Bugzilla, creating a report, and
filling in the bug reproduction template. Steinmacher et al. [2015] found that newcomers
to open source software experienced social barriers when attempting to make their first
contribution to project. These barriers include reception issues from late or non-existent
responses, the social and technical capability of the newcomer, newcomer orientation in
the form of mentorship, documentation problems, cultural differences such as rudeness,
and technical hurdles.

As open source software often relies on the contributions of different software develop-
ers [Crowston et al., 2008], a key coordination task for members of software project teams
is to evaluate and discuss contributions to ensure the integrity of the software project. A
common method of evaluating code contributions is the peer review process. Rigby et al.
[2008] found in their examination of different peer review processes in the Apache server
open source project that early and frequent reviews of small contributions from the core
team were effective in finding defects in contributions. In particular, the usage of the
project mailing list allowed for self-selection of expert core members and a more open
discussion between members. Ko and Chilana [2011] found that discussions around bug
reports established scope, proposed ideas, identified design dimensions, defended claims
with rationale, moderated the process, and finally made an decision. The most powerful
factors in decision-making around a bug report were the participant’s authority (developers
over users) and actions taken (writing a patch).

2.3 Transparent Development Environments

Transparent development environments implement transparency features to provide new
actionable information that enable developers to make highly informed coordination deci-
sions. Transparency in this case refers to the “accurate observability of an organization’s
low-level activities, routines, behaviors, output, and performance” [Bernstein, 2012]. In
the case of transparent development environments, the “organization” may be a software
project or a particular developer and the “activities” may include low-level development
work such as code commits, bug reports, and discussions.

Developers inform coordination decisions by making inferences about other develop-
ers and projects using information made visible by transparency. As part of my early work
on the transparent development environment of GitHub, Dabbish et al. [2012] found that
developers used information such as the recency and volume of activity of a developer
to infer their interest and level of commitment. They also found that developers inferred

13

the intention or “story” behind development activity by observing the sequence of actions
over time. Regarding projects, developers inferred the relative important of a project to the
community by using signals for attention in the form of star and fork counts. They found
that developers use these inferences to inform coordination activities such as managing
projects, learning through observing, and managing their reputation in the GitHub com-
munity. For example, projects managers inferred user needs by observing their activities in
forks. Developers looking to learn how to improve their coding ability followed “coding
rockstars” and observed their development work. Dabbish et al. also found that devel-
opers were very aware of an “audience” due to the transparency in the environment. This
awareness of the audience influenced how developers worked such as making changes less
frequently.

Literature on GitHub and other transparent environments has explored other coordina-
tion tasks and the inferences that developers make in order to inform these tasks. Marlow
et al. [2013] found that GitHub developers used information in the environment in order
to form impressions of users during three coordination scenarios: discovery of a developer
through following, informing interactions through pull requests, and forming expectations
about skills through pull requests with unknown developers. To form these impressions,
developers used information from user profiles such as recent activity, project owned, lan-
guages used, and past comments to infer qualities such as coding ability and interaction
style. Pham et al. [2013] found that when project managers are assessing how much test-
ing a contribution requires, they used inferences for the type and target of the contribution
and how much they trusted the submitter. Project managers tended to demand tests for
contributions that introduced new features or targeted core functionality. Developers per-
ceived to be more trusted received a less thorough assessment than unknown developers.
Singer et al. [2013] in a study of developer profile aggregators found that developers and
recruiters differ in the inferences they use to evaluate developers. Developers assess other
developers often and infer qualities such as passion for technology, diversity, and stand-
ing in the community (called the “coder footprint” by Singer et al.). Recruiters on the
other hand focused on filtering potential developers by inferring if they possessed relevant
technical skills then whether they passed some baseline level of activity in open source
software. They also inferred ability to learn quickly and passion for technology through
looking at a developer’s programming language diversity.

The information that transparent environments make visible may also enable the cre-
ation of useful statistical models to understand different aspects of how developers coordi-
nate. These models may also inform the creation of useful predictors for desired qualities
in GitHub projects. Kikas et al. [2016] use a number of issue and project features to predict
the probability of an issue closing at various points in its lifetime. Vasilescu et al. [2015]

14

use a longitudinal dataset to create gender and tenure diversity predictors for productiv-
ity. They find that both predictors are positive and significant. Casalnuovo et al. [2015]
found that experience in a programming language and prior social links affect the produc-
tivity of newcomers to projects. Yu et al. [2015] found a number of social, technical, and
process-related factors, in particular continuous integration-related, that affect pull request
latency.

A challenge of working in transparent environments is that the information made vis-
ible is potentially overwhelming and noisy. Kalliamvakou et al. [2015] pointed out that
GitHub, like many similar software hosting services, is mostly compromised of inactive
projects with little activity. Very few projects use collaborative features such as pull re-
quests [Kalliamvakou et al., 2015]. Singer et al. [2014] in their study of how open source
developers use Twitter found that developers dealt with challenges in how to manage con-
suming large amounts of information through developing strategies such as filtering tweets
and curating their following networks. Storey et al. [2014] found in a survey of developers
using social media platforms, which includes transparent environments such as GitHub,
that a majority of developers surveyed felt overwhelmed and distracted by such tools.
The survey also found that key challenges that developers faced included both potentially
missing important information and filtering out low-quality content.

2.4 Signaling Theory

Signaling theory is a useful lens for understanding how developers use information made
visible by transparent environments. Signals are observable pieces of information that
are used by a receiver to infer an unobservable quality of the signaler. In Spence [1973]’s
classic example, potential employees indicate their unobservable ability level to employers
through the signal of educational credentials.

Transparent environments enable a new class of potentially useful, unintentional sig-
nals that are derived from observing work. While the majority of signals that are studied
in literature are positive, intentional signals, unintentional signals still convey important
information [Janney and Folta, 2003]. For positive, intentional signals, the incentive to
signal is to affect the decision of the receiver [Spence, 1973]. In transparency, some useful
signals are unintentional and a product of development work, merely performing the task
produces the signal. Therefore the incentive of producing such a signal becomes aligned
with performing the development task.

Signaling theory offers key constructs [Connelly et al., 2010] for describing the rela-
tionships between signals, unobservable qualities, signalers, and receivers. Signals vary

15

Figure 2.1: Diagram of Signaling Process

in their cost to produce, often with an assumption that signalers possessing the unobserv-
able quality are better suited to absorb these costs than others. Signals may also vary in
fit, the correlation between the signal and the unobservable quality it indicates. A related
concept is honesty, the extent to which the signaler actually possesses the signaled qual-
ity. For example, a resume listing involvement in an impressive-sounding project may
not reflect meaningful skill for a particular task. If listing impressive-sounding projects
is not correlated to the needed skill, then that signal has a poor fit. If such projects are
correlated to skill but the candidate in question does not possess that quality, the signaler
is dishonest. Receivers, especially those that need to attend to the environment such as
in transparent development environments, may need to actively scan the environment for
signals. Receiver attention is the extent to which receivers attend to the environment for
signals. Once receivers receive a signal, the translation from signal to unobservable quality
is receiver interpretation. During this translation, receivers may apply their own weights
or even meanings to signals. For example, one hiring manager may weight impressive-
sounding projects much more highly than another manager.

In online communities such as open source software projects, participants draw signals
from the environment to infer qualities of both people and projects. Donath [2007] finds
rich patterns of signaling and deception in online communities to infer member identi-
ties. Many of the studies of the inferences that developers make in GitHub described in
the previous subsection 2.3 explore potential signals that developers use. For example,
to evaluate a developer, information in the environment such as activity traces and past
discussions are used as signals to infer unobservable qualities such as coding ability and
personality [Marlow et al., 2013]. Signals are not limited to developers but may include
projects. For example, activity traces may be signals for project properties such as qual-

16

ity, collaborative environment, and member commitment [Dabbish et al., 2012]. Outside
of GitHub, Scaffidi et al. [2010] found in their study that users use signals of previous
successful authorship and mass appeal for web macro scripts to decide whether to reuse a
script.

2.5 Summary

Transparent development environments hold much promise for assisting developers in fac-
ing the coordination challenges that are present in online communities such as open source
software projects. Transparent environments also possess their unique challenges such as
dealing with information overload and audience pressures. While prior studies are starting
to find that developers use inferences derived from transparency information to address
some of these challenges, a principled understanding of these inferences and the mecha-
nisms behind this inference process may enable improvements that directly address chal-
lenges developers in these environments face. I use signaling theory as a theoretical lens
to further our understanding of how developers use information in a principled manner by
reasoning about this process in terms of qualities and signals. In the following chapters,
I use signaling theory to inform studies on specific coordination tasks such as evaluating
code contributions or evaluating projects and the qualities and signals that developers use
to inform these tasks.

17

18

Chapter 3

Research Context: GitHub

GitHub is a popular software project-hosting site started in 2008 that brands itself as ”So-
cial Coding.” The site offers both free open source project hosting and paid private hosting
and was home to almost twenty million code repositories in 2016.1 Some of the more pop-
ular open source software projects that GitHub hosts include Ruby on Rails and jQuery.

I selected GitHub as my research setting for the studies described in the following
chapters because it is a very widely used transparent development environment. While tra-
ditional open source environments make low-level activities of a particular project visible,
GitHub includes many transparency features that make low-level development activities
visible at a much larger scale. Specifically, GitHub makes explicit social relationships and
links together activity information via these relationships. For example, a normal open
source project has a freely visible codebase and commit log. For a project on GitHub,
not only is the commit log visible but also visible are all of the commits performed, bug
reports filed, and comments made across all projects in the GitHub ecosystem for each
committer.

This chapter describes features in GitHub that are relevant for the studies described
in the following chapters. These features include transparency features and methods of
contributing to projects in GitHub.

1https://octoverse.github.com/ (accessed March 2017)

19

3.1 Transparency Features in GitHub

GitHub includes transparency features that link together activity traces via social rela-
tionships and broadcast activity information across social networks. GitHub’s features
involving social relationships are the ability for users to “follow” other members in the
community and to “star” or “watch” repositories. The social networking-style features
that aggregate activity information for consumption are user profiles and the activity feed.

GitHub provides support for explicitly establishing user-to-user relationships via the
“following” feature and user-to-project relationships via the “star” and “watch” features.
Following directs events about a developer’s actions to the participant’s news feed. Highly
respected developers can be “followed” via their profile page as in Figure 3.2 to see their
development activity across all of their projects, perhaps to learn how they code or to
identify trendy projects [Dabbish et al., 2012]. Much of the followed participants’ social
activity is also visible in the feed, including changes to the set of users that person is
following. “Watching” a repository is a similar action to following a user. Events about
that repository are directed to the participant’s news feed. “Starring” a repository works
similarly to a bookmarking system, adding the starred project to a list of projects for a
particular user. As a note, before 2012, “starring” did not exist as a feature on GitHub as
“watching” included all of the bookmarking features that stars currently implements.2 At
this time, stars seems to have supplanted watchers as a common visible signal of attention
for a project as described by Dabbish et al. [2012]. Stars and watchers are highly visible for
projects, both in project search results and individual project pages, as seen in Figure 3.1.

GitHub provides social networking-style features that aggregate activity information.
Each GitHub user has a profile page as shown in Figure 3.2 that lists personal information,
activity-related information such as the repositories they own and have starred, and an
activity feed that displays recent actions such as commits, pull requests, or comments.
Each user also has a personal activity feed as shown in Figure 3.3 which is the default
page shown when logging on to the GitHub site. This feed aggregates recent events from
the projects the user is involved with or watches. These events include contributions such
as commits, pull requests, or comments. The personal feed also includes events from users
followed such as the repositories they create or star.

2https://github.com/blog/1204-notifications-stars (accessed March 2017)

20

Figure 3.1: Example of GitHub Project Page with Watch, Star, and Fork Buttons High-
lighted

3.2 Contributions in GitHub: Pull Requests, Issues, Com-
ments

GitHub provides features that standardize and streamline offering contributions to a project.
Offering code contributions or patches to projects in GitHub is done through “pull re-
quests.” GitHub also provides its own bug tracker system where users can file “issues” for
a project. For both of these contribution mechanisms and for specific lines of code, users
may discuss the contribution through comments.

Offering code contributions in GitHub involves “forking” a project and then sending
a “pull request” to that project. GitHub and its underlying version control system Git
allows any user to ”fork” any public project as shown in Figure 3.1. “Forking” creates
a personal copy of any public project where the user can then make changes to, add, or
alter functionality, without disturbing the code in the original project. This user can then
send a ”pull request” to the original project as shown in Figure 3.4 to request that some or
all of their changes to the code base be reintegrated into the original project. The project
manager has several options to ”close” the pull request, including accepting the offered
contribution and merging it into the project’s code base or rejecting the contribution. At

21

Figure 3.2: Example of GitHub User Profile Page

the same time, managers and other interested users may comment on the pull request,
perhaps to suggest improvements or negotiate over the code change. Of course, project
managers may also ignore the contribution, leaving the pull request ”open.”

GitHub also provides a bug tracker for each project that allows users to file “issues.”
Any user is able to submit an issue as seen in Figure 3.5 to a public project, often to either
report a bug or request a feature. Like other bug tracking systems, project managers are
able to assign labels to issues such as “security” in Figure 3.5. Similar to pull requests,
managers are also able to “close” issues as they are resolved or simply ignore issues and
leave them “open.” Also similar to pull requests, project managers and interested users are
able to discuss issues via comments.

22

Figure 3.3: Example of GitHub Activity Feed

GitHub provides commenting as a means for users to discuss contributions. As de-
scribed earlier, both pull requests and issues allow for any interested user to leave com-
ments as shown in Figure 3.4 and 3.5. In these comments, specific users may be notified
using the “@” symbol. For example, if octocat is a GitHub user, a comment of “@octocat
please look at this” will notify that user. For pull requests and specific commits, users may
also leave comments for specific lines of code as shown in Figure 3.6.

23

Figure 3.4: Example of GitHub Pull Request

24

Figure 3.5: Example of GitHub Issue

Figure 3.6: Example of Inline Code Comment in GitHub

25

26

Chapter 4

Signals for Evaluating Contributions in
GitHub

Chapter Summary

Evaluating code contributions is a key coordination task that developers must perform
in order to ensure the integrity of their projects. Transparent development environments
enable developers to use information such as technical value and social connections as sig-
nals when evaluating contributions. This chapter describes a study on potential signals that
developers use when evaluating pull requests in GitHub. The study analyzes the associa-
tion of various technical and social signals with the likelihood of contribution acceptance.
I found that while signals for good technical contribution practices were associated with
acceptance, the effect of the social connection between the submitter and project man-
ager was much higher. Pull requests with many comments were much less likely to be
accepted, moderated by the submitter’s prior interaction in the project. Well-established
projects were more conservative in accepting pull requests. These findings provide evi-
dence for potentially useful signals for evaluating pull requests. The findings also suggest
that social signals in this case may be more useful than technical signals, perhaps due to
differences in assessment costs.

0For the full paper describing this study, please see Tsay et al. [2014a], published in the International
Conference on Software Engineering (ICSE) 2014.

27

The open contribution model of open source software projects that enables any developer
the potential to submit code in many ways characterizes the movement of open source soft-
ware (OSS) itself. While open contribution enables a variety of people with diverse exper-
tise – the “long tail” of contributors – to add their unique value to a project, openness also
brings the danger of integrating changes with errors which may expose serious vulnerabil-
ities such as with the infamous Heartbleed bug in the OpenSSL project that compromised
secret keys.1 This danger of accidentally accepting problematic code requires the core
developer team for projects to carefully evaluate submitted code contributions to ensure
their quality and to maintain technical integrity for the project. Evaluating contributions is
a key coordination task for software developers that I examine in this study.

The advent of transparency in development environments may enable project managers
to better evaluate code contributions by using the vast amount of information regarding
code contributions and submitters that transparency makes visible. As opposed to tradi-
tional open source software projects which make visible all of the code and changes for
a project, transparent environments also make explicit the relationship between users and
work artifacts or other users. This relationship also links together information to surface
potentially useful signals for project managers. For example, project managers are able to
view all of the prior projects that a newcomer might have participated in and evaluate them
as signals of developer skill before deciding whether or not to accept a contribution. With
information available from potentially millions of developers and millions of repositories
in these transparent work environments, what information do software developers actually
use as signals when evaluating software contributions?

Identifying the type of signals that project managers make use of when evaluating con-
tributions furthers our understanding of both how developers evaluate projects and use
information in transparent environments. Traditional perceptions on open source software
characterize projects as places where evaluations are based solely on technical merit [Scac-
chi, 2007] as “code is king” while literature on open source suggests the existence of
a complex social structure around contribution to projects [Ducheneaut, 2005]. Trans-
parency makes visible a number of these potential technical and social signals for project
managers to make use of when evaluating contributions. The choice of type of signal that
project managers use during evaluation may also give insight into the code contribution
evaluation process itself. For example, for a project where “code is king,” only technical
signals should be used when evaluating submissions. The choice of signals to use also may
inform how developers use transparency information in general. For example, perhaps so-
cial signals are much easier for project managers to use than technical signals, suggesting
that the cost to interpret a signal is an important factor.

1http://heartbleed.com/ (accessed March 2017)

28

To further our understanding of what signals project managers use to evaluate con-
tributions, I performed a quantitative analysis of pull request acceptance from thousands
of open source projects on GitHub. I calculate a multi-level set of measures for poten-
tially useful technical and social signals from the pull request, submitter, or project level.
The potential signals are grounded on literature on open source software and online com-
munities. I perform a regression analysis that associates each signal with pull request
acceptance. Signals that are strongly related to pull request acceptance may also suggest
which types of signals are most likely to be used by project managers when deciding to
accept a contribution.

I found that both technical and social signals had strong associations with contribu-
tion acceptance. In particular, social signals of the connection between the submitting
user and the user managing the contribution were especially associated with contribution
acceptance. Contributions with many associated comments were much less likely to be
accepted, perhaps due to contention between the submitter and the core project team. The
negative influence of comments was moderated, however, by the submitter’s prior interac-
tion with the project.

The findings of this study provide evidence for possible signals that project managers
use for the coordination decision of evaluating contributions. In particular, the strong as-
sociation of social signals such as social distance compared to technical signals such as
test inclusion suggests that these signals are more useful for project managers. The differ-
ence in usefulness is perhaps attributable either to the qualities that these signals indicate
or the assessment costs in actually using the signals. The negative association of extended
discussions on contributions and the moderating effect of the submitter’s prior interac-
tion with this negative association raise questions about the nature of these discussions.
These discussions may also be an important coordination mechanism for developers and
are explored further in Chapter 5.

In the following sections I consider related research on the contribution practices of
open source software projects and online communities in order to generate hypotheses,
describe the study’s multi-level logistic model of pull request acceptance, report the results
of the analysis, and discuss the implications of the study’s findings.

29

4.1 Contributions in Transparent Development Environ-
ments

I ground this work in prior literature on participants in open source software projects and
online communities making contributions. Informed by this work, I generate a set of
potential signals and hypotheses for each signal to test in the analysis of contributions in
GitHub.

4.1.1 Contributions in Open Source Software

Literature on the contribution process for open source software projects suggests that ac-
cepting contributions, especially from unknown developers, is a complex process. von
Krogh et al. [2003] found in their study of the contribution process in the Freenet open
source project that there are “joining scripts” that successful newcomers follow before of-
fering contributions. These joining scripts involve participating in prior activity such as
lurking on the project’s mailing list, participating in technical discussions, and reporting
bugs. Developers that offered technical contributions without following this joining script
tended not to have their contributions accepted into the project. Ducheneaut [2005] made
a similar observation in the Python project, noting a progressive socialization process that
requires both displaying technical skills and creating the right social relations. In order
for contributions to be accepted into the project, the contribution must both be technically
sound and be vetted by core members of the project. For successful and complete social-
ization (becoming an “insider”), a developer needs to recruit core members of the project
as a network of “allies.”

Shah [2006] observed that this contribution process also leads to evolution for a de-
veloper’s level of participation in the project. Most developers make simple initial con-
tributions such as bug fixes in order to fulfill some need. A number of these developers
choose to continue to participate in the project, evolving from a need-based participation
to a hobbyist. Often, these developers will also gain committer rights or the right to freely
commit their changes directly into the project.

As open source software projects evolve, their contribution needs tend to change as the
project matures. Nakakoji et al. [2002] observed that as open source projects evolve, the
communities around the project co-evolve along with the open source software system.
Contributions to the project influence the transformation of both the software system and
the community. Nakakoji et al. also defined at least three different classes of open source
projects that evolve into each other. These project classes each have their own unique

30

contribution needs and selection criteria. For example, a Service-Oriented OSS system like
PostgreSQL tends to be very conservative in terms of accepting contributions due to a need
for stability. Stewart and Gosain [2006b] also found that project maturity in open source
software projects on SourceForge moderates both objective and subjective performance
outcomes. For example, the effect of task completion on perceived effectiveness is more
positive for more mature projects.

4.1.2 Contribution in Online Communities

To survive and thrive, online communities face the challenge of attracting and evaluat-
ing contributions. Kraut and Resnick [2012] claim that when dealing with newcomers,
successful online communities must meet a number of challenges: attracting newcom-
ers, selecting among the newcomers, retaining newcomers, socializing newcomers, and
protecting existing members from potential problems newcomers may bring. When eval-
uating newcomers, communities will often screen potential members by using signals of
whether or not a newcomer is a good fit. In the community of Wikipedia, Bryant et al.
[2005] found that some newcomers will transition from making peripheral contributions
to specific articles into core users that help maintain Wikipedia and its community as a
whole. Newcomers learn the conventions and contribution rules of the Wikipedia com-
munity through observation (lurking) and direct mentoring from more experienced users.
Related to this concept of mentoring is a community-wide norm of “don’t bite the new-
comers.” The nature of users’ contributions also tends to change as newcomers become
more socialized, from purely making edits in articles to also participating in community
discussions, administrative duties, and “meta” tasks.

Iriberri and Leroy [2009] found that online communities have multiple lifecycle stages
with different contribution needs. For example, during the earlier Growth stage, commu-
nities are more concerned with attracting new members and supporting interactions while
the later Maturity stage, communities may prefer to recognize contributions and increase
visibility of certain members.

4.1.3 Evaluating Contributions in Transparent Development Environ-
ments

Previous qualitative research on GitHub [Dabbish et al., 2012] showed that project man-
agers, especially those in popular projects that received many contributions (pull requests)
per day, would make use of inferences about the quality of code contributions and sub-

31

mitter competence. Marlow et al. [2013] found that when GitHub developers engage in
information-seeking behaviors, they use signals in the environment to form impressions of
users and projects. For example, impressions of general coding ability could be gleamed
from the contents of a GitHub user’s profile. Signals of whether or not a developer pos-
sesses specialized project-relevant skills were embedded in the user’s activity log. Project
managers would often account for uncertainty when evaluating contributions, straight-
forward and easily verifiable changes were often accepted “as is” whereas complicated,
uncertain changes would require discussion before acceptance. In these cases, project
managers would often engage in discussion with the submitter in order to negotiate the
change. In these cases, where the value of the contribution was uncertain, project man-
agers would make use of both code-based factors and person-based factors. For example,
a project manager may weigh the cost of fixing a contribution against the benefit of re-
cruiting a new member to the project.

Pham et al. [2013] found in their study of the testing culture in GitHub that project
managers would demand that contributions include tests in certain cases. For example,
contributions that introduced new features were expected to include tests. On the other
hand, contributions that involved existing code, especially if the change was small like a
bug fix, may or may not require tests. Also, if the project manager trusted the submitting
developer, the contribution tended to be evaluated more leniently. Many submitters would
include tests as a method for highlighting the value of their contribution to the project
manager.

4.1.4 Hypotheses Development

I use the above prior works to derive a set of potentially useful signals for evaluating
contributions in transparent development environments.

Technical Contribution Norms

Prior work about GitHub suggests that there are certain contribution norms that signal
a technically well-prepared contribution. For example, project managers see an urgent
need for automatic testing in their projects in order to maintain quality as the number
of peripheral developers scales [Pham et al., 2013]. So, project managers tend to value
contributions that include test cases more highly. Another example of such a signal is the
community norm of having legible, easy-to-evaluate pull requests [Dabbish et al., 2012].
Contributions that display these signals of technical value may indicate a well-thought out
technical submission that is also easier for a project manager to evaluate [Dabbish et al.,
2012].

32

H1: Contributions that show signs of following technical contribution norms are more
likely to be accepted.

Social Connection

In traditional open source software projects, newcomers often need to “recruit” core mem-
bers of a project in order to have their contributions accepted [Ducheneaut, 2005]. This
process involves knowing who the key core members are and being able to convince them
of the usefulness of the contribution, especially if the code contribution is complex. Often,
these key members expect newcomers to have previously participated in technical discus-
sions and other peripheral actions in order to learn project-specific norms and prove suit-
ability before submitting contributions [von Krogh et al., 2003]. In GitHub, these kinds
of social connections are visible and made explicit, perhaps making social connections
between submitters and project managers more salient.

H2: Contributions from submitters with a stronger social connection to the project are
more likely to be accepted.

Highly Discussed Contributions

Certain contributions raise uncertainty about their value for a project and subsequently
generate more discussion [Marlow et al., 2013]. Changes that required high amounts of
discussion tend to be more closely scrutinized by more members of the site, as GitHub
users would look at discussion on a contribution as a signal of controversy. These con-
tributions may be less technically sound, more complicated to evaluate, or simply contro-
versial in terms of project direction or implementation strategy. Due to the high degree of
uncertainty, project managers may then be less willing to accept the contribution.

H3: Contributions with a high amount of discussion are less likely to be accepted.

Decision-Making for Highly Discussed Contributions

When the value of a contribution is uncertain, project managers may employ different
standards when evaluating the contributions [Marlow et al., 2013]. In the cases of con-
tributions with high amounts of discussion, I expect both the tone of the discussion and
the degree of uncertainty to change depending on differences between the technical nature
of the contribution and the social relationship between the submitter and the core project
team. These different social and technical factors should then moderate the uncertainty in
highly discussed contributions.

H4: Acceptance of highly discussed contributions will be moderated by both social and
technical factors.

Submitter’s General Community Standing

33

Previous research on GitHub has found that developers often use inferences about de-
velopers and software projects to evaluate them [Marlow et al., 2013]. This research sug-
gests the identity of the submitter and/or the software project may affect how contributions
are evaluated. Members of the GitHub community regard certain members as being at a
higher standing. Some prolific developers are even considered “coding rockstars” by the
overall community [Dabbish et al., 2012]. Project managers who receive contributions
from higher standing submitters may then be more willing to accept them based on the
submitter’s status.

H5: Contributions from submitters with a high status in the general community are more
likely to be accepted.

Submitter’s Status in Project

With open source software projects, there often is a structure of “core” and “periphery”
developers, with core developers being the few central developers who implement most of
the code changes and make important project direction decisions and peripheral developers
being the “many eyes” of the project that make small changes such as bug fixes [Mockus
et al., 2002]. Core developers who make contributions to their own project may then be
more likely to have their contributions accepted by fellow project managers.

H6: Contributions from submitters that hold higher status in a specific project are more
likely to be accepted.

Project Establishment

As open source software projects progress through their lifecycle, their needs tend to differ
from less mature projects [Nakakoji et al., 2002]. The development stage of an open source
project also tends to moderate its performance outcomes [Stewart and Gosain, 2006b]. As
projects evolve, their contribution needs may also co-evolve [Nakakoji et al., 2002]. More
established projects may be more service-oriented with many downstream dependencies.
Project managers are often aware that their projects are depended on by other, perhaps
more high profile projects. For example, certain popular websites may depend on a partic-
ular library on GitHub, so a broken release may also break the popular website [Dabbish
et al., 2012]. Project managers of established projects may then be much more conserva-
tive when accepting contributions in light of these dependencies.

H7: Contributions to established projects are less likely to be accepted.

34

4.2 Methods

To investigate signals for evaluating contributions, I created and analyzed a dataset from
the popular open source software hosting site GitHub. I selected a sample of pull requests
on GitHub and gathered information on the pull requests, the submitting users, and the
project the pull request was submitted to. From this dataset, I fit a statistical model that
associates social and technical contribution signal measures with the likelihood of pull
request acceptance. In this section I present our data collection procedures, signal measure
calculation, and analysis technique.

4.2.1 Pull Request Selection

I create a dataset of pull requests and the users and repositories associated with each pull
request through sampling for active, collaborative projects on GitHub. The dataset com-
prises information gathered from the GitHub Application Programmer Interface (API).
First, I drew a sample of repositories from the GitHub Archive dataset2 on July 17, 2013
with the following sampling criteria:

1. Excluded forks, developer-specific copies of repositories often meant for interim
development work, in order to avoid double-counting contributions in my model.

2. Excluded repositories that have not had at least one event of activity within one week
prior to data collection, July 10, 2013 in order to avoid inactive projects.

3. Excluded repositories that do not use the GitHub issue tracker, as I also use the issue
tracker as a source of data.

This selection included 185,342 repositories. I further refined the selection using the
GitHub API to retrieve more detailed information about each repository with the following
criteria:

1. Removed each repository that did not contain at least one closed pull request due to
using closed pull requests as a base unit of analysis.

2. Excluded repositories with less than three unique contributors in order to ensure that
the project has received some outside contributions.

2https://www.githubarchive.org/

35

After this second phase of filtering, the sample included 12,482 projects.

I used pull requests as a base unit of analysis. From these 12,482 projects, I extract all
closed pull requests from the API. As this study is concerned with the decision of whether
or not to accept a pull request, I excluded all open pull requests. In total, this includes
659,501 pull requests across the 12,482 projects. This dataset also gathered information
about each unique GitHub user associated with the set of pull requests. This set of user
information includes 95,270 unique GitHub user accounts. I also used the API to gather
information on all issues and comments for each repository.

4.2.2 Signal Measures

Using the created dataset, I generated measures for potential signals for evaluating con-
tributions. Each signal is based on prior literature on GitHub, traditional open source
software communities, and online communities (see Table 4.1 for a descriptive summary
of the measures).

Table 4.1: Descriptives of Contribution Evaluation Signal Measures (Pre-transformation)
Measure mean median stdev skew

Test Inclusion* 0.151 0 0.358 1.95
Commit Size (lines) 1456 25 27799 61.876
Files Changed 13.265 2 165.46 67.691
Social Distance* 0.096 0 0.295 2.74
Prior Interaction 200.583 22 566.388 8.184
Comments 2.664 1 6.656 19.198
Followers 35.972 7 177.082 22.965
Collaborator Status* 0.435 0 0.496 0.261
Repo Maturity** 2.104 1.956 1.188 0.568
Collaborators 20.203 8 42.808 6.063
Stars 1981 293 4095 2.977

Pull Req Acceptance* 0.723 1 0.447 -0.999
*Dichotomous variables
**In years as of July 17, 2013

36

Outcome Measure

The main outcome measure was whether or not a pull request is accepted. Pull request ac-
ceptance in this context means that the code contributions included in the pull request were
merged into the project’s code base. Pull request acceptance is a dichotomous variable.

Pull Request-level Measures

For the base level of measurement, I collected information unique to each closed pull
request in our dataset. Each measure for the pull request represents a social or technical
signal about the contribution that may factor into the acceptance decision.

Technical Contribution Norms

I use three measures to operationalize different dimensions of valued technical contribu-
tion norms for a pull request.

Test Inclusion – This measure was a dichotomous variable indicating whether or not the
pull request included test cases. The prior work of Dabbish et al. [2012] on GitHub sug-
gests that when core members evaluate pull requests, they look for the inclusion of test
cases as a signal of the thoroughness of the contribution. To measure this, I looked at
the file pathnames in each pull request and looked for the word “test”. If the pull request
included such a pathname, then the pull request is labeled as including tests. This is due
to most test cases either residing in a test folder (i.e. project/test/. . .) or the filenames in-
cluding the word “test” (i.e. test numberformat.java). To verify, a simple spot-check was
performed on forty randomly chosen pull requests, twenty labeled as having tests, twenty
labeled as not having tests. All checked pull requests were found to be correctly labeled.
Of course, this measure is probably conservative, with unfound false negatives.

Commit Size – This measure is the number of lines changed in the pull request. Along
with number of files changed, I included the number of lines changed in a pull request as
a signal of a pull request’s legibility. Pull requests that change large portions of the code
base at a time are much harder for project managers to understand and evaluate.

Number of Files Changed – This measure is the number of files changed in the pull
request. Along with the commit size, we use these measures to indicate how legible a
particular pull request is. Pull requests that touch a large number of files tend to be much
harder to understand and evaluate for project managers [Marlow et al., 2013].

Social Connection

To represent two different dimensions of the social connections in GitHub, I used a mea-

37

sure for social distance and another for prior interaction.

Social Distance – This measure was a dichotomous variable indicating whether or not the
submitter follows the user that closes the pull request. I use this as a proxy of the social
closeness between the submitter and the closer in a particular pull request.

Prior Interaction – Prior work on GitHub by Dabbish et al. [2012], indicates that core
members for a project, especially when attempting to recruit new members, use prior con-
tributions as a signal of the trustworthiness of a contributor and contribution. To measure
prior interaction, I counted the number of events before a particular pull request that the
user has participated in for this project. Events include participating in issues, pull re-
quests, and commenting on various GitHub artifacts.

Highly Discussed Contributions

Comments on Pull Request – Marlow et al. [2013] found that uncertain pull requests
tended to require negotiation and/or explanation. Pull requests with lots of comments also
tended to signal controversy [Dabbish et al., 2012]. To measure the level of discussion, I
counted the number of comments in the closed pull request.

User-level Measures

As each pull request has a submitting user that may submit multiple pull requests to a
project, I grouped pull requests by the submitting GitHub user account and collected in-
formation about each GitHub submitter.

Submitter’s General Community Standing

Followers – This measure is the number of followers a GitHub user has at time of data
collection. The number of followers a GitHub user possesses is used as a signal of stand-
ing [Dabbish et al., 2012] within the community. For example, users with lots of followers
were treated as local celebrities. Submitter’s Status in Project

Collaborator Status – This signal is a dichotomous variable for the user’s collaborator
status within the project. In GitHub, a collaborator for a project has direct commit access
to the repository. Therefore, they do not need to perform the pull request process in order to
merge code contributions into the project. However, interviews with GitHub users indicate
that many collaborators opt to create pull requests for code contributions despite having
commit status. Often, this is done to allow other users to review changes before accepting
the code contribution.

38

Repository-level Measures

I further grouped the dataset by grouping each set of submitters into a repository and
collected information about each repository.

Project Establishment

I used three different measures to represent three dimensions of establishment for the
project receiving the pull request.

Repository Age – This measure is a continuous variable representing the project’s age
how long a project has existed on GitHub since the time of data collection. I use this as an
indicator of the repository’s maturity.

Collaborators – This measure is the number of collaborators on a project. I use the
number of collaborators as a proxy for the relative size of the development team involved
in a particular GitHub project.

Stars – This measure is a continuous variable for the number of stars on a project. When
evaluating projects, GitHub users make use of the number of stars as a signal for com-
munity interest in the project [Dabbish et al., 2012]. As stars were indications of atten-
tion from a user to a particular project, more stars indicate more users interested in the
project. Measures such as the number of forks and the number of contributors to a partic-
ular GitHub project were highly correlated with this measure and were omitted to avoid
collinearity.

4.2.3 Analysis

Using these pull request-level, submitter-level, and repository-level measures, I create a
model that predicts the likelihood of pull request acceptance. I fit a multi-level mixed
effects logistic regression model to our data because our outcome variable (acceptance)
is dichotomous and our dataset nested in multiple levels. I chose a logistic regression
approach in order to better predict our dichotomous outcome variable. To account for the
three-level nesting of the dataset from pull requests to users to repositories, I created a
mixed model where our contribution measures are fixed effects and the unique user and
repository intercepts are represented as random effects. I used a R [R Core Team, 2013]
package [Bates et al., 2013] that accounts for cross-classification of data, as 28,880 out of
95,720 users appear in multiple projects in our dataset. None of the measures had pairwise
correlations above 0.6 suggesting no multicollinearity problems [Dormann et al., 2013].
To ensure normality, each of the continuous variables in the model was log transformed
and then centered such that the mean of each measure is 0 and standard deviation is 1.

39

4.3 Results

My analysis suggests that both technical and social contribution measures are highly asso-
ciated with acceptance. First, I examine our hypotheses and how each predictor variable
associates with acceptance. I also consider signals that cut across pull requests such as
user-level and repository-level measures. I report measure associations with contribution
in odds ratios, which are the increase or decrease of the odds of acceptance occurring
per “unit” of the measure. In this case, a “unit” of each measure is one standard devia-
tion from the log-transformed for continuous variables or the presence of a dichotomous
variable. Odds ratios provide a convenient way to compare association strengths across
measures. A summary of the models is presented in Table 4.2.

4.3.1 Pull Request-Level Measures

Technical Contribution Norms

H1: Contributions that follow technical contribution norms are more likely to be accepted.

I tested H1 by examining the association of test case inclusion, commit size, and files
changed with contribution acceptance. The inclusion of test cases was positively associ-
ated with pull request acceptance, with acceptance likelihood increased by 17.1% when
tests are included. Lines changed had a stronger effect but negative, with each unit of lines
changed decreasing the chance of acceptance by 26.2% compared to 7.3% with each unit
of files changed. As I expect contributions that include test cases and are more legible are
more likely to be accepted, so I find support for H1.

Social Connection

H2: Contributions from submitters with a stronger social connection to the project are
more likely to be accepted.

I tested H2 by examining the association of social distance and prior interaction with con-
tribution acceptance. I find support for H2 as both of our social connection measures were
positively associated with pull request acceptance. Our measure of social distance had the
strongest influence on likelihood of acceptance as compared with other pull-request level
factors, increasing acceptance by 187% when the submitter follows the project manager.
Prior interaction was also positively associated with acceptance, increasing acceptance
likelihood by 35.6% per unit.

Highly Discussed Contributions

H3: Contributions with a high amount of discussion are less likely to be accepted.

40

Ta
bl

e
4.

2:
M

ul
ti-

le
ve

lM
ix

ed
E

ff
ec

ts
L

og
is

tic
M

od
el

fo
rP

ul
lR

eq
ue

st
A

cc
ep

ta
nc

e
M

od
el

I
M

od
el

II
M

od
el

II
I

M
od

el
IV

Fa
ct

or
V

ar
ia

bl
e

Pu
ll

R
eq

ue
st

L
ev

el
Pu

ll+
Su

bm
itt

er
L

ev
el

Pu
ll+

Su
bm

itt
er

+R
ep

o
L

ev
el

(I
nt

er
ce

pt
)

2.
93

4*
**

2.
89

8*
**

2.
84

5*
**

3.
92

5*
**

Te
ch

ni
ca

l
C

on
tr

ib
ut

io
n

N
or

m
s

(H
1)

Te
st

In
cl

us
io

n
1.

05
9*

**
1.

02
3*

1.
11

4*
**

1.
17

1*
**

C
om

m
it

Si
ze

0.
84

9*
**

0.
83

4*
**

0.
73

6*
**

0.
73

8*
**

N
um

be
ro

fF
ile

s
C

ha
ng

ed
1.

16
5*

**
1.

15
2*

**
0.

97
0*

**
0.

92
7*

**

So
ci

al
C

on
ne

ct
io

n
(H

2)
So

ci
al

D
is

ta
nc

e
1.

34
5*

**
1.

46
1*

**
3.

63
6*

**
2.

87
0*

**
Pr

io
rI

nt
er

ac
tio

n
1.

42
3*

**
1.

36
2*

**
1.

20
7*

**
1.

35
6*

**

H
ig

h
D

is
cu

ss
io

n
(H

3)
C

om
m

en
ts

0.
48

1*
**

0.
48

0*
**

0.
41

4*
**

0.
45

4*
**

D
ec

is
io

n-
M

ak
in

g
fo

rH
ig

h
D

is
cu

ss
io

n
(H

4)

Te
st

In
cl

us
io

n
x

C
om

m
en

ts
1.

05
7*

**
1.

09
2*

**
1.

10
6*

**
C

om
m

it
Si

ze
x

C
om

m
en

ts
1.

10
1*

**
1.

16
6*

**
1.

16
9*

**
Fi

le
s

C
ha

ng
ed

x
C

om
m

en
ts

1.
01

7*
**

1.
04

3*
**

1.
03

5*
**

So
ci

al
D

is
ta

nc
e

x
C

om
m

en
ts

0.
80

6*
**

0.
79

2*
**

0.
79

6*
**

P
ri

or
In

te
ra

ct
io

n
x

C
om

m
en

ts
1.

10
6*

**
1.

24
6*

**
1.

14
2*

**

St
at

us
in

C
om

m
un

ity
(H

5)
Fo

llo
w

er
s

1.
06

0*
**

1.
18

1*
**

St
at

us
in

Pr
oj

ec
t(

H
6)

C
ol

la
bo

ra
to

rS
ta

tu
s

3.
90

4*
**

1.
63

6*
**

Pr
oj

ec
t

E
st

ab
lis

hm
en

t
(H

7)

R
ep

os
ito

ry
A

ge
0.

82
0*

**
C

ol
la

bo
ra

to
rs

0.
95

4*
*

St
ar

s
0.

64
8*

**

A
IC

:
63

36
00

63
08

79
50

68
50

46
10

77

41

To test H3, I examined the association between pull request comment count and accep-
tance. Pull requests with longer discussion, as indicated by higher counts of comments,
were less likely to be accepted, supporting H3. This is the second strongest effect among
the pull request-level factors, with the likelihood of acceptance decreasing by 54.6% with
each unit of comment count.

Decision-Making for Highly Discussed Contributions

H4: Acceptance of highly discussed contributions will be moderated by both social and
technical factors.

To test H4, I added an interaction term to the model, interacting number of comments with
each pull request-level measure in order to investigate how social and technical factors
moderated the decision-making process for highly discussed contributions. I found that
all five interactions with social and technical factors were significant, indicating support
for H4.

I provide charts detailing the direction of the interactions in Figures 4.1, 4.2, and 4.3.
The associations of test inclusion, number of files, commit size, and social distance all
significantly moderate the influence of discussion on contribution acceptance, though with
a small effect. Prior interaction most strongly moderates the relationship between discus-
sion and acceptance, with number of comments having almost no influence on acceptance
for previous contributors. I discuss later the implications of these interactions for how
evaluating highly discussed contributions may differ from more standard contributions.

4.3.2 User-Level Measures

Submitter Status in General Community

H5: Contributions from submitters with a high status in the general community are more
likely to be accepted.

To test H5, I examined the association of follow count with pull request acceptance. I
find a positive association, supporting H5. Having followers increases the likelihood of
acceptance by 18.1% per unit of followers. This suggests that submitters with higher
community standing are more likely to have their pull requests accepted.

Submitter Status in Project

H6: Contributions from submitters that hold higher status in a specific project are more
likely to be accepted.

I tested H6 by examining the association of collaborator status with contribution accep-

42

tance. Perhaps unsurprisingly, when submitters with commit access choose to create pull
requests instead of directly merging code, their pull requests are more likely to be ac-
cepted than non-collaborators, supporting H6. Being a collaborator on a project increases
the likelihood of contributions being accepted by 63.6%.

4.3.3 Repository-Level Measures

Project Establishment

H7: Contributions to established projects are less likely to be accepted.

I test H7 by examining the association of our project establishment measures (the age
of the project, number of users with commit status, and popularity of the project) with
contribution acceptance. All three of our project establishment dimensions have negative
associations with pull request acceptance, so I find support for H7. Number of collab-
orators, used as a proxy for project team size, has the smallest influence on acceptance
likelihood out of the three establishment measures, decreasing acceptance by 4.6% per
unit of collaborator count. Somewhat surprisingly, this suggests that project “size” does
not have as strong an influence on pull request acceptance as compared with age or popu-
larity. The older a project, used here as a proxy for maturity, the less likely it is to accept
pull requests, with acceptance decreasing by 18.0% per unit of project age. Popularity had
the strongest negative influence on acceptance, with projects 35.2% less likely to accept
pull requests per unit of increase in stars.

4.4 Discussion

In this section, I summarize the results and discuss the implications of the hypotheses in
terms of prior literature.

4.4.1 Technical Norms and Social Connection

From conventional wisdom on open source software projects, I expect to see some evi-
dence that “code is king” and that technical contribution norms should reign over other
signals when considering contributions [Scacchi, 2007]. However, in the transparent en-
vironment of GitHub, I also expect contributors to make use of the social connections
that the environment makes salient. The analysis suggests that while following technical

43

contribution norms for pull requests is associated with acceptance, the social connections
behind pull requests have even stronger associations.

In terms of technical contribution norms, I found that pull requests more consistent
with community-wide pull request practices like inclusion of test cases and small commit
sizes [Dabbish et al., 2012] were more likely to be accepted. Code contributions that
did not follow technical norms were less likely to be accepted, perhaps due to the higher
assessment costs required by the project manager.

I also find that social connections increase likelihood of contribution acceptance, even
when controlling for compliance with technical contribution norms. In traditional open
source software projects, contributors are often expected to participate in more social as-
pects of the project such as participating in mailing list technical discussions before mak-
ing code contributions in order to learn project-specific norms and ease socialization [von
Krogh et al., 2003]. In the case of GitHub however, this expectation may be less prevalent
because the pull request system standardizes the contribution process. The pull-request
process also lowers the barriers for contribution, meaning many developers will make
one-off contributions to projects or “drive-by commits” [Pham et al., 2013]. However,
I still found that a contributor that has prior interaction with a project also has a higher
likelihood of pull request acceptance. I also find that submitters socially closer to project
managers tend to have their contributions accepted. This social distance association is also
the strongest in the model. Similar to evaluating technical contribution norms, stronger
social connections may indicate qualities such as trust, which may lower the project man-
ager’s assessment cost. For example, if the submitter is trusted to make good contributions,
project managers may be more lenient in their evaluations [Pham et al., 2013].

While both technical contribution norms and social connections were associated with
pull request acceptance, our measures for social contribution had much stronger associa-
tions than our technical contribution norm measures. This difference in signaling theory
is related to the construct of [Connelly et al., 2010]. Receivers, developers in this case,
may apply weights to signals based on their own preconceived notions of importance.
One possible explanation for the difference in weighting is that when project managers are
evaluating pull requests, when the evaluation cost is too high, they may decide to outright
reject the contribution. Whereas pull requests that follow technical norms such as legible
code changes and test cases make the pull request much easier to evaluate, a strong social
connection between the project manager and submitter may allow the project manager to
bypass much of the evaluation process. Pull requests from unknown developers may be
subject to much more thorough and costly evaluations from project managers than pull
requests from known contributors [Pham et al., 2013]. For example, a familiar developer
may be expected to already have run the contribution through the test suite, allowing for

44

a project manager to bypass that phase of the evaluation, increasing the likelihood of ac-
ceptance. Similarly, members of the project with commit rights, perhaps an explicit form
of trust, also have positive associations with acceptance. This may be similar to the effect
of familiarity in distributed software development, where team familiarity is associated
with team performance, especially for geographically dispersed teams (as many GitHub
projects are) [Espinosa et al., 2007]. One explanation for the familiarity finding is that
teammates with high familiarity know whom to contact for queries and resources, making
coordination much more efficient. Perhaps submitters with a strong social connection also
lower the coordination costs required to use the contribution. For example, project man-
agers familiar with the submitter may not bother to look for project-specific coding style
norms, knowing that the submitter already should know them.

Future research should examine in more detail how technical and social signals influ-
ence evaluation cost during pull request acceptance. If technical norm signals are harder
to evaluate, then perhaps future collaborative software tools should focus on lowering the
evaluation cost of a software contribution. At the same time, if developers are using social
signals to evaluate contributions, then perhaps those signals should be made more visible
during evaluation tasks, assuming that these signals are optimal for decision-making. Fu-
ture research should also examine whether these evaluation decisions are optimal or what
leads to optimal acceptance decisions.

4.4.2 Decision-Making and Highly Discussed Contributions

Next to social distance, the amount of discussion around a pull request had the strongest
influence on likelihood of acceptance. The more highly discussed the contribution, the less
likely the contribution would be accepted. This by itself is not too surprising, given the
high degree of uncertainty present in such pull requests [Marlow et al., 2013]. However, I
also hypothesized that highly discussed pull requests differ in both the tone of the discus-
sion and the degree of uncertainty in the contribution being discussed. These differences
in the nature of the discussion around evaluating a pull request also reflect differences in
the decision-making process for project managers. When discussing a pull request in order
to evaluate the value of the contribution, project managers may be using different kinds of
information. The model finds (see Table 4.2) that both technical contribution norms and
social connection measures moderated the effect of discussion on contributions.

For highly discussed contributions, the social and technical pull request-level measures
moderate the negative association of discussion amount on acceptance. For most of our
factors, however, regardless of being social or technical in nature, the moderating effect is
too small to affect the very negative influence of having a large amount of discussion in a

45

contribution. In Figure 4.1 for example, the negative effect of high discussion overwhelms
the positive technical effect of test inclusion, reducing the likelihood of acceptance by
about 30% regardless of test inclusion. Even for the variable with the largest association
with acceptance, social distance, having a high amount of discussion still reduces the
likelihood of acceptance by about 25% regardless of whether or not following occurs as
seen in Figure 4.2. This small moderating effect suggests that for most pull requests,
project managers are much less willing to accept the contribution, regardless of whether
or not technical contribution norms are followed or a social connection of the submitter to
the project manager exists. This may indicate that regardless of the tone of the discussion
or nature of the contribution, high amounts of discussion on a pull request indicates a high
degree of uncertainty for the value of the contribution.

However, a submitter’s prior interaction on the project significantly changes the influ-
ence of discussion on acceptance as seen in Figure 4.3. Surprisingly, there is a positive
association between discussion and acceptance likelihood for participants with prior in-
teraction. This may indicate that when experienced submitters are working on a project,
the nature of the discussions around their pull requests is different in some way than sub-
mitters who do not have this prior experience. Discussions where the submitter has high
amounts of prior interaction may be less focused on evaluating a contribution’s value and
more focused on optimizing the code. Conversely, the discussion around a contribution
from a submitter with no prior interaction on the project may focus more on evaluating
whether the pull contribution is worth accepting. For example, a submitter with no prior
interaction may be unaware of a project’s submission practices and the resulting discussion
would be focused on ensuring the pull request matches the project’s standards.

Interestingly, the moderation effect of prior interaction is at odds with the effect of
social distance despite both variables being used for our social connection measure in the
analysis model. This may suggest that when discussing contributions, project managers
will turn to prior interaction rather than social distance as a signal to use during evaluation
of pull requests. Perhaps this occurs because prior interactions are a more trustworthy
signal than the social distance signal of the submitter following the project manager. To
demonstrate prior interaction, a user has to actively participate in discussions, bug reports,
and other forms of contribution on the project. Prior interaction may act as an assessment
signal, where the signal of prior interactions cannot easily be generated without actual
participation [Donath, 2005]. Prior interaction is a reliable signal of social connection be-
cause participation cannot be easily faked. On the other hand, social distance via following
may indicate a social connection between two users through convention. This signal is less
reliable because a submitter can follow a project manager without actually creating a so-
cial connection with the project manager. When discussing how to evaluate contributions,

46

the convention of following users does not replace familiarity built from actual prior inter-
action.

I examine these highly-discussed pull requests in more detail in Chapter 5.

Future research should examine how we can design tools that assist in deliberation by
highlighting certain information. Future tool design may assist developers during software
change evaluation discussions by making certain signals more or less visible. Future tools
may even dynamically change the visibility of different signals depending on the tone of
the discussion.

Figure 4.1: Interaction Plot of Test Inclusion and Contribution Discussion

Figure 4.2: Interaction Plot of Social Distance and Contribution Discussion

4.4.3 Audience Pressures

While social and technical features of pull requests had important associations with accep-
tance, the model also suggests that the type of submitter and the type of project that the
pull request is submitted to also influences acceptance likelihood.

47

Figure 4.3: Interaction Plot of Prior Interaction and Contribution Discussion (prior inter-
action values are standardized)

Pull requests from submitters who have commit rights, known as collaborators in
GitHub, were associated with acceptance. Pull requests from collaborators seem to be spe-
cial cases of contribution because these users are not required to undergo the pull request
process in order to have their changes merged into the project, unlike other developers.

Well-established projects were negatively associated with acceptance on all three di-
mensions. In particular, the popularity of a repository has the strongest negative associa-
tion out of the three. Number of stars, a proxy for project popularity, is used by members
of the GitHub community as a signal for project quality, which project managers are aware
of [Dabbish et al., 2012].

The contrasting associations between popular projects and collaborators may indicate
that audience pressure is a factor when project managers evaluate pull requests. For popu-
lar projects, the transparent nature of GitHub means project managers are aware, at least in
part, of the identity of users of their project [Dabbish et al., 2012]. Knowing that hundreds
or thousands of users, some highly visible, depend on a particular project may discourage
project managers from accepting risky or uncertain code contributions. Conversely, col-
laborators, who possess the ability to accept pull requests into the project, may be immune
to these audience pressures.

The effect of audience pressure on software contribution evaluation is not well under-
stood. Future research may investigate more thoroughly how audience pressures affect
both contributors and core members of projects. Signals used to evaluate contributions
may differ depending on whether or not core members feel pressure from the audience.
For example, core members may be much more concerned about managing uncertainty
when they are aware that millions of potential users are watching and depending on the
project being stable.

48

4.4.4 Limitations

One of the main limitations of this study is that most of the data is of a cross-sectional na-
ture. At the same time, some of the measures are more robust to reverse-causality because
of timing inherent in the pull request process. Prior interaction, test inclusion, and number
of lines and files changed, are all variables whose value is determined prior to any consid-
eration of acceptance of the pull request. Other variables, however, are cross-sectional at
the time of data collection, such as follower count. Without performing a true longitudinal
analysis, the direction of causality cannot be determined for these latter variables using
our dataset. Future work should perform longitudinal analyses on contribution measures
in order to make stronger inferences about causality.

4.5 Conclusion

This study examines potential social and technical signals available through the transpar-
ent environment of GitHub and their relationship with contribution evaluation decisions.
I created a statistical model analyzing the association of different pull request, submitter,
and repository measures of contributions with the likelihood of the contribution being ac-
cepted. The study found that project managers made use of information involving both
the technical contribution practices of a pull request and the strength of the social con-
nection between the submitter and project manager when evaluating pull requests. Highly
discussed pull requests were much less likely to be accepted, however, the submitter’s
prior interaction in the project moderated this effect. The discussions around these pull
requests are examined in more detail in Chapter 5. Well-established projects were more
conservative when evaluating pull requests, perhaps due to audience pressures.

This study’s findings inform ways that software developers and project managers might
make use of information in transparent environments and imply a variety of ways that
transparency feature can support software development. This study identifies signals with
strong associations to pull request acceptance that are potentially useful to guide both
contribution submissions and evaluations. Surfacing strongly associated signals such as
social connection and prior interaction in future tools may help guide project managers in
making evaluation decisions. The strong association of social signals may also indicate
receiver interpretation [Connelly et al., 2010] or preferential weighting of these signals
by project managers. This weighting may suggest that social signals are more useful, for
better or worse, for this coordination task.

49

50

Chapter 5

Negotiating Contributions through
Discussion in GitHub

Chapter Summary

Extended discussions around contributions are a key coordination mechanism to both eval-
uate the contribution and ensure that the needs of other developers and projects are met.
These discussions have important implications for project management regarding contrib-
utors and the evolution of project requirements and direction. This chapter describes a
study of the coordination that occurs between developers in transparent environments as
they discuss pull requests. This study analyzes a sample of extended discussions around
pull requests and supplements the data with interviews with GitHub developers. I found
that developers raised issues around contributions over both the appropriateness of the
problem that the submitter attempted to solve and the correctness of the implemented so-
lution. Both core project members and third-party stakeholders discussed and sometimes
implemented alternative solutions to address these issues. Different stakeholders also in-
fluenced the outcome of the evaluation by eliciting support from different communities
such as dependent projects or even companies. The level of a submitter’s prior interaction
on a project changed how politely developers discussed the contribution and the nature of
proposed alternative solutions. These findings suggest the potential importance of political
signals for projects, such as the influence of stakeholders and their associated projects or
companies.

0For the full paper describing this study, please see Tsay et al. [2014b], published in Foundations of
Software Engineering (FSE) 2014.

51

Though the open contribution model of open source software allows many people with
diverse expertise to add their unique value to a project, this openness also brings the risk
of destabilizing a project with error-ridden or even malicious code contributions. When
contributions are deemed unsuitable or threaten technical integrity, a negotiation between
contributor and project members often ensues [Mockus et al., 2002]. This negotiation of-
ten takes place in the form of extended discussions around the contribution. While the
average GitHub contribution generates little if any discussion and involve very few de-
velopers [Gousios et al., 2014], cases of extended discussions occur as project members
and the broader community work together to understand the implications of the suggested
change [Marlow et al., 2013]. These extended discussions are a key coordination mech-
anism in open source software projects for both evaluating contributions and allowing
participants to voice their concerns.

The coordination that occurs during these extended discussions often involves negoti-
ations between the participants as changes to a project often have major impacts on other
related projects. These related projects operate independently and may have their own,
sometimes conflicting, goals [Crowston et al., 2008]. For example, a submitter may offer
a contribution to a project that modifies the behavior of some feature. Even if this change
is useful, downstream projects may rely on the old behavior. In the discussion around this
contribution, the submitter’s goal may be to convince the core team that this change is
beneficial [Ducheneaut, 2005] while the core team’s goal may be to ensure compatibility
with downstream projects. These problems and issues identified during negotiations re-
veal unique challenges of coordinating with a heterogeneous diffuse set of contributors that
may possess their own goals. In an open setting, project members have little or no formal
authority over contributors and vice versa [Lerner and Tirole, 2002]. Left unchecked, these
challenges may cause undesirable outcomes for discussions and the contributions they are
tied to. For example, conflicting goals between developers may escalate to emotional dis-
agreements or affective conflict which may surface as ugly personal attacks [Arazy et al.,
2013]. The consequences may be especially far-reaching in transparent environments, as
contributions and discussions are visible to all, including any such emotional conflicts.

By better understanding the methods and means participants use to negotiate problems
in contribution discussions, I may be able to inform policies and tools that enable devel-
opers to better manage open projects, coordinate between projects, and resolve potential
conflicts. For example, if problems frequently arise around contributions where devel-
opers have conflicting goals, then collaborative software development environments can

52

incorporate specialized conflict management tools [van Wendel de Joode, 2004]. Noti-
fication mechanisms in transparent environments (e.g., watching, following, mailing list
subscriptions) can be more precisely targeted to developers in downstream projects whose
interests are potentially affected.

To understand the negotiations that occur in extended contribution discussions, I stud-
ied discussions on pull requests in GitHub. Average-case pull requests typically gener-
ate little to no discussion [Gousios et al., 2014] and therefore are not very informative
about the reasons for acceptance or rejection. For this reason, I chose to focus on only
pull requests with extended discussions, which often reveal the developers’ reasoning pro-
cess. Using a grounded theory approach [Corbin and Strauss, 2008] I focused on the
phenomenon of extended contribution discussions (rather than interactions around contri-
butions more broadly) because these discussions are an important aspect of the open col-
laboration process and a key place where core and peripheral members negotiate around
aspects of project evolution and direction.

I explored the kinds of issues core developers raised and the arguments they over both
the appropriateness of the problem that submitters attempted to solve, and the correctness
of the implemented solution in a submitted code contribution. Due to the open nature
of the software projects, other stakeholders from outside the project observed and partic-
ipated in these extended discussions, sometimes attempting to influence the outcome of
the contribution through rallying support of the audience or leveraging project or com-
pany communities. I also found that non-member contributions were more likely to be
rejected following a long discussion. However, although core teams rejected new submit-
ter’s contributions more often, they almost always satisfied the submitter’s technical goal
by implementing an alternative solution. Core members interacted more politely with new
submitters and in cases of conflict, were more likely to implement alternative solutions for
these newcomer submitters rather than simply suggest them.

While this study did not specifically explore signals that developers used during these
extended discussions, I found that participants used signals in their environment to infer
qualities about other participants. These qualities tended to be political in nature, such
as inferring the influence of a project or company participating in a discussion. These
political qualities and their signals may be useful for developers who wish to evaluate
projects or changes. For example, a future transparent environment might display to a
submitter what impact their change may have on downstream projects.

In the next sections I motivate my research questions based on previous research, de-
scribe the study methodology, present the results of the discussion analysis, and discuss
the implications of the findings.

53

5.1 Contribution and Discussion in Online Work

Previous research on suggests complex social and technical processes for evaluating con-
tributions in online communities and open source software projects. In transparent de-
velopment environments such as GitHub, developers augment these processes by making
use of the information transparency makes visible. Informed by previous work, I develop
research questions around how developers discuss contributions in open environments.

5.1.1 Discussions around Contributions in Online Communities

Successful online communities rely on members contributing their unique resources to
the community, such as users uploading videos on YouTube or posting pictures or com-
ments on reddit. In peer-production communities such as Wikipedia, conversation is used
to organize work. Viégas et al. [2004] found that in Wikipedia editors primarily used
edit comments to coordinate article edits. Feedback and discussions around contributions
may encourage future contributions from newcomers. Kraut and Resnick [2012] analyzed
challenges that online communities face when trying to encourage contribution: matching
users to contributions needed, making requests to members, using intrinsic and extrin-
sic motivators, and grouping users together. They review evidence showing that constant
feedback to members, whether it be character levels in World of Warcraft or community
comments in YouTube, motivates members to create more contributions. Similarly, Burke
and Kraut [2008] found that a higher perceived politeness increases reply rates in online
communities.

However, newcomers may sometimes come into conflict with experienced users. In
particular, Kittur et al. [2007a] identified ”elite” and ”common” classes of users in Wikipedia
where much of the work is shifting from experienced users to newcomers in the ”common”
class. Along with shifts in workload, Forte and Bruckman [2008] found that governance
in creating and enforcing policy is also shifting from a small group of administrators to a
more decentralized model. They found that Wikipedia in particular relies on policy as one
of the main governance mechanisms. With an explicit community norm against voting,
creating policy requires discussion to build consensus. Similarly, although administra-
tors hold both technical and social authority, decisions by administrators are not enforced
without widespread support from the larger community. As consensus is often required to
resolve conflicts, Kriplean et al. [2007] found that users will engage in political maneuver-
ing (termed ”power plays” in the work) to influence the larger community. These political
strategies include arguing or redefining the scope of the article, referencing past policy or
consensus in other articles, pointing to past work as an appeal to legitimacy, and disputing

54

the legitimacy of sources. ”Elite” users such as administrators made use of their techni-
cal or social authority in some cases by threatening sanctions through formal sanctioning
or arbitration mechanisms, overriding competing interpretations through greater authority,
and threatening to leave articles. During these conflicts, newcomers and experienced users
often resolve conflicts through discussions. The nature of the discussions and feedback
may discourage newcomers. In a study of newcomer contribution on Wikipedia, Halfaker
et al. [2011] found that reverts decreased motivation for newcomers. Reverts from ex-
perienced editors were the most demotivating, suggesting that certain interactions around
contributions may have a particularly negative influence on motivation to contribute to a
project.

5.1.2 Discussions around Contributions in Open Source Software

As open source software often relies on the contributions of a diverse group of software
developers [Crowston et al., 2008], members of software project teams must evaluate and
discuss contributions to ensure the integrity of the software project.

Literature on the contribution process for open source software projects suggests that
evaluating contributions, especially from unknown developers, is a complex social pro-
cess. von Krogh et al. [2003] found in their study of the contribution process in the
Freenet open source project that successful newcomers must follow ”joining scripts” be-
fore submitting a contribution. These joining scripts involve participating in prior activity
such as lurking on the project’s mailing list, participating in technical discussions, and
reporting bugs. They also found differences in the tone of discussion between developers
who were invited to join the project versus developers who were not. For example, the
detail and specificity of feedback given was much more general for non-joiners. Duche-
neaut [2005] noted that developers looking to make successful contributions to the Python
project needed to undergo a progressive socialization process. Core members on a project
would vet contributions to ensure the code changes were technically sound. Successful so-
cialization allowed potential submitters to learn project norms and to identify key members
of the core project team. In order to successfully start the contribution evaluation process,
a submitting developer needed to ”recruit” core members of the project as a network of
”allies”.

When evaluating code contributions for technical correctness, core project members
often use a peer review process. Rigby et al. [2008] found in their examination of different
peer review processes in the Apache server open source project that early and frequent
reviews of small contributions from the core team were effective in finding defects in con-
tributions. In particular, the usage of the project mailing list allowed for self-selection

55

of expert core members and a more open discussion between members. Ko and Chilana
[2011] found that discussions around bug reports established scope, proposed ideas, identi-
fied design dimensions, defended claims with rationale, moderated the process, and finally
made a decision. The most powerful factors in decision-making around a bug report were
the participant’s authority (developers over users) and actions taken (writing a patch).

5.1.3 Social Signals in Transparent Development Environments

While evaluating contributions is a key process in all popular open source projects, the
information that transparency makes visible allows developers to make use of additional
signals during the evaluation process. Chapter 4 presents some examples of possible sig-
nals that are explored in more depth in this study, such as highly discussed contributions
that are much less likely to be accepted and the moderating effect of prior interaction on
highly discussion contributions [Tsay et al., 2014a].

Marlow et al. [2013] found that when evaluating a developer’s contributions, project
managers would look to the submitter’s other projects in order to better understand how
much assistance or extra effort the submitter would require in order to accept their contri-
bution. Questionable changes required back-and-forth discussion between the submitter
and core members in order to explain why the contribution could not be automatically
accepted and negotiate the outcome. In these cases, project managers would make use of
information about the code contribution and the submitter, to decide how accommodating
towards the submitter they should be. For example, a project manager may weigh the cost
of fixing a contribution against the benefit of recruiting a new member to the project.

The literature on deliberation in online communities suggest that members engage in
discussion to both encourage and evaluate contributions to the community [Dabbish et al.,
2012, Kraut and Resnick, 2012, von Krogh et al., 2003]. Open source software projects,
needing to ensure the technical integrity of code contributions, engage in complicated
social processes and peer technical reviews [Mockus et al., 2002]. Often, developers would
also engage in discussion in order to socialize themselves when joining a project [Dabbish
et al., 2012, Kraut and Resnick, 2012]. Transparent work environments such as GitHub
have developers using information made visible due to transparency to make inferences
about projects and other developers when evaluating contributions [Crowston et al., 2008,
Lerner and Tirole, 2002]. However, we still know relatively little about the kinds of issues
that arise, and the nature of discussions developers have when evaluating contributions.

56

5.1.4 Development of Research Questions

Our examination of literature on discussion around contributions in online environments
suggests a number of research questions to advance our knowledge of how software devel-
opers coordinate in transparent development environments through extended discussions.

From online communities such as Wikipedia [Viégas et al., 2004], we see that editors
engage in discussion over conflicts in article direction. In open source software, devel-
opers discuss problems in bug reports, making and justifying arguments when discussing
the design of a solution [Ko and Chilana, 2011]. For more uncertain changes in GitHub,
core members engage in back-and-forth discussion to justify the value of the contribu-
tion [Marlow et al., 2013]. However, it is not well understood what issues around open
source software development need to be worked out in these discussions. By better un-
derstanding the issues, arguments, and criteria raised in contribution discussion, we can
identify challenges in coordinating with a diffuse set of contributors in an open environ-
ment. This leads to the first research question:

RQ1: What are the different kinds of issues raised around code contributions?

In online communities, members use intrinsic and extrinsic motivators when making re-
quests to encourage compliance [Kraut and Resnick, 2012]. One tactic identified in open
source software is that submitters recruit core members to assist in the evaluation pro-
cess [Ducheneaut, 2005]. In this way, submitters are able to influence the outcome of the
evaluation process. What is not well understood is the full range of methods that differ-
ent stakeholders may use to influence the evaluation process. By better understanding the
decision-making process and how influence is brought to bear, we also gain insight into
what motivates software developers to accept changes. The influence tactics used in an
environment where there is little formal authority [Lerner and Tirole, 2002] also reveal
what constitutes power in open collaboration. This leads to the second research question:

RQ2: How do participants try to influence the decision process in code contributions?

In online communities, the outcome of a contribution evaluation may be farther-reaching
than simply whether the contribution itself is accepted. For example, the outcome of a
contribution and the identity of the evaluating editor in Wikipedia has an impact on the
motivation of a new editor to contribute again [Halfaker et al., 2011]. In open source soft-
ware environments such as GitHub, project managers may decide to accept less desirable
code contributions in order to recruit new members [Marlow et al., 2013]. The following
research question investigates the less obvious impacts of outcomes of code contribution
evaluations:

RQ3: What are the different outcomes for proposed code contributions?

57

In Chapter 4, I found that a submitter’s level of prior experience on a project has an as-
sociation with contribution acceptance and seems to moderate the negative effect of dis-
cussion [Tsay et al., 2014a]. This suggests that a submitter’s prior experience (or lack of)
changes the nature of discussion around code contributions and may influence the outcome
of the evaluation. In online communities, new submitters tend to interact differently. In
Wikipedia, new editors tend to make peripheral, specific edits to articles [Bryant et al.,
2005] and tend to be sensitive to reverts from experienced editors [Halfaker et al., 2011].
In open source software, new contributors tend to follow ”joining scripts” before making
successful contributions [von Krogh et al., 2003]. By understanding how a submitter’s
prior experience impacts discussion, we may better understand how projects manage both
new and experienced contributors. This leads to the fourth research question:

RQ4: Is discussion different when the submitter has prior experience with a project?

5.2 Method

To study the coordination that occurs in discussions around contributions, I created and
analyzed a dataset of both interview data and contribution discussions from the social open
source software hosting site GitHub. The interviews explored the practices of a relatively
broad sample of developers, while the content analysis of entire collections of comments
for specific pull requests allowed analysis of complete exchanges and their outcomes in
some depth. In this section, I present our data collection methods and analysis technique.

5.2.1 Data Collection

The dataset consists of both a set of 423 comments from 115 developers, embedded in
extended pull request discussions and interviews with 47 users of GitHub.

Highly Discussed Pull Request Sample

From a larger dataset of 659,501 pull requests across 12,482 GitHub projects [Tsay et al.,
2014a], I created a sample of highly discussed pull requests (see Table 5.1). For this
study, ”highly discussed” is defined as pull requests where the number of comments is
one standard deviation (6.7) higher than the mean (2.6) in the dataset, filtering out all pull
requests with less than 9 comments in the discussion. Each pull request includes both
discussion comments on the pull request itself and code-level inline comments. From

58

this reduced sample, 20 highly discussed pull requests were randomly selected from 20
different software projects. The list of pull requests is provided in Appendix A. From
these 20 pull requests, a total of 423 comments from 115 developers were analyzed. As
the analysis reached theoretical saturation, I drew no more pull requests from the sample.
The sample is stratified to include both accepted and rejected pull requests, as well as
submitters with varying levels of prior interaction with the project (see Table 5.2).

As the research questions are concerned with the outcomes of contributions, I ensured
a roughly equal representation of both accepted and rejected pull requests. As this study
also investigates how a submitter’s prior experience on a project changes the discussion
around a contribution, I also ensured a roughly equal distribution of new submitters (no
prior interaction) and experienced submitters (see Table 5.2).

Table 5.1: Description of Pull Request Sample
Number of pull requests 20

Total number of comments 423
Mean number of comments 21.1
Total number of participants 115
Mean number of participants 5.75

Table 5.2: Distributions of Pull Request Sample
Yes No

Pull Request Accepted? 9 11
Submitter Has Prior Interaction on Project? 11 9

Interview Data

To supplement the sample of extended discussions, I also conducted a series of semi-
structured interviews with 47 GitHub users [Dabbish et al., 2012]. The goal in these inter-
views was to document and understand in more detail the different ways GitHub function-
ality was used by our participants, including how pull requests were created and managed.
Participants were solicited via email. Interviews were conducted in person or via phone
or Skype. Remote participants shared their screen during the interview using Adobe Con-
nect so users could demonstrate their activities on the site. Participants were asked to
walk through their last session on GitHub, describing how they interpreted information
displayed on the site as they reviewed earlier work activities. For this study, I focused

59

on participants describing their last pull request sent to a project and the last pull request
received for their own project. None of the pull requests mentioned in interviews were
included in the sample of pull request discussions. Interviews lasted approximately 45
minutes to one hour overall. These interviews were then transcribed verbatim to support
further analysis.

5.2.2 Data Analysis

This study uses a grounded theory approach to analyze how developers evaluate contribu-
tions in transparent environments for the sample of pull request discussions [Strauss et al.,
1990]. I first identified instances of how developers evaluated code contributions in the
comments of five pull request discussions. For each instance analyzed, I identified the par-
ticipants involved, information made available by GitHub that is used by developers, the
type of comment, what portion of the code contribution is referred to, and the higher-level
goal of the participant in regards to the contribution. Then, open coding was performed on
these examples, grouping examples into categories that were conceptually similar. This
process revealed different categories of interaction between different types of participants
for a code contribution. This first set of categories was used to code the remaining pull
request discussions, revealing additional categories. I used an iterative process until the
discussions no longer revealed new interactions not captured in the existing set of cate-
gories (theoretical saturation). During this process, I also identified similar interactions in
the interview data and supplemented our findings using these examples.

5.3 Results

The analysis found that both core and peripheral developers in a project engaged in discus-
sion in order to resolve issues around both the problem that the contribution is attempting
to solve and the solution that the contribution implements. Different stakeholders such as
third parties and audience members sometimes attempted to influence the outcome of dis-
cussion. I found different outcomes for contributions and discussions around them. I also
found that the submitter’s level of prior interaction on the project changed the discussion
around the code contribution.

5.3.1 Issues Raised Around Code Contributions

RQ1: What are the different kinds of issues raised around code contributions?

60

Contributions to projects in the form of pull requests sometimes generated issues that the
submitter and the core members must resolve through discussion. Core members raised
different issues over the appropriateness of the problem that the contribution was attempt-
ing to solve. Developers also discussed how to optimize the solution that the contribution
implements with various levels of involvement. At times, core members in the project also
disagreed amongst each other over these issues.

Disapprove of the Problem Being Solved

One main issue that developers discussed was whether the problem that the code contribu-
tion was trying to solve is appropriate. Core members would sometimes discuss whether
the pull request belonged in their project while other times would ask contributors to prove
the value of their contribution through explicit use cases.

Project Appropriateness

Core members questioned whether the submitter was using the project in the intended
manner. Sometimes, contributions offered by submitters using the project inappropriately
would attempt to implement features that were not in the intended scope of what the project
was meant to do (P2, P7, P14, P15, P16, P19, P20). In these cases, core members offered
alternative solutions to the submitters outside of their own project. One example had the
project owner offer to assist the submitter in learning how to use the project correctly
offline, in a local hackathon (P15). If the contribution was outside the scope of the project,
core members sometimes suggested that the contribution actually be made to an upstream
or downstream project (P20).

To prevent submitters from wasting time on inappropriate contributions, core members
expected submitters to propose their contributions before implementation to get feedback
on its appropriateness (P7). In cases when core members inadvertently accepted inap-
propriate earlier contributions into the project, later contributions would be necessary to
revert the inappropriate change (P20), further increasing the time and effort wasted for
both submitters and core members.

“The idea of proposals issues before-hand is to see the likelihood of something getting
merged, so you don’t feel you’ve wasted all your time if it doesn’t.” (P7)

Some GitHub developers explained in interviews that submitters would sometimes
inadvertently solve inappropriate problems because the project would move in a different
direction unknown to the submitter. For example, a core developer’s planned changes to a
project made a submitter’s contribution obsolete.

”So, yeah. Not sure what’s gonna happen with this off the top of my head, if it’s gonna

61

get landed or– I mean because some of the things that we’re doing with this refactor of the
master branch make this whole thing a little unnecessary now.”

Value Proposition Request

In order to explore whether the contribution truly had value for the project, core members
asked submitters to provide specific use cases or test cases (P1, P2, P3, P4, P13, P14,
P20). Core members used this requirement as a way to confirm that the specific problem
submitters were trying to solve in their contribution was appropriate. In some discussions,
core members refused to continue the evaluation process until use cases were presented
(P1, P3, P4, P14).

In response, submitters offered use cases or test cases to demonstrate the problem
their contribution solved. For the contributions in this category, submitters that provided
code examples or references to downstream projects (P2) tended to successfully prove
the appropriateness of their problem and also tended to have their contributions accepted.
Occasionally, third parties from the audience also jumped in, offering their own use cases
when core members asked for them (P13). When submitters were unable to satisfactorily
demonstrate use cases that their contribution solves, the contribution tended to be rejected.
In some cases, core member simply closed the pull request until a test case was provided
(P1). In one case, the submitter, uncertain about their own use case due to discussion,
decided to close their own pull request until a better use case was presented (P14).

“I think it may be better to close the pull and the associated issue unless I’m overlooking
a real use case. . . I’m going to close this for now, if someone comes up with a good use
case we can reopen.” (P14)

Disapprove of the Solution

When core members and third parties from the audience questioned the solution that the
pull request implemented, developers offered a gradient of responses to questionable solu-
tions from passively questioning the submitter’s approach to actively suggesting alternative
solutions to offering their own solutions to the problem.

Question Solution Approach

Core members raised objections to the way the submitter chose to implement the solu-
tion in the contribution. Most often, developers raised questions about the submitter’s
approach to implementing the solution in the pull request (P2, P4, P8, P9, P10, P11, P17,
P18, P20). In some cases, core members asked about design decisions that the submitter
made when implementing the pull request (P2, P4, P8, P10, P18, P20). These decisions
ranged from the forming of dependencies (P10, P20) to more elegant code (P4) to even

62

best commenting practices (P8). Other cases had core members act as testers for the code
change, reporting bugs with the pull request (P11, P17). In one case, the core member
actually reported the bug after the pull request was accepted (P17).

“Wow. Don’t you think you’re going a little bit overboard with this many comments? Or
is this just for my benefit when checking on your code?” (P8)

Suggest Alternative Solutions

Some core members and third parties from the audience took a more active approach when
the contribution’s implemented solution was suspect and suggested alternative solutions to
the submitter’s implemented solution, often with the expectation that the submitter would
implement the suggestion (P2, P7, P8, P9, P11, P15, P19). Many of the suggestions given
were technical in nature, suggesting ways to improve the code through optimization (P9)
or better practices (P11, P15) or avoiding bugs (P7, P8). Others were more stylistic in
nature, suggesting changes to conform to best practices or project norms (P19).

“I would suggest having an array of possible node locations and loop through them in
order using fileExists to determine if it’s available.” (P15)

Submitters sometimes followed and sometimes ignored suggested alternative solu-
tions. In one pull request, a core member made a suggestion for an alternative solution
that the submitter accepted and attempted to implement. Not being able to implement the
suggestion, the submitter decided to leave the pull request as-is (P11). In some cases, the
submitter actively rejected the suggested alternative solution. In one case, a third party
developer from the audience suggested an alternative solution that the submitter, a core
member, rejected with an explanation why (P9). With these two examples, regardless of
the outcome, submitters addressed suggestions from the core or third parties. In one case,
a new submitter even preemptively addressed an obvious alternative solution, explaining
why it would not be appropriate for the particular problem that the contribution was trying
to solve (P2).

”You might ask: ”why don’t you install the suggested rb-inotify gem to avoid getting that
[...] warning?” The reason is that such a task can only be performed by the end user who
uses my scripts; I have no control over their machines” (P2)

Advertise Own Solution

As a response to issues in how the solution in the contribution was implemented, some
core members or third party developers from the audience took the initiative to implement
their own alternative solutions to the problem presented in the contribution and then adver-
tise their own solution in the pull request discussion (P2, P3, P13, P15). The actual form of
the alternative solution varied widely from case to case. Interested third party developers

63

from the audience gave examples of solutions to similar problems that were implemented
in outside projects that the developers previously worked on and provided hyperlinks to
that project (P2, P3). One third-party developer from the audience, in response to problems
in the implemented solution, made suggestions for an alternative solution and then imple-
mented the solution in another pull request (P3). This case created a competing solution to
the same problem that the original contribution attempts to solve. In another case, a core
member sent a pull request to the submitter’s personal fork of the project that made code
changes to the contribution, effectively making a contribution on a contribution (P13).

”@[submitter] I sent you a PR([link to pull request]) that accounts for once in the call-
back, avoiding a potential infinite loop. Test included too.” (P13)

Disagreement among the Core

In almost a third of cases in our sample of highly discussed pull requests, core members
disagreed amongst themselves in regards to the best way to approach a problem or what
is the best possible solution for a contribution (P2, P3, P6, P8, P10, P11, P12). In these
cases, core members often showed deference to more senior core members, often project
owners or project creators (P2, P3). On the other hand, more senior core members used
the opportunity to instruct or even admonish other core members (P2, P3). In some cases,
senior core members even handed down edicts to what the project will do about a particular
problem.

“@[not-as-core developer] The point is that we need to allow this kind of integration
(that’s part of the interoperability we try to promote).” (P3)

Core members, when disagreeing with each other, used various techniques to hedge
their arguments. In many cases, disagreeing developers used humor and emoticons to
soften their arguments (P2, P8, P10).

“Hey guys, sorry I’m a bit late but I don’t feel comfortable with writing what’s not diag-
nostic to me to STDERR. [...] We’re losing control guys!!!!!! :P” (P2)

5.3.2 Methods of Influencing the Decision Process for Code Contri-
butions

RQ2: How do participants try to influence the decision process in code contributions?

Various stakeholders involved in the code contribution employed different methods to in-
fluence the outcome of the contentious pull request. Third-party stakeholders in the audi-

64

ence at times applied pressure to core members to accept code contributions.

Audience Pressures

Third party developers in the audience held stakes in particular code contributions, often
needing a particular change for their own usage. These interested audience members ap-
plied pressure to core members in order to influence their evaluation decision. Developers
in the audience were able to pressure core members through rallying support from other
developers and projects or companies.

Community Support

Outside developers in the audience with a stake in a code change commonly demonstrated
support for a particular contribution by making comments in pull request discussions in-
dicating that they needed the change (P1, P2, P3, P5, P7, P9, P13, P14, P16, P19). Most
commonly, audience members indicated their support in the form of a “+1” or a “+1”
emoticon (P2, P5, P13, P16).

“@[submitter] +1. It’s very convenient for setting off one time operations that need to
respond once to a recurring event, such as a set up operation.” (P13)

Other than simply indicating support, audience members also commented that they
were experiencing the same problem as what the code contribution fixes, increasing the
perceived number of users that needed the change (P1, P7). In some cases, core members
also indicated their support for a particular code change to other core members (P2, P3,
P14, P19).

“Just to confirm that this issue still exists in master. . . The fix in the pull request works for
me. Please consider merging.” (P1)

Interviewed GitHub members explained that when they perceived that their community
needed a feature through feedback, they were motivated to implement those features.

”I get feedback from those people and kind of think about and think, oh gosh, it looks like
what they really need is this feature and this will work for them and I’ll do the design.”

Other interviewees complained about such practices, citing the noise that such com-
munity support brought when trying to discuss issues around code contributions.

”I mean it’s kind of difficult to have a productive conversation about something like that
when you get a million people coming in and just saying plus one, plus one, plus one, plus
one”

Project and Company Support

65

In some cases, rather than simply indicating a need for the change, third party developers in
the audience cited their own projects or companies that would benefit from the contribution
in question (P3, P6, P13, P14, P16, P18). In these cases, developers intensified their stake
in the code contribution, demonstrating that other projects or even companies were relying
on the change to be accepted.

“@[core member] if you are still interested in finding a solution for this problem i can
give you any details you need just ask. I’m very interested in solving this because we are
investing a lot on [project] in my company but every single of our applications uses saml
for authentication [sic].” (P3)

Developers also seemingly leveraged their own user base in order to exert influence
on the contribution decision process. In one example, the submitter mentioned that the
contribution was actually meant to solve a problem on behalf of one of the submitter’s
users (P3). Another case had the submitter mention that many users of the project switched
to the submitter’s fork of the project in order to avoid a particular bug that the contribution
also fixes (P16).

“Several people have started using this fork in order to get around the issues reported in
[issue link].” (P16)

Alerting the Core

In order to engage particular core members in the contribution discussion, both the submit-
ter and core members made use of the @mention feature in GitHub, which notifies specific
developers who are mentioned during discussion. (For example, @octocat sends an email
notification to the developer with username “octocat”.) Developers used the @mention
feature to alert core members who are key to the evaluation process for the contribution
in question (P2, P3, P13, P14, P16, P18, P19). Submitters or other core members @men-
tioned core members to start the code review process (P13, P16). Occasionally, the reverse
also occurred, with core members @mentioning the submitter to continue the review pro-
cess (P14). Often, core members @mentioned other core members to solicit feedback
from more qualified core developers (P2, P3, P18 [not an @mention but still a solicitation
of feedback from fellow core members]). In one case, a core member alerted the rest of the
core team before merging a code contribution to give other core developers an opportunity
to comment.

“I think these two sketches look good, anyone see any issues with merging?” (P19)

In some cases, third party developers also @mentioned core members to attempt to
influence their decision regarding the contribution (P13).

66

“+1 @[core member] please re-open this for consideration. .once does not provide the
same functionality” (P13

Submitter Asks Core About Evaluation Status

After periods of inactivity in the discussion around a contribution, submitters often asked
the core team about the status of the evaluation process for the pull request (P6, P13, P16).
The periods of silence before a submitter asked about status ranged from 18 days (P13) to
2 months (P16). Inactivity, as discussed in a later section, caused developers to fear that
their contributions were ignored by the core team.

“Anything I can do to get this merged? @[core member] @[core member] ?” (P13)

5.3.3 Outcomes for Proposed Code Contributions

RQ3: What are the different outcomes for proposed code contributions?

Chapter 4 on signals for evaluating contributions found that highly discussed contribu-
tions tended to be rejected while submitters prior interaction on a project tended to have
their contributions accepted [Tsay et al., 2014a]. This chapter is an opportunity to exam-
ine in detail what types of discussions result in rejected or accepted pull requests. With
the different issues raised around code contributions, we also saw different methods of
resolution and different behaviors after a pull request is resolved.

Rejection and Meeting Technical Goals

One finding from the analysis of discussions is that while many of the highly discussed
pull requests examined were rejected, the core team would often still meet the underlying
technical goal of the submitter (P3, P7, P13, P15). For example, in a few contributions,
the core team realized during the discussion around the contributions that the underlying
problem that the submitter was attempting to solve was much more complicated than origi-
nally thought. After discussing the contributions, the core team decided to implement their
own, more complete, solution to the original problem (P3, P13). In this way, although the
submitter did not have their contribution accepted, the core team fulfilled the submitter’s
technical goals. In one case, the submitter had submitted a malformed pull request, lead-
ing to its rejection. Rather than resubmitting the contribution, the submitter instead asked
a core member to implement the bugfix. In this case, the submitter was more interested in
meeting personal technical goals than having “credit” for having an accepted pull request
(P7).

67

“So I’m going to let [core member] decide what he want to do with it. It’s an easy searchre-
place action, so it doesn’t have to be this PR.” (P7)

Contribution Outcomes

When submitters or third-party stakeholders exerted influence through audience pressures,
the pull requests examined suggested that they were no more likely to be accepted by core
members (4 rejected and 7 accepted). However, with the exception of one pull request
(P1), whenever the audience influenced the outcome, the technical goal of the submitter
was met, either through the contribution being accepted or the core team implementing
their own solution to the problem in the contribution (P2, P3, P5, P6, P7, P9, P13, P16,
P18, P19).

In cases where the problem that the contribution was attempting to solve was suspect,
especially when the project usage or scope was inappropriate, the contribution tended
to be rejected (P1, P3, P4, P7, P13, P14, P15, P20). In the two exceptions (P2, P16),
where the problem the contribution solved was suspect yet the pull request was accepted,
the core team disagreed amongst each other, engaging in extended discussions about the
contribution.

Future Contributions Advertised

After contributions were resolved, submitters often advertised future changes in the dis-
cussion (P2, P4, P7, P11, P18, P19). Even if the contribution was rejected, submitters
sometimes offered suggestions on similar changes in the same direction as the offered
contribution (P4, P7. P11).

“I’m closing this for now, as this needs more testing. I would also like to investigate
whether we can support multi-monitor configurations better than today.” (P11)

In changes that were accepted, some submitters indicated future changes that were
incoming (P18, P19).

“Let us know about syntax, formatting etc. on these 4. We 50 more in the pipe passing
internal peer review. [...] We’re upping our schedule to get more pages. Out we have a
ton in the works but need to sign off on them internally before handing them over.” (P18)

68

5.3.4 Submitter’s Prior Experience

RQ4: How does a submitter’s prior experience with a project change the discussion?

Chapter 4 also found that a submitter’s prior interaction had an influence both on
whether pull requests and highly discussed pull requests were accepted [Tsay et al., 2014a].
This study examines how a submitter’s experience changed the nature of discussions
around their contributions.

Core Thanking New Submitters

When submitters were new to the project, core members almost always made sure to po-
litely engage with the new submitter regarding their contribution. For new submitters, core
members thanked the submitter for their contribution as their first comment (P2, P5, P6,
P11, P12, P13, P18, P19). In other cases, core members apologized to new submitters for
delays in responding (P1, P5, P6, P10, P12, P13, P18, P20). Often, developers in GitHub
interpreted delays in response as the core project team ignoring a contribution and use
this information as a signal for poor project management. Often, the first comment to a
new submitter combined the two, both thanking a new submitter for their contribution and
apologizing for a delay in response at the same time.

“Looks impressing. Since I’m a bit busy with some other stuff I’ll made a review in a week
or something. Please be patient. And thank you for contribution :)” (P5)

Interviewed GitHub developers were aware of the value of being courteous in regards
to accepting pull requests.

“I mean if there’s a problem with the library you don’t want to rush in and say, “Your
library sucks, and it’s wrong in the following ways and I’ll fix it for you. You need to
merge it,” or whatever. It really comes off badly [...]. But if you come at it from another
direction and say, “This is a great library. Thanks for providing it. I do have one or two
little changes that I’d like to make. I think it’d help the library as a whole. What do you
think?” That generally comes off much, much better.”

Interviewees also explained that they would be polite to new submitters to try to en-
courage contributions.

“For smaller things, does it help people to contribute? So I think that this is kind of entirely
an issue of how do you handle it [...]. Not to say that you’re always squashing their ego or
putting them down when you’re making these changes for them. I think that you can say,
“Hey, thank you for the pull request. There were some issues here, here, here that I fixed
up and then I merged it. In the future try and make sure that you do this. Thanks again,

69

though, for the code.” Usually people respond pretty positively to that.”

Alternative Solutions for New Submitters

When the submitted contribution’s implemented solution was suspect, depending on the
level of the submitter’s prior interaction on the project, core members and third parties
had different responses when offering alternative solutions. In general, regardless of the
submitter’s experience on the project, other developers questioned the approach of the
contribution’s implemented solution. However when discussing alternative solutions to
the contribution, the prior experience of the submitter seemed to change how developers
offered their alternative solutions. Submitters with experience on the project tended to
receive suggestions on alternative solutions to solve the contribution’s problem (P7, P8,
P9, P11, P15) while new submitters to a project tended to receive implemented alternative
solutions from core members and third party developers (P2, P3). In both pull requests,
multiple alternative solutions were advertised, ranging from competing contributions (P3)
to similar solutions in other projects (P2, P3).

5.4 Discussion

This study finds that developers were very aware of the different stakeholders when dis-
cussing contributions. Developers also had multiple methods of influencing the evaluation
process, including influencing power relationships in the project. The findings also sug-
gest that core members and submitters defined and evolved project requirements during
discussions around code contributions.

5.4.1 Stakeholders Influencing the Outcome

One of the side effects of open collaboration is that the environment allows for third party
developers to participate in discussions around evaluating contributions. In open environ-
ments, a project’s dependencies are not fully known to the core members. Any developer
can independently use any library. Notification mechanisms, such as GitHub alerts, make
developers in the audience aware of important changes that may affect them.

While prior work on GitHub has suggested that the presence of a perceived audience
itself pressures developers into behaving differently [Dabbish et al., 2012], this study sug-
gests that the audience takes on a much more active role when evaluating contributions.

70

Similar to developers overhearing discuss ions in collocated software teams [Teasley et al.,
2000], this study finds in our sample of pull requests with extended discussions that de-
velopers in the audience would often jump into discussions where they may have stakes
in the outcome. Gousios et al. [2014] found in their sample of pull requests that discus-
sion participants who have never committed to the repository are rare. I found, however,
that extended discussions tended to draw developers who were not directly related to the
pull request, i.e., were neither the submitter nor core members. Most of these third party
developers made some peripheral contribution to the project at some point.

The ability of third party developers to independently join the discussion around any
contribution may influence how core members and submitters evaluate and discuss contri-
butions. Submitters received suggestions from both core members and third party devel-
opers from the audience and would often need to justify their design decisions. In some
cases, submitter’s solutions even competed with alternative contributions from third party
developers that solved the same problem as the submitted contribution. The extra negoti-
ation required due to suggestions from the audience may raise the cost for core members
to evaluate a pull request, reducing its chances of acceptance [Tsay et al., 2014a]. At the
same time, this exploration of alternative solutions by the audience seems to be a form of
decentralized experimentation. So while core developers may be less willing to make risky
experimental code changes while being watched, third parties from the audience may be
willing to take on the risk.

This study suggests that political signals may be useful for developers. “Political”
signals in this case refer to indications of the influences of different stakeholders such as
users or developers from dependent projects. The findings suggested that core members
tended to fulfill the technical goal of the submitter whenever the audience applied pressure.
This may indicate that core members may wish to infer which changes are needed by users
or dependent projects. Implementing a feature similar to the “+1” comments (essentially
stars for changes) would be a very direct method of creating a signal of which changes
have the most influence from users. Similarly, given that stakeholders are referencing
projects and companies in an attempt to influence core members, perhaps creating a signal
that indicates which downstream projects are affected by a change would be useful for
project managers.

Software development environments with pervasive notification mechanisms such as
GitHub allow developers the affordance of staying aware of projects where they may be
stakeholders but not necessarily core members. This awareness has the side effect of cre-
ating an audience that may actively attempt to influence the development of a software
project through participating in discussions or developing experimental code changes. Fu-
ture research should explore how notification mechanisms enable developers to be action-

71

ably aware of projects they may have stakes in. A better understanding of how developers
act on awareness notifications would inform the design of tools that better notify devel-
opers when to participate in relevant discussions in dependent projects and allow core
members to effectively manage experimentation from third party stakeholders.

5.4.2 Power Relationships in Evaluating Contributions

Discussions around contributions had three types of participants: submitters, project core
members, and third party audience members. These three groups of developers appeared
to have implicit power relationships.

The closer the developer was to the project’s core, the more influence the developer
seemed to wield. For example, a third party developer’s suggestion had much less weight
to the submitter than one from a core member. Core members had the ultimate power to
accept or reject a code contribution due to their commit access. The degree of influence
also varied within the core, with certain core members showing deference to more senior
core members such as project owners or veteran contributors. Submitters, having imple-
mented a solution, demonstrated investment in the project. Third-party stakeholders had
not demonstrated such investment.

To help determine power relationships in a project, developers used information present
in the environment to make inferences on the expertise of other developers [Marlow et al.,
2013]. Core members and submitters may attribute less influence to the comments of a
third party due to inferences made using cues in the environment. For example, a third
party developer with no connection to the project may be seen as a certain ”type of per-
son” who only reports problems but does not actually contribute code [Marlow et al., 2013]
and therefore may have less of a stake in the technical discussion about the contribution.
The submitter’s prior experience on the project was also used as information to infer the
submitter’s expertise. Prior experience may be an indicator of the degree of socialization a
developer has undergone for the project [Ducheneaut, 2005]. Socialized developers, pos-
sessing knowledge of the core team and project-specific norms, may be less likely to create
risky contributions or contributions of uncertain value.

While third party and submitting developers may wield less power than core members
during the contribution evaluation process, these developers were able to leverage their
own communities to influence the core team on a project. Developers would cite their own
projects and companies to intensify their perceived stake in the code contribution, per-
haps increasing their influence on a change through pressure [Kraut and Resnick, 2012].
Leveraging user bases in this way to influence the core was often effective because core

72

members understood that their authority is closely tied to keeping users satisfied [Lerner
and Tirole, 2002]. In some cases, stakeholder communities would actually cause a sub-
mitter to create the contribution in the first place. For example, if a user was experiencing
a bug in a certain project, the project owner implemented and submitted a bug fix to an
upstream project [Dabbish et al., 2012]. This suggests a chain of influence across the up-
stream and downstream dependencies in software projects. The pressure to contribute to
an upstream project may have benefits to the technical integrity of both projects due to en-
suring that a code change resides in the most appropriate location in terms of architecture.
For example, if a bug goes unfixed in an upstream project, multiple downstream projects
may all have to implement the same workaround or bug fix.

Online community literature finds similar power relationships between ”elite” and
”common” users in Wikipedia [Kittur et al., 2007a]. However, ”elite” Wikipedia users
such as administrators wield power and authority very differently than project managers
in GitHub. The affordances of the environments give GitHub project managers much more
technical authority than Wikipedia administrators. Project managers in GitHub have the
final authority to accept or reject changes. In contrast, Wikipedia administrators have spe-
cial administrative powers such as ”protecting” pages and blocking users but lack defini-
tive authority to decide what edits stay or go. Additionally, many de facto ”owners” of
articles are not administrators but regular users, deriving their authority entirely through
social rather than technical means [Forte and Bruckman, 2008]. Social authority through
community consensus is present in both GitHub and Wikipedia, as seen through attempts
by the community to influence outcomes. Some of the political strategies for influencing
the outcome are similar across both GitHub and Wikipedia. For example, arguing about
the scope of a change and appealing to other projects or pages Kriplean et al. [2007]. Dif-
ferences in influencing strategies correspond to differences in community norms between
Wikipedia and GitHub. For example, Wikipedia has a strong emphasis on using policy
for governance, often relying on past policy decisions to resolve conflicts Kriplean et al.
[2007] while GitHub emphasizes open source ideologies such as aiding other open source
developers and projects [Stewart and Gosain, 2006a]. This may explain why Wikipedia
users attempt to influence discussions through appealing to past policy decisions while
GitHub users cite other projects and companies.

How these power relationships between open source developers as well as the incen-
tives and decision rights that are present support good decision-making in terms of evalu-
ating code contributions is not well understood. Future research should investigate these
relationships in more detail, in order to determine what factors allow developers to wield
more influence than others when making evaluation decisions. Environments that make
these factors such as expertise visible or allow for different notification capabilities may

73

have an impact on these power relationships and the outcome of code contribution evalu-
ations.

5.4.3 Developing Software Requirements through Discussion

Core members and third party developers from the audience often raised issues around a
contribution, either about the appropriateness of the problem solved in the pull request or
the correctness of the implemented solution. In cases where the contribution’s problem
was suspect, submitters and core members often engaged in extended discussions about
the appropriateness of the code change. For example, the submitter may have attempted to
implement a feature that is outside the scope of what the software project should be able
to do. This discussion over whether the problem to solve was appropriate was actually a
negotiation over the requirements of the software project.

Open source software projects tend to not have formal requirements documents that
are created through a formal elicitation process [Scacchi, 2002]. Instead, requirements
in open source projects tend to emerge in forms such as mailing list messages or forum
posts as a byproduct of the community discussing the direction and assignment of future
code contributions [Scacchi, 2004]. This study saw a similar method for evolving the
requirements of the software project when submitters and core members discussed whether
a particular code contribution was appropriate for the software project. In other words,
core members assessed whether the problem that the submitter was trying to solve was
within the scope of the project’s projected feature set.

Besides submitters and core members, other stakeholders such as the third party de-
velopers in the audience were also able to participate in evolving the requirements of the
software project by participating in the discussion. This is somewhat similar to how com-
munity members in traditional open source projects will communicate their needs through
bug reports or feature requests [Mockus et al., 2002]. Due to transparency in the en-
vironment however, perhaps a wider variety of stakeholders were able to influence the
requirements of the software project through discussion.

Future research should examine this connection between software requirements and
contribution discussions in more detail. Future tool design may explicitly recognize when
requirements are being evolved during discussions and may archive these discussions in a
more visible way for the benefit of core members.

74

5.5 Conclusion

In this work I examined the coordination that occurs between open source developers
during discussions of extended contributions. I found that when developers raised issues
with either the problem the submitter was attempting to solve or the solution that was im-
plemented in the pull request, it provided an occasion to discuss alternative solutions or
negotiate requirements. Different stakeholders also attempted to influence the outcomes
of contributions through pressuring the core or directly alerting them. The transparent en-
vironment provides specific mechanisms for stakeholders in the audience who are outside
of the submitter and project core team to participate in the evaluation process.

I found unexpected outcomes for contributions where though a submitter may have
their pull request rejected, the core team still fulfilled the technical goals of the submitter
in some other way. I also found that the submitter’s level of prior interaction on the project
changed how core and audience members interacted with the submitter during discussions
around contributions.

The findings of this study inform the design of notification and discussion mechanisms
for large-scale collaboration where a wide variety of stakeholders participate in evalua-
tion discussions around code contributions. Findings may also inform how distributed
developers negotiate software requirements during code contribution evaluation discus-
sions. This study also suggests a number of potentially useful political signals, such as
signals indicating the influence of users or downstream dependencies. Future work should
investigate how different kinds of event notification mechanisms influence participation
in contribution discussions. Ideally, all legitimate interests should be able to enter the
discussion, with notification mechanisms alerting third party stakeholders of relevant dis-
cussions. Since submitters also rally support as an effective tactic, more systematic ways
of showing support for a change, and perhaps helping to prioritize it relative to other pos-
sible changes might also prove useful. Finding ways to identify when conflict resolution
mechanisms might also facilitate better and less disruptive ways to handle difficult de-
cisions. Finally, since social relationships seem to have an impact, various mechanisms
for visualizing these connections or making them more salient might also impact these
negotiations.

75

76

Chapter 6

Signals for Evaluating Projects for Use
or Contribution

Chapter Summary

Evaluating projects before making the decision to use or contribute is a key coordination
task that open source software developers regularly perform. Transparent development en-
vironments provide information about projects and users that assists developers in making
more informed evaluation decisions. Identifying the information that developers use as
signals to evaluate projects may inform the design of tools and environments and provide
insight into what qualities of projects developers value when deciding to use or contribute
to a project. This chapter describes an exploratory sequential mixed methods study of the
signals and qualities developers use towards the tasks of deciding to use or contribute to
a project. The first phase is a qualitative exploratory interview study of signal usage by
developers on GitHub. The second phase is a quantitative validation analysis that uses a
larger sample of developer and project data from GitHub to determine which of the signals
that interviewees perceive as useful, and that signaling theory suggests as informative, are
actually used by developers at large. The study finds that developers evaluating projects
for usage used signals related to working dynamics such as commit volume to indicate
liveliness and personal utility such as code churn to indicate maturity. For evaluating
projects for contribution, developers used signals for working dynamics by inferring re-
sponsiveness via time to close pull requests and personal utility through the accessibility
of contributions via issues. These findings suggest that costlier signals resulting from de-
velopment work or extra work by the core team are potentially more useful to developers.
The usefulness of low-cost community signals such as stars count is an open question and

77

is examined in more detail in the Chapter 7.

The widespread availability of reusable open source libraries and frameworks greatly in-
creases the efficiency of creating software systems at the cost of having to evaluate these
software projects [Ajila and Wu, 2007]. Implementing a wide range of functionality is
often as simple as establishing dependencies with the right projects. Especially with the
popularity of package managers such as Ruby’s RubyGems and node.js’s npm, creating
complex software systems may be as easy as running a few commands to install libraries
and writing some “glue code” that ties together these libraries. However, for many devel-
opers the choice of establishing a dependency with a project is a common yet potentially
impactful coordination decision. Choosing the wrong project may lead to future difficul-
ties or extra work. For example, using unstable or error-prone dependencies may result in
propagated errors that are difficult to correct. Developers then must evaluate potential de-
pendencies in order to mitigate future problems. This evaluation process, while common
for developers, is relatively unknown and understanding this process in more detail may
inform both the design of future tools and environments and software project management.

Transparent development environments make visible information that assists develop-
ers in evaluating projects and provides opportunities to better understand the evaluation
process. Transparent environments make visible development activity such as bug re-
ports and discussions but also make explicit relationships between developers and projects.
These relationships link together information such as the activities of the developers who
work on projects, the projects these developers work on, and so on [Dabbish et al., 2012].
This additional information is also an opportunity to examine the evaluation process in
more detail. Transparent environments allow the study of previously unavailable archival
information about multiple aspects of software development. For example, the explicit
relationships that transparent environments establish may indicate social aspects of de-
velopment. Determining what information developers specifically use to evaluate projects
may in turn give insights into what aspects of development are important for the evaluation
process.

I use signaling theory as a lens to understand how developers use information in their
environment. Signals are observable pieces of information that indicate some unobserv-
able quality of the person or entity that generated the signal [Connelly et al., 2010]. Signal-
ing theory is a rich lens to understand how developers make inferences from information
to inform decisions. Transparency offers a new class of “honest” signals that are derived
from development work rather than intentionally broadcast by the signaler. For example,

78

developers evaluating other developers for recruitment use commits to high-status projects
as a signal to infer the unobservable quality of coding ability [Dabbish et al., 2012]. Un-
derstanding what pieces of information are useful signals for developers may inform how
future transparent environments avoid overwhelming developers with information. A risk
of transparent environments is information overload, creating challenges for developers in
these environments to manage and interpret their information feeds [Singer et al., 2014,
Storey et al., 2014]. For some developers, the high cost of managing and interpreting ac-
tivity traces is so high that it leads to them not using transparency features [Singer et al.,
2014]. Discovering and validating useful signals would also inform the design of tools
and development environments that are able to visualize exactly the information develop-
ers need to inform decisions that arise during software development.

To determine how developers use information in their environment as signals, I per-
formed an exploratory sequential mixed methods study [Creswell, 2013]. As the usage of
transparency information by developers is not well-understood, the first phase is a qualita-
tive exploratory interview study that explores perceptions of what signals are useful dur-
ing development-related tasks. Signaling theory gives guidance to which signals should
be more informative. In some cases, interviewee’s perceptions are contrary to what the-
ory suggests. I then test interviewee’s perceptions of usefulness against theory through the
second phase, a quantitative validation study. By using a dataset of developers and projects
on GitHub, I determine how strongly individual signals relate with decision outcomes.

The findings for this study suggest that signals for working dynamics and personal util-
ity are more useful for informing developers’ usage or contribution decisions. Signaling
theory suggests that the usefulness of these signals lies in the relatively high cost in gen-
erating these signals. For example, commit volume is a signal for project liveliness that is
highly associated with project usage and is a signal that cannot be generated without devel-
opers in a project actually performing numerous commits. In contrast, community signals
such as stars count have relatively low costs and the signaling fit is an open question. This
concept of fit, whether a signal actually indicates an unobservable quality, is explored for
the signal of stars in Chapter 7. This chapter also provides a potentially useful method-
ology for eliciting and validating signals for a specific coordination task in transparent
environments. Future work may examine whether a similar mixed-methods approach can
be applied to other tasks, domains, or environments. For example, this study’s method-
ology could potentially be used to understand what signals writers use when evaluating
prose and the results of such a study may feed back into designing collaborative writing
tools.

In the following sections I consider related research on open source software projects,
transparent development environments, and signaling theory to motivate the research ques-

79

tions for this study, describe the exploratory interview study of GitHub developers, de-
scribe the quantitative validation study that relates a set of signal metrics with outcomes
of project-related tasks, and discuss implications of the findings.

6.1 Open Source Software and Signaling

I ground this work in prior literature in awareness in open source software and transparent
development environments. I also review concepts of signaling theory that are relevant for
this study. Informed by prior work, I develop research questions to further our understand-
ing of the information developers use to evaluate projects.

6.1.1 Awareness and Open Source Software

As open source software tends to require distributed software developers to coordinate
their efforts [Mockus et al., 2002], open source software developers seek out information
about their fellow developers in order to stay aware of their work activities. Gutwin et al.
[2004] found that developers in open source software projects sought awareness informa-
tion such as who is working on what part of the project from simple text communication
such as mailing lists and text chat to stay aware of the work of other developers on the
project. They found that work awareness information from these simple communication
tools was enough to satisfy most project coordination needs. Newcomer developers to an
open source software project also needed to seek similar awareness information from text
communication tools [Ducheneaut, 2005] in order to “recruit” core project developers to-
wards supporting their contributions. Rigby and Storey [2011] found in their study of peer
review on open source software projects that developers on a project used similar work
awareness information from the mailing list in order to select code contributions to review.
In their study, developers also suffered from “too much awareness” and needed filtering
techniques to manage the information overload.

6.1.2 Signal Usage in Transparent Development Environments

While open source developers use awareness information to coordinate efforts with other
developers within a project, transparent development environments provide new actionable
information regarding outside developers and projects.

80

Previous qualitative research on GitHub, a popular transparent development environ-
ment, shows that developers make a variety of subtle inferences about other developers and
projects using signals from the environment. Dabbish et al. [2012] found that open source
software developers use these inferences in practical ways, for instance to help manage
external contributions to projects, discover project user needs, and recruit developers. De-
velopers in this study used signals of community attention to a project or event in the feed
to determine if a project was worth using or a discussion was worth reading. However,
developers also struggle to manage information in their environment. Singer et al. [2014]
in their study of how open source developers use Twitter found that developers dealt with
challenges in how to manage consuming large amounts of information through developing
strategies such as filtering tweets and curating their following networks.

As examples of signals derived from transparency that developers used, Marlow et al.
[2013] found that GitHub developers used information in the environment in order to form
impressions of users and projects. Pham et al. [2013] found that project managers used
signals for quality and risk when assessing how much testing a contribution requires, such
as the size of the change, the type of contribution, and how much they trusted the sub-
mitter. Chapter chapter4 about signals for evaluating contributions suggests that project
managers use social and technical information about contributions and their submitters,
such as following status and comments on contributions, as signals when evaluating sub-
mitted contributions [Tsay et al., 2014a].

6.1.3 Signaling Theory as a Theoretical Lens

Signaling theory is a useful lens for understanding how information made visible by trans-
parent environments is used for evaluating projects. Signals are observable pieces of
information that are used by a receiver to infer an unobservable quality of the signaler.
Transparent environments enable a new class of potentially useful, unintentional signals
that are derived from observing work. While the majority of signals that are studied in
literature are positive, intentional signals, unintentional signals still convey important in-
formation [Janney and Folta, 2003]. For positive, intentional signals, the incentive to
signal is to affect the decision of the receiver [Spence, 1973]. In transparency, some useful
signals are unintentional and a product of development work, merely performing the task
produces the signal. Therefore the incentive of producing such a signal becomes aligned
with performing the development task.

Signaling theory offers key constructs [Connelly et al., 2010] describing the relation-
ship between signal and signaler. Signals vary in their cost to produce, often with an
assumption that signalers possessing the unobservable quality are better suited to absorb

81

these costs than others. Signals may also vary in fit, the correlation between the signal and
the unobservable quality it indicates. A related concept is honesty, the extent to which the
signaler actually possess the signaled quality. For example, a resume listing involvement
in an impressive-sounding project may not reflect meaningful skill for a particular task. If
listing impressive-sounding projects is not correlated to the needed skill, then that signal
has a poor fit. If such projects are correlated to skill but the candidate in question does not
possess that quality, the signaler is dishonest.

In online communities such as open source software projects, participants draw signals
from the environment to infer qualities of both people and projects. Donath [2007] finds
rich patterns of signaling and deception in online communities to infer member identities.
In GitHub, information in the environment such as activity traces and past discussions
are used as signals to infer qualities about developers such as coding ability and personal-
ity [Marlow et al., 2013]. Activity traces are also used as signals for project properties such
as quality, collaborative environment, and member commitment [Dabbish et al., 2012].
Outside of GitHub, Scaffidi et al. [2010] found in their study that users use signals of pre-
vious successful authorship and mass appeal for web macro scripts to decide whether to
reuse a script.

6.1.4 Research Questions Development

While previous research on GitHub has established that developers use information in their
environment to make useful inferences, we do not yet have a systematic understanding of
the relationship between the information developers use as signals, the unobservable qual-
ities they infer from these signals, or how the inferences inform decisions. The first step
towards this systematic understanding is to use signaling theory as a lens to identify unob-
servable qualities and signals that are useful to developers for informing tasks. Through an
exploratory stage of interviews with developers on GitHub (subsection 6.2.2), I discovered
that a key task developers perform is to evaluate software projects for usage as a depen-
dency or for contributing to the project. This study focuses on these two project-related
tasks and the qualities that developers need to infer about projects in order to perform these
tasks.

RQ1: What kinds of qualities do developers infer when using signals to decide whether
to use a project as a dependency or submit a contribution to a project?

Qualitatively identifying signals that developers perceive as useful also provides the oppor-
tunity to quantitatively compare these perceptions against the amount of usage and contri-
butions a software project actually receives. If qualitative analysis suggests that developers

82

use signal A to make a decision B regarding a project, then there should be a statistical
association between the presence of signal A and the outcome of decision B. Comparing
the strength of statistical associations (see Table 6.6 and Table 6.7) to task outcomes would
suggest which signals are actually used by developers for the task in question. There also
may be signals that interviewees indicate but are not reflected in statistical associations.
Identifying these disparities may indicate signals that developers perceive as important but
are not actually used for informing decisions.

RQ2: What are the strengths of statistical associations of signals with the key decisions of
using and contributing?

6.2 Qualitative Exploratory Interview Study

In the first phase of the mixed methods study, I investigated the research questions qual-
itatively by interviewing a sample of developers from the popular social coding software
hosting site GitHub. The goal of the interviews was to discover what specific signals de-
velopers used for two different software project-related tasks: (1) deciding whether to use
a project by incorporating it as a dependency, and (2) deciding whether to offer a code
contribution to a project. This section describes the interview study methodology and its
findings.

6.2.1 Methods

Data Collection

To investigate how developers make usage and contribution decisions, I conducted a series
of semi-structured interviews with 47 GitHub users. In order to gather a wide variety of
practices, I sampled users from the most popular projects in multiple programming lan-
guages on GitHub. From these projects, I sampled both peripheral developers and heavy
users with more than 80 “stars” on at least one project. Participants were solicited via
email, and interviews were conducted in person, via phone or Skype. Remote participants
shared their screen during the interview using Adobe Connect so users could demonstrate
their activities on the site. Participants were asked to walk through their last session on
GitHub, describing how they interpreted information displayed on the site as they reviewed
earlier work activities.

Interviews were performed in two stages: 1) an exploratory stage with 24 developers
that included questions about project management and how they used different GitHub

83

features in their work, and 2) a second stage with 23 developers focused on project-related
coordination decisions. These project-related decisions include deciding to form a de-
pendency with a project and sending pull requests or managing received pull requests.
Developers were asked to describe specific coordination instances such as pull requests
sent and decisions made leading up to and during these interactions.

Data Analysis

I applied a grounded theory approach [Corbin and Strauss, 2008] to analyze how develop-
ers make use of signals about projects while choosing to use or to contribute to projects. I
first identified 75 instances where participants reported performing these tasks. The anal-
ysis includes both stages of interviews, as the exploratory interviews include instances
of developers performing relevant tasks. For each instance, I identified the decision per-
formed, the project involved, what visible project information the developer looked at to
make the decision, and what unobservable quality about the project the developer inferred
based on this information. I then conducted open coding on a random sample of 50 of these
instances where examples were first grouped into the task performed then into categories
of inferences that were conceptually similar. This process revealed several categories of
unobservable qualities made about the software project in question such as liveliness, ease-
of-use, and community size. I used this first set of categories to code the remaining 25
interview excerpts which no longer revealed new interactions not captured in the exist-
ing set of categories, indicating theoretical saturation [Corbin and Strauss, 2008]. I then
performed axial coding, identifying three overarching categories of unobservable qualities
that developers inferred: working dynamics, personal utility and community evaluation.
Codes and axial codes are summarized in Table 6.1.

6.2.2 Results

Interviewed developers used information broadcast by both projects and members of the
projects as signals to infer different unobservable qualities about software projects. Through
the first stage of interviews, I discovered and chose to focus on the key tasks of using and
contributing to projects. The focused interviews found that across the two tasks, develop-
ers inferred certain types of unobservable qualities. I describe the qualities of projects that
interviewed developers infer to inform the tasks of using and contributing to projects and
the signals used to infer these qualities.

84

Exploratory Stage Interviews

By exploring in the first stage of interviews how developers make use of transparency fea-
tures in GitHub, I discovered two key project-related decisions to focus on: using a project
as a dependency and contributing to a project. During this stage, I discovered that develop-
ers used information in their environment to assist in a number of coordination tasks (see
Dabbish et al. [2012] for more detail on the methods and findings from these initial inter-
views) such as evaluating projects for use, contributing to projects, recruiting developers,
identifying user needs, managing code contributions, and managing dependencies with
other projects. I chose to focus on the tasks of evaluating projects to use by incorporating
as a dependency (such as including a library) and contributing code to a project (usually
by pull request). I choose to focus on these tasks because participants identified them as
important coordination-related decisions. Moreover, how developers evaluate projects for
usage or contribution is not well understood. Similar tasks such as managing code contri-
butions [Tsay et al., 2014a] or recruiting developers [Marlow et al., 2013] in transparent
environments have been well-studied. The current study is an opportunity to both learn
how developers use information in transparent environments and how developers evaluate
projects.

Types of Unobservable Qualities of Software Projects

Across the software development tasks of using and contributing to software projects, I
found that developers used signals to infer three general types of unobservable qualities
about projects. The types of qualities are summarized in Table 6.2. These three types of
unobservable qualities correspond to axial codes developed during the coding process and
answer the first research question: What kinds of unobservable qualities do developers
infer when using signals to perform tasks?

Project working dynamics - Developers used signals to make inferences about the project’s
working style and direction. These inferences include how internal activity happens, such
as development by core members, and reactions to external activity, such as core members
responding to outside contributions such as pull requests. The signals often used were
work artifacts and activity traces from the project such as the commit log.

Personal utility - Developers used signals to estimate their personal utility from investing
time and effort into using or participating in a project. These inferences also include
estimating the cost of involvement. Developers made these inferences to determine if the
benefits of participating outweigh the costs. The signals developers often used were both
work artifacts and the visible “extra work” [Trainer et al., 2015] core developers perform

85

to enhance a project’s accessibility.

Community evaluation - Developers used signals to evaluate the community around a
software project. Often these inferences allowed developers to determine the degree of
community support or participation in the project. The signals developers often used were
personal social networks or the networks of project members, both of which are made
visible and explicit in GitHub.

Table 6.1: Interview Study Summary

Task
Type of Unobservable
Quality (axial codes) Inferred Unobservable Quality (codes)

Usage
Project Dynamics Project Activity and Liveliness
Personal Utility Technical Utility
Community Evaluation Community Interest

Contribution
Project Dynamics Responsiveness of Core Team
Personal Utility Accessible Contribution Opportunity
Community Evaluation Community Benefit

Table 6.2: Unobservable Quality Types Summary
Unobservable Quality Type Definition

Project Working Dynamics Project working style and direction
Personal Utility Potential cost and benefit from choosing project
Community Evaluation Community around project

Signals for Using Projects

Relevant instances (out of 75) of developers performing tasks are included as (In) to help
the reader understand the characteristics of the sample. I make no claims, of course, that
these numbers are representative of the larger population. I also describe the signals in
terms of signaling theory constructs [Connelly et al., 2010] of intentionality, honesty, cost,
and fit which are described in more detail in subsection 6.1.3.

Dynamics: Project Activity and Liveliness

Developers making the decision to use a project inferred the unobservable quality of a
project’s working dynamics in order to determine the degree of future support and devel-
opment. Many projects on GitHub, as on other hosting services, are ”dead” projects with

86

little to no chance for active development by the original core developers [Kalliamvakou
et al., 2014]. Developers used a project’s commit activity as a signal for the project’s
liveliness (I48, I50, I55, I57, I62) in that projects with more commits were seen as more
desirably lively projects with active development teams who are more likely to support
the project in the future. Developers also used more nuanced signals such as the volume,
velocity, and recency of a project’s commits (I50, I55, I57) and the size and diversity of the
project’s core (I50) to infer the degree of active development by the project’s core team.

“Usually, it’s part of my research for, like, what is a good C library, I will go look at the
commit history and see if it’s actually actively being worked on [...] are there changes
going in? Like, how recent are changes? Like, weeks, months, years? Another kind
of metric is what’s the mix of [developers]? Is it all one person? Is it all people in a
single organization? Is it a wide group of people? Kind of the wider the net there’s more
likely any issue that I might run into is actually– has already been identified and the patch
probably got [done by] somebody else.” (I50)

Signals that developers used to infer project dynamics such as commit activity and
size of the core team are unintentional signals that are products of transparency. As these
signals are used to infer qualities of how the core team works, signals derived from the
core team and their development activities are the most direct indicators. The directness
of these signals should result in a high fit to the qualities indicated. These signals are
also expected to have high honesty and cost, as generating these signals is a product of
development work rather than intentionally broadcast.

Utility: Technical Utility

Developers inferred the potential costs and benefits of using a forming a dependency with
a project in order to avoid future problems or wasted effort. Developers used commit
activity to infer a project’s stability through its maturity (I61, I65). Developers perceived
mature projects as having more code contributions that are smaller in scope than large
feature implementations, or colloquially, a lower “code churn” (I65). Mature projects also
tended to have formal numbered releases compared to newer projects (I61).

Developers used signals from the project to gauge its ease-of-use and potential cost
to integrate. Developers used the existence of a project’s README file that documents a
GitHub project as a signal that the project is easy for other developers to use (I63). Simi-
larly, developers used signals such as the number of required upstream dependencies and
coding style to infer the difficulty of using a project (I54, I72). Developers also preferred
to use GitHub projects that are also in official package managers such as RubyGems for
Ruby (I63) as they tended to be much easier to install compared to installing from source
files on GitHub.

87

“If there’s a choice, then I go with whichever one is nicest for me to use, as a programmer,
so if [...] there’s one project, and you need to set up [multiple things] to actually use it,
versus this project where you include this in your thing, and then you do the thing that
makes sense, and it all just magically works. I’m like, well, I’m going to use the second
one.” (I72)

Signals developers used to infer personal utility such as code churn are unintentional
while other signals such as the README are intentional signals by the core team. As
mentioned earlier, unintentional signals made visible by transparency are expected to have
high honesty, cost, and fit due to how closely tied these signals are to development work.
Intentional signals produced by the core team are cases where core members are perform-
ing extra work [Trainer et al., 2015], making these signals costly. Costly signals tend to
also be honest and with a high fit, assuming that signalers who possess the quality in ques-
tion are better suited to absorb the costs of producing the signal [Spence, 1973]. However
whether this assumption holds is still an open question. For example, whether a project is
easy to use may have no connection with the costs of creating a useful README file.

Community: Community Interest

As open source software projects often rely on a large user community for technical sup-
port [Lakhani and von Hippel, 2003], system testing, and problem reporting [Mockus
et al., 2002], developers used signals about the size and level of interest of a project’s
community to infer the level of support should a problem with the project arise. Develop-
ers used a project’s watcher/star and fork count to infer how many other developers were
interested in the particular project (I64, I66). For developers deciding whether to use a
certain project, these metrics for a project’s popularity were signals for the project’s over-
all quality. Developers tended to choose projects with interested communities as these
projects also tended to be better supported by their users as well as tended to stay alive
longer (I66). Developers also used information about a project’s commit activity to infer
the degree of interest of the project’s development community (I53, I62). For example, a
project with a single developer has a very different commit log as well as ability to support
its users than a project with a wide range of core developers.

”You know and it shows the last activity, the number of watchers, the number of forks
I think. The number of people watching a project or people interested in the project,
obviously it’s a better project than versus something that has no one else interested in it.”
(I64)

Signals developers used to infer projects’ community such as stars count are a different
type of unintentional signal than signals related to development work. Signals such as
stars and forks count are an aggregation of the activities of users of the GitHub ecosystem

88

rather than project activities, similar to online reviews and ratings. Because these user-
aggregation signals are generated by users rather than the core team, such signals should
have high honesty [Flanagin and Metzger, 2013]. The cost of starring or forking a project
is also extremely low, involving little more than the click of a button. It is an open question
of the fit of these signals to qualities indicated.

Signals for Contributing to Projects

Dynamics: Responsiveness of Core Team

As contributions to a project in GitHub usually require the evaluation of the core project
team, developers making code contributions inferred the responsiveness of the project’s
core team towards new contributions. Potential contributors looked at how other contri-
butions were managed in a project as signals for the responsiveness of the project’s core
team. Pull requests that have not been closed by the core team were common signals
for a lack of responsiveness (I37, I41, I47). Developers held expectations that responsive
project core teams reviewed contributions and then close the pull request, so projects with
open pull requests were seen as unresponsive.

”I can see, and so he just didn’t even accept this pull request, and just kind of sitting there,
and now I haven’t talked to this dude, and I don’t know if this project is moving forward,
but since he doesn’t care, I decided I didn’t care, and I’m working on other things now.”
(I47)

Similarly, developers also used comments on pull requests from the core team as a
signal of responsiveness (I40, I45). In particular, developers expected the core team to
indicate some degree of interest; pull requests without at least one comment signaled an
unresponsive core team (I40). Some core teams would be extremely responsive in order
to elicit contributions from their communities (I39, I46). Expectations for responsiveness
were also mediated by the size of the project in that larger projects were expected to take
longer to respond to contributions than smaller projects (I41, I47).

Signals that developers used to infer the work dynamics projects have towards contri-
butions were unintentional and made possible through transparency. As discussed earlier,
due to their close relation to the work performed by the core team towards evaluating con-
tributions, signals such as time to close pull requests and comments are expected to have
high honesty, cost, and fit.

Utility: Accessible Contribution Opportunities

Developers looking for contribution opportunities to improve their skills [Lakhani and
von Hippel, 2003] or potentially join a project [von Krogh et al., 2003] made inferences

89

about the potential cost of contributing to a project. In particular, these developers used
signals for how accessible a project is towards contributions through visible contribution
opportunities. Some developers identified projects that were mature enough to easily offer
additional features through outside contributions (I40, I41, I42, I43) as immature projects
may require additional effort to contribute to (I43). In these cases, the offered contributions
tended to widen a project’s feature set to make the project “more applicable with more
people” (I43). For example, a mature database connector might get support for more
database types from outside contributors (I42).

To find clear opportunities for contribution, developers looked through the project’s
issue tracker (I38) or through ongoing discussions (I73) or on the project wiki (I75). In
other cases, core members to projects maintained a list of contribution opportunities for
newcomer contributors (I74, I75, I76). In one case, core members marked open issues with
labels that indicate contribution opportunities such as “easy fix” or “needs code” (I76).

“When I log in I have a newsfeed and I’m checking [...] any ongoing comments or dis-
cussion regarding Rails that’s going on. Mainly what I’m looking for there, certainly if
there’s some low-hanging fruit that I can contribute to” (I73)

Signals that developers used to infer the accessibility to contributing to a project were both
unintentional in the case of qualities such as maturity and intentional by the core team in
qualities such as clear contribution opportunities. As discussed earlier, signals tied to
development work are expected to have high honesty, cost, and fit. Also discussed earlier,
signals intentionally emitted by the core team to indicate easy opportunities to contribute
involve extra work [Trainer et al., 2015] and are expected to be honest, costly, and high fit
only if the costs align with the quality in question.

Community: Community Benefit

Before making a contribution to a project, developers made inferences about the potential
impact their change would have on the project’s community. Due to the fork and pull
request model that GitHub provides, developers first implement their code changes on a
personal copy of a particular repository (fork), then decide whether to keep this change
solely on their personal fork or to offer the change back to the original repository via pull
request. If a particular change is very specific to a personal use case, then the change
tended to be left in the personal fork. However, if the change could potentially benefit
other people, then the developer shared the change with the original repository by mak-
ing a contribution (I36). The code changes contributed tended to generalize the project’s
functionality in order to make the project ”more applicable with more people” (I43).

“It really depends on if it’s a bug that I know is going to affect other people or if it’s
something that’s just very specific to the way we’re doing it and it’s probably not going to

90

be very helpful for anyone else.” (I36)

Signals that developers used to infer how a project’s community are based on their per-
ception of the project’s user base. As discussed earlier, user-generated signals are expected
to have high honesty with a low cost to the user and an unknown fit.

Results Overview

As this study follows an exploratory sequential mixed methods study approach [Creswell,
2013], the goal of the first phase interview study is to explore how developers use in-
formation to infer unobservable qualities about projects when performing project-related
tasks. The interview study finds that developers make inferences about three types of
unobservable qualities (RQ1): the project working dynamics, personal utility, and com-
munity evaluation. Interviewees identified signals that they use to infer these qualities for
each task.

While interviewed developers identify signals that they individually used to inform
tasks of using or contributing to projects, the signals that interviewees perceive as useful
may not actually be used by developers within the ecosystem of GitHub. Signaling theory
also gives insight into what kinds of signals may potentially be more or less useful. The
constructs of honesty, cost, and fit are related to each other [Connelly et al., 2010] but the
usefulness of a signal to a receiver is a function of both honesty and fit [Davila et al., 2003].
High costs are often related to both high honesty and fit and therefore usefulness [Spence,
1973], assuming that signalers possessing the quality in question are better positioned to
absorb the cost of producing a high cost signal. For example, if wearing expensive jew-
elry is a high cost signal for wealth, then signalers not possessing the quality of wealth
will be unable to produce that signal. In this case, the high costs should make deceptive
signaling difficult, allowing for higher honesty. The fit should also be high, as the signal
is only producible by those possessing the quality in question. For example, obtaining a
certification is a signal with a high cost. Signalers who are skilled should have a consid-
erably easier time obtaining the certification than those who are not. Fit and honesty are
related but distinct concepts in that fit describes the signal’s relationship with the quality it
indicates. Honesty describes the signaler and their relationship to the unobservable quality
in question.

The types of unobservable qualities also correspond with three types of signals: unin-
tentional signals derived from transparency, intentional signals derived from extra work by
the core team, and community signals derived from aggregate user actions. Each type of
signal is associated with its own costs, fit, and honesty which is summarized in Table 6.3.

91

Signaling theory suggests a relationship between cost and usefulness that we expect to
observe in the signals identified by interviewees. High cost signals such as extra work by
core members should be more useful than low cost signals such as stars count. Similarly,
we expect signals with a clearly high fit and honesty to be more useful than signals where
the fit is unknown. This study provides the opportunity to quantitatively compare the
perceptions of usefulness among interviewed developers to what signaling theory suggests
as useful.

Table 6.3: Summary of Signal Types and Characteristics
Signal Type Example Cost Fit Honesty

Unintentional Commit Activity High High High
Extra Work README High High* High*
Community Stars Count Low Unknown High
*if cost is aligned with quality

The following section describes the second phase of the study, which is a quantitative
validation study. If developers on GitHub use signals and make decisions in the way our
interviewees described, we should be able to observe a number of statistical associations
with decision outcomes in the repository data. For example, if developers care about a
project’s responsiveness when deciding whether to contribute code to it, and they use the
time to close pull requests as a signal of responsiveness, then we should observe a negative
correlation between time to close and the number of pull requests submitted to a project
(controlling for other factors influencing the number of pull requests submitted). By seeing
if these associations exist, are statistically significant, and have meaningful strength, I can
identify which of the signals in our qualitative study that interviewees perceived as useful
are actually used. I can also compare these results against the types of signals that signaling
theory suggests are more or less useful (RQ2).

6.3 Quantitative Validation Analysis

In the second phase of the study, I performed a quantitative validation analysis to in-
vestigate the relationship between metrics representing signals used by developers in our
exploratory interview study and project task outcomes. The task outcomes in the quanti-
tative phase are related to the two work decisions of interest investigated in the qualitative
phase: 1) deciding to use a project by incorporating it as a dependency and 2) deciding to
offer a code contribution to a project. In this section, I describe the creation of the dataset,

92

regression analysis, and the findings from the analysis.

6.3.1 Methods

Data Collection

I created a dataset of software projects on GitHub and the users and activities associ-
ated with each project through sampling for active, collaborative projects on GitHub. As
Creswell [2013] points out, it is essential for an exploratory mixed methods study that dif-
ferent participants be used for the qualitative and quantitative phases. Therefore I restricted
the project sample to Ruby gems, self-contained libraries for the Ruby programming lan-
guage. I chose to focus on Ruby gems as Ruby is one of the most popular programming
languages on GitHub (third most popular at the time of writing) and users develop Ruby
gems for a wide variety of purposes, ranging from web application frameworks such as
Ruby on Rails to command line interfaces such as Thor. Restricting the project sample
to Ruby gems allows for computing dependencies in a straightforward manner as well as
eliminating variation due to differences in programming languages while still representing
a wide variety of types of software projects.

The dataset comprised of information gathered from the GitHub and RubyGems Ap-
plication Programmer Interface (API). I used GitHub projects as the unit of analysis. First,
I drew a sample of repositories from the GitHub Archive dataset1 on April 21, 2013 that
excluded forks (to avoid double-counting), repositories without at least one event of ac-
tivity within one week prior to data collection (avoid inactive projects), repositories that
did not use the issue tracker (issues are used as data), and non-Ruby projects. I further re-
fined the selection to remove non-collaborative projects (projects without at least one pull
request and three unique contributors) and projects that were not Ruby gems or registered
on the RubyGems2 hosting service. After this second phase of filtering, the final sample
included 1,862 Ruby gem projects.

Outcome Measures

I selected two outcome measures to correspond with the two project-related tasks: using
and contributing to projects. Table 6.4 describes all measures used in the analysis.

Using – Dependent Projects: This measure indicates the number of downstream projects

1https://www.githubarchive.org/
2https://rubygems.org/

93

Table 6.4: Descriptives of Project Evaluation Measures (Pre-transformation)
Type Metric mean median stdev skew

Outcome
Downstream Dependencies 57.73 1 636.74 24.58
Pull Requests 42.89 13 118.45 11.6

Control
Project Age (days) 824.04 719.37 571.71 0.71
Project Size (kb) 3946.53 827 15246.38 11.04
Project Contributors 10.96 7 9.34 1.12

Signals

Commit Velocity (commits/day) 0.52 0.21 1.39 17.58
Commit Volume 89.99 37 192.63 9.13
Project Versions 26.48 16 37.19 5.36
Recent Code Churn (lines/commit) 70.49 9.67 733.28 22.77
Upstream Dependencies 6.02 5 5.12 1.75
Stars 307.72 46 928.45 10.97
Time to Close Pull Request (days) 19.35 6.23 45 9.4
Project Issues 64.06 10 416.87 30.12

that have established the given project as a dependency. I use this as a measure of actual
project usage as opposed to indirect usage metrics such as download count.

Contributing – Pull requests: This measure indicates the total number of pull requests
submitted to a given project, including open and closed pull requests. Both accepted and
rejected closed pull requests are included in this measure, as both reflect decisions to
contribute code to a project.

Control Measures

I developed a set of control measures to ensure that observed associations between project
characteristics were not due to correlations with these control variables that may influence
our dependent variables. As I have chosen to restrict the sample to Ruby gems, the sample
also inherently controls for programming language.

Project Age - Age of the project is used as a way to control for temporal effects in the
dataset. Projects that have existed for longer may have more users or contributions than
newer projects simply because they have had more time to attract developers.

Project Size - Server-side size of the project repository in kilobytes is used as a way to
control for differences in breadth of project functionality.

94

Number of Contributors - This control measure is the total count of contributors, or de-
velopers who have successfully landed a commit to a given repository. I used this measure
to control for the size of the project’s core team.

Signal Measures

I developed operationalized measures for signals identified in the qualitative phase as pre-
dictor variables for the statistical models. The signal measures are divided into two statis-
tical models: Using and Contributing and further divided into the three types of unobserv-
able qualities: Project Dynamics, Personal Utility, and Community Evaluation. For each
measure, I developed a hypothesis for the measure’s relationship with the outcome based
on interview findings. Hypotheses are summarized in Table 6.5.

Using Model measures

Project working dynamics – The first phase found that when interviewees evaluated
projects for usage, they made inferences about the liveliness of the project in order to
find projects with active development. I develop two metrics for project liveliness that
represent two dimensions of a project’s commit activity. The first metric is the volume
of a project’s commits as the sum total of commits in the project. The second metric is
the velocity of a project’s commits as the average number of commits per day for the past
year of commit activity. For both metrics of project liveliness, I expect that the associa-
tion with usage is positive; a project with a higher volume and/or velocity should be more
active or “alive” and therefore have more usage as represented by number of downstream
dependencies (H1, H2).

H1: Volume of commits will be positively associated with number of users.

H2: Velocity of commits will be positively associated with number of users.

Personal utility – When interviewees evaluated projects for usage, they made inferences
regarding the potential cost of creating a dependency to a project in terms of both maturity
and ease-of-use. For maturity, I use two measures to represent different dimensions of
project stability. The first metric is a count of the number of released versions available
for a project. The second metric is the recent code churn for a project as represented by the
average number of lines changed per commit for the most recent week of commit activity.
I expect that a project with more versions should be more mature and should have a more
usage (H3). I expect that projects with larger recent commits should be less mature and
should have less usage (H4).

For ease-of-use, I use the count of required upstream dependencies for a given project
according to the RubyGems hosting service. I expect that a project that requires more

95

upstream dependencies should be harder to use and should have less usage (H5).

H3: Number of released versions will be positively associated with number of users.

H4: Recent code churn will be negatively associated with number of users.

H5: Number of upstream dependencies will be negatively associated with number of users.

Community evaluation – The first phase also found that interviewees inferred the size of
the project’s community in order to gauge the potential for support in using the project. I
use number of stars for a given project as a metric for a project’s community size. I expect
that a project with more stars should have more usage (H6).

H6: Number of stars will be positively associated with number of users.

Contributing Model measures

Project working dynamics – The first phase found that when interviewees made the de-
cision whether to contribute to a project, they made inferences about how responsive the
project core team would be towards their potential contribution. I develop a metric for
responsiveness as the average time to close pull requests for a given project. I expect
that a project that takes longer to close pull requests should have fewer contributions as
represented by the number of pull requests a project receives (H7).

H7: Average time to close pull requests will be negatively associated with number of pull
requests.

Personal utility – The first phase found that interviewees inferred the accessibility for
making contributions to a given project. I use both the number of versions and the number
of issues in a project as metrics for these accessible contribution opportunities. Number
of versions is used as a metric for a project’s maturity in that more mature projects were
easier to offer contributions to. Number of issues is used as a metric as I found that
developers focused on the project’s issue tracker in order to find these opportunities. For
both measures, I expect the association with contributions to be positive; a project with
more versions and/or issues should be more accessible to contributions and therefore have
more contributions (H8, H9).

H8: Number of released versions will be positively associated with number of pull re-
quests.

H9: Number of issues will be positively associated with number of pull requests.

Community evaluation – The first phase also found that interviewees inferred the poten-
tial impact their contribution would have on the project’s community. I create two metrics
for potential impact in a particular project. The first is the number of stars for a project
as an indication of the users interested in a particular project. The second is the number

96

of downstream dependencies for a project as an indication of the user population for a
project. I expect both of these metrics to have a positive association with contributions;
a project with more stars and/or downstream dependencies should have a higher potential
impact and more contributions (H10, H11).

H10: Number of stars will be positively associated with number of pull requests.

H11: Number of downstream dependencies will be positively associated with number of
pull requests.

Table 6.5: Quantitative Hypotheses for Project Evaluation Signals

Model
Unobservable
Quality Inference Metric Hypothesis

Usage

Project
Dynamics

Project Liveliness
Commit Volume H1: Positive
Commit Velocity H2: Positive

Personal
Utility

Project Maturity Project Versions H3: Positive
Recent Code Churn H4: Negative

Ease-of-use Upstream Dependencies H5: Negative

Community
Evaluation

Community Interest Stars H6: Positive

Contri-

bution

Project Dy-
namics

Responsiveness Time to Close H7: Negative

Personal
Utility

Accessible Op-
portunities

Project Versions H8: Positive
Project Issues H9: Positive

Community
Evaluation

Community Benefit Stars H10: Positive
Downstream Dependencies H11: Positive

Data Analysis

I created separate negative binomial regression models for the Using and Contributing
outcome measures for analysis and comparison. I elected to use negative binomial re-
gression, as the criterion variables were based on counts, and therefore highly skewed.
Negative binomial regression is well suited for outcomes based on counts, especially in
the presence of overdispersion such as in this dataset [Jewell and Hubbard, 2010]. As the
predictor variables varied widely in scale, each of the non-binary predictor variables was
transformed using Poisson scaling (each variable is divided by its root mean square). This

97

allows for convenient comparisons between the relative magnitudes of each variable’s as-
sociation with the outcome variable. I performed a multicollinearity diagnostic for each
model. The variance inflation factor (VIF) analysis reported factors no higher than 2.56,
therefore none of the predictor or control measures were removed from the model due to
collinearity [O’brien, 2007].

I use a hierarchical modeling approach that first creates control models that use the
control variables of project age, project size, and contributor size to predict the outcome
variables for usage (downstream dependencies) and contributing (pull requests). Then I
create models that add the predictor variables of interest and compare against the control
model. For both the Using and Contributing models, I find evidence that the models with
predictor variables are a better fit than the control models. For the Using model, the Akaike
information criterion (AIC) decreases from 10828 for the control model to 10391 for the
predictor model. For the Contributing model, the AIC decreases from 15082 for the control
model to 15021 for the predictor model. In both cases, this indicates an effectively 0.0%
relative likelihood that the control model will perform better than the predictor model.

6.3.2 Results

I describe the results for the Using and Contributing regression models. The statistical
significance and incident rate ratios (IRR) is reported for each variable for both models.
An IRR greater than 1 indicates a positive relationship between a predictor and the out-
come measure, while a ratio less than one indicates a negative relationship. Incident rate
ratios provide a convenient method for comparing the association between different mea-
sures and outcomes. Comparing associations answers the second research question: What
are the strengths of statistical associations of signals with the key decisions of using and
contributing?

Using Model

For the model of developers choosing to use projects, usage is predicted through the out-
come variable of number of downstream dependencies for a project. The results for the
Using model are summarized in Table 6.6.

For metrics representing project working dynamics, I find that both commit velocity
and volume are highly statistically significant. However, whereas commit volume is highly
positively associated with usage through number of downstream dependencies as expected
(H1), commit velocity is unexpectedly highly negatively associated with usage (H2). For

98

each standard deviation of volume, usage has an IRR of 15.97 or an expected 1496.7%
increase in downstream dependencies (7.8% per commit). On the other hand, velocity has
an IRR of 0.10 or an 89.52% decrease in usage per standard deviation (64.29% for each
commit per day).

For metrics representing personal utility signals, I find that number of versions, recent
code churn, and number of required upstream dependencies are all highly statistically sig-
nificant. The associations for each of these metrics also follow expectations for direction
(H3, H4, H5). Number of versions is highly positively associated with an IRR of 1.91 or an
expected 91.29% increase in usage by downstream dependencies per standard deviation of
versions (2.93% increase per version). Recent code churn is highly negatively associated
with an IRR of 0.34 or a 66.31% decrease in usage per standard deviation of recent code
churn (9.04% per 100 lines of code changed). Number of required upstream dependencies
is also highly negatively associated with an IRR of 0.54 or a 45.54% decrease in usage per
standard deviation of upstream dependencies (8.89% per upstream dependency).

Lastly, the metric representing community evaluation signals, number of stars, is sur-
prisingly not statistically significant (H6). Though the qualitative study and prior work [Dab-
bish et al., 2012] has found that developers report using a project’s number of stars as a
signal for community interest in a project, this result suggests that despite the popularity
of stars as a signal, developers in GitHub do not actually use stars to inform their usage
decisions.

Table 6.6: Usage Model Analysis Summary
Unobservable
Quality Inference Metric IRR

Hypothesis
Support?

Project
Dynamics

Project
Liveliness

Commit Volume 15.967*** H1: Support

Commit Velocity 0.105***
H2: No Support
(opposite)

Personal
Utility

Project
Maturity

Project Versions 1.913*** H3: Support
Recent Code Churn 0.337*** H4: Support

Ease-of-use Upstream Dependencies 0.545*** H5: Support

Community
Evaluation

Community
Interest

Stars 1.085 H6: No Support

Controls
Project Age 9.557***
Project Size 0.667***
Contributors 3.518***

99

Contributing Model

For the model of developers choosing to contribute to projects, contributions is predicted
through the outcome variable of total number of pull requests for a project. The results of
the Contributing model are summarized in Table 6.7.

For the metric representing project working dynamics, I find that time to close pull
requests is highly statistically significant. As expected, time to close pull requests is nega-
tively associated with contributions with an IRR of 0.90 or an expected 9.56% decrease in
contributions by a pull request per standard deviation of time to close pull requests (2.12%
per additional 10 days to close) (H7). This suggests that developers are in fact discouraged
to contribute to a project that fails to respond to a contribution in a timely manner.

For metrics representing personal utility, I find that number of versions and issues
are both highly statistically significant. The associations for both of these metrics also
follow our expectations for direction (H8, H9). Number of versions is positively associated
with contributions with an IRR of 1.19 or a 19.27% increase in contributions by a pull
request per standard deviation of versions (5.18% per 10 versions). Number of issues is
also positively associated with contributions with an IRR of 1.24 or a 23.69% increase
in contributions per standard deviation of issues (5.71% per 100 issues). These results
suggest that developers value accessibility for contribution opportunities through issues
and versions, perhaps more than working dynamics due to the increase of association
magnitude (9.56% vs. 19.27% or 23.69%).

Lastly, for metrics representing community evaluation, I find that number of stars has
a marginal statistical significance at a p-value of 0.057 whereas number of downstream
dependencies is surprisingly not significant (H10, H11). Number of stars is positively
associated with contributions with an IRR of 1.06 or a 6.26% increase in contributions per
standard deviation of stars (0.67% per 100 stars). The marginal statistical significance for
community evaluation suggests that either our measures are inappropriate approximations
for community impact or that developers do not value community impact when making
the decision to contribute.

6.4 Discussion

6.4.1 Evaluating Projects and Signal Fit

The combined results of the study suggest that work-related signals are more associated
with task outcomes of using or contributing to projects. The exploratory qualitative in-

100

Table 6.7: Contribution Model Analysis Summary
Unobservable
Quality Inference Metric IRR

Hypothesis
Support?

Project Dynamics Responsiveness Time to Close 0.904*** H7: Support

Personal Utility
Accessible
Opportunities

Project Versions 1.193*** H8: Support
Project Issues 1.237*** H9: Support

Community
Evaluation

Community
Benefit

Stars 1.063 H10: Marginal
Downstream De-
pendencies 0.988 H11: No Support

Controls
Project Age 0.871***
Project Size 1.299***
Contributors 3.979***

terview study identifies three broad types of unobservable qualities that developers infer
about projects: project working dynamics, personal utility, and project community evalua-
tion (RQ1). The signals indicating these qualities differ in terms of honesty, cost, and fit as
discussed in subsection 6.1.3. The validation quantitative study finds that project working
dynamics signals have the strongest relationship with usage and personal utility signals
have the strongest relationship with contributions. However, I also find in both models
that community evaluation signals were not well represented. This finding suggests that
signals indicating working dynamics or personal utility may have stronger relationships
to task outcomes than community evaluation (RQ2). This suggests that while developers
may perceive community signals as informative, in practice, these signals are not used in
informing tasks.

There are a number of possible explanations for the community evaluation signals
having no effect in the models. This may be due to selecting unrepresentative signals to
represent the signal type, or an inappropriate operationalization of the signal, or that the
community-generated signals used to indicate community evaluation have a low signal
fit [Connelly et al., 2010]. The first point seems unlikely as multiple interviewees men-
tioned using stars and forks to indicate qualities of the project’s community. This result is
also found in prior work of GitHub developers [Dabbish et al., 2012]. The second point
also seems unlikely as interviewees explicitly stated using the count of stars and forks for
a project as a signal. On GitHub, stars and forks count are highly visible for each project,
making their usage highly likely.

The last point, the lack of fit, is an explanation supported by theory. While the community-
generated nature of these signals implies that these signals are honest in that manipulating

101

these counts is difficult for project owners, these signals may have a low fit, not actually
indicating any community evaluation-related qualities regarding the project. Literature on
signaling theory finds that poor signal fit similarly results in poor correlation with out-
comes of interest, such as stock market response [Yan Zhang, 2009] or venture exit per-
formance [Busenitz et al., 2005]. One possible explanation offered by signaling theory for
why community-generated signals identified in this study have low fit is that the cost of
producing these signals is low, since the act of “starring” a GitHub project only requires
a user to click the “star” button on the project page. In contrast, signals made possible
via transparency such as commit activity often share signaling costs with the cost of per-
forming development work. Similarly, intentional signals identified by developers such as
README files and clearly labeled issues often involve extra work [Trainer et al., 2015]
on the part of project managers. In both cases, the cost of project managers to generate the
signal is relatively high.

Lack of signal fit also explains the surprising negative association of commit velocity
with usage (H2). While interviewees perceived commit velocity as a signal of the quality
of project activity, we do not find support for that relationship in our quantitative model.
In fact, the highly significant and strong negative association suggests that while commit
velocity and project activity may have poor fit, perhaps commit velocity actually signals a
different quality. The conceptual similarity of the measures (commit velocity and volume
of recent commits) and similar highly negative associations with usage (H4) suggest that
high code velocity actually signals project instability or immaturity rather than liveliness.
(Although commit velocity and code churn are conceptually similar, they are not collinear
with a pairwise correlation of 0.02.)

Future work should examine in more detail this relationship between signal cost, sig-
nal fit, and informing decisions. Although the low-cost community-generated signals in
this study were not associated with task outcomes, it is possible that other community-
generated signals are more useful. Similarly, low-cost signals that were not explored in
this study may still be informative. For example, Donath [2005] discusses conventional
signals such as wedding rings that are low-cost yet still informative due to societal conven-
tions and norms. There may exist similar conventional signals in transparent environments
such as GitHub that are enforced by community norms. For example, a GitHub user may
mark themselves as “hireable” which is a low-cost signal of hiring availability. However,
if every user marks themselves as “hireable” (or forgets to unmark the field after being
hired), then the signal fit and honesty is too low to be useable. A community norm of only
indicating “hireable” if actually looking for a job must be enforced for that signal to be
useful. It is also possible that community-generated signals such as stars count are much
more useful after a certain volume. User-generated movie ratings have higher credibil-

102

ity and influence compared to expert ratings only when the volume is high [Flanagin and
Metzger, 2013]. Similarly, perhaps stars count and similar signals are informative only at
high volumes.

The fit of community signals, specifically stars count, is examined in more detail in
Chapter 7.

6.4.2 Implications for Transparent Development Environments

The findings suggest implications for the study and design of transparent development
environments. The primary implication of our study is theoretical and methodological. I
suggest that signaling theory is a useful lens to understand how developers use information
in transparent environments. I use signaling theory to break down the information usage
process into signals and inferred unobservable qualities. I further break down signals into
unintentional, intentional, and community-generated and identify attributes of honesty, fit,
and cost for each of the signal types. I also relate these signals to task outcomes. Al-
though this study focuses on how developers evaluate projects for usage or contribution,
the study’s methodology is potentially applicable to other software development tasks. For
example, what qualities do developers need to infer to recruit other developers [Marlow
et al., 2013]? What signals indicate these qualities [Dabbish et al., 2012, Marlow et al.,
2013]? Which signals are most related to recruitment? Additionally, this methodology
may be applicable to other domains or transparent environments. For example, what sig-
nals and qualities do writers use when evaluating prose?

This study identifies actionable signals for developers which may have implications
for how users of transparent environments manage the often overwhelming information
flow that transparency provides. If most of the information available to developers is not
relevant to their current task, then transparent environments should filter non-actionable
information to prevent overload. This study gives direct suggestions to which signals
should be displayed on transparent environments such as GitHub for developers evalu-
ating projects for usage or contribution. Perhaps community evaluation signals such as
stars do not need to be prominently displayed. This is in direct contrast to how projects
are currently displayed on GitHub where stars count is one of the most prominent signals
displayed for each project. Instead, signals for working dynamics such as commit volume
or personal utility such as recent code churn should have higher visibility. Upstream de-
pendencies for a project is a useful personal utility signal identified by interviewees but
not directly visible on GitHub. Similarly, the average response time to a pull request is a
useful working dynamics signal that is not currently directly visible on GitHub.

103

The findings also reveal gaps between unobservable qualities developers wish to deter-
mine and actionable signals. These gaps are potential opportunities to improve how and
what signals transparent environments display. While interviewees used signals to evaluate
a project’s community for both tasks, this study found no relationship between community
evaluation signals and task outcomes. For example, while interviewees reported using a
project’s stars count to infer community interest, this signal was not related to actual usage
in our model. This suggests opportunities to create reliable signals to replace unreliable
community evaluation signals. For example, aggregating community interactions for a
project may be a much more reliable signal for community interest as this signal is ag-
gregated from costly community interactions rather than simple clicks of the star button.
Creating such signals allows for the design of environments that more directly and accu-
rately answer questions developers have. Future work may also investigate approaches
more supplicated than data aggregation for representing unobservable qualities that devel-
opers wish to know. For example, machine-learning techniques may be useful for creating
signals that do not currently exist in quantitative forms, e.g. language models representing
coding style norms for projects [Hellendoorn et al., 2015].

Chapter 7 explores this idea of creating more reliable signals. Specifically, I attempt to
improve on the low-cost signal of stars count by replacing it with an aggregation of more
costly community support actions.

6.4.3 Limitations

One of the primary limitations in this study is the cross-sectional nature of the quantita-
tive analysis performed. Without a longitudinal dataset, it is difficult to definitively draw
causal conclusions from quantitative analyses. However, the interview phase of the study
does suggest a causal direction to many of the signals that are analyzed. Interviewees iden-
tified signals that they use to inform decisions. As the signals and their associations with
outcomes in the quantitative phase of the study were predicted from the interview study, it
seems reasonable to suggest a causal interpretation, without claiming to have definitively
demonstrated one. I want to be clear, however, that a causal interpretation of the correla-
tions relies entirely on the qualitative study. Another potential limitation is that some of
the measures chosen may not have been satisfactory operationalizations of signals studied,
in particular community evaluation signals. In the regression analysis, some of the mea-
sures were not statistically significant in the model. The non-significance is very difficult
to interpret. It may indicate that the signal is not widely used in the community, or that it
has only weak effects, or that the signal’s fit is inherently low.

104

6.5 Conclusion

This study uses signaling theory as a theoretical lens to understand how software devel-
opers in transparent development environments use information in their environment to
evaluate projects. The results further our understanding of how open source developers
evaluate software projects for usage and contributions. I found that developers use sig-
nals to infer unobservable qualities about projects: working dynamics, personal utility,
and evaluations of the project’s community. I also found specific signals of qualities such
as maturity and responsiveness that are highly associated with outcomes of usage or con-
tribution. The study also furthers our understanding of how developers use information
in transparent environments. I found that certain types of signals were strongly associ-
ated with desired outcomes while others such as stars count were not. This suggests that
while developers may claim to use a variety of signals, only certain types actually in-
form decisions. I turn to signaling theory to explain this disparity, that signals related to
development work made visible by transparency such as commit activity are more used
than low-cost community-generated signals such as stars count. The methodology of this
study is potentially applicable to understanding how developers perform other software
development tasks in transparent environments. Future work may identify the signals and
unobservable qualities that are useful for tasks such as recruiting developers and evaluat-
ing code contributions. A more complete understanding of what signals developers use to
inform their work creates opportunities to assist developers in managing the overwhelming
information transparent environments provide. Identifying which signals are most useful
to developers for their current tasks may enable future transparency features that visualize
the most actionable signals for developers and filter out less useful information.

105

106

Chapter 7

Evaluating and Creating Signals for
Community Support in Software
Projects

Chapter Summary

To survive and thrive, open source software projects often rely on their community mem-
bers for support and maintenance. Projects with more community support should be more
successful and useful for other developers. This concept of community support for projects
while useful, is relatively unexplored with little known of what indicates or affects sup-
port. To further our understanding of community support, I perform a mixed-methods
study. The first phase is a preliminary interview study with developers on GitHub to ex-
amine how they perceive and infer community support. The interviews find that stars count
is used to infer degree of community support for projects and that the project’s current life-
cycle state and size of their core team may affect support needs. These findings inform
the main longitudinal quantitative study of predictors for community support. The find-
ings also inspire the design of a potentially improved signal for community support called
“supportiveness” which measures the degree that developers participate in support actions
for any project in the GitHub ecosystem. I create a longitudinal statistical model that uses
stars count and supportiveness as predictors for community support in projects over time
and include measures to represent the project’s state. This model is replicated for three
programming languages: JavaScript, Ruby, and Python. The analysis finds that while both
stars count and supportiveness predict community support for projects, supportiveness has

107

a stronger and more robust association. I also find evidence that both the project’s current
lifecycle state and size of their core team may affect how stars (but not supportiveness)
indicates support.

In many ways, the ability of community members of an open source project to support and
give back to the project is what characterizes open source software. In open source soft-
ware projects, many of the “mundane but necessary” tasks that keep projects running such
as providing field support [Lakhani and von Hippel, 2003], discussing problems [Tsay
et al., 2014b], and reporting and fixing bugs [Lerner and Tirole, 2002] are handled by
volunteers [Lakhani and von Hippel, 2003, Lakhani and Wolf, 2005, Lerner and Tirole,
2002]. Open source software projects with supportive communities are then expected to
be more successful and more useful for other developers.

Improving our ability to measure and predict the relatively unexplored concept of com-
munity support will assist developers in evaluating projects and guide project managers in
practices to garner more support for their project. While gauging community support is
widely regarded as important for helping developers make better decisions about what
projects to use [Dabbish et al., 2012], it is a somewhat fuzzy concept with little known
about which projects have more or less support and why. Analyzing the development ac-
tivity and social relationship information that transparency makes visible may reveal what
aspects of projects and their community members affect supportiveness in projects. For
example, do projects that have large core development team sizes [Mockus et al., 2002]
or have high popularity [Dabbish et al., 2012] tend to also have high community support?
Taking a step further and examining what predicts community support may lead to a better
understanding of what affects support in projects. For example, if a project first becomes
popular and then receives a high amount of support from its community, then we can rea-
son that popularity may drive support. Identifying these predictors may enable the design
of tools or even future transparent environments that inform developers of the present and
future community support for a project. Evaluating the support of a project may inform
many project-related coordination tasks for developers, such as deciding which project to
establish a dependency with. Understanding predictors for community support may also
inform practices for project managers that wish to ensure their project is supported by their
community. For example, if popularity is a predictor for support, then drawing additional
support may involve first increasing the publicly visible indicators of popularity.

Signaling theory is a useful theoretical lens for identifying what information in trans-
parent environments are useful predictors of community support. Signals are observable

108

pieces of information that indicate some unobservable quality of the person or entity that
generated the signal [Connelly et al., 2010]. This study identifies what signals software
projects emit that indicate the unobservable quality of community support. Signaling the-
ory provides useful constructs regarding signals such as cost and fit [Connelly et al., 2010].
Signals which are more costly tend to have better fit, which is the extent that signals cor-
relate to the unobservable quality they indicate. For example, the high cost of owning
expensive jewelry makes it a costly signal to emit. Therefore, expensive jewelry also has
a high fit with the quality of wealth as only wealthy people can afford to own expensive
jewelry. Signaling theory and its constructs are useful to reason about why certain pieces
of information are more useful than others in indicating community support.

For this study, rather than focus on signals and their associations with task outcomes
like in previous chapters, I examine the concept of fit regarding the unobservable quality
of community support. Though Chapter 6 finds that interviewees stated that they valued
community support as a useful quality of projects, stars count as a signal for community
support did not associate with usage or contribution. As discussed in Chapter 6, this lack
of association may be due to a low fit between stars count and community support. This
low fit may be due to the low cost of producing the signal of stars count. So rather than ex-
amining the relationship between signals and coordination tasks, this study examines how
accurately signals of differing costs may indicate the unobservable quality of community
support.

To further our understanding of community support for software projects, I present a
mixed-methods empirical study of predictors for support. As the concept is fairly unex-
plored, I first perform a preliminary interview study with developers on GitHub to examine
how they perceive and infer community support. I learn from these interviews that commu-
nity support is a quality developers care about when evaluating projects and that stars count
is used to infer degree of community support. Additionally, the project’s current state in
their lifecycle and the size of their core team may affect the degree of support it receives.
For example, a project that is growing may have differing support needs than one that is
declining. I use these findings to inform the main quantitative study which uses a longi-
tudinal dataset of GitHub projects to analyze predictors for community support. Inspired
by signaling theory, I also design a potentially improved signal for community support
called “supportiveness”. Supportiveness is a measure of the degree that open source de-
velopers participate in support actions for any project across the GitHub ecosystem. This
designed measure is novel in that I am taking advantage of transparency to predict a char-
acteristic of a project by aggregating behaviors of the developers connected to that project.
I compare the predictor that interviewees identified, a project’s stars count, against my
designed signal of supportiveness and include measures to represent the project’s current

109

state. The analysis finds that while both stars count and supportiveness predict commu-
nity support for projects, supportiveness has a stronger and more robust association. I also
find evidence that both the project’s current state and its core team size may moderate the
association between stars and community support (but does not affect supportiveness).

The findings for this study suggest that my designed signal of community support, sup-
portiveness, has a higher fit and robustness than the commonly used signal of stars count.
Based on signaling theory, this suggests that higher cost signals do have higher fit and
perhaps are more robust. Combined with Chapter 6, my work suggests a general method-
ology for designing improved signals for tools or environments. Chapter 6 describes how
to identify useful qualities for tasks and the signals that indicate these qualities. Should
any of the signals identified have low fit due to low cost, then improving that signal is a
matter of designing a signal with a higher cost. Future work should attempt to apply this
methodology for other tasks, domains, or environments. For example, what would a signal
for community support in Wikipedia articles look like?

In the next sections I ground this study on previous research on open source software
and online communities, describe a preliminary interview study that motivates the research
questions, describe the longitudinal quantitative analysis study’s methodology, present the
results of the analysis, and discuss the implications of the findings.

7.1 Community Support in Open Source

I ground this study by examining prior work in how open source software projects and
online communities attract community members and encourage members to become more
involved in the project or community. I also examine how information made visible in
transparent development environments may enable the creation of useful signals and pre-
dictors for developers.

7.1.1 Community Involvement in Open Source Software

Open source software relies on a variety of contributions from a diverse group of mostly
volunteer software developers Crowston et al. [2008]. These “mundane but necessary”
contributions are not necessarily code but include maintenance actions such as providing
field support [Lakhani and von Hippel, 2003] and reporting bugs [Lerner and Tirole, 2002].
Volunteers provide support for often intrinsic motivations, such as learning through read-
ing questions or giving answers, expecting reciprocity, helping the “cause” of open source

110

software, and potentially gaining reputation in the community.

Zhou and Mockus [2012] suggest that the difference between one-time contributors
and more involved long-term contributors is their “willingness” to help the project. They
suggest that the nature of support actions these contributors participate in are a measure
for willingness. For example, the low cost of reporting an issue through a tool may be less
involved than the higher cost of applying for an account in Gnome Bugzilla, creating a
report, and filling in the bug reproduction template. We see an opportunity to measure this
“willingness” for the members of a project’s community for it may also predict the degree
of support a project receives.

Despite the importance of community involvement for open source software projects,
Crowston et al. [2003] point out that user involvement as a success measure is unexplored.
Regarding software project success measures, Stewart and Gosain [2006b] suggest that
the project lifecycle stage may act as a moderator for the effect of developer team size on
performance measures. We intend for this study as a step towards exploring user involve-
ment in regards to project success and also take into account both developer team size and
project lifecycle stage.

7.1.2 Community Involvement in Online Communities

Open source projects are a form of online community and face similar challenges of com-
munity building. To survive and thrive, online communities must attract new contributions
and encourage commitment from community members. Kraut and Resnick [2012] claim
using the collective effort model [Karau and Williams, 1993] that commitment to an online
community increases willingness to contribute. They also claim that encouraging com-
mitment is a combination of affective commitment (attachment to the group or project),
normative commitment (obligations to the community), and needs-based commitment.
Normative commitment may be particularly relevant in open source software as Raymond
[2004] claims that open source developers have a moral obligation to help each other.
Stewart and Gosain [2006a] find these collaborative open source values positively impact
team effectiveness measures such as cognitive and affective trust and communication qual-
ity. In the community of Wikipedia, Bryant et al. [2005] found that some newcomers will
transition from making peripheral contributions to specific articles into highly-involved
core users that help maintain Wikipedia and its community as a whole. The support ac-
tions members participate in become more varied as newcomers become more involved,
from purely making edits in articles to also participating in community discussions, ad-
ministrative duties, and ”meta” tasks. Besides member involvement, Iriberri and Leroy
[2009] found that the lifecycle stage of the online community itself also changes the na-

111

ture of support actions community members perform. For example, during the earlier
Growth stage, communities are more concerned with attracting new members and sup-
porting interactions while the later Maturity stage, communities may prefer to recognize
contributions and increase visibility of certain members.

7.1.3 Developers Using Information in Transparent Environments

Transparent development environments such as GitHub that make visible low-level de-
velopment activities are increasingly popular. Previous qualitative research finds that de-
velopers are able to use the information transparency makes visible as signals to infer a
variety of otherwise unobservable qualities about other developers and projects. The trans-
parency information that developers make use of may also inform the creation of useful
predictors for desired qualities of software projects on GitHub. Kikas et al. [2016] use a
number of issue and project features to predict the probability of an issue closing at various
points in its lifetime. Vasilescu et al. [2015] use a longitudinal dataset to create gender and
tenure diversity predictors for productivity. They find that both predictors are positive and
significant. I continue this line of work of using transparency information in GitHub to
create predictors that may guide developers performing coordination-related tasks. Help-
ing developers to accurately and easily infer the degree of community support in projects
may assist in project-related tasks such as establishing a dependency or contributing to a
project.

7.2 Preliminary Interview Study

As community support in open source software projects is still relatively unexplored, I
first conducted an interview study with developers on GitHub to identify their perceptions
of community support and potential signals they use to infer support. I use prior literature
and the results of these interviews to inform potential predictors for community support
to analyze. The interviews discovered how developers value community support when
evaluating a project and that stars and project state are useful signals they used to infer
support.

7.2.1 Interview Methodology

To investigate how developers make coordination decisions regarding projects, I conducted
a series of semi-structured interviews with 47 GitHub users. In order to gather a wide vari-

112

ety of practices, I sampled users from the most popular projects in multiple programming
languages on GitHub. From these projects, I sampled both peripheral developers and
heavy users with more than 80 “stars” on at least one project. Participants were asked to
walk through their last session on GitHub, describing how they interpreted information
displayed on the site as they reviewed earlier work activities. Developers were asked to
describe specific project-related coordination instances such as pull requests sent and de-
cisions made leading up to and during these interactions. Interviews lasted approximately
45 minutes to one hour.

I applied a grounded theory approach [Corbin and Strauss, 2008] to analyze the sig-
nals that developers used when coordinating with projects. I performed open coding using
coordination instances that interviewees identified as the unit of analysis. The codes cor-
respond to unobservable qualities about projects developers inferred and the signals that
developers used to infer these qualities. For this work, I report on coordination instances
and signals related to the unobservable quality of community support. Please see Chapter 6
for more detail on the methods and findings from these interviews.

7.2.2 Community Support in Open Source Software Projects

I discovered from interviewed developers that they considered a project’s community as
an important quality for evaluating a project. Specifically, developers evaluated a project’s
community to assist in making the decision whether to use a project as a dependency or
contribute to a project. As open source software projects often rely on a large user com-
munity for technical support [Lakhani and von Hippel, 2003], system testing, and problem
reporting [Mockus et al., 2002], developers used signals about the size of a project’s com-
munity to infer the level of interest and likelihood of support should a problem with the
project arise.

To infer the degree of community support a project receives, developers used signals
related to a project’s star count and its core developer team. Developers used a project’s
watcher/star and fork count to infer how many other developers were interested in the par-
ticular project. For developers deciding whether to use a certain project, these metrics for
a project’s popularity were signals for the project’s degree of user interest. Developers
tended to choose projects with interested communities as these projects were better sup-
ported by their users as well as tended to stay alive longer. Developers also used the size
and diversity of a project’s core development team as signals to infer the nature of support
that is provided for the project. For example, an interviewee mentioned that the larger
the group of core developers on a project, the “wider the net” and the more likely issues
have been identified and fixed. Conversely, a project with a single developer would have a

113

limited ability to support their users.

The findings from the preliminary qualitative study suggest opportunities to determine
which of the signals interviewees perceived as useful actually indicate community support
for projects. Interviewees seemed to primarily use popularity-related signals such as the
stars count of a project in order to infer the degree of community support for a project.
However, such popularity-related signals may not necessarily be useful in making project-
related decisions such as using or contributing to a project due to their low cost to produce.
Signaling theory suggests that signals with a low cost to produce may have unknown fit
or relation with the unobservable quality [Connelly et al., 2010]. In this case, starring a
project requires little to no cost from a user, so users may star a project for any number
of reasons with no intention to support a particular project. Therefore, the fit of stars as a
signal, whether popularity actually indicates the unobservable quality of a project’s degree
of community support, is an open question. Additionally, there is the opportunity to create
a signal which may be more accurate than stars count by designing a signal such that
the costs are relatively high and involve supporting open source projects. The interview
findings also suggest that the size of the project’s core developer team may also indicate
something about the nature of support provided for the project. While core developer
team size may also be a signal for community support, it is also possible that projects with
small or large developer teams may have differing support needs. For example, perhaps a
smaller project is more concerned with getting “more eyes” for their bugs while a larger
project benefits more from enthusiastic, highly-involved developers to fix more complex
bugs. This suggests that perhaps the signals that indicate community support may differ
depending on the core team size due to the differing support needs.

7.2.3 Research Question Development

Based on prior work on open source software communities and findings from the prelim-
inary interview study, I identify opportunities to improve the measurement and prediction
of community support in transparent environments such as GitHub. By doing so, I hope to
both identify useful predictors for developers making project-related decisions and further
our understanding of how community support functions. As mentioned in the prior sub-
section, while interviewees identified stars count as a signal for community support, stars
may not be reliable as a signal. Specifically, this study determines if stars count indicates
future community support. I focus on future community support for two reasons. Intervie-
wees wished to infer whether a project will be supported by its community in the future as
they believe these projects stay alive longer. Also, it is possible that performing support
actions for a project increases the project’s popularity with other developers. Focusing on

114

future community support allows for suggesting a causal relationship between increases
in star counts and increases in support.

RQ1: Does stars count predict future community support for a project?

Given the potential weaknesses of stars count as a signal for community support, then
what would more strongly indicate support? Signals with high tend to also have high fit
as long as the costs are aligned with the unobservable quality in question [Connelly et al.,
2010]. For example, if owning expensive jewelry has a high cost, then it is a good signal
for the quality of wealth. However, if the quality in question is coding ability, then the
high monetary costs of owning jewelry are not informative.

As we mentioned earlier, Zhou and Mockus [2012] suggest that long-term contributors
are characterized by “willingness” to help the project. As they measure “willingness” by
looking at the support actions a developer performs, perhaps I can also measure “willing-
ness” in a similar manner. As opposed to the low cost of starring a project, a measure of
“willingness” that involves the relatively high cost of performing actual support actions
for projects may be a much more accurate signal for community support than stars count.

RQ2: Is it possible to design a signal that more strongly predicts community support than
stars count?

Interviewees and prior work in open source software and online communities suggest that
the state of the project in question is likely to have some effect on its support needs from the
community. In particular, prior literature suggests that in both open source software [Stew-
art and Gosain, 2006b] and online communities [Iriberri and Leroy, 2009], the lifecycle
stage of the project or community affects the nature of support that is needed. As a project
becomes more well-established, it may be less concerned with attracting support through
new community members [Iriberri and Leroy, 2009]. In prior literature [Stewart and Go-
sain, 2006b] and interviews, I find that the size of the developer core team may also affect
support needs. The larger the core team, the greater their ability to support their project and
perhaps they require less support from their community as a result. If project state, specif-
ically project lifecycle and core team size, changes the support needs for a project, then
the signals that predict community support may also change along with project state. For
example, if projects with smaller core teams wish to have “more eyes” for their projects,
then stars count may be a stronger predictor for these projects due to its connection with
popularity.

RQ3: Does project state affect how signals predict community support?

115

7.3 Community Support Modeling

To further our understanding of community support in transparent environments, I per-
form a longitudinal quantitative analysis of predictors for community support of GitHub
projects. I create three datasets of JavaScript, Ruby, and Python projects and develop mea-
sures for community support, predictors, and project state. I create a longitudinal statistical
model relating predictors to future community support and replicate this model across the
three datasets.

7.3.1 Dataset Collection

I created a longitudinal dataset of software projects on GitHub and the users and support
activities associated with each project, including data from January 1, 2015 to July 14,
2016. GitHub projects are used as the unit of analysis. I created three datasets for the
purposes of replication, each focusing on a specific programming language: JavaScript,
Ruby, and Python. These languages are among the most popular programming languages
on GitHub (first, third, and fourth at the time of writing). For each dataset, I further
restricted the project sample to self-contained packages, specifically those managed by
the language’s respective package manager such as Ruby Gems or Python packages. In
these languages, users develop packages for a wide variety of purposes, ranging from
web application frameworks such as Ruby on Rails to command line interfaces such as
Thor to build utilities such as Rake. Restricting the project sample to these self-contained
packages eliminates variation due to differences in programming languages or types of
projects while still representing a wide variety of both purposes of software projects as
well as developers on GitHub.

The dataset comprised of information gathered from a combination of the GitHub and
Application Programmer Interface (API), GHTorrent [Gousios and Spinellis, 2012], and
the GitHub Archive1.

First, I drew a sample of repositories from GHTorrent that excluded forks (to avoid
double-counting), repositories without at least one commit or at least one support action
(issue, pull request, or comment) since January 1, 2015 (to avoid projects that were inactive
for the entire time period of interest), had less than five stars (to exclude “code dump”
projects), and projects that were not written in JavaScript, Python, nor Ruby. At this
phase, I also removed non-package projects from the sample. This selection included
45,530 JavaScript projects, 16,442 Ruby projects, and 7,715 Python projects.

1https://www.githubarchive.org/

116

To create both outcome and predictor measures for the longitudinal dataset, I also
aggregated all support events (issue, pull request, or comment) for the time period of
1/1/2015 to 7/14/2016. From this sample of repositories, I used the GitHub Archive to
aggregate support (issue, pull request, or comment) and starring events (as stars are used as
a predictor) for a repository for the time period of interest (1/1/2015 to 7/14/2016). In total,
11,878,304 events for JavaScript projects, 3,080,129 for Ruby projects, and 2,323,364 for
Python projects were collected. To create the designed supportiveness predictor, I also
required all support events for each project member outside of the project in question.
From gathering a list of 1,143,410 developers from the aggregated project support events
from all 3 languages, support events across the GitHub ecosystem were collected for each
developer through the GitHub Archive for the time period of 1/1/2015 to 7/14/2016, a
total of 2,080,233,294 events. For this dataset, a “community member” is defined as any
developer who has participated in a support action for the project during the particular 30
day time period, regardless of commit access. A sensitivity analysis restricting community
members to only those with commit access (core members) or only those without commit
access (peripheral members) does not significantly change the results, so I report on total
membership for simplicity.

The longitudinal dataset is divided into periods of 30 days for a total of 16 time peri-
ods. Time periods of 15 and 70 days were also tested with no significant changes in the
results. The measures in the following section were calculated for each project for each
time period. For example, the stars count of Project A is the number of stars Project A
receives for the specific 30 day time period rather than the aggregated stars count. To filter
out projects with mostly inactive communities, projects where over half the time periods
had no support actions whatsoever were removed. Additionally, as a limitation of the R
package used [Croissant et al.], datasets must be balanced such that each project spans the
full 16 time periods. The final filtered dataset for our analysis contains 7,806 JavaScript
projects, 3,112 Ruby projects, and 1,708 Python Projects.

7.3.2 Measure Development

Outcome, predictor, project state, and control measures are developed for the predictive
models and summarized in Table 7.1.

Outcome Measure – Community Support of Open Source Software Projects

For the outcome measure in our statistical models, I aggregate support actions performed
by project community members for a software project in GitHub. I define the following

117

Table 7.1: Descriptives of Community Support Measures (Pre-transformation) (JavaScript
Dataset)

Type Measure mean median stdev skew

Outcome Community Support 30.11 5 123.38 16.56

Control
Project Age (days) 1079.63 961.7 434.36 1.13
Project Size (kb) 9777.06 725 53787.06 20.85

Project State Collaborators 0.06 0 0.34 16.93

Predictor Stars 19.98 4 86.23 34.36
Supportiveness 1889.12 136 10456.08 21.48

actions as support actions: reporting a bug (opening an issue), fixing a bug (opening a
pull request), and discussing problems in the project (comments on issues, pull requests,
or commits). To calculate this measure, I aggregate these three actions for each project
over 30 day time periods. The Cronbach’s alpha of aggregating the three actions is 0.85,
suggesting an acceptable internal consistency for this outcome measure.

Predictor Measures

Stars – As suggested by interviewees and other GitHub studies [Dabbish et al., 2012],
stars are a widely-used signal for evaluating the community around a GitHub project. This
measure is specifically the count of stars a project receives during a 30 day time period.

Supportiveness – I design this potentially improved predictor for community support in-
spired by assessment signals [Donath, 2005] in signaling theory and “willingness” [Zhou
and Mockus, 2012]. Assessment signals require the signaler to possess the quality in ques-
tion in order to produce the signal. If the quality desired is support for a particular project,
then I make the assumption that developers who possess the willingness to support other
projects will also support the project in question. I base this assumption off of observa-
tions from prior literature that the open source software community values helping each
other out [Stewart and Gosain, 2006a], to the point where it is a moral obligation [Ray-
mond, 2004]. As this signal requires developers to perform actual support actions, it has
a high signaling cost. Signaling theory suggests that this signal should also have high
fit [Connelly et al., 2010] due to the cost and alignment with the unobservable quality in
question.

To calculate this measure, I aggregate support actions as defined in the outcome mea-

118

sure for each project member. However, instead of aggregating support actions for a focal
project, I aggregate the support actions a developer performs for all projects except the
focal project for the 30 day period.

Project State Measures

These measures account for the state of the project itself in the statistical models.

Project Lifecycle – This measure represents the project’s state in their lifecycle, specifi-
cally in terms of community growth or decline. Specifically, I create two dummy variables.
“Positive” for a project where the community is growing and “negative” for a project where
the community is in decline. The variables are mutually exclusive but the absence of both
indicates a project that is well-established and neither growing nor declining. To define
“positive” or “negative”, I calculated the general trend of the community support outcome
measure per project over the entire time period of the dataset (1/1/2015 to 7/14/2016) us-
ing a linear regression. If the project has a slope greater than 1, then it is “positive”. Less
than -1 is “negative”.

Number of Collaborators - This project state measure is the total count of collaborators,
or developers who have commit access to the repository. I use this measure to represent
the size of the project’s core developer team.

Control Measures

The control measures for these models were chosen to ensure that observed associations
between contributor characteristics were not due to correlations with these control vari-
ables that may influence our dependent variables. As I have chosen to restrict each dataset
to a particular programming language, each dataset also inherently controls for program-
ming language.

Project Age - I use the age of the project as a way to control for temporal effects in the
dataset. Projects that have existed for longer may have more users or contributions than
newer projects simply because they have had more time to attract developers.

Project Size - The server-side size of the project repository in kilobytes was used as a way
to control for differences in breadth of project functionality.

119

7.3.3 Analysis

I performed a random-effects two-way panel analysis across the three datasets. Panel
analysis was chosen as it fits our multi-dimensional dataset of multiple projects across
multiple time periods. For each 30-day time period, we predict the future outcome mea-
sure of community support at t+30 using predictor, project state, and control measures
at t for all projects. I then repeat this analysis for all time periods in the dataset, pre-
dicting community support at t+60 using predictors at t+30 and so on. A random-effects
model allows for including time-invariant measures such as project state and control mea-
sures [Wooldridge, 2015] and is preferred over the fixed-effects model for my data by
the Hausmann Test. The two-way model accounts for individual (per project) and time
effects [Croissant et al.]. Measures are normalized via the z-transform to allow for com-
parisons. The variance inflation factor (VIF) analysis reported factors no higher than 1.19,
therefore none of the predictor, project state, or control measures were removed from the
model due to collinearity [O’brien, 2007]. Woolridge’s first-difference test suggests that
the models are autocorrelational and require usage of robust estimators for the covariance
matrix of the regression coefficients [Croissant et al.]. Regression coefficients are reported
using these autocorrelation-robust covariance estimators.

7.4 Results

I describe the results from the predictive models for community support. Measures are
transformed and normalized in order to compare relative association strengths. I find that
both predictors are significantly associated with the outcome measure for community sup-
port. I also find that project state affects stars as a predictor but not supportiveness. The
JavaScript, Python, and Python models are summarized in Table 7.3.

7.4.1 Model Fit

I use a hierarchical modeling approach in order to determine the improvement in mod-
eling fit from including the predictor measures. I first create control models that use the
project state measures (project lifecycle and number of collaborators) and control mea-
sures (project age and project size) to predict the outcome measure of community support.
Then I create models that add the predictor measures (stars and supportiveness) and com-
pare against the control model. For all three languages, I find evidence that the models with
predictor measures are a better fit than control models. Similarly, for each model, I add

120

interactions that further increase the fit. For the largest dataset, JavaScript, the adjusted
R-squared for the control model is 0.022, the model with predictors included is 0.339,
and the model with interactions included is 0.400. The three models are summarized in
Table 7.2. The hierarchical panel models are replicated across the three datasets.

Table 7.2: Comparison of Fit for Community Support Hierarchical Models (JavaScript
Dataset)*

Type Measure Control Model Predictor Model Interaction Model

Controls
Project Size 0.196* 0.180* 0.138**
Project Age -0.065*** -0.049*** -0.045***

Project
State

“Positive” 0.510*** 0.336*** 0.353***
“Negative” 0.417*** 0.255*** 0.254***
Collaborators 0.055*** 0.034*** 0.033***

Predictors
Stars 0.076*** 0.074***
Supportiveness 0.391*** 0.337***

Project
State
Interactions

Collabs x Supportiveness 0.035
Collabs x Stars 0.005
“Positive” x Supportiveness -0.004
“Positive” x Stars 0.022
“Negative” x Supportiveness 0.030**
“Negative” x Stars 0.027***

Model Fit Adj. R2 0.022 0.339 0.4
* Values reported are regression coefficients (beta weights) for normalized measures.

7.4.2 Community Support Predictors

I created models to predict future community support using predictor measures of stars
and supportiveness. This model is replicated across three datasets each representing a pro-
gramming language community: JavaScript, Ruby, and Python. Finding a statistically sig-
nificant association of stars count with future community support answers the first research
question: Does stars count predict future community support for a project? Comparing
the strengths of association between stars count and the designed signal of supportiveness
answers the second research question: Is it possible to design a signal that more strongly
predicts community support than stars count?

121

I find across all three models that both predictors are highly statistically significant
and have positive associations with the outcome of community support. Across all three
models, the association of our designed predictor of supportiveness is higher than stars.
For the largest dataset of JavaScript, stars has an association of 0.074 while supportiveness
has an association of 0.337. For the replicated datasets of Ruby and Python, stars have
associations of 0.070 and 0.064 while supportiveness have associations of 0.214 and 0.148
respectively.

7.4.3 Project State Measures

To examine how project state may affect how signals predict community support, I added
interactions between the project state measures and predictors. In total, I added 6 inter-
actions, one for each combination of project state measures (positive state, negative state,
and number of collaborators) and predictors (stars and supportiveness). Including project
state measures and interactions in the model answers the third research question: Does
project state affect how signals predict community support?

Across all three models, the “positive” and “negative” project lifecycle state measures
are highly statistically significant and have positive and fairly strong associations with the
outcome of community support. For the dataset of JavaScript, growing projects have an
association of 0.336 while declining projects have an association of 0.255. Number of col-
laborators is only significant for the JavaScript dataset with a relatively small association
of 0.034.

I find that across all three models, supportiveness had no significant interactions with
any project state measure. Stars significantly interacts with each project state measure
for most (but not all) datasets. Stars interacts negatively with number of collaborators
for Ruby and Python, indicating that stars affects community support less for projects
with more collaborators. Stars interacts positively with positive lifecycle state for all three
datasets. Stars also interacts positively with negative lifecycle state for the Python and
JavaScript datasets. This indicates that stars affects community support more for projects
that either have a positive or negative trend in their lifecycle.

122

Table 7.3: Summary of Predictive Models for Community Support*
Type Measure JavaScript Ruby Python

Predictors
Stars 0.076*** 0.061*** 0.083***
Supportiveness 0.391*** 0.247*** 0.150***

Controls
Project Size 0.187** 0.279*** 0.280*
Project Age -0.009 -0.01 -0.014

Project State
“Positive” 0.336*** 0.366*** 0.435***
“Negative” 0.255*** 0.158*** 0.321***
Collaborators 0.034*** 0.014 0.032

Project
State
Interactions

Collabs x Supportiveness 0.005 0.011 0.013
Collabs x Stars -0.004 -0.017** -0.022***
“Positive” x Supportiveness 0.022 0.077 -0.057
“Positive” x Stars 0.030** 0.029* 0.056***
“Negative” x Supportiveness -0.009 -0.041 0.025
“Negative” x Stars 0.027*** 0.042 0.049*

* Values reported are regression coefficients (beta weights) for normalized measures.

7.5 Discussion

7.5.1 Predicting Community Support

The results of the predictive model suggest that both stars and the designed signal of
supportiveness are significant predictors for community support across all of the datasets.
I also find evidence that the designed signal of supportiveness has a stronger association
with community support and is more robust than stars count.

The robustness of supportiveness is due to its strong association with community sup-
port regardless of the state of the project. Specifically, while stars count interacts with a
subset of the project state measures per dataset, there are no such interactions for support-
iveness across any of the three datasets.

I use signaling theory [Connelly et al., 2010] for a possible explanation for the dif-
ferences between predictors, specifically the differing costs to produce each predictor or
signal. A potential issue with stars count as a predictor for community support is that the
cost of starring a project is both too low and unaligned with the quality of community
support. GitHub users star projects by simply clicking the highly visible “star” button on
each project page regardless of the particular user’s intent to actually support the project.

123

Signaling theory provides a concept of both cost and fit for signals where signal fit is how
well a signal (stars or supportiveness) correlates to the unobservable quality (community
support). Signals with high costs tend to also have high fit [Connelly et al., 2010]. In
developing the designed supportiveness signal, I attempted to design a signal where the
costs were both relatively high but also aligned with supporting the project. Developers
are not able to produce the supportiveness signal without incurring the cost of actually
supporting other projects. If the quality to indicate is support for a particular project, then
I assume that developers who support other projects also support the focal project. There-
fore, I also assume that our signal should also have high fit with community support. The
results also suggest that the supportiveness signal also indicates “willingness” [Zhou and
Mockus, 2012] of developers. Projects that draw developers who are willing to support
tend to be better supported in the future. The results from the statistical model suggest that
both assumptions hold for supportiveness.

However, the significant result for stars count also suggests that while the cost is low,
the fit is still sufficiently high for this signal to indicate community support. In combination
with results from the previous study, this suggests two possibilities for why stars count as a
signal for community support is not associated with usage or contribution. One possibility
is that the unobservable quality of community support, though perceived by multiple inter-
viewees as useful, is not actually used by developers when evaluating projects. The other
possibility is that while stars count is a signal for community support, the fit or robustness
is not high enough to be useful in general cases. For example, the results of this study
suggest that stars is more indicative of community support for projects that are growing
or declining. This may suggest that stars count is not a useful signal for well-established
project. Future work should examine in more detail this relationship between community
support and usefulness for tasks such as usage and contribution.

7.5.2 Project State Affecting Community Support

The predictive models find that project state interacts with stars count (but not support-
iveness) for some of the datasets. Specifically, “positive” lifecycle projects interact pos-
itively with stars count across all three datasets and “negative” lifecycle projects inter-
act positively for Python and JavaScript. This suggests that for projects in a non-stable
lifecycle state, whether growing or declining, stars has a stronger association with com-
munity support. While the positive interaction of “negative” projects with stars is some-
what surprising, perhaps it indicates that both growing and declining projects have similar
community-related support needs. Particularly for “positive” projects as it is the only in-
teraction present through all three datasets.

124

Core team size interacts negatively with stars count for Ruby and Python. This sug-
gests that for projects with smaller core teams, stars has a stronger association with com-
munity support. Given the similar moderation effect on stars, perhaps this finding indicates
that projects with small core teams have similar support needs as growing and declining
projects.

Growing, declining, and small core team projects may all have support needs that
are better served by drawing more attention from developers compared to more well-
established projects. As stars is a signal for the attention a project receives from the overall
GitHub community [Dabbish et al., 2012], perhaps these interactions indicate the effec-
tiveness of drawing attention towards solving a project’s support needs. For example,
perhaps projects in these states have a breadth of simple issues that need to be addressed
but with a lack of users willing to help. For these projects, drawing attention from de-
velopers increases the pool of users willing to help with these simple tasks. In contrast,
perhaps well-established projects have reached a critical mass of users [Iriberri and Leroy,
2009] that are willing to work on simple tasks but have more complex issues that need to
be addressed.

7.5.3 Implications for Software Engineering

The findings suggest opportunities to enable developers to more easily evaluate commu-
nity support in software projects and project managers to encourage support from their
community members. I found in the interviews that developers evaluating projects as po-
tential dependencies find community support as a useful quality to infer. The results from
the quantitative analysis suggest ways to assist developers in this evaluation through the
use of signals. In particular, the analysis suggests that the designed supportiveness sig-
nal has a stronger and more robust relationship with community support than stars count
which developers seem to currently use. Tools that assist developers in coordinating with
software projects then could use the supportiveness signal to easily indicate the degree of
support a project may receive. For example, a tool that assists developers in evaluating
and picking projects may use the supportiveness signal to compare the likelihood of fu-
ture support for potential dependencies. Similarly, the results may inform designing future
transparent environments. If community support is a useful quality of projects for devel-
opers, then perhaps supportiveness should be displayed as a signal when enumerating or
comparing projects. This is in contrast to how GitHub currently displays projects with
stars count as one of the most prominent signals. The effect of project state on predictors
for community support also suggests that depending on the project in question, perhaps
different signals should be visualized. For example, perhaps displaying stars is not as

125

informative for well-established projects but is more useful for projects that are growing.

The results also suggest practices that project managers for open source software
projects to encourage community support. There is the possibility that the predictors of
stars and supportiveness may represent differing goals for projects. Stars count may rep-
resent a project’s popularity or attention from the community [Dabbish et al., 2012]. Sup-
portiveness in some ways represents how good of an open source software citizen [Ray-
mond, 2004] a developer is via the extent they support projects across the entire GitHub
ecosystem. If these representations are reasonable, then the results suggest goals for
project managers if they wish to attract support from the community depending on their
project’s state. In particular, if the project is either growing, declining, or has a small core
team, then perhaps attracting support means drawing attention in general (stars count).
On the other hand, attracting good open source citizens (supportiveness) is always highly
beneficial regarding community support regardless of the project state.

7.5.4 Limitations

One of the main limitations of this study is construct validity [Shadish et al., 2002]. In
particular, the method of measuring the unobservable quality of community support is
by no means comprehensive for all possible maintenance actions for a software project
on GitHub. For example, discussions on mailing lists or IRC channels by community
members regarding how to fix bugs would not be represented. Similarly, I make no claims
that the chosen signals are comprehensive for predictors of community support in projects.
Future work improving either the measurement or predictors for community support would
greatly further our understanding of the concept. The longitudinal nature of this analysis
allows for suggestions of causal directions from predictors to future community support.
However, without a true controlled experiment, it is difficult to make absolute claims of
causality.

Similarly, this study’s use of mixed methods allows for suggestions of how developers
interpret signals through interviews. However, without a true controlled experiment, it
is difficult to make absolute claims of how developers interpret specific signals. Specif-
ically, although I establish an association between stars and support, it is difficult using
this study’s data to absolutely explain why this association exists and why it is weaker
than supportiveness. For example, I assume in the discussion that stars is an indication of
the attention a project receives. The more attention a project receives, the more people it
draws, hence it receives more support. Alternatively, stars count could actually indicate
(more weakly than supportiveness) willingness to support the project. Future work should
examine precisely how developers interpret such signals in regards to intent of providing

126

support to a project.

7.6 Conclusion

In this work I explored the concept of community support for open source software projects
in GitHub and predictors for the degree of support a project receives from its community.
Grounding the analysis through prior literature and a preliminary interview study, I per-
formed a longitudinal analysis of community support for the predictors of a project’s stars
count and a designed signal of supportiveness and project state measures of lifecycle state
and core developer team size. I found that while both predictors were associated with
community support, the designed signal of supportiveness had a stronger and more robust
relationship with support. Projects in either growing or declining states as well as small
core teams saw higher effects of stars on community support.

The findings of this study further our understanding of the relatively unexplored con-
cept of community support in open source software projects. I find that project state affects
both which projects garner support and stars as a predictor for support. This study validates
stars as a signal for support but also designs an improved signal called “supportiveness.”
This improved signal may enable developers to easily evaluate which projects are well-
supported which may be useful in the design of coordination tools or future transparent
environments such as GitHub. The findings also suggest practices for project managers
who wish to attract more support for their project.

127

128

Chapter 8

Future Work

The findings from the studies described in previous chapters suggest opportunities for
improving signals, tools, and environments as well as performing similar studies in other
domains and transparent environments. Table 8.1 provides a summary of the studies and
associated with coordination tasks. While each chapter contains discussions of future work
specific to the corresponding study, this chapter discusses broader opportunities for future
work.

Table 8.1: Overview of Signaling Implications From Dissertation Studies
Coordination Task Highly Associated Types of Signals Example Signals

Evaluating Contributions Social Signals Social Distance
Negotiating Contributions Political Signals ”+1” comments
Evaluating Projects Working Dynamics Commit Volume
Inferring Community Support Costly Signals ”Supportiveness”

8.1 Methodology for Eliciting and Improving Signals

My work, in particular Chapter 6 and Chapter 7, suggests a general methodology for elic-
iting and potentially improving useful signals for a specific coordination task in transpar-
ent development environments. Following the mixed-methods design of Chapter 6, the
methodology would include the following steps: 1) interview users to explore what sig-
nals and qualities they perceive as useful in informing the coordination task of interest, 2)
create measures for signals identified and the task in question, 3) create a statistical model

129

relating signals measures to task outcomes to verify which signals are actually used across
the environment, 4) identify signals with low fit and design an improved signal if neces-
sary. This methodology is potentially useful for both better understanding how developers
perform a specific coordination task and designing tools or environments that assist de-
velopers in a given task. As seen in Chapter 6, identifying the qualities and signals that
developers use to inform a task gives insight into how the task is performed. For example,
Chapter 6 suggests that developers find signals of the project’s working dynamics as use-
ful when evaluating projects. Identifying these useful signals also may accordingly inform
the design of environments or tools by surfacing these signals. For example, Chapter 6
suggests that a tool that helps developers evaluate projects may benefit from prominently
displaying working dynamics signals such as commit volume. Implications for design-
ing tools and environments are discussed in more detail in subsection 8.3. Subsection 8.2
discusses in more detail how this methodology might also improve signals with low fit or
correlation to the unobservable quality they indicate [Connelly et al., 2010].

An open question that future work should address is whether this methodology is ap-
plicable to other domains and environments. For example, this study’s methodology could
potentially be used to understand what signals editors in Wikipedia use when evaluating
articles and the results of such a study may reveal insights into the process of evaluat-
ing articles or inform the design of article-management tools or Wikipedia itself. Even
software development in a different transparent environment from GitHub may result in
different signals found for a given task due to differences in affordances [Gaver, 1991]
that the environment provides. For example, developers that work in an environment that
deemphasizes commit activity may find working dynamics signals such as commit volume
less useful when evaluating projects compared to developers in GitHub. As I only study
coordination tasks in the GitHub environment, how these affordances affect signals used
is an open question that future work should address. A more extreme case that future work
should explore is how participants in transparent environments outside of general software
development use signals. For example, members of the scientific software community
may have very different goals when evaluating software projects compared to general
open source software developers [Trainer et al., 2015]. A scientific software developer
may wish to prioritize reproducible research and therefore attend to signals indicating how
accessible the project is to reusing data structures or algorithms such as variety of data
format wrappers.

Future work should also examine whether tasks that require heterogeneous roles affect
the signals needed to inform a task. An assumption made throughout the studies described
in the previous chapters is that only software developers are involved in the coordina-
tion tasks studied. Relaxing this assumption, as many software projects often include the

130

efforts of non-developers such as designers, data scientists, user experience researchers,
domain experts, managers, and so on, may affect what signals are needed to inform this
task. Multiple roles may complicate the signal elicitation methodology described earlier
as each role may find different signals and qualities useful. For example, while a software
developer may wish to know how easy a project is to incorporate as a dependency, a data
scientist may wish to know how accessible a project is to reusing data sets. This concept
is reflected in signaling theory as receiver interpretation [Connelly et al., 2010] or that
receivers may weight signals differently. Discovering these weightings may inform the
design of tools or environments that accommodate multiple roles. In fact, GitHub projects
in industry settings find that non-developers struggle with using GitHub, often resulting
to using external tools [Kalliamvakou et al., 2015]. Identifying qualities and signals that
specific roles need to know in order to perform a task may enable the design of less over-
whelming environments that are easier to use for non-technical roles.

8.2 Designing Improved Signals for Software Developers

Findings from the studies described in previous chapters suggest opportunities to use sig-
naling theory to improve signals that developers use in transparent environments. The
community support study in Chapter 7 and its designed signal of supportiveness suggest
an approach to creating improved signals driven by signaling theory: aggregating activity
to create a high cost signal. Specifically, “improved” here refers to the concept of a higher
signal fit or the correlation of a signal to the unobservable quality it indicates [Connelly
et al., 2010]. This approach is novel because it is only possible in transparent environ-
ments where work activities are made visible. The activities aggregated also need to be
related to the unobservable quality desired. For example, in Chapter 7 I aggregate sup-
port actions across projects for developers to indicate the quality of community support
for a project. Signaling theory suggests that signals with high costs are often related to
both high honesty and fit and therefore usefulness [Spence, 1973], as long as the costs are
aligned with the quality in question. This approach effectively creates a high cost signal
from aggregating related activities that should also have high honesty and fit. The cost is
high because it requires developers to actually perform the activities in question in order
to produce this signal. Another benefit of this approach is that the signals generated from
activities are unintentional, the incentives to produce the signal is aligned with perform-
ing development work. In contrast, most signals studied in signaling theory literature are
positive and intentional, and the incentive to produce the signal is to affect the decision of
the receiver [Spence, 1973]. The unintentional nature of these designed signals may make
them more robust to deception, especially given the transparent nature of the environment.

131

For example, “gaming” an aggregated signal would involve creating false development
activities which would also be visible in transparent environments. This approach and
concept is explored in detail in Chapter 7 for the task of evaluating projects but is perhaps
applicable to improving low fit signals in general.

Future work may attempt to apply this approach of aggregating related activities to de-
signing improved signals for other coordination tasks. For example, the study of potential
signals for evaluating contributions in Chapter 4 found that technical signals were sur-
prisingly not as strongly associated with acceptance as social signals [Tsay et al., 2014a].
Assuming that this difference in effect size is due to signal fit, a potentially improved tech-
nical signal for informing the evaluation of contributions may aggregate technical signals
across multiple pull requests for a submitter. Doing so may create a signal that indicates
the willingness of a submitter to follow technical norms in general which may be more
informative to a project manager than looking at a specific contribution. Also, providing
such signals through tooling may reduce the assessment cost for project managers. I dis-
cuss in Chapter 4that the discrepancy between social and technical signal usage may be
due to differences in assessment cost that the manager incurs when using technical sig-
nals. Making aggregated technical signals easily visible in a tool should greatly reduce
such costs.

While I explore the effect of signal cost and fit in previous studies, future work may
examine the potential of other signaling concepts and types of signals. The concept of hon-
esty [Connelly et al., 2010], or the correlation between signaler and unobservable quality,
is discussed in Chapter 6 but not explored. One reason for this is that many of the signals
explored in the studies in previous chapters are products of performing work in trans-
parency. These signals are expected to be honest as the incentive for producing the signal
is aligned with performing actual development work rather than influencing the receiver.
However, it is possible that future work may identify potentially useful signals that are also
potentially deceptive. Similarly, future work may examine other coordination tasks where
useful signals are potentially deceptive. For example, users on GitHub may be motivated to
emit deceptive signals that indicate the quality of coding ability. If projects owned and pro-
gramming languages used are signals for coding competency [Marlow et al., 2013], then
developers aiming to deceive potential recruiters may attempt to create dummy projects
in multiple languages. For this coordination task of recruiting developers, the honesty of
signals may be more relevant than fit as the possibility of “cheating” lessens the useful-
ness of signals [Connelly et al., 2010]. Future work may also explore the usefulness of
“political” signals that are discussed in Chapter 5. “Political” signals in this case refer to
indications of the influences of different stakeholders. For example, the collective “+1”
comments on a pull request is a signal for users that desire for the change to be accepted.

132

Such signals are relatively unexplored in both software engineering and signaling theory
literature. The findings of the study in Chapter 5 suggests that core members were sensi-
tive to audience pressure and tended to fulfill technical goals if influenced by users. This
suggests that core members may find these political signals useful for deciding how to
prioritize pull requests. Future work should examine the potential usefulness of political
signals for other coordination tasks or even environments. For example, editors managing
articles of controversial topics in Wikipedia may benefit from signals of the influence of
different “sides” on a topic.

8.3 Designing Developer Tools and Transparent Develop-
ment Environments

Using transparent development environments comes with the risk of information overload
which may be alleviated by guiding users through visualizing useful signals. Due to the
social networking-like features in transparent environments, many developers in these sys-
tems find it challenging to effectively consume the sheer amount of content, developing
ad-hoc strategies to filter and skim [Singer et al., 2014] or even refusing to participate in
social aspects of development. The qualities and signals identified in the studies of the
previous chapters offer opportunities to target information that developers need to know
in order to perform specific coordination tasks. Future tools or transparent environments
may choose to prioritize visualizing these signals in order to prevent overwhelming de-
velopers with information. This is in contrast to the design of many current transparent
environments which tend to make all or most information visible using dashboards or
feeds [Treude and Storey, 2010].

The findings of the previous chapters suggest implications for designing future trans-
parent environments through what signals to display to users. Specifically, the previously
described studies identify signals that GitHub or future environments may display to assist
developers in performing specific coordination tasks. For the coordination task of evalu-
ating contributions, the study in Chapter 4 suggests that social signals for social distance
and prior interaction are potentially useful for project managers [Tsay et al., 2014a]. This
suggests that perhaps GitHub or future environments should implement some indication
of social distance or experience for the submitter when project managers are evaluating
contributions. When projects and developers coordinate via extended contribution discus-
sions, the study in Chapter 5 suggests that “political” signals may be useful for project
managers [Tsay et al., 2014b]. This suggests possible visualizations for project managers
in GitHub or future environments that display the competing influence of various stake-

133

holders. Also, a simple “political” signal for GitHub specifically would be to formally
implement the “+1” comment as a feature. The amount of “+1”s in a discussion would be
a simple signal for the audience pressure to address a particular contribution. For the coor-
dination task of evaluating a project for usage, Chapter 6 suggests that signals for project
liveliness such as commit volume, signals for maturity such as project versions, and sig-
nals for ease-of-use such as required downstream dependencies may be useful. Similarly,
when evaluating a project for contribution, developers tend to use signals for responsive-
ness through time to close pull requests and signals for accessibility to contribute through
issues. These signals identified are mostly not easily visible when searching for projects or
examining project pages in the current implementation of GitHub. Also, in contrast to how
GitHub currently prominently displays stars throughout the site, the results of Chapter 6
and Chapter 7 suggest that de-emphasizing stars in favor for other signals such as sup-
portiveness may be more useful for developers evaluating projects. Future work should
implement some of these signals in tools or environments and examine if developers actu-
ally benefit from using these signals in the field.

An open question that future work should address are the human-computer interac-
tion concerns with how to best display useful signals to developers. Although the studies
described in previous chapters suggest which signals may be useful to display, how to ef-
fectively visualize this information to developers is still unexplored. For example, while
some of the signals identified seem straightforward to visualize, such as the average time
to close pull requests, more complicated signals such as supportiveness or political signals
for influence may be more challenging to display. Using influence as an example, one op-
tion is to simply display a number for the users or projects that may potentially be impacted
by a contribution. A more informative but costly to interpret signal may be to display the
network of users or projects that may be impacted. The former signal may be potentially
misleading as most of the projects impacted may be minor or even dead projects. The
latter signal would indicate the relative importance of projects or users impacted but may
be so costly to interpret that users ignore the visualization when evaluating contributions.

8.4 Dynamic Signals for Tasks, Projects, and Users

The previous chapters’ findings suggest the potential usefulness of dynamic signals that
adapt according to changes in current task, project, or user. Previous chapters suggest that
the interpretation of signals may be affected by the current task at hand and the state of
the user or project emitting the signal. The study of signals developers use to evaluate
projects for usage or contribution in Chapter 6 suggests that even for similar signals, the

134

task at hand affects the interpretation. Specifically, while project versions is in both Usage
and Contribution models, the association with Usage is much higher. This may suggest
that developers evaluating a project for use as a dependency may find the signal of previ-
ous versions more useful than one who is evaluating a project for contribution. Similarly,
Chapter 4 and Chapter 7 find that the state of the user or project emitting the signal may
moderate how receivers interpret the signal. In the study of evaluating contributions in
Chapter 4, the submitter’s prior interaction moderates the influence of the discussion on
acceptance [Tsay et al., 2014a]. In the study of predictors for community support in Chap-
ter 7, the project’s current lifecycle state and core team size moderates the influence of
stars on community support. Both of these findings suggest that the usefulness of signals
may change depending on the state of the user or project emitting the signal. Therefore,
a future tool that visualizes signals for developers may benefit from dynamically altering
what signals are shown depending on the current task or state of the user or project.

Future work should examine the potential of dynamic signals and the human-computer
interaction concerns with implementing such signals. As discussed in the previous subsec-
tion, how to effectively visualize signals is an open question. Dynamic signals in particular
may be challenging to visualize effectively due to multiple states and the potential combi-
natorial explosion. For example, a naı̈ve implementation of dynamic signals for a tool that
assists developers in evaluating projects may display different sets of signals depending
if the user is looking for projects to use or to contribute to. The same tool may display
different signals depending on the state of the project evaluated, such as their current state
in the lifecycle and core team size. Even when making the simplifying assumption that
lifecycle state and core team size are binary, this implementation requires 8 different sets
of signals per project. Including more states of interest increases the signal sets required
exponentially.

135

136

Chapter 9

Conclusions

By understanding how developers make use of information made visible by transparent de-
velopment environments, we have the opportunity to assist developers in coordinating in
these environments. In this dissertation, I have used signaling theory as a theoretical lens
to model developers’ usage of information for the specific coordination tasks of evaluat-
ing contributions in Chapter 4, negotiating contributions through discussion in Chapter 5,
and evaluating projects in Chapter 6. The findings of these studies identify signals that
developers use to inform these tasks. These signals give insight into how these coordina-
tion tasks are performed, suggest implications for the design of future developer tools and
transparent environments, and may establish the foundation for exploring signals in other
domains or environments. I have also used signaling theory to design an improved signal
called supportiveness for the quality of the community support for a software project that
is stronger and more robust than the signal developers currently use in Chapter 7. These
studies describe a general approach of using signaling theory to understand and potentially
improve how developers use information during coordination tasks.

The novel application of signaling theory to understand how software developers use
information to coordinate is my primary contribution to the field of software engineering.
Coordination in current software engineering literature largely focuses on tasks within
projects such as task assignment or modularity [Crowston et al., 2008] and less on tasks
involving other projects or developers. My work not only examines these tasks but also
the decision-making process behind each task that developers perform. My approach
of using signals to model how developers use information is particularly well-suited for
information-rich environments such as transparent development environments. Under-
standing the unobservable qualities developers wish to know and signals used to indicate
these qualities is particularly useful for coordination tasks that involve other projects or

137

developers. Conceptually separating transparency information into signals and qualities is
a strength of using signaling theory as a lens. Identifying unobservable qualities that de-
velopers actually wish to know gives insight into the underlying decision-making process
and allows for differentiating between poor-quality and less-useful signals. For example, a
naı̈ve version of the study in Chapter 6 may determine that stars and other such community
signals in general are not useful. However, modeling the process as signals and qualities
reveals that while community qualities are useful, currently used community signals such
as stars count may not be. Signaling theory also gives useful constructs such as cost and
fit to reason about why certain signals may be more or less useful.

My approach of using signaling theory also possesses a number of limitations and po-
tential open questions related to assumptions made in the described studies. A general
weakness of my work is that the tasks in question must involve coordination with other
dependencies such as projects or other developers. Similarly, my work assumes that the en-
vironment is both transparent and information-rich. My approach is not able to study tasks
where neither of these conditions are true, such as a developer implementing software fea-
tures with predetermined dependencies or developers in traditional industry environments
that may be highly compartmentalized. Another weakness of using signaling theory is that
unobservable qualities must be codifiable. For example, tasks that may rely on intuition,
like evaluating the aesthetics of potential designs, would not benefit from applying signal-
ing theory. The studies in my dissertation also make assumptions about the environment
and participants. It is an open question to how my approach may work in non-GitHub
transparent environments or tasks that involve participants other than software developers.
Another limitation of my work is its external validity. The signals studied are hardly com-
prehensive, potentially useful or latent signals may exist. In particular, I focus mostly on
social tasks and signals. Even in technical tasks such as evaluating code contributions, I
do not study the use of technical signals such as code complexity measures or call trees.
The usefulness of my approach for these technical tasks and signals is an open question.

An open question to the usefulness of my approach of using signaling theory is whether
signals are a good proxy for software quality. Can signals tell developers everything they
need to know about the quality of a code contribution or software project? Evaluating
software quality is inherently difficult to reason about, as software quality as a concept is
complex and multidimensional [Crowston et al., 2003]. The studies described in this dis-
sertation also suggest that the concept of software quality may vary quite a bit depending
on the current task at hand. For example, Chapter 6 suggests that the signals developers
use to evaluate projects significantly differ depending on if the developer is looking to use
or contribute to a project. A limitation of the studies in this dissertation is that absolute
“quality” of coordination tasks are not examined. Using the study of evaluating projects

138

again as an example, though I examine how developers think when deciding which projects
to use and connections between signals and usage, I do not examine whether or not these
usage decisions were “correct.” This is a limitation of the study design. Examining the
quality of coordination decisions that use signals would require a long-term study. For
example, issues with establishing a dependency with a project may take not manifest for
months. Without examining the “quality” of coordination decisions that use signals, it is
difficult to absolutely claim whether signals are a good proxy for software quality. How-
ever, though software quality is multidimensional, the studies described in this dissertation
do examine some of the social dimensions of software quality. My approach of using sig-
naling theory, particularly in differentiating between signals and qualities, may also help
in reasoning about specific dimensions of quality. For example, Crowston et al. [2003]
identify a number of potential open source software success measures. Some of the social
measures such as the process of how development happens (project working dynamics in
Chapter 6), community measures, and popularity (both as community evaluation in Chap-
ter 6). As discussed earlier, technical dimensions of software quality are not examined
in the studies in this dissertation. Future work may examine the usefulness of technical
signals for technical qualities regarding code such as maintainability, testability, and us-
ability [Crowston et al., 2003]. So while it is difficult to absolutely claim that signals are
a good proxy for software quality, signaling theory may be a good method for reasoning
about multiple dimensions of quality.

My work of using signaling theory in transparency may inform the design of future
tools and environments. The studies described in the dissertation have implications for
immediate potential changes for signals in current transparent development environments.
For example, Chapter 5 suggests that displaying “political” signals such as “+1” comments
or potentially impacted projects may be useful for problem-solving discussions around
contributions. Another potential implication of my work is a generalizable methodology
for understanding and potentially improving how transparent environments or tools dis-
play signals to inform specific tasks. Taking the coordination task of recruiting a developer
as an example, developing a tool to assist in this process may first interview developers
to determine qualities and signals they use to inform this decision. A quantitative study
would then determine which of these qualities or signals are actually used. Any potential
disparities between the interviews and quantitative study may offer opportunities to design
improved signals for this tool, such as with “supportiveness” in Chapter 7. Implement-
ing signals in this way may also have unintended implications. For example, a common
concern in signaling theory literature is the potential of signalers to “game” the signaling
environment by sending dishonest signals [Connelly et al., 2010]. However, transparency
may mitigate some of these effects as creating dishonest signals may also be visible in
the environment. For example, gaming the supportiveness signal designed in Chapter 7

139

would involve performing a large number of false support actions. Transparency would
make these false support actions visible, exposing attempts to “game” the system. Another
unintended implication which is also related to a current limitation of the studies is that
focusing on the signals that most developers use (particularly in quantitative studies) may
systematically bias against certain minority populations. For example, it may be possible
that using social relationship signals like in Chapter 4 also tend to bias against minority de-
velopers because they are less likely to possess the social relationship. However, signaling
theory may mitigate this issue through differentiating between the signal and the desired
unobservable quality. Using the previous example, if the unobservable quality that project
managers actually wish to infer is trust, then there is the opportunity to design a signal that
is resistant to biasing against certain populations. Future work may examine how to over-
come these unintentional implications of signaling, perhaps through using transparency or
signaling theory.

140

Appendix A

Pull Request Extended Discussion
Sample

List of pull requests with extended discussions that were analyzed for Chapter 5.

1. https://github.com/jruby/activerecord-jdbc-adapter/pull/233

2. https://github.com/guard/guard/pull/156

3. https://github.com/symfony/symfony/pull/5248

4. https://github.com/emberjs/ember.js/pull/365

5. https://github.com/gitlabhq/gitlabhq/pull/3351

6. https://github.com/tastejs/todomvc/pull/120

7. https://github.com/laravel/framework/pull/720

8. https://github.com/Quicksilver/quicksilver/pull/219

9. https://github.com/playframework/playframework/pull/469

10. https://github.com/OpenImageIO/oiio/pull/82

11. https://github.com/linuxmint/Cinnamon/pull/1003

12. https://github.com/owncloud/apps/pull/1

141

13. https://github.com/jashkenas/backbone/pull/697

14. https://github.com/numpy/numpy/pull/3306

15. https://github.com/appium/appium/pull/793

16. https://github.com/gregbell/active admin/pull/1952

17. https://github.com/drothlis/stb-tester/pull/9

18. https://github.com/xapi-project/xen-api/pull/957

19. https://github.com/cfengine/design-center/pull/14

20. https://github.com/mxcl/homebrew/pull/3403

142

Glossary

community evaluation commmunity around a software project. 86, 91, 101, 139

community support degree to which a software project’s community will support the
project through performing maintenance actions. 7, 107, 108, 112, 137

coordination management of dependencies between activities [Malone and Crowston,
1994], where dependenices may include software projects and developers. 1, 9, 27,
51, 52, 77, 129, 137

cost cost for signaler to produce a signal. 5, 16, 77, 79, 81, 87–91, 101–104, 109, 110,
114, 118, 123, 131, 132, 138

fit correlation between the signal and the unobservable quality it indicates. 5, 16, 79, 82,
87–91, 101–103, 109, 110, 114, 115, 124, 131, 132, 138

honesty extent to which the signaler actually possesses the signaled quality. 5, 16, 82,
87–91, 101, 103, 132

personal utility estimation of personal utility and/or cost of using or participating in a
project. 85, 91, 101

project working dynamics project’s working style and direction, how the core team works.
85, 91, 101, 139

receiver attention extent to which receivers attend to the environment for signals. 16

receiver interpretation translation from signal to unobservable quality by the receiver,
who may apply their own weights or meanings to signals. 16

143

signal piece of information that indicates an unobservable quality about the signaler. 5,
6, 15, 27, 28, 32, 35, 51, 53, 71, 77, 78, 81, 103, 108, 112, 123, 129, 137, 138

transparency accurate observability of an organization’s low-level activities, routines,
behaviors, output, and performance [Bernstein, 2012]. 2, 13, 19, 20, 28, 56, 78, 91,
108, 144

transparent development environment software development environment that imple-
ments transparency features. 2, 6, 9, 13, 19, 27, 54, 57, 77, 78, 80, 112, 129, 133,
137

144

Bibliography

Samuel A Ajila and Di Wu. Empirical study of the effects of open source adop-
tion on software development economics. Journal of Systems and Software, 80
(9):1517–1529, 2007. ISSN 0164-1212. doi: http://doi.org/10.1016/j.jss.2007.01.
011. URL http://www.sciencedirect.com/science/article/pii/
S0164121207000076. 1, 6

Ofer Arazy, Lisa Yeo, and Oded Nov. Stay on the Wikipedia task: When task-related dis-
agreements slip into personal and procedural conflicts. Journal of the American Society
for Information Science and Technology, 64(8):1634–1648, 2013. ISSN 1532-2890.
doi: 10.1002/asi.22869. URL http://dx.doi.org/10.1002/asi.22869.
2.1, 5

Douglas Bates, Martin Maechler, and Ben Bolker. lme4.0: Linear mixed-effects models
using S4 classes, 2013. URL http://r-forge.r-project.org/projects/
lme4/. 4.2.3

Ethan S Bernstein. The Transparency Paradox: A Role for Privacy in Organizational
Learning and Operational Control. Administrative Science Quarterly, 57(2):181–216,
2012. doi: 10.1177/0001839212453028. URL http://asq.sagepub.com/
content/57/2/181.abstract. 1.1, 2.3, A

Susan L Bryant, Andrea Forte, and Amy Bruckman. Becoming Wikipedian: transfor-
mation of participation in a collaborative online encyclopedia. In Proceedings of the
2005 international ACM SIGGROUP conference on Supporting group work, GROUP
’05, pages 1–10, New York, NY, USA, 2005. ACM. ISBN 1-59593-223-2. doi:
10.1145/1099203.1099205. URL http://doi.acm.org/10.1145/1099203.
1099205. 2.1, 4.1.2, 5.1.4, 7.1.2

Moira Burke and Robert Kraut. Mind Your Ps and Qs: The Impact of Politeness and
Rudeness in Online Communities. In Proceedings of the 2008 ACM Conference on

145

http://www.sciencedirect.com/science/article/pii/S0164121207000076
http://www.sciencedirect.com/science/article/pii/S0164121207000076
http://dx.doi.org/10.1002/asi.22869
http://r-forge.r-project.org/projects/lme4/
http://r-forge.r-project.org/projects/lme4/
http://asq.sagepub.com/content/57/2/181.abstract
http://asq.sagepub.com/content/57/2/181.abstract
http://doi.acm.org/10.1145/1099203.1099205
http://doi.acm.org/10.1145/1099203.1099205

Computer Supported Cooperative Work, CSCW ’08, pages 281–284, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-007-4. doi: 10.1145/1460563.1460609. URL
http://doi.acm.org/10.1145/1460563.1460609. 5.1.1

Lowell W Busenitz, James O Fiet, and Douglas D Moesel. Signaling in Venture Cap-
italist—New Venture Team Funding Decisions: Does It Indicate Long-Term Venture
Outcomes? Entrepreneurship Theory and Practice, 29(1):1–12, 2005. ISSN 1540-
6520. doi: 10.1111/j.1540-6520.2005.00066.x. URL http://dx.doi.org/10.
1111/j.1540-6520.2005.00066.x. 6.4.1

Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov. De-
veloper Onboarding in GitHub: The Role of Prior Social Links and Language Ex-
perience. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2015, pages 817–828, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/2786805.2786854. URL http:
//doi.acm.org/10.1145/2786805.2786854. 2.3

Marcelo Cataldo, Patrick A Wagstrom, James D Herbsleb, and Kathleen M Carley. Iden-
tification of coordination requirements: implications for the Design of collaboration
and awareness tools. In Proceedings of the 2006 20th anniversary conference on
Computer supported cooperative work, CSCW ’06, pages 353–362, New York, NY,
USA, 2006. ACM. ISBN 1-59593-249-6. doi: 10.1145/1180875.1180929. URL
http://doi.acm.org/10.1145/1180875.1180929. 1.2

B. L. Connelly, S. T. Certo, R. D. Ireland, and C. R. Reutzel. Signaling Theory: A Review
and Assessment. Journal of Management, 37(1):39–67, dec 2010. ISSN 0149-2063.
URL http://jom.sagepub.com/cgi/content/abstract/37/1/39. 1.2,
1.3, 2.4, 4.4.1, 4.5, 6, 6.1.3, 6.2.2, 6.2.2, 6.4.1, 7, 7.2.2, 7.2.3, 7.3.2, 7.5.1, 8.1, 8.2, 9

Juliet Corbin and Anselm Strauss. Basics of qualitative research: Techniques and proce-
dures for developing grounded theory. Sage, 2008. 5, 6.2.1, 7.2.1

John W. Creswell. Research design: Qualitative, quantitative, and mixed methods ap-
proaches. SAGE publications, 4th edition, 2013. 6, 6.2.2, 6.3.1

Yves Croissant, Giovanni Millo, and Others. Panel data econometrics in R: The plm
package. 7.3.1, 7.3.3

Kevin Crowston, Hala Annabi, and James Howison. Defining open source software project
success. In ICIS 2003. Proceedings of International Conference on Information Systems
2003, 2003. 7.1.1, 9

146

http://doi.acm.org/10.1145/1460563.1460609
http://dx.doi.org/10.1111/j.1540-6520.2005.00066.x
http://dx.doi.org/10.1111/j.1540-6520.2005.00066.x
http://doi.acm.org/10.1145/2786805.2786854
http://doi.acm.org/10.1145/2786805.2786854
http://doi.acm.org/10.1145/1180875.1180929
http://jom.sagepub.com/cgi/content/abstract/37/1/39

Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. Free/Libre open-
source software development: What we know and what we do not know. ACM Comput.
Surv., 44(2):7:1—-7:35, mar 2008. ISSN 0360-0300. doi: 10.1145/2089125.2089127.
URL http://doi.acm.org/10.1145/2089125.2089127. 1.2, 2.2, 5, 5.1.2,
5.1.3, 7.1.1, 9

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in GitHub:
transparency and collaboration in an open software repository. In Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work, CSCW ’12, pages
1277–1286, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1086-4. doi:
10.1145/2145204.2145396. URL http://doi.acm.org/10.1145/2145204.
2145396. 1.1, 1.2, 1.3, 2.3, 2.4, 3.1, 4.1.3, 4.1.4, 4.2.2, 4.2.2, 4.2.2, 4.4.1, 4.4.3, 5.1.3,
5.2.1, 5.4.1, 5.4.2, 6, 6.1.2, 6.1.3, 6.2.2, 6.3.2, 6.4.1, 6.4.2, 7, 7.3.2, 7.5.2, 7.5.3

Antonio Davila, George Foster, and Mahendra Gupta. Venture capital financing
and the growth of startup firms. Journal of Business Venturing, 18(6):689–
708, 2003. ISSN 0883-9026. doi: http://dx.doi.org/10.1016/S0883-9026(02)
00127-1. URL http://www.sciencedirect.com/science/article/
pii/S0883902602001271. 6.2.2

Judith Donath. Signals, truth, and design. MIT Press, Cambridge, MA, 2005. 1.3, 4.4.2,
6.4.1, 7.3.2

Judith Donath. Signals in Social Supernets. Journal of Computer-Mediated Communica-
tion, 13(1):231–251, 2007. ISSN 1083-6101. doi: 10.1111/j.1083-6101.2007.00394.x.
URL http://dx.doi.org/10.1111/j.1083-6101.2007.00394.x. 2.4,
6.1.3

Carsten F Dormann, Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel
Carré, Jaime R Garcı́a Marquéz, Bernd Gruber, Bruno Lafourcade, Pedro J Leitão, and
Others. Collinearity: a review of methods to deal with it and a simulation study evalu-
ating their performance. Ecography, 36(1):27–46, 2013. 4.2.3

Nicolas Ducheneaut. Socialization in an Open Source Software Community: A Socio-
Technical Analysis. Computer Supported Cooperative Work (CSCW), 14(4):323–368,
2005. ISSN 0925-9724. doi: 10.1007/s10606-005-9000-1. URL http://dx.doi.
org/10.1007/s10606-005-9000-1. 2.2, 4, 4.1.1, 4.1.4, 5, 5.1.2, 5.1.4, 5.4.2,
6.1.1

J Alberto Espinosa, Sandra A Slaughter, Robert E Kraut, and James D Herbsleb. Fa-
miliarity, Complexity, and Team Performance in Geographically Distributed Soft-

147

http://doi.acm.org/10.1145/2089125.2089127
http://doi.acm.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2145204.2145396
http://www.sciencedirect.com/science/article/pii/S0883902602001271
http://www.sciencedirect.com/science/article/pii/S0883902602001271
http://dx.doi.org/10.1111/j.1083-6101.2007.00394.x
http://dx.doi.org/10.1007/s10606-005-9000-1
http://dx.doi.org/10.1007/s10606-005-9000-1

ware Development. Organization Science, 18(4):613–630, 2007. doi: 10.1287/orsc.
1070.0297. URL http://orgsci.journal.informs.org/content/18/
4/613.abstract. 4.4.1

Andrew J Flanagin and Miriam J Metzger. Trusting expert- versus user-generated ratings
online: The role of information volume, valence, and consumer characteristics. Com-
puters in Human Behavior, 29(4):1626–1634, 2013. ISSN 0747-5632. doi: http://dx.
doi.org/10.1016/j.chb.2013.02.001. URL http://www.sciencedirect.com/
science/article/pii/S0747563213000575. 6.2.2, 6.4.1

A Forte and A Bruckman. Scaling Consensus: Increasing Decentralization in Wikipedia
Governance, 2008. 2.1, 5.1.1, 5.4.2

William W Gaver. Technology Affordances. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’91, pages 79–84, New York, NY, USA,
1991. ACM. ISBN 0-89791-383-3. doi: 10.1145/108844.108856. URL http://
doi.acm.org/10.1145/108844.108856. 8.1

G Gousios and D Spinellis. GHTorrent: Github’s data from a firehose. In Mining Software
Repositories (MSR), 2012 9th IEEE Working Conference on, pages 12–21, jun 2012.
doi: 10.1109/MSR.2012.6224294. 7.3.1

Georgios Gousios, Martin Pinzger, and Arie van Deursen. An Exploratory Study of the
Pull-based Software Development Model. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 345–355, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568260. URL http:
//doi.acm.org/10.1145/2568225.2568260. 5, 5.4.1

Carl Gutwin, Reagan Penner, and Kevin Schneider. Group Awareness in Distributed Soft-
ware Development. In Proceedings of the 2004 ACM Conference on Computer Sup-
ported Cooperative Work, CSCW ’04, pages 72–81, New York, NY, USA, 2004. ACM.
ISBN 1-58113-810-5. doi: 10.1145/1031607.1031621. URL http://doi.acm.
org/10.1145/1031607.1031621. 2.2, 6.1.1

Anja Guzzi, Alberto Bacchelli, Yann Riche, and Arie van Deursen. Supporting Develop-
ers’ Coordination in the IDE. In Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing, CSCW ’15, pages 518–532,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2922-4. doi: 10.1145/2675133.
2675177. URL http://doi.acm.org/10.1145/2675133.2675177. 2.2

148

http://orgsci.journal.informs.org/content/18/4/613.abstract
http://orgsci.journal.informs.org/content/18/4/613.abstract
http://www.sciencedirect.com/science/article/pii/S0747563213000575
http://www.sciencedirect.com/science/article/pii/S0747563213000575
http://doi.acm.org/10.1145/108844.108856
http://doi.acm.org/10.1145/108844.108856
http://doi.acm.org/10.1145/2568225.2568260
http://doi.acm.org/10.1145/2568225.2568260
http://doi.acm.org/10.1145/1031607.1031621
http://doi.acm.org/10.1145/1031607.1031621
http://doi.acm.org/10.1145/2675133.2675177

Aaron Halfaker, Aniket Kittur, and John Riedl. Don’t Bite the Newbies: How Reverts
Affect the Quantity and Quality of Wikipedia Work. In Proceedings of the 7th Inter-
national Symposium on Wikis and Open Collaboration, WikiSym ’11, pages 163–172,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0909-7. doi: 10.1145/2038558.
2038585. URL http://doi.acm.org/10.1145/2038558.2038585. 2.1,
5.1.1, 5.1.4

Vincent J Hellendoorn, Premkumar T Devanbu, and Alberto Bacchelli. Will They Like
This?: Evaluating Code Contributions with Language Models. In Proceedings of the
12th Working Conference on Mining Software Repositories, MSR ’15, pages 157–167,
Piscataway, NJ, USA, 2015. IEEE Press. URL http://dl.acm.org/citation.
cfm?id=2820518.2820539. 6.4.2

Alicia Iriberri and Gondy Leroy. A life-cycle perspective on online community suc-
cess. ACM Comput. Surv., 41(2):11:1—-11:29, feb 2009. ISSN 0360-0300. doi:
10.1145/1459352.1459356. URL http://doi.acm.org/10.1145/1459352.
1459356. 4.1.2, 7.1.2, 7.2.3, 7.5.2

Jay J Janney and Timothy B Folta. Signaling through private equity placements
and its impact on the valuation of biotechnology firms. Journal of Business Ven-
turing, 18(3):361–380, 2003. ISSN 0883-9026. doi: http://dx.doi.org/10.1016/
S0883-9026(02)00100-3. URL http://www.sciencedirect.com/science/
article/pii/S0883902602001003. 2.4, 6.1.3

N. P. Jewell and A. Hubbard. Analysis of Longitudinal Studies in Epidemiology. Chapman
and Hall, New York, 2010. 6.3.1

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German,
and Daniela Damian. The Promises and Perils of Mining GitHub. In Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014, pages 92–101,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2863-0. doi: 10.1145/2597073.
2597074. URL http://doi.acm.org/10.1145/2597073.2597074. 6.2.2

Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M Ger-
man. Open Source-style Collaborative Development Practices in Commercial Projects
Using GitHub. In Proceedings of the 37th International Conference on Software En-
gineering - Volume 1, ICSE ’15, pages 574–585, Piscataway, NJ, USA, 2015. IEEE
Press. ISBN 978-1-4799-1934-5. URL http://dl.acm.org/citation.cfm?
id=2818754.2818825. 2.3, 8.1

149

http://doi.acm.org/10.1145/2038558.2038585
http://dl.acm.org/citation.cfm?id=2820518.2820539
http://dl.acm.org/citation.cfm?id=2820518.2820539
http://doi.acm.org/10.1145/1459352.1459356
http://doi.acm.org/10.1145/1459352.1459356
http://www.sciencedirect.com/science/article/pii/S0883902602001003
http://www.sciencedirect.com/science/article/pii/S0883902602001003
http://doi.acm.org/10.1145/2597073.2597074
http://dl.acm.org/citation.cfm?id=2818754.2818825
http://dl.acm.org/citation.cfm?id=2818754.2818825

Steven J Karau and Kipling D Williams. Social loafing: A meta-analytic review and
theoretical integration. Journal of Personality and Social Psychology, 65(4):681–706,
1993. ISSN 1939-1315(Electronic);0022-3514(Print). doi: 10.1037/0022-3514.65.4.
681. 2.1, 7.1.2

Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Using Dynamic and Contextual Features
to Predict Issue Lifetime in GitHub Projects. In Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, pages 291–302, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4186-8. doi: 10.1145/2901739.2901751. URL
http://doi.acm.org/10.1145/2901739.2901751. 2.3, 7.1.3

A Kittur, E H Chi, B A Pendleton, B Suh, and T Mytkowicz. Power of the few vs. wisdom
of the crowd: Wikipedia and the rise of the bourgeoisie. 25th Annual ACM Conference
on Human Factors in Computing Systems (CHI 2007), 2007a. URL http://www.
parc.com/research/publications/details.php?id=5904. 2.1, 5.1.1,
5.4.2

Aniket Kittur, Bongwon Suh, Bryan A Pendleton, and Ed H Chi. He Says, She Says:
Conflict and Coordination in Wikipedia. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’07, pages 453–462, New York, NY,
USA, 2007b. ACM. ISBN 978-1-59593-593-9. doi: 10.1145/1240624.1240698. URL
http://doi.acm.org/10.1145/1240624.1240698. 2.1

Andrew J Ko and Parmit K Chilana. Design, Discussion, and Dissent in Open Bug Reports.
In Proceedings of the 2011 iConference, iConference ’11, pages 106–113, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0121-3. doi: 10.1145/1940761.1940776.
URL http://doi.acm.org/10.1145/1940761.1940776. 2.2, 5.1.2, 5.1.4

Robert E Kraut and Paul Resnick. Building Successful Online Communities: Evidence-
Based Social Design. MIT Press, Cambridge, MA, 2012. 2.1, 4.1.2, 5.1.1, 5.1.3, 5.1.4,
5.4.2, 7.1.2

Travis Kriplean, Ivan Beschastnikh, David W McDonald, and Scott A Golder. Community,
Consensus, Coercion, Control: Cs*W or How Policy Mediates Mass Participation. In
Proceedings of the 2007 International ACM Conference on Supporting Group Work,
GROUP ’07, pages 167–176, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
845-9. doi: 10.1145/1316624.1316648. URL http://doi.acm.org/10.1145/
1316624.1316648. 2.1, 5.1.1, 5.4.2

Karim R Lakhani and Eric von Hippel. How open source software works: “free” user-to-
user assistance. Research Policy, 32(6):923–943, 2003. ISSN 0048-7333. doi: 10.1016/

150

http://doi.acm.org/10.1145/2901739.2901751
http://www.parc.com/research/publications/details.php?id=5904
http://www.parc.com/research/publications/details.php?id=5904
http://doi.acm.org/10.1145/1240624.1240698
http://doi.acm.org/10.1145/1940761.1940776
http://doi.acm.org/10.1145/1316624.1316648
http://doi.acm.org/10.1145/1316624.1316648

S0048-7333(02)00095-1. URL http://www.sciencedirect.com/science/
article/pii/S0048733302000951. 6.2.2, 6.2.2, 7, 7.1.1, 7.2.2

Karim R. Lakhani and Robert Wolf. Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects. In Joe Feller, Brian
Fitzgerald, Scott Hissam, and Karim R. Lakhani, editors, Perspectives on Free and Open
Source Software, pages 3–22. MIT Press, Cambridge, MA, 2005. 7

Josh Lerner and Jean Tirole. Some Simple Economics of Open Source. The Journal of In-
dustrial Economics, 50(2):197–234, 2002. ISSN 1467-6451. doi: 10.1111/1467-6451.
00174. URL http://dx.doi.org/10.1111/1467-6451.00174. 5, 5.1.3,
5.1.4, 5.4.2, 7, 7.1.1

Thomas W Malone and Kevin Crowston. The Interdisciplinary Study of Coordination.
ACM Comput. Surv., 26(1):87–119, 1994. ISSN 0360-0300. doi: 10.1145/174666.
174668. URL http://doi.acm.org/10.1145/174666.174668. 1, 1.2, A

Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression formation in online peer
production: activity traces and personal profiles in github. In Proceedings of the 2013
conference on Computer supported cooperative work, CSCW ’13, pages 117–128, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1331-5. doi: 10.1145/2441776.
2441792. URL http://doi.acm.org/10.1145/2441776.2441792. 2.3,
2.4, 4.1.3, 4.1.4, 4.2.2, 4.4.2, 5, 5.1.3, 5.1.4, 5.4.2, 6.1.2, 6.1.3, 6.2.2, 6.4.2, 8.2

Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol., 11
(3):309–346, jul 2002. ISSN 1049-331X. doi: 10.1145/567793.567795. URL http:
//doi.acm.org/10.1145/567793.567795. 2.2, 4.1.4, 5, 5.1.3, 5.4.3, 6.1.1,
6.2.2, 7, 7.2.2

Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and Yun-
wen Ye. Evolution patterns of open-source software systems and communities. In
Proceedings of the International Workshop on Principles of Software Evolution, IW-
PSE ’02, pages 76–85, New York, NY, USA, 2002. ACM. ISBN 1-58113-545-9.
doi: 10.1145/512035.512055. URL http://doi.acm.org/10.1145/512035.
512055. 4.1.1, 4.1.4

Robert M O’brien. A caution regarding rules of thumb for variance inflation factors.
Quality & Quantity, 41(5):673–690, 2007. 6.3.1, 7.3.3

151

http://www.sciencedirect.com/science/article/pii/S0048733302000951
http://www.sciencedirect.com/science/article/pii/S0048733302000951
http://dx.doi.org/10.1111/1467-6451.00174
http://doi.acm.org/10.1145/174666.174668
http://doi.acm.org/10.1145/2441776.2441792
http://doi.acm.org/10.1145/567793.567795
http://doi.acm.org/10.1145/567793.567795
http://doi.acm.org/10.1145/512035.512055
http://doi.acm.org/10.1145/512035.512055

Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schneider.
Creating a shared understanding of testing culture on a social coding site. In Pro-
ceedings of the 2013 International Conference on Software Engineering, ICSE ’13,
pages 112–121, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-
3. URL http://dl.acm.org/citation.cfm?id=2486788.2486804. 2.3,
4.1.3, 4.1.4, 4.4.1, 6.1.2

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2013. URL http://www.r-project.
org/. 4.2.3

Eric S Raymond. The Jargon File, version 4.4.8, 2004. URL http://www.catb.
org/jargon/index.html. 7.1.2, 7.3.2, 7.5.3

Peter C Rigby and Margaret-Anne Storey. Understanding Broadcast Based Peer Review
on Open Source Software Projects. In Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE ’11, pages 541–550, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0445-0. doi: 10.1145/1985793.1985867. URL
http://doi.acm.org/10.1145/1985793.1985867. 2.2, 6.1.1

Peter C Rigby, Daniel M German, and Margaret-Anne Storey. Open source software
peer review practices: a case study of the apache server. In Proceedings of the 30th
international conference on Software engineering, pages 541–550. ACM, 2008. 2.2,
5.1.2

Walt Scacchi. Understanding the requirements for developing open source software sys-
tems. In Software, IEE Proceedings-, volume 149, pages 24–39. IET, 2002. 5.4.3

Walt Scacchi. Free and open source development practices in the game community. Soft-
ware, IEEE, 21(1):59–66, 2004. 5.4.3

Walt Scacchi. Free/Open Source Software Development: Recent Research Results and
Methods. In Marvin V Zelkowitz, editor, Architectural Issues, volume 69 of Ad-
vances in Computers, pages 243–295. Elsevier, 2007. doi: http://dx.doi.org/10.1016/
S0065-2458(06)69005-0. URL http://www.sciencedirect.com/science/
article/pii/S0065245806690050. 4, 4.4.1

Chris Scaffidi, Chris Bogart, Margaret Burnett, Allen Cypher, Brad Myers, and Mary
Shaw. Using traits of web macro scripts to predict reuse. Journal of Visual Languages
& Computing, 21(5):277–291, 2010. ISSN 1045-926X. doi: http://dx.doi.org/10.

152

http://dl.acm.org/citation.cfm?id=2486788.2486804
http://www.r-project.org/
http://www.r-project.org/
http://www.catb.org/jargon/index.html
http://www.catb.org/jargon/index.html
http://doi.acm.org/10.1145/1985793.1985867
http://www.sciencedirect.com/science/article/pii/S0065245806690050
http://www.sciencedirect.com/science/article/pii/S0065245806690050

1016/j.jvlc.2010.08.003. URL http://www.sciencedirect.com/science/
article/pii/S1045926X10000443. 2.4, 6.1.3

William R Shadish, Thomas D Cook, and Donald Thomas Campbell. Experimental
and quasi-experimental designs for generalized causal inference. Wadsworth Cengage
learning, 2002. 7.5.4

Sonali K Shah. Motivation, Governance, and the Viability of Hybrid Forms in Open
Source Software Development. Manage. Sci., 52(7):1000–1014, jul 2006. ISSN 0025-
1909. doi: 10.1287/mnsc.1060.0553. URL http://dx.doi.org/10.1287/
mnsc.1060.0553. 1, 4.1.1

Leif Singer, Fernando Figueira Filho, Brendan Cleary, Christoph Treude, Margaret-Anne
Storey, and Kurt Schneider. Mutual Assessment in the Social Programmer Ecosys-
tem: An Empirical Investigation of Developer Profile Aggregators. In Proceed-
ings of the 2013 Conference on Computer Supported Cooperative Work, CSCW ’13,
pages 103–116, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1331-5. doi:
10.1145/2441776.2441791. URL http://doi.acm.org/10.1145/2441776.
2441791. 2.3

Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. Software Engineering at
the Speed of Light: How Developers Stay Current Using Twitter. In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014, pages 211–221,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.
2568305. URL http://doi.acm.org/10.1145/2568225.2568305. 1.2,
2.3, 6, 6.1.2, 8.3

Michael Spence. Job Market Signaling. The Quarterly Journal of Economics, 87(3):355–
374, 1973. ISSN 00335533, 15314650. URL http://www.jstor.org/stable/
1882010. 1.3, 2.4, 2.4, 6.1.3, 6.2.2, 6.2.2, 8.2

Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. Social Bar-
riers Faced by Newcomers Placing Their First Contribution in Open Source Software
Projects. In Proceedings of the 18th ACM Conference on Computer Supported Coop-
erative Work & Social Computing, CSCW ’15, pages 1379–1392, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-2922-4. doi: 10.1145/2675133.2675215. URL
http://doi.acm.org/10.1145/2675133.2675215. 2.2

Katherine J Stewart and Sanjay Gosain. The Impact of Ideology on Effectiveness in Open
Source Software Development Teams. MIS Quarterly, 30(2):291–314, 2006a. ISSN

153

http://www.sciencedirect.com/science/article/pii/S1045926X10000443
http://www.sciencedirect.com/science/article/pii/S1045926X10000443
http://dx.doi.org/10.1287/mnsc.1060.0553
http://dx.doi.org/10.1287/mnsc.1060.0553
http://doi.acm.org/10.1145/2441776.2441791
http://doi.acm.org/10.1145/2441776.2441791
http://doi.acm.org/10.1145/2568225.2568305
http://www.jstor.org/stable/1882010
http://www.jstor.org/stable/1882010
http://doi.acm.org/10.1145/2675133.2675215

02767783. URL http://www.jstor.org/stable/25148732. 5.4.2, 7.1.2,
7.3.2

Katherine J Stewart and Sanjay Gosain. The moderating role of development stage in
free/open source software project performance. Software Process: Improvement and
Practice, 11(2):177–191, 2006b. ISSN 1099-1670. doi: 10.1002/spip.258. URL http:
//dx.doi.org/10.1002/spip.258. 4.1.1, 4.1.4, 7.1.1, 7.2.3

Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and Alexey
Zagalsky. The (R) Evolution of Social Media in Software Engineering. In Proceedings
of the on Future of Software Engineering, FOSE 2014, pages 100–116, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2865-4. doi: 10.1145/2593882.2593887. URL
http://doi.acm.org/10.1145/2593882.2593887. 2.3, 6

Anselm L Strauss, Juliet Corbin, and Others. Basics of qualitative research, volume 15.
Sage Newbury Park, CA, 1990. 5.2.2

Stephanie Teasley, Lisa Covi, M S Krishnan, and Judith S Olson. How Does Radical
Collocation Help a Team Succeed? In Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, CSCW ’00, pages 339–346, New York, NY,
USA, 2000. ACM. ISBN 1-58113-222-0. doi: 10.1145/358916.359005. URL http:
//doi.acm.org/10.1145/358916.359005. 5.4.1

W Ben Towne, Aniket Kittur, Peter Kinnaird, and James Herbsleb. Your Process is
Showing: Controversy Management and Perceived Quality in Wikipedia. In Proceed-
ings of the 2013 Conference on Computer Supported Cooperative Work, CSCW ’13,
pages 1059–1068, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1331-5. doi:
10.1145/2441776.2441896. URL http://doi.acm.org/10.1145/2441776.
2441896. 2.1

Erik H Trainer, Chalalai Chaihirunkarn, Arun Kalyanasundaram, and James D Herbsleb.
From Personal Tool to Community Resource: What’s the Extra Work and Who Will Do
It? In Proceedings of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing, CSCW ’15, pages 417–430, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-2922-4. doi: 10.1145/2675133.2675172. URL http://
doi.acm.org/10.1145/2675133.2675172. 6.2.2, 6.2.2, 6.2.2, 6.4.1, 8.1

C Treude and M Storey. Awareness 2.0: staying aware of projects, developers and tasks
using dashboards and feeds. In Software Engineering, 2010 ACM/IEEE 32nd Interna-
tional Conference on, volume 1, pages 365–374, may 2010. doi: 10.1145/1806799.
1806854. 8.3

154

http://www.jstor.org/stable/25148732
http://dx.doi.org/10.1002/spip.258
http://dx.doi.org/10.1002/spip.258
http://doi.acm.org/10.1145/2593882.2593887
http://doi.acm.org/10.1145/358916.359005
http://doi.acm.org/10.1145/358916.359005
http://doi.acm.org/10.1145/2441776.2441896
http://doi.acm.org/10.1145/2441776.2441896
http://doi.acm.org/10.1145/2675133.2675172
http://doi.acm.org/10.1145/2675133.2675172

Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of Social and Technical Factors
for Evaluating Contribution in GitHub. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, pages 356–366, New York, NY, USA,
2014a. ACM, ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568315. URL
http://doi.acm.org/10.1145/2568225.2568315. 1.4, 0, 5.1.3, 5.1.4,
5.2.1, 5.3.3, 5.3.4, 5.4.1, 6.1.2, 6.2.2, 8.2, 8.3, 8.4

Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s Talk About It: Evaluating Con-
tributions through Discussion in GitHub. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE 2014,
pages 144–154, New York, NY, USA, 2014b. ACM. ISBN 978-1-4503-3056-5. doi:
10.1145/2635868.2635882. URL http://doi.acm.org/10.1145/2635868.
2635882. 1.4, 0, 7, 8.3

Ruben van Wendel de Joode. Managing conflicts in open source communities. Electronic
Markets, 14(2):104–113, 2004. 5

Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark G J van den Brand, Alexander
Serebrenik, Premkumar Devanbu, and Vladimir Filkov. Gender and Tenure Diversity
in GitHub Teams. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI ’15, pages 3789–3798, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3145-6. doi: 10.1145/2702123.2702549. URL http://
doi.acm.org/10.1145/2702123.2702549. 2.3, 7.1.3

F B Viegas, M Wattenberg, J Kriss, and F van Ham. Talk Before You Type: Coordination
in Wikipedia. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International
Conference on, page 78, 2007. doi: 10.1109/HICSS.2007.511. 2.1

Fernanda B Viégas, Martin Wattenberg, and Kushal Dave. Studying Cooperation and
Conflict Between Authors with History Flow Visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, pages 575–
582, New York, NY, USA, 2004. ACM. ISBN 1-58113-702-8. doi: 10.1145/985692.
985765. URL http://doi.acm.org/10.1145/985692.985765. 5.1.1, 5.1.4

Georg von Krogh, Sebastian Spaeth, and Karim R Lakhani. Community, joining,
and specialization in open source software innovation: a case study. Research Pol-
icy, 32(7):1217–1241, jul 2003. ISSN 0048-7333. doi: http://dx.doi.org/10.1016/
S0048-7333(03)00050-7. URL http://www.sciencedirect.com/science/
article/pii/S0048733303000507. 2.2, 4.1.1, 4.1.4, 4.4.1, 5.1.2, 5.1.3, 5.1.4,
6.2.2

155

http://doi.acm.org/10.1145/2568225.2568315
http://doi.acm.org/10.1145/2635868.2635882
http://doi.acm.org/10.1145/2635868.2635882
http://doi.acm.org/10.1145/2702123.2702549
http://doi.acm.org/10.1145/2702123.2702549
http://doi.acm.org/10.1145/985692.985765
http://www.sciencedirect.com/science/article/pii/S0048733303000507
http://www.sciencedirect.com/science/article/pii/S0048733303000507

Jeffrey M Wooldridge. Introductory econometrics: A modern approach. Nelson Educa-
tion, 2015. 7.3.3

Margarethe F Wiersema Yan Zhang. Stock Market Reaction to CEO Certification: The
Signaling Role of CEO Background. Strategic Management Journal, 30(7):693–710,
2009. ISSN 01432095, 10970266. URL http://www.jstor.org/stable/
20536072. 6.4.1

Y Yu, H Wang, V Filkov, P Devanbu, and B Vasilescu. Wait for It: Determinants of Pull
Request Evaluation Latency on GitHub. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, pages 367–371, 2015. doi: 10.1109/MSR.2015.42.
2.3

Minghui Zhou and Audris Mockus. What Make Long Term Contributors: Willingness and
Opportunity in OSS Community. In Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, pages 518–528, Piscataway, NJ, USA, 2012. IEEE
Press. ISBN 978-1-4673-1067-3. URL http://dl.acm.org/citation.cfm?
id=2337223.2337284. 2.2, 7.1.1, 7.2.3, 7.3.2, 7.5.1

156

http://www.jstor.org/stable/20536072
http://www.jstor.org/stable/20536072
http://dl.acm.org/citation.cfm?id=2337223.2337284
http://dl.acm.org/citation.cfm?id=2337223.2337284

	1 Developers Using Signals in Transparent Development Environments
	1.1 Transparency Enables Decentralized Coordination
	1.2 Challenges in Using and Understanding Transparency
	1.3 Approach: Signaling Theory to Model Information Usage in Transparent Environments
	1.4 Thesis: Software Developers Using Signals in Transparent Environments
	1.5 Contributions
	1.6 Outline

	2 Related Work
	2.1 Online Communities
	2.2 Open Source Software
	2.3 Transparent Development Environments
	2.4 Signaling Theory
	2.5 Summary

	3 Research Context: GitHub
	3.1 Transparency Features in GitHub
	3.2 Contributions in GitHub: Pull Requests, Issues, Comments

	4 Signals for Evaluating Contributions in GitHub
	4.1 Contributions in Transparent Development Environments
	4.1.1 Contributions in Open Source Software
	4.1.2 Contribution in Online Communities
	4.1.3 Evaluating Contributions in Transparent Development Environments
	4.1.4 Hypotheses Development

	4.2 Methods
	4.2.1 Pull Request Selection
	4.2.2 Signal Measures
	4.2.3 Analysis

	4.3 Results
	4.3.1 Pull Request-Level Measures
	4.3.2 User-Level Measures
	4.3.3 Repository-Level Measures

	4.4 Discussion
	4.4.1 Technical Norms and Social Connection
	4.4.2 Decision-Making and Highly Discussed Contributions
	4.4.3 Audience Pressures
	4.4.4 Limitations

	4.5 Conclusion

	5 Negotiating Contributions through Discussion in GitHub
	5.1 Contribution and Discussion in Online Work
	5.1.1 Discussions around Contributions in Online Communities
	5.1.2 Discussions around Contributions in Open Source Software
	5.1.3 Social Signals in Transparent Development Environments
	5.1.4 Development of Research Questions

	5.2 Method
	5.2.1 Data Collection
	5.2.2 Data Analysis

	5.3 Results
	5.3.1 Issues Raised Around Code Contributions
	5.3.2 Methods of Influencing the Decision Process for Code Contributions
	5.3.3 Outcomes for Proposed Code Contributions
	5.3.4 Submitter's Prior Experience

	5.4 Discussion
	5.4.1 Stakeholders Influencing the Outcome
	5.4.2 Power Relationships in Evaluating Contributions
	5.4.3 Developing Software Requirements through Discussion

	5.5 Conclusion

	6 Signals for Evaluating Projects for Use or Contribution
	6.1 Open Source Software and Signaling
	6.1.1 Awareness and Open Source Software
	6.1.2 Signal Usage in Transparent Development Environments
	6.1.3 Signaling Theory as a Theoretical Lens
	6.1.4 Research Questions Development

	6.2 Qualitative Exploratory Interview Study
	6.2.1 Methods
	6.2.2 Results

	6.3 Quantitative Validation Analysis
	6.3.1 Methods
	6.3.2 Results

	6.4 Discussion
	6.4.1 Evaluating Projects and Signal Fit
	6.4.2 Implications for Transparent Development Environments
	6.4.3 Limitations

	6.5 Conclusion

	7 Evaluating and Creating Signals for Community Support in Software Projects
	7.1 Community Support in Open Source
	7.1.1 Community Involvement in Open Source Software
	7.1.2 Community Involvement in Online Communities
	7.1.3 Developers Using Information in Transparent Environments

	7.2 Preliminary Interview Study
	7.2.1 Interview Methodology
	7.2.2 Community Support in Open Source Software Projects
	7.2.3 Research Question Development

	7.3 Community Support Modeling
	7.3.1 Dataset Collection
	7.3.2 Measure Development
	7.3.3 Analysis

	7.4 Results
	7.4.1 Model Fit
	7.4.2 Community Support Predictors
	7.4.3 Project State Measures

	7.5 Discussion
	7.5.1 Predicting Community Support
	7.5.2 Project State Affecting Community Support
	7.5.3 Implications for Software Engineering
	7.5.4 Limitations

	7.6 Conclusion

	8 Future Work
	8.1 Methodology for Eliciting and Improving Signals
	8.2 Designing Improved Signals for Software Developers
	8.3 Designing Developer Tools and Transparent Development Environments
	8.4 Dynamic Signals for Tasks, Projects, and Users

	9 Conclusions
	A Pull Request Extended Discussion Sample
	Glossary
	Bibliography

