
CARNEGIE MELLON UNIVERSITY

SEMINAL PAPERS IN SOFTWARE ENGINEERING:

THE CARNEGIE MELLON CANONICAL COLLECTION

Authors: Mary Shaw (editor), Jonathan Aldrich, Travis D. Breaux, David Garlan, James D. Herbsleb,
Christian Kästner, Claire Le Goues, and William L. Scherlis

September 2015

INSTITUTE FOR SOFTWARE RESEARCH
SCHOOL OF COMPUTER SCIENCE
Technical Report#: CMU-ISR-15-107

The Carnegie Mellon Canon in Software Engineering Page 1

Seminal Papers in Software Engineering

The Carnegie Mellon Canonical Collection

Fall 2015 revision

Mary Shaw (editor), Jonathan Aldrich, Travis D. Breaux, David Garlan,

Christian Kästner, Claire Le Goues, and William L. Scherlis

To understand the context of current research, it is essential to understand how current results evolved

from early fundamental papers. These classic papers develop timeless ideas that transcend technology

changes, and the ideas embodied in their solutions often apply to current problems (and, indeed, are

reinvented by researchers who are ignorant of the classic literature).

Criteria for selection of the papers in the Canon include

 Papers are selected for their overall significance. The papers should usually be the principal or

definitive papers about an idea, rather than expository papers written after the idea has

matured (these may appear in other reading lists). A rule of thumb is that the paper in the

Canon should be the one you’d cite as the fundamental paper in its area.

 Classic, timeless papers prove their significance over time. It follows that the papers of the

Canon will generally be published a minimum of 12-15 years ago.

 Some of the entries may be books. In these cases, the books should be important in their own

right, but the entry should highlight one or a few specific passages in the book to focus on.

Students should develop a sense of the rest of the book as well.

 Because the size of the Canon is limited, authors will rarely be represented by multiple papers,

and redundancy will generally be avoided.

 All students should be familiar with all the papers, and the SE Research Core course should

cover them. In practice this limits the size of the Canon to about 25 papers.

The Carnegie Mellon Software Engineering faculty has selected this set of papers as a canonical

collection of significant classic papers that balances completeness with reasonable size. All our software

engineering students should read and understand these papers (or selections from books). Notes in this

document explain the significance of the papers. We will endeavor to cover them in the Core Course in

Software Engineering Research, and other courses may feel free to assume that students have read

them.

The Carnegie Mellon Canon in Software Engineering Page 2

 The Canon as of Fall 2015

[AG94] Robert Allen and David Garlan. “Formalizing Architectural Connection.” Proceedings of 16th

International Conference on Software Engineering, 1994, pp. 71-80.

doi: 10.1109/ICSE.1994.296767

This paper helped establish software architecture as a new discipline by focusing on the connectors as

first class entities that admitted a formal description and could support various kinds of analysis. When

reading this paper pay attention to the kinds of concerns that the formalism addresses – details of the

notation and proof of the theorem are less important. [dg]

 [Bo88] Barry W. Boehm. “A spiral model of software development and enhancement.” IEEE Computer,

vol. 21, pp. 61-72, May 1988.

doi: 10.1109/2.59

This paper describes an alternative to linear models of software development such as the Waterfall

model. The Waterfall model was introduced (by Win Royce and Barry Boehm) some years earlier not

to force a linear constraint on process, as is often depicted, but rather as a way to gain earlier attention

to software considerations in an overall process of systems engineering. At TRW, where Boehm was

employed, the success of waterfall was so significant that it precluded many essential software

engineering practices, and particularly the development of experimental prototypes. The spiral model,

an early codification of the large family of existing iterative models, was developed to provide an

explicit process framework to enable identification of engineering uncertainties early in a process and,

through a variety of mechanisms, mitigation of those uncertainties. The uncertainties can relate to a

variety of engineering commitments that must be made in a successful software project, including

architecture, requirements, performance, user experience, etc.[jawls]

[Br95] Frederick P. Brooks. The Mythical Man-Month: Essays in Software Engineering, 2nd ed. Addison-

Wesley Professional, 1995.In particular, Ch 16 (pp.179-206), the 1986 “No Silver Bullet” paper.

Available: http://www.amazon.com/

This classic about the nature of software development and software project management is an easy

read, and many gems lie inside. The first 15 chapters come from the first edition, and this second

edition adds the classic 1986 “No Silver Bullet” paper (chapter 16) together with Brooks’ 10-years-after

reflections on “No Silver Bullet” (Ch 17) and a retrospective evaluation of the first edition (Ch18, 19).

The Canon highlights Chapter 16, “No Silver Bullet”, which analyzes the difference between essential

and accidental difficulties in software development. Brooks argues that most accidental complexity has

already been eliminated from development and that most remaining complexity is unavoidable. The

article then discusses potential strategies to address essential complexity. The discussion is valuable

to ground and frame research projects with realistic assumptions and expectations. The specific

technologies are a quarter century old, so the significance of the paper lies in the nature of this

distinction. [ms, ck]

 [CES86]E.M. Clarke, E.A. Emerson, A.P. Sistla. “Automatic verification of finite-state concurrent

systems using temporal logic specifications.” ACM Transactions on Programming Languages and

Systems, vol. 8, pp. 244-263, Apr.1986.

doi: 10.1145/5397.5399

This is one of the two papers that introduced model checking. Although highly technical in nature, the

paper remains quite readable in the sense that the topic is introductory and the terminology has not

significantly changed. Since this paper was published, the simple idea it describes has been scaled up

to check systems with enormous state spaces, with applications in software engineering that include

verifying device drivers and checking security protocols. When reading this paper, focus especially on

sections 1-3 and 5.[ja]

http://dx.doi.org/10.1109/ICSE.1994.296767
http://dx.doi.org/10.1109/2.59
http://www.amazon.com/
http://dx.doi.org/10.1145/5397.5399

The Carnegie Mellon Canon in Software Engineering Page 3

[Co68] Melvin E. Conway. “How Do Committees Invent?” Datamation, vol. 14, pp. 28–31, Apr. 1968.
Available: http://www.melconway.com/Home/Committees_Paper.html

This paper made the observation that the design of a system reflects the structure of the organization

doing the design--an observation that is now called Conway's Law. The essence of the idea, as

fleshed out in the paper, is that teams designing two components that interact must inevitably

communicate about the interaction, creating an alignment between the structure of the system and the

design teams. As more and more software systems are designed by multiple teams, possibly

scattered in multiple locations, the principles in this paper are critical for software designers and

researchers to understand. [ja]

[CKI88] Bill Curtis, Herb Krasner, and Neil Iscoe. “A Field Study of the Software Design Process for

Large Systems.” Communications of the ACM, vol. 31, pp. 1268-1287, Nov. 1988.

doi: 10.1145/50087.50089

This paper is one of the very first systematic empirical studies of large scale software development. In

a turn that surprised many technically trained researchers, as well as behavioral scientists focused on

studying individual programmers, this study points to several social and organizational factors as the

primary obstacles to effective development. It is the source of a few well-known quotations, e.g.,

"Writing code isn't the problem, understanding the problem is the problem" and for placing a focus on

"great designers" and their social as well as technical abilities. Notice how they structure their inquiry

and their results around the organizational levels at which problems manifest themselves. This paper

is a stellar example of effectively forging a clear story from a confusing jumble of qualitative results. [jh]

A very early qualitative/empirical account of software engineering teams and projects, with a focus on

activities prior to the development and testing of code. This paper highlights a variety of issues related

to communication, models, tools, commitment-making, requirements, architecture, etc. Several of the

models developed and issues presented foreshadow more modern considerations of process,

requirements, teamwork, and communication. [wls]

 [DK76] Frank DeRemer and Hans Kron. “Programming-in-the-large versus programming-in-the-small.”

IEEE Transactions on Software Engineering, vol.SE-2, pp. 80-86, Jun. 1976.

doi: 10.1109/TSE.1976.233534

In 1976, most research about software systems focused on the code within modules. This paper

introduced the problem of specifying and reasoning about the relations among modules. The notation

they introduce may not have stood the test of time, but this was the seminal paper to present the

cogent argument that the organization of code modules into systems was worthy of systematic

reasoning. [ms]

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. “Architectural Mismatch: Why Reuse Is So

Hard.” IEEE Software, vol.26, pp.17-26, 1995.

doi: 10.1109/52.469757

This paper introduced the term “Architecture Mismatch.” It is interesting both because of the concept

that it is attempting to name and understand, and also as an example of a paper that attempted to “turn

a lemon into lemonade” – or, using a negative experience to try to understand a general class of

problems. [dg]

http://www.melconway.com/Home/Committees_Paper.html
http://dx.doi.org/10.1145/50087.50089
http://dx.doi.org/10.1109/TSE.1976.233534
http://dx.doi.org/10.1109/52.469757

The Carnegie Mellon Canon in Software Engineering Page 4

[Ha87] David Harel. “Statecharts: A Visual Formalism For Complex Systems.” Science of Computer

Programing, vol, 8, pp.231-274,1987.

doi: 10.1016/0167-6423(87)90035-9

This paper is the primary early reference for Statecharts. Since this paper was published, a number of

variants have been produced, most notably the version incorporated in the UML standard. These all

share the basic idea of a visual formalism that attempts to provide a formal but understandable

representation of system behavior. Read this paper for the key ideas; judge for yourself how the core

concepts contribute to qualities like understandability, compactness, expressiveness, and simplicity (or

not). The Canon highlights Sections 1-3 and 4.1 as the most important. [dg]

[Ho72] C.A.R. Hoare. “Proofs of correctness of data representations.” Acta Informatica, vol.1, pp. 271-

281, 1972.

doi: 10.1007/BF00289507

This paper addresses the problem of reasoning about the correspondence between behaviors of two

different representations of a system. The setting for the paper is abstract data types, but the approach

applies as well to other abstractions, for example transform spaces, simulations, and higher-level

languages. Read the paper to understand the reasoning; you need to trace through the formalism only

to the extent necessary to do that. This paper complements Chapter 2 of Siewiorek, Bell, and Newell,

which emphasizes the models at various levels rather than the proof of correspondence.

This paper was written at the height of the first wave of program verification the beginning of the age of

information hiding. It created a bridge between the two, showing how the rigorous reasoning of the

former could be connected to the information propagation restrictions of the latter. For our purposes,

though, the significance of the paper is the application of Hoare’s approach to abstractions of all kinds.

For example, when you write a simulator, you should provide assurance that its implementation

produces the desired effect in the simulation model. When you engage in model‐driven design, you

need to have confidence that correct models will lead to correct implementations. Whenever you

decide to approach a problem by introducing an abstraction, you incur an obligation to establish

consistency between the abstraction and the system is abstracts from. Hoare describes one important

approach. In reading this paper, concentrate on the way the correctness argument is constructed.

Don’t worry about the details of Simula 67, especially the details in Section 9 [ms]

[Hu88] Watts S. Humphrey. “Characterizing the Software Process: A Maturity Framework.”IEEE

Software, vol.5, pp. 73-79,Mar.1988.

doi: 10.1109/52.2014

This paper introduced the Capability Maturity Model (CMM) as a way of evaluating the capability of

software organizations to produce software in a predictable way. CMM was created as a means to

afford both source-selection evaluators and internal managers a more repeatable metric for

organizational capability. CMM has been influential in many parts of the software development

ecosystem, and particularly for custom outsourced development. It builds on the early ideas of Taylor

and Deming, and extends the metaphor of manufacturing repeatability into design. The CMM led to a

number of follow-on models for other disciplines (some far afield, such as service provisioning for call

centers, etc.) and also for embedded software systems, including the CMMI family, as developed by

the Software Engineering Institute and recently spun out. These models are widely adopted as

credentialing mechanisms for the outsourcing community. This paper provides insight into the original

purpose, benefits and limitations, and scope. [jawls]

http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1007/BF00289507
http://dx.doi.org/10.1109/52.2014

The Carnegie Mellon Canon in Software Engineering Page 5

[Ja95] Michael Jackson. “The World and the Machine.” Proceedings of the 17th International Conference

on Software Engineering, 1995,pp. 283-292.

doi: 10.1145/225014.225041

This paper defines software engineering as an effort to bridge the world and machine through four

facets: modeling, interfaces, engineering and the problem. Jackson discusses the shared and

imbalanced relationship between these two concerns in terms of software engineering concepts,

artifacts and practices; the outcome of this deliberation is often a shift in focus from a purely artifact-

based view of engineering to an impact-based view, wherein the success of the artifact depends on

how well we couple the artifact to the world through one for the four facets. The challenge of getting

this coupling right is a central theme throughout the paper. The paper concludes with Jackson's four

denials that can lead a software engineer to deny the very existence of the world. This paper is a

broader and deeper reflection on what constitutes requirements than Parnas' four variable model

paper, entitled "Functional Documents for Computer Systems," which more traditionally views systems

in terms of sensors and actuators. Both are great papers to read together. [tb]

[check on whether this note matches the paper] Jackson’s Problem Frames emerged from his

reflections on a long career of software development, during which he created software development

methods such as JSP and JSD. He noticed that if he abstracted from the domain information and

specific details, many of the problems he had worked on fell into classes that were broadly similar. He

developed a framework for describing these classes. In reading about Problem Frames, pay particular

attention to his distinction between the problem space and the solution space and to the association of

domains through shared phenomena.[ms]

[Ki76] James C. King. Symbolic execution and program testing. CACM 19(7), 385-394, July 1976.

doi:10.1145/360248.360252

This paper describes symbolic execution, a foundational approach in static program analysis. The

core idea is to reason about the execution of a program in terms of its effects over classes of (arbitrary)

inputs, represented as abstract values, rather than to actually execute that program on concrete inputs.

King accurately presents this approach as lying between the two extremes of full, sound formal

verification and (unsound) testing in terms of the strengths of the guarantees it can provide about

program behavior and correctness. Symbolic execution has been significantly extended since it was

first explored in the 70's (King's paper is one of three published more or less simultaneously on related

ideas), and now underlies or at least informs a broad range of research techniques in software testing

and analysis. It also drove a considerable proportion of the significant advancement in programmatic

theorem proving in the intervening decades (King's comment on page two about the impossibility of

theorem proving "even for modest programming languages" is effectively no longer true!). [cl]

 [KS95] Robert E. Kraut and Lynn A. Streeter. “Coordination in Software Development.”

Communications of the ACM, vol.38, pp.69-81, Mar.1995.

doi: 10.1145/203330.203345

Kraut and Streeter were among the first to clearly point toward the critical role of various forms of

coordination -- in particular informal communication when projects are uncertain -- as key to the

success of a software project. Also note the several ways in which they measured project success,

and how they combined different methods and different kinds of data to answer key questions about

what leads to success. Note also that they do not assume there is a single best way to manage every

sort of project. [jh]

http://dx.doi.org/10.1145/225014.225041
http://dx.doi.org/10.1145/203330.203345

The Carnegie Mellon Canon in Software Engineering Page 6

[MFH02] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. “Two case studies of open source

software development: Apache and Mozilla.” ACM Transactions on Software Engineering and

Methodology, vol.11, pp.309-346, Jul.2002.

doi: 10.1145/567793.567795

This paper was one of the early studies of open source projects, and attempts to answer some very

basic questions about how open source works. At the time, the popular press had promulgated a

number of half-truths about open source that made it difficult to understand how this seemingly

freewheeling, chaotic style of development could actually work. The authors recreated project histories

using data generated automatically, interpreted in the context of a clear description of the processes

followed by the projects. Notice how the research questions pose very basic elements of open source

development, and how they were addressed with project data. Also note way that hypotheses --

speculative, but grounded in observations from the first case study -- were validated or modified in light

of the evidence from the second case study. Note also all of the difficulties of comparing data from two

different open source projects, and several commercial projects, and how the authors attempted to

overcome them. [jh]

[NATO68] Peter Naur and Brian Randell. Software Engineering. Proceedings of the 1968 NATO

Conference on Software Engineering,, in particular chapters 2 and 8.2

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

This report documents the event at which the field of software engineering was born. It is important not

only for its historical significance but also as a basline reference -- the examples are dated, but the

issues are very much with us. Browse through the proceedings to see how familiar the themes are

(though the examples are dated). In particular, read chapters 2 and 8.2; the latter is McIlroy’s keynote

talk on software components, which is probably one of the earliest vision of component markets and

mass customization (tradeoff among nonfunctional properties), which lays a good ground for

discussing component markets (why did this not happen, what happened instead)and other forms of

software reuse and customization. [ms,ck]

[Os87] Leon J. Osterweil. “Software Processes are Software Too.” ICSE '87 Proceedings of the 9th

International Conference on Software Engineering, 1987, pp.2-13.

http://dl.acm.org/citation.cfm?id=41765.41766

From the observation that the workflow of software development involves (possibly iterative)

sequences of steps with branch points, the author argues that the development activity can be

described precisely and algorithmically. Although the original presentation is marred by the failure to

consider the types supported by a language (which led to the suggestion that any language would be

fine), this paper set the expectation that development processes could be described precisely. [ms]

[Pa72] D .L. Parnas. “On the criteria to be used in decomposing systems into modules.” Communications

of the ACM, vol. 15, pp.1053-1058, 1972.

doi: 10.1145/361598.361623

This is the seminal paper that described the idea of information hiding. The idea of hiding data

representation is very conventional by now, but Parnas has a broader idea in mind. They key idea in

information hiding is to hide design decisions that are likely to change within modules. These design

decisions are often data representation, but may include algorithm choice, dependencies on system

context, etc. Parnas' motivation, in classic software engineering style, flows primarily from the need to

support software evolution. This is in marked contrast to work that motivates encapsulation for the

purposes of verification. [ja]

http://dx.doi.org/10.1145/567793.567795
http://dl.acm.org/citation.cfm?id=41765.41766
http://dx.doi.org/10.1145/361598.361623

The Carnegie Mellon Canon in Software Engineering Page 7

[PCW84] D.L. Parnas, P.C. Clements, and D.M. Weiss. “The Modular Structure of Complex Systems.”

ICSE’84 Proceedings of the 7
th
 International Conference on Software Engineering, 1984, pp.408-417.

Available: http://dl.acm.org/citation.cfm?id=800054.801999

This is one of Parnas’ early papers on information hiding. After a decade of development of the ideas

introduced in 1972, he applied his techniques to write a specification of the existing A7E avionics

system. This paper provides an overview of the A7E System. Focus on the ways in which the authors

chose to represent the system, and the criteria that they used for decomposition. Pay particular

attention to the abstraction achieved by the Data Banker module. The specific structures of the A7E

system are not particularly important. [dg,ms]

[RR85] Samuel T. Redwine, Jr. and William Riddle. “ Software Technology Maturation.” ICSE ‘85

Proceedings of the 8
th
 International Conference on Software Engineering, 1985, pp.189-200.

Available: http://dl.acm.org/citation.cfm?id=319568.319624&coll=DL&dl=GUIDE&CFID=107042429&CFTOKEN=92850089

This paper discusses the stages in the evolution of technology ideas from bright idea to supported

product. The examples are quite dated, so pay attention to the evolution model and the variability

among the examples rather than to the particulars of the examples. See how the model holds up by

identifying the stages of development for current software engineering topics. [ms]

[RW73] Horst W.J. Rittel and Melvin M. Webber. “Dilemmas in a general theory of planning).” Policy

Sciences, vol. 4, pp. 155-169, 1973.

doi: 10.1007/BF01405730

This is the paper that introduced the idea of “wicked problems”: when problems are deeply embedded

in social systems, they cannot be specified in such a way that scientific analysis will lead to solutions.

The demands and uncertainties of the problem setting are intrinsically incompatible with the precise

specifications of, for example, goals and success criteria, that are required for scientific approaches.

Read the paper for the cautionary tale about the limits of professionalism and, more significantly, for

the properties that distinguish tame from wicked problems. The details of the examples are important

only to the extent that they help you understand the properties. The idea of “wicked problem” has

become widely misinterpreted as referring to software that is complicated because of implementation

issues, project complexity, or even bad design (that is, by Brooks’ accidental difficulties); you will see

that is not at all what the authors intend. [ms]

[Ro70] W.W. Royce. “Managing the development of large software systems: concepts and techniques.”

Proceedings of IEEE WESCON, August 1970, pp1-9. Reprinted in ICSE '87 Proceedings of the 9th

international conference on Software Engineering, 1987, pp. 328-338.

Available: http://dl.acm.org/citation.cfm?id=41765.41801&coll=DL&dl=ACM

This is the original “waterfall” paper. It was originally published in WESCON, in August 1970. The

reprint in ICSE ’87 is much more accessible, but it’s important to remember that the paper was written

in 1970. [ms]

[SG96] Mary Shaw and David Garlan. “Software Architecture: Perspectives on an Emerging Discipline.”

Prentice-Hall, Inc., 1996.

Available: http://www.amazon.com/

This was one of the first books published on software architecture, and it helped to define the field.

Focus on the first two chapters of the book and the early sections of Chapter 3. Pay attention to the

arguments given for architecture-level abstractions and the identification of architectural styles as a key

element of the emerging discipline. Other chapters are also interesting with respect to requirements for

architecture description languages, formal representation and analysis of software architectures, and

the use of multiple architectural views to describe the same system. [dg]

http://dl.acm.org/citation.cfm?id=800054.801999
http://dl.acm.org/citation.cfm?id=319568.319624&coll=DL&dl=GUIDE&CFID=107042429&CFTOKEN=92850089
http://dx.doi.org/10.1007/BF01405730
http://dl.acm.org/citation.cfm?id=41765.41801&coll=DL&dl=ACM
http://www.amazon.com/

The Carnegie Mellon Canon in Software Engineering Page 8

[SBN87] Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell, “Chapter 2, Levels and Abstraction,” in

Computer Structures. McGraw Hill, 1987, pp.9-16.

Available: https://research.microsoft.com/en-us/um/people/gbell/Computer_Structures_Principles_and_Examples/csp0025.htm

This is the revised version of Bell and Newell’s Computer Structures, which was published in 1971,

roughly at the same time as [Ho72]. The first edition was the first great compilation of computer

architectures, made all the more great by its introduction of a systematic framework for comparing

these architectures, complete with notations corresponding to the design levels. Indeed, the PMS level

was one of the inspirations for the component/connector model of software architecture. Our interest is

in the structure of the taxonomy, not all the details of the hardware. [ms]

[Si96] Herbert A. Simon. The Sciences of the Artificial. 3rd edition, MIT Press, 1996. Ch 1 (pp.1-17) and

Ch 5 (pp. 111-125)

Available: http://www.amazon.com/

In the passage from Ch 1, Simon distinguishes natural from artificial objects and phenomena, with an

emphasis on artificial phenomena that are represented symbolically. Creation for a purpose implies a

purpose for the artifact, hence a distinction between the internal environment and the external

environment and the need for a clear interface between the two. This sets the stage for purposeful

creation of artificial phenomena, that is, for engineering, and for simulation as a means for

understanding phenomena.

In Ch 5, Simon begins by arguing that design can and should be rooted in fundamental principles, but it

is not exclusively about these fundamentals. Note his definition of design at the beginning. He returns

to the distinction between the inner and the outer world, saying that designers create artifacts for the

purpose of conforming the inner to the outer and that there can and should be a science of design. Pay

particular attention to the use of optimization and search – the former for designs where alternatives

are already given, and the latter for cases where the alternatives must be discovered during design.

[ms]

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M Sutton. “N Degrees of Separation:

Multi-Dimensional Separation of Concerns.” ICSE’99 Proceedings of the 21
st
 International

Conference on Software Engineering, 1999, pp. 107-119.

doi: 10.1145/302405.302457

The paper discusses that crosscutting is unavoidable when implementing a software system using

hierarchical decomposition mechanisms. While almost everything can be modularized, any chosen

modularization will induce scattering of other concerns that do not align with the dominant

decomposition. The paper illustrates the limits of traditional information hiding. While the proposed

solution may not withstand the test of time, the paper introduces the key concept "tyranny of the

dominant decomposition" and laid a conceptual foundation and motivation for many attempts to

manage or encapsulate crosscutting concerns in software systems. [ck]

https://research.microsoft.com/en-us/um/people/gbell/Computer_Structures_Principles_and_Examples/csp0025.htm
http://www.amazon.com/
http://dx.doi.org/10.1145/302405.302457

