
Instrumenting V8 to Measure the Efficacy of
Dynamic Optimizations on Production Code

Michael Maass Ilari Shafer
March 2013

CMU-ISR-13-103

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This material is based upon work supported by the Army Research Office under Award No. W911NF-
09-1-0273 and the Air Force Research Laboratory under Award No. FA87501220139, by the Department
of Defense through a National Defense Science and Engineering Graduate Fellowship, and by a National
Science Foundation Graduate Research Fellowship.



Keywords: JavaScript, virtual machine, dynamic optimization, measurement, instru-
mentation



Abstract

As JavaScript has risen to dominance as the language of the Web, popular web browsers
have responded by introducing a variety of compilers designed to optimize JavaScript
speed. Public one-upmanship has played out between these browsers on the basis of
performance on a few benchmarks. Surprisingly, how well JavaScript compilers fare on
real-world web applications has received little concerted attention.

Here, we study the impact of the widespread V8 JavaScript compiler in six scenar-
ios using a new testing framework. We find that the benefit of optimization in a number
of realistic scenarios is small—and sometimes even harmful. Classic optimizations used
in static compilers fare poorly, and the time taken to do compilation is a prominent
factor. Our findings highlight the importance of better benchmarks, and suggest more
real-world targets in optimization than many optimization approaches have examined.





1 Introduction

JavaScript has emerged as the lingua franca of the World Wide Web. The highly dynamic
client-side interactions that define many popular websites, such as Gmail and Facebook,
are made possible by extensive and complex use of the language. Furthermore, JavaScript
has broken through into other domains where statically compiled languages have tradi-
tionally held sway, such as Windows desktop applications [19], mobile applications [5]
and services [13], server-side code [7], and more. In light of its emerging popularity, a
flurry of recent work has focused on producing (and improving) optimizing compilers for
JavaScript [3, 6, 9–11, 14]. All these compilers are just-in-time (JIT) engines that generate
optimized native code at runtime, though the details of their optimizations vary.

After ensuring the correctness of its output, the clear criterion for a successful opti-
mization pass made by such a compiler is improved performance of the resulting code.
For representative workloads, optimized code should improve some metric—here we
consider execution time. When optimizations happen at runtime, measuring whether
they have been successful is even more important, since dynamic optimization requires
overhead to actually perform the compilation that could have instead been occupied by
interpretation or execution of unoptimized code. Furthermore, many optimizations for
dynamic languages are optimistic: under certain conditions the compiler must perform
an expensive replacement of optimized code with unoptimized code to account for an
exceptional condition that renders the optimized code invalid.

In light of the challenges facing effective optimization, surprisingly little effort has
focused on how well recent optimization techniques fare on the real-world, popular
workloads such as Gmail and Facebook. Though evaluations of compilers and optimiza-
tions include some form of efficacy analysis, for JavaScript they are typically restricted to
workloads that do not represent actual web applications. To our knowledge, this is the
first study that has focused on granular analysis of compiler optimizations for JavaScript
on multiple real-world scenarios.

To that end, we make two primary contributions in this work. First, we design and
implement a framework for evaluating optimization efficacy for real-world applications
from a production compiler. Second, we apply this framework to six web application
scenarios, which results in a number of preliminary findings about compiler behavior in
V8:

Optimization has limited benefit: For the scenarios and real-world web applications
we study, the optimizer has a very small benefit or even negatively impacts performance,
even while producing drastic improvements in widely-used benchmark code.

Many optimizations diminish performance: Traditional optimizations that produce
benefits in compilers for static languages have little or negative impact on these sce-
narios. Furthermore, the choice of optimizations that is useful for targeting benchmark
improvement may not necessarily the best for production web applications.

Compiler overhead is significant: Time taken for compilation is significant compared
to code execution time. A substantial portion of compilation time is spent managing large
amounts of JavaScript code. Attempting to perform more extensive compilation increases

1



this overhead due to both optimization and deoptimization.
After introducing JavaScript and the V8 compiler in Section 2, we describe our frame-

work and instrumentation approach in Section 3. Section 4 delves into the insights sum-
marized above, which produce a number of directions for work on JavaScript compilation.
We highlight a few promising ones in Section 6.

2 Background

We study JavaScript, as it is used to some extent in almost all of the most widely-visited
websites [1, 18], and particularly heavily by popular web applications [22]. To study the
effect of compiler optimization, we use the V8 JavaScript engine [10] within the Chromium
browser1, which by many indicators has eclipsed Internet Explorer as the most popular
browser [23, 24]. V8 is a particularly relevant focus because it is enjoying growing use
outside of Chromium [5,7,13] and the second-most widely used JavaScript engine (Internet
Explorer’s) is not open-source.

2.1 Real-World JavaScript

JavaScript is a dynamically-typed, garbage-collected language with a prototype-based
object model [8]. The language is highly dynamic: fields, methods, prototypes, and types
can all change at runtime, and arbitrary strings can be executed as code. A number of
characteristics of real-world JavaScript make compilation challenging. Foremost, dynamic
features prevent trivial static analysis of the code, and require special cases to handle situ-
ations like variables and fields that change type [2]. Widespread use of variadic functions,
the eval function to execute text as code, method polymorphism, constructor polymor-
phism, and runtime changes in object prototypes introduce additional challenges [17,22].
Furthermore, many real-world sites require parsing on the order of megabytes of this sort
of JavaScript [22]. To cope with these challenges, V8 performs selective optimization of
code through a multi-stage process.

2.2 Compiler Overview

V8 contains two compilers and a runtime engine. The broad architecture is shown in Figure
1 on page 3. When V8 first examines any JavaScript code, it parses it to an abstract syntax
tree (AST) and runs the first compiler, a full code generator. This compilation pathway
performs no optimization, and produces native code (e.g., x64 or ARM) with full runtime
support for JavaScript’s dynamicity. The second pathway is the optimizing compiler,
which uses two forms of intermediate code. First, the compiler transforms the AST into
a high-level intermediate representation (IR) named Hydrogen. This IR is a graph of
basic blocks with code in Static Single Assignment (SSA) form and is the vehicle for the

1Chrome is the Google-branded and augmented version of Chromium

2



HydrogenJavaScript

AST

Lithium
LAddI t3,t1,5
LMulI t5,t3,t7

. . .

Native 
Code

x64,ARM,…

Full

Optimized

Figure 1: V8 Compilation Pipeline. V8 contains two means for producing native code: a
full code-generator and a two-stage optimizing compiler.

optimizations we study. Once the Hydrogen IR has been transformed by optimization
passes, it is translated to a low-level three-address code called Lithium. This form is similar
to bytecode that would be run in a register VM, and it is used for register allocation. Finally,
to produce optimized code, Lithium is compiled to native code. The native code produced
by the optimizing compiler replaces unoptimized code through a process known as on-
stack replacement. On-stack replacement allows code to be optimized and deoptimized
even in situations such as the middle of an executing loop.

Execution may not always be able to stay within optimized code at runtime. A variety
of conditions, such as changes in variable types, may render optimized code invalid. The
optimized code contains guards to ensure that conditions for optimistic optimization still
hold. If they do not, a deoptimization process occurs. Code from the full code generator
is kept, and on-stack replacement replaces the execution context and stack with the full
native code. We do not go into detail here, but the process can be expensive, as we
substantiate later.

3 Approach

To study the impact of compiler optimizations in V8, we constructed a framework to
selectively enable optimizations within the compiler, run real-world scenarios with a
certain set of optimizations, and instrument the resulting behavior. An overview of our
approach is shown in Figure 2 on page 4. This framework toggles optimizations within
the V8 engine in Chromium and collects both profiling information and a set of internal
counters. We enable it while targeting the browser at a variety of application interactions
that we script.

3



Local

Network

BenchM

Trac

Wordpress

Bench

Facebook

Gmail

V8

Counters

Profile Analysis

Run Configuration

Framework

Automated Test

Figure 2: Instrumentation and Evaluation Framework. We build a framework around
and within the Chromium browser to extract information from V8 as it runs code from
real-world applications on the Internet or a local server.

3.1 Selective Optimization

The code optimization process in Chromium modifies a Hydrogen IR graph as it is created.
We can selectively disable parts of the optimization without compromising the correctness
of the resulting code. The first key part of this selective configuration controls whether the
optimization path is enabled at all—it can be disabled and the full code generator used
instead. When the optimizing compiler is enabled, we control 11 internal flags that alter
how the code is optimized; they are listed in Table 1 on page 5. Some of these (gvn, licm,
range, and deadphi) are very similar to the passes used in static compilers. The canonical
step is unique to dynamically-typed languages. Although function inlining is certainly
not a new concept, it requires more care for JavaScript, and is a particular focus of the
optimizing compiler. This is reflected in the inclusion of 5 flags that control inlining.

3.2 Real-World Scenarios

With a particular configuration of optimizations, we start Chromium and direct it to load
a page. We focus on real-world sites like Gmail and Facebook. To compare the impact of
optimization on real-world sites with published results, we also include the V8 benchmark
suite. Beyond merely loading a page, we are interested in testing workloads that a browser
would experience. Therefore, to emulate a user’s actions we write a series of tests using
the Sikuli UI automation tool [4]. These six tests are:

Bench The scenario visits a web page containing the V8 benchmark suite (version 7) and
waits until it completes. The benchmark primarily does compute-intensive work
and data structure manipulation. It does not do a constant amount of work—it runs
benchmarks for periods of 1 second until at least 32 executions are run.

4



Table 1: Selected V8 Optimizations.
Name Description
canonical After type inference, canonicalizes all instructions in the Hydrogen

graph to remove all instructions made unnecessary by known type
information.

gvn Global Value Numbering—performs global common subexpression
elimination.

licm Loop-Invariant Code Motion.
range Determines the range of each Hydrogen value to aid other

optimizations.
deadphi Dead phi node elimination.
for in Prepares for-in loops with fast (e.g., small integer, unwrapped, etc.),

local “each” variables for on-stack replacement (other cases cannot
be optimized with this pass).

use inline Attempts any form of function inlining. The four optimizations
below control the amount of inlining.

limit inline Limits how large code can grow by limiting the source size and how
many nodes can be added to the Hydrogen instruction graph and
AST due to inlining.

args inline Inlines functions even if they use the implicit “arguments” object
(for variadic functions).

poly inline Attempts to inline polymorphic calls to functions.
cons inline Attempts to inline constructor calls.

BenchM For instrumentation purposes, we desire benchmarks that do a constant amount
of work. BenchM is our slightly modified version of Bench that performs a constant
amount of work (32 benchmark executions).

Facebook This scenario logs into Facebook as a test user. It then visits the user’s Wall
page to create a post and subsequently delete it. Next, it uses the photo upload tool
to post a photo and place a tag on the photo. Finally, it removes the photo from
the user’s page, refreshes the page, and removes the tag notification from the user’s
wall.

Gmail This scenario logs into Google’s Gmail as a test user we created. It waits for the
Gmail load sequence to complete, then opens a menu that lists actions for the user’s
inbox. It then uses the search feature to find messages before logging out.

Trac We test against an installation of the Trac project management and issue tracker,
version 0.12.3. Our local install is on a separate machine in order to not impact
Chromium’s performance. The scenario logs into an instance of Trac that was
seeded with tickets, searches for an item, and then waits for the search to complete

5



and display results.

WordPress We utilize a local install of the popular WordPress content management sys-
tem, version 3.3.1. The scenario begins by logging in to WordPress and waiting for
the administrative panel to load. It then starts a new post, types in text, and uses a
photo upload tool to insert an image into the post. Finally, it clicks a button to load
a preview of the resulting post.

3.3 Instrumentation

To understand how the compiler behaves in the presence of different optimizations, we
collect and analyze two forms of instrumentation: traces from a sampling profiler and a set
of internal counters that are incremented for certain compiler actions. For all modifications
we build Chromium from source at revision 128907.

3.3.1 Profile Traces

We use a profiler to investigate where time is spent in a scenario. Developers are often
interested in understanding where their JavaScript programs spend their time. To support
this use case, the V8 runtime contains a sampling profiler that is available within the
Chromium browser interface. Rather than attempt to use this UI-based profiler, we enable
the internal profiler and configure it to begin profiling on browser startup and dump its
output to a log file.

The profiler operates by sampling the execution state of the browser every 2 millisec-
onds, and records the currently-executing point in the V8 code. Unlike the UI-based
profiler, the emitted logs also provide sampled function names within the compiler. This
property enables us to separate calls into two categories: optimizing compiler calls and
JavaScript runtime calls. By aggregating time across all samples, we obtain a breakdown
of compilation overhead and execution time as well as functions that occupy the most
time. Although a sampling profiler is by nature less precise, it allows us to run code at
near normal execution speed and capture a more accurate trace.

3.3.2 Internal Counters

To obtain a deeper understanding of how optimizations behave internally, we use and
add to a set of internal counters maintained by the V8 compiler and runtime. They
record various characteristics of compilation (e.g., the size of compiled code), as well as
many runtime behaviors that are affected by the optimizing compiler (e.g., the number
of deoptimizations). These counters are not collected within the Chromium browser, and
to our knowledge are used only by developers of V8 from a JavaScript interpreter shell.
We adapt the counter collection system to the Chromium browser and periodically dump
all available counters to an output file. Our analysis framework parses these outputs.

6



We provide further detail about selected counters in analyzing the results of scenario
execution.

4 Results

We have applied our framework to the scenarios from Section 3.2. We present some of
the most intriguing behavior here. First, we confirm that optimizations work well for
a benchmark suite, but perform far worse for the real-world scenarios we study. This
framework also enables us to focus on how to optimize, and indicates that the default set
of optimizations that improves benchmark performance can be inferior to simply leaving
optimizations off. Last, we take a deeper look into the sources of performance degradation
and compiler overhead through the lens of these instrumentation results.

4.1 Optimization has limited benefit

A key question for an optimizing compiler is whether optimization has a positive effect
on performance. If compilation reduces code execution performance or the runtime over-
head of optimization overwhelms its benefits, there is an overall loss. To investigate the
potential benefit, we run each of the scenarios described in Section 3.2 for three compiler
configurations. One case, default, represents what is shipped with V8/Chromium. sel off
reflects the optimizing compiler turned on but with selected optimizations disabled, and
no opt is a case where the optimizing compiler has been turned off entirely and only full
code generation is used.

BenchM Facebook Gmail Trac WordPress
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 T

ic
ks 51 42 0 7 3 0 2 6 0 6

-2
0

-2
1 0

default: Ships in Chromium
sel_off: Select Optimizations Off

no_opt: No Optimization
Javascript Compiler

Figure 3: Overall Performance Results. Total time spent executing JavaScript code and
running compilation is shown for the six scenarios we analyze. The vertical axis is
normalized to runtime with the optimizing compiler turned off (the rightmost bar in each
case). The real-world scenarios benefit less from optimization than the V8 benchmark
suite (BenchM). In multiple cases optimization actually reduces performance.

7



default

sel_off

no_opt

canonical

gvn
licm

range
deadphi

for_in
use_inline

lim
it_inline

args_inline

poly_inline

cons_inline

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

ic
ks

14 0

-78

2 2 0 2 2 1 0 -1 0 -1 -1

BenchM Selective Optimization

default

sel_off

no_opt

canonical

gvn
licm

range
deadphi

for_in
use_inline

lim
it_inline

args_inline

poly_inline

cons_inline

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

ic
ks

-5 0 -1 -2 -2 1 1 -2 -6 -3 -4 0 -5 -6

Gmail Selective Optimization

Figure 4: Selective Optimization Effect.
These profiling results summarize the ef-
fects of selective optimization for two sce-
narios. In each case, the three bars grouped
to the left show execution times for the same
configurations shown in Figure 3 on page 7.
Bars to the right show the impact of toggling
certain optimizations individually. Num-
bers above the bars show percentage run-
time improvement (or degradation).

The effects of optimization are markedly
different among the scenarios. Figure 3
on page 7 illustrates the impact for each
of these configurations. As expected and
widely disseminated, the V8 optimizing
compiler improves performance on the
constant-work benchmark considerably (by
51%). On the realistic scenarios we study,
however, benefits are either small or nonex-
istent. For example, the compiler does pro-
duce an improvement for the Facebook test,
where sel off produces a 3% improvement
and the optimizations from Figure 4 add
another 4%. However, for WordPress, the
net effect of the default compiler configura-
tion is actually negative (a 2% degradation).
Additionally, for the Gmail test, although
the net effect of default is slightly positive,
it includes optimizations that harm perfor-
mance relative to the sel off case. We exam-
ine this behavior further in the next section.

4.2 Many optimizations diminish
performance

To further examine how toggling optimiza-
tion affects performance, rather than turn-
ing off all optimizations, we selectively
switch on individual ones. We consider the
set of optimizations summarized in Table
1 on page 5. The performance baseline is
the configuration with optimizing compiler
on, and we toggle each optimization sepa-
rately. Figure 4 considers two cases from
the overall results: one where optimiza-
tions dramatically improved performance
(BenchM) and one where the default opti-
mizations were harmful (Gmail). As above,
we run each scenario four times for each
configuration.

As expected, optimization dramatically improves performance for the V8 benchmark
suite (the no opt time is more than twice the time of the sel off case). Likewise, individual

8



optimizations on the whole make small but relatively consistent improvements. How-
ever, the full set of optimizations reduces performance for the Gmail test (the default bar at
right), and many individual optimizations are unproductive. In particular, optimizations
like global subexpression elimination through gvn that improve benchmark performance
are harmful. Additionally, the high compilation overhead for Gmail has no corresponding
decrease in JavaScript execution time, and produces the negative difference from sel off to
default. Many traditional compiler optimizations have negligible or negative impact. For
example, while gvn and inlining produce benefits for benchmark code, they negatively
impact the Gmail scenario. Meanwhile, we observe that range analysis is the only opti-
mization that benefits the Gmail scenario—possibly due to the significant simplifications
the compiler can make when it knows a numeric type is a small integer [10].

4.3 Reasons for Performance

To gain some understanding of why optimizations might be hurting performance in some
circumstances, we compared V8’s internal counters between the no opt and default cases
from Section 4.1, as well as a configuration when the compiler performs optimization
on all possible code, always opt. Table 2 on page 10 summarizes the counters we found
to be interesting. All of the listed counters were already present in V8, aside from the
DeoptimizeCount counter, which we added. This table only shows counters that changed
by more than 15% between the default and always opt cases. The counters reveal some
trends as optimization becomes more aggressive.

Tables 3 and 4 summarize selected counters for BenchM and Gmail respectively. In
general, the trend is towards more deoptimizations, stack interrupts, and compiled code
as optimization becomes more aggressive. Except in the case where optimizations do
not occur, program counter to source code looks-ups also occur more often and stubs
are utilized less often as optimization becomes more aggressive. As expected, the trend
is towards performing notably more operations in the compiler as the amount of opti-
mization increases. In particular, we measured the impact of increasing deoptimization.
By isolating time taken for deoptimization from the profiler results, we find that for
always opt on BenchM the time required to execute deoptimization is a significant com-
ponent of runtime—it increases from 0 to 7333 ± 107 profiler ticks as compared to a total
of 24726 ± 193 execution ticks.

In Section 4.2 we saw that the compile-time overhead for applications like Gmail is
higher than for the V8 benchmark. The question arises of which portions of the compilation
process contribute to this overall overhead. We break down compilation time into its
multiple phases by analyzing the contents of the profile and manually attributing a point
in the profile to one of nine portions of the codebase. Five of these phases (Assembler,
Lithium, Hydrogen, AST, and Parser) correspond to the portions in Figure 1 on page 3,
and three (LowLevel, Shared, and Tracing) are work that is shared between multiple parts
of the compiler. Figure 5 illustrates the breakdown for the three summary configurations
used previously.

9



Table 2: Selected counters.
Name Description
V8.DeoptimizeCount A count of the number of times

deoptimization occurs.
V8.PcToCode Incremented when V8 looks up the

source code for a particular program
counter address.

V8.PcToCodeCached Incrememented when the address V8 is
looking up code for is already in the
code cache.

V8.StackInterrupts The number of times a stack guard is
tripped without an actual stack overflow
occurring.

V8.TotalCompileSize The amount of compiled source code in
bytes.

V8.TotalFullCodegenSourceSize The amount of source code compiled
with the full code generator in bytes.

V8.TotalStubsCodeSize Amount of stub code in bytes.

Table 3: BenchM Counters for no opt vs. default vs. always opt.
Name no opt default always opt

V8.DeoptimizeCount 0 31 29425969
V8.PcToCode 118849 69203 29818239

V8.PcToCodeCached 97931 47706 29796116
V8.StackInterrupts 1 4217 26108

V8.TotalCompileSize 741300 890799 1107903
V8.TotalFullCodegenSourceSize 28681431 41973361 60602864

V8.TotalStubsCodeSize 34731 195279 81053

Table 4: Gmail Counters for no opt vs. default vs. always opt.
Name no opt default always opt

V8.DeoptimizeCount 0 56 98783
V8.PcToCode 410190 518182 426063

V8.PcToCodeCached 219940 304559 232197
V8.StackInterrupts 1 2274 3297

V8.TotalCompileSize 6240862 6246345 7312290
V8.TotalFullCodegenSourceSize 946922601 961168438 1889612635

V8.TotalStubsCodeSize 58201 123055 96876

10



default sel_off no_opt

0
5
0

1
0

0
1

5
0

P
ro

fi
le

r 
T
ic

ks

BenchM

Other: Uncategorized

Tracing: Counters, profiling overhead

Shared: Stubs, ICs, deoptimization, ...

LowLevel: Locking, memory, ...

Parser: Scan, lex JavaScript source

AST: Create and traverse tree

Hydrogen: Build, optimize high-level IR

Lithium: Produce low-level IR

Assembler: Write native code

default sel_off no_opt

0
2

0
0

4
0
0

6
0

0
8

0
0

Gmail

Figure 5: Compiler Time Breakdown. Here
we decompose compilation time into its
different phases for the same cases shown
in Figure 4 on page 8. It is evident that
optimization time is a smaller contributor
to compiler overhead for Gmail than for
BenchM.

An overall observation for the Gmail test
is that much of this compilation time does
not come from time spent in the optimizer.
Rather, it appears to be from work that must
be done in any case, even with the optimiz-
ing compiler turned off entirely. Of all the
time allocation, parser code is the largest
contributor. Though initially surprising,
this is sensible in light of the much larger
size of the Gmail source: based on internal
counters, the parser handles over 14 times
as much code in Gmail than in BenchM.

While compilation overhead for BenchM
does increase significantly as a result of time
spent in the optimization path, the total
overhead is small compared to the decrease
in JavaScript execution time it produces.
These results also indicates that the oppor-
tunity for optimization is more limited in
real-world applications.

5 Related Work

Our findings above expand upon studies
that indicate JavaScript benchmarks do not
represent real-world application behavior.
Richards et al look across three popular
benchmark suite and find that they use
features of dynamic languages much less
than real-world applications [22]. The JS-
Meter project focuses more closely on how
behavior differs between benchmarks and
real sites using within-browser infrastruc-
ture that more closely resembles our own.
Its analysis illustrates that popular bench-
marks are also not representative on met-
rics important for compilation, such as code
size, instruction mixes, and hot code [20].
Other efforts examining benchmarks have arrived at the same conclusion, and one in par-
ticular provides evidence that compilation may negatively impact JavaScript performance
in some cases [17].

Of course, work on optimizing compilers for JavaScript would be incomplete without

11



some evaluation of their impact. However, many of these analyses focus on benchmark
suites, primarily the three most popular (SunSpider, V8, and Kraken) [2, 3, 6, 9]. In a
promising development, Hackett et al at least consider real-world websites by investi-
gating how they differ from benchmarks, but still only run a performance evaluation on
benchmark suites [11]. To our knowledge, no published JavaScript compiler design efforts
have included a comprehensive benchmark on real-world applications.

Similar investigations to ours have been performed for other programming languages
that make use of JITs. [15] discuss various optimizations used by the Java HotSpot com-
piler and evaluates their efficacy. Many of the optimizations used by V8, such as on-stack
replacement, were first discussed in [12] and were implemented in HotSpot before they
were used in V8. Kotzmann et al found that these optimizations were consistently worth-
while for Java code.

6 Discussion

Given the widespread use of JavaScript today and the attention that has been given to max-
imizing its performance, it seems unfortunate that the real-world effect of optimization
has not been more deeply studied. We find that complex optimizations, while beneficial
for benchmarks, are of limited usefulness in selected application scenarios. This find-
ing suggests further, broader work to evaluate real-world benefit, and reconsideration of
where dynamic compiler writers spend their effort. Furthermore, these optimizations for
dynamic languages are difficult; it is often not easy to demonstrate they are correct due
to changing runtime information and the need to deoptimize dynamically [10]. Here we
suggest a few directions based on our findings.

If widely-touted improvements in benchmark performance are not improving (or even
harming) real-world applications, it is well worth rethinking widely-used metrics of suc-
cess. The scenarios we studied were necessarily constrained in length and diversity; more
representative JavaScript benchmark suites are an important avenue of future research.
Recent work on extracting benchmarks from real applications [21] is one promising route.

We observe performance degradation from compilation overhead, but for the real-
world scenarios we study, that overhead largely comes from source manipulation rather
than optimization. Even though Chromium already lazily transforms source to AST,
techniques to limit the amount of code scanned by the browser would be interesting
directions. Other methods for offloading just-in-time compilation such as running it in
parallel on multiple cores are also enticing and need further work to address queueing
issues [16].

There seems to be an elusive transition zone where a just-in-time profiler might select
good places to optimize, thus improving performance for real applications. A profiler
that is not aggressive enough minimizes the usefulness of an optimizer, but a profiler that
is too aggressive causes serious performance degradation. Finding a superior point along
this spectrum for real-world applications is a key step moving forward.

Optimizing compilers by nature must focus their optimization efforts on changes that

12



yield performance improvements. Likewise, it is important that compiler research efforts
emphasize improvements that benefit real applications. We neither believe nor hope that
this work serves as an authoritative compiler benchmark; instead, we hope its insights
help inform efforts like those above.

References

[1] Alexa. Top Sites. http://www.alexa.com/topsites.

[2] Mason Chang, Bernd Mathiske, Edwin Smith, Avik Chaudhuri, Andreas Gal, Michael
Bebenita, Christian Wimmer, and Michael Franz. The impact of optional type infor-
mation on jit compilation of dynamically typed languages. In DLS, pages 13–24, New
York, NY, USA, 2011. ACM.

[3] Mason Chang, Edwin Smith, Rick Reitmaier, Michael Bebenita, Andreas Gal, Chris-
tian Wimmer, Brendan Eich, and Michael Franz. Tracing for web 3.0: trace compila-
tion for the next generation web applications. In VEE, pages 71–80, New York, NY,
USA, 2009. ACM.

[4] Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. GUI testing using computer
vision. In CHI, pages 1535–1544, New York, NY, USA, 2010. ACM.

[5] A Charland. Mobile application development: web vs. native. Communications of the
ACM, 54(5):49–53, 2011.

[6] Maxime Chevalier-Boisvert, Erick Lavoie, Marc Feeley, and Bruno Dufour. Boot-
strapping a self-hosted research virtual machine for JavaScript: an experience report.
In DLS, pages 61–72, New York, NY, USA, 2011. ACM.

[7] Ryan Dahl. Node.js: Evented I/O for V8 JavaScript. http://nodejs.org.

[8] ECMA International. Standard ECMA-262: ECMAScript Language Specification,
3rd edition. Technical report, 1999.

[9] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mo-
hammad R Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Oren-
dorff, Jesse Ruderman, Edwin W Smith, Rick Reitmaier, Michael Bebenita, Mason
Chang, and Michael Franz. Trace-based just-in-time type specialization for dynamic
languages. In PLDI, pages 465–478, New York, NY, USA, 2009. ACM.

[10] Google Inc. V8 - Project Hosting on Google Code. http://code.google.com/p/v8/.

[11] Brian Hackett and Shu-yu Guo. Fast and Precise Hybrid Type Inference for JavaScript.
In PLDI, Beijing, China, 2012. ACM.

13

http://www.alexa.com/topsites
http://nodejs.org
http://code.google.com/p/v8/


[12] Urs Hölzle. Adaptive Optimization For Self: Reconciling High Performance With Ex-
ploratory Programming. PhD thesis, 1994.

[13] HP. Developing JavaScript Services. https://developer.palm.com/content/api/
dev-guide/js-services/overview.html.

[14] Dongseok Jang and Kwang-Moo Choe. Points-to analysis for JavaScript. In SAC,
pages 1930–1937, New York, NY, USA, 2009. ACM.

[15] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez,
Kenneth Russell, and David Cox. Design of the Java HotSpot client compiler for Java
6. ACM Trans. Archit. Code Optim., 5(1):7:1–7:32, May 2008.

[16] Prasad A Kulkarni. JIT compilation policy for modern machines. In OOPSLA, pages
773–788, New York, NY, USA, 2011. ACM.

[17] Jan Kasper Martinsen, Hakan Grahn, and Anders Isberg. Evaluating four aspects of
JavaScript execution behavior in benchmarks and web applications. In ICWE, pages
399–402, Paphos, Cyprus, 2011. Springer.

[18] JK Martinsen. A methodology for evaluating JavaScript execution behavior in inter-
active web applications. In AICCSA, pages 241–248, Sharm El-Sheikh, Egypt, 2011.

[19] Microsoft. Roadmap for Metro style apps using JavaScript. http://msdn.microsoft.
com/library/windows/apps/hh465037.

[20] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. JSMeter: Measur-
ing JavaScript Behavior in the Wild. In WEBAPPS, Boston, MA, USA, 2010.

[21] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Automated construction
of JavaScript benchmarks. In OOPSLA, pages 677–694, Portland, OR, USA, 2011.
ACM.

[22] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the
dynamic behavior of JavaScript programs. In PLDI, pages 1–12, New York, NY, USA,
2010. ACM.

[23] StatCounter. GlobalStats Top 5 Browsers. http://gs.statcounter.com/

#browser-ww-monthly-201103-201203, 2012.

[24] W3Counter. Web Browser Market Share March 2012. 2012.

14

https://developer.palm.com/content/api/dev-guide/js-services/overview.html
https://developer.palm.com/content/api/dev-guide/js-services/overview.html
http://msdn.microsoft.com/library/windows/apps/hh465037
http://msdn.microsoft.com/library/windows/apps/hh465037
http://gs.statcounter.com/#browser-ww-monthly-201103-201203
http://gs.statcounter.com/#browser-ww-monthly-201103-201203

	1 Introduction
	2 Background
	2.1 Real-World JavaScript
	2.2 Compiler Overview

	3 Approach
	3.1 Selective Optimization
	3.2 Real-World Scenarios
	3.3 Instrumentation
	3.3.1 Profile Traces
	3.3.2 Internal Counters


	4 Results
	4.1 Optimization has limited benefit
	4.2 Many optimizations diminish performance
	4.3 Reasons for Performance

	5 Related Work
	6 Discussion

