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Abstract

Writing concurrent applications is extremely challenging, not only in terms of producing bug-
free and maintainable software, but also for enabling developer productivity. In this paper we
present (/ZEMINIUM: a core calculus for the ZEMINIUM concurrent-by-default programming lan-
guage. Using AMINIUM programmers express data dependencies rather than control flow between
instructions. Dependencies are expressed using permissions, which are used by the type system
to automatically parallelize the application. The EMINIUM approach provides a modular and
composable mechanism for writing concurrent applications, provably preventing data races. This
allows programmers to shift their attention from low-level, error-prone reasoning about thread
interleaving and synchronization to focus on the core functionality of their applications.
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1 Introduction

In recent years concurrency has spread to all areas of software engineering and system design.
These systems range from high performance computers to ordinary laptops, smart phones and even
embedded systems. The concurrency models used by applications running on these systems are
widely different. They include parallel number crunching to task synchronization, and inter-thread
communication to I/O and latency hiding.

| oo
ZEMINIUM ZAEMINIUM Data Flow ZEMINIUM Computing

Source Code Compiler Graph Runtime Resources

Figure 1: The AMINIUM Approach

The problem of concurrency cannot be successfully solved without having software engineer-
ing concerns in mind. Today most software leverages libraries, frameworks and other reusable
software components, and is large enough to be difficult for a single programmer to fully under-
stand. This often leads to cases where a small change in one component breaks a completely
unrelated component. As a first step to address this issue we have developed AMINIUM Stork
et al. [2009]. ZMINIUM is a concurrent-by-default programming language that uses permissions
to express data dependencies. The programmer uses permissions to specify which data he is ac-
cessing and in which way he needs to access the data (e.g., if he is willing to share access to the
data with other parts of the code or if he wants exclusive access). Encoding this permission infor-
mation allows the system to check for the correctness of each function as well as their composition
in a modular way. Based on the permission flow through the application ZEMINIUM infers poten-
tial concurrent executions by computing a data flow graph Rumbaugh [1975] which can then be
executed by exploiting available, and potentially concurrent, computation resources (cf. Figure 1).

To illustrate this concept, consider the t ransfer function shown below, which transfers a
specific amount between two bank accounts. It first withdraws the specified amount of money

from the ‘from’ account and then deposits the same amount into the ‘to’ account.
p

public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {
withdraw(from, amount)
deposit(to, amount);

}

For this example we assume that the order in which we perform the withdraw and deposit
operations does not matter. In particular, they could be executed concurrently because both the
withdraw and deposit operations should only affect the specified bank account and no other.

To encode this extra information ZEMINIUM uses permission annotations. Permissions Boyland
[2003] specify aliasing and access information for objects. The t ransfer method specifies that
it requires a unique permission to both bank accounts and a immutable permission to the amount
parameter. The unique permission means that there is only one valid reference to the specified
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object in the whole system at the moment of a function call, and modifications to the object within
the function are possible. The immutable permission specifies that there might be multiple aliases
to this object but none of them can be used to change the object.

Assuming the method declarations for the deposit and withdraw methods given below,
AMINIUM is now able to compute the permission flow within the t rans fer method. The unique
permission of the ‘to’ parameter flows to the deposit method while the unique permission of
the ‘from’ parameter flows to the withdraw. But we only have an immutable permission to
the ‘amount’ object while both withdraw and deposit require one each. Because immutable
permissions explicitly allow aliasing EMINIUM automatically splits the one immutable permission
into two permission, which are then passed to the two method calls:

public void withdraw(unique Account account,
immutable Amount amount) {...}

public void deposit(unique Account account,
immutable Amount amount) {...}

The permission flow of the t ransfer method is shown in Figure 2. After the split operation
the unique ‘to’ and immutable ‘amount’ permissions are passed to deposit method while the
unique ’from’ permission and immutable ‘amount’ permission flow to the withdraw method.
After those methods complete AMINIUM will automatically join the previously split immutable
permissions. The permission flow graph corresponds to the data flow graph which is used to
execute the t ransfer methods. Although this example illustrates only unique and immutable
data, we will later show how EMINIUM supports shared mutable data with shared permissions and
an atomic synchronization primitive.

transfer(to, from, amount) {

to : unique,
from : unique,
amount : immutable

amount : immutable, [ split A amount : immutable,
to : unique f_ \\;//)N'ﬁwm : unique

deposit(to, amount) withdraw(from, amount)

to : unique, k}/f.\\\(_Jrom : unique,
amount : immutable { Join amount : immutable
\__
to : unique,
from : unique,
amount : immutable

}

Figure 2: Permission Flow in the Transfer Example. We use the notation var : perm to indicate
that we have permission ‘perm’ for variable ‘var’.

In a sense the high-level goals of EMINIUM are somewhat similar to the goals of garbage
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collection. Garbage collection automates memory management, allowing programmers to focus
on the functionality of their applications. ZEMINIUM automates the management of concurrency,
freeing the programmers from the nasty issues of synchronization and race conditions. Given the
design of AMINIUM, programmers can start out with an initial version of the program and then
incrementally increase its concurrency by refining permission annotations of critical components
to allow more concurrent execution.

In this paper we present (ZEMINIUM, a core calculus for the AMINIUM language. The main
contributions of our work are:

e A concurrent-by-default programming language that leverages permissions and data groups
to automatically, safely, and deterministically parallelize applications based on permission
flows.

e An approach to integrating nondeterministic parallelism into the model above through access
permissions to shared data groups, in which developers explicitly specify when nondetermin-
ism is permisible, and which eliminates data races.

e A core calculus called (ZEMINIUM which allows formal reasoning about permission flow
information and concurrent-by-default execution semantics. The formal system consists of:
i) a type system that extracts dependency information and avoids race conditions ii) a concurrent-
by-default evaluation semantics iii) a type soundness proof.

2 Overview

In this section we provide an overview of the ZEMINIUM programming language. /EMINIUM uses
access permissions Bierhoff and Aldrich [2007] for objects and data group permissions for data
groups Leino [1998] to compute the permission flow throughout the code (explained in the next
sub-sections). The compiler uses this information to compute a data flow graph, which can then be
executed in parallel on available computing resources.

2.1 Access Permissions

Access Permissions (AP, Bierhoff and Aldrich [2007]) have been studied in the past for check-
ing interface protocol compliance and verifying the correct use of synchronization Beckman et al.
[2008]. In AMINIUM we use access permissions, and more precisely the flow of the access per-
missions through the application, to model possible concurrent execution strategies for a program.
Access permissions are abstract capabilities associated with object references. The primary pur-
pose of access permissions is to keep track of how many references to a given object exist in a
moment in time, and to specify what kind of operations are permitted on the object at that moment.
In AMINTUM we adapted the following three permissions kinds:

unique A unique access permission to an object reference indicates that there is exactly one ref-
erence (the current reference to that object). A unique access permission allows read and
modifying access to the object.



shared A shared access permission to an object reference indicates that there is an arbitrary num-
ber of references to the object in the system and all the permissions are shared. A shared
access permission allows the client to read and modify the object.

immutable An immutable access permission to an object reference indicates that there are an
arbitrary number of references to the object in the system and all of them are immutable. An
immutable access permission allows only read access to the object.

Access permissions follow the rules of linear logic Girard [1987]. They are analogous to
physical resources that are unavailable once consumed. Permissions can be converted from one
type to another as long as the previously described invariants hold. For instance, a unique AP can
be split into two shared APs. Because of the linearity of APs the unique AP is gone, having been
replaced by two shared APs. Each of the shared APs can be further split into more shared APs,
but not into unique or immutable permissions. Using fractions Boyland [2003] for keeping track
of the individual AP allows permissions to be joined, eventually enabling the recovery of a unique
access permission.

The type system computes the AP flow to the program and automatically splits/joins APs as
needed. In EMINIUM we define a concurrent execution model based on the non-interference of
the permission flow. We define that the permission flows of two code fragments do not interfere
with one another if they have a disjoint set of unique permissions or an arbitrary set of overlapping
shared and immutable permissions. To avoid data races EMINIUM only allows access to shared
data within at omic blocks, which provides adequate protection. The AP flow obeys the lexical
order of statements, meaning that if two pieces of code need the same unique AP, the unique AP
will first flow to the first expression and then to the later one.

2.2 Data Groups

Although pure APs are enough to define a concurrent execution model, there are cases where this
approach breaks down. In particular there are circumstances in which shared APs are inevitable,
for instance in the case of a double-ended, linked list-based queue.

For almost all linked items in the list there exist at least two references in the system (i.e.,
from the previous and the next elements in the list) which cannot be unique and must therefore be
shared. Access to these items must be coordinated, however, as the entire structure must be updated
consistenly and so the trival approach of performing a synchronization operation on individual
objects is likely to be unsafe.

To overcome these problems we leverage data groups (DG, Leino [1998]). A data group rep-
resents an abstract collection of objects. Using data groups for grouping multiple objects is a
divergence to some previous work that uses data groups exclusively to partition the state of one ob-
ject. When an object is part of a data group, we say that this object is owned by that data group. In
ZEMINIUM all shared objects must be part of exactly one data group. We write shared(myGroup)
to indicate that the shared object is part of the data group myGroup.

Additionally, we adapt the concept of access permissions to data groups and call them data
group permissions (GP). AMINIUM currently defines the following data group permissions:



exclusive There is at most one exclusive GP to a data group in the whole system at a time. This
resembles a unique AP. Similar to a unique permission, a exclusive GP represents the only
currently existing permission through which the data of the data group can be accessed. This
allows access to shared data group objects without synchronization.

shared A shared GP resembles a shared AP: there can be an arbitrarily number of shared GP in
the system. Having a shared GP does not grant any kind of access to the associated data
because there is the danger of data races.

protected A protected GP indicates that the access to a shared data is safe because the access to
the shared data group has been protected by a corresponding at omi c block. The semantics
of protected permissions is that there can only be one protected permission per data group at
a time. This is enforced by the runtime system.

Object

PZEN
Access Permissions [ unique ) | shared{(a) ) immutable
PN

Group Permissions exclusive shared protected

Figure 3: Permissions in ZEMINIUM. Shows different permission kinds and what each permission
controls (including arity). Access permissions control access to objects and group permissions
control access to data groups of shared objects. There can only exist one unique, exclusive and
protected permission to an object or data group at a time in the system, while there can be an
arbitrary number of shared and immutable permissions. Shared permissions refer to the data group
to which they belong to (e.g., shared{a) means the object belongs to data group «).

Figure 3 provides an global overview of all available permissions in the AMINIUM system.
Access permissions are used to classify object references and consist of unique, shared and im-
mutable. By definition every shared object must be associated with a data group (e.g., ) for which
we use a data group permission exclusive, shared and protected.

2.2.1 Management of Data Group Permissions

Unlike access permissions, data group permissions are manually split and joined to allow the pro-
grammer better control of how accesses to shared data is parallelized. To split an exclusive GP
into an arbitrarily number of shared GPs, AMINIUM uses a split block (see Figure 2.2.1). The
split block specifies data groups for which it splits the available permission (either exclusive or
shared) into more shared permissions (one for each statement in the body). Group permissions to
data groups not mentioned are simply passed through its body. The available permissions inside
the body are partitioned into disjoint sets. Each one of the those permission sub sets flows to one



statement of the body. This means that if multiple statements in the block require the same unique
AP or an exclusive GP (which is not mentioned in the split block) then the code will not type-
check because permissions cannot be duplicated. After the completion of all body statements, the
split block joins the generated shared permissions back to the permission that existed before the
block was entered.

We already discussed the at omic block as a protection mechanism for shared data. In light
of data groups, we extend the atomic block to refer to the data group for which it provides
protection. It will provide a protected GP for the specified data group to its body expression. In
particular, the semantics of the atomic block is that its body is executed as if it has exclusive
access to the shard data associated with the specified data group. Similar to the split block the
atomic block will upon its completion revert the GP to the state it was in before entering the
atomic block. The semantics of split and atomic blocks is illustrated by example in Figure
2.2.1.

1 /] gr T gp with
2 11 gp € {exclusive, shared}
s split (g7) {

a /I gr = gp with

exclusive

5 /I gp : shared

_— sharel
s atomic (gr;) {
7 /I gr; : protected share < iShar ed
s} atomicl
9 /I gr = gp with protected
10 /I 'gp : shared
11 }

/1 gr = gp with
/I’ gp € {exclusive, shared}

(a) Split/Atomic Block
Figure 4: Group Permission Splitting/Joining via Split and Atomic blocks. The notation gr : gp

means that we have group permission gp for data group gr.

-
N

(b) Group Permission Conversion Diagram

-
w

Data groups are declared inside classes in a similar way to fields (see Figure 5, line 6). Data
groups are only visible inside classes and their sub classes (similar to Java’s protected). Before
accessing data associated with those inner groups, the programmer must gain access to those data
groups via an ‘unpackInnerGroups {...}’ construct. The unpackInnerGroups block will
trade the permission to the owner group of the receiver object for permissions to inner groups
defined in the receiver’s class. This exchange prohibits recursive method calls from accessing
the same inner groups, which would violate the permission invariants (e.g., only one exclusive
data group permission per data group). What happens is that when unpackInnerGroups is called,
the exclusive permission for the “owner” is replaced by exclusive permissions for the inner data
groups of the receiver object (i.e., the "this” object). This approach transitively avoids the need for
synchronization. Analogously, when the client has either a shared or protected permission to the
owner (rather than exclusive), the owner permission is replaced by a shared permission to the inner
groups.
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2.2.2

Discussion

class DoubleLinkedListItem(owner, data) {

}

// standard double linked list item

group(internal) // inner data group

/I ‘head’ belonging to inner data group ‘internal’
shared(internal) DoubleLinkedListItem (internal, data) head;

10

1
2
3
4
s class DoubleLinkedList(owner, data) {
6
7
8
9

11 void
12 add(exclusive owner, shared data)(shared(data) Object(data) o)

13

14

15

16

17

18

: shared (owner) // shared permission to the receiver

Il owner : exclusive, data : shared
unpackInnerGroups {
/] internal : exclusive, data : shared
/l access internal data directly

19 }

20 Il owner : exclusive, data : shared
21 }

22

23 void

24 add(shared owner, shared data)(shared{data) Object(data) o)

25
|
27
28
29
30
31
32
33
34
35

36 }

37

The introduction of data groups and data group permissions allows programmers to introduce

38 }

Figure 5: A DoubleLinkedList with Data Groups. The example has two add methods. The first
one requires an exclusive permission to the owner and transitively provides an exclusive permission
to the inner groups, and does not requires synchronization. The second version only requires a
shared permission to the owner and only provides shared permissions to the inner groups, requiring
synchronization i.e. atomic blocks. In comments ‘//> we show which permissions we currently
hold via the notation dg : gp, meaning for data group dg we have permission gp.

: shared (owner) // shared permission to the receiver

/I owner : shared, data : shared
unpackInnerGroups {
/] internal : shared, data : shared
atomic (internal) {
/! internal : protected, data : shared
/I need protection to access internal data
¥
}

/l owner : shared, data : shared
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nondeterminism when they need it, but ensures that they are explicit about where nondeterminism
is permitted, and helps them to control the granularity of synchronization. Nondeterminism can
only be introduced via explicit split blocks, and its impact is limited to accesses within that
block. This explicitness helps ensure that programmers have thought about the semantics of their
program enough to avoid errors due to unexpected nondeterminism. Furthermore, data groups
allow coarse-grained synchronization because an atomic block on a data group protects all the
objects within that data group, eliminating the need to synchronize separately on each object. In
the case of an exclusive group permission, no synchronization is needed at all.

To make this more clear, consider the doubly linked list example in Figure 5. In line 5, the
DoubleLinkedList class is defined with group parameters owner and dat a, using the same
syntax as Java type parameters. The owner parameter represents the data group with which the
current object is associated, and data specifies the data group to which the objects stored in the
list belong. Line 6 defines a new data group called ‘internal’. Line 9 declares the ‘head’ field
pointing to the chain of ‘DoubleLinkedListltems’ which are all associated with the ‘internal” data
group of the surrounding ‘DoubleLinkedList’. Because inner groups are not visible outside the
class it is impossible for these objects to leave the scope of the class. This strong encapsulation
resembles ownership types Clarke et al. [1998], and allows MINIUM developers to incrementally
refine their internal data structures to increase internal concurrency (e.g., modifying a hash table
that uses one data group for all hash buckets to an implementation that uses one data group per
hash bucket).

Lines 12 and 24 show the definitions of two add functions that specify data group parameters
along with their required permissions. The signature of the two add methods are identical, with
the exception that the add method in line 12 requires an exclusive permission to the data group that
owns the receiver, while the add method in 24 requires a shared GP. The effect of this difference
can be observed in the implementation of the corresponding bodies. In the case of the add method
that requires an exclusive permission to the receiver’s data group, the unpackInnerGroups
can provide an exclusive permission to the inner data groups, which in turn allows the programmer
to access the shared inner state without any synchronization. In the case of the add method that
requires a shared permission to the receiver’s data group, the unpackInnerGroups can only
provide a shared permission to the inner data groups, requiring the programmer to synchronize on
the inner data group (line 30).

Note that the current design of ZAMINIUM only protects against race conditions and not against
deadlocks. Future work may address this issue.

2.3 Producer/Consumer Example

After the discussion of access permission, data groups and their correlation we now present an
example for a producer/consumer in £AMINIUM (see Figure 6). The program starts execution at
the global entry method main (line 19). When entering the body it has an exclusive permission to
a data group «. This permission will first flow into the createQueue method call (line 21). The
exclusive permission matches the method permission requirements as specified in line 16. After
the createQueue call returns the exclusive permission to «, the permission flows into the split
block at line 23. As previously described, the split block will replace the exclusive permission with
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1 class ProducerConsumer (owner) {

> static void producer(shared ~y)(shared(vy) Queue(y) q) {
3 /I o = shared

4 atomic () {

5 Il o : protected

6

)

s}

s static void consumer(shared ~)(shared(vy) Queue(y) q) {
10 /l a : shared

11 atomic (v) {

12 /I o protected

13

14 }

15

16 static shared(y) Queue(y) createQueue(exclusive v)(){...}

17 static void disposeQueue(exclusive ~y)(shared(v) Queue(~y) q){...}
18

19 static void main{exclusive a)() {

20 Il o : exclusive

21 shared(a) Queue(«) q = createQueue(a)()
22

23 share («) {

24 producer{a)(q) // « : shared
25 consumer{a)(q) // « : shared
26 }

27 Il a = exclusive

28 disposeQueue(a)(q)

29 }

30 }

Figure 6: Producer/Consumer Example

one corresponding shared permission for each statement in its body. This leads to the fact that one
shared permission to « is flowing in parallel to the producer and consumer method calls (line
24 + 25). After those calls have been completed, and therefore returned their shared permissions
to «, the split block will collect them and join them back together to an exclusive permission (line
26). This newly gained exclusive permission is then fed to the di sposeQueue method call. Note
that if either producer or consumer want to access the shared queue, they first have to protect
their access to this data group via an atomic block (lines 4 and 11). Figure 7 shows the resulting
permission flow and the derived data flow graph for this example program.
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loz s exclusive

createQueue

loz s exclusive

\ share («) {/ /
o : shared « : shared

producer(q) consumer(q)

o : shared &N K_J « : shared
[ } \

‘x\\' //‘
la s exclusive

disposeQueue(q)

la s exclusive

Figure 7: Data Flow Graph for Producer/Consumer Example
3 Grammar

The grammar of (ZAEMINIUM is shown in Figure 8 and is formulated as an extension to Feather-
weight Java (FJ, Igarashi et al. [2001]). In a nutshell the major extensions are:

i ) addition of data group parameters to method calls, class and method declarations. ii ) addi-
tion of group types and extensions of the object types to be parametrized with group parameters iii
) new language constructs to deal with data groups and allow side effects.

We use the overbar notation to abbreviate a list of elements (e.g. x:T=x1:Ty, ...,z :T)).
Unless otherwise mentioned this notation includes the empty list. We write e to indicate the empty
sequence.

A program consists of a set of classes and a main method. In (ZEMINIUM the global starting
expression of FJ is explicitly wrapped in a main method, to provide an initial data group for the
top level objects. A class declaration (CL) gives the class a unique name C and defines its data
group parameters, internal data groups ((z), fields (¥') and methods (/). Note that the sequence of
data group parameters may not be empty, and instead of having an explicit owner parameter, the
first data group parameter specifies the data group to which the class instances belong. (Z/EMINIUM
does not provide an explicit constructor. Upon creation of a new object all its fields are initialized
to null and must later be explicitly set. Fields (F) are declared with a name and type. Data groups
(G) are declared by name, which is passed to the group constructor. Methods (F) specify their result
type, the data group permissions they require, their formal parameters and a body expression.

We syntactically distinguish between expressions and possibly effectful atoms. Atoms are
straightforward and consist of field read and assignment, method invocation and new objects cre-
ation. Besides the standard let binding ( 1et ), expressions consist of atomic blocks ( atomic )
which specify the data group they protect access to and a body expression; an operation that ex-
changes permission to the owner of an object for permission to its inner data groups ( unpackGroupsOf ),
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(programs) P = (CL,main)

(class decl.) CL == class C(a,pB)extends D(@){G F M}
(field decl.) F = TF
(group decl.) G = group(gn)
(method decl.) M = T.m{gpy)(Tyz){e}
(main method) main == C(«a)main(exclusive a)() {e}
(values) v u= o]|null
(references) r o= x|v
(group references) gr u= rgn|a
(expressions) e = a
| unpackGroupsOf rine
| letx=eine
| atomic (gr)e
| share (gr) between e; || ez
| inatomic (gr)e
(atoms) a = T
RS,
| rf:=r
| ()
| new C(gn)(7)
(types) T = Cg)|G
(object) obj == C|f =v]
(group permission) gp == exclusive | shared | protected
(group state) S = U|L
(class table) CT == e|CT,(C— CL)
(G table) gr == e|gr,{(C,m)~— G)
(class names) C,D,E
(method names) m
(field names) f
(variables) x,y,this
(groups variables) a, B,
(object references) 0
(group names) agn

Figure 8: (ZEMINIUM Language Grammar

which specifies the object and an expression which should gain access to the inner groups of the
specified object (the unpackInnerGroups of £MINIUM essentially limits the object reference
to the receiver object); and a share primitive ( share ), which specifies which data groups should
be shared between the two specified expressions. Note that the sequence of data group references
in the share construct must be non-empty. The inatomic primitive ( inatomic ) does not appear
at the source level and is only used as an intermediate form for tracking entered atomic blocks.
We use a global class table (C'T") to map class names to class declarations and a global data
group configuration table (G7") which maps class and method tuples to data group configurations.
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4 Static Semantics

4.1 T - Typing Context

The typing context I' contains all the typing information for object references and data group
references. We use G as the type for all data group references.

(Typing Context) L == eo|l,r:C(gr)|l,gr:G

(Domain) dom(T') == {X|(X:T)eTl}

4.2 A - Permission Context

The permission context A is a linear context that keeps track of the currently available permissions.
We write gr : gp to indicate that we have group permission gp for data group gr.

(Linear Context) A == e|Agr:gp

(Domain) dom(A) == {gr|(gr:gp) € A}

4.3 > - Store Typing Context

The store typing context > contains typing information for all objects inside the store.

(Store Typing) Y = e|Ao:T
(Domain) dom(X) == {ol|(0:T)eT}

4.4 G - Data-Group Configuration

The data group configuration G hierarchically tracks the data group requirements of an expres-
sion. It vaguely resembles NESL’s Blelloch and Greiner [1996] approach for tracking profiling
information, but instead of tracking operation costs we track permission requirements. A data-
group configuration can either be empty (e); a collection of group references ({gr}), indicating the
permission requirements of the current expression; the sequential composition of data group con-
figurations (&), used to combined data group configurations of expressions that are sequentially
ordered, or the parallel composition of data group configurations (]|) used to combine data group
configurations of expressions that are executed in parallel.

(DG configuration) G ::=e |{g7} | (G1 D G2) | (G1 ]| G2)

Example: Let us consider a simplified example to provide an intuition on how the data group
configuration is used to control the execution. Let us assume we have a given expression e
which represents a normal let binding with a corresponding data group configuration G. It con-
sists of the sequential composition of the data group configurations of its sub-expressions (i.e.
G = (G & Gy) where G, and G, are data group configurations of subexpressions e; and es). Fur-
thermore, assume without loss of generally that the required data groups for those sub-expressions
are requiredPerms(Gy) = {gro, gr1} and required Perms(Gs) = {gro}.

16



G = (G G) requiredPerms(Gy) = {gro, gr1}
requiredPerms(Gy) = {gro}
e = let x = ¢ in ey

For the moment consider the simple evaluation judgment 6|G F e — ¢’ - G, meaning, given the
runtime permissions ¢ and the expression e with its data configuration G, the expression e steps to
a new expression ¢’ with its new data group configuration G'.

{gro.gri}|GF let x= e; in es — let x=¢} iney 47

G = (gi @ Go) requiredPermS(gi) = {97“1}
requiredPerms(Gs) = {gro}
e = let x = €] in ey

The first subexpression e; requires all available runtime permissions, and because of the se-
quential composition operator ¢ the runtime system needs to satisfy its requirements first. There-
fore there are no runtime permissions for the second expressions e, left. The system steps e;
to ¢} and updates its data group configuration to G;. As shown above, assume that with this
step all remaining operations in ¢; solely depend on the runtime permission gr; indicated by
requiredPerms(Gy) = {gr1}. In the next execution step the runtime system needs again first
to satisfy the dependencies of ¢} before e,. But this time ¢} does not require all available runtime
permissions, which allows the system to provide the remaining runtime permissions to es. This
allows the system to step €} and e, in parallel as shown below.

B

{gr0.9r1}| G’ let x=¢€jin"es — let x=¢€fine, +4G”

G" = (G{ ©G)
¢’ = let x = € in ¢

4.5 Typing Judgements

Judgement Description
Ty f okinC Field f checks in the context of class C'.
T, m(gp7)(T: x) { e} okinC Method m checks in the context of the class C'.

INY|JAF e:T|G Given the typing context I, the store typing >, the permis-
sion context A, the expression e checks in the context of
class C' with type T" and produces data group configuration

g.
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4.6 Typing Rules
4.6.1 Sub-Typing

Standard sub-typing rules. Extended to cover data group parameters.

ST-CLASS _ L
class C(@, B) extends D{a){G F M} ST-REFL
' C(grp, gre) <: D(grp) I'= C(gre) <: C(gre)
ST-TRANS ST-BOTTOM
I'tC(gre) <: D{grp) 't D(grp) <: E(g7g) )

I' C(gre) <: E(gE) I'F L <:Cl(gr)

4.6.2 Well-formed types

WF-VAR WE-GROUP WF-GROUP-NAME
x:TeTl a:Gel x:C(gry el gn € groupDecls(C')
' x ok '+ «aok ' x.gn ok
WF-OBIJECT
A F gr ok

A F Object(gr) ok

WE-CLASS - o
CT(C) = class C{a,f) extends D{(a){G F M} I' - gra, grs ok

I+ C(gra, grp) ok

4.6.3 T-Program

T-PROGRAM
CL ok main = C{a) main(exclusive a)() { e }
(a: G)|(exclusive :a) Fe:T |G T <: Cla)

(CL, main) : C{a)

T-PROGRAM checks that a program is valid by requiring that all its classes are valid and the main
function is valid.

4.6.4 T-Class

T-CLASS e .
M okin C FokinC

class O(a,f) extends D{(a){G F M} ok

T-CLASS checks that a class declaration is valid by requiring that its fields and methods are valid.
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4.6.5 T-Field

T-FIELD _ L
CT(C) = class C(a,p) extends D(a){G FM}

(this : C(@, B),a: G, B : G,G : G) - E(grg) ok
E(grg) f okin C

T-FIELD checks that the field declaration is valid in class C' by requiring that the groups of the
field type only mention either group parameters of the class C' or internal groups of class C'
(i.e. this.gn).

4.6.6 T-Method
T-METHOD
CT(C) = class C(a,pB) extends D{a) {G FM}
override(C, m) ok I = (this: C{a,B),a: G, :
IFT,ok T,(z:T)|F gp) Fue:T.|G T.<T,
T, m{gp7)(T, ) {e} okinC

T-METHOD checks that the method declaration is valid in class C' by requiring that if the method
overrides another method of a parent class the declaration is a valid override. The definition
of a valid override follow the same definition of FJ regarding formal parameter and return
types and additionally requires the data group parameters to match exactly. For simplicity
reasons (/EMINIUM does not support polymorphism for data group parameters as shown in
Section 2.

4.6.7 T-UnpackGroupsOf

T-UNPACKGROUPSOF-EXCLUSIVE
L)X +Fr:C(gr) A=A (gro : exclusive)
groupDecls(C) = gn L, (r.gn: G)|3|A', (r.gn : exclusive) Fe: T | G
I'Y|AF, unpackGroupsOf rine: T | ({gro,7-gn} & G)

T-UNPACKGROUPSOF-SHARED
L2+ r:C(gr) A=A (gro: gp) gp € {shared, protected}
groupDecls(C) = gn L, (rgn:G)|3|A, (r.gn: shared) Fe:T |G

I'Y|AF, unpackGroupsOf r ine: T | ({gro,7-gn}} & G)

T-UNPACKGROUPSOF-EXCLUSIVE applies in the case when we have an exclusive permission to
the data group gry by which the object r is owned. In that case we replace the exclusive
permission of the owner group with exclusive permissions to the inner groups of r and type
check the sub-expression. Because we first have to unpack the object r, we sequentially
combine () the data group configuration of the sub-expression G with the set of the owner
data group and the inner permissions of 7.
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T-UNPACKGROUPSOF-SHARED follows the same principle as the T-UNPACKGROUPSOF-EXCLUSIVE
rule, with the difference that it only applies if we have either a shared or protected permis-
sion of the owner data group. In this case we have to substitute the owner permissions with
a shared permission for the inner data groups. Replacing it with exclusive permission would
violate soundness, as multiple expression might simultaneously unpack the inner groups of
the same object.

4.6.8 T-Split
T-SPLIT
{gp} C {exclusive, shared} A=A Ay A, [|X|(Ay, gr : shared) F, ey : Th |Gy
L[S|(Ag, gr: shared) b, e2: To |Go G = (G || Go)
CIX|(A, g7 gp) k. share (gr) between e ||ex: L |G

C

T-SPLIT checks if the two sub-expressions type check under the assumption that the permissions
to specified groups g7 have been replaced/split with shared permissions. This rule only
applies if the available permissions to the specified data groups are either exclusive or shared.
Because the two sub-expression are only sharing shared permissions we construct a data
group configuration by parallel composition (||) of the data group configurations of the two
sub-expressions.

4.6.9 T-Atomic

T-ATOMIC
[Xkgr:G CIX|(A, gr - protected) b, e: T | G

[|X|A, (gr : shared) i, atomic (gr)e:T | ({gr} @ G)

T-ATOMIC checks if its sub-expression type checks under the assumption that the permission of
the specified data group gr is converted/splitted to a protected permission. Because the sub-
expression can only execute once the atomic block guarantees the protection of the execution
we sequentially compose the set of the specified data group with data group configuration of
the sub-expression.

4.6.10 T-InAtomic

T-INATOMIC
CXkgr:G [|X|A, (gr : protected) b, e: T | G

L|Z|A, (gr : shared) k, inatomic (grye:T | ({gr} @ G)

T-INATOMIC Identical to T-ATOMIC.
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4.6.11 T-Let

T-LET
F|E|A1 F €1 2T1 | gl (F,I . Tl)‘E|A1,AR l_C’ €o TQ | g2

LIX|A,Agl, letz=e;ines: To | (G ® Go)

T-LET Checks if the first sub-expression e; type checks with a non-strict sub-set of the available
permissions and if the second expression type checks with all available permissions and the
fact that the variable x is bound to the value of ¢;. Because of the lexical order of the two
expressions we combine their data configurations sequentially ().

4.6.12 T-Reference

T-REFERENCE
LY Fr: D(gr)

FE|AF, r:D(gr) |e

T-REFERENCE checks if the reference is well typed. Because no data access is occurring the data
group configuration is empty (e).

4.6.13 T-Field-Read

T-FIELD-READ
CIXFr:D(Gr),gro: G gp € {exclusive, protected} fields(D) =Ty f

LIX[A, (gro = gp) b 7. fi : Tyi | {gro}

T-FIELD-READ checks if the receiver reference is well typed, the field is valid and we either have
an exclusive or protected permission to the data group gry to which the receiver belongs
to. Because of the data access the resulting group configuration consists of the singleton set
formed by gry.

4.6.14 T-Field-Assign

T-FIELD-ASSIGN
CIXFr,:Tyr:D(@Gr),gro: G
gp € {exclusive, protected} fields(D) =T f T, <: Ty

F|2|A7 (g?"o : gp) |_c T‘fi =Ty Tv | {gTO}

T-FIELD-ASSIGN checks if the receiver reference is well typed, the field is valid , the assigned
reference r, is assignment compatible and we either have an exclusive or protected permis-
sion to the data group gr( to which the receiver belongs to. Because of the data access the
resulting group configuration consists of the singleton set formed by gr.
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4.6.15 T-New

T-NEW
CT(D) = class D(@,pB) extends E(a){G F M} INYkFgr:G

TIZ|A K, new D(gr)() : [T /531D(@, B) | ®

T-NEW checks if the provided data groups are well typed. Because no data is accessed the result-
ing data group configuration is empty (e).

4.6.16 T-Call
T-CALL o
NEbFr:T,p:T,9r:G
AFgrgp T, = D{grp) CT(D) = class D(a, ) extends E{(a){G FF M}
mdecl(D,m) = Tresur m(gp ) (T, x){ e }
Tp < [W’W/W,E,B]Tm 1, < [W’W/W,E,B]D<au B>
PIS|A F, rm (@) (B) « [T /545 Tresu | {97}

T-CALL checks that the receiver, the provided data groups and parameter values are well typed
and are compatible. It also checks that the by the method declaration required permissions
are available. The resulting data group configuration is formed by the set of data groups that
are passed into the function call.

5 Dynamic Semantics

5.1 Store

The store 11 is a mapping of object references o to objects 0bj. A store can either be a potentially
empty set of object mappings or race, which indicates the case that a race condition occurred
during the execution. An object is a record consisting of all instance fields. The inner groups (i.e.,
data groups that are declared by every object) along with their corresponding state are managed
separately in the group access token context (cf. Section 5.3)

(store) p == (o> obj) | race

During the evaluation of an expression, differential stores (y5) containing the accessed objects
are generated. Those differential stores are merged via the & operator. To generate a new global
heap we write 1/ = [us]u for element wise update/substitution of objects.

Hsy 5 o dOm(N(Sl) N dom(utb) =e

Hs = s, W ps, =
race OTHERWISE

' gl = | e ps = race
fo= el = [0 — objlp V(o — obj) € s
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5.2 Runtime Permission Context

The runtime permission context § is used to model permission flows at runtime. Similar to static
permissions, the runtime permission can be split and flow along different paths. But, unlike static
permissions, runtime permissions do not carry any additional information about their specific type.
The runtime permissions are used to model the permission flow at runtime and therefore specify
which expressions currently have which permissions.

The top level permission context always contains only one initial permission to the global data
group of the main function. More runtime permissions are successively generated by unpacking of
inner groups.

(runtime permission context) d = e]|dogn
(domain) dom(d) == {o.gn|o.gn € d}

5.3 Group Token Context

The group token context W is a set of group access tokens, i.e., group references along with their
current locking state S = {U|L}. A locking state U indicates an unlocked state meaning that
one atomic block referring to that data group can be entered. A locking state L indicates a locked
state meaning that an atomic block referring to that data group is currently executing. There is a
controversial discussion Boehm [2009] regarding the correct semantics for atomic blocks. Some
argue that transactional semantics should be used while others argue that lock based semantics
should be used. We decided to use a locking based approach for its simplicity of implementation
and semantics. In future we might reconsider this decision and evaluate a transactional semantics
Moore and Grossman [2008].

There exists exactly one group access token for every data group in the system and unlike run-
time permissions, group access tokens cannot be split. In several rules the unlocked group access
token context is split in a non-deterministic way. This models non-determinism of how atomic
blocks can lock data groups. Locked group access tokens are forced to flow into the expression
that contains the corresponding inatomic . This approach is not strictly necessary but allows
us to formulate a stronger preservation induction hypothesis.

(group context) U = e|WV 0gn@QS
(domain) dom(V¥) == {o.gn|o.gn@QS e U}

5.4 Judgements

Judgement Judgement Form Description

Evaluation p|d|WV|G t- e — € = ps|W'|G"  Given the store 4, the runtime permissions ¢, the
group token context W, the data group configura-
tion G, the expression e steps to ¢’ by producing
the differential heap s, the group token context
U’ and data group configuration G.
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5.4.1 Program State

A program state is a quintuple of the form (u|d|W|G|e), consisting of a store (u2), a runtime permis-
sion context (§), a group access token context (V) of available tokens, a data group configuration
(G) and an expression (e). A program state represents a consistent state of the execution. To
transition from one program state to another, the expression takes a step following the evaluation
judgment and then generates a new global store (see E-TRANS-N in Section 5.5).

5.5 Transitive Evaluation Rule
E-TRANS-Z

(ulo[¥[Gle) = (u]d]P[Gle)

E-TRANS-N
plo| |G e er A pus| 1[Gy o = [uslp (a]6]W|Grler) = (1/[0[W|G'|e")

(]3] W|Gle) =" (u']0'19"|G"|€")

5.6 Evaluation Rules
5.6.1 E-UnpackGroupsOf

E-UNPACKGROUPSOF-REPLACE
G = ({v".gn, v, gn} @ G.)
§=2080".gn, wl ' vgn|V|G. e e H us| V|G G = {v'.gn, v gn} & G))

p|6|¥|G F unpackGroupsOf v, in e — unpackGroupsOf v, in € — us|V'|G’

E-UNPACKGROUPSOF-NONE
G = ({v'.gn',v,gn} & G.)
vgn' €6 pld|V|Ge ke e Hus|V'|G G = ({v'.gn,v,gn} & G.)

p|d|¥|G F unpackGroupsOf v, in e — unpackGroupsOf v, in € — us|¥V'|G’

E-UNPACKGROUPSOF-VALUE

1|0| V|G F unpackGroupsOf v, in v+ v 4 e|V|e

E-UNPACKGROUPSOF-REPLACE If we have the runtime permission (v'.gn’) to the data group
by which the reference (v,.) is owned, then we execute the sub-expression by replacing the
permission to the owner group with permissions to the inner groups (v,..gn).

E-UNPACKGROUPSOE-NONE If we do not have the runtime permission (v’.gn’) to the data group
by which the reference (v,.) is owned, then we execute the sub-expression right away, carry-
ing forward operations that do not depend on the inner groups of (v,.).

E-UNPACKGROUPSOF-VALUE reduces to the value generated by its sub-expression.
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5.6.2 E-Let
E-LET-1
G=(G16G) 61 = d Nrequired Perms(G,)
U=V, requiredT okens(e;) C Wy requiredT okens(ey) C Wy
ploi|Gi e ey Aps|ViGT G =(Gi@G) W=V UW,
pldlW|G - let x =€ iney— let x =€) in ey 4 pus| V|G

E-LET-2
G=(GdG) dy = 0 — requiredPerms(Gy)
U=y, U, requiredT okens(e;) C Wy requiredT okens(ey) C Wy
02| Wo|Ga = eg = ey A s W5|Gy W =0, UT, G = (G DG,)

pld|WIGF let x =e; iney—~ | let . =e; in ey 4 pus| V|G’

E-LET-12
G=(G®G) 01 = 6 NrequiredPerms(G)
0y =0 — Oy U =U,, U, requiredT okens(e;) C Uy requiredT okens(es) C Wy
oG er = ey s, [W1[GT p|02Wa|Go b ex €5 s, [U5]Gy
U= UV, G = (G, ®3G)) fs = ps, W s,
oG F let x =e; iney— let x =¢) in ey 4 ps|¥'|G’

E-LET-VALUE
G=(edGy) g =
p|d|P|GE let x =vineg— [°

x]g2
1]62

E-LET-1 Executes the first sub-expression (e;) by supplying it with a sub set (d;) of runtime
permissions that are required by the first expression, a non-deterministic sub-set of available
group access tokens (V) and its data configuration (Gy).

/
/.Jes 4 o W|G

E-LET-2 Executes the second sub-expression (e3) by supplying it with a sub-set (J3) of runtime
permissions that are not required by the first expression, a random sub-set of available group
access tokens (V1) and its data configuration (Gs).

E-LET-12 Simultaneously executes both sub expressions. The first sub-expression (e;) executes
by supplying it with a sub-set (4;) of runtime permissions that are required by the first ex-
pression, a random sub-set of available group access tokens (V) and its data configuration
(G1), while the second sub-expression gets the remaining runtime permissions (d5) and data
group tokens (W5) along with its data group configuration (G>).

E-LET-VALUE follows the standard let-normal-form semantics by substituting the value of e; for
X in e, and Gs.
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5.6.3 E-Split

E-SPLIT-1
G=(G1] G2) 01 = 6 NrequiredPerms(Gy)
U=, U, requiredT okens(e;) C Wy requiredT okens(es) C Wy
pl01191|Gy - er — ) us|V71G) U =T U, G = (G 1| G2)

w|d|¥|G = share (v.gn) between e; || ea — share (v.gn) between ¢ || ez 4 us|¥’'|G’

E-SPLIT-2
G=(G|6) dy = 0 NrequiredPerms(Gs)
U =", U, requiredT okens(e;) C Wy requiredT okens(ey) C Wy
1]02|W2|Go b eg = €5 s | V5| G U =T, U, g =(G16G)

w|d|¥|G = share (v.gn) between ey || ea — share (v.gn) between e || ey 4 us|¥'|G’

E-SPLIT-12
G=(G1] G2) 01 = 0 NrequiredPerms(G) 9y = d NrequiredPerms(Gs)
U=V, U, requiredT okens(e;) C Uy requiredT okens(ey) C Wy
(101 [W1]Gr = er ey A ps, [Wh1G 10| Wa|Ga e = ey s, [ U5y
s = sy W 227" = ‘Ijll U ‘11/2 g/ = (gi H gé)

w|d|¥|G = share (v.gn) between ey || ea — share (v.gn) between ¢ || ey 4 us|¥’'|G’

E-SPLIT-VALUE
G=1(o]e)
ulo|¥|G + share (v.gn) between vy || vy — null 4 e|V|e

E-SPLIT-1 Executes the first sub-expression (e;) by supplying it with a sub set (d;) of runtime
permissions that is required by the first expression, a random sub-set of available group
access tokens (¥;) and its data configuration (G;).

E-SPLIT-2 The symmetric rule to E-SPLIT-1 which lets e; take a step instead of e;.

E-SPLIT-12 Executes both of its sub-expressions (eq, e2) but giving the sub-set of runtime permis-
sions they require (91, d2), disjoint sub-sets of group access tokens (¥, W) and their corre-
sponding data group configurations (G;,Gs). Upon completion the sub-differential stores
(us, » 145,) of both sub-evaluations will be merged accordingly to Section 5.1.

E-SPLIT-VALUE Reduces null in the case both of its sub expressions have been evaluated to
values. The rule throws away the resulting values, because both sub-expressions have been
primarily evaluated for their side effects.
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5.6.4 E-Atomic
E-ATOMIC-STEP1

G = ({v.gn} & Gc)
vgn ¢ plofY|Ge e e VG G = ({v.gn} ®Gp)

pld|¥|G F atomic (v.gn) e — atomic (v.gn) € = us|¥'|G’

E-ATOMIC-STEP2
G = ({vygn} o)
§d=10,v.gn v.gnQU ¢ U wld' |G e e = us|V'|Gl G ={vygn}®q))

pld|¥|G F atomic (v.gn) e — atomic (v.gn) e - us|¥'|G’

E-ATOMIC-INATOMIC
G = {vgn}®g.) v.gn €0 U = 0" v.gn@QU U =0’ v.gnQL

p|d|¥|G F atomic (v.gn) e — inatomic (v.gn) e - o|¥'|G

E-INATOMIC-STEP
v.gn €0 U =9" v.gn@QL G ={vgn}aeg.)
oG e e = us|v"|G! U = 0" v.gnQL G = ({v.gn} x G))

p|d|¥|G + inatomic (v.gn) e — inatomic (v.gn) € = us|V'|G’

E-INATOMIC-VALUE
U =U" v.gnQL v.gn €90 U =" v.gnQU

wd|¥|G F inatomic (v'.gn) v v - e|U|e

E-ATOMIC-STEP1 If we do not have the runtime permission (v.gn) for the data group mentioned
in the atomic block we execute its sub-expression (e). The general absence of the require
runtime permission does not allow the execution of any code that access data of this data

group.

E-ATOMIC-STEP2 If we have the runtime permission (v.gn) for the data group mentioned in
the at omic block but not the corresponding group access token in an unlocked state, we
execute its sub-expression (e) without this runtime permission to prevent the execution of
operations that access data of this data group.

E-AtoMIC-INATOMIC If we have the runtime permission (v.gn) for the data group mentioned in
the at omic block and the corresponding group access token in an unlocked state, then the
whole expression step to inatomic and change the access token state to locked (entering
the at omic block).

E-INATOMIC-STEP We keep evaluating the sub expression.

E-INATOMIC-VALUE Once the sub-expression has been reduced to a value, the whole expres-
sion reduces to that value and the group access token is switched back to unlocked (leaving
atomic block).
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5.6.5 E-Field-Read
E-FIELD-READ
G=f{uygn}  vpgmed  pr o CF=0)  m={vo CF=0)
plSI|G v fi = vp s e

E-FIELD-READ If we have the runtime permission to the data group by which the receiver is
owned we return the value of the specified field and add the receiver object to the differential
store.

5.6.6 E-Field-Assign

E-FIELD-ASSIGN
g= {Ug-gn} Ug.gn € 4 p= <Ur = 0bjr> obj, = C[fr Ut fri = Vi, fr= Ufr]
obj, = Clfr = vy, fri = 0u, fr =vg]  ps = (v, = obj;)
101G b= v, fri = 0y > 0, 1 ps|W|G

E-FIELD-ASSIGN If we have the runtime permission to the data group by which the receiver is
owned we return the value of the specified field and add the receiver object to the differential
store.

5.6.7 E-New
E-NEwW _
G=oeo groupDecls(C) =gn = Opew fresh  ps = (Onew — C[f = null])
p|6|¥|G F new C(vy.gm) () — Onew 16|V, Opew.gnQU |@

E-NEW We allocate a new object and initialize all its fields to null and return that new mapping
in the differential store. Additionally we add new group access tokens for all the inner groups
of the newly created object in the unlocked state to the existing group access tokens. The
initialization does not count as data access and therefore does not require the availability
of the corresponding owner runtime permission. In the real implementation we obviously
allocate the object in a lazy manner (i.e. only when they are needed) to avoid resource
exhaustion.

5.6.8 E-Call
E-CALL

G = {v,.gn} Ug-gn €0
pi (o= Clf =vg])  mbody(Cym) =aT.e xGe G =[""[a][" [&][" /unis|Ge
plo|G F vpm{Tggm) () = [ [ [ /3" fnis]e = o[ W|G'

E-CALL If we have all the required runtime permissions to the data groups we lookup the body
expression with its data group configuration. Then we substitute the concrete values for the
formals in the expression and the data group configuration and step to the new expression
and data group configuration.
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Appendices

A Utility Rules

A.1 Helper Functions

fields(C) = F  returns fields of class C

H-FIELDS-OBJ

fields(Object) = o

H-FIELDS B L o
CT(C) = class C{a, ) extends D{(a){G FF M} fields(D) = F'

fields(C) = F', F

A.1.1 groupDecls

groupDecls(C) = gn  returns the declared groups of class C

H-GROUPDECLS-OBJ

groupDecls(Object) = o

H-GROUPDECLS _ o
CT(C) = class C(a,f) extends D{(a){group(gn) ' M} groupDecls(D) = gn’

groupDecls(C) = gn’,gn

A.1.2 override

override(C,m) ok  checks if a method correctly overrides another method

H-OVERRIDE _ o
CT(C) = class C(@,f) extends D{a){G F M} Tor m(gp7y)(Tex x) {ec } € M

mdecl(D,m) = Tp, m(gp7)(Tp: x) { ep } Tor <:Tps Tp, <: Ty

override(C, m) ok

H-OVERRIDE-TOP _ o
CT(C) = class C(@,f) extends D{(a){G F M} —mdecl(D,m)

override(C, m) ok
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A.1.3 requiredPerms

requiredPerms(G) = gr  returns all permissions in G

H-REQUIREDTOKENS-LEAF
o.gn € {gr}
requiredPerms({gr}) = {o-gn}

H-REQUIREDTOKENS-PAR

requiredPerms((Gy || G2)) = requiredPerms(Gy) U required Perms(Gs)

H-REQUIREDTOKENS-PAR

requiredPerms((Gy & Gs)) = requiredPerms(Gy) U required Perms(Gs)

A.1.4 requiredTokens
requiredT okens(e) = {0.gn@QL}  the access tokens corresponding to inatomic expression in e

H-REQUIREDTOKENS-UNPACKGROUPSOF

requiredT okens( unpackGroupsOf r in e ) = requiredT okens(e)

H-REQUIREDTOKENS-LET

requiredTokens( let © = e in ey ) = requiredT’okens(e1) U requiredT okens(ez)

H-REQUIREDTOKENS-ATOMIC

requiredTokens( atomic (gr) e ) = requiredT okens(e)

H-REQUIREDTOKENS-INATOMIC

requiredTokens( inatomic (gr) e ) = {gr@QL} U requiredT okens(e)

H-REQUIREDTOKENS-SHARE

requiredTokens( share (gr) between e || e2 ) = requiredT okens(e1) U requiredT okens(ez)

H-REQUIREDTOKENS-ATOMS

requiredTokens(a ) = e
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A.1.5 mdecl

mdecl(C,m) = M looks up the method declaration of m in class C

H-MDECL B -
CT(C) = class C(a,f) extends D(a){G FF M}
T, m{gp ) (Tp ) : Tynis { e} € M
mdecl(C,m) =T, m(gp ) (T, x) : Tynis{ € }

H-MDECL-REC
CT(C) = class C(a, ) extends D(@){G F M} T m{gpA) Ty x) : Typis { e } & M
)

mdecl(C, m) = mdecl(D,m)

A.1.6 mbody

mbody(C,m) =7.Z.e x G  looks up the method body expression m in class C

H-MBODY o
mdecl(Cym) =T, m{gp7)(T, x) : Tinis { e } gr(C,m)=g
mbody(C,m) =7.Z.e x G

B Definitions & Proofs

B.1 Definitions

DEFINITION 1 (STUCK)
An program state (1u|6|V|G|e) is stuck if e is not a value and:

o (u|0|W|Gle) does not take a step (i.e.  (u|0|V|Gle) — (W|5|V'|G'|€/) for some
e 1,8, .G

e (1|0|W|G|e) does not wait for resources to become available

DEFINITION 2 (PROGRAM STATE)

A program state is a quintuple of the form (u|5|V|G|e), consisting of a store (11), a runtime permis-
sion context (0), a group access token context (V) of available tokens, a data group configuration
(G) and an expression (e).
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DEFINITION 3 (UNIQUE ALLOCATION)
If multiple expression simultaniously allocate new objects, then every creation site will get a unique
object reference.

DEFINITION 4 (WELL-FORMED PROGRAM STATE)
A program state is well typed, written as -|X|A b, r (1|0]W|Gle), if :

SIAFe:TI|G
1 is well typed with respect to 2

If o.gn € 0 then there exists the corresponding o.gn : gp € A
e 1 # race

(0.gn@QU € WV 0.gn@_¢ U) = J inatomic (o.gn)... €e

0.gn@QL € ¥ = Jexactly one inatomic (o.gn)... € e

Lemma 1 (Weakening)
If I"CT', ¥ CX¥ and A" CA then I"|¥|A'Fe: T |G implies T'|X|AFe:T|G.

Lemma 2 (Store Typing)
A store 1 is said to be well typed, written I'|X - p, if:

e dom(X) = dom(p)
e Yo e dom(u) : T|E F ulo) : (o)

Lemma 3 (Store Monotonicity)
IfFT|XF pand X C X then T'|X F p.

Lemma 4 (Substitution)
If Do: T, I"|S|AFe:T, |G and T|S|AFr: T, |e and T, <: T, then I, ["/.|I"|Z|["/]A F
["/l(e: Te |Ge) -

Lemma 5 (Progress)
If T|X|A Kf (¢|6]¥|Gle) (i.e. a well-formed program state ) then either:

e cisvalueand G = e
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o ulo|W|G e e Hus| V|G forsome € pus, ¥ G’

e e stops execution with null-dereference

e ¢ is waiting for resource to become available

Lemma 6 (Preservation)
If TIX|A Ky (u|6|¥|Gle) with T|E|A F e @ T |G and p|d|¥|G - e — ¢ A ps|¥'|G" and
i’ = [ps|p then there exists:

e Y DX

o T’

such that:

o TY|A by (1/]0]W|G'|e") with D[S [A F ¢ - T" |G and T <: T
e 0 € dom(p) Ndom(us) =

(3(0) =C{d.gn’...)

No'.gn’ € SN .gn' i gp € A

A(gp = shared = 3 inatomic (o .gn')... € ¢))

Lemma 7 (Type-Safety)
If T|3|A By (1]0|W|Gle) and (p]0| V|G F e) =" (1/|6'[W'|G'|€’) then T'|E|A Ky (1[0 WG |€")
and not stuck.

Lemma 8 (Canonical-Forms)
e If v is value and has type 7, then v is either null or o.

e If v is value and has type G, then v is either null.gn or o.gn.

Lemma 9 (Inversion)

o If F|E|A H let © = ¢ in €y T2|Q then A = Al,AR and g = (gl D gg) and
CIX|A; ey : Ty |Gy form some Ty and I, 2271 | X[ Ay, Ag b eg 0 T |Go

o If 'X|A F r.f; : T;|G then T'|X|A F r : D(gr) for some D and g7 and G = {gro} and
T; f; € fields(D) and A & gr, : gp with gp € {exclusive, protected}.

o If'X|A F 1y fi :=r, : T,,|G then T'|X|A F 7, : D(gr) for some D and g7 and G = {gro}
and T; f; € fields(D) and T|X|A F 7. : T, |® with T, <: T; and A + gr, : gp with
gp € {exclusive, protected}.

o If|S|A F new C(o,.gm,) : T |G then CT(D) = class D(a, ) extends E(@){G F M}
andT'[X = gr: Gand T = [ /7 5]C(@, b) and G = e.
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o IfTIS[A F rm(gr)(ry) : T |G then D[S 7 : T,,p: Ty, gr : Gand A - grogpand T, =
D(grp) and CT (D) = class D(a,f) extends E(a){G F M} and mdecl(D,m) =
Tresur m{gp7)(Ty x){ e } and T, <: (77970 /- _]T, and T, <: [797 /_ _2]D(@, 3) and
T = 7D | 2]y a0d G = {g7).

o If I'|Y|A F unpackGroupsOf r in ethen I'|Y F r : C(gr) and A = A, (gro : qp)
and groupDecls(C') = gn and T, (r.gn : G)|Z|A', (rgn:qp)) - e : T | G, and G =
({gro. T-gn}t} @ Ge).

o IfT|X|A K, atomic (gr)e:T |GthenG = ({gr} ® G.) and A = A/, (gr : shared) and
DXt gr:Gand T'|X|(A, gr : protected) b, e : T | G

o IfI'Y|A K, inatomic (¢gr)e:T | GthenG = ({gr} ® G.) and A = A’  (gr : shared)
and 'Y - gr : G and T'|X|(A, gr : protected) b, e : T | G

o If'|Y|A ., share (gr) between e; || ez : L | Gthen{gp} C {exclusive, shared} and
A=A, Ay, A (g gp) and U|X|(Ay, gr = shared) F, ey : Ty |Gy and I'|X|(Ag, gr : shared) F,
ez : Ty |Gy and G = (G || Ga).

B.2 Proofs

B.2.1 Proof Preservation

Proof (Preservation) by induction on p|6|V|G b e — € A (ftoy, 15, ) |V'|G’

Case E-FIELD-READ :
e =0 f;
e =o,

by ASSUMPTION: I'|X|A k¢ (1|0]¥|Gloy. fi)
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by DEFINITION:
(ASHTX|AFo..f: T |G
(AS2) u # race
(AS3) 1 is well typed with respect to X
(AS4)o.gn €6 = ogn:gp e A
(AS5) (0.gn@QU € ¥ V 0.gn@_¢ V) = P inatomic (o.gn)... e
(AS6) 0.gn@QL € ¥ = Jexactly one inatomic (o.gn)... €e

by INVERSION:

T; fi € fields(D)

or = D(gr)

G ={gro}

gre = gp € A with gp € {exclusive, protected}
WLOG: let o'.gn’ = grg

by E-FIELD-READ:

o.gn’ €96
U=
G'=e

s = (op = D[f = vy])
WLOG: let Y =X

by STORE-TYPING: o, : T, € X with T}, <: T;

by T-REFERENCE: I'|¥/|A o, : T, |e (TS1.1)
by CONSTRUCTION: y5 # race = ' = |us|u # race (TS1.2)
by CONSTRUCTION: p/ = [us|p = p (TS1.3)
by E-FIELD-READ: 9, A do not change (TS1.4)
by E-FIELD-READ,AS5,AS6: ¥ = ¥/ (TS1.5, TS1.6)
by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: TS| A by (1/[8]%|G |o,) (TS1)

by E-FIELD-READ: dom(u) N dom(us) = {o,}
by INVERSION, E-FIELD-READ:

Y(o,) = D(d .gn'...)

o.gn’ €96

o.gn’ : gp € AN gp € {exclusive, protected}

c.o0 € dom(p) Ndom(ps) =

(3(0) = C{d .gn’ .. YN .gn' € oA .gn' : gp € AN(gp = shared = F inatomic (o .gn')... €
€)) (TS2)

Case E-Let-12:
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c.e= letx=e; ines
sel= letx=¢€in¢€,

by ASSUMPTION: T'|X|A k¢ (|0]¥|G| let =€) in ey)
by DEFINITION:

(ASHT|E|AF letz=e  ine: TG

(AS2) i1 # race

(AS3) p is well typed with respect to X

(AS4)o.gn € 6 = o.gn:gp € A

(AS5) (0.gn@QU € ¥V 0.gn@_¢ ¥) = A inatomic (o.gn)...Ce

(AS6) 0.gn@QL € ¥ —> Jexactly one inatomic (o.gn)... €e

by INVERSION:
A=A, Agr
G=G1DG
C|X|A; ey : Ty |Gy for some T}
F,.’IJIT1|2|A1, AR F €9 . T |g2

by E-LET-12:
let 0, = 0 N requiredPerms(G;) be the (sub-)set of permissions that are required by e,
SLogn €0 = o.gn:gp € Ay
i # race and is well typed with respect to X
let W = Wy, Uy with requiredT okens(e;) C Wy and requiredT okens(ey) C Wy
c.0.gn@QL € ¥y — Jexactlyon inatomic (o.gn)... € e;
o (0.gn@QU € U, V 0o.gn@_¢ ;) = f inatomic (o.gn)... € e
c.0.gn@QL € Wy = Jexactly on inatomic (0.gn)... € eg
2 (0.gn@QU € Uy V 0.gn@_¢ WUy) = P inatomic (o.gn)... € ey
CIX|A F ey : Ty |G is well typed
o DIE[AL g (u]01]W1]Grler)

by IH: on F|21|A1 |Tuf (/.1/1|51|\I/1|g1|€1) with F|2|A1 F er 1Y |g1 where ,u|51|\I/1|g1 H €1 —
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€ o, |41,

for some G}, % C ¥4

(IS1.2-1) uy # race

(IS1.3-1) u; is well typed with respect to X/

(IS1.4-1) o.gn € 61 = o.gn : gp € A

(1S1.5-1) (0.gn@QU € ¥, V 0.gn@_ ¢ ¥;) = f inatomic (o.gn)... € €,

(IS1.6-1) 0.gn@QL € ¥; = Jexactly one inatomic (o.gn)... € €

(IS2-1) 0 € dom(u) N dom(us,) =

(X1(0) = C(d'gn’...) Nd.gn’ € 5 Nd.gn' 1 gp € AL A (gp = shared =

Jinatomic (o.gn')... € e1))

by E-LET-12:
let 95 = (0 — ;) be the sub-set of permissions that did not go to e;
S.0.gn € 0y = o.gn:gp € A
u # race and is well typed with respect to
let U = Wy, Uy with requiredT okens(e;) C Wy and requiredT okens(ey) C Wy
c.0.gn@QL € ¥y = Jexactlyon inatomic (o.gn)... € e;
o (0.gn@QU € W, V o.gn@Q_¢ ;) = P inatomic (o.gn)... € ¢
c.0.gn@QL € ¥y — Jexactly on inatomic (0.gn)... € ey
o (0.gn@QU € Uy V 0.gn@_¢ U,) = P inatomic (o.gn)... € e,
CIX|A F eg : Ty |Gy is well typed
o DIE[Ag Bop (1]02]W2|Gales)

by IH: on F|22’A2 hvf (u2]§2|\112‘g2]62) with F‘ElAl [ €o Tl ‘gl where M‘éQ‘\DﬂgQ F €y >
ey 1 15, | V5| G5

for some G5, ¥ C 3

(IS1.1-2) T[S Ag F ) : T |G}

(IS1.2-2) o # race

(IS1.3-2) pus is well typed with respect to X/

(IS1.4-2) 0.gn € 65 = o.gn : gp € Ay

(IS1.5-2) (0.gn@QU € Wy V 0.gn@_¢ W¥y) = # inatomic (0.gn) € ¢,

(IS1.6-2) 0.gn@QL € ¥y = Jexactly one inatomic (0.gn) € €

(IS2-1) 0 € dom(p) N dom(us,) =

(3(0) = C(dgn’...) Nd.gn’ € 6 Nd.gn' : gp € Ay A (gp = shared —

Jinatomic (o.gn')... € e1))

by UNIQUE ALLOCATE:
¥ =X UX] and ¥y = X U X, with dom(X)) Ndom (X)) = e
SletY =X UX, U,
dom(V)) Ndom(V,) = e
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by E-LET-12: W' = W), U/, with dom(V}) N dom(¥s)’

by IS1.5-1, IS1.5-2:
(0.gn@QU € W'V 0.gn@_¢ ¥') = P inatomic (o.gn)... €€ (TSL.5)

by IS1.6-1, 1S1.6-2:
0.gn@QL € ¥ = Jexactly one inatomic (o.gn)...€ ¢ (TS1.6)

by E-LET-12: § = 01, o

o Por, 0o 1 01 € dom(us,) N os € dom(us,) A X'(01) = Clo.gn'...) A X(0g) =
D{d'.gn’...)

. dom(y,) N dom(ps,) = o

SLs = s, W s, # race

cop = [pslp # race (TS1.3)

by IS2-1, IS2-2, E-LET-12:

o € dom(u) Ndom(pus) = (TS2)

(3 (o) = C(d.gn' .. )N .gn’ € SN0 .gn’ : gp € AN(gp = shared => 3 inatomic (o'.gn')... €
e)

by IS2-1,1S2-2:
w1 1s well typed with respect to >4
1o 1s well typed with respect to Yo

.. i/ well typed with respect to X’/ (TS1.2)
by E-LET-12: 9, A does not change

ogn €0 = o.gn:gp €A (TS1.4)
by T-LET-12: T'|X|AF let z =¢€} ine): T |G’ (TS1.1)
by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: (TS1)
Case E-LET-1:

Proof is a sub-case of case E-LET-12, without the e, sub-expression step.

Case E-LET-2:
Proof is a sub-case of case E-LET-12, without the e; sub-expression step.

Case E-LET-VALUE :
s.e= letx=v1in ey
e = [U/x]GQ
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by ASSUMPTION: I'|X|A k¢ (|0]¥|G| let x = v in ey)
by DEFINITION:

(ASDT|EIAF letz=wvine:T|G

(AS2) i1 # race

(AS3) pu is well typed with respect to >

(AS4)o.gn €6 = o.gn:gp e A

(AS5) (0.gn@QU € ¥V 0.gn@_¢ V) = P inatomic (o.gn)... €e

(AS6) 0.gn@QL € ¥ — Jexactly one inatomic (o.gn)... € e

by INVERSION:
A=A, Agr
G=G1DG
C|IX|A; Fv: T} |Gy for some T}
FX]A, ArFeg: 15 |Gy

by rule E-LET-VALUE:

g =1["/219
U =v
Hs = ®

by SUBSTITUTION:

F,x : Tl,F,|E|A1,AR [ €o T2 |g2 — F, [”/x]F’|Z|[”/x]A1,AR = [v/x](GQ . T2 |g2)

by E-LET-VALUE: s =
c i = [pslp = p # race
codom(p) Ndom(ps) = e

WLOG: let ¥/ = X
by AS2: i/ = p is well typed with respect ¥/ = X
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by E-LET-VALUE: neither A changes

by AS5,AS6: ¥/ =V

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.5: T|S|A by (1/]6]7|G|€')

Case E-FIELD-ASSIGN :
Se=v.fi =0,
e =o,

by ASSUMPTION: I'|X|A &, ¢ (p|0]¥|G|v,. fi := 0,)
by DEFINITION:
ASDT|S|A v, =0, : T'|G
(AS2) i1 # race
(AS3) p is well typed with respect to X
(AS4)o.gn € 6 = o.gn:gp € A
(ASS5) (0.gnQU € ¥ V 0.gn@_¢ ¥) = f inatomic (o.gn)... Ce
(AS6) 0.gn@QL € ¥ = FJexactly one inatomic (o.gn)... € e

by INVERSION:
T; f; € fields(D)
or + D(gr)
G ={gro}
gre - gp € A with gp € {exclusive, protected}
0, : T, withT, : T;
WLOG: let o'.gn’ = grg

by E-FIELD-ASSIGN:
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o.gn €6

o.gn'Q_e v
U=
G'=e

ps = (op = D[f = vs])
WLOG: let &' = ¥

by STORE-TYPING: o, : T, € X with T, <: T;

by T-REFERENCE: ['|>|AF o, : T), |e

by CONSTRUCTION: yi5 # race = ' = [us|p # race

by CONSTRUCTION: y/ = [uslp = p

by E-FIELD-ASSIGN: §, A do not change

by E-FIELD-ASSIGN,AS5,AS6: U = U/

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: T|S|A Ky (1/[6]0G|¢)

by CONSTRUCTION: dom(u) N dom(us) = {o,}
by INVERSION, E-FIELD-ASSIGN:
Y(o,) = D{d .gn’...)
o.gn’ €46
o .gn’ : gp € AN gp € {exclusive, protected}
coo €dom(p) Ndom(ps) = X(o) =C{d.gn’...) = d.gn' €6 = o.gn’: gp
A gp = shared = 3 inatomic (d'.gn')... € ¢

Case E-NEW :
-.e = new C(7,.gng)

. /!
L€ —Onew

by ASSUMPTION: I'|X|A k¢ (|0]¥|G| new C(tv,.gry))
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by DEFINITION:
(AS1) I'|X|A F new C(v,.gny) : T |G
(AS2) u # race
(AS3) 1 is well typed with respect to X
(AS4)o.gn €6 = ogn:gp e A
(AS5) (0.gn@QU € ¥ V 0.gn@_¢ V) = P inatomic (o.gn)... e
(AS6) 0.gn@QL € ¥ = Jexactly one inatomic (o.gn)... €e

by INVERSION: B
T = [79" [551C(a,b)
Gg=oe

by E-NEw:
o.gn’ €6
o.gn'@Q_e v
groupDecls(C) = gn, U =V, 000 -gn.QU
G'=e
ps = (Opew — C[f = null))

by E-NEW:
ps # race = ' = [uslp
0, A do not change

WLOG: let ¥ = X, 0pens : T
by E-TRANS-N: u/ = [us]p is well typed with respect to 3/

by T-REFERENCE: ['|X|A F 046 : T |G’

by E-NEW,AS5,AS6: V' = VU {0,0,,.gn.QU }
newly added access tokens are in unlocked state
. atomic — inatomic transmission could have happened so far

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: T|S|A by (1/]6]0|G|€)

by CONSTRUCTION: dom(u) Ndom(us) = {o,}
by INVERSION, E-NEW:
Y(o,) = D(d .gn'...)
o.gn’ €96
o.gn’ : gp € AN gp € {exclusive, protected}

(TS1.3)
(TS1.4)

(TS1.2)

(TS1.1)

(TS1.5, TS1.6)

(TS1)

o0 €dom(p) Ndom(pus) = X(o) =C{d.gn'...) = d.gn’ €6 = o.gn’: gp

A gp = shared => 3 inatomic (0o'.gn')... €€
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Case E-CALL :
e = v,..m(Uy.gig) (Tp)

el =[0I S| ][ ase

by ASSUMPTION: I'|X|A &, ¢ (1|0]¥|G v, m(vg-gng) (Ty))
by DEFINITION:

(AS1) T'|3|A F v, m(vy.gng) () : T'|G

(AS2) i1 # race

(AS3) u is well typed with respect to X

(AS4)o.gn € 6 = o.gn:gp € A

(ASS5) (0.gnQU € ¥ V 0.gn@_¢ V) = fl inatomic (o.gn)... €e

(AS6) 0.gn@QL € ¥ = Jexactly one inatomic (o.gn)... € e

by INVERSION:
NXbFr:T,p:1T,gr:G
At+gr=gp
CT(D) = class D{(@,[5) extends E(a){G F M}
mdecl (D,m) = Tyesure m(gp7)(Te x){ € }
T, <: [77975/ ﬁ,E,B]T-’E
T, <: [P 7,5,3]D<aa B)
T = [g_r,gr_p/ 775,E]Tresult

g ={g7}

by E-CALL:
TGy gy € 6
mbody(C,m) = @.T.ep X G

G = [07 [5 5l [=l[" [ his) Ge
U=

ps = o
WLOG: let Y =%
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by SUBSTITUTION: I,z : T}, this : T, g7 : G,I"|X|A F e : T, |G

= T, [79% /o 5] [2][ enas D[N [P [ o 5] 2l enis) A 1= [7979 [ 517 /2] [ enis) (€ ¢ Tresur |Ge)
(ISLD),

by E-CALL: yi5 = & = ' = [uslp = 1
1 is well typed with respect to >/
w1 # Race

dom(p) Ndom(us) = e
by E-CALL: 6§, A do not change

by E-CALL, AS5, AS6: inatomic ¢ e, because it is a runtime only construct

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: T|S|A ks (4/]0]V|G|¢)

Case E-UNPACKGROUPSOF-REPLACE :

c.e= unpackGroupsOf v, in ey

.. € = unpackGroupsOf v, in €,

by ASSUMPTION: I'|X|A k¢ (1|0]¥|G| unpackGroupsOf v, in egy)
by DEFINITION:
(AS1) T|X|A F unpackGroupsOf v, in ey : T |G
(AS2) i1 # race
(AS3) p is well typed with respect to X
(AS4)o.gn €6 = o.gn:gp € A
(AS5) (0.gn@QU € ¥V 0.gn@_¢ V) = A inatomic (o.gn)... e
(AS6) 0.gn@QL € ¥ — FJexactly one inatomic (o.gn)... € e

by INVERSION:
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L|X F v, : D(gF)

A=A (gro:qp)
groupDecls(D) = gn

A" = A (v..gn : qp)

I (vpgn: G)E|A" Fe: T | G,
G = ({gro,7gm}} & G)

by E-UNPACKGROUPSOF-REPLACE:
G = ({v'.gn, vr-gn} & G.)
d=14,v".gn
5" = 5/7W

Sub-Case T-UNPACKGROUPSOF-SHARED :
qp € {shared, protected} = qp’ = shared

Sub-Case T-UNPACKGROUPSOF-EXCLUSIVE :
If gp € {exclusive} = qp’ = exclusive

by IH:on T, (v..gn : G)|X|A" By (1]0”|¥|Ge|esun) With T|X2|A” F egyp : T' |Ge where 1| 6"|¥|Ge F
Csub — elsub - M5|\Ij,|gé

for some G, ¥ C ¥

ISL.H X |A" e, T |G,

(IS1.2) i/ # race

(IS1.3) i/ is well typed with respect to X/

(IS1.4) 0.gn € 0" = o.gn : gp € A"

(IS1.5-2) (0.gn@QU € Wy V 0.gn@_¢ ¥,) = # inatomic (o.gn) € €.,

(IS1.6-2) 0.gn@QL € ¥, — Jexactly one inatomic (o.gn) € €.,

(IS2-1) 0 € dom(p) N dom(us,) =

(3a(0) = C(dgn’...) Nd.gn’ € 6 Nd.gn' 1 gp € Ay A (gp = shared —

Jinatomic (o .gn') ... € esw))

by IS1.2,IS1.3,IS1.5, 1S1.6,1S2: (IS1.2,1S1.3,1S1.5, IS1.6,TS2)
by T-UNPACKGROUPSOF-EXCLUSIVE, T-UNPACKGROUPSOF-SHARED, E-UNPACKGROUPSOF-
REPLACE:

I'Y|A F unpackGroupsOf v, ine€),, : T |G’ (IS1.1)
by IS1.4, E-UNPACKGROUPSOF-REPLACE:

ogn€d = ogn:gp €A (IS1.1)
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by TS1.1, TS1.2, TS1.3, TS1.4, TSL.5, TS1.6: T|S|A by (4/[6]T|G'|e’) (TS1)

Case E-UNPACKGROUPSOF-NONE :

c.e= unpackGroupsOf v, in ey

.. € = unpackGroupsOf v, in €],

by ASSUMPTION: I'|X|A &, ¢ (1|0]¥|G| unpackGroupsOf v, in egy)
by DEFINITION:
(AS1) T|X|A F unpackGroupsOf v, in egy : T |G
(AS2) i1 # race
(AS3) 1 is well typed with respect to X
(AS4)o.gn €6 = ogn:gpe A
(AS5) (0.gn@QU € ¥V 0.gn@_¢ V) = P inatomic (o.gn)... e
(AS6) 0.gn@QL € ¥ — Jexactly one inatomic (o.gn)... € e

by INVERSION:
IS F v, : C(g7)
A=A (gro : qp)
groupDecls(C) = gn
A" =N (v..gn : qp')
L (vp.gn: G)|E|A"Fe: T |G,
G = ({gro,Tgn}} @ Gc)
WLOG: let v'.gn = gry

by E-UNPACKGROUPSOF-NONE:
gro ¢ 9
g=({vynteg)
g =({v'.gn} & g)

by IH:onT', (v,.gn : G)|E|A” By (p]0"|¥|Ge|esus) With T|E|A" = ey : T |Ge Where 11|0”| V|G, =
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Csub F7 e{s‘ub B /'L5|\Ill|g(la

for some G}, ¥ C ¥/

ASLDT|Y|A" ¢, - T|G.

(IS1.2) i/ # race

(IS1.3) 1/ is well typed with respect to X/

(IS1.4)o.gn € 6 = o.gn:gp € A

(IS1.5-2) (0.gnQU € Uy V 0.gn@_¢ W,) = # inatomic (o.gn) € €.,

(IS1.6-2) 0.gn@QL € W5 = Jexactly one inatomic (o.gn) € €.,

(IS2-1) 0 € dom(u) N dom(us,) =

(3a(0) = C(d.gn’..) Nd.gn' € 5 Nd.gn’ : gp € Ay A (gp = shared —

Jinatomic (0.gn') ... € eqwp))

by IS1.2,IS1.3,IS1.5, IS1.6,IS2:

by T-UNPACKGROUPSOF-EXCLUSIVE, T-UNPACKGROUPSOF-SHARED, E-UNPACKGROUPSOF-
NONE:
I'Y|A F unpackGroupsOf v, inel, : T |G’

by IS1.4, E-UNPACKGROUPSOF-NONE:
ogn€d = ogn:gp €A

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: T|S|A by (1/]6]7|G|€)

Case E-UNPACKGROUPSOF-VALUE :
..e = unpackGroupsOf v, inwv
c.e =

by ASSUMPTION: I'|X|A &, ¢ (1|0]¥|G| unpackGroupsOf v, in egy)

47



by DEFINITION:
(AS1) I'|X|A F unpackGroupsOf v, in egy = T |G
(AS2) u # race
(AS3) 1 is well typed with respect to X
(AS4)o.gn €6 = ogn:gp e A
(AS5) (0.gn@QU € ¥ V 0.gn@_¢ V) = P inatomic (o.gn)... e
(AS6) 0.gn@QL € ¥ = Jexactly one inatomic (o.gn)... €e

by INVERSION:
Y ko, : C(gr)
A=A (gro:qp)
groupDecls(C) = gn
A = A/, (m)
I (vp.gn: G)E|A" Fe: T | G,
G = ({gro, Tgn}} @ Gc)

by E-UNPACKGROUPSOF-VALUE:

G =
js =
V=0

WLOG: let Y =X

by STORE-TYPING: v : T € X

by T-REFERENCE: I'|Y/|A v : T |e (TS1.1)
by E-UNPACKGROUPSOF-VALUE:
ps = o = ' = [uslp # race (TS1.3)
i = pis well typed with respect to ¥/ = X (TS1.2)
dom(u) N dom(us) = e (TS2)

by AS1.4, AS1.5, AS1.6,E-UNPACKGROUPSOF-VALUE: d, A, ¥ do not change (TS1.4, TS1.5, TS1.6)
by TS1.1, TS1.2, TS1.3, TS1.4, TSL.5, TS1.6: I'|X|A k¢ (1/|0]V'|G'|€) (TS1)

Case E-ATOMIC-STEPI :

Follows the reasoning as the E-UnpackGroupsOf-None case, by allowing the sub-expression to
execute code that does not depend on the aotmic permission.

Case E-ATOMIC-STEP2 :

Analog to case E-Atomic-Stepl. Despite the fact that we have the necessary permission the data
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group access token indicate the already another atomic block is executing. Therefore only allow
sub-expression only to execute code that does not depend on the atomic permission.

Case E-ATOMIC-INATOMIC :

c.e= atomic (gr) esuw

o.€¢ = inatomic (gr) €.,

by ASSUMPTION: I'|X|A k¢ (u|0]W¥|G| atomic (gr) €su)
by DEFINITION:

(ASD)T|X|AF atomic (gr) esuw : T |G

(AS2) i1 # race

(AS3) u is well typed with respect to X

(AS4)o.gn €6 = o.gn:gp e A

(AS5) (0.gn@QU € ¥V 0.gn@_¢ V) = P inatomic (o.gn)... e

(AS6) 0.gn@QL € ¥ — Jexactly one inatomic (o.gn)... € e

by INVERSION:
g={gr}@G)
A = A’ (gr : shared)
MY kFgr:G
L|X|(A, gr : protected) t, eswp - T | G

by E-ATOMIC-INATOMIC:

U =" grQlU
U =V grQl
g =g
Ho = ®

WLOG: letY =X

by AS2, E-ATOMIC-INATOMIC: 15 = @ =—> ' = [us|p
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W = p # race
w1’ = p is well typed with respect to ¥/ = X
dom(p) Ndom(us) = e

by T-INATOMIC:
I'Y|AF inatomic (gr) esw : T |G’

by E-ATOMIC-INATOMIC: §, A do not change

by AS1,AS5,AS6:
gr@QL € ¥ — Jexactly one inatomic (gr)...€e
gr@_¢ U" = P inatomic (gr)... € e
grQL € V' = P inatomic (gr)... € ¢

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: T|S|A ks (1/]6]0|G|¢)

Case E-INATOMIC-STEPI :
Follows a similar logic as E-Atomic-Step2. In this case the all permissions are passed to the
sub-expression let the sub-expression take a step.

Case E-INATOMIC-VALUE :
o.e= inatomic (gr) v
sel=w

by ASSUMPTION: I'|X|A &, ¢ (1|0]W¥|G| inatomic (g7) esu)
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by DEFINITION:
(ASDHT|E|AF inatomic (gr) esw : T |G
(AS2) u # race
(AS3) 1 is well typed with respect to X
(AS4)o.gn €6 = ogn:gp e A
(AS5) (0.gn@QU € ¥ V 0.gn@_¢ V) = P inatomic (o.gn)... e
(AS6) 0.gn@QL € ¥ = Jexactly one inatomic (o.gn)... €e

by INVERSION:
G ={gr}®G)
A = A (gr : shared)
[XkFgr:G
L|X|(A, gr : protected) F, v:T | G

by E-INATOMIC-VALUE:

gr €o

v =V grQlL
U =v" grQU
ps =0

G'=e

WLOG: let Y =X

by STORE-TYPING: v : T € X

by T-REFERENCE: I'|Y/|A v : T |e (TS1.1)
by E-INATOMIC-VALUE:
ps = o = ' = [uslp # race (TS1.3)
i = pis well typed with respect to ¥/ = X (TS1.2)
dom(u) N dom(us) = e (TS2)
by AS1.4 E-UNPACKGROUPSOF-VALUE: d, A, ¥ do not change (TS1.4)

by AS1,AS5,AS6:
gr@QL € ¥ = Jexactly one inatomic (gr)...€e
grQU € ¥ = P inatomic (gr)... € ¢ (TS1.5, TS1.6)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: T|S|A by (1/]6]W'|G'|¢’) (TS1)
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Case E-SPLIT-12:

-.e = share (gr) between e || g

-.€¢ = share (gr) between ¢} | €

by ASSUMPTION: I'|X|A k¢ (1|0|¥|G| share (g7r) between ey || e2)
by DEFINITION:

(AS1) '|E|AF share (gr) between e || ea: T |G

(AS2) i1 # race

(AS3) u is well typed with respect to X

(AS4)o.gn € 6 = o.gn:gp € A

(ASS5) (0.gnQU € ¥ V 0.gn@_¢ V) = fl inatomic (o.gn)... €e

(AS6) 0.gn@QL € ¥ = Jexactly one inatomic (o.gn)... € e

by INVERSION:
{gp} C {exclusive, shared}
A=A, Ay, Ay, (977 D)
CIX|(Ay, gr : shared) &, ey : Ty |Gy
L|X|(Ag, gr : shared) F, eg : Ty |Gy
G=(G16G)

by E-SPLIT-12:
G=(G11 %)
01 = 0 Nrequired(G;) the sub-set of permission that are required by e;
dy = 0 N required(Gs) the sub-set of permission that are required by e
U = U, Uy with requiredTokens(e;) C Wy and requiredTokens(es) C Wy
U= W
1) +2
g =(919)
by ASSUMPTION:

F|E|A1 Fof (N’51‘\I’1|g1|€1)
[X[A, by (,u|52|\112|92|e2)
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by IH: on F|21|A1 huf (M1|51|\Ifl|g1|61> with F|Z|A1 [ €1 T1 |g1 where ,u|51|1111|g1 F e1
et A s, [ V]G

for some G}, % C ¥4

(SL1-1) T[Sy |A, F ¢, : Ty |G

(IS1.2-1) uy # race

(IS1.3-1) p; is well typed with respect to >’

(IS1.4-1) 0.gn € 6y = o.gn: gp € Ay

(1S1.5-1) (0.gn@U € ¥, V 0.gn@_ ¢ ¥;) = # inatomic (o.gn)... € €,

(IS1.6-1) 0.gn@QL € ¥; — Jexactly one inatomic (o.gn)... € €

(IS2-1) 0 € dom(u) N dom(us,) =

(X1(0) = C(dgn’...) Nd.gn’ € 5 Nd.gn' 1 gp € AL A (gp = shared =

Jinatomic (o.gn')... € e1))

by IH: on F’ZQ’AQ l_’wf (/LQ’&Q"PQ‘QQ’€2) with F‘ElAl - €o Tl ‘gl where ,u‘52‘\112|g2 F €y >
€, 1, | U410

for some G, ¥ C 3

(IS1.1-2) T[S Ag F ) : T |G}

(IS1.2-2) o # race

(IS1.3-2) o is well typed with respect to X/

(IS1.4-2) 0.gn € 65 = o.gn: gp € Ay

(IS1.5-2) (0.gn@QU € Wy V 0.gn@_¢ W¥,) = # inatomic (0.gn) € ¢,

(IS1.6-2) 0.gn@QL € ¥, — Jexactly one inatomic (o0.gn) € €

(IS2-1) 0 € dom(u) Ndom(ps,) =

(3a(0) = C(dgn’...) Nd.gn' € 6, Nod.gn' : gp € Ay A (gp = shared —

Jinatomic (o.gn')... € e1))

by UNIQUE ALLOCATE:
¥ =X U] and ¥; = ¥ U X, with dom(3)) Ndom (X)) = e
letE,: 2U21U22
dom(V}) Ndom(V,) = e

by E-SPLIT-12: W/ = W} W,

by IS1.5-1, IS1.5-2:
(0.gn@QU € V'V o.gn@_¢ V') = # inatomic (o.gn)... € ¢ (TSL.5)

by IS1.6-1, IS1.6-2:
0.gn@QL € ¥ = Jexactly one inatomic (o.gn)...€ ¢ (TS1.6)

by E-SPLIT-12: § = 61, 02
o Por, 0y 1 01 € dom(us,) N oo € dom(us,) A X'(01) = Clo'.gn'...) A ¥(0g) =
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D{d'.gn’...)
codom(ps, ) N dom(ps,) = @
SLs = s, W s, # race
cop = [pslp # race (TS1.3)

by IS2-1, IS2-2, E-LET-12:
o € dom(p) Ndom(pus) = (TS2)

(X (o) =C(d.gn' .. )N .gn’ € SN .gn’ : gp € AN(gp = shared = I inatomic (o'.gn’) ...

e)

by IS2-1,1S2-2:
w1 1s well typed with respect to >J;
1o 1s well typed with respect to Yo

.. i/ well typed with respect to ¥’/ (TS1.2)
by E-SPLIT-12: §, A does not change

o.gn €0 = o.gn:gp €A (TS1.4)
by T-SPLIT-12: I'|¥/|A ¢ : T |G (TS1.1)
by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: (TS1)

Case E-SPLIT-1:
Follows the same approach as case E-Split-12 with the the difference that the evaluation of e; is
not considered.

Case E-SPLIT-2:
Follows the same approach as case E-Split-12 with the the difference that the evaluation of e; is
not considered.

Case E-SPLIT-VALUE:
Follows the same approach as case E-UnpackGroupsOf-Value.

B.2.2 Progress Proof
Proof (Progress) by induction on I'|X|A F,; (u|6|¥[Gle) with I'|E[A H, e : T'|G.

Case T-UNPACKGROUPSOF-EXCLUSIVE :
e = unpackGroupsOf r in e
by IH: e, is value | e; takes a step | e; stops with null-dereference | e; waits for resources
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Sub-Case ¢; is value :
by E-UNPACKGROUPSOF-VALUE: u|d|V|G - unpackGroupsOf r in vy +— v - o|U|e
.. e — ¢ takes a step

Sub-Case ¢; — ¢ takes a step :
by E-UNPACKGROUPSOF-REPLACE:

1|0|W|G F unpackGroupsOf r in e; — unpackGroupsOf r in ey - us|¥' |G’
. e — ¢ takes a step

Sub-Case e; stops with null-dereference :
Then e stops with null-dereference.

Sub-Case ¢; waits for resources :
Then e waits for resources.

Case T-UNPACKGROUPSOF-SHARED :
Symmetric to the T-UNPACKGROUPSOF-EXCLUSIVE case.

Case T-SPLIT :
e = share (F.gn) between e; || ey
by CANONICAL-FORM: r; = nullorr; =o

Sub-Case i :r;, = null:
Then e stops with null-dereference.

Sub-Case Vi:r; # null:
by IH: e, is value | e; takes a step | e; stops with null-dereference | e; waits for resources

Sub-Sub-Case ¢; is value :
by IH: e5 is value | e, takes a step | e, stops with null-dereference | e waits for resources

Sub-Sub-Sub-Case ¢, is value :
by E-SPLIT-VALUE:

p|0|V|G F share (f.gn) between vy || vo — null - e|VU]e - e — ¢ takes a
step

Sub-Sub-Sub-Case ¢, — ¢, takes a step :
by E-SPLIT-2:
p|d|¥|G - share (T.gn) between e; || ea — share (T.gn) between e || €},

us|G's |G'

.. e — ¢ takes a step

Sub-Sub-Sub-Case e, stops with null-dereference :
Then e stops with null-dereference.

Sub-Sub-Sub-Case e, waits for resources :
Then e waits for resources.

55



Sub-Sub-Case e; — ¢ takes a step :
by E-SPLIT-1:
p|0|P|G = share (F.gn) between e; || e2 — share (F.gn) between €] || ez
ps| WG’
.. e — € takes a step

Sub-Sub-Case e; stops with null-dereference :
Then e stops with null-dereference.

Sub-Sub-Case ¢; waits for resources :
Then e waits for resources.

Case T-ATOMIC :
e = atomic (r.gn)e;
by CANONICAL-FORM: r; = nullorr; =o

Sub-Case Jdi : r; = null:
Then e stops with null-dereference.

Sub-Case Vi:7; # null:
by IH: e; is value | e; takes a step | e; stops with null-dereference | e; waits for resources

Sub-Sub-Case ¢; is value :
by E-ATOMIC-INATOMIC:

w|0| V|G F atomic (r.gn) vy — inatomic (r.gnjv; - e|¥'|e
.. e — ¢ takes a step

Sub-Sub-Case e¢; stops with null-dereference :
Then e stops with null-dereference.

Sub-Sub-Case ¢; waits for resources :
Then e waits for resources.

Case T-INATOMIC :
e = inatomic (r.gn) e;
by CANONICAL-FORM: r;, = nullorr; =o

Sub-Case 3¢ :r; = null:
Then e stops with null-dereference.

Sub-Case Vi :r; # null:
by IH: e, is value | e; takes a step | e; stops with null-dereference | e; waits for resources

Sub-Sub-Case ¢, is value :
by E-INATOMIC-VALUE:

p|0| V|G F inatomic (r.gn) vy — vy - e|U'|e
.. e — ¢ takes a step
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Sub-Sub-Case e; stops with null-dereference :
Then e stops with null-dereference.

Sub-Sub-Case ¢; waits for resources :
Then e waits for resources.

Case T-LET:
e= letx=e; in ey
by IH: e; is value | e; takes a step | e; stops with null-dereference | e; waits for resources

Sub-Case ¢; is value :
by E-LET-VALUE:

plo|W|GE let oz =wv; in ey [V ey] - o Ul
.. e — ¢ takes a step

Sub-Case ¢; — ¢ takes a step :
by E-LET-1:

p|d| V|G let x =€ iney — let  =e in ey - ps| V|G’
.. e — ¢ takes a step

Sub-Case e; stops with null-dereference :
Then e stops with null-dereference.

Sub-Case ¢; waits for resources :
Then e waits for resources.

Case T-REFERENCE :
e=rTr
by CANONICAL-FORM: r =nullorr =o

Sub-Case r» = null:
Then e stops with null-dereference.

Sub-Case r # null:
The e is value.

Case T-FIELD-READ :

ce=r.f;
by CANONICAL-FORM: r =nullorr =o

Sub-Case r» = null:
Then e stops with null-dereference.

Sub-Case r # null:
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Sub-Sub-Case r.gn € § :
by E-FIELD-READ:

plo| |G & fi = v A ps| V|G
.. e — ¢ takes a step

Sub-Sub-Case r.gn ¢ 0 :
Then e is waiting for resources.

Case T-FIELD-ASSIGN :
se=r.fii=mr,
by CANONICAL-FORM: » = nullorr =o

Sub-Case » = null:
Then e stops with null-dereference.

Sub-Case r # null:

Sub-Sub-Case r.gn € 9 :
by E-FIELD-READ:

plo1 |G & 1 fi =1y = v A s V|G
. e — ¢ takes a step

Sub-Sub-Case r.gn ¢ 0 :
Then e is waiting for resources.

Case T-NEW :
e = new C(T.gn)()
by CANONICAL-FORM: r; = nullorr; =o

Sub-Case 3¢ :r; = null:
Then e stops with null-dereference.

Sub-Case Vi:7; # null:
by E-NEw:

pl6|¥|G F new C(rgn)() — o - ps| V|G’
.. e — € takes a step

Case T-CALL :

e =1,..m(rg.gn)(r,)
by CANONICAL-FORM: r; € {r,,7} = 7, =nullorr;=o0

Sub-Case J¢:r; = null:
Then e stops with null-dereference.

Sub-Case Vi :r; # null:
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Sub-Sub-Case Jr, ¢ 0 :
Then e waits for resources.

Sub-Sub-Case Vr, € :
by E-CALL:

w8 |G & rpm(rg.gn)(ry) = [ [G][7 [&][" [inisles 1 o] ¥|Gy
.. e — ¢ takes a step
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