
Gradual Featherweight Typestate

Roger Wolff� Ronald Garcia� Éric Tanter:
Jonathan Aldrich�

July 2010
CMU-ISR-10-116

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

�School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
:PLEIAD Laboratory, Computer Science Department (DCC), University of Chile

Abstract

Typestate oriented programming integrates notions of typestate directly into the semantics of an object-
oriented programming language. This document presents the formalization of Gradual Featherweight Type-
state, a typestate oriented language modeled after Featherweight Java. This language supports a classes-
as-states model of typestates, and utilizes a flow-sensitive type system for checking access permissions and
state guarantees, thereby enabling safe and modular typestate checking.

This research is supported by grants from the National Science Foundation and from IBM.
This work was supported by the National Science Foundation under Grant #0937060 to the Computing Research Association

for the CIFellows Project.

Keywords: gradual typing, hybrid types, access permissions, state guarantees

1 Introduction

What follows is a formalization of a system for typestate-oriented programming, with an emphasis on per-
mission checking. This system combines static and dynamic permission checking. In another document, we
formalize a purely static version of a typestate-oriented programming system.

The formalization presented here is for a nominal class-oriented language modeled after Featherweight
Java [Igarashi et al., 2001]. This language provides a simple model for explaining what typestate-oriented
programming is about, as well as a platform for extension. We’ll call it Gradual Featherweight Typestate, or
GFT for short.

We do not provide a runtime semantics for GFT. Instead, we provide a type-directed translation to an
internal language, we call GFTIL. We provide a statics and dynamics for GFTIL, and prove type safety for
that language. We also prove that a translation from GFT to GFTIL preserves typing.

2 Source Language

We now present a formal model for a language with integrated support for gradual typestate. The language
is inspired by Featherweight Java (FJ) [Igarashi et al., 2001], so we call it Gradual Featherweight Typestate
(GFT). Garcia et al. [2010] formalizes a fully static variant of GFT, called Featherweight Typestate.

2.1 Syntax

Figure 1 presents GFT’s syntax.
As notational conventions, smallcaps (e.g. FIELDNAMES) indicate syntactic categories, italics (e.g. C)

indicate metavariables, and sans serif (e.g. Object) indicates particular elements of a category. Overbars
(e.g. A) indicate possibly empty sequences (e.g. A1, ..., An). GFT assumes a number of primitive notions,
such as identifiers and method, field, and class names. The this keyword is a distinguished identifier that is
bound to the subject of a method call. The Object keyword is a distinguished class name, indicating the top
of subclass hierarchies.

A GFT program PG is a list of class declarations CL paired with an expression e. Each class declares
its superclass and contains a list of field declarations F and method definitions M . Each GFT class has an
implicit constructor that assigns an initial value to each field. The parameters of methods M are annotated
with its input and output states, T1 " T2 x. The method itself carries an annotation (in square brackets) for
the receiver object this. Method signatures N are used to modularly typecheck code without the need to
analyze the method bodies.

A class table CT is a mapping between class names C and classes CL. As many rules of GFT depend
on the class table, for simplicity, we always assume a fixed CT .

Several helper judgments are used throughout the formalism of the language. fieldspCq = T f yields
that the types T and names f of the fields of class C. methodpm,Cq = M yields the method m on class
C, and accounts for method overloading. mdeclpm,Cq = N behaves equivalently, but yields the method
signature N . The reflexive, antisymmetric, transitive : is the subclass relation.

Expressions The let expression let x = e1 in e2 is essentially standard. However, an optional type ascrip-
tion provides fine-grained control over how permissions are distributed to the bound variable (Section 2.2).
GFT expressions are restricted to A-normal form [Sabry and Felleisen, 1993], so let expressions explicitly
sequence all complex operations. This restriction simplifies the description of the type system, which relies

1

x, this P IDENTIFIERNAMES

m P METHODNAMES

f P FIELDNAMES

C,D,E P CLASSNAMES

Object P CLASSNAMES

PG ::= xCL, ey (programs)
CL ::= class C extends D t F , M u (classes)
F ::= T f (fields)
N ::= T mpT " T q rT " T s (method signatures)
M ::= T mpT " T xq rT " T s

t return e; u (methods)
T ::= P C | Void | Dyn (types)
P ::= kpDq (permissions)
k ::= full | shared | pure (access permissions)
e ::= x | let x : T = e in e | let x = e in e (expressions)

| new Cpxq | x.f | x.mpxq | x.f :=: x
| xÐ Cpxq | holdrx : T speq | assertxT ypxq

∆ ::= x : T (type contexts)

C : C Subclass

C : C
C : D D : E

C : E

class C extends D t F , M u

C : D

fieldspCq = T f Class Field Declarations

fieldspObjectq = �

class C extends D t T f, M u fieldspDq = T 1 f 1

fieldspCq = T 1 f 1, T f

methodpm,Cq = M

class C extends D t F , M u
Tr mpT " T 1 xq rTt " T 1

t s t return e; u PM

methodpm,Cq =

Tr mpT " T 1 xq rTt " T 1
t s t return e; u

class C extends D t F , M u m RM
methodpm,Dq =

Tr mpT " T 1 xq rTt " T 1
t s t return e; u

methodpm,Cq =

Tr mpT " T 1 xq rTt " T 1
t s t return e; u

mdeclpm,Cq = N

methodpm,Cq = Tr mpT " T 1 xq rTt " T 1
t s t return e; u

mdeclpm,Cq = Tr mpT " T 1q rTt " T 1
t s

Figure 1: Source Language Syntax and Auxiliary Functions

2

on sequencing to track typestate. We write e1; e2 as shorthand for let x = e1 in e2, where x does not occur
in e2. We assume throughout that variables bound by let expressions can be renamed as needed. We assume
the same for parameters in method bodies.

The new expression heap-allocates an object of class C and populates its fields with the supplied values.
The update operation x0 Ð Cpx1q is the primary addition to the language specifically in support of typestate.
It replaces the value of x0 with the new object of class C, which may not be the same as x0’s current class.
Updating an object is how GFT expresses typestate change. The field reference expression x.f returns the
current value of the f field of x. The expression x0.f :=: x1 is a swapping assignment: it replaces the
current value of the field x0.f with the value of x1 and returns the old value as its result. The field read
expression does not give up any of the permissions to an object held by the field being read. In contrast,
swapping assignment yields all permissions to the old value of the field x0.f , replacing it with the new value
x1. The method invocation x0.mpx1q executes the m method with x0 bound to this and the arguments x1
bound to the method parameters. The expression holdrx : T speq captures the amount of x’s permissions
denoted by T for the duration of the computation e. When e completes, these permissions are merged back
into x. The expression assertxT ypxq is like a cast, but rather than returning a value of the given type it
changes the type of the target variable.

Types The type of a GFT object reference has two components, its permission P and its class (or state)
C. The permission can be broken down further into its access permission k and state guarantee D. We
write these static object reference types in the form kpDq C. Dyn is a dynamic object reference type, and is
treated by the type system with greater leniency than the statically typed object references. Type checks on
Dyn objects are deferred to runtime. The Void type classifies expressions executed purely for their effects.
No source-level values have the Void type.

Throughout the discussion of static semantics, we impose a well-formedness condition on types. The
type kpDq C is only well-formed if C is a subclass of D. From here forward, all types T are assumed to be
well-formed.

2.2 Static Semantics

The GFT type system relies upon linear type contexts [Girard, 1987]. In GFT’s type system, the types of
identifiers vary over the course of a program. In part this reflects how the permissions to a particular object
may be partitioned and shared between references as computation proceeds, but it also reflects how update
operations may change the class of an object during execution.

Managing Permissions Before we present typing judgments for Featherweight Typestate, we must ex-
plain how permissions are treated. Permissions to an object are a resource that can be consumed during
execution. In particular, the permissions to an object can be split among object references.

Figure 2 presents several auxiliary judgments that specify how permissions may be safely split, and
their relation to typing. First, access permission splitting k1 V k2{k3 describes how given a k1 permission,
permission k2 can be acquired, leaving behind k3 as the residual. When we are only concerned that a
permission k2 can be split from a permission k1 (i.e. the residual permission is irrelevant), we write k1 V k2.
For instance, given any permission k, fullV k and k V k.

Permissions partially determine what operations are possible, as well as when an object can be safely
bound to an identifier. The restrictions on permissions are formalized as a partial order on permissions,
analogous to subtyping. The notation P1 : P2 says that P1 is a subpermission of P2, which means that

3

k V k{k Access Permission Splitting

k V pure{k fullV full{pure

k P t full, shared u
k V shared{shared

P Ø P Compatible Permissions

E : D
kpEq Ø purepDq

P1 Ø P2

P2 Ø P1

sharedpDq Ø sharedpDq

P : P Subpermission

k1 V k2
k1pDq : k2pDq

E : D
purepEq : purepDq

D : E
fullpEq : fullpDq

P1 : P2 P2 : P3

P1 : P3

P V P {P Permission Splitting

k1 V k2{k3 k1pD1q : k2pD2q
D3 = D1

: D2

k1pD1qV k2pD2q{k3pD3q

T V T {T Type Splitting

P1 V P2{P3 C1 : C2

P1 C1 V P2 C2{P3 C1

VoidV Void{Void
T � Void
T V Dyn{T

T {T V T Type merging

P = P1

: P2 C = C1

: C2

P1 C1{P2 C2 V P C

T {DynV T Dyn{T V T

T ó T Max. Residual

T1 V T1{T2

T1 ó T2

T : T Subtyping

T1 V T2

T1 : T2

Ó : T Ñ T Type Demotion

psharedpDq CqÓ = sharedpDq D
ppurepDq CqÓ = purepDq D

TÓ = T otherwise

T :
� T Type Consistency

T1 : T2

T1
 :
� T2 Dyn :

� P C P C :
� Dyn

Figure 2: Permission and Type Management Relations

4

a reference with P1 permissions may be used wherever an object reference with P2 permissions is needed.
As expected, the subpermission relation is reflexive and transitive. Splitting an access permission produces
a lesser (or identical) permission. The rules that mention pure and full capture how state guarantees affect
the strength of permissions. Pure permissions covary with their state guarantee because a pure reference
with a superclass state guarantee assumes less reading capability. Full permissions contravary with their
state guarantee because a full reference with a subclass state guarantee assumes less writing capability (it
can update to fewer possible states).

Permission splitting extends access permission splitting by accounting for state guarantees. First, if
k1pD1q : k2pD2q, splitting is safe. The question is to determine the proper residual permission k3pD3q.
k3 is obtained by splitting k2 from k1. The resulting state guarantee D3 is the greatest lower bound of D1

and D2 in the subclass hierarchy, denoted D1

: D2 (it is required that either D1 : D2 or D2 : D1).

Permission splitting in turn extends to type splitting T V T {T , taking subclasses into account for object
references. The Void type can be arbitrarily split into multiple Void types. Any object reference type may
split off a Dyn while retaining the original type as residual. We use type splitting to define the notion of
subtyping T : T used in GFT. As with base permission splitting, we write P1 V P2 or T1 V T2 to express
that P2 or T2 can be split from P1 or T1 respectively.

The maximum residual relation T1 ó T2 specializes type splitting for the case where all the permissions
to an object are acquired. The result type T2 is what is leftover; for instance,
fullpDq C ó purepDq C and sharedpDq C ó sharedpDq C.

Update operations can alter the state of any number of variable references. To retain soundness in the
face of these operations, it is sometimes necessary to discard previously known information in case it has
been invalidated. In these cases, an object reference’s class must revert to its state guarantee, which is a
trusted state after an update. The type demotion function TÓ expresses this restricting of assumptions. Note
that full references need not be demoted since no other reference could have changed their states. We write
∆Ó for the compatible extension of demotion to typing contexts.

Type merging T {T V T describes how two separate permissions to an object may be combined. It is
used to specify hold’s semantics. Type merging is defined in terms of the

: and

: relations, where

: is

the analogue of

: for subpermissions.

The compatible permissions relation P1 Ø P2 says that two distinct references to the same object, one
with permissions P1 and the other with P2 can soundly coexist at runtime. A reference with pure permissions
is compatible with any other permission that respects its state guarantee, meaning it could only change state
among its subclasses. Shared permissions are only compatible when they have the same state guarantee. A
full permission is only compatible with pure permissions that respect its state guarantee.

Well-typed Expressions In contrast to a traditional type system, the GFT typing judgments are quaternary
relations roughly of the form ∆1 $ e : T % ∆2: given the typing assumptions ∆1, the expression e can be
assigned the type T and produces typing assumptions ∆2 as its output. The assumptions in question are the
types of each reference. Threading typing contexts through the typing judgment captures the flow-sensitivity
of the type assumptions.

The type system specification is designed to both ensure determinism of our type system and also retain
flexibility. Consider a candidate typing judgment for variable references.

T1 V T2{T3
∆, x : T1 $ x : T2 % ∆, x : T3

It states that if x is assumed to have type T1, and T1 can be split into T2 and T3, then the expression x can
be typed at T2. Because T2 may not be unique, a source program may be well-typed according to multiple

5

∆ $ eô T % ∆ Source Expression Typing

(ctxñ)
T1 ó T2

∆, x : T1 $ xñ T1 % ∆, x : T2

(newñ)

fieldspCq = T 1 f

x : T $ xð T 1 % x : T 2

∆, x : T $ new Cpxq ñ fullpObjectq C % ∆, x : T 2

(ctxð)
T1 V T2{T3

∆, x : T1 $ xð T2 % ∆, x : T3
(invokeñ)

mdeclpm,C1q = T mpTx " T 1
xqrTt " T 1

t s

P1 C1
 :
� Tt T2

 :
� Tx

∆, x1 : P1 C1, x2 : T2 $

x1.mpx2q ñ T % ∆Ó, x1 : T 1
t , x2 : T 1

x

(ctxd ð)
∆, x : Dyn $ xð P C % ∆, x : Dyn

(invoked ñ)
T2

 :
� Dyn

∆, x1 : Dyn, x2 : T2 $

x1.mpx2q ñ Dyn % ∆Ó, x1 : Dyn, x2 : Dyn

(letô)

∆ $ e1 ñ T1 % ∆1

∆1, x : T1 $ e2 ô T2 % ∆1, x : T 1
1

∆ $ let x = e1 in e2 ô T2 % ∆1
(refñ)

T2 f P fieldspC1q T2 ó T
1
2

∆, x : P1 C1 $ x.f ñ T 1
2 % ∆, x : P1 C1

(letTô)

∆ $ e1 ð T1 % ∆1

∆1, x : T1 $ e2 ô T2 % ∆1, x : T 1
1

∆ $ let x : T1 = e1 in e2 ô T2 % ∆1
(refd ñ)

∆, x : Dyn $ x.f ñ Dyn % ∆, x : Dyn

(êð)

∆ $ peñ T1 % ∆1

T1
 :
� T2

∆ $ peð T2 % ∆1
(holdñ)

T1 V T2{T3 T2Ó {T
1
3 V T 1

1

∆, x : T3 $ eñ T % ∆1, x : T 1
3

∆, x : T1 $ holdrx : T2speq ñ T % ∆1, x : T 1
1

(updateñ)

k P tfull, sharedu
C : E fieldspCq = T 1

2 f

x2 : T2 $ x2 ð T 1
2 % x2 : T 2

2

∆, x1 : kpEq D,x2 : T2 $
x1 Ð Cpx2q ñ Void
% ∆Ó, x1 : kpEq C, x2 : T 2

2 Ó

(swapñ)

k1 P tfull, sharedu
T 1
2 f P fieldspC1q

x2 : T2 $ x2 ð T 1
2 % x2 : T 2

2

∆, x1 : k1pD1q C1, x2 : T2 $
x1.f :=: x2 ñ T 2

2

% ∆, x1 : k1pD1q C1, x2 : T 2
2

(updated ñ)

fieldspCq = T 1
2 f

x2 : T2 $ x2 ð T 1
2 % x2 : T 2

2

∆, x1 : Dyn, x2 : T2 $
x1 Ð Cpx2q ñ Void
% ∆Ó, x1 : Dyn, x2 : T 2

2 Ó

(swapd ñ)
T2

 :
� Dyn

∆, x1 : Dyn, x2 : T2 $
x1.f :=: x2 ñ

Dyn % ∆, x1 : Dyn, x2 : T2

(assertñ)
T V T 1

∆, x : T $
assertxT 1ypxq ñ Void % ∆, x : T 1

(assertd ñ) T � Void T 1 � Void
∆, x : T $
assertxT 1ypxq ñ Void % ∆, x : T 1

Figure 3: Source Language Static Typing Rules

6

derivations, with each derivation representing a different split of permissions between this particular variable
reference and the remainder of the program. Although determinism is not important for the fully static
case1, nondeterminism is incompatible with dynamic permission assertions: such a system could succeed
sometimes and fail other times if permissions could be transferred more than one way for the same code.

Rather than requiring type annotations for all variable references, we use the bidirectional typing ap-
proach of Pierce and Turner [2000] to structure the type system so that permission transfer is deterministic,
and so type annotations can be used to selectively tune how permissions are split.

The type system is therefore structured as two mutually recursive judgments. The type synthesis judg-
ment ∆1 $ e ñ T % ∆2 conceptually analyzes the expression e in the context ∆1 and synthesizes a type
T for it; the type T is an output of the judgment, along with the output context ∆2. The type checking
judgment ∆1 $ e ð T % ∆2 checks that the expression e under the type context ∆1 can be given the
type T . The type T is conceptually an input to the judgment, and the only output is the context ∆2. By
convention, the synthesis rule names have a ñ suffix, while the checking rule names have a ð suffix.

Figure 3 presents the typing rules for GFT expressions.
A variable reference is typed differently depending on whether its type is synthesized or checked. The

synthesis rule (ctxñ) yields maximal permissions to the referenced object. Its output context associates the
maximum residual permissions to the variable. In contrast, the checking rule (ctxð) just ensures that the
desired type can be split from the starting type, and leaves the corresponding residual in the output context.
(ctxd ðq states that dynamic object references may be typed as any static object reference type. Safety
checks will be deferred until runtime.

Each of the typing rules for let represents both a checking and synthesis rule. Replacing the ô with ð
gives the checking rule, which checks the type of e2, and ñ gives the synthesis rule, which synthesizes the
type of e2. The crucial difference between the (letô) and (letTô) is whether the bound expression’s type is
checked or synthesized. When the bound variable has a type ascription, x : T1, the expression e1 is checked
against that type. If there is no type ascription, the type of e1 is synthesized.

The typing rules for let and variable references combine to determine how permissions transfer between
references. When a variable reference is bound to another variable, the new variable by default acquires
maximal permissions to the referenced object; A type annotation on the let-bound variable can tune how
permissions are transferred to a binding. For instance, assume x has type fullpDq C and consider the two
expressions:

(1) let y = x in e
(2) let y : sharedpDq C = x in e

In expression (1) y has fullpDq C type and x has purepDq C type in e, but in expression (2) both x and y
have sharedpDq C type.

Type checking can be treated uniformly for all other expressions. The (ê ð) rule schematically ex-
presses checking for those expressions, which we indicate with ê. For all of them, type checking can be
characterized simply in terms of type synthesis: an expression checks at type T1 if its type synthesizes to
some subtype T2 of T1. The rest of the expressions in the language only require type synthesis rules.

(updateñ) states that a variable reference can only be used to update an object if it has a write permis-
sion. Also, the target class of the update must respect the reference’s state guarantee. The arguments to the
constructor are type checked against the types of the target class’s fields. The update operation is performed
solely for its effect on the heap, so the type of the overall expression is Void. Finally, type assumptions from
the input context are demoted (i.e. ∆Ó) in the output context to ensure that any aliases to the updated object

1For instance, Featherweight Typestate uses non-deterministic typing rules [Garcia et al., 2010].

7

retain a conservative approximation of the object’s current class. The output type of the updated object
reflects its new class. (updated ñ) types the update expression when the target of the update is typed Dyn.
Safety checks on the target are deferred until runtime.

(newñ) expressions are given full permission with a maximally lenient state guarantee Object to a
newly constructed object of class C. The arguments to the constructor are checked against the fields of C.
The output type of the arguments is the residual type after permissions that are needed to be stored in the
fields are split.

(invokeñ) is typed according to the method signaturemdeclpm,C1q, as found in the class table. Param-
eters must be consistent with the declarations of the signature. The resulting expression, and output types of
the parameters are also taken from the signature.

(invoked ñ) is a method invocation of a dynamically typed receiver. All checks, such as the existence
and arity of the method m and the types of the parameters, are deferred until runtime.

(refñ) is a field read typed at the maximum residual of the static object reference’s field.
(refd ñ) is a field read of a dynamically typed object. The existence of field f is deferred until runtime.
(holdñ) is typed by typing the subexpression e after splitting T2 from variable x. The resulting type of

x is the merge of the demotion of the T2 (the type being being held) and T 1
3, the resulting output type of x

after evaluation of e.
(swapñ) is a field swapping assignment. x2 is checked against the type of the field f of the class of the

statically typed object reference (C1). The resulting type of the expression, T 1
2 is the type of the field (the

old value will be returned). The output type of x2 is the residual type after T 1
2 has been split.

(swapd ñ) a field swapping assignment for a dynamically typed object reference. The existence of the
field, and requisite permission checking is deferred until runtime.

(assertñ) and (assertd ñ) are asserts that are used purely for their effects of changing the argument’s
type. (assertñ) expresses a statically safe assert (analogous to an upcast). (assertd ñ) is a statically safe
assert (analogous to upcasts) and is used modify the type of a variable reference.

(assertd ñ) is similar, but requires a runtime check to acquire the requested permission associated with
T 1. The two separate rules are not required, but are done for clarity when we define the translation to the
internal language.

Well-typed Programs Now that we have defined what it means for an expression to be well-typed, we
can define a well-typed program. Figure 4 describes the relevant judgments.

A well-typed method signature N in class C must have the current class of the receiver match the class
that it is defined in. An overridden method must match its overridden signature everywhere else. GFT does
not support method overloading.

The body of a well-typed method M in class C must be typechecked against the return value of its
signature. Types of parameters of the output context must be consistent with the output types declared in the
signature.

The types of class fields have an interesting restriction: they must be invariant under demotion (i.e.
TÓ= T). Since the types of fields do not change as a program runs, they must not be invalidated by update
operations. This restriction ensures that field types remain compatible with other aliases to their objects.
GFT does not support field overloading.

A well-typed class must consist of well-typed methods and fields. And a well-typed program must
consist of well-typed classes and a well-typed main expression.

Not expressed in these rules, but implicitly understood are some other sanity conditions (the same as
in Featherweight Java) regarding the typing of programs. All classes mentioned in the program must be

8

N ok in C Well-typed Method Signature

class C extends D t F ,M u
mdeclpD,mq = Tr mpTx " T 1

xqrPt E " T 1
t s

Tr mpTx " T 1
xqrPt C " T 1

t s ok in C

class C extends D t F ,M u
mdeclpD,mq undefined

Tr mpTx " T 1
xqrPt C " T 1

t s ok in C

M ok in C Well-typed Source Method

Tr mpTx " T 1
x xqrTt " T 1

t s ok in Ct
x : Tx, this : Tt $ eð Tr % this : T 2

t , x : T 2
x

T 2
t

 :
� T 1

t T 2
x

 :
� T 1

x

Tr mpTx " T 1
x xq rTt " T 1

t s t return e; u ok in Ct

F ok Well-typed Field

TÓ= T

T f ok

CL ok Well-typed Class

F ok M ok in C0

class C0 extends C1 t F ; M u ok

PG ok Well-typed Program

CL ok � $ eñ T % �

xCL, ey ok

Figure 4: Source Language Program Typing Rules

defined (or Object). There are no cycles in the subclass hierarchy: therefore Object must be the superclass
of all defined classes.

3 Internal Language

Gradual Featherweight Typestate leaves many aspects of dynamic permission management implicit. This
section introduces an internal language, GFTIL, that makes these details explicit. GFT’s semantics are then
defined by type-directed translation to GFTIL.

3.1 Syntax

GFTIL is structured much like GFT but elaborates several concepts (Figure 5). First, the internal language
introduces explicitly dynamic variants ed of some operations from the source language. A dynamic operator
takes a dynamically typed reference in its primary position (e.g. as receiver of an object method). Static
operators require statically typed references.

Second, many expressions in the language carry explicit type information. This information is used to
dynamically account for the flow of permissions as the program is evaluated. As shown below, these type
annotations play a role in both the type system and the dynamic semantics.

Finally, it adds several constructs that only occur at runtime. Object references and indirect references
point to runtime objects. Object references correspond to heap pointers; indirect references are an artifact
that facilitates the type-safety proof. GFTIL is also in A-normal form, though at runtime the arguments
to expressions are generalized to simple expressions: variable names or indirect references. The merge
expression is used to specify the dynamic semantics of hold. The void value is the runtime result of expres-
sions that return no value. Reference expressions come in two forms. A bare reference b signifies a variable
or reference that is never used again. In contrast, a splitting reference srT V T {T s explicitly specifies the

9

Language Syntax
x, this P IDENTIFIERNAMES

m P METHODNAMES

f P FIELDNAMES

C,D,E P CLASSNAMES

Object P CLASSNAMES

o P OBJECTREFS

PG ::= xCL, ey (programs)
CL ::= class C extends D t F , M u (class declarations)
F ::= T f (fields)
M ::= T mpT " T xq rT " T s t return e; u (methods)
N ::= T mpT " T q rT " T s (method signatures)
e ::= es | ed | ei (expressions)
es ::= b | void | srT V T {T s | new Cpsq (static expressions)

| let x = e in e | releaserT spsq
| holdrs : T V T {T " T V T speq
| s.f | s.mpsq | s.f :=: s
| sÐ Cpsq | assertxT " T ypsq

ed ::= s.df | s.dmpsq | s.f :=:d s (dynamic expressions)
| sÐd Cpsq | assertdxT " T ypsq

ei ::= mergerl : T {l : T V T speq (internal expressions)
s ::= x | l (simple expressions)
T ::= P C | Void | Dyn (types)
P ::= kpCq (permission and state guarantee)
k ::= full | shared | pure (permissions)
∆ ::= b : T (linear type context)
b ::= x | l | o (context bindings)
l P INDIRECTREFS

Figure 5: Syntax of the internal language.

10

starting type, result type, and the residual type of the reference. The releaserT spsq expression explicitly
releases a reference and its permissions, after which it can no longer be used.

3.2 Static Semantics

Because of GFTIL’s explicit form, its type judgement
∆ $ e : T % ∆1 does not need to be bidirectional. Furthermore, its type rules use the same permission and
type management relations from the source language.

Well-typed Expressions Figure 6 presents GFTIL’s typing rules. These rules exhibit some of the desired
properties of the language. They enforce strict tracking of permissions. The rules check the input context ∆
to force their arguments s to have exactly the type required. Furthermore, many expressions remove argu-
ment references s from the output context, so they cannot be reused later in the program. These restrictions
force GFTIL to explicitly encode permission flow. Its dynamic semantics uses this encoding to implement
permission tracking.

The (void) rule says that void has Void type. The (ctx-b) rule says that a bare reference has the type
dictated by its context and is utterly consumed. The (ctx) rule is an explicit analogue of GFT’s (ctxð)
rule. The (new) rule checks that all its argument types match the class field specifications. The resulting
object has full access permissions and the maximally lenient Object state guarantee. The (ref) rule yields
the maximal residual type for the field x.f , since the object cedes no permissions. For a dynamic field
read, (refd) returns a dynamically typed field reference. The (invoke) rule matches a method’s arguments
exactly against the method signature. Each argument’s output type is dictated by the method’s output states.
For dynamic method calls, The (invoked) rule defers all checking to runtime. The (swap) rule checks that
its first argument has write permission, and that its second argument’s type exactly matches the swapped
field. The expression’s type matches the field. For dynamic references, the (swapd) rule defers checking
to runtime. The (update) and (updated) rules almost mirror GFT’s update rules except that its argument
types must exactly match the class field specifications. The (rel) rule removes its argument from the type
context. The (let) rule is similar to the unannotated GFT rule. However, if x is bound to an object reference
type, then for tracking purposes x us required to be consumed by the end of the expression’s body. The
� operation indicates removing a possible x : Void binding from ∆. The (assert) and (assertd) rules are
explicit analogues of the GFT rules. The former is a safe assert, and is only present to perform explicit
permission tracking. The later is a dynamic assert and may fail at runtime. The (hold) rule is the explicit
analogue to the GFT typing rule. The (merge) rule expresses how merge annotates the expression ewith the
information needed to restore the held permissions T1 back to reference l2 after e completes. The type T 1

2 of
l2 after e completes is merged with T1 to give l2 type T3. The type of e is the type of the whole expression.

Well-typed Programs GFTIL programs are typed according to Figure 7. Well-typed method signatures,
fields, and classes are the same as for GFT programs, and shown only for completeness sake. Well-typed
methods are more strict than their GFT counterparts in that their bodies must exactly match their signatures,
and not simply be type consistent with them. Well-typed programs of GFTIL differ only in the syntax of
their expression typing judgment.

3.3 Dynamic Semantics

GFTIL’s dynamic semantics, presented in Figure 10, require several additional syntactic notions, defined
in Figure 8. Ultimately, expressions in the language evaluate to values: void, the result of operations that

11

∆ $ e : T % ∆ Internal Expression Statics

(void)
∆ $ void : Void % ∆

(invoke)
mdeclpm,C1q = Tr mpT2 " T 1

2qrP1 C1 " T 1
1s

∆, s1 : P1 C1, s2 : T2 $ s1.mps2q : Tr % ∆Ó, s1 : T 1
1, s2 : T 1

2

(ctx-b)
∆, b : T $ b : T % ∆

(invoked)
∆, s1 : Dyn, s2 : Dyn $ s1.dmps2q : Dyn % ∆Ó, s1 : Dyn, s2 : Dyn

(ctx)
T1 V T2{T3

∆, s : T1 $ srT1 V T2{T3s : T2 % ∆, s : T3

(swap)
k P t full, shared u pT2 fq P fieldspDq

∆, s1 : kpEq D, s2 : T2 $
s1.f :=: s2 : T2 % ∆, s1 : kpEq D

(ref)
pT fq P fieldspCq T ó T 1

∆, s : P C $ s.f : T 1 % ∆, s : P C
(swapd)

∆, s1 : Dyn, s2 : Dyn $ s1.f :=:d s2 : Dyn % ∆, s1 : Dyn

(refd)
∆, s : Dyn $ s.df : Dyn % ∆, s : Dyn

(update)
k P t full, shared u C : E fieldspCq = T f

∆, s1 : kpEq D, s2 : T $
s1 Ð Cps2q : Void % ∆Ó, s1 : kpEq C

(new)
fieldspCq = T f

∆, s : T $ new Cpsq : fullpObjectq C % ∆
(updated)

fieldspCq = T f

∆, s1 : Dyn, s2 : T $
s1 Ðd Cps2q : Void % ∆Ó, s1 : Dyn

(rel)
∆, s : T $ releaserT spsq : Void % ∆

(hold)
T1 V T2{T3 T2Ó {T

1
3 V T 1

1 ∆, s : T3 $ e : T % ∆1, s : T 1
3

∆, s : T1 $
holdrs : T1 V T2{T3 " T 1

3 V T 1
1speq : T % ∆1, s : T 1

1

(let)

∆ $ e1 : T1 % ∆1

∆1, x : T1 $ e2 : T2 % ∆2

x : Void P ∆2 or x : T 1
1 R ∆2

∆ $ let x = e1 in e2 : T2 % ∆2 � x
(merge)

T1 = T1Ó T1{T
1
2 V T3

∆, l2 : T2 $ e : T % ∆1, l2 : T 1
2

∆, l1 : T1, l2 : T2 $
mergerl1 : T1{l2 : T 1

2 V T3speq : T % ∆1, l2 : T3

(assert)
T1 V T2

∆, s : T1 $
assertxT1 " T2ypsq : Void % ∆, s : T2

(assertd) T1 � Void T2 � Void
∆, s : T1 $
assertdxT1 " T2ypsq : Void % ∆, s : T2

Figure 6: Internal Language Typing Rules

12

N ok in C Well-typed Method Signatures

class C extends D t F ,M u
mdeclpD,mq = Tr mpTx " T 1

xqrPt E " T 1
t s

Tr mpTx " T 1
xqrPt C " T 1

t s ok in C

class C extends D t F ,M u
mdeclpD,mq undefined

Tr mpTx " T 1
xqrPt C " T 1

t s ok in C

M ok in C Well-typed Source Method

Tr mpTx " T 1
x xqrTt " T 1

t s ok in Ct
x : Tx, this : Tt $ e : Tr % this : T 1

t , x : T 1
x

Tr mpTx " T 1
x xq rTt " T 1

t s t return e; u ok in Ct

F ok Well-typed Field

TÓ= T

T f ok

CL ok Well-typed Class

F ok M ok in C0

class C0 extends C1 t F ; M u ok

PG ok Well-typed Program

CL ok � $ e : T % �

xCL, ey ok

Figure 7: Internal Language Program Typing Rules

Cpoq R P OBJECTS

R ::= P (permission-sets)
v ::= void | o (values)
µ P OBJECTREFS á OBJECTS (stores)
ρ P INDIRECTREFS á VALUES (environments)
E ::= � | let x = E in e (evaluation contexts)

| mergerl : T {l : T V T spEq

Figure 8: Dynamic Semantics Support

13

µ, ρ, eÑ µ, ρ, e Internal Expression Dynamics

(lookup-binder)
µ, ρ, lÑ µ, ρ, ρplq

(new)
o R dompµq µ1 = µro ÞÑ Cpρplqq rfullpObjectqss

µ, ρ, new Cplq Ñ µ1, ρ, o

(lookup-obj)
µ1 = µ� ρplq : T1 � ρplq : T2 � ρplq : T3

µ, ρ, lrT1 V T2{T3s Ñ µ1, ρ, ρplq
(rel)

µ1 = µ� ρplq : T

µ, ρ, releaserT splq Ñ µ1, ρ, void

(swap)
µpρpl1qq = Cpoq R fieldspCq = T f

µ, ρ, l1.fi :=: l2 Ñ
µrρpl1q ÞÑ rρpl2q{oisCpoq Rs, ρ, oi

(invoke)

µpρpl1qq = Cpoq R methodpm,Cq =

Tr mpTx " T 1
x xq rTt " T 1

t s t return e; u

µ, ρ, l1.mpl2q Ñ µ, ρ, rl1, l2{this, xse

(swapd)

µpρpl1qq = Cpoq R fieldspCq = T f

Cg =

#
D if sharedpDq P R
C otherwise

P = sharedpCgq T1 = P C

µ, ρ, l1.fi :=:d l2 Ñ
µ, ρ, assertdxDyn " T1ypl1q;
assertdxDyn " Tiypl2q;
let ret = l1.fi :=: l2 in

assertxT1 " Dynypl1q;
assertxTi " Dynypretq;
ret

(invoked)

µpρpl1qq = Cpoq R
mdeclpm,Cq = Tr mpTx " T 1

xq rTt " T 1
t s

| Tx |=| l2 |

µ, ρ, l1.dmpl2q Ñ µ, ρ, assertdxDyn " Ttypl1q;

assertdxDyn " Txypl2q;

let ret = l1.mpl2q in
assertxT 1

t " Dynypl1q;
assertxT 1

x " Dynypl2q;
assertxTr " Dynypretq;
ret

(update)

µpρpl1qq = Cpoq R fieldspCq = T f

µ1 = µrρpl1q ÞÑ C 1pρpl2qq Rs µ1 = µ1 � o : T

µ, ρ, l1 Ð C 1pl2q Ñ µ1, ρ, void
(hold)

µ1 = µ� ρplq : T1 � ρplq : T2 � ρplq : T3

l1 R dompρq ρ1 = ρrl1 ÞÑ ρplqs

µ, ρ, holdrl : T1 V T2{T3 " T 1
3 V T 1

1speq Ñ
µ1, ρ1,mergerl1 : T2Ó {l : T 1

3 V T 1
1speq

(updated)

µpρpl1qq = Cpof q R

Cg =

#
D if sharedpDq P R
C

:

C 1 otherwise
C 1 : Cg P = sharedpCgq
T = P C T 1 = P C 1

µ, ρ, l1 Ðd C
1pl2q Ñ

µ, ρ, assertdxDyn " T ypl1q;

l1 Ð C 1pl2q;
assertxT 1 " Dynypl1q

(merge)
µ1 = µ� ρpl1q : T1 � ρplq : T2 � ρplq : T3

µ, ρ,mergerl1 : T1{l : T2 V T3spvq Ñ µ1, ρ, v

(ref)

µpρplqq = Cpoq R fieldspCq = T f
Ti ó T

1 µ1 = µ� oi : T 1

µ, ρ, l.fi Ñ µ1, ρ, oi
(assert)

µ1 = µ� ρplq : T � ρplq : T 1

µ, ρ, assertxT " T 1yplq Ñ µ1, ρ, void

(refd)
µpρplqq = Cpoq R fieldspCq = T f

µ, ρ, l.dfi Ñ µ, ρ, oi
(assertd)

µ1 = µ� ρplq : T � ρplq : T 1

µ1pρplqq = Cpoq R xR,Øy is connected
if T 1 = P 1 C 1 then C : C 1

µ, ρ, assertdxT " T 1yplq Ñ µ1, ρ, void

(let)
l R dompρq

µ, ρ, let x = v in eÑ µ, ρrl ÞÑ vs, rl{xse
(congr)

µ, ρ, eÑ µ1, ρ1, e1

µ, ρ,Eres Ñ µ1, ρ1,Ere1s

Figure 9: Internal Dynamic Semantics

14

µ = µ� v : T Permission Addition

T P tDyn,Voidu
µ = µ� v : T

µpoq = C 1pof q R

µro ÞÑ C 1pof q rR,P ss = µ� o : P C

µ = µ� v : T Permission Subtraction

µ = µ1 � v : T

µ1 = µ� v : T

Figure 10: Internal Dynamics Auxiliary Functions

are only interesting for their side-effects, and object references o. Stores µ associate object references to
objects. They are represented as partial functions from object references o to objects Cpoq R, where Cpoq
is the runtime object representation and R is the set of outstanding permissions for references to that object.

In addition to the store, the dynamic semantics uses a second heap, which we call the environment ρ, that
mediates between variable references and the object store. The environment serves a purely formal purpose:
it supports the proof of type safety by keeping precise track of the outstanding permissions associated with
different references to objects at runtime, and is not needed in a practical implementation. In the source
language, two variables could refer to the same object in the store, but each can have different permissions
to that object. The environment tracks these differences at runtime. It maps indirect references l to values
v. Two indirect references can point to the same object, but the permissions associated with the two indirect
references are kept separate.

Figure 10 also defines two helper functions for tracking permissions in the heap. Permission addition
augments the permission set for a particular object in the heap. Conversely, permission subtraction removes a
permission from the set of tracked permissions for an object. To simplify their use in the dynamic semantics,
both operations take an arbitrary value and type and behave like identity when presented with a void value
or Dyn typed object reference.

The dynamic semantics of GFTIL is defined as transitions between store/environment/expression triples
(as discussed earlier, a practical implementation does not need indirect references, so it could be defined over
store/expression pairs). The (let) rule shows that each variable binding is tracked using a distinct indirect
reference. Ultimately indirect references are dereferenced to their corresponding values in rules for various
expressions, such as the (lookup-*) rules. The (lookup-bare) rule simply dereferences an indirect reference,
while the (lookup-obj) rule additionally tracks permissions using its explicit type splitting information. The
(assert) rule uses permission addition and subtraction to track permissions, and returns void. The (assertd)
does the same, but also confirms dynamically that the assertion is safe. If the new type is incompatible with
outstanding permissions (i.e. not all permissions are pairwise compatible Ø), then the expression is stuck.
The (update) rule looks up the object references for the target reference and the arguments to the class con-
structor, replaces the store object for the target reference with the newly constructed object, and releases the
permissions held by the fields of the old object. The (updated) rule, on the other hand, dynamically acquires
a shared permission to the object being updated (using assertd), defers to the static update operation, and
releases the acquired permission (using assert). This rule mixes run-time code generation with dynamic
property lookup so as to succinctly express dynamic update semantics. This rule could be rephrased to sub-
sume the behavior of the assertions and the static update, but it would become more complex. The (swap)
rule updates the field of an object, and returns its old value. (swapd) is the dynamic variant of (swap). It first
computes the types necessary, T1 and Ti, of the target and new field value. It then transitions to a sequence
of expressions that will assert those permissions, perform the statically-typed sway, before releasing the

15

permissions. If a sharedpDq permission exists to the target referent, than that permission is used, as it is the
only permission with write access allowed. If no shared permission exists, then a sharedpCq is requested,
where C is the current class of the target object. Note that this permission is the least restrictive necessary to
perform the swap (but can still get stuck in an assertd. (ref) returns the value of a field, and updates memory
by adding the maximal permission. (refd) does the same but does not update memory, as the expression
is typed as Dyn, and references of type Dyn are not tracked. (new) adds a new object in the heap to the
store, and transitions to its reference. (rel) simply subtracts any permission in the annotated type from the
store, and transitions to void. (invoke) looks up the method body e and transitions to it, after substituting
the arguments for the parameter names. It is assumed that the parameters can be renamed as necessary to
avoid variable name conflicts. (invoked) is the dynamic method invocation. As with (updated) and (swapd),
this transitions to a sequence of expressions where relevant types are asserted, the static variant of invoke
is called, and then acquired permissions are released (via a safe assert). Note that this can be stuck if the
methodm does not exist, or the arity ofm does not match the number of supplied arguments. (hold) updates
the store by accounting for the splitting of types as annotated in the expression. A new indirect reference,
l1 is added to the environment as an alias for l to hold the permission T2Ó during execution of e. (merge)
completes the hold expression, by merging the held type of l1 with the type of its alias l, and updating the
store accordingly. Note that after this point, the indirect reference l1 is no longer in scope. (congr) is the
standard congruence rule for both the hold and let expressions.

3.4 Type Safety

GFTIL’s type safety proof must account for the outstanding permissions for each object o and verify that they
are mutually compatible. Figure 11 presents the definitions used for this. The fieldTypes , ctxTypes , and
envTypes functions accumulate outstanding type information for objects in the store from the fields of ob-
jects, the type context, and the environment respectively. The objTypes function selects just the permission-
carrying types for a particular object reference o. These definitions use square brackets to express list
comprehensions, and �� to express list concatenation.

The objTypes function is used to define reference consistency, the judgment that an object in the store
and all references to it are sensible. A consistent object reference points to an object that has the proper
number of fields, and all references to it must be well-formed, mutually compatible, and tracked in the store.

Reference consistency is used in turn to define global consistency, which establishes the mutual com-
patibility of a store-environment-context triple. Global consistency implies that every object reference in the
store satisfies reference consistency, that every reference in the type context is accounted for in the store and
environment, and that Void and object-typed indirect references ultimately point to void values and object
references respectively. Note that global consistency and permission tracking take into account even objects
that are no longer reachable in the program. To recover permissions, a program must explicitly release the
fields of an object before it becomes unreachable.

These concepts contribute to stating and proving type-safety.

Theorem 1 (Progress). If e is a closed expression, ∆ $ e : T % ∆1 and µ,∆, ρ ok then one of the following
holds

• e is a value

• µ, ρ, eÑ µ1, ρ1, e1 for some µ1, ρ1, e1

• e = Ereds

16

Helper Functions

objTypespµ,∆, ρ, oq = rT | o : T P typespµ,∆, ρq, T � Dyns
typespµ,∆, ρq = fieldTypespµq�� envTypesp∆, ρq�� ctxTypesp∆q

fieldTypespµq =
��

o1Pdompµq

roi : Ti | µpo
1q = Cpoq R,fieldspCq = T f s

envTypesp∆, ρq = ro : T | ρplq = o, l : T P ∆s

ctxTypesp∆q = ro : T | o : T P ∆s

µ,∆, ρ $ o ok Reference Consistency

µpoq = Cpo1q R
∣∣o1∣∣ = |fieldspCq|

objTypespµ,∆, ρ, oq = kpEq D

C : D xkpEq,Øy is connected
kpEq = R

µ,∆, ρ $ o ok

µ,∆, ρ ok Type Consistency

ranpρq � dompµq Y t void u
domp∆q � dompρq Y dompµq

t l | pl : Voidq P ∆ u � t l | ρplq = void u
t l | pl : kpDq Cq P ∆ u � t l | ρplq = o u

µ,∆, ρ $ dompµq ok
µ,∆, ρ ok

Figure 11: Permission-Consistency Relations

Proof. See appendix.

The last case of the progress theorem holds when a program is stuck on a failed dynamically checked
expression. All statically checked expressions make progress.

Theorem 2 (Preservation). If ∆ $ e : T % ∆1 and µ,∆, ρ ok, and µ, ρ, eÑ µ1, ρ1, e1, then there exists ∆2,
such that ∆2 $ e1 : T % ∆1, and µ1,∆2, ρ1 ok

Proof. See appendix.

The preservation theorem states that for any well-typed expression e of type T , that transitions to e1, there
exists an outgoing context of the transition, ∆2, such that ∆2 can be used to type e1 at type T , respecting the
output context ∆1 of the typing derivation of e).

4 Source to Internal Language Translation

The dynamic semantics of GFT are defined by augmenting its type system to generate GFTIL expressions.
The type checking and synthesis judgments become ∆ $ e1 ð T eT2 % ∆1 and ∆ $ e1 ñ T eT2 %
∆1 respectively, where e1 is a GFT expression and eT2 is its corresponding GFTIL expression. Figure 13
presents them in full. We use the T superscript to disambiguate GFTIL expressions as needed.

Several rules use the coerce partial function, defined in Figure 12, which is only defined for valid coer-
cions and abstracts the generation of static and dynamic assertions:

Expressions Most of these translations are very straightforward, and follow similar patterns. There is a
one-to-one correspondence between typing rules of GFT and translation rules. The premises of comparable
rules are often identical. Expressions are translated from GFT to GFTIL often simply syntactically (i.e.
ctxñ) by adding the explicit type annotations. Also, implicit splitting is made explicit with the help of
additional let expressions coupled with asserts.

17

coercepx, T " T q = eT Type Coercion

T V T 1

coercepx, T " T 1q = assertxT " T 1ypxq

T = Dyn T 1 � Void
coercepx, T " T 1q = assertdxT " T 1ypxq

Figure 12: Translation Auxiliary Functions

We prove a translation preservation theorem,

Theorem 3 (Translation Preservation). If ∆ $ e ô T % ∆1, then ∆ $ e ô T eT % ∆1 and
∆ $ eT : T % ∆1, for some eT .

Proof. See appendix.

which states that any well-typed GFT expression can be translated to a well-typed GFTIL expression of
a corresponding type (and corresponding input and output contexts).

Programs Figure 14 defines program translation. This is a straightforward definition based on expression
translation. Note the definition of method translation which coerces the parameters to those defined in the
method signature before returning the result from the translated body of the expression.

We can now prove a program translation theorem,

Theorem 4 (Program Translation Preservation). If PG ok, then there exists PGT such that PG PGT ,
and PGT ok.

Proof. See appendix.

which states that a well-typed program in GFT can be translated to a well-typed GFTIL program. By the
Expression Translation Preservation theorem, the type of the main expression of the program is preserved
as well.

18

∆ $ eô T eT % ∆ Source to Internal Language Translation

(ctxñ)
T1 ó T2

∆, x : T1 $ xñ T1
xrT1 V T1{T2s % ∆, x : T2

(newñ)
fieldspCq = T 1 f x : T $ xð T 1 eT % x : T 2

∆, x : T $ new Cpxq ñ fullpObjectq C
let x1 = eT in new Cpx1q % ∆, x : T 2

(ctxð)
T1 V T2{T3

∆, x : T1 $ xð T2
xrT1 V T2{T3s % ∆, x : T3

(invokeñ)

mdeclpm,C1q = T mpTx " T 1
xqrTt " T 1

t s
coercepx1, P1 C1 " Ttq = eT1
coercepx2, T2 " Txq = eT2

∆, x1 : P1 C1, x2 : T2 $ x1.mpx2q ñ T

eT1 ; eT2 ; x1.mpx2q % ∆Ó, x1 : T 1
t , x2 : T 1

x

(ctxd ð)
∆, x : Dyn $ xð P C
let ret = xrDynV Dyn{Dyns in
assertdxDyn " P Cypretq;
ret % ∆, x : Dyn

(invoked ñ)
coercepx2, T2 " Dynq = eT2

∆, x1 : Dyn, x2 : T2 $ x1.mpx2q ñ Dyn
eT2 ; x1.dmpx2q % ∆Ó, x1 : Dyn, x2 : Dyn

(letô)

∆ $ e1 ñ T1 eT1 % ∆1

∆1, x : T1 $ e2 ô T2 eT2 % ∆1, x : T 1
1

∆ $ let x = e1 in e2 ô T2 let x = eT1 in
let ret = eT2 in

releaserT 1
1spxq; ret % ∆1

(swapñ)

k1 P tfull, sharedu T 1
2 f P fieldspC1q

x2 : T2 $ x2 ð T 1
2 eT2 % x2 : T 2

2

∆, x1 : k1pD1q C1, x2 : T2 $
x1.f :=: x2 ñ T 2

2
let x12 = eT2 in
x1.f :=: x12 % ∆, x1 : k1pD1q C1, x2 : T 2

2

(letTô)

∆ $ e1 ð T1 eT1 % ∆1

∆1, x : T1 $ e2 ô T2 eT2 % ∆1, x : T 1
1

∆ $ let x : T1 = e1 in e2 ô T2
let x = eT1 in
let ret = eT2 in

releaserT 1
1spxq; ret % ∆1

(swapd ñ)
x2 : T2 $ x2 ð Dyn eT2 % x2 : T 2

2

∆, x1 : Dyn, x2 : T2 $ x1.f :=: x2 ñ Dyn
let x12 = eT2 in
x1.f :=:d x12 % ∆, x1 : Dyn, x2 : T 2

2

(êð)

∆ $ peñ T1 eT1 % ∆1

coercepret, T1 " T2q = eT2

∆ $ peð T2
let ret = eT1 in eT2 ; ret % ∆1

(updateñ)

k P tfull, sharedu C : E fieldspCq = T 1
2 f

x2 : T2 $ x2 ð T 1
2 eT2 % x2 : T 2

2

∆, x1 : kpEq D,x2 : T2 $ x1 Ð Cpx2q ñ Void
let x12 = eT2 in

x1 Ð Cpx12q % ∆Ó, x1 : kpEq C, x2 : T 2
2 Ó

(holdñ)

T1 V T2{T3 T2Ó {T
1
3 V T 1

1

∆, x : T3 $ eñ T eT % ∆1, x : T 1
3

∆, x : T1 $ holdrx : T2speq ñ T
holdrx : T1 V T2{T3 " T 1

3 V T 1
1spe

T q
% ∆1, x : T 1

1

(updated ñ)

fieldspCq = T 1
2 f

x2 : T2 $ x2 ð T 1
2 eT2 % x2 : T 2

2

∆, x1 : Dyn, x2 : T2 $ x1 Ð Cpx2q ñ Void
let x12 = eT2 in

x1 Ðd Cpx12q % ∆Ó, x1 : Dyn, x2 : T 2
2 Ó

(refñ)
T2 f P fieldspC1q T2 ó T

1
2

∆, x : P1 C1 $ x.f ñ T 1
2

x.f % ∆, x : P1 C1

(assertñ)
T V T 1

∆, x : T $ assertxT 1ypxq ñ Void
assertxT " T 1ypxq % ∆, x : T 1

(refd ñ)
∆, x : Dyn $ x.f ñ Dyn
x.df % ∆, x : Dyn

(assertd ñ) T � Void T 1 � Void
∆, x : T $ assertxT 1ypxq ñ Void
assertdxT " T 1ypxq % ∆, x : T 1

Figure 13: Translation Rules
19

M MT Method Translation

this : Tt, x : T $ eð Tr eT % this : T 2
t , x : T 2

x

eT1 = let ret = eT in coercepthis, T 2
t " T 1

tq; coercepx, T 2 " T 2q; ret

Tr mpT " T 1 xq rTt " T 1
t s t return e; u Tr mpT " T 1 xq rTt " T 1

t s t return eT1 ; u

F FT Field Translation

F F

CL CL Class Translation

F FT M MT

class C0 extends C1 t F ; M u class C0 extends C1 t FT ; MT u

PG PGT Program Translation

� $ eñ T eT % � CL CLT

xCL, ey xCLT , eT y

Figure 14: Program Translation Rules

20

Appendix: Proofs of Type Safety
Lemma 5 (Coercion). If coercepx, T1 " T2q = e, then ∆, x : T1 $ e : Void % ∆, x : T2

Proof. By case analysis of derivation of coercepx, T1 " T2q

Case (Coerce).

1. By assumption

(a) T1 V T2

(b) coercepx, T1 " T2q = assertxT1 " T2ypxq

2. ∆, x : T1 $ assertxT1 " T2ypxq : Void % ∆, x : T2 – by 1a, (assert)

Case (Coerced).

1. By assumption

(a) T1 = Dyn

(b) T2 � Void

(c) coercepx, T1 " T2q = assertdxT1 " T2ypxq

2. ∆, x : T1 $ assertxT1 " T2ypxq : Void % ∆, x : T2 – by 1a-b,(assertd)

Lemma 6 (Translation Weakening). If ∆ $ bð T e1 % ∆1, then ∆, y : Ty $ bð T e1 % ∆1, y : Ty

Proof. Case analysis of pctxðq, and pctxd ðq

Theorem 7 (Translation Preservation). If ∆ $ eô T eT % ∆1 then ∆ $ eT : T % ∆1.

Proof. Note that the premise is implicitly indexed by the class table of the source program, and that the conclu-
sion is indexed by the class table of the internal program. However, as we have defined program translation, only
difference between the two are the method bodies. In particular, the subtyping relation :, and the auxiliary func-
tions mddecl, fields are identical for the source and target programs. We proceed by induction on derivations of
∆ $ eô T eT % ∆1.
Case (ctxñ).

1. By assumption

(a) ∆, x : T1 $ xñ T1 xrT1 V T1{T2s % ∆, x : T2

(b) T1 ó T2

2. T1 V T1{T2 – by 1a,definition of ó

3. ∆, x : T1 $ xrT1 V T1{T2s : T1 % ∆, x : T2 – by 2,(ctx)

Case (ctxð).

1. By assumption

(a) ∆, x : T1 $ xñ T2 xrT1 V T2{T3s % ∆, x : T3

(b) T1 V T2{T3

2. ∆, x : T1 $ xrT1 V T2{T3s : T2 % ∆, x : T3 – by 1b,(ctx)

Case (ctxd ð).

21

1. By assumption

(a) ∆, x : Dyn $ x ð P C let ret = xrDyn V Dyn{Dyns in assertdxDyn " P Cypretq; ret % ∆, x :
Dyn

2. ret R domp∆q – by α-renaming

3. ∆, x : Dyn $ xrDynV Dyn{Dyns : Dyn % ∆, x : Dyn – by (Split-Dyn) and (ctx)

4. ∆, x : Dyn, ret : Dyn $ assertdxDyn " P Cypretq : Void % ∆, x : Dyn, ret : P C – by (assertd)

5. ∆, x : Dyn, ret : P C $ ret : P C % ∆, x : Dyn – by (ctx-binder)

6. ∆, x : Dyn $ let ret = xrDynV Dyn{Dyns in assertdxDyn " P Cypretq; ret : P C % ∆, x : Dyn – by 2-5,
(let)

Case (letTô).

1. By assumption

(a) ∆ $ let x : T1 = e1 in e2 ñ T2 let x = e11 in let ret = e12 in releaserT 11spxq; ret % ∆1

(b) ∆ $ e1 ð T1 e11 % ∆1

(c) ∆1, x : T1 $ e2 ô T2 e12 % ∆1, x : T 11

2. x, ret R domp∆q – by α-renaming

3. ∆ $ e11 : T1 % ∆1 – by induction on 1b

4. ∆1, x : T1 $ e12 : T2 % ∆1, x : T 11 – by induction on 1c

5. ∆1, x : T 11, ret : T2 $ releaserT 11spxq : Void % ∆1, ret : T2 – by (rel)

6. ∆1, ret : T2 $ ret : T2 % ∆1 – by (ctx-binder)

7. ∆ $ let x = e11 in let ret = e12 in releaserT 11spxq; ret : T2 % ∆1 – by 4-9, (let)

Case (letô).

1. Same as case (letTô), with assumption ∆ $ e1 ñ T1 e11 % ∆1

Case (subð).

1. By assumption

(a) ∆ $ peð T2 let ret = e1 in e2; ret % ∆1

(b) ∆ $ peñ T1 e1 % ∆1

(c) coercepret, T1 " T2q = e2

2. ret R domp∆q – by α-renaming

3. ∆ $ e1 : T1 % ∆1 – by induction on 1b

4. ∆1, ret : T1 $ e2 : T2 % ∆1, ret : T2 – by 3, Coercion Lemma

5. ∆1, ret : T2 $ ret : T2 % ∆1 – by (ctx-binder)

6. ∆ $ let ret = e1 in e2; ret : T2 % ∆1 – by 3-5, (let)

Case (newñ).

1. By assumption

(a) ∆, x : T $ new Cpxq ñ fullpObjectq C let x1 = e in new Cpx1q % ∆, x : T 2

(b) fieldspCq = T 1 f

22

(c) x : T $ xð T 1 e % x : T 2

2. Let n = |fieldspCq|

3. x, x1 R domp∆q – by α-renaming

4. ∆,∆x, xi : Ti $ xi ð T 1i ei % ∆,∆x, xi : T 2i – by 3 and Translation Weakening, for i P r1..ns, where
∆x = x1 : T 21 , ..., xi�1 : T 2i�1, xi�1 : Ti�1, ..., xn : Tn, x

1
1 : T 11, ..., x

1
i�1 : T 1i�1

5. ∆, x : T 2, x1 : T 1 $ new Cpx1q : fullpObjectq C % ∆, x : T 2 – by 1b,(new)

6. ∆, x : T $ let x1 = e in new Cpx1q : fullpObjectq C % ∆, x : T 2 – by 3-5, (let)

Case (assertñ).

1. By assumption

(a) ∆, x : T $ assertxT 1ypxq ñ Void assertxT " T 1ypxq % ∆, x : T 1

(b) T V T 1

2. ∆, x : T $ assertxT " T 1ypxq : Void % ∆, x : T 1, by 1b,(assert)

Case (assertd ñ).

1. By assumption

(a) ∆, x : T $ assertxT 1ypxq ñ Void assertdxT " T 1ypxq % ∆, x : T 1

(b) T � Void

(c) T 1 � Void

2. ∆, x : T $ assertdxT " T 1ypxq : Void % ∆, x : T 1 – by 1b-c,(assertd)

Case (refñ).

1. By assumption

(a) ∆, x : P1 C1 $ x.f ñ T 12 x.f % ∆, x : P1 C1

(b) T2 f P fieldspC1q

(c) T2 ó T
1
2

2. ∆, x : P1 C1 $ x.f : T 12 % ∆, x : P1 C1 – by 1b-c,(ref)

Case (refd ñ).

1. By assumption

(a) ∆, x : Dyn $ x.f ñ Dyn x.df % ∆, x : Dyn

2. ∆, x : Dyn $ x.df : Dyn % ∆, x : Dyn – by (refd)

Case (updateñ).

1. By assumption

(a) ∆, x1 : kpEq D,x2 : T2 $ x1 Ð Cpx2q ñ Void

let x12 = e2 in x1 Ð Cpx12q % ∆Ó, x1 : kpEq C, x2 : T 22Ó

– by assumption

(b) k P tfull, sharedu

(c) C : E

(d) fieldspCq = T 12 f

23

(e) x2 : T2 $ x2 ð T 12 e2 % x2 : T 22

2. x12 R domp∆q – by α-renaming

3. Let n = |fieldspCq|

4. ∆, x1 : kpEq D,∆x, x2i : T2i $ x2i ð T 12i e2i % ∆, x1 : kpEq D,∆x, x2i : T 22i – by 1e,Translation
Weakening, for i P r1..ns, where ∆x = x21 : T 221 , ..., x2i�1

: T 22i�1
, x2i�1

: T2i�1
, ..., x2n : T2n , x

1
21 :

T 121 , ..., x
1
2i�1

: T 12i�1

5. ∆, x1 : kpEq D,x2 : T 22 , x
1
2 : T 12 $ x1 Ð Cpx12q : Void % ∆Ó, kpEq C, x2 : T 22Ó – by 1b-d,(update)

6. ∆, x1 : kpEq D,x2 : T2 $ let x12 = e2 in x1 Ð Cpx12q : Void % ∆Ó, x1 : kpEq C, x2 : T 22Ó – by 2-5,(let)

Case (updated ñ).

1. Almost identical to (updateñ)

Case (swapñ).

1. By assumption

(a) ∆, x1 : k1pD1q C1, x2 : T2 $ x1.f :=: x2 ñ T 22

let x12 = e2 in x1.f :=: x12 % ∆, x1 : k1pD1q C1, x2 : T 22

(b) k1 P tfull, sharedu

(c) T 12 f P fieldspC1q

(d) x2 : T2 $ x2 ð T 12 e2 % x2 : T 22

2. x12 R domp∆q – by α-renaming

3. ∆, x1 : k1pD1q C1, x2 : T2 $ x2 ð T 12 e2 % ∆, x1 : k1pD1q C1, x2 : T 22 – by 1d,Translation Weakening

4. ∆, x1 : k1pD1q C1, x2 : T2 $ e2 : T 12 % ∆, x1 : k1pD1q C1, x2 : T 22 – by induction on 3

5. ∆, x1 : k1pD1q C1, x2 : T 22 , x
1
2 : T 12 $ x1.f :=: x12 : T 22 % ∆, x1 : k1pD1q C1, x2 : T 22 – by 1b-c,(swap)

6. ∆, x1 : k1pD1q C1, x2 : T2 $ let x12 = e2 in x1.f :=: x12 : T 22 % ∆, x1 : k1pD1q C1, x2 : T 22 – by 2,4-5,(let)

Case (swapd ñ).

1. By assumption

(a) ∆, x1 : Dyn, x2 : T2 $ x1.f :=: x2 ñ Dyn

let x12 = e2 in x1.f :=:d x12 % ∆, x1 : Dyn, x2 : T 22

(b) x2 : T2 $ x2 ð Dyn e2 % x2 : T 22

2. x12 R domp∆q – by α-renaming

3. ∆, x1 : Dyn, x2 : T2 $ x2 ð Dyn e2 % ∆, x1 : Dyn, x2 : T 22 – by 1b,Transition Weakening

4. ∆, x1 : Dyn, x2 : T2 $ e2 : Dyn % ∆, x1 : Dyn, x2 : T 22 – by induction on 3

5. ∆, x1 : Dyn, x2 : T 22 , x
1
2 : Dyn $ x1.f :=:d x12 : Dyn % ∆, x1 : Dyn, x2 : T 22 – by (swapd)

6. ∆, x1 : Dyn, x2 : T2 $ let x12 = e2 in x1.f :=:d x12 : Dyn % ∆, x1 : Dyn, x2 : T 22 – by 2,4-5,(let)

Case (invokeñ).

1. By assumption

24

(a) ∆, x1 : P1 C1, x2 : T2 $ x1.mpx2q ñ T

e1; e2; x1.mpx2q % ∆Ó, x1 : T 1t , x2 : T 1x

(b) mdeclpm,C1q = T mpTx " T 1xqrTt " T 1t s

(c) coercepx1, P1 C1 " Ttq = e1

(d) coercepx2, T2 " Txq = e2

2. Let n =| x2 |

3. ∆, x1 : P1 C1, x2 : T2 $ e1 : Void % ∆, x1 : Tt, x2 : T2 – by 1c,Coercion Lemma

4. ∆, x1 : Tt,∆x, x2 : T2 $ e2i : Void % ∆, x1 : Tt,∆x, x2 : Txi
– by 1d,Coercion Lemma, for i P r1..ns,

where ∆x = x21 : Tx1
, ..., x2i�1

: Txi�i
, x2i�1

: T2i�1
, ...x2n : T2n

5. ∆, x1 : Tt, x2 : T2 $ e2 : Void % ∆, x1 : Tt, x2 : Tx – by 4, where i = r1..ns,(let)

6. ∆, x1 : Tt, x2 : Tx $ x1.mpx2q : T % ∆Ó, x1 : T 1t , x2 : T 1x – by 1b,(invoke)

7. ∆, x1 : Tt, x2 : T2 $ e1; e2; x1.mpx2q : T % ∆Ó, x1 : T 1t , x2 : T 1x – by 2-3,5-6,(let)

Case (invoked ñ).

1. By assumption

(a) ∆, x1 : Dyn, x2 : T2 $ x1.mpx2q ñ Dyn

e2; x1.dmpx2q % ∆Ó, x1 : Dyn, x2 : Dyn

(b) coercepx2, T2 " Dynq = e2

2. Let n = |x2|

3. ∆, x1 : Dyn,∆x, x2i : T2i $ e2 : Void % ∆, x1 : Dyn,∆x, x2 : Dyn – by 1b and Coercion Lemma, for
i P r1..ns, where ∆x = x21 : Dyn, ..., x2i�1

: Dyn, x2i�1
: T2i�1

, ...x2n : T2n

4. ∆, x1 : Dyn, x2 : T2 $ e2; : Void % ∆, x1 : Dyn, x2 : Dyn – by 3 where i = r1..ns,(let)

5. ∆, x1 : Dyn, x2 : Dyn $ x1.dmpx2q : Dyn % ∆Ó, x1 : Dyn, x2 : Dyn – by (invoked)

6. ∆, x1 : Dyn, x2 : T2 $ e2; x1.dmpx2q : Dyn % ∆Ó, x1 : Dyn, x2 : Dyn – by 4-5,(let)

Case (holdñ).

1. By assumption

(a) ∆, x : T1 $ holdrx : T2speq ñ T holdrx : T1 V T2{T3 " T 13 V T 11spe
1q % ∆1, x : T 11

(b) T1 V T2{T3

(c) ∆, x : T3 $ eñ T e1 % ∆1, x : T 13

(d) T2Ó {T
1
3 V T 11

2. ∆, x : T3 $ e1 : T % ∆1, x : T 13 – by induction on 1c

3. ∆, x : T1 $ holdrx : T1 V T2{T3 " T 13 V T 11spe
1q : T % ∆1, x : T 11 – by 1b,1d,2,(hold)

Lemma 8 (Merge Consistency). If xrR,P1, P2s,Øy is connected , P1 C1{P2 C2 V P3 C3, and P3 = kpEq then
xrR,P3s,Øy is connected

Proof.

25

Lemma 9 (Memory Consistency).

1. If µ, p∆, l : T q, ρ ok and ρplq � void then µ, p∆, ρplq : T q, ρ ok

2. If µ, p∆, l : T q, ρ ok and l1 R dompρq then µ, p∆, l1 : T q, ρrl1 ÞÑ ρplqs ok

3. If µ,∆, ρ ok and l R dompρq then µ, p∆, l : Voidq, ρrl ÞÑ voids ok

4. If µ, p∆, l : T q, ρ ok then pµ� ρplq : T q,∆, ρ ok

5. If µ,∆, ρ ok and o P dompµq then µ, p∆, o : Dynq, ρ ok

6. If µ, p∆, l : T1q, ρ ok and T1 V T2 then pµ� ρplq : T1 � ρplq : T2q, p∆, l : T2q, ρ ok

7. If µ, p∆, l : T1q, ρ ok and T1 V T2{T3 then pµ� ρplq : T1 � ρplq : T2 � ρplq : T3q, p∆, l : T2, l : T3q, ρ ok

8. If µ, p∆, l : T1, l : T2q, ρ ok and T1{T2 V T3 then µ� ρplq : T1 � ρplq : T2 � ρplq : T3, p∆, l : T3q, ρ ok

9. If µ, p∆, l : T q, ρ ok and fieldspCq = T f and o R dompµq then pµro ÞÑ Cpρplqq �sq,∆, ρ ok

10. If µ,∆, ρ ok, and µpoq = Cpof q R and xrR,P s,Øy is connected and C : C 1 then pµ � o : P C 1q, p∆, o :
P C 1q, ρ ok

11. If µ,∆, ρ ok and µpoq = Cpof q R and fieldspCq = T f and Ti ó T 1i then µ� oi : T 1i , p∆, oi : T 1i q, ρ ok

12. If µ, p∆, l : T q, ρ ok then µ, p∆, l : TÓq, ρ ok

13. If µ, p∆, l : P Cq, ρ ok and µpρplqq = C 1pof q R then µ, p∆, l : P C 1q, ρ ok

14. If µ, p∆, l1 : P C, l2 : Tiq, ρ ok and fieldspCq = T f and µpρpl1qq = C 1poq R and n =| o | then µrρpl1q ÞÑ
C 1po1, ..., oi�1, ρpl2q, oi�1, ..., onq Rs, p∆, l1 : P C, oi : Tiq, ρ ok

15. If µ, p∆, l1 : k1pE1q C1, l2 : Tdq, ρ ok and k1 P tfull, sharedu and D : E1 and fieldspDq = Td fd and
µpρpl1qq = Cpoq R and fieldspCq = T f then µrρpl1q ÞÑ Dpρpl2qq Rs, p∆Ó, o : T , l1 : kpEq Dq, ρ ok

Proof.

1. Environment map – Assuming µ, p∆, l : T q, ρ ok and ρplq � void we need to show that µ, p∆, ρplq : T q, ρ ok.
Memory does not change. The only object potentially affected is ρplq, which since we assume is not void, is
equal to o, say. Since typespµ, p∆, l : T q, ρ, oqq = typespµ, p∆, o : T q, ρ, oq, we can conclude that µ, p∆, o :
T q, ρ $ o ok, and therefore µ, p∆, o : T q, ρ ok

2. Environment rename
Assuming µ, p∆, l : T q, ρ ok and l1 R dompρq, we need to show that µ, p∆, l1 : T q, ρrl1 ÞÑ ρplqs ok. If
T � Void, the only object affected can be ρplq. By the same argument above, we can conclude that µ, p∆, l1 :
T q, ρrl1 ÞÑ ρplqs $ ρplq ok. If T = Void, then no objects are affected. Either way µ, p∆, l1 : T q, ρrl1 ÞÑ
ρplqs $ dompµq ok. The rest of the premises for µ, p∆, l1 : T q, ρrl1 ÞÑ ρplqs okdompµq are trivial to show.

3. Adding Void
Assuming µ,∆, ρ ok and l R dompρq we need to show that µ, p∆, l : Voidq, ρrl ÞÑ voids ok. No objects are
affected. The rest of the premises for µ, p∆, l : Voidq, ρrl ÞÑ voids ok are trivial to show.

4. Context subtraction
Assuming µ, p∆, l : T q, ρ ok we need to show that µ1,∆, ρ ok, where µ1 = pµ�ρplq : T q. If T P tVoid,Dynu,
then µ = µ1, and therefore µ1, p∆, l : T q, ρ ok, and since l : T does not affect any premises of memory con-
sistency, we can also conclude µ1,∆, ρ ok Let us assume that T R tVoid,Dynu, so T = klpElq Cl, say. Our
assumption also dictates that ρplq = o for some o. Since µ, p∆, l : klpElq Clq, ρ $ o ok, we know that µpoq =
Cpo1qR, typespµ, p∆, l : klpElq Clq, ρ, oq = kpEq D, klpElq Cl, xrkpEq D, klpElq Cls,Øy is connected and
kpEq, klpElq = R. Therefore, µ1poq = Cpo1q rkpEqs, typespµ1,∆, ρ, oq = kpEq D, and xrkpEqs,Øy is connected ,
so we can conclude µ1,∆, ρ $ o ok. The rest of the premises of µ1,∆, ρ ok are not affected, and are true by
assumption.

26

5. Adding Dyn
Assuming µ,∆, ρ ok and o P dompµq, we need to show that µ, p∆, o : Dynq, ρ ok. The only object affected is
o, and since typespµ,∆, ρ, oq = typespµ, p∆, o : Dynq, ρ, oq, we can show that µ,∆, ρ $ o ok.

6. Type downgrade
Assuming µ, p∆, l : T1q, ρ ok and T1 V T2 we need to show that µ1, p∆, l : T2q, ρ ok, where µ1 = µ � ρplq :
T1 � ρplq : T2. If T1 P tVoid,Dynu, then T2 = T1, µ1 = µ, and µ1, p∆, l : T2q, ρ ok is true trivially.
Therefore, we can assume that T1 = k1pE1q C1. If T2 = Dyn, then µ1,∆, ρ ok by case memory sub-
traction, and µ1, p∆, l : T2q, ρ ok, by case Dyn addition. So we can assume that T2 = k2pE2q C2. Say
ρplq = o and µpoq = Cpof q R for some o, C, of , R. The only object affected is o, and it suffices to
show that µ1, p∆, l : T2q, ρ $ o ok. By assumption, we know that typespµ, p∆, l : k1pE1q C1q, ρ, oq =
kpEq C, k1pC1q E1, xrkpEq, k1pE1qs,Øy is connected , and C : C1, and kpEq, k1pC1q = R. By split
consistency, xrkpEq, k2pE2qs,Øy is connected . By inversion on the derivation of type splitting (SplitP-P),
C1 : C2. Since µ1poq = Cpof q rkpEq, k2pC2qs, and C : C2, we can conclude µ1, p∆, l : T2q, ρ $ o ok.

7. Type splitting
This follows the same argument as the case above, appealing to the split consistency lemma that if xrkpEq, k1pE1qs,Øy is connected
and k1pE1q C1 V k2pE2q C2{k3pE3q C3, then xrkpEq, k2pE2q, k3pC3qs,Øy is connected

8. Type merging
Assuming µ, p∆, l : T1, l : T2q, ρ ok and T1{T2 V T3, we need to show that µ� ρplq : T1 � ρplq : T2 � ρplq :
T3, p∆, l : T3q, ρ ok. This follows the same argument above, but appeals to the merge consistency lemma.

9. New object
Assuming µ, p∆, l : T q, ρ ok and fieldspCq = T f and o R dompµq, we need to show that µ1,∆, ρ ok, where
µ1 = µro ÞÑ Cpρplqq �s. By the restriction of field types, we know that ρplq = o1 for some objects o1. The
only objects affected are o, o1. Since µpo1q = µ1po1q, and typespµ, p∆, l : T q, ρ, o1q = typespµ1,∆, ρ, o1q, we
can conclude that µ1,∆, ρ $ o1 ok. Since typespµ1,∆, ρ, oq = �, we can also conclude that µ1,∆, ρ $ o ok.

10. Checked type
Assuming µ,∆, ρ ok and µpoq = Cpof q R and xrR,P 1s,Øy is connected and C : C 1, we need to show that
µ1, p∆, o : P 1 C 1q, ρ ok, for µ1 = µ� o : P 1 C 1. The only object affected is o. From µ,∆, ρ $ o ok, C : C 1,
and xrR,P 1s,Øy is connected , we can conclude that µ1, p∆, o : P 1 C 1q, ρ $ o ok.

11. Field read
Assuming µ,∆, ρ ok and µpoq = Cpof q R and fieldspCq = T f and Ti ó T 1i , we need to show that
µ1, p∆, oi : T 1i q, ρ ok, where µ1 = µ � oi : T 1i . The only object affected is oi. If T = Dyn, then µ1, pp∆, oi :
Dynqq, ρ $ ok, by adding Dyn case. Otherwise, we can assume that Ti = kipEiq Di, and TiÓ= k1ipEiq Di

for some k1i. By assumption Ti P fieldTypespµ, oq. Let typespµ,∆, ρ, oiq = kpEq D,Ti. We know that
xrkpEq, kipEiqs,Øy is connected . By type splitting of Ti ñ Ti{T

1
i , we also know that xrkpEq, kipEiq, k

1
ipE

1
iqs,Øy is connected .

This is enough to show that µ1, p∆, oi : T 1i q, ρ $ oi ok.

12. Type demotion
Assuming µ, p∆, l : T q, ρ ok, we need to show that µ, p∆, l : T Óq, ρ ok. If T = T Ó, then this is trivial.
Otherwise, T = kpEq D, for some k,E,D, where k P tpure, sharedu, and T 1 = kpEq E. Let ρplq = o. By
the well-formedness of T , it is necessarily the case that D : E. Therefore, if µ, p∆, l : T q, ρ $ o ok, then so
is µ, p∆, l : TÓq, ρ $ o ok.

13. Type strengthening
Assuming µ, p∆, l : P Cq, ρ ok and µpρplqq = C 1pof q R, we need to show that µ, p∆, l : P C 1q, ρ ok. The
only object affected is ρplq, which is o, say. We know that µ, p∆, l : P Cq, ρ $ o ok. The only premise to
µ, p∆, l : P C 1q, ρ $ o ok which changes as a result is that we need to ensure that C 1 : C 1, which is true by
definition.

14. Field swap
Assuming µ, p∆, l1 : P C, l2 : Tiq, ρ ok and fieldspCq = T f and µpρpl1qq = C 1poq R and n =| o |, we need

27

to show that µ1, p∆, l1 : P C, oi : Tiq, ρ ok, where µ1 = µrρpl1q ÞÑ C 1po1, ..., oi�1, ρpl2q, oi�1, ..., onq Rs.
Only one object is affected, namely oi. But since typespµ, p∆, l1 : P C, l2 : Tiq, ρ, oiq = typespµ1, p∆, l1 :
P C, oi : Tiq, ρ, oiq, knowing that µ, p∆, l1 : P C, l2 : Tiq, ρ $ oi ok lets us conclude that µ1, p∆, l1 : P C, oi :
Tiq, ρ $ oi ok.

15. Object update
Assuming µ,∆, ρ ok, ∆ = p∆x, l1 : k1pE1q C1, l2 : Tdq and k1 P tfull, sharedu andD : E1 and fieldspDq =
Td fd and µpρpl1qq = Cpof q R and fieldspCq = T f , we need to show that µ1,∆1, ρ ok, where µ1 =

µrρpl1q ÞÑ Dpρpl2qq Rs, and ∆1 = p∆x Ó, of : T , l1 : kpEq Dq. Several objects are affected here, ρpl1q,
which is o1, say, all objects that its fields point to, and all objects pointed to by ρpl2q. Let’s consider object o1.
By well-formedness of the class table, we know that TdÓ= Td and TÓ= T .
Say that typespµ,∆, ρ, o1q = rTx, T2, Tc, k1pE1q C1s, where the permissions come from ∆x, l2 : Td, of : T , l1 :
k1pE1q C1, respectively. It is clear that typespµ1,∆1, ρ, o1q = rTxÓ, T2, Tc, k1pE1q C1s. Since permissions do
not change, in order to show µ1,∆1, ρ $ o1 ok, it is enough to show that the current state respects the subtyping
relation. Let Tx = kxpExq Dx. There are two cases to consider, if k1 = full, or if k1 = shared.
Assuming that k1 = full, memory consistency of the assumption dictates that kx = pure, and E1 : Ex, and
that C : Dx. By restriction on valid types, we know that Dx : Ex. Together with the initial assumption
D : E1, and the transitivity of the subtyping relation, D : Ex. Since TxÓ = kxpExq Ex, we can conclude
that TxÓ respects the subtyping relation for memory consistency.
A similar argument can be made if k1 = shared. And that argument must be repeated with T2 and Tc – with
the class table restriction that TcÓ= Tc and TdÓ= Td – before you can conclude that µ1,∆1, ρ $ o1 ok.
The other objects who are affected are not as interesting. typespµ1,∆1, ρ, oq = typespµ,∆, ρ, oqÓ, for all objects
o � o1. This, and µ,∆, ρ $ o ok is enough to show that µ1,∆1, ρ $ o ok.

Lemma 10 (Memory Addition). If v P dompµq Y void, and v = void iff T = Void then µ� v : T is defined

Proof. If T P tVoid,Dynu then µ � v : T = µ by (memadd-nop). If T = P C then v � Void and v P dompµq, so
µpvq = Cpoq R, for some C, o,R, and µ� v : T = µrv ÞÑ Cpoq rR,P ss by (memadd-perm).

Theorem 11 (Progress). If e is a closed expression, ∆ $ e : T % ∆1 and µ,∆, ρ ok then one of the following holds

• e is a value

• µ, ρ, eÑ µ1, ρ1, e1 for some µ1, ρ1, e1

• e = Ereds

Proof.

Case (ctx-binder).

1. By assumption

(a) ∆, b : T $ b : T % ∆

(b) µ, p∆, b : T q, ρ ok

2. One of the following cases hold:

(a) b = x

i. Since b is closed, contradiction

(b) b = o

i. b is a value

(c) b = l

28

i. ρplq is defined – by memory consistency
ii. µ, ρ, lÑ µ, ρ, ρplq – by (lookup-binder)

Case (ctx).

1. By assumption

(a) ∆, s : T1 $ srT1 V T2{T3s : T2 % ∆, s : T3

(b) T1 V T2{T3

(c) µ, p∆, s : T1q, ρ ok

2. s = l for some l – since the expression is closed

3. pµ� ρplqq,∆, ρ ok – by 1c,2,memory consistency lemma

4. Let µ1 = µ� ρplq : T1 � ρplq : T2 � ρplq : T3

5. µ1 is defined – by 3,memory addition

6. ρplq is defined – by memory consistency

7. µ, ρ, lrT1 V T2{T3s Ñ µ1, ρ, ρplq – by (lookup-obj)

Case (void).

1. By assumption

(a) ∆ $ void : Void % ∆

(b) µ,∆, ρ ok

2. void is a value

Case (new).

1. By assumption

(a) ∆, s : T $ new Cpsq : fullpObjectq C % ∆

(b) fieldspCq = T F

(c) µ, p∆, s : T q, ρ ok

2. s = l, for some l – the expression is closed

3. ρplq is defined – by memory consistency

4. Let o R dompµq

5. µ, ρ, new Cplq Ñ µro ÞÑ Cpρplqq rfullpObjectqss, ρ, o – by (new)

Case (ref).

1. By assumption

(a) ∆, s : P C $ s.f : T 1 % ∆, s : P C

(b) pT fq P fieldspCq

(c) T ó T 1

(d) µ, p∆, s : P Cq, ρ ok

2. s = l for some l – the expression is closed

3. µpρplqq = C 1poq R for some C 1, o, R – by memory consistency

29

4. C 1 : C – by memory consistency

5. pT fq P fieldspC 1q for some index i – by type consistency

6. µ1 = µ� oi : T 1 is defined – by memory addition lemma

7. µ, ρ, l.f Ñ µ1, ρ, oi – by 3,5,7-8,(ref)

Case (refd).

1. By assumption

(a) ∆, s : Dyn $ s.df : Dyn % ∆, s : Dyn

(b) µ, p∆, s : Dynq, ρ ok

2. s.df – is a runtime-checked expression

Case (invoke).

1. By assumption

(a) ∆, s1 : P1 C1, s2 : T2 $ s1.mps2q : Tr % ∆Ó, s1 : T 11, s2 : T 12

(b) mdeclpm,C1q = Tr mpT2 " T 12qrP1 C1 " T 11s

(c) µ, p∆, s1 : P1 C1, s2 : T2q, ρ ok

2. By 1a, and that this is a closed expression

(a) s1 = l1 for some l1
(b) s2 = l2 for some l2

3. µpρpl1qq = Cpoq R for some C, o,R – by memory consistency

4. By 1c,3,type consistency:

(a) C : C1

(b) methodpm,Cq = Tr mpTx " T 1x xq rTt " T 1t s t return e; u

(c) | Tx |=| T2 |

5. µ, ρ, l1.mpl2q Ñ µ, ρ, rl1, l2{this, xse, by 3,4b,(invoke)

Case (invoked).

1. By assumption

(a) ∆, s1 : Dyn, s2 : Dyn $ s1.dmps2q : Dyn % ∆Ó, s1 : Dyn, s2 : Dyn

(b) µ, p∆, s1 : Dyn, s2 : Dynq, ρ ok

2. s1.dmps2q – is a runtime-checked expression

Case (swap).

1. By assumption

(a) ∆, s1 : kpEq D, s2 : T2 $ s1.f :=: s2 : T2 % ∆, s1 : kpEq D

(b) k P t full, shared u

(c) pT2 fq P fieldspDq

(d) µ, p∆, s1 : kpEq D, s2 : T2q, ρ ok

2. By 1a, closed expression

30

(a) s1 = l1 for some l1
(b) s2 = l2 for some l2

3. By 1d,2,memory consistency

(a) µpρpl1qq = Cpoq R for some C 1, o, R

(b) ρpl2q is defined

4. By 1c-d,2,3a,type consistency

(a) C : D

(b) pT2 fq P fieldspCq at some index i

5. µ, ρ, l1.fi :=: l2 Ñ µrρpl1q ÞÑ rρpl2q{oisCpoq Rs, ρ, oi – by (swap)

Case (swapd).

1. By assumption

(a) ∆, s1 : Dyn, s2 : Dyn $ s1.f :=:d s2 : Dyn % ∆, s1 : Dyn

(b) µ, p∆, s1 : Dyn, s2 : Dynq, ρ ok

2. s1.f :=:d s2 – is a runtime-checked expression

Case (update).

1. By assumption

(a) ∆, s1 : kpEq D, s2 : T $ s1 Ð Cps2q : Void % ∆Ó, s1 : kpEq C

(b) k P tfull, sharedu

(c) C : E

(d) fieldspCq = T f

(e) µ, p∆, s1 : kpEq D, s2 : T q, ρ ok

2. By 1a, closed expression

(a) s1 = l1 for some l1
(b) s2 = l2 for some l2

3. µpρpl1qq = C 1poq R for some C 1, o, R – by 1b,memory consistency

4. Let fieldspC 1q = T 1 f 1

5. Let µ1 = µrρpl1q ÞÑ Cpρpl2qq Rs

6. µ1, p∆Ó, l1 : kpEq D, o : T 1q, ρ ok – by 1b-e,3-4,memory consistency lemma

7. Let µ1 = µ� o : T 1

8. µ1, p∆Ó, l1 : kpEq Dq, ρ ok – by 6-7,memory consistency lemma

9. µ1pρpl1qq = C 1poq R1 – by definition of memory subtraction

10. µ, ρ, l1 Ð Cpl2q Ñ µ1, ρ, void – by 3-5,7,(update)

Case (updated).

1. By assumption

(a) ∆, s1 : Dyn, s2 : T $ s1 Ðd Cps2q : Void % ∆Ó, s1 : Dyn

31

(b) µ, p∆, s1 : Dyn, s2 : T q, ρ ok

2. s1 Ðd Cps2q – is a runtime-checked expression

Case (let).

1. By assumption

(a) ∆ $ let x = e1 in e2 : T2 % ∆� x

(b) ∆ $ e1 : T1 % ∆1

(c) ∆, x : T1 $ e2 : T2 % ∆2

(d) x : Void P ∆2 or x : T 11 R ∆2

(e) µ,∆, ρ ok

2. One of the following three cases hold – by induction on 1b,1e

(a) e1 is a value

i. Let l R dompµq
ii. e1 = v for some v

iii. µ, ρ, let x = v in e2 Ñ µ, ρrl ÞÑ vs, rl{xse2 – by (let)

(b) µ, ρ, e1 Ñ µ1, ρ1, e11

i. µ, ρ, let x = e1 in e2 Ñ µ1, ρ1, let x = e1 in e
1
1 – by 2b,(let-congr)

(c) e1 = Ere1ds for some runtime-checked expression e1d
i. let x = e1 in e2 = E1re1ds, where E1 = let x = E in e2

Case (rel).

1. By assumption

(a) ∆, s : T $ releaserT spsq : Void % ∆

(b) µ, p∆, s : T q, ρ ok

2. s = l for some l – closed expression

3. µ, p∆, ρpsq : T q, ρ ok – by 1b,memory consistency lemma

4. pµ� ρpsq : T q,∆, ρ ok – by 3,memory consistency lemma

5. Let µ1 = µ� ρpsq : T

6. µ, ρ, releaserT splq Ñ µ1, ρ, void – by 3,(rel)

Case (assert).

1. By assumption

(a) ∆, s : T1 $ assertxT1 " T2ypsq : Void % ∆, s : T2

(b) T1 V T2

(c) µ, p∆, s : T1q, ρ ok

2. s = l for some l – closed expression

3. µ, p∆, ρpsq : T1q, ρ ok – by 1c,memory consistency lemma

4. pµ� ρpsq : T1 � ρpsq : T2q, p∆, ρpsq : T2q, ρ ok – by 3,memory consistency lemma

5. Let µ1 = µ� ρpsq : T1 � ρpsq : T2

32

6. µ, ρ, assertxT1 " T2yplq Ñ µ1, ρ, void – by 5,(assert)

Case (assertd).

1. By assumption

(a) ∆, s : T1 $ assertdxT1 " T2ypsq : Void % ∆, s : T2

(b) µ, p∆, s : T1q, ρ ok

2. assertdxT1 " T2ypsq – is a runtime-checked expression

Case (hold).

1. By assumption

(a) ∆, s : T1 $ holdrs : T1 V T2{T3 " T 13 V T 11speq : T % ∆1, s : T 11

(b) T1 V T2{T3

(c) µ, p∆, s : T1q, ρ ok

2. s = l for some l – closed expression

3. µ, p∆, ρplq : T1q, ρ ok – by 1c,2,memory consistency lemma

4. pµ� ρplq : T1 � ρplq : T2 � ρplq : T3q, p∆, ρplq : T2, ρplq : T3q, ρ ok – by 1b,3,memory consistency lemma

5. Let µ1 = µ� ρplq : T1 � ρplq : T2 � ρplq : T3

6. Choose l1 R dompρq

7. Let ρ1 = ρrl1 ÞÑ ρplqs

8. µ, ρ, holdrl : T1 V T2{T3 " T 13 V T 11speq Ñ µ1, ρ1,mergerl1 : T2Ó {l : T 13 V T 11speq – by (hold)

Case (merge).

1. By assumption

(a) ∆, l1 : T1, l2 : T2 $ mergerl1 : T1{l2 : T 12 V T3speq : T % ∆1, l2 : T3

(b) ∆, l2 : T2 $ e : T % ∆1, l2 : T 12

(c) T1{T
1
2 V T3

(d) T1 = T1Ó

(e) µ, p∆, l1 : T1, l2 : T2q, ρ ok

2. One of three cases hold – by induction on 1b,1e

(a) e = v for some value v

i. T2 = T 12 – by inversion of typing ((void) or (ctx-b)) on 1b,2a
ii. µ, p∆x, l1 : T1, l2 : T2q, ρ ok – by 1e,3ai

iii. µ, p∆x, ρpl1q : T1, ρpl2q : T2q, ρ ok – 3aii,memory consistency lemma
iv. pµ � ρplq : T1 � ρplq : T2 � ρplq : T3q, p∆x, ρplq : T3q, ρ ok – by 3aiii,2ai,memory consistency

lemma
v. Let µ1 = µ� ρplq : T1 � ρplq : T2 � ρplq : T3

vi. µ, ρ,mergerl1 : T1{l2 : T2 V T3spvq Ñ µ1, ρ, v – by (merge)

(b) µ, ρ, eÑ µ1, ρ1, e1 for some µ1, ρ1, e1

i. µ, ρ,mergerl1 : T1{l2 : T2 V T3speq Ñ µ1, ρ1,mergerl1 : T1{l2 : T2 V T3spe
1q – by (congr)

(c) e = Ereds for some runtime-checked expression ed

33

i. mergerl1 : T1{l2 : T2 V T3speq = E1reds, where E1 = mergerl1 : T1{l2 : T2 V T3spEq

Lemma 12 (Split Consistency). If k0 V k1{k2 then k1pCq Ø k2pCq.
Furthermore, if k0pC0q Ø k1pC1q then

1. if k0 V k10 then k10pC0q Ø k1pC1q; and

2. if k1 V k11 then k11pC1q Ø k0pC0q.

Proof. The first part is easily shown by cases analysis of k0 V k1{k2 derivations. The second part is proven by
induction on derivations of k0pC0q Ø k1pC1q.
Case (pure). Then k0pC0q Ø purepC1q and C0 : C1.

1. if k0 V k10 then k10pC0q Ø purepC1q by (pure).

2. then pureV pure, and (pure) applies.

Case (shared). Then sharedpC0q Ø sharedpC0q.

1. Suppose sharedV k. Then proceed by cases.

(a) If sharedV shared then (shared) applies.

(b) If sharedV pure then purepC0q Ø sharedpC0q by (pure) then (sym).

2. Symmetric to the preceding case.

Case (sym). Follows immediately from the inductive case.

Corollary 13. If kpDq C Ø P 1 C 1 and k V k1{k2 then xpk1pDq, k2pDq, P 1q,Øy is connected.

Lemma 14 (Context Binder Consistency?). If ∆ $ e : T % ∆1 then

1. If s : T 11 P ∆1 then s : T1 P ∆ for some T1

2. If s : T1ÓP ∆ and s does not appear in e then s : T1ÓP ∆1

Proof.

Lemma 15 (Double Demotion). TÓ= pTÓqÓ

Proof. If T = kpEq C, where k P tpure, sharedu, then TÓ= pTÓq = kpEq E. Otherwise, TÓ= pTÓqÓ= T .

Lemma 16 (Weakening). If ∆ $ e : T % ∆1 then ∆, s : TsÓ$ e : T % ∆, s : TsÓ

Proof. By induction on derivation of ∆ $ e : T % ∆1.

Lemma 17 (Strengthening). If ∆, l : Tl $ e : T % ∆1, l : T 1l and l does not occur in e, then ∆ $ e : T % ∆1.

Proof. By induction on derivation of ∆, l : Tl $ e : T % ∆1, l : T 1l .

Lemma 18 (Substitution). If ∆ $ e : T % ∆1 then rs1{ss∆ $ rs1{sse : T % rs1{ss∆

Proof. Substitute s1 for s throughout the derivation of ∆ $ e : T % ∆1.

Lemma 19 (Indirect Reference Weakening). If µ, ρ, eÑ µ1, ρ1, e1, and l1 R dompρq Y dompρ1q and l1 does not occur
in e, then for any value v, µ, pρ, l1 ÞÑ vq, eÑ µ1, pρ1, l1 ÞÑ vq, e1.

Proof. Induction on the derivation of µ, ρ, eÑ µ1, ρ1, e1.

34

Lemma 20 (Context Variable Conservation). If ∆ $ e : T % ∆1 then

1. If ∆1 = ∆1
x, l : T 1l then ∆ = ∆x, l : Tl for some Tl. Furthermore, if l does not occur in e, and T 1l Ó= Tl then

Tl = T 1l .

2. If l R domp∆1q then l R domp∆q.

Proof. Induction on the derivation of ∆ $ e : T % ∆1, l : T 1l .

Theorem 21 (Preservation-internal). If ∆ $ e : T % ∆1, µ,∆, ρ ok, and µ, ρ, e Ñ µ1, ρ1, e1, then there exists ∆2,
such that ∆2 $ e1 : T % ∆1, and µ1,∆2, ρ1 ok

Proof.

Case (lookup-binder).

1. By assumption

(a) ∆ $ l : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, lÑ µ, ρ, ρplq

2. By inversion on 1a

(a) ∆ = ∆1, l : T

3. µ, p∆1, l : T q, ρ ok – by 1b,2a

4. Case analyze on the type T

(a) T � Void

i. ρplq = o for some o – by memory consistency
ii. Let ∆2 = ∆1, ρplq : T

iii. ∆1, o : T $ o : T % ∆1 – by (ctx-binder)
iv. ∆2 $ ρplq : T % ∆1 – by 4aii-iii
v. µ, p∆1, ρplq : T q, ρ ok – by 3,4ai,memory consistency lemma

vi. µ,∆2, ρ ok – by 4aii,4av

(b) T = Void

i. ρplq = void – by memory consistency
ii. Let ∆2 = ∆1

iii. ∆1 $ void : Void % ∆1 – by (void)
iv. ∆2 $ ρplq : T % ∆1 – by 4b,4bi-ii
v. pµ� ρplq : T q,∆1, ρ ok – by 3,memory consistency lemma

vi. µ = µ� void : Void – by (memadd-nop),(memsub)
vii. µ,∆2, ρ ok – by 4bii,4bv-vi

5. q.e.d. – by 4aiv,4avi,4biv,4bvii

Case (lookup-obj).

1. By assumption

(a) ∆ $ lrT1 V T2{T3s : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, lrT1 V T2{T3s Ñ µ1, ρ, ρplq

35

(d) µ1 = µ� ρplq : T1 � ρplq : T2 � ρplq : T3

2. By inversion on 1a

(a) T = T2

(b) ∆ = ∆x, l : T1

(c) ∆1 = ∆x, l : T3

(d) T1 V T2{T3

3. Let ∆2 = ∆x, ρplq : T2, l : T3

4. µ, p∆x, l : T1q, ρ ok – by 1b,2b

5. pµ� ρplq : T1 � ρplq : T2 � ρplq : T3q, p∆x, l : T2, l : T3q, ρ ok – by 2d,4,memory consistency lemma

6. pµ� ρplq : T1 � ρplq : T2 � ρplq : T3q, p∆x, ρplq : T2, l : T3q, ρ ok – by 5,memory consistency lemma

7. µ1,∆2, ρ ok – by 1d,3,6

8. ∆x, ρplq : T2, l : T3 $ ρplq : T2 % ∆x, l : T3 – by (ctx-binder)

9. ∆2 $ ρplq : T % ∆1 – by 2a,2c,3,8

10. q.e.d. – by 7,9

Case (new).

1. By assumption

(a) ∆ $ new Cplq : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, new Cplq Ñ µ1, ρ, o

(d) o R dompµq

(e) µ1 = µro ÞÑ Cpρplqq rfullpObjectqss

2. By inversion on 1a

(a) T = fullpObjectq C

(b) fieldspCq = Tf f

(c) ∆ = ∆1, l : Tf

3. Let ∆2 = ∆1, o : fullpObjectq C

4. ∆1, o : fullpObjectq C $ o : fullpObjectq C % ∆1 – by (ctx-binder)

5. ∆2 $ o : T % ∆1 – by 2a,3-4

6. µ, p∆1, l : Tf q, ρ ok – by 1b,2c

7. pµro ÞÑ Cpρplqq �sq,∆1, ρ ok – by 1d,2b,6,memory consistency lemma

8. µ1 = µro ÞÑ Cpρplqq �s � o : fullpObjectq C – by 1e,(memadd-perm)

9. µ1, p∆1, o : fullpObjectq Cq, ρ ok – by 7-8,memory consistency lemma

10. µ1,∆2, ρ ok – by 3,9

11. q.e.d. – by 5,10

Case (ref).

36

1. By assumption

(a) ∆ $ l.fi : Te % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, l.fi Ñ µ1, ρ, oi

(d) µpρplqq = Cpoq R

(e) fieldspCq = T f

(f) Ti ó T
1
i

(g) µ1 = µ� oi : T 1i

2. By inversion on 1a

(a) ∆ = ∆1

(b) ∆ = ∆x, l : P C 1

(c) pTf fiq P fieldspC 1q

(d) Tf ó Te

3. C : C 1 – by 1b,1d,2b,memory consistency

4. By 1e,2c,3,type consistency

(a) pTf fiq P fieldspCq

(b) Tf = Ti

5. Te = T 1i – by 1f,2d,4b

6. Let ∆2 = ∆1, oi : T 1i

7. ∆1, oi : T 1i $ oi : T 1i % ∆1 – by (ctx-binder)

8. ∆2 $ oi : Te % ∆1 – by 5-7

9. pµ� oi : T 1i q, p∆, oi : T 1i q, ρ ok – by 1b,1d-f,memory consistency lemma

10. µ1,∆2, ρ ok – 1g,6,9

11. q.e.d. – by 8,10

Case (refd).

1. By assumption

(a) ∆ $ l.dfi : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, l.dfi Ñ µ, ρ, oi

(d) µpρplqq = Cpoq R

(e) fieldspCq = Tf f

2. By inversion on 1a

(a) ∆ = ∆1 = ∆x, l : Dyn

(b) T = Dyn

3. Let ∆2 = ∆1, oi : Dyn

4. ∆1, oi : Dyn $ oi : Dyn % ∆1 – by (ctx-binder)

37

5. ∆2 $ oi : T % ∆1 – by 2b,3-4

6. µ, p∆, oi : Dynq, ρ ok – by 1b,memory consistency lemma

7. µ,∆2, ρ ok – by 3,6

8. q.e.d – by 5,7

Case (invoke).

1. By assumption

(a) ∆ $ l1.mpl2q : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, l1.mpl2q Ñ µ, ρ, rl1, l2{this, xse

(d) µpρpl1qq = Cpoq R

(e) methodpm,Cq = Tr mpTx " T 1x xq rTt " T 1t s t return e; u

2. By inversion of 1a

(a) ∆ = ∆x, l1 : P1 C1, l2 : T2

(b) mdeclpm,C1q = Tres mpT2 " T 12q rP1 C1 " T 11s

(c) ∆1 = ∆xÓ, l1 : T 11, l2 : T 12

(d) T = Tres

3. By 1-2,type consistency

(a) C : C1

(b) Tres = Tr

(c) T2 = Tx

(d) T 12 = T 1x

(e) T 11 = T 1t

(f) Tt = P C

(g) P1 = P

4. this, x R domp∆q – by α�renaming

5. this : Tt, x : Tx $ e : Tr % this : T 1t , x : T 1x – by method typing

6. ∆xÓ, this : Tt, x : Tx $ e : Tr % ∆xÓ, this : T 1t , x : T 1x – by 5,weakening

7. Let ∆2 = ∆xÓ, l1 : Tt, l2 : Tx

8. ∆xÓ, l1 : Tt, l2 : Tx $ rl1, l2{this, xse : Tr % ∆xÓ, l1 : T 1t , l2 : T 1x – by substitution

9. ∆2 $ rl1, l2{this, xse : T % ∆1 – by 7-8,3d-e,2d,3b

10. µ, p∆xÓ, l1 : P1 C1, l2 : T2q, ρ ok – by 1b,2a,memory consistency lemma

11. µ, p∆xÓ, l1 : P1 C, l2 : T2q, ρ ok – by 1d,3a,10,memory consistency lemma

12. µ,∆2, ρ ok – by 3f-g,7,11

13. q.e.d – by 9,12

Case (invoked).

1. By assumption

38

(a) ∆ $ l1.dmpl2q : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, l1.dmpl2q Ñ µ, ρ, assertdxDyn " Ttypl1q;

assertdxDyn " Txypl2q;

let ret = l1.mpl2q in
assertxT 1t " Dynypl1q;
assertxT 1x " Dynypl2q;
assertxTr " Dynypretq;
ret

(d) µpρpl1qq = Cpoq R

(e) mdeclpm,Cq = Tr mpTx " T 1xq rTt " T 1t s

2. By inversion on 1a

(a) ∆ = ∆1 = ∆x, l1 : Dyn, l2 : Dyn

(b) T = Dyn

3. ret R domp∆q – by α-renaming

4. ∆x, l1 : Dyn, l2 : Dyn $ assertdxDyn " Ttypl1q : Void % ∆x, l1 : Tt, l2 : Dyn – by (assertd)

5. ∆x, l1 : Tt, l2 : Dyn $ assertdxDyn " Txypl2q; : Void % ∆x, l1 : Tt, l2 : Tx – by (assertd)

6. ∆x, l1 : Tt, l2 : Tx $ l1.mpl2q : Tr % ∆xÓ, l1 : T 1t , l2 : T 1x – by (invoke)

7. ∆xÓ, l1 : T 1t , l2 : T 1x, ret : Tr $ assertxT 1t " Dynypl1q : Void % ∆xÓ, l1 : Dyn, l2 : T 1x, ret : Tr – by (assert)

8. ∆xÓ, l1 : Dyn, l2 : T 1x, ret : Tr $ assertxT 1x " Dynypl2q; : Void % ∆xÓ, l1 : Dyn, l2 : Dyn, ret : Tr – by
(assert)

9. ∆xÓ, l1 : Dyn, l2 : Dyn, ret : Tr $ assertxTr " Dynypretq : Void % ∆xÓ, l1 : Dyn, l2 : Dyn, ret : Dyn – by
(assert)

10. ∆xÓ, l1 : Dyn, l2 : Dyn, ret : Dyn $ ret : Dyn % ∆xÓ, l1 : Dyn, l2 : Dyn – by ctx-binder

11. ∆ $ assertdxDyn " Ttypl1q;

assertdxDyn " Txypl2q;

let ret = l1.mpl2q in
assertxT 1t " Dynypl1q;
assertxT 1x " Dynypl2q;
assertxTr " Dynypretq;
ret

: T % ∆1 – by 3-10,(let)

12. q.e.d. – by 1b,11

Case (swap).

1. By assumption

(a) ∆ $ l1.fi :=: l2 : T % ∆1

(b) µ,∆, ρ ok
(c) µpρpl1qq = Cpoq R

(d) µ1 = µrρpl1q ÞÑ rρpl2q{oisCpoq Rs

(e) fieldspCq = Tf f

2. By inversion on 1a

39

(a) ∆ = ∆x, l1 : k1pE1q C1, l2 : T2

(b) ∆1 = ∆x, l1 : k1pE1q C1

(c) k1 P tfull, sharedu

(d) pT2 fiq P fieldspC1q

(e) T2 = T

3. Let ∆2 = ∆1, oi : T

4. ∆1, oi : T $ oi : T % ∆1 – by (ctx-binder)

5. ∆2 $ oi : T % ∆1 – by 3-4

6. µrρpl1q ÞÑ Cpo1, ..., oi�1, ρpl2q, oi�1, ..., onq Rs, p∆x, l1 : k1pE1q C1, oi : T2q, ρ ok – by 1b-c,2a,memory
consistency lemma

7. µ1,∆2, ρ ok – by 1d,6,2b,3

8. q.e.d – by 5,7

Case (swapd).

1. By assumption

(a) ∆ $ l1.fi :=:d l2 : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, l1.fi :=:d l2 Ñ µ, ρ, assertdxDyn " T1ypl1q;

assertdxDyn " Tfiypl2q;
let ret = l1.fi :=: l2 in
assertxT1 " Dynypl1q;
assertxTfi " Dynypretq;
ret

(d) µpρplqq = Cpoq R

(e) fieldspCq = Tf f

(f) Cg = tD : if sharedpDq P R, C : otherwiseu

(g) P = sharedpCgq

(h) T1 = P C

2. By inversion on 1a

(a) T = Dyn

(b) ∆ = ∆x, l1 : Dyn, l2 : Dyn

(c) ∆1 = ∆x, l1 : Dyn

3. ∆x, l1 : Dyn, l2 : Dyn $ assertdxDyn " T1ypl1q : Void % ∆x, l1 : T1, l2 : Dyn – by (assertd)

4. ∆x, l1 : T1, l2 : Dyn $ assertdxDyn " Tfiypl2q : Void % ∆x, l1 : T1, l2 : Tfi – by (assertd)

5. ∆x, l1 : T1, l2 : Tfi $ l1.fi :=: l2 : Tfi % ∆x, l1 : T1 – by 1e,1g-h,(swap)

6. ret R domp∆xq – by α-renaming

7. ∆x, l1 : T1, ret : Tfi $ assertxT1 " Dynypl1q : Void % ∆x, l1 : Dyn, ret : Tfi – by (assert)

8. ∆x, l1 : Dyn, ret : Tfi $ assertxTfi " Dynypretq : Void % ∆x, l1 : Dyn, ret : Dyn – by (assert)

9. ∆x, l1 : Dyn, ret : Dyn $ ret : Dyn % ∆x, l1 : Dyn – by (ctx-binder)

40

10. ∆ $ assertdxDyn " T1ypl1q;
assertdxDyn " Tfiypl2q;
let ret = l1.fi :=: l2 in
assertxT1 " Dynypl1q;
assertxTfi " Dynypretq;
ret

: T % ∆1 – by 2b-c,3-9

11. q.e.d – by 1b,10

Case (update).

1. By assumption

(a) ∆ $ l1 Ð C 1pl2q : Te % ∆1

(b) µ,∆, ρ ok
(c) µpρpl1qq = Cpoq R

(d) fieldspCq = T f

(e) µ1 = µrρpl1q ÞÑ C 1pρpl2qq Rs

(f) µ1 = µ1 � o : T

(g) µ, ρ, l1 Ð C 1pl2q Ñ µ1, ρ, void

2. By inversion on 1a

(a) ∆ = ∆x, l1 : k1pE1q D1, l2 : T2

(b) ∆1 = ∆xÓ, l1 : k1pE1q C
1

(c) Te = Void

(d) k1 P tfull, sharedu

(e) C 1 : E1

(f) fieldspC 1q = T2 f2

3. ∆1 $ void : Te % ∆1 – by 2c,(void)

4. µ, p∆xÓ, l1 : k1pE1q D1, l2 : T2q, ρ ok – by 1b,2a,memory consistency lemma

5. µ1, p∆xÓ, l1 : k1pE1q C
1, o : T q, ρ ok – by 4,1c-d,1e,2d-f,memory consistency lemma

6. µ1, p∆xÓ, l1 : k1pE1q C
1q, ρ ok – by 1f,5,memory consistency lemma

7. µ1,∆1, ρ ok

8. q.e.d. – by 3,7

Case (updated).

1. By assumption

(a) ∆ $ l1 Ðd C
1pl2q : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, l1 Ðd C

1pl2q Ñ µ, ρ, assertdxDyn " T1ypl1q;

l1 Ð C 1pl2q;
assertxT 11 " Dynypl1q

(d) µpρpl1qq = Cpof q R

(e) Cg = tD : if sharedpDq P R,C
:

C 1 : otherwiseu

(f) C 1 : Cg

41

(g) P = sharedpCgq

(h) T1 = P C

(i) T 11 = P C 1

2. By inversion on 1a

(a) ∆ = ∆x, l1 : Dyn, l2 : Tf

(b) ∆1 = ∆xÓ, l1 : Dyn

(c) T = Void

(d) fieldspC 1q = Tf f

3. ∆x, l1 : Dyn, l2 : Tf $ assertdxDyn " T1ypl1q : Void % ∆x, l1 : T1, l2 : Tf – by (assertd)

4. ∆x, l1 : T1, l2 : Tf $ l1 Ð C 1pl2q : Void % ∆xÓ, l1 : T 11 – by 1e-h,2d,(update)

5. ∆xÓ, l1 : T 11 $ assertxT 11 " Dynypl1q : Void % ∆xÓ, l1 : Dyn – by (Split-Dyn),(assert)

6. ∆ $ assertdxDyn " T1ypl1q;

l1 Ð C 1pl2q;
assertxT 11 " Dynypl1q

: T % ∆1 – by 2a-c,3-5, (let)

7. q.e.d – by 1b,6

Case (let).

1. By assumption

(a) ∆ $ let x = v in e : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, let x = v in eÑ µ, ρrl ÞÑ vs, rl{xse

(d) l R dompρq

2. By inversion on 1a

(a) ∆ $ v : T1 % ∆1

(b) ∆1, x : T1 $ e : T % ∆2

(c) x : Void P ∆2 or x : T1 R ∆2

(d) ∆1 = ∆2 � x

3. Let ∆2 = ∆1, l : T1

4. ∆1, l : T1 $ rl{xse : T % rl{xs∆2 – by 1d,2b,substitution

5. ∆2 $ rl{xse : T % ∆1 – by 2d,5

6. By case analysis on v

(a) v = void

i. ∆ = ∆1 – by inversion of 2a
ii. T = Void – by context consistency

iii. µ, p∆1, l : T q, ρrl ÞÑ vs ok – by 1b,6ai-ii,memory consistency lemma

(b) v = o for some o

i. ∆ = ∆1, o : T – by inversion of 2a
ii. µ, p∆1, v : T q, ρ ok

42

iii. µ, p∆1, l : T q, ρrl ÞÑ vs ok – by 6bii,memory consistency lemma

7. µ,∆2, ρrl ÞÑ vs ok – 3,6aiii,6biii

8. q.e.d. – by 5,7

Case (let-congr).

1. By assumption

(a) ∆ $ let x = e1 in e2 : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, let x = e1 in e2 Ñ µ1, ρ1, let x = e11 in e2

(d) µ, ρ, e1 Ñ µ1, ρ1, e11

2. By inversion on 1a

(a) ∆ $ e1 : T1 % ∆1

(b) ∆1, x : T1 $ e2 : T2 % ∆2

(c) x : Void P ∆2 or x : T 11 R ∆2

(d) ∆1 = ∆2 � x

3. By induction on 1b,1d,2a

(a) ∆2 $ e11 : T1 % ∆1, for some ∆2

(b) µ1,∆2, ρ1 ok

4. ∆2 $ let x = e11 in e2 : T % ∆1 – by 3a,2b-d,(let)

5. q.e.d – by 3b,4

Case (rel).

1. By assumption

(a) ∆ $ releaserTlsplq : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, releaserTlsplq Ñ µ1, ρ, void

(d) µ1 = µ� ρplq : Tl

2. By inversion on 1a

(a) T = Void

(b) ∆ = ∆1, l : Tl

3. ∆1 $ void : T % ∆1 – by 7, (void)

4. µ1,∆1, ρ ok – by 1b,2b,4,memory consistency lemma

5. q.e.d – by 3-4

Case (assert).

1. By assumption

(a) ∆ $ assertxT " T 1yplq : Te % ∆1

(b) µ,∆, ρ ok

43

(c) µ, ρ, assertxT " T 1yplq Ñ µ1, ρ, void

(d) µ1 = µ� ρplq : T � ρplq : T 1

2. By inversion on 1a

(a) Te = Void

(b) ∆ = ∆x, l : T

(c) ∆1 = ∆x, l : T 1

(d) T V T 1

3. ∆1 $ void : Te % ∆1 – by 5,(void)

4. µ1,∆1, ρ ok by 1b,1d,2b-c,memory consistency

5. q.e.d. – by 3-4

Case (assertd).

1. By assumption

(a) ∆ $ assertdxT " T 1yplq : Te % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, assertdxT " T 1yplq Ñ µ1, ρ, void

(d) µ1 = µ� ρplq : T � ρplq : T 1

(e) µ1pρplqq = Cpoq R

(f) xR,Øy is connected

(g) if T 1 = P 1 C 1 then C : C 1

2. By inversion on 1a

(a) Te = Void

(b) ∆ = ∆x, l : T

(c) ∆1 = ∆x, l : T 1

(d) T � Void

(e) T 1 � Void

3. ∆1 $ void : Te % ∆1 – by 2a,(void)

4. pµ� ρplq : T q,∆x, ρ ok – by 1b,2b,memory consistency

5. By 2e, T 1 = Dyn or T 1 = P 1 C 1

(a) Assume T 1 = Dyn

i. pµ� ρplq : T q, p∆x, l : Dynq, ρ ok – by 4,memory consistency
ii. pµ� ρplq : T � ρplq : Dynq, p∆x, l : Dynq, ρ ok – by (memadd-nop)

(b) Assume T 1 = P 1 C 1

i. C : C 1 – by 5b,1g
ii. pµ� ρplq : T � ρplq : T 1q, p∆x, l : T 1q, ρ ok – by 4,5bi,memory consistency

6. µ1,∆1, ρ ok – by 5aii,5bii

7. q.e.d. – by 3,6

Case (hold).

44

1. By assumption

(a) ∆ $ holdrl : T1 V T2{T3 " T 13 V T 11speq : T % ∆1

(b) µ,∆, ρ ok
(c) µ1 = µ� ρplq : T1 � ρplq : T2 � ρplq : T3

(d) l1 R dompρq

(e) ρ1 = ρrl1 ÞÑ ρplqs

(f) µ, ρ, holdrl : T1 V T2{T3 " T 13 V T 11speq Ñ µ1, ρ1,mergerl1 : T2Ó {l : T 13 V T 11speq

2. By inversion on 1a

(a) ∆ = ∆x, l : T1

(b) T1 V T2{T3

(c) ∆x, l : T3 $ e : T % ∆1
x, l : T 13

(d) T2Ó {T
1
3 V T 11

(e) ∆1 = ∆1
x, l : T 11

3. T2Ó= pT2ÓqÓ – double demotion

4. Let ∆2 = ∆x, l : T3, l
1 : T2Ó

5. ∆x, l : T2Ó, l : T3 $ mergerl1 : T2Ó {l : T 13 V T 11speq : T % ∆1
x, l : T 11 – by 2c-d,3,(merge)

6. ∆2 $ mergerl1 : T2Ó {l : T 13 V T 11speq : T % ∆1 – by 2e,4-5

7. µ, p∆x, l : T1q, ρ ok – by 1b,2a

8. µ1, p∆x, l : T2, l : T3q, ρ ok – by 7,2b,memory consistency lemma

9. µ1, p∆x, l : T2Ó, l : T3q, ρ ok – by 8,memory consistency lemma

10. µ1,∆2, ρ ok – by 9,4

11. q.e.d. – by 6,10

Case (merge).

1. By assumption

(a) ∆ $ mergerl1 : T1{l2 : T 12 V T3spvq : T % ∆1

(b) µ,∆, ρ ok
(c) µ1 = µ� ρpl1q : T1 � ρpl2q : T 12 � ρpl2q : T3

(d) µ, ρ,mergerl : T1{l2 : T 12 V T3spvq Ñ µ1, ρ, v

2. By inversion on 1a

(a) ∆ = ∆x, l1 : T1, l2 : T2 for some T2
(b) T1 = T1Ó

(c) T1{T
1
2 V T3

(d) ∆x, l2 : T2 $ v : T % ∆1
x, l2 : T 12

(e) ∆1 = ∆1
x, l2 : T3

3. Either v = o or v = void

(a) Assume v = o

45

i. By inversion of 2d,3a
A. ∆x = ∆1

x, v : T

B. T2 = T 12
ii. Let ∆2 = ∆1, v : T

iii. ∆2 $ v : T % ∆1 – by 3aii,(ctx-b)
iv. µ, p∆x, l1 : T1, l2 : T2q, ρ ok – by 1b,2a
v. µ, p∆x, l2 : T1, l2 : T2q, ρ ok – by 3aiv, mem consistency lemma,

and ρpl1q = ρpl2q by construction
vi. µ1, p∆x, l2 : T3q, ρ ok – 3av, 2bc,3aiB, mem consistency lemma

vii. µ1, p∆1
x, v : T, l2 : T3q, ρ ok – by 3avi,2aiA

viii. µ1, p∆1, v : T q, ρ ok – by 3avii, 2e
ix. µ1,∆2, ρ ok – by 3aviii, 3aii

(b) Assume v = void

i. By inversion of 2d,3a
A. ∆x = ∆1

x

B. T2 = T 12
C. T = Void

ii. Let ∆2 = ∆1

iii. ∆2 $ void : Void % ∆1 – by 3aii,(void)
iv. µ, p∆x, l1 : T1, l2 : T2q, ρ ok – by 1b,2a
v. µ, p∆x, l2 : T1, l2 : T2q, ρ ok – by 3biv, mem consistency lemma,

and ρpl1q = ρpl2q by construction
vi. µ1, p∆x, l2 : T3q, ρ ok – 3bv, 2bc,3biB, mem consistency lemma

vii. µ1, p∆1
x, l2 : T3q, ρ ok – by 3bvi,2aiA

viii. µ1, p∆1q, ρ ok – by 3bvii, 2e
ix. µ1,∆2, ρ ok – by 3bviii, 3bii

4. q.e.d. – by 3aiii,3aix,3biii,3bix

Case (merge-congr).

1. By assumption

(a) ∆ $ mergerl1 : T1{l2 : T 12 V T3speq : T % ∆1

(b) µ,∆, ρ ok
(c) µ, ρ, eÑ µ1, ρ1, e1

(d) µ, ρ,mergerl1 : T1{l2 : T 12 V T3speq Ñ µ1, ρ1,mergerl1 : T1{l2 : T 12 V T3spe
1q

2. By inversion on 1a

(a) ∆ = ∆x, l1 : T1, l2 : T2 for some T2
(b) T1 = T1Ó

(c) T1{T
1
2 ñ T3

(d) ∆x, l2 : T2 $ e : T % ∆1
x, l2 : T 12

(e) ∆1 = ∆1
x, l2 : T3

3. l1 R FV peq – by construction

4. ∆x, l2 : T2, l1 : T1Ó$ e : T % ∆1
x, l2 : T 12, l1 : T1Ó – by 2d,3,weakening

46

5. ∆ $ e : T % ∆1
x, l2 : T 12, l1 : T1Ó – by 2a-b,4

6. By induction on 1b,5, there exists ∆2 such that:

(a) µ1,∆2, ρ1 ok
(b) ∆2 $ e1 : T % ∆1

x, l2 : T 12, l1 : T1Ó

7. ∆2 = ∆2x, l1 : T1Ó, l2 : T 22 – by 6b, Context Variable Conservation

8. ∆2x, l2 : T 22 $ e1 : T % ∆1
x, l2 : T 12 – by strengthening

9. ∆2x, l2 : T 22 , l1 : T1Ó$ mergerl1 : T1Ó {l2 : T 12 V T3speq : T % ∆1
x, l2 : T3 – by 8,2b-c,(merge)

10. ∆2 $ mergerl1 : T1Ó {l2 : T 12 V T3speq : T % ∆1 – by 7,9

11. q.e.d – by 11-12

Lemma 22 (CompatCoerce).
If T1 :

� T2 then coercepx, T1 " T2q is defined.

Proof. By induction on the derivation T1 :
� T2. Either T1 : T2, or T2 = Dyn, in which case T1 V T2, and

coercepx, T1 " T2q is defined by (Coerce). Otherwise, T1 = Dyn and T2 = P C and coercepx, T1 " T2q is defined
by (Coerced).

Lemma 23 (CompatDyn).
If T :

� Dyn then, x : T $ xð Dyn e % x : T , for some e.

Proof. Assume T :
� Dyn. Either T = Dyn or T = P C. In either case, T V Dyn. Therefore, x : Dyn $ x ð

Dyn e % x : Dyn, for some e, by (ctxð).

Lemma 24 (Preservation-translation). If ∆ $ eô T % ∆1, then ∆ $ eô T e1 % ∆1 for some e1.

Proof. With CompatCoerce and CompatDyn lemmas, this is trivially proved by induction on derivation of ∆ $
e ô T % ∆1. For example, look at the case (src-letTñ). We assume ∆ $ let x : T1 = e1 in e2 ñ T2 % ∆1,
∆ $ e1 ð T1 % ∆1, and ∆1, x : T1 $ e2 ñ T2 % ∆1, x : T 11. By induction on the last two terms, we get
∆ $ e1 ð T1 e11 % ∆1, and ∆1, x : T1 $ e2 ñ T2 e12 % ∆1, x : T 11, for some e11, e

1
2. By (letTñ), we get

∆ $ let x : T1 = e1 in e2 ñ T2 e1 % ∆1, for some e1. All cases proceed similarly.

Theorem 25 (Preservation-source). If ∆ $ e ô T % ∆1, then ∆ $ e ô T e1 % ∆1 and ∆ $ e1 : T % ∆1, for
some e1.

Proof. Assume ∆ $ eô T % ∆1. By preservation-translation, there exists e1 such that ∆ $ eô T e1 % ∆1. By
translation lemma, ∆ $ e1 : T % ∆1.

Lemma 26 (Method translation). If M ok in C in the source language, then there exists M’ such that M M 1, and
M 1 ok in C in the internal language.

Proof.

1. By assumption

(a) Tr mpTx " T 1x xq rTt " T 1t s t return e; u ok in Ct

(b) Tr mpTx " T 1x xqrTt " T 1t s ok in Ct

(c) x : Tx, this : Tt $ eð Tr % this : T 2t , x : T 2x

(d) T 2t
 :
� T 1t

47

(e) T 2x
 :
� T 1x

2. There exists e1 such that – by 1c,source preservation

(a) this : Tt, x : T $ eð Tr e1 % this : T 2t , x : T 2x

(b) this : Tt, x : T $ e1 : Tr % this : T 2t , x : T 2x

3. By (CompatCoerce) – 1d-e. Note that we are using the already defined :
� relation on classes of the source

language to reason about internal language expressions. This is reasonable since we are not translating class
names, nor the class hierarchy at all

(a) coercepthis, T 2t " T 1tq is defined

(b) coercepx, T 2 " T 1q is defined

4. Let e2 = let ret = e1 in coercepthis, T 2t " T 1tq; coercepx, T
2 " T 1q; ret – by 2-3

5. this : T 2t , x : T 2x , ret : Tr $ coercepthis, T 2t " T 1tq : Void % this : T 1t , x : T 2x , ret : Tr – by 2a, Coercion
lemma

6. this : T 1t , x : T 2x , ret : Tr $ coercepx, T 2 " T 2q; : Void % this : T 1t , x : T 1x, ret : Tr – by 2b, Coercion lemma

7. this : T 1t , x : T 1x, ret : Tr $ ret : Tr % this : T 1t , x : T 1x – by (ctx-binder)

8. this : Tt, x : T $ e2 : Tr % this : T 1t , x : T 1x – by 4-7, (let)

9. M 1 ok in C in internal language – by 1a, 8

Theorem 27. If PG : T ok in the source language, then there exists PG1 such that PG : T PG1 : T , and
PG1 : T ok in the internal language.

Proof. Follows directly from method translation and preservation-source lemmas.

References
Ronald Garcia, Roger Wolff, Éric Tanter, and Jonathan Aldrich. Featherweight typestate. Technical Report CMU-

ISR-10-115, Carnegie Mellon University, July 2010.

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987. ISSN 0304-3975. doi: http://dx.doi.org/10.
1016/0304-3975(87)90045-4.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal core calculus for java and
gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/
503502.503505.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on Programming Languages and
Systems, 22(1):1–44, 2000.

Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. Lisp Symb. Comput., 6
(3-4):289–360, 1993. ISSN 0892-4635. doi: http://dx.doi.org/10.1007/BF01019462.

48

	1 Introduction
	2 Source Language
	2.1 Syntax
	2.2 Static Semantics

	3 Internal Language
	3.1 Syntax
	3.2 Static Semantics
	3.3 Dynamic Semantics
	3.4 Type Safety

	4 Source to Internal Language Translation

