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Abstra
tClients of rea
tive systems often 
hange their priorities. For example, a human user of an email viewer mayattempt to display a message while a large atta
hment is downloading. To the user, an email viewer thatdelayed display of the message would exhibit a failure similar to priority inversion in real-time systems.We propose a new quality attribute, attentiveness, that provides a uni�ed way to model the formsof redire
tion o�ered by appli
ation-level rea
tive systems to a

ommodate the 
hanging priorities of their
lients, whi
h may be either humans or system 
omponents. Modeling attentiveness as a quality attributeprovides systems designers with a single 
on
eptual framework for poli
y and ar
hite
tural de
isions toaddress trade-o�s among 
riteria su
h as responsiveness, overall performan
e, behavioral predi
tability, andstate 
onsisten
y.At the poli
y level, the framework models diverse redire
tion options in
luding 
an
el, undo, defer,
he
kpoint, and ignore. At the ar
hite
tural level, the framework in
ludes 
on
epts su
h as: distinguishing�short� operations (e.g., an event noti�
ation) from �long� operations (e.g., unbounded data transfer over anetwork); en
apsulating long operations to prevent interferen
e with redire
tion; enabling use of light-weight
he
kpoints to support redire
tion while exe
uting �long� operations; and 
onsolidating responsibility forredire
tion to a small group of 
omponents in the system. Poli
y and ar
hite
ture 
ome together in theform of a set of positive and negative patterns for realizing attentive systems. These patterns are derivedfrom 
ase studies of attentiveness failures and su

esses, several of whi
h are presented and evaluated in thispaper.The value of the framework has been tested through experiments involving both new development andre-engineering existing proje
ts. We present two of these experiments in this paper, in
luding both human-system intera
tion in a do
ument editor and system-system intera
tion in a 
lient-server appli
ation. Theseexperiments illustrate that our modeling framework 
an guide in
remental attentiveness improvements inexisting rea
tive systems.
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Chapter 1Introdu
tionSoftware systems o

asionally fail to respond to their �
lients,� either human users or other systems. Forexample, a user attempting to pla
e a 
all with a tou
h s
reen 
ellular phone 
ould en
ounter several problems.The phone 
ould:� Ignore some of the user's intera
tions with the tou
h s
reen� Display buttons that appear to be held after the user has released them� Display a bla
k s
reen for many se
onds, refusing to a

ept input� Display information irrelevant to the user's a
tivity, su
h as a new e-mail noti�
ationAll of the problems mentioned above 
an be observed when pla
ing a 
all with a HTC Droid Eris runningAndroid 2.1 software, and delay the pro
ess of making a 
all for one minute. In addition, these problems havese
ondary e�e
ts, in
luding in
reased error rates [10℄, in
reased state anxiety [48℄, and de
reased satisfa
tionwith the overall system [92℄. Similar failures 
an be observed in systems as diverse as hand-held devi
es,desktop appli
ations, and servers.In this work we propose a quality attribute 
alled attentiveness that des
ribes the ability of some systemsto avoid these problems by 
hanging their 
omputational traje
tory in response to requests from their 
lients.Attentiveness des
ribes the relationship between requests and the system's responses in terms of promptnessand 
onsisten
y. On a phone, users 
reate requests by tou
hing the phone's s
reen. The phone respondsboth by updating the s
reen and also by 
onne
ting and dis
onne
ting 
alls. Promptness assesses the delaybetween the tou
h and the phone's response. Consisten
y assesses both the predi
tability of the phone'sresponses and also the phone's ability to preserve the user's prior work. Therefore, the phone exhibits a
onsisten
y failure if it 
hanges a button just as the user is tou
hing it. For example, on the phone des
ribedabove, the �End Call� button be
omes the �Call� button when a 
all ends, as shown in Figure 1.1. If theuser were to press this button just as the other party hangs up, he would a

identally pla
e a new 
all.In addition, the phone would exhibit a 
onsisten
y failure if it were to 
rash while the user was dialing anumber. To avoid 
rashing the phone must maintain harmony among elements of its internal state whileresponding to new requests.Attentiveness failures are not 
on�ned to systems that intera
t dire
tly with users. Attentiveness failureso

ur on servers when 
lients dis
onne
t after submitting long running requests. For example, when a userinitiates a sear
h in Thunderbird [99℄, a popular email 
lient, Thunderbird forwards the sear
h to the IMAPserver that holds the user's messages. While the sear
h is happening the user may de
ide to 
hange thesear
h terms. The IMAP proto
ol does not support interruption of sear
h requests. Therefore, Thunderbirdis for
ed to submit a se
ond sear
h request to the IMAP server. The se
ond sear
h will 
ompete with theinitial, now unwanted, sear
h for resour
es on the IMAP server, as shown in Figure 1.2. As a result, the1



Figure 1.1: On some 
ellular phones the �End Call� button transforms into a �Call� button when the otherparty hangs up. A user attempting to use the button may reestablish a 
all with the other party by mistake.

Figure 1.2: The IMAP proto
ol provides no way to 
an
el sear
h requests. Therefore, if a user 
hangessear
h terms while a sear
h is in progress the e-mail 
lient will send a se
ond sear
h to the IMAP server.The IMAP server divides its disk bandwidth between the sear
hes. As a result, both sear
hes are delayed.2



user's sear
h is delayed.Attentiveness draws on insights from four areas of resear
h:� Human-
omputer intera
tion 
ontributes knowledge of the relationship between response times andhuman satisfa
tion with systems. Attentiveness is most 
losely related to dire
t manipulation [94℄.� Software ar
hite
ture both 
ontributes ar
hite
tural patterns su
h as model-view-
ontroller [63℄ andalso has identi�ed the phenomenon of ar
hite
tural mismat
h [39℄ that makes attentive systems di�
ultto 
onstru
t.� Systems software 
ontributes knowledge of the problems of 
on
urren
y, 
on
epts for reasoning about
on
urren
y su
h as the happens-before relationship [66℄, and approa
hes to maintaining 
onsisten
yin the presen
e of 
on
urren
y su
h as transa
tions [42, 56℄.� Software monitoring, espe
ially prior work in 
he
king for data ra
es [86℄, provides te
hniques forobserving software as it exe
utes, and also provides te
hniques to 
ontrol the system's exe
ution topreserve 
onsisten
y [83℄.In this work we present: a framework for 
reating requirements for attentiveness, dire
tives that des
ribeattentiveness in terms of implementation, a design pattern for attentive systems, and the design of tworuntime systems to support attentiveness.1.1 Con
eptual 
ontributionsWe propose the following 
on
epts to address attentiveness in a systemati
 and general way:� Requests relate the a
tivity of a system to inputs from its 
lient. In threaded systems ea
h thread isasso
iated with a request. Designers are able to identify 
on�i
ting requests that must not exe
ute
on
urrently due to the system's 
ontra
t with its users. For example, Thunderbird must not attemptto display the 
ontents of two messages in the same message pane.� Behaviors�su
h as 
an
el, pause, and interrupt�de�ne general approa
hes that 
lients 
an useto redire
t systems. For example, a user of an email 
lient may pause a download to free networkbandwidth in order to display a high priority message.� A 
al
ulus of short and long operations allows developers to reason about promptness qualita-tively.� Dire
tives allow ar
hite
ts and developers to represent knowledge that 
annot be inferred from thesystem's implementation. For example, dire
tives identify regions�parts of the system's state thatmust be treated as a unit from the perspe
tive of 
onsisten
y. Developers and runtime systems 
anuse this knowledge to improve the attentiveness of systems.� Trusted exe
ution uses knowledge provided by dire
tives to provide servi
es that redire
t threads.Unlike existing approa
hes to redire
ting threads, the servi
es are able to redire
t threads promptlywhile preserving the system's 
onsisten
y. Developers 
an utilize these servi
es to simplify the imple-mentation of the behaviors mentioned above. In addition, trusted exe
ution identi�es dependen
iesamong requests. Dependen
ies are 
reated when requests a

ess regions. The runtime system tra
ksdependen
ies to avoid introdu
ing 
he
k-then-a
t errors when it redire
ts threads. It a

omplishes thisby using the dependen
ies to identify the group of threads that have observed the a
tivity of the threadbeing redire
ted, and then redire
ting every thread in the group. Developers 
an redu
e the size ofthese groups by introdu
ing additional dire
tives in the system, allowing them to trade o� developmente�ort for greater e�
ien
y.� Ar
hite
tural stru
tures, shown in Figure 1.3, tra
k requests in the system, allow developers tomanage the assignment of resour
es to requests, and 
on�ne the responsibility for implementing be-3



Figure 1.3: Ar
hite
tural stru
tures for attentiveness1 writer opaque FILE * fopen(borrowed_ro const char * filename,2 borrowed_ro const char * mode);4 reader int feof(opaque FILE * fp);6 independent transparent void * memcpy(borrowed_rw void * dstpp,7 borrowed_ro const void * srcpp,8 size_t len);Listing 1.1: Partial tollgate for the C runtime library. The tollgate is de�ned by the modi�ers shown in boldtype. haviors to a small number of 
omponents.� Che
ked exe
ution monitors the system as it exe
utes, ensuring that its behavior is 
onsistentwith the information provided by dire
tives. During 
he
ked exe
ution, threads gain and releasepermissions to read and write regions. Che
ked exe
ution repla
es the threads in the system with�laments. Like threads, all of the �laments in a system share a 
ommon address spa
e. Unlikethreads, �laments have unique sets of permissions that are granted and revoked by dire
tives.� Attentive proto
ols allow 
lients to redire
t requests submitted to servers and allow servers to dete
t
lient failures promptly.� Tollgates allow developers to atta
h additional information at the interfa
e between the system andthird-party modules that do not 
ontain dire
tives, as shown in Listing 1.1. Trusted exe
ution uses theinformation provided by tollgates to manage dependen
ies among requests that a

ess the modules.Che
ked exe
ution veri�es that the information provided by tollgates is a

urate.1.2 Impa
t on pra
ti
eThe key 
on
epts of attentiveness a�e
t four stages of software development:In interfa
e design, whi
h in
ludes both human-system interfa
es and system-system interfa
es, behav-iors provide standard patterns for redire
ting requests. Behaviors point to tradeo�s that designers should
onsider when 
reating requirements for the system. In addition, they allow designers to provide 
on
ise,unambiguous requirements to developers.Software ar
hite
tures that in
orporate our design pattern both provide a 
entral lo
ation for tra
kingrequests and also en
apsulate responsibility for implementing behaviors to a small 
olle
tion of 
omponents.As a result, ar
hite
ts do not need to 
onsider attentiveness when designing other parts of the system. Inaddition, dire
tives, des
ribed in Chapter 3, allow ar
hite
ts to spe
ify 
onstraints on the implementation of4



Figure 1.4: Dire
tives improve the e�
ien
y of software monitoring. This graph 
ompares 
he
ked exe
utionto Helgrind [89℄. Both systems are dynami
 
he
kers that dete
t data ra
es. Che
ked exe
ution is faster bya fa
tor of 300.the system that 
an be enfor
ed through 
he
ked exe
ution.Developers bene�t from the knowledge 
onveyed by the dire
tives spe
i�ed by ar
hite
ts. In addition,the en
apsulation of attentiveness 
on
erns into a small number of ar
hite
tural elements allows developersto ignore attentiveness when implementing most of the fun
tionality in their systems. Finally, the runtimesystem greatly simpli�es the task of redire
ting requests. In 
urrent pra
ti
e, developers are for
ed to redire
trequests using either operations that interrupt threads promptly without preserving 
onsisten
y or operationsthat preserve 
onsisten
y but may take an unbounded amount of time to interrupt a thread. The runtimesupport des
ribed in Chapter 5 provides operations that are both prompt and also preserve 
onsisten
y.Mi
ro-ben
hmarks, also des
ribed in Chapter 5, indi
ate that redire
tion 
an be prompt given the de�nitionof promptness used by many intera
tive systems.Finally, software monitoring allows developers to qui
kly identify ina

urate dire
tives and also 
ouldallow detailed failure reports to be submitted from deployed systems. Without software monitoring, devel-opers would often have to work ba
kward from a system failure to identify one or more ina

urate dire
tives,a pro
ess that is often both tedious and error prone. Software monitoring also bene�ts from the presen
eof dire
tives. Sin
e the dire
tives predi
t the system's future behavior, the software monitor is able to behighly e�
ient when 
ompared to software monitors that do not rely on dire
tives, as shown in Figure 1.4.In addition, the presen
e of dire
tives allows the software monitor to avoid generating false positives.1.3 S
ienti�
 
on
lusionsThe prin
ipal hypothesis of this work is that, from the standpoint of both requirements and ar
hite
ture,attentiveness 
an be addressed in a systemati
 fashion. We �rst propose a design pattern that addresses5



properties of requests that are dire
tly related to attentiveness. Next, we de�ne dire
tives that des
ribeimportant properties of the design pattern that must be preserved by implementations. Finally, we de�neruntime support that assists developers when developing attentive systems. We evaluate four aspe
ts of thishypothesis in this work:Chapter 3 evaluates the dire
tives to determine if they 
an des
ribe the regions of third-party systemsby applying dire
tives to six ben
hmarks taken from the PARSEC 2.0 ben
hmark suite [13℄. One of theben
hmarks employs data ra
es as part of its design and 
annot be modeled with dire
tives. The other �veben
hmarks 
an be modeled with dire
tives. However, limitations in our 
urrent implementation of 
he
kedexe
ution make it impossible to verify the a

ura
y of the dire
tives in two of the ben
hmarks.In Chapter 4 we evaluate our design pattern to determine if it resolves attentiveness failures. We apply thedesign pattern to a Java 
lient and server 
onne
ted with the Remote Method Invo
ation [96℄ 
ommuni
ationproto
ol. The design pattern resolves a reprodu
ible attentiveness failure in this system with a runtimeoverhead of 5%.In Chapter 5 we test the runtime system to verify that 
he
ked exe
ution 
an be implemented e�
iently.We use the PARSEC ben
hmarks des
ribed above in this test, observing the memory 
onsumption andexe
ution time of the ben
hmarks. In the worst 
ase the exe
ution time of the ben
hmarks in
reases by afa
tor of 3 under 
he
ked exe
ution, and the memory overhead in
reases by a fa
tor of 2. As a result, it ispossible to use additional 
ores to over
ome the overhead of 
he
ked exe
ution.In Chapter 5 we des
ribe mi
ro-ben
hmarks to verify that the overhead of trusted exe
ution would bea

eptable. These mi
ro-ben
hmarks indi
ate that the operations needed to maintain 
onsisten
y 
an belong for large regions, but 
omplete in approximately one se
ond in the worst 
ase. Systems using ourproposed design pattern will remain attentive in the presen
e of these operations.1.4 S
opeThis work does not exhaustively 
over all aspe
ts of attentiveness. There are a number of opportunities forfurther development of the ideas outlined in this work:The approa
h des
ribed in this do
ument does not guarantee that a system will be free ofattentiveness failuresThere is no guarantee that systems 
onstru
ted with the te
hniques des
ribed in this do
ument will beattentive. These te
hniques allow developers to in
rementally improve the attentiveness of systems, use thirdparty 
ode without analysis, and use non-deterministi
 resour
es su
h as networks and disks. Te
hniquesused for hard real time system development, su
h as worst 
ase exe
ution time analysis, would providestronger guarantees of the behavior of the system, but would require more up-front development e�ort.System 
alls and attentivenessAn attentive system may need to redire
t requests that are engaged in system 
alls. It may be possible toredire
t these requests by 
reating a mediator to manage the e�e
ts of the 
alls. The design and implemen-tation of system 
all mediators is not within the s
ope of this resear
h.6



Handling irreversible 
hangesIt may not be possible to reverse all of the 
hanges made by a request when it is redire
ted. The de�nitionof attentiveness spe
i�es that any remaining 
hanges must be 
ommuni
ated to the 
lient when a request isredire
ted. The 
urrent design does not provide a way to dete
t these 
hanges and 
ommuni
ate them tothe 
lient.Implementation and evaluation of the overhead of trusted exe
utionThis work provides a detailed design of trusted exe
ution, in
luding the algorithms that are needed to managedependen
ies. However, we have not implemented this system and have not evaluated the overhead imposedby our te
hniques.Improving the e�
ien
y of 
he
ked exe
utionThere are several te
hniques that 
ould improve the e�
ien
y of 
he
ked exe
ution both in terms of memory
onsumption and also in terms of exe
ution time.Evaluation of behaviors in the 
ontext of interfa
e designWe have not 
ondu
ted studies to ensure that designers 
an employ our behaviors when designing systemsor to assess the e�e
t of behaviors on the quality and 
omplexity of system designs.Addressing attentiveness in systems that are not request-orientedSome 
lasses of systems, in
luding simulators, respond to input from their 
lients but are not easily modeledin terms of dis
rete requests. We have not attempted to assess these systems in terms of attentiveness.In
reasing 
ertainty that we have the right set of dire
tivesWe have not attempted to verify that our list of dire
tives is 
omplete. There are some indi
ations thatnew types of dire
tives may be useful. For example, it may be helpful to use dire
tives to tra
k the rightto deallo
ate memory in systems that use expli
it memory management. In addition, it may be helpful toprovide dire
tives to do
ument aliasing assumptions in systems.Redu
ing developer e�ort when introdu
ing dire
tives into systemsIntrodu
ing dire
tives into systems requires 
onsiderable developer e�ort. There are several approa
hes that
ould redu
e the e�ort of introdu
ing dire
tives, in
luding stati
 analysis. It would also be useful to have ananalysis that would identify 
ontradi
tory dire
tives.Advi
e for 
onstru
ting new proto
ols that support attentivenessInter-appli
ation 
ommuni
ation proto
ols 
an support attentiveness by expli
itly supporting the behaviorsdes
ribed in this resear
h. However, it may be possible to further improve the attentiveness of proto
ols by
hanging the way that state 
hanges are 
ommuni
ated between 
lients and servers. Se
tion 4.1.4 identi�es7



several problems in the IMAP proto
ol related to state management. The des
ription of a solution to theproblems of state management is beyond the s
ope of this resear
h.Reverse tollgatesTollgates assume that the 
aller will have dire
tives and the 
ode being 
alled will not have dire
tives.However, in systems that exhibit inversion of 
ontrol, the 
ode without dire
tives may a
t as the 
aller,
reating a reverse tollgate. The dire
tives des
ribed in this do
ument are likely to be appli
able to reversetollgates. However, the implementation of the tollgate is likely to be somewhat di�erent.1.5 RoadmapA detailed dis
ussion of attentiveness is 
ontained in Chapter 2 through Chapter 5. The dis
ussion starts atthe level of requirements in Chapter 2, gradually moving to the level of detailed implementation in Chapter 5.Chapter 2 dis
usses the 
on
ept of attentiveness at the level of requirements. It begins by providing adetailed des
ription of promptness and 
onsisten
y. Next, it des
ribes redire
tion in terms of attributes ofrequests, in
luding 
on�i
ting requests and priorities. Then it des
ribes the 
on
ept of dependen
ies. Finally,it des
ribes a series of 
hallenging problems that must be addressed by attentive systems. The key 
on
epts
overed in Chapter 2 in
lude: requests, behaviors, 
on�i
ting requests, priorities, and the 
al
ulus of shortand long operations.Chapter 3 des
ribes the 
on
ept of dire
tives. First, it des
ribes dire
tives relating to 
onsisten
y, in
lud-ing the dire
tives that de�ne regions and 
ontrol a thread's permissions to a

ess regions. Next it des
ribesdire
tives related to promptness, in
luding dire
tives that allow developers to identify short blo
ks of 
odethat will exe
ute to 
ompletion in the event of redire
tion. Then it dis
usses dire
tives that identify requests,
ontrol dependen
ies among requests, and asso
iate requests with threads. Finally, the 
hapter des
ribes toll-gates and their relationship to module interfa
es. The key 
on
epts 
overed in Chapter 3 in
lude: dire
tives,regions, permissions, dependen
ies, and tollgates.Chapter 4 des
ribes the relationship between attentiveness and the design of systems. It starts byassessing the designs of six third party systems in terms of attentiveness, relating the designs to observationsof the runtime behavior of the systems. Next the 
hapter proposes ar
hite
tural 
omponents that 
an beadded to systems to improve their attentiveness. It 
on
ludes by applying these ar
hite
tural 
omponents toa small system, demonstrating that they lead to an improvement in attentiveness. The key 
on
epts 
overedin Chapter 4 are the ar
hite
tural stru
tures for attentiveness and the 
on
ept of attentive proto
ols.Chapter 5 des
ribes the design and implementation of runtime systems to support attentiveness. First the
hapter des
ribes the design of a runtime system to support trusted exe
ution. Next the 
hapter des
ribesthe design and implementation of a runtime system that supports 
he
ked exe
ution, verifying the a

ura
yof the dire
tives related to 
onsisten
y. The key 
on
epts 
overed in Chapter 5 in
lude: trusted exe
ution,
he
ked exe
ution, �laments, and tollgates.
8



Chapter 2AttentivenessMany systems are not responsive to their 
lients, delaying their work. For example, a user of Thunderbird 2.0,an email program, may want to �nd the lo
ation of a meeting that will begin at 10:00AM. Therefore, at9:55AM the user starts Thunderbird, identi�es the email 
ontaining the invitation, and asks Thunderbirdto display the message. However Thunderbird noti
es a large number of new messages in the user's Inbox.It automati
ally begins to download the new messages to s
an them for junk mail without a request fromthe user. Normally, this behavior is bene�
ial: Thunderbird is able to remove junk messages so that theydo not distra
t the user. However, in this situation Thunderbird's s
anning of junk messages delays themessage view requests for more than 5 minutes, 
ausing the user to be late for the meeting. The 
ost ofthese delays to human users 
an be ampli�ed by in
reased error rates by human operators [10℄ and in
reasedstate anxiety [48℄.The delay introdu
ed in this s
enario is similar to the priority inversions that 
an be en
ountered indefe
tive real-time systems. The user's request to display the invitation was a high-priority task and shouldhave preempted the junk mail s
anner. In this 
hapter we propose a new quality attribute 
alled attentivenessthat des
ribes fun
tionality that 
an resolve this problem. An attentive system would have addressed thiss
enario by either:� Automati
ally prioritizing requests. For example, the system 
ould identify every ViewMessage requestas a high priority task, giving ViewMessage requests pre
eden
e over the junk mail s
anner� Allowing the user to prioritize the task by both providing an overview of work in progress and alsoallowing the user to redire
t the systemSimilar fun
tionality 
ould improve a wide variety of systems, in
luding both intera
tive appli
ations, wherethe 
lients are humans, and also servers, where the 
lients are other systems. Some systems both send andre
eive requests. For example, an email program like Thunderbird re
eives requests from its users and alsosends requests to the IMAP server that holds the user's messages. In this situation the design of the IMAPproto
ol may limit the email program's attentiveness as dis
ussed in Chapter 4. For 
larity, the majorityof the examples in this 
hapter will dis
uss an email program intera
ting with a human user and an IMAPserver.In this 
hapter we dis
uss attentiveness in
rementally, starting with aspe
ts of attentiveness that aredire
tly observable and gradually moving to 
onstraints on the system's implementation. In Se
tion 2.1we propose an abstra
t model of the 
ommuni
ation between 
lients and systems. The model represents
ommuni
ation in terms of dis
rete requests generated by the 
lient and the system's responses to theserequests. Clients do not have to wait for the system to 
omplete prior requests before submitting new ones.The system's behavior is predi
table when 
lients and systems agree on two properties of requests developedin this se
tion: 
on�i
ts and priorities. 9



The model of requests, responses, 
on�i
ts, and priorities draws extensively on several areas of priorwork. In Se
tion 2.2 we dis
uss four areas that have in�uen
ed the model, both des
ribing ideas that wehave adapted and also 
ontrasting attentiveness with problems addressed in this work. The areas in
lude:� User interfa
e design� Computer supported 
ollaborative work (CSCW)� Transa
tions, in
luding databases and transa
tional memory� Real-time system designIn Se
tion 2.3 we dis
uss the aspe
ts of the system's 
ommuni
ation that are dire
tly related to time.Promptness refers to a system's ability to respond to requests within a period of time that is a

eptableto its 
lients. Systems may both send multiple responses for a request and also pro
ess multiple requests inparallel. Therefore, we de�ne multiple measurements to assess the promptness of individual requests.In Se
tion 2.4 we address promptness in the 
ontext of sequen
es of requests. Systems 
an improve theirpromptness by redire
ting some of the requests in the sequen
e. We de�ne general patterns of redire
tion,
alled behaviors, that apply to many systems. Systems employ behaviors when it is not possible to run allof the requests submitted by 
lients in parallel and the system must redire
t work in progress to admit ahigh priority request. System designers and 
lients 
hoose the behaviors to invoke, while the system 
hoosesthe requests to redire
t based on 
on�i
ts and priorities.In Se
tion 2.5 we 
onsider problems that 
lients may en
ounter when redire
ting systems. Clients shouldbe able to redire
t systems without either losing a

ess to the system or losing work. We des
ribe a prop-erty 
alled 
onsisten
y that des
ribes two aspe
ts of systems from a 
lient's point of view. In addition,
onsisten
y has impli
ations for the implementation of the system. Externally, the system must 
ontinue toprovide predi
table responses to requests submitted by its 
lients. In addition, the system must preserve
ompleted work, as mu
h of the work in progress as possible, and the future work done by the 
lient. Toa

omplish this, the system must maintain both the invariants of its data stru
tures and also the invariantsthat govern its 
ommuni
ation with other systems.In Se
tion 2.6 we expand the model of requests to des
ribe the implementation of systems in generalterms. The model 
ontains four operations that 
ontrol requests: start(), stop(), continue(), and undo().These operations are su�
ient to implement the behaviors mentioned in Se
tion 2.4.The model assumes that one or more threads in the systems pro
ess requests. It assumes that threads
an observe the partially 
ompleted 
hanges made by threads pro
essing other requests. It models theseobservations as dependen
ies among requests. To avoid 
he
k-then-a
t failures, the model spe
i�es that
alling undo() on a request will roll ba
k any other request that has observed its 
hanges.Finally, the model employs a qualitative approa
h to reasoning about promptness: a 
al
ulus of shortand long operations. This 
al
ulus applies to the operations exe
uted by threads as they exe
ute requests.The goal of the model is to ensure that the threads responsible for making prompt responses to threads arenot blo
ked for unbounded amounts of time.The model dis
ussed in this 
hapter forms the basis for the 
hapters whi
h follow. In Chapter 3 we dis
ussdire
tives, an approa
h to 
he
king the 
onforman
e of a system's implementation to the model. In Chapter 4we des
ribe ar
hite
tural elements that implement the model by providing a mapping between threads andrequests, tra
king resour
es in the system, and isolating 
ertain threads from long operations. In Chapter 5we des
ribe the design and implementation of runtime support that aids developers in implementing the
start(), stop(), continue(), and undo() operations.In Se
tion 2.7 we des
ribe requirements for the implementation of attentive systems.
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2.1 Des
ribing requests: 
on�i
ts and prioritiesOur model assumes that 
ommuni
ation between a system and its 
lients is 
hara
terized by a series ofdis
rete requests. Clients do not have to wait for the system to 
omplete prior requests before submittingnew ones. This module des
ribes many systems, in
luding:� Servers, where 
lients 
an use multiple 
onne
tions to send requests� Handheld devi
es, where users 
an initiate requests by tou
hing the s
reen and pressing buttons� Intera
tive appli
ations, where users 
an initiate requests by intera
ting with 
ontrols on the s
reenSome systems do not follow this model. For example, simulators and embedded sensors are often implementedwith 
y
li
 exe
utives [8℄, where the system gathers input and pro
esses the input at pre-de�ned intervals.The requests in our model have two attributes that are relevant to the 
ommuni
ation between the systemand its 
lients: 
on�i
ts and priorities. Con�i
ts de�ne pairs of requests that would not produ
e predi
tableresults if they were exe
uted 
on
urrently. As a result, systems are for
ed to 
hoose one of the 
on�i
tingrequests to exe
ute �rst. Priorities govern the system's 
hoi
e of requests. Assuming that resour
es areavailable, the system will always exe
ute the request with the highest priority. If resour
es are available,it may also exe
ute additional requests with lower priorities that do not 
on�i
t with the highest priorityrequest.2.1.1 Con�i
tsCon�i
ts spe
ify that 
ertain 
ombinations of requests 
annot exe
ute simultaneously be
ause doing so wouldmake their e�e
ts, as de�ned by the system's interfa
e, unpredi
table. For example, in an email 
lient arequest to move all of the messages from FolderA to FolderB would 
on�i
t with a se
ond request to movemessages from FolderC to FolderA.If the system were to exe
ute these requests simultaneously, the system 
ould divide the messages initially
ontained in FolderC between FolderA and FolderB depending on the relative progress of the requests. Thesewould not be true for two requests where the destination folders do not overlap the sour
e folders. Forexample, a move of messages from FolderA to FolderB 
an safely exe
ute in parallel with a move of messagesfrom FolderC to FolderD.Systems 
annot automati
ally dete
t 
on�i
ting requests. Therefore, designers must spe
ify whi
h re-quests, if any, in the system's interfa
e 
on�i
t. As in this example, 
on�i
ts among requests may be
onditional, depending on the parameters of the requests.2.1.2 PrioritiesDesigners atta
h priorities to requests to 
ontrol the system's behavior when it 
annot exe
ute every requestsubmitted by its 
lients. Designers should 
hoose priorities to minimize the need for 
lients to redire
tsystems. For example, in an email program a user may attempt to display a message while a download of anatta
hment is in progress. In this situation it is most likely that the user intends for the attempt to displaythe message to interrupt the download of the atta
hment. Therefore, the designers should atta
h a highpriority to message view requests and a lower priority to atta
hment downloads.No set of priorities 
an be perfe
t. For example, the download of the atta
hment may be urgent. Theuser may be reading messages only be
ause the atta
hment is not available, but may not want this a
tivityto delay the download of the atta
hment. In these situations, the user will need to override the prioritiesspe
i�ed by designers by invoking one or more of the behaviors des
ribed in Se
tion 2.4.11



2.2 Prior work related to attentivenessOur model of requests, behaviors, and priorities draws on several areas of related work, in
luding: userinterfa
e design, 
omputer supported 
ollaborative work (CSCW), transa
tional databases, and real-timesystem design. Ea
h of these 
ontexts 
ontributes 
on
epts that we employ in our approa
h to attentivesystems. However, the problems en
ountered in designing attentive systems are subtly di�erent than theproblems en
ountered in these systems.2.2.1 User interfa
e designUser interfa
e designers have de�ned many of the behaviors in our model and have pointed to the need for
onsistent and prompt redire
tion. For example, a user may print a do
ument and then de
ide to 
an
el theprintout. Interfa
e designers will spe
ify that the system should o�er a 
an
el button both to allow the userto regain 
ontrol of the system and to stop the printout promptly. They note that systems rarely implementthese features well [21℄. For example, many systems forwarded multiple pages to the printer before the 
an
elbutton is pressed. When the 
ommuni
ation proto
ol between the system and the printer does not supportredire
tion, pages will 
ontinue to emerge from the printer after the user has 
an
eled the printout.We build on the work done by interfa
e designers, exploring the e�e
ts that these behaviors have bothon the ar
hite
ture of systems and also on proto
ol designs. Software ar
hite
ts have long realized thats
enarios like the one des
ribed above have impli
ations for software ar
hite
ture [11℄. We build on this work,
onsidering the impli
ations of behaviors on system implementation and proto
ol design. In the pro
ess ofdoing this work we identify a series of design de
isions that should be addressed by system designers. The
on
epts of requests, priorities, and 
on�i
ts allow us to do this in general terms, moving beyond priorapproa
hes that 
onsidered the design of the system's interfa
e in system-spe
i�
 terms [53℄.2.2.2 Computer supported 
ollaborative work (CSCW)The 
ommuni
ation patterns of an attentive system are partially asyn
hronous: 
lients are able to submitnew requests while the system is busy. Some of the new requests submitted by the 
lient may 
hange oroverride prior requests. In this respe
t an attentive system is mu
h like a CSCW system pro
essing requestsfrom multiple users. The �eld of 
omputer supported 
ollaborative work has de�ned formal approa
hes toanalyzing requests, in
luding a 
al
ulus that 
an be used to identify and in some 
ases resolve 
on�i
ts amongrequests [22℄.The approa
hes developed for CSCW are 
losely related to the pro
ess of 
hoosing behaviors and identify-ing 
on�i
ts among requests. We do not explore this pro
ess in detail as a part of this work. However, manyof the approa
hes outlined in CSCW reason about requests in terms of priorities and 
on�i
ts. Therefore, weassume that interfa
e designers will provide two fun
tions as part of their spe
i�
ation. One fun
tion, �(r)a

epts a request and returns the request's priority. A se
ond fun
tion, �(r1; r2) a

epts two requests andreturns true if the requests 
on�i
t. In the spam s
anning example the following relationship would hold:�(ViewMessage(m)) > �(JunkMailS
an(f))In the message 
opy example the following rule would spe
ify that MoveMessage requests with overlappingfolders 
on�i
t: ((f1 = f4) _ (f2 = f3)) =) �(MoveMessages(f1; f2);MoveMessages(f3; f4))The implementation of the system must ensure that � is false for all possible pairings of requests inthe system. In addition, the request with the highest priority, as returned by �, must be running. The12



designs and implementations that we propose in this work have these properties. We note that, while thenotation given above is pre
ise, it may not be the optimal representation to use for 
apturing the system'srequirements and 
onveying them to developers.2.2.3 Transa
tionsThe 
on
epts of 
on�i
ting and prioritized requests outlined above may remind the reader of transa
tionalsystems. Indeed, transa
tions have been used to solve similar problems in database systems [42℄, sharedmemory multi-threading [56℄, and distributed systems [87℄. Transa
tions o�er two 
on
epts that are espe
iallyinteresting from the perspe
tive of attentive systems: isolation and rollba
k.Many systems isolate transa
tions, preventing one transa
tion from seeing the partially 
ompleted 
hangesof another transa
tion. Therefore, when viewed by its 
lients, the system will behave as if it had pro
essedthe requests submitted to it in some serial order. This serial order does not ne
essarily have to mat
h theorder in whi
h the requests arrived [72℄.Isolation has two advantages. First, it simpli�es the 
on
urren
y model for 
lients, sin
e they 
an be
on�dent that the system's state will not 
hange in the middle of a transa
tion. In addition, 
lients knowthat their transa
tions will either su

eed or fail with no 
hange to the system's state. As a result, 
lientswill not en
ounter 
he
k-then-a
t failures when using transa
tions. The abstra
t model provided by trans-a
tions allows systems to ex
lude these errors without knowledge of the appli
ation-spe
i�
 semanti
s of thetransa
tion [64℄. Se
ond, isolation avoids the problem of 
as
ading rollba
ks, where a transa
tion that rollsba
k 
auses other transa
tions that have observed its 
hanges to also roll ba
k.However, isolation is not free. Designers of relational databases are aware of a tradeo� between thelevel of isolation provided to 
on
urrent transa
tions and the performan
e of the database [12℄, and haveresponded by implementing more modest forms of isolation that ex
hange some degree of 
onsisten
y forimproved performan
e [43℄.Other aspe
ts of attentive systems make isolation less desirable:� Rollba
ks are likely to be rare and would not a�e
t a large number of requests even in the presen
e ofa 
as
ading rollba
k� Attentive systems may rely on non-transa
tional subsystems that do not o�er rollba
ks, su
h as IMAPservers� Attentive systems may need to inform 
lients of the progress of their requests. This feedba
k wouldneed to be treated as a spe
ial 
ase from the perspe
tive of isolation� Attentive systems may use multiple 
ommuni
ation 
hannels, some of whi
h may not honor isolationThe presen
e of multiple 
ommuni
ation 
hannels leads to a phenomenon 
alled ar
hite
tural mismat
h. Inone 
ase ar
hite
tural mismat
h o

urred when 
lients 
ommuni
ated both through a shared, transa
tionalsystem and also dire
tly [39℄. The 
lients dis
overed that isolation 
aused the state of the shared system todi�er depending on the 
ommuni
ation 
hannel used. In addition, they were often unable to make progresson requests due to lo
king imposed by the transa
tional system.Therefore, in the approa
h des
ribed in this do
ument we both adopt the 
on
ept of rollba
k and alsotra
k dependen
ies among requests to avoid 
he
k-then-a
t errors when requests roll ba
k. However, we allowdevelopers of the system to de
ide on the level of isolation that is appropriate for their systems. If developersdesire isolation, they 
an a
hieve it in our system by adopting two phase lo
king [43℄. Developers may alsobe able to modify the layout of data and lo
king proto
ols to improve performan
e, using te
hniques similarto ones being proposed for database systems [95℄.Our approa
h to the problems of lo
king and rollba
k is very similar to the 
on
ept of open-nestedtransa
tions that has been developed for software transa
tional memory [17, 75℄. However, by default the13



runtime system takes responsibility for rolling ba
k the 
hanges of redire
ted requests as ne
essary. We willdis
uss the details of our approa
h in Chapter 5.2.2.4 Real-time system designThe 
on
ept of promptness is 
losely related to the timing requirements for real-time rea
tive systems.Approa
hes for 
onstru
ting these systems highlight the need for predi
table, timely responses to externalevents. In addition, prior work in real-time systems has dealt with the problems of allo
ating resour
es,in
luding the pro
essor, to a stream of prioritized requests.However, there are several key di�eren
es between attentive systems and real-time systems. First, atten-tive systems often work on time s
ales that are an order of magnitude larger than the time s
ales typi
allyaddressed in real-time systems. As a result, we propose taking a qualitative approa
h to exe
ution timesrather than setting a quantitative limit, as is typi
ally done in real-time systems. These assumptions areembodied in a 
al
ulus of short and long operations that is similar to the O() notation used when dis
ussingalgorithmi
 
omplexity. We give details of this 
al
ulus in Se
tion 2.6.1. This 
al
ulus allows us to avoidworst-
ase exe
ution time analysis [28℄, whi
h would be di�
ult to apply given the properties of attentivesystems.Se
ond, in attentive systems the pro
essing times for many requests may not be bounded. Therefore,attentive systems make a distin
tion between the system's initial response to a request, whi
h is oftenbounded, and the system's �nal response to a request, whi
h is often not bounded. As a result, the design ofattentive systems must 
arefully segregate the threads and resour
es used to identify and redire
t requestsfrom other parts of the system, as dis
ussed in Chapter 4.Third, the designers of attentive systems may not have knowledge of the level of resour
es that will beavailable to the system when it runs. The availability of some of the resour
es, su
h as network bandwidth,may vary as the system exe
utes.Finally, unlike real-time systems, attentive systems may depend on subsystems that provide servi
es thatare essential to pro
essing their requests. When these subsystems do not dire
tly support attentiveness, itis di�
ult for the attentive system to make strong guarantees about the pro
essing times of requests. Forexample, a designer of an email program 
annot bound the time to display a message when there is noupper bound on the time that it will take an IMAP server to send the message to the program. Given these
onstraints, it makes sense for designers to invest in features that will allow the system's 
lient to redire
tthe system based on its knowledge of resour
e availability.We adopt two approa
hes from real-time system design. First, our metri
s for promptness 
losely followthose 
reated for real-time systems [32℄. Se
ond, we adopt the priority inheritan
e proto
ol [90℄ to raise thepriority of blo
ked a
tivities in systems to avoid priority inversion. For example, in an email program wemay raise the priority of an ongoing message download that was initiated by the junk mail s
anner whenthe user submits a request to view the same message.2.3 PromptnessPromptness is one of two major 
omponents of attentiveness. Promptness is a measurement of the time-liness of the system's responses to requests submitted by its 
lients. Many systems allow 
lients to submitnew requests at any time, even while the system is pro
essing prior requests. In addition, many systemssend multiple responses to ea
h request submitted by their 
lients. Therefore, we de�ne three di�erent mea-surements that assess the system's responses for ea
h request: a
knowledgment time, pro
essing time, andlaten
y. In some systems 
lients may be able to dete
t wait time, the time that the system holds a requestwithout pro
essing it. In other systems wait times are part of pro
essing time. Figure 2.1 is a sket
h of how14
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Request submitted

Request started

Request finished

Acknowledgment time

Wait time

Processing time

Latency

Request acknowledged }Figure 2.1: Measures of promptness. The times in this �gure are spe
i�
 to a single request. The 
lient isfree to submit other requests before the request shown is 
omplete.these times are measured for a single request. We will dis
uss ea
h measurement in detail below.A
knowledgment time measures the delay between the system re
eiving a request from the 
lient andthe system's �rst, but not ne
essarily �nal, response to the request. Clients are sensitive to a
knowledgmenttimes be
ause the initial response assures them that the system has re
eived their request. For example,intera
tive GUI systems should typi
ally respond to inputs, su
h as 
li
ks of mouse buttons or key presses,within roughly 100 ms [93℄. Systems 
an a
knowledge requests by �ashing a button, displaying a dialog,or 
losing a menu. If the system takes longer to respond, the user may assume that the system did notnoti
e the input and repeat it, potentially issuing an unwanted se
ond request. In typi
al systems themaximum a

eptable a
knowledgment time is governed by 
hara
teristi
s of the system's 
lients. Therefore,the a
knowledgment times for all types of requests are often identi
al.Pro
essing time measures the amount of time that a system spends pro
essing a request. Developersmay not be able to bound the pro
essing time for some requests. For example, typi
al do
ument editors
an manipulate do
uments of arbitrary 
omplexity. Therefore, some requests, su
h as pasting the 
ontentsof the 
lipboard, 
an involve an unbounded number of operations. While bounding the pro
essing timefor redire
tion requests is highly desirable, developers may 
hoose to permit unbounded redire
tion times toa
hieve greater e�
ien
y. Unbounded redire
tion times may also re�e
t fa
tors that are beyond the 
ontrol ofthe system's developers, su
h as 
ommuni
ation failures or the presen
e of inattentive 
ollaborating systems.In many systems the pro
essing time will in
lude some amount of wait time. Wait time measures theamount of time that the system holds a request without pro
essing, generally be
ause it would 
on�i
t withor 
onsume resour
es dedi
ated to a request with higher priority. It is often di�
ult for 
lients to distinguishbetween pro
essing time and wait time.Laten
y measures the overall delay between the system re
eiving a request from the 
lient and thesystem's �nal response. Assuming that 
ommuni
ation delay between the system and the 
lient is not asigni�
ant fa
tor, the laten
y is the sum of the a
knowledgment time and pro
essing times.The de�nitions for promptness also apply to sequen
es of requests. The sequen
e shown in Table 2.1 ismade up of requests and responses between a user and an email program with a folder list, a thread pane,and a message pane. The message pane shows the text of the 
urrently sele
ted message, and the threadpane shows one-line summaries for all of the messages in the 
urrent folder. Users 
an 
hange folders by
li
king on the folder list.Table 2.1 shows a sequen
e of request: R1, R2, and R3. R1 and R2 display two di�erent messages, M1and M2 respe
tively, in the message pane. R3 
hanges to a di�erent folder, updating both the thread paneand the message pane. The bottom of Table 2.1 shows the values for a
knowledgment time, laten
y, andpro
essing time that would apply if the email program were to exe
ute the requests sequentially.15



Time A
tor A
tionT0 User Issues R1: ViewMessage M1T1 System Highlights M1 in the thread paneT2 System Begins to display M1T3 User Issues R2: ViewMessage M2T4 System Highlights M2 in the thread paneT5 User Issues R3: ChangeToFolder F2T6 System Displays M1 in the message paneT7 System Displays M2 in the message paneT8 System Swit
hes to folder F2Request A
k. time Pro
. time Laten
yR1 T0�T1 T1�T6 T0�T6R2 T3�T4 T4�T7 T3�T7R3 T5�T8 T8�T8 T5�T8Table 2.1: This sequen
e of requests and responsesdemonstrates the behavior of an inattentive mail
lient. Measurements of promptness for ea
h requestare given at the bottom of the table.

Time A
tor A
tionT0 User Issues R1: ViewMessage M1T1 System Highlights M1 in the thread paneT2 System Begins to display M1T3 User Issues R2: ViewMessage M2T4 System Highlights M2 in the thread paneT5 User Issues R3: ChangeToFolder F2T6 System Swit
hes to folder F2Request A
k. time Pro
. time Laten
yR1 T0�T1 T1-T3 N.A.R2 T3�T4 T4�T5 N.A.R3 T5�T6 T6�T6 T5�T6Table 2.2: This sequen
e of requests and responsesdemonstrates the behavior of an attentive mail
lient. Measurements of promptness are given atthe bottom of the table, where appli
able. N.A. inthe laten
y 
olumn indi
ates that the request wasredire
ted before 
ompleting.2.4 Behaviors: patterns of redire
tionSystems are able to optimize sequen
es of requests by applying patterns of redire
tion, 
alled behaviors.Optimization relies on both the arrival times of the requests and also knowledge of the request's semanti
s.An example of a behavior 
alled repla
e is shown in Table 2.2, whi
h is an optimized version of the sequen
eshown in Table 2.1. In both tables R2 arrives while R1 is still being pro
essed. This pattern of requests
ould o

ur if the user was s
anning the thread pane and a large number of messages were displayed. Aftersele
ting M1, the user noti
es M2, a higher priority message. Finally, the user noti
es M3, not shown in therequest stream, whi
h requires him to sear
h for a message in F2.The arrival of R3, the request to display the 
ontents of F2, makes R1 and R2 obsolete. Their user-visible 
hanges will be undone by the pro
essing of R3. The email program 
an dete
t this situation andabandon pro
essing of R1 and R2 when R3 arrives, applying a te
hnique often used in 
ollaborative do
umenteditors [82℄.In this se
tion we propose a 
atalog of possible redire
tions by making several assumptions about thenature of the requests submitted to an attentive system. First, we assume that the system is able to identifytwo sets of requests: those that are 
urrently a
tive and those that have been submitted but are not yeta
tive. Se
ond, we assume that ea
h part of the system's a
tivity 
an be attributed to exa
tly one request. Insome systems this latter assumption is not realisti
. For example, in systems that employ garbage 
olle
tionthe a
tivity of the garbage 
olle
tor is due to the sum total of all of the requests, not any individual request.This situation 
an be handled by assigning a virtual request to these a
tivities.In an attentive system, redire
tion begins when a 
lient submits a new request. Table 2.3 de�nes anattentive system's response to an arriving request in terms of 
on�i
ts and priorities. When a requestarrives, the system 
he
ks it against ea
h of the 
urrently a
tive requests for 
on�i
ts. If no 
on�i
ts exist,the system admits the request, allowing it to begin pro
essing. The system must not admit a low priorityrequest if it would 
on�i
t with one or more high priority requests already in the system. Instead, the system16



Priority ofPriority of BehaBehavior aBehavior applied thavior applied to

Incoming request Conflicting request Incoming requestng request ConflictiConflicting requests

Low or high None ADMIT No change

BLOCK No change

Low All low priority oror

ADMIT REDIRECT

Low Some high priority BLOCK No change

High All low priority ADMIT REDIRECT

BLOCK No change

High Some high priority oror

ADMIT REDIRECTTable 2.3: The behavior of the system is determined by the priorities of requests. When a request arrives,the system 
onstru
ts a set of 
on�i
ting requests. It then 
hooses an a
tion by 
omparing the request'spriority to the highest priority in the 
on�i
ting set. In 
ases where the priorities are equal, the systemhas two options, illustrated with the arrows. N.C. indi
ates that there is no 
hange to the running request.Redire
t indi
ates that the system should apply one of the behaviors des
ribed in Se
tion 2.4.should blo
k the request, delaying it until the 
on�i
ting high priority requests 
omplete.When a high priority request arrives and 
on�i
ts with one or more low-priority requests that are alreadyin the system, the system should redire
t the low priority requests and admit the high priority request.For example, in most email programs s
anning for junk mail is a low priority request1 while displaying amessage is a high priority request. If the system re
eives a ViewMessage request that 
on�i
ts with the junkmail s
anner, the system should redire
t the junk mail s
anner and admit the ViewMessage request.Finally, designers must 
onsider 
ases where the requests with identi
al priorities 
on�i
t. The designersmust de
ide what to do by 
onsidering both the system-spe
i�
 semanti
s of the requests and also expe
-tations of the system's 
lients. As mentioned above, a typi
al email program will treat all ViewMessagerequests 
oming from its user as high priority requests. If a new ViewMessage request arrives while anotherone is being pro
essed, it is reasonable for the program to redire
t the older ViewMessage request topro
ess the new one immediately. This is justi�ed be
ause the user may have made a mistake when issuingthe �rst request or may no longer be interested in the �rst message. However, if a do
ument editor is busyinserting a 
hara
ter when its user enters a se
ond 
hara
ter, the do
ument editor should blo
k the se
ondinsertion until the �rst 
hara
ter 
ompletes.When a request arrives, designers 
an 
hoose one of the following behaviors:Admit allows the new request to begin exe
uting immediately without a�e
ting the other requests inthe system. It is appropriate when resour
es are available and there is no 
on�i
t among the in
omingrequests and the requests already in the system. For example, an email program doing junk mail s
anningmay 
hoose to admit a request to 
ompose a new message.1Here we use the term request quite loosely. The user has 
on�gured the email 
lient to dete
t junk mail, but has probablynot issued an expli
it request to start s
anning. For simpli
ity in the dis
ussion we are modeling this ba
kground task as animpli
it low priority request. 17



Suspend for
es one of the requests 
urrently in the system to stop. The 
lient is able to suspendrequests to override the system's assignment of priorities to requests. For example, a user may suspendthe junk mail s
anner in an email program to re
over network bandwidth for another system that sharesthe network. Systems may also suspend one or more requests to implement the other behaviors des
ribedbelow.Resume allows a suspended request to 
ontinue pro
essing. Like suspend, resume may be initiated byeither the 
lient or the system. For example, a user of an email program may resume the junk mail s
annerwhen network bandwidth is no longer needed by other systems sharing the network.Repla
e for
es one or more of the requests in the system to stop exe
uting and allows the in
omingrequest to exe
ute immediately. For example, an email program would be likely to repla
e an older ViewMes-sage request with an in
oming ViewMessage request when it 
annot display both messages at on
e. Thisbehavior allows users to re
over from slips, su
h as 
li
king on the wrong message in the thread pane, withminimal e�ort.Interrupt temporarily suspends a request to allow an in
oming request of higher priority to exe
ute.Systems use interrupt when either resour
es are not available to run both requests simultaneously or therequests 
on�i
t. First, the system suspends the low priority request and admits the higher priority request.On
e the high-priority request has been admitted, the system resumes the low priority request. In somesystems 
lients may be able to invoke interrupt dire
tly, in e�e
t overriding the priorities that the systematta
hes to requests.Can
el stops further pro
essing of a request and attempts to undo its e�e
ts. It is the equivalent ofissuing a suspend followed by an Undo request. For example, a user may begin to do a global Sear
hAn-dRepla
e of a string in while editing the body of an email. While the Sear
hAndRepla
e is running, the usermay dis
over a typo in the repla
ement string. Can
el allows the user to re
over by halting the Repla
eand restoring the original data. In some 
ases the e�e
ts of an operation may not be 
ompletely reversible.For example, if a user issues a 
ommand to begin writing to write-on
e media and then 
an
els the write,the media will be unusable. In this 
ase, the system must send a �nal response to the 
an
el request thatinforms its 
lient of the remaining e�e
ts of the 
an
eled request.Interfa
e designers spe
ify whi
h of the behaviors des
ribed above should be applied to parti
ular se-quen
es of requests. They may want to apply approa
hes developed for distributed group-ware while doingthis work [78℄. Their de
isions must ensure that the 
onsisten
y of the interfa
e is preserved from the 
lient'spoint of view.2.5 Consisten
yWhile redire
tion 
an improve the promptness of systems, 
lients may be hesitant to redire
t systems if it
ould lead to a system failure. A system failure 
ould o

ur immediately, 
ausing 
lients to either lose a

essto the system or lose prior work done with the system. Failures 
ould also be delayed, 
reating the risk thatone or more 
lients 
ould lose future work done with the system. For example, 
an
eling a Sear
hAndRepla
ewhile editing a message in an email program 
ould 
orrupt the internal data stru
tures of the system, makingit impossible for the 
lient to send the message.In this se
tion we des
ribe a property 
alled 
onsisten
y that des
ribes a system's ability to providereliable servi
e. Consisten
y is simple from the 
lient's point of view: any the system that provides predi
tableresponses to requests and preserves the 
lient's work is 
onsistent. However, 
onsistent systems are di�
ultto build: developers must preserve the relationships shown in Figure 2.2 to implement a 
onsistent system.The system must preserve relationships among its internal state, its 
ommuni
ation with 
lients, and its
ommuni
ation with 
ollaborating systems. We will dis
uss ea
h of the forms of 
onsisten
y below, referringto the labels in the diagram that 
over four aspe
ts of 
onsisten
y: C1, C2, C3, and C4.18



Figure 2.2: Attentive systems must maintain four forms of 
onsisten
y while redire
ting requests.C1: Consisten
y of 
lient 
ommuni
ationClient 
ommuni
ation 
an be
ome in
onsistent when the system's responses to a request do not mat
h the
lient's expe
tations. For example, in many intera
tive systems the user 
ommuni
ates with the system bysending low-level events, su
h as key presses and button 
li
ks. The system pro
esses the events and 
reates arequest. In some 
ases the system's interpretation of the events may not 
onform to the user's expe
tations.For example, Android 
ellular phones allow users to dis
onne
t 
alls by pressing an �End Call� button onthe phone's tou
h s
reen. Unfortunately, the �End Call� button transforms into the �Call� button whenthe other party hangs up. If other party hangs up just as the user is pressing the button, the phone willinterpret the press as a request to initiate a new 
all. In other 
ases the user 
an 
reate spurious requests.For example, a user may double 
li
k on a link in a browser. Well designed interfa
es should ignore spuriousrequests wherever possible.Systems 
an also 
onfuse 
lients by sending spurious responses�responses for requests that have either
ompleted or been redire
ted by the 
lient. In the example given in Table 2.1, the email program 
ould senda spurious response. In this example the user sends three requests: �Display message M1,� �Display messageM2,� and �Sele
t folder F2.� An attentive system may a
knowledge the third request by highlighting F2 in thefolder list. However, if the system is unable to redire
t one of the �rst two requests, it may display messageM1 or message M2 in the message pane. The user, seeing the update, 
ould be 
onfused, assuming thatthe displayed message is in the highlighted folder. The attentive version of this example shown in Table 2.2avoids this problem by redire
ting the display message requests as soon as the 
hange folder request arrives.To avoid this failure interfa
e designers must 
onsider the 
ontra
t between the system and its 
lientwhen 
hoosing behaviors. In addition, developers may need to 
reate me
hanisms to suppress updates fromredire
ted requests to avoid 
onfusing the user.C2: Consisten
y with 
ollaborating systemsCollaborating systems may be 
onfused if a system redire
ts and breaks some invariant of the 
ommuni
ationproto
ol. For example, an attentive system that redire
ts while 
ommuni
ating with a 
ollaborating system19



may transmit a partial request. If the system sends a se
ond request after redire
ting, the 
ollaboratingsystem 
ould easily see a malformed request made up of parts of the �rst and se
ond request.In addition, attentive systems often must 
ope with 
ommuni
ation proto
ols that do not allow requeststo be redire
ted after they are submitted. For example, the IMAP proto
ol both 
ontains long-runningrequests and also does not allow requests to be redire
ted. If a user 
an
els a long-running request, su
h asa request to move a large number of messages from one folder to another, the email program will be unableto redire
t the request promptly.Many of these problems 
an be addressed by inserting mediators between an attentive system and 
ol-laborating systems to handle redire
tion. The proto
ol between the mediator and the attentive system hasexpli
it support for redire
tion. Mediators avoid partial requests by bu�ering ea
h request as it is sent,forwarding it to the 
ollaborating system only when the request is 
omplete. The mediator 
lears the bu�erif the system sending the request redire
ts before the request is 
omplete.Mediators 
an often simulate redire
ting of the 
ollaborating system for the bene�t of the attentivesystem by modifying the attentive system's requests. In the 
ase of moving a large number of messages, themediator 
ould transform the move into the following sequen
e:1. Mark the messages to be moved with a unique �ag2. Copy the messages from the sour
e mailbox to the destination mailbox. The 
opy operation willpreserve the �ag3. Mark the messages in the sour
e mailbox with the deleted �ag4. Issue the expunge 
ommand to delete the marked messages from the sour
e folder5. Remove the unique �ag from the messages in the destination folderThe mediator 
an 
an
el this move operation at any point before step 5. In addition, it 
an use the unique�ag to simulate the e�e
ts of 
an
eling the operation while it is still undoing the move on the server.However, it is important to note that mediators are not a perfe
t solution. Other systems that 
onne
tdire
tly to the IMAP server will be able to observe intermediate states of the 
opy, in
luding the presen
e ofthe unique �ag. Some systems, in
luding transa
tional databases, avoid these problems by isolating partially
omplete operations. However, this approa
h has proven to be problemati
 when applied to intera
tivesystems [39℄.C3 and C4: The system's internal stateThe system's internal state is made up of both the state within ea
h of the system's 
omponents and also therelationships among 
omponents. Intra-
omponent 
onsisten
y des
ribes the state of ea
h 
omponent, and
an be evaluated against the expli
it and impli
it invariants of the 
omponents. When all of the invariantshold, the entire system has intra-
omponent 
onsisten
y. In multithreaded attentive systems intra-
omponent
onsisten
y 
an be lost, even in the absen
e of redire
tion, due to data ra
es and failures to adhere to the
ontra
t spe
i�ed in the 
omponent's interfa
e. For example, it is illegal to modify a Map, one of the Java
olle
tions, while using an iterator to a

ess its members. If the implementation dete
ts that the system hasviolated this rule it will throw a ConcurrentModificationException.Redire
tion, if not 
arefully 
oordinated, 
an also a system to lose intra-
omponent 
onsisten
y be
ausepartially 
ompleted 
hanges may be left behind by one of the redire
ted threads. In many systems, developers
annot be expe
ted to re
over the 
onsisten
y of the system's state after redire
tion. This s
enario is dis
ussedin greater detail in Appendix A.Inter-
omponent 
onsisten
y des
ribes the relationships that bind system 
omponents together. Theserelationships are may not be expli
itly stated [30℄, but are often present. For example, in an email pro-20



Notation Length Des
riptionS S Short operationL L Long operationS + S S Sequen
e of two short operationsS + L L Sequen
e of two mixed operationsb � S S Bounded sequen
e of short operationsu � S L Unbounded sequen
e of operationsTable 2.4: Proposed 
al
ulus of short and long operations. Short operations are represented with S, longoperations are represented by L.gram 
omponents may assume that message identi�ers are unambiguous and that a message exists for ea
hidenti�er mentioned in a folder. The presen
e of these relationships means that responsibility for preserv-ing and restoring the system's 
onsisten
y 
annot be delegated to the individual 
omponents that make upthe system. Instead, the design proposed in this work models requests and delegates the responsibility forpreserving 
onsisten
y to the request. This design is dis
ussed in greater detail in Chapter 4.2.6 Implementing attentivenessThe model that we dis
ussed in Se
tion 2.1 addressed attentiveness from the 
lient's point of view. In thiswork we adopt a similar model when reasoning about the implementations of systems. However, we expandthe model of requests to des
ribe the implementation of systems in general terms. The model 
ontains fouroperations that 
ontrol requests: start(), stop(), continue(), and undo(). These operations are su�
ient toimplement the behaviors mentioned in Se
tion 2.4. In addition, we model dependen
ies: relationships thatform among requests as they exe
ute. Unlike 
on�i
ts, dependen
ies are not apparent in the semanti
s of therequests. Instead, they are 
reated by implementation de
isions that 
ause requests to share state. Initially,we propose a 
al
ulus of short and long operations that allows us to reason about promptness in qualitativeterms.2.6.1 The 
al
ulus of short and long: a qualitative approa
h to promptnessPla
ing an upper limit on the a
knowledgment times of a system may suggest to the reader that all attentivesystems are real-time systems. While su
h an approa
h is fully 
ompatible with our de�nition of attentiveness,we believe that developers often �nd both that this approa
h is too restri
tive for their system and also thata more approximate bound on the a
knowledgment times is a

eptable.When this is the 
ase, the requirements for promptness 
an be de�ned approximately. For example, inhuman-system intera
tion a
knowledgment times on the order of 100 ms are often a

eptable, while responsesof over 1 s 
an introdu
e delays that in�uen
e the overall task e�e
tiveness of the user [16℄. In addition,users may tolerate o

asional responses that ex
eed these limits, espe
ially when doing so gives them greater�exibility in using the system.We propose a qualitative approa
h that 
an be used to reason about promptness: a 
al
ulus of shortand long operations. This approa
h assumes that is possible to 
omplete a very large number of low-level operations, su
h as allo
ating memory and �oating point arithmeti
, during the maximum a

eptablea
knowledgment time for a request. The 
al
ulus is des
ribed in Table 2.4. In this table, the low-leveloperations are short. For example, individual memory fet
hes take a fra
tion of a mi
rose
ond, makingindividual fet
hes insigni�
ant relative to a 100 ms a
knowledgment time. While a hard real-time systemwould need to 
onsider the potential 
ost of a page fault, whi
h 
ould raise the memory a

ess time to 1msor more, most attentive systems are able to assume that page faults will rarely happen.21



By applying the 
al
ulus, we 
an determine that entire fun
tions are short as long as they involve abounded number of short steps, either individual operations or 
alls to other short fun
tions. For the qsort()fun
tion involves a bounded number of operations when the size of the list to be sorted is bounded, and istherefore short. However, the number of operations involved in a qsort() of an unbounded list is unbounded,making qsort() long. If developers are unable to determine a bound for the list, they must assert that thefun
tion may involve an unlimited number of operations and treat qsort() as a long fun
tion.It is theoreti
ally possible to a
hieve attentiveness by 
onstru
ting a system using only short fun
tions.In pra
ti
e, this is often not possible: many systems 
ontain low-level operations and fun
tions that are notshort. For example, systems may use network proto
ols, su
h as TCP, that have error re
overy me
hanismsthat 
an blo
k operations for long periods of time. As a result, any methods that invoke operations relatedto TCP, either dire
tly or by 
alling other fun
tions, are long. Developers must �nd some way to �
ontain�the e�e
ts of these operations so that the system 
an 
he
k for new requests from its 
lient. While otheroptions exist, su
h as 
onverting the system to use asyn
hronous versions of the operations, we suggest designpatterns that employ threading to en
apsulate long operations.In some 
ases it is not possible to determine the length of an operation. In most 
ases, operations withunknown length 
an be treated as long operations in attentive systems. However, the lo
king operations usedto 
oordinate the exe
ution of multiple threads are a spe
ial 
ase. A thread engaged in a short operation mayneed to a

ess state that is shared with other threads, some of whi
h may be engaged in long operations.To preserve the system's 
onsisten
y the threads may de
ide to obtain a lo
k before a

essing the state.However, if threads were to hold the lo
k while exe
uting long operations the operation to obtain a

ess tothe lo
k would also be long.It is possible to avoid this problem by atta
hing additional information to the lo
k to assert that everythread may engage only in short operations while holding the lo
k. It is reasonable to infer that anythread attempting to a
quire a

ess will be blo
ked only for a short period of time.2 As a result, it ispossible to des
ribe a design pattern that will isolate the 
on
erns of attentiveness from most of the system'simplementation. We des
ribe this pattern in more detail in Chapter 4.The distin
tion that we draw between short and long operations is well-pre
edented in GUI toolkits.As we will des
ribe in detail in Chapter 3, the interfa
e between an appli
ation and its toolkit is often
omplex, involving inversion of 
ontrol, reentran
y, and in some 
ases re
ursion between the appli
ationand the toolkit's event dispat
h system. Sin
e the toolkit is responsible for a
knowledging requests, it mustregain 
ontrol within the maximum a
knowledgment time spe
i�ed for the system's requests. However, therequests often involve potentially unbounded 
omputation.While threading 
an be used to resolve this problem, prior experien
e has indi
ated that deadlo
ks o

urdue to reentrant 
alls when threading is employed within GUI toolkits [52℄. In addition, some of the reentrant
alls made by the appli
ation 
ould a�e
t the pro
essing of future requests.Most GUI toolkits designate a single thread to pro
ess events and dete
t requests. To prote
t the
onsisten
y of their internal state, they require most 
alls to the toolkit to be made on this thread. As aresult, updates to the internal state are serialized, eliminating the risk of ra
es without in
urring the risk ofdeadlo
ks asso
iated with lo
king. To ensure promptness, the toolkit spe
i�es in its do
umentation that all
allba
ks from the toolkit to the appli
ation must be short. Most developers respond by writing 
allba
ksthat assign the long tasks asso
iated with requests to other threads and make any updates needed in thetoolkit before returning.
2A rigorous proof would require two additional assumptions: the lo
k is fair when granting a

ess to threads and there area �nite number of threads 
ontending for the lo
k. 22



2.6.2 Operations for redire
ting requestsTo simplify the implementation of the system, we map all of the behaviors mentioned in Se
tion 2.4 to asmall number of per-request operations. An ar
hite
tural element 
alled a s
heduler uses these operations toimplement the behaviors. As a result, a de
ision on the part of designers to 
hange a behavior for a s
enariowill not a�e
t most of the system's implementation. In addition, designers are free to invent new behaviorsthat rely on the same set of operations. The operations in
lude:
start() signals a request to begin pro
essing immediately. This pro
essing generally happens on anotherthread, whi
h may be 
reated during the start() 
all.
stop() signals the request, requiring it to stop pro
essing within a short period of time. The request mustrestore the 
onsisten
y of the system's state before stopping. Some requests may stop by rolling ba
k someor all of their partially 
ompleted work.
continue() signals a request, telling it to 
ontinue pro
essing. On
e again, the pro
essing happens on adi�erent thread than the thread making the 
all.
undo() signals a request, telling it to undo as many of its 
hanges to the system's state as possible.The stop() and undo() operations are asyn
hronous, returning 
ontrol to the 
aller before the opera-tion has 
ompleted. In Chapter 4 we propose a signaling me
hanisms that requests 
an use to signal the
ompletion of these operations.2.6.3 Dependen
iesA dependen
y is a one-way relationship between two requests. Our 
on
ept of dependen
y is very similarto the one developed for distributed transa
tion systems [87℄. A dependen
y between two requests indi
atesthat the �rst request's pro
essing depends in some way on the 
ompletion of the se
ond request. The 
on
eptof a dependen
y between two requests is similar to, but distin
t from, a 
on�i
t between the same requests.While an attentive system should always avoid 
on
urrent exe
ution of 
on�i
ting requests, it may allowdependen
ies to form among requests as they exe
ute. In some 
ases dependen
ies may be introdu
ed bythird-party 
omponents without the knowledge of the system's designers. These dependen
ies are dete
tedand handled by the runtime system des
ribed in Chapter 5. Designers of attentive systems must also 
onsiderdependen
ies. In the event of redire
tion, requests with dependen
ies must be redire
ted as a unit, 
ausinga 
as
ading redire
tion that is analogous to a 
as
ading rollba
k in database systems. This 
an greatlyin
rease the 
ost of redire
tion. Additionally, designers must determine how mu
h to invest in di�erentiating
on�i
ts and dependen
ies. While a 
lear di�erentiation 
an lead to optimizations that greatly redu
e thetotal exe
ution time of sequen
es of requests, these optimizations 
ome at the expense of 
oding requestsemanti
s into the 
on�i
t dete
tion system.2.7 New requirements introdu
ed by redire
tionIn the 
hapters that follow we will de�ne ar
hite
tural stru
tures and runtime support to help developers toaddress the following requirements:The system shall dete
t and examine in
oming requests promptly at all times.All of the behaviors redire
t a system while it is doing other 
omputational work. By default, many systemsadopt one of two approa
hes to requests that arrive while the system is busy: queuing the requests forlater pro
essing or dropping requests that arrive while the system is busy. Attentive systems 
annot use23



these approa
hes. Instead, they must examine requests as they arrive, possibly redire
ting one or more of therequests within the system in response to the new request. Systems 
an implement this approa
h by assigninga thread to examine in
oming requests. This thread will then delegate the pro
essing of the requests to otherthreads in the system. Many toolkit-based appli
ations already use this approa
h. Experien
e has indi
atedthat developers both struggle to ensure that the delegation is 
orre
t [97℄ and also en
ounter data ra
es inthe implementation of these systems [46℄.The system shall be able to redire
t any request promptly at any time.Systems must be able to 
omplete behaviors promptly. Some behaviors, in
luding Stop and 
an
el,spe
ify that the system terminate one or more of the requests that are a
tive when they arrive. Databasemanagement systems often o�er an administrative interfa
e to kill running transa
tions. However, thisfun
tionality is rarely available in existing systems. POSIX threads and Java threads 
urrently o�er APIsthat either interrupt threads promptly without preserving 
onsisten
y or APIs that preserve 
onsisten
y butmay take an unbounded amount of time to interrupt a thread.The system shall always be able to make progress on in
oming requests.The interrupt, stop, and suspend behaviors 
ause their target requests to stop exe
uting without undoingtheir work. When requests have been suspended while they have ex
lusive, non-preemptible a

ess to ashared resour
e it is easy for the system to en
ounter deadlo
k 
onditions. For example, stop 
ould suspenda thread while it is downloading a message from the IMAP server. A se
ond request that attempted toa

ess the same message has three options:� Download a se
ond 
opy of the message, wasting network resour
es� Wait for the �rst request to restart and 
omplete the download, potentially blo
king for an unboundedamount of time� Resuming the �rst request, potentially raising its priority until the download is 
ompleteWe have adopted the third option. This approa
h is very similar to the priority inheritan
e proto
ol [90℄used to resolve inversion of 
ontrol in real-time systems.The system shall predi
t resour
e 
ompetition.Admit spe
i�es that the system should allow multiple requests to run 
on
urrently. However, there is arisk that 
on
urrent requests 
ould 
ause promptness failures by 
ompeting for resour
es. For example,a ViewMessage request in an email program may 
ompete with an atta
hment download for network re-sour
es. However, developers may be unaware of this fa
t be
ause the email 
lient was implemented with a
ommuni
ation library that hides the network 
onne
tions. In addition, the system may en
ounter resour
e
ompetition from other systems sharing a 
ommon network. Attentive systems should, as mu
h as possible,predi
t internal resour
e 
ompetition and redire
t requests based on their priorities to avoid over-subs
ribinglimited resour
es. This redu
es the need for 
lients to manage the system by redire
t requests. However,
lients must generally resolve external resour
e 
ompetition manually by redire
t requests.The system shall not admit 
on�i
ting requests.When a system admits multiple requests, it must ensure that its 
lients 
an predi
t the e�e
t of pro
essingthese requests in parallel. For example, word pro
essors that allow 
hara
ters to be inserted into a do
umentwhile the same do
ument is being printed in the ba
kground generally ensure that the 
hanges will not be24



re�e
ted in the 
opy of the do
ument being printed. At a lower level, the UNIX �lesystems allow �les tobe deleted while they are open, while Windows �lesystems return errors. Designers, in 
onsultation withthe system's 
lients, must de
ide on the desired behavior for their systems. These de
isions will a�e
t thedesign of the system's internal state. In addition, implementers may need to 
ope with 
on�i
ts 
reated bythird-party 
omponents.The system shall maintain 
onsisten
y when examining in
oming requests while other requestsare a
tive.All behaviors represent some risk to 
onsisten
y be
ause they require the system to examine requests at alltimes. We believe that this risk 
an be greatly redu
ed by 
arefully 
on�ning the state of the threads thathandle in
oming requests and request s
heduling, ensuring that it is separate from the state used by thesystem to pro
ess the requests. Separating the state allows the thread evaluating new requests to exe
utewithout syn
hronizing with other threads in the system. This approa
h is well pre
edented: GUI toolkitsalso use thread-
on�ned state to avoid 
onsisten
y problems. Stati
 analysis [97℄ is now available to verifythat implementations 
onform to this pattern. In addition, we propose runtime 
he
king in Se
tion 5.2 that
an verify the separation of state.The system shall restore 
onsisten
y after terminating requests.Can
el and stop represent a risk to 
onsisten
y be
ause they interrupt requests in progress. This issimilar to the problems that transa
tional systems en
ounter when they abort transa
tions. However, mosttransa
tional systems bene�t from the ability to isolate transa
tions. We explain why we do not believethat this design is appropriate for attentive systems in Se
tion 2.6.3. Developers of attentive systems mustalso 
ope with 
onsisten
y problems that arise when redire
ting requests 
urrently exe
uting in third-party
omponents. For example, a user may 
an
el a request to sort a spreadsheet, and the sorting fun
tionmay be provided by a third-party 
omponent that does not have 
an
el fun
tionality. We believe thatthe appropriate response is to use 
he
kpointing as a default implementation, allowing developers to 
reatespe
ialized re
overy s
hemes for spe
i�
 appli
ations. We dis
uss our approa
h in detail in Se
tion 5.1. Thisis similar to the approa
h taken in open-nested transa
tional memory [75℄.2.8 Con
lusionThe fo
us of this 
hapter has been providing a de�nition of attentiveness, in terms of promptness and
onsisten
y, that is testable. Spe
i�
ally, the de�nition 
an be used to evaluate a system's responses to aseries of requests to determine if the system's responses were attentive. We have done this by de�ning the
on
ept of a request and enumerating some of the attributes of requests that allow us to generate a 
atalogof behaviors that systems 
an use to improve their attentiveness. To make our de�nitions 
on
rete, we haveexamined several examples of requests and responses, 
ontrasting the behavior of attentive and inattentivesystems. We have tied our de�nition to 
on
epts, in
luding short and long operations that 
an be mappedto 
ode. Finally, we have enumerated problems that developers en
ounter when building attentive systems.Later 
hapters build on the de�nition of attentiveness given here and explain in greater detail how itmotivates the design and implementation of systems. This dis
ussion happens in three parts. In Chapter 3,we de�ne the 
on
ept of a dire
tive, a 
onstru
t that ties the implementation of a system to its design bymaking spe
i�
, often testable, assertions about the system's future behavior. In Chapter 3 we also de�nea number of dire
tives that 
an be used in the design and implementation of attentive systems. Whiledire
tives may be appli
able to other problems, our fo
us in Chapter 3 is on de�ning dire
tives that allowus to reason about a system's design and implementation in terms of promptness and 
onsisten
y. We do25



this by showing how dire
tives 
an be applied to spe
i�
 attentive systems.In Chapter 4 we �rst assess the design of multiple systems in terms of attentiveness. We point tospe
i�
 design features that either support or hinder a
hieving attentiveness in these systems. Next, wedes
ribe a design template that would, in theory, 
reate a highly attentive system. Then we des
ribe aseries of experiments where we applied parts of this design to the examples given earlier, assessing themodi�ed systems in terms of attentiveness. We 
on
lude by pointing to issues�redire
tion of requests,intera
tions with 
ollaborating systems, dete
ting dependen
ies among requests, and 
he
king the a

ura
yof dire
tives�that point to the need for runtime support.In Chapter 5 we dis
uss the implementation of two di�erent runtime systems that we developed to supportour experiments. The �rst runtime system trusts its dire
tives and provides dire
t support for redire
tingrequests in single-threaded systems. The se
ond runtime system supports multi-threaded exe
ution and
he
ks dire
tives, but does not provide dire
t support for redire
ting requests. We dis
uss the implementationde
isions that we made when 
onstru
ting these runtime systems and assess the systems in terms of e�
ien
yand 
omplexity of their 
ode.
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Chapter 3Dire
tives for attentivenessAttentiveness des
ribes the relationship between the requests re
eived by a system and the system's responsesin terms of promptness and 
onsisten
y. To implement an attentive system, developers must 
onsider prompt-ness and 
onsisten
y both at the level of design and also at the level of implementation. In this 
hapter,we propose a 
lass of exe
utable statements 
alled dire
tives that allow developers to represent 
onstraintsrelated to promptness and 
onsisten
y. Dire
tives 
onvey information about multiple aspe
ts of the system'sdesign and its future behavior, su
h as:� The relationship between requests and the threads in the system� Information about regions. Regions are partitions of the system's in-memory state that are assignedto threads as a unit. Regions were �rst developed for stati
 analysis of 
on
urren
y [45℄, and redu
ethe e�ort of reasoning about 
onsisten
y of systems.� The relationship between threads and regions, expressed in terms the of permissions that threadsobtain and relinquish to a

ess regions� Dependen
ies among requests� The maximum a

eptable exe
ution time of blo
ks of 
ode, in terms of the 
al
ulus of short and longdis
ussed in Se
tion 2.6.1� Constraints on redire
tion imposed by 
ertain pie
es of 
odeThe dire
tives des
ribed in this 
hapter do not address all of the state of the system. State that residesoutside of the system's memory spa
e and the system's 
ommuni
ation with 
ollaborating systems must bemanaged with system-spe
i�
 strategies. The runtime system des
ribed in Chapter 5 provides a frameworkto address this state.Some of the information provided by dire
tives is assertional, des
ribing the system's future behavior. Asa result, there is a risk that the information provided by dire
tives will not a

urately des
ribe the system'sbehavior. While some of the information provided by dire
tives 
an be 
he
ked stati
ally [50, 97℄, in thiswork we 
he
k dire
tives dynami
ally with the approa
h outlined in Chapter 5.Conventional representations of assertional information, su
h as assertions and invariants, are not wellsuited to attentive systems. These representations are enfor
ed only at spe
i�
 program points, su
h asfun
tion 
alls and returns. Attentive systems rely on 
onstraints that must be enfor
ed between programpoints to 
he
k �universal� properties, su
h as �threads will modify region R only while holding lo
k L.�Dire
tives, like assertions, apply only to a single thread. The s
ope of a dire
tive 
an be de�ned inabstra
t terms by using the weak form of the until operator [58℄ in some linear temporal logi
s. Con
retely,a dire
tive is in for
e from the time that a thread exe
utes the dire
tive until the thread exe
utes a se
ond27



dire
tive that overrides it. If the thread never exe
utes su
h a dire
tive, the �rst dire
tive remains in for
efor the lifetime of the thread. A list of all of the dire
tives dis
ussed in this 
hapter is given in Table 3.1.Dire
tives provide information both to the runtime system and also to developers. We dis
uss twovariants of the runtime system brie�y here and in more detail in Chapter 5: a runtime system implementingtrusted exe
ution and a runtime system implementing 
he
ked exe
ution. Both runtime systems provideimplementations of the four operations needed to support redire
tion that are des
ribed Se
tion 2.6.2: start(),
stop(), continue(), and undo(). During trusted exe
ution, the runtime system assumes that the dire
tives inthe system's 
ode a

urately des
ribe the system's behavior. As a result, the runtime system 
an be relativelye�
ient, but may fail to preserve promptness and 
onsisten
y when dire
tives are ina

urate. The runtimesystem that implements 
he
ked exe
ution veri�es that ea
h thread's behavior 
onforms to the dire
tivesthat it exe
utes. As a result, 
he
ked exe
ution is able to identify ina

urate dire
tives before they 
an a�e
tthe operation of the system.Below, we dis
uss both dire
tives and the general model of exe
ution that de�nes a

urate and ina

uratedire
tives. First, we introdu
e the dire
tives that identify requests and relate them to threads in Se
tion3.1. These dire
tives allow the runtime system to relate the system's low-level a
tivities, su
h as modifyingmemory, to requests submitted by its users.In Se
tion 3.2 we des
ribe an abstra
t model of a multi-threaded system. This model represents regions,threads, the permissions that threads have to a

ess regions, permission 
hange events, and a

esses toregions. It de�nes:� General rules that threads must follow when obtaining and releasing permissions. These rules areenfor
ed in both trusted and 
he
ked exe
ution.� The 
riteria for determining that a thread's dire
tives are a

urate. These rules are enfor
ed only by
he
ked exe
ution.� Constraints on permission 
hanges needed to avoid data ra
es. The 
onstraints motivate the develop-ment of a

ess poli
ies for regions, des
ribed in Se
tion 3.3.� An approa
h to des
ribing happens-before relationships among requests. This approa
h, along withdire
tives des
ribed in Se
tion 3.3.2, assists the runtime in implementing the undo() operation.In Se
tion 3.3 we introdu
e the dire
tives that de�ne regions and atta
h poli
ies to regions. Poli
iesgrant and revoke the permissions that allow threads to a

ess regions. Trusted exe
ution assumes thatthreads a

ess regions only when they have permission to do so. Che
ked exe
ution enfor
es permissions byterminating the system when a thread attempts to a

ess a region without permission.In Se
tion 3.4 we propose an approa
h for automati
ally dete
ting dependen
ies among requests byusing permissions to dete
t relationships among requests. As we des
ribe in Se
tion 2.2.3, requests are ableto observe the partially 
ompleted 
hanges of other requests as they exe
ute. These observations 
reatedependen
ies among requests that 
an 
ause 
he
k-then-a
t failures unless groups of requests are redire
tedas a unit. In some 
ases developers will need to use additional dire
tives, des
ribed in Se
tion 3.4, to informthe runtime system of dependen
ies that it 
annot dete
t.In Se
tion 3.5 we propose an approa
h that developers 
an use when building systems with 
omponentsthat do not have dire
tives. The approa
h atta
hes modi�ers to the fun
tion signatures that de�ne theinterfa
e of these 
omponents. During 
ompilation we pro
ess these modi�ers to 
reate a wrapper for the
omponent 
alled a tollgate. The tollgate provides dire
tives for the 
omponent to ensure that redire
tingrequests will not 
ompromise the 
onsisten
y of the system.In Se
tion 3.6 we propose dire
tives that do
ument 
onstraints related to promptness. The design ofattentive systems often requires that 
ertain threads avoid long operations to maintain the promptness ofthe system's responses. The runtime system is able to 
he
k these dire
tives e�
iently, allowing them to beused even during trusted exe
ution. 28



Requests and threads, Se
tion 3.1
request_t create_request(bool isShort)
associate_request(request_t request)
request_t current_request()
complete_request(request_t request)
set_request_priority(request_t request, int priority)
awaiting_request(request_t r)Supporting 
onsisten
y via regions, Se
tion 3.3
region_t new_region(policy)
bind(region_t *r)
associate_global(void *block)
region_of(block_t *)
get_ro_slice(? array[], size_t low, size_t high)
get_rw_slice(? array[], size_t low, size_t high)
get_transferable()
get_transferable_ro()
release_ro_slice(? array[], size_t low, size_t high)
release_rw_slice(? array[], size_t low, size_t high)
release_transferable()
release_transferable_ro()Support for dependen
ies, Se
tion 3.4
no_region_dependencies(region_t *r)
read_dependency(region_t region)
write_dependency(region_t region)Modi�ers that de�ne tollgates, Se
tion 3.5
independent
reader
writer
borrowed_ro
borrowed_rw
consumed
opaque
transparentSupport for promptness, Se
tion 3.6
begin_short_section()
end_short_section()
short_duration_lock(void *lock)Spe
ial 
ases for redire
tion, Se
tion 3.7
no_rollbacks(region_t *r)
atomic_sections_are_marked()
atomic_sections_restore()
start_atomic() Note: atomic sections are short
end_atomic()Table 3.1: This table provides a list of all of the dire
tives that we have de�ned for attentiveness, referen
ingthe se
tion where they are dis
ussed. 29



Figure 3.1: A typi
al design-level view of the relationship between a toolkit and an appli
ation.In Se
tion 3.7 we des
ribe dire
tives that simplify the implementation of themediators: the 
omponentsthat allow attentive systems to 
ommuni
ate with 
ollaborating systems during redire
tion. To preserve this
onsisten
y of this 
ommuni
ation, mediators must be able to re
ord information about requests that survivesredire
tion. These dire
tives allow mediators both to 
reate regions that are not modi�ed during redire
tionand also allow mediators to spe
ify short blo
ks of 
ode that will exe
ute to 
ompletion in the event ofredire
tion.Finally, in Se
tion 3.8 we apply the dire
tives that des
ribe regions to third-party ben
hmarks 
hosenfrom the PARSEC 2.0 suite [13℄. We �nd that the dire
tives 
an 
ompletely des
ribe the behavior of theben
hmarks with an in
rease in 
ode size of 1%-8%. We will use the same ben
hmarks when assessing theperforman
e of 
he
ked exe
ution in Chapter 5.3.1 RequestsThe design of attentive systems often makes it di�
ult to per
eive the relationship between the system'sa
tivities, su
h as modifying a region, and requests. In this se
tion we des
ribe dire
tives that resolve thisproblem by both identifying requests and also asso
iating threads with the requests that they are pro
essing.Some systems must do 
onsiderable work before identifying requests. For example, in an appli
ation builtwith a typi
al GUI toolkit, the toolkit must pro
ess a stream of low-level events, su
h as ButtonPress andMouseMove events, to identify a simple request su
h as Paste. The stru
ture of these appli
ations is shownin Figure 3.1. In this �gure a request is identi�ed when the toolkit's thread invokes one of the appli
ation's
allba
ks.When a thread identi�es a request it 
alls the request_t create_request(bool isShort) dire
tive to notifythe runtime system of the new request. The runtime system returns an opaque request identi�er that 
anbe used by the appli
ation to identify the request in future dire
tives.The isShort parameter allows developers to notify the runtime system that this request will 
omplete ina bounded period of time, as de�ned by the 
al
ulus of short and long operations given in Se
tion 2.6.1. Theruntime system uses this knowledge to redu
e the overhead of 
reating a request. As a result, it will not bepossible for the user to redire
t the request. The isShort parameter is motivated by prior experien
e whereoverhead added to short requests led to attentiveness failures, as des
ribed in Se
tion 4.2.1.In our model of the system ea
h thread in the system is doing work on behalf of some request. Whenreasoning about threads, we speak of a thread being bound to a request. Ea
h thread is bound to at mostone request, but one request may be bound to many threads at on
e. For example, a thread may 
all asorting routine that is implemented with multiple threads while pro
essing a request. For the duration of thesort all of the threads used by the sorting routine will also be bound to the request. Ea
h thread identi�esthe request that it is bound to by 
alling the associate_request(request_t request) dire
tive. This dire
tive30



informs the runtime system that the thread's future a
tions, su
h as modifying regions, should be attributedto request. A thread 
an retrieve its bound request by 
alling current_request().When a thread does the �nal work for a request, it 
alls complete_request(request_t request). From thethread's point of view, complete_request(request) is equivalent to associate_request(request_t request):the thread will be bound to request, 
ausing its future a
tions to be asso
iated with request. However,
complete_request(request) provides additional information to the runtime system that allows it to freeresour
es. When it exe
utes complete_request(), a thread is asserting:� No other thread in the system is 
urrently bound to current_request()� In the future no thread will 
all associate_request() with current_request()� In the future no thread will dire
tly request redire
tion of current_request()These 
onstraints are 
reated before the thread's bound request is 
hanged to request.The runtime system should enfor
e these 
onstraints, treating violations of the �rst two as fail-stop
onditions, sin
e they indi
ate that the request model provided by the system is in
onsistent. The runtimesystem should handle violations of the third 
onstraint by returning an error from the operation doing theredire
tion.Requests in the system have priorities. The set_request_priority(request_t request, int priority) dire
tive
hanges the priority of the request. Higher values of priority 
orrespond to higher priorities. By default allrequests start with a priority of 0. A 
hange in a request's priority may 
ause one or more requests in thesystem to be redire
ted, as des
ribed in Se
tion 5.1.Finally, the awaiting_request(request_t other) dire
tive informs the runtime system that the requestbound to the 
alling thread is waiting for other to 
omplete. This dire
tive is non-blo
king, allowing systemsto use any appropriate methods to 
oordinate requests. This dire
tive allows the runtime system to imple-ment a priority inheritan
e proto
ol [90℄, potentially raising the priority of the referen
ed request to mat
hthe priority of the request bound to the thread that exe
utes the dire
tive.A pra
ti
al example that illustrates the value of priorities and awaiting_request() is dis
ussed in detailin Se
tion 4.1.3: the junk mail s
anner in Thunderbird. The junk mail s
anner should usually run as alow-priority task to prevent it from blo
king requests dire
tly submitted by the user, su
h as ViewMessagerequests. Therefore, some thread should exe
ute set_priority() with a low number on the request thatrepresents the junk mail s
anner. As a result, the junk mail s
anner will be preempted when the usersubmits new requests, ensuring that it will not 
onsume network bandwidth needed for these requests. Thisbehavior is implemented by an ar
hite
tural element 
alled the Scheduler, whi
h is dis
ussed in Se
tion 4.3.1.However, in some 
ases the user may submit a ViewMessage request for the message 
urrently beingdownloaded by the junk mail s
anner. In Thunderbird 2.0 this 
reates a redundant message downloadrequest, wasting network bandwidth. This problem, whi
h is dis
ussed in more detail in Se
tion 4.1.3,
ould be avoided through 
areful design. The junk mail s
anner would 
reate a new request for ea
hmessage download and save a referen
e to the request.1 The ViewMessage request would 
he
k for an a
tiverequest that was downloading the message, and upon �nding it would exe
ute an awaiting_request(request_t
message_download) dire
tive to raise the priority of the download in progress. This design would both
onserve network bandwidth and also allow the user to bene�t from the partially 
ompleted work done bythe junk mail s
anner.

1The 
a
he of previously downloaded messages is an obvious 
andidate.31



3.2 Reasoning about 
onsisten
y and dependen
iesIn this se
tion we des
ribe the relationship between threads, the 
onsisten
y of the system, and dependen
iesamong requests. To do this, we rely on the relationship between requests and threads established in Se
tion3.1. Spe
i�
ally, we assume that the a
tivities of ea
h thread in the system 
an be attributed to its boundrequest. Therefore, an abstra
t model of the a
tivities of threads 
an be transformed into an abstra
t modelof the a
tivities of requests.In our model we reason about threads, regions, the permissions that threads obtain to a

ess regions,and time. Our model is based on models that have been developed in the �eld of temporal logi
 [80℄.In most models, the memory of the system would be represented as a mapping from an address to a value.However, in our model we are not 
on
erned with the values stored in memory. In addition, we abandonthe idea of individual addresses in favor of regions. Therefore, for ea
h read or write to memory we identifythe region that 
orresponds to the address being written and use the region identi�er as a proxy for theaddress. In Chapter 5 we des
ribe a me
hanism that ensures that threads always agree on the mapping ofaddresses to regions. Therefore, in our model we de�ne an unordered set Regions that 
ontains all of theregions de�ned for the system. We also de�ne a variable to refer to an arbitrary region in the rules below:r : RegionsWe assume that there are multiple threads in the system, that these threads exe
ute 
on
urrently, andthat there is no global view of time among threads. This des
ription of time was originally developed fordistributed systems [66℄. By adopting it we 
an greatly improve the e�
ien
y of our runtime support, sin
e
reating global 
onsisten
y is often expensive in multipro
essor systems. In the model we use the unorderedset Threads as a 
ontainer for all of the system's threads. We de�ne three variables to refer to arbitrary, butdi�erent, threads in the system:S; T; U : ThreadsS 6= TS 6= UT 6= UWhile there is no global view of time in the system, it is possible to reason about the order of a
tions of asingle thread. We de�ne an ordered set, ThreadTimes, for this purpose.ThreadTimesWe also de�ne markers to reason about a
tions for a thread in a pre-determined order. B stands for beginning,and is always the earliest a
tion undertaken by the thread. M stands for middle and is the middle a
tion. Estands for end, and is always the last a
tion in the sequen
e being dis
ussed. By 
onvention we use upper
aseletters to refer to both Threads and ThreadTimes :B;M;E;B0;M 0; E0; B00;M 00; E00 : ThreadTimesB < M < EB0 < M 0 < E0B00 < M 00 < E00We de�ne a fun
tion � that holds the history of the a
tions of every thread in the system for a parti
ularexe
ution. In future exe
utions the history of threads may be di�erent. Therefore, � would normally havea subs
ript. However, in this version of the model we reason only about a single exe
ution, making thesubs
ript redundant. We have eliminated it for 
larity. A
tions is the set of all possible a
tions whi
h 
anbe undertaken by a thread. We will de�ne A
tions in greater detail below:32



� : Threads � ThreadTimes �! A
tionsPermissions 
ontrol a thread's a

ess to regions. A thread may obtain either read-only a

ess to a regionor read-write a

ess to the region. During trusted exe
ution a thread should only a

ess the region while itholds permission to do so. If a thread does not follow this rule the runtime system will be unable to dete
tsome of the a

esses to regions, potentially leading to 
onsisten
y failures. During 
he
ked exe
ution theruntime system will stop a thread that attempting to a

ess a region without permission before the a

esso

urs. We also de�ne two arbitrary variables to refer to permissions.Permissions=fRead,Writegp; q : PermissionsIn this model, there are four types of a
tions:� A thread 
an obtain permission to a

ess a region� A thread 
an release permission to a

ess a region� A thread 
an read a region� A thread 
an write a region. Sin
e write a

ess always implies read a

ess, an uninterruptible test andset operation would be represented as a write in this model.We de�ne a set A
tions to refer to these events. We also de�ne two variables that refer to arbitrarypermissions:A
tions = fGrant(r; t; p);Revoke(r; t; p);ReadR(r; t);WriteR(r; t)ga; a0 : A
tionsSo far the model 
losely follows the implementation of the system. However, it is easier to reason about
onsisten
y properties from the perspe
tive of regions. Therefore, we de�ne an ordered set, RegionTimes,that des
ribes the order of a
tions for a parti
ular region. RegionTimes 
annot be dire
tly 
ompared betweentwo regions, and 
annot be dire
tly 
ompared with ThreadTimes. This allows us to use this model to reasonabout systems built with hardware that uses a relaxed ordering of memory operations [2℄. By 
onventionwe use lower
ase letters to refer to RegionTimes, and adopt the same variables 
orresponding to beginning,middle, and end.b;m; e : RegionTimesb < m < eWe use RegionTimes to de�ne a fun
tion that provides the past history of ea
h region in the system for aparti
ular exe
ution. Like � , the 
ontents of this fun
tion may be di�erent for ea
h exe
ution of the system.Therefore, the fun
tion would normally be subs
ripted. Sin
e we reason only about a single exe
ution belowwe drop the subs
ript for simpli
ity:� : Regions� RegionTimes �! A
tionsFor readability, we de�ne a short fun
tion to determine the region for an a
tion:8(a; r) jmat
hesRegion(a; r)� 9(T; p) j a = Grant(r; T; p) _ a = Release(r; T; p) _ a = ReadR(r; T ) _ a = WriteR(r; T )The � fun
tion 
an be derived by applying some simple rules to � . These rules restri
t a
tions, requiringthem to be initiated by the a�e
ted thread. This is bene�
ial both from the standpoint of understandingthe model and also for the e�
ien
y of the runtime system, sin
e it allows us to avoid expensive operationsto remove permissions from threads. In addition, this restri
tion allows the a
tions to establish a 
orrelation33



between the thread's timestamp and the region's timestamp, thus allowing regions to propagate dependen
iesthrough the system:8(T;E; a; r; p) j (�(T;E) = a ^mat
hesRegion(a; r) � 9Eb j �(r; b) = aThe following rule for
es the order of a thread's grants and releases to be identi
al in the � and � fun
tions.It is needed be
ause the times in � and � 
annot be dire
tly 
ompared. While the order of ea
h thread'sa
tions must be preserved, interleaving may 
ause two adja
ent a
tions for a thread in � to be separated bythe a
tions of another thread in �.8(T;B; a; r; E; a0) j (�(T;B) = a ^mat
hesRegion(a; r) ^ �(T;E) = a0 ^mat
hesRegion(a0; r)=) 9b; e j �(r; b) = a ^ �(r; e) = a0There are two additional rules that apply to the Grant and Release a
tions. These rules are enfor
ed bothduring trusted exe
ution and also during 
he
ked exe
ution. We de�ne these rules with the � fun
tion. First,a thread must release its previous permissions to a region before obtaining new ones:8(r; b; T; e; p; q)j�(r; b) = Grant(r; T; p)^�(r; e) = Grant(r; T; q) =) 9mj�(r;m) = Release(r; T; p) (3.1)Se
ond, a thread must obtain permissions to a region before releasing them:8(r; e; T; p) j �(r; e) = Release(r; T; p) =) 9b j �(r; b) = Grant(r; T; p) ^ 8m j �(r;m) 6= Release(r; T; p)(3.2)We 
an now de�ne the ReadableRegions for a thread at a given time in terms of � . Sin
e, write permissionsalso grant read permissions, it is su�
ient to establish that the thread has some unreleased permission toa

ess the region:8(r; T; E) j r 2 ReadableRegions(T;E)� 9(B; p) j �(T;B) = Grant(r; T; p) ^ 8M j �(T;M) 6= Release(r; T; p) (3.3)The de�nition for WritableRegions is similar, but also 
he
ks that the permission being held is a writepermission:8(r; T; E) j r 2WritableRegions(T;E)� 9B j �(t; B) = Grant(r; T;Write) ^ 8M j �(t;M) 6= Release(r; T;Write) (3.4)Finally, we de�ne the 
on
ept of a

urate dire
tives. Dire
tives are a

urate when ea
h thread in the systemreads and writes regions only when it has permission to do so. Che
ked exe
ution, des
ribed in Se
tion 5.2,veri�es these properties. If these properties do not hold, our approa
h of using permissions as a proxy fora

esses will be unsound, potentially 
ompromising the integrity of the system during redire
tion:8(T;B; r) : �(T;B) = ReadR(r; t) =) r 2 ReadableRegions(t; B)8(T;B; r) : �(T;B) = WriteR(r; t) =) r 2WriteableRegions(t; B)34



3.2.1 Dependen
iesDependen
ies 
an form among requests pro
essed 
on
urrently in attentive systems, sin
e they are notisolated as they are pro
essed. Normally the runtime would propagate dependen
ies among requests auto-mati
ally as threads a

ess and modify regions. For example, 
onsider a system exe
uting three requests,R1, R2, and R3. Ea
h request has a thread that a

esses a shared region S. R3's thread modi�es S, thenR2's thread modi�es S, and �nally R1's thread reads S.In our system, we assume that every modi�
ation of S is also an observation of S's state. Therefore, atthe end of this sequen
e R2 depends on R3, and R1 depends on both R2 and R3: dependen
ies are transitive.Therefore, dependen
ies 
an be represented by Lamport Clo
ks [65℄ atta
hed to requests and regions. Itis important to note that dependen
ies 
an be 
ir
ular: if R3 reads S, it will be
ome dependent on R1 andR2. In other words, the request stream for an attentive system may not be serializable. This is a dire
tresult of the la
k of isolation in attentive systems, and 
an lead to a 
as
ading redire
tion, where redire
tingone request 
auses a number of other requests to be redire
ted. We dis
uss this issue in more detail inSe
tion 2.2.3.Tra
king every a

ess to a region would be prohibitively expensive. However, when the rules des
ribedabove hold a runtime system 
an reason about dependen
ies among threads, and therefore dependen
iesamong requests, without tra
king individual a

esses to regions. To do this, the runtime system monitorspermission 
hanges, using them as proxies for a

esses to the region. The runtime system treats everyGrant(Read) and Release(Read) a
tion as a read of the region. It treats every treats Grant(Write) andRelease(Write) as a write to the region.Next the runtime system uses the model to sear
h for happens-before relationships [66℄ among the per-missions 
hanges of threads. Our approa
h to establishing a happens-before relationship among threads
losely follows the approa
h given in the Java Memory Model [20℄. If the runtime system 
an establish thata write made by thread S happened before a read or a write made by thread T, then the request bound toT depends on the request that was bound to S when it made the write.2In the abstra
t model the happens-before relationship is de�ned as a fun
tion:HappensBefore : hThreads � ThreadTimesi � hThreads � ThreadTimesi �! BooleanHappensBefore relationships exist for a
tions on a single thread:8(t; B;E) j ht; BiHappensBefore ht; EiIn addition, happens-before relationships are transitive:hS;MiHappensBefore hT;M 0i ^ hT;M 0iHappensBefore hU;M 00i =) hS;MiHappensBefore hU;M 00iTo establish a happens-before relationship among threads it is ne
essary to relate a
tions in the � and �fun
tions:(�(S;M) = a ^ �(T;B0) = a0 ^ �(r; b) = a ^ �(r;m) = a0) =) hS;BiHappensBefore hT;M 0iWe propose an implementation that 
onforms to this model in Se
tion 5.1.3. The pre
ise happens-beforerelationships for an exe
ution are somewhat in�uen
ed by the interleaving in �. Therefore, the dependen
iesfor a group of requests may not be identi
al a
ross repeated exe
utions. However, in the worst 
ase the2It is important to note that S may not exist when T a

esses the region. In addition, S may now be bound to a di�erentrequest. 35



approximation will be 
onservative, indi
ating that a dependen
y exists where none was en
ountered in thea
tual exe
ution. In addition, we assume that permission transfers fun
tion as memory barriers in the system.This assumption is sound, even under trusted exe
ution, due to the 
he
king of the sanity of permissionstransfers outlined in Invariant 3.1 and Invariant 3.2. Finally, it is important to note that nothing in this modelassumes the absen
e of data ra
es: it is possible for two threads to obtain simultaneous write permissions tothe same region or for a thread to obtain read permission to a region while a thread is writing it. To reasonabout dependen
ies in these situations we need additional dire
tives, whi
h are des
ribed in Se
tion 3.4. We
an avoid these dire
tives when developers use poli
ies to restri
t the assignment of permissions to threads.These poli
ies also eliminate the risk of undete
ted data ra
es during 
he
ked exe
ution.3.2.2 Sound poli
iesPoli
ies are spe
i�
ations that restri
t the assignment of permissions to threads. A poli
y is either sound orunsound. When threads follow a sound poli
y, the poli
y limits the assignment of permissions to threads,ensuring that there will be no data ra
es. The poli
y ensures that for every region there is either a singlewriter with no readers, or no writers with any number of readers.Con�i
ting permissions allow data ra
es, typi
ally by permitting a thread to write to a region 
urrentlyshared with other threads. Poli
ies that allow 
on�i
ting permissions are unsound. A system may be freeof data ra
es even though it uses unsound poli
ies for some regions. For example, the poli
y governinga

ess to lo
ks in 
on
urrent systems is unsound, sin
e it allows updates from multiple threads attemptingto a
quire the lo
k. However, the implementation of lo
ks avoids data ra
es by using a spe
ial 
lass ofmemory operations that are atomi
, reading and updating state in a way that is immune to interferen
efrom other threads.In our abstra
t model sound poli
ies are governed by two additional 
onstraints. First, write permissionsare granted only when every thread has relinquished its permissions to the region:8(s; t; r; b; e; p) j (�(r; b) = Grant(s; p)) ^ (�(r; e) = Grant(t;Write))=) 9m j (�(r;m) = Release(s; p)) (3.5)Se
ond, read permissions are granted only when no thread has write permission to the region:8(s; t; r; b; e) j (�(r; b) = Grant(s;Write)) ^ (�(r; e) = Grant(t;Read))=) 9m j (�(r;m) = Release(s;Write)) (3.6)We will propose a 
atalog of poli
ies, most of whi
h are sound, in Se
tion 3.3.3.2.3 Relating the model to program-spe
i�
 invariantsDevelopers typi
ally reason about the 
orre
tness of subsystems, in
luding 
omplex data stru
tures, in termsof representation invariants that hold at the start and end of ea
h operation. During the operation, the stateof the subsystem may not honor the invariant. When operations are long, it is possible that redire
tion willinterrupt an operation while it is in progress, leading to a 
onsisten
y failure. An approa
h to ensuring the
onsisten
y of redire
tion 
an be expressed by establishing a relationship between invariants and the 
hangesin thread permissions permitted by sound poli
ies. In this se
tion we establish this relationship for a doublylinked list. The implementation of the list is shown in Listing 3.1.36



IV1 typedef struct node {IV2 const char *name;IV3 struct node * prev, *next;IV4 } Node;IV6 typedef struct list {IV7 const char *name;IV8 Node * head, *tail;IV9 } List;IV11 void append(List *list, Node *node) {IV12 node�>next = NULL;IV13 node�>prev = list�>tail;IV14 list�>tail = node;IV15 if (list�>head == NULL)IV16 list�>head = node;IV17 elseIV18 node�>prev�>next = node;IV19 }Listing 3.1: The representation invariants for doubly linked list will not hold if this version of the appendfun
tion is interrupted after IV13 and before IV18.We de�ne two types of blo
ks for our example, a doubly linked list. Some blo
ks are Nodes ; other blo
ksare the list head stru
tures:n : Nodesl : ListFinally, we use some �
ommon sense� invariants for doubly linked lists.8n j ((n.next 6= NULL) =) (n.next.prev) = n)) (3.7)and 8n j ((n.prev 6= NULL) =) (n.prev.next) = n)) (3.8)and 8l j l.head 6= NULL � l.tail 6= NULL (3.9)In our example Invariant 3.8 holds until line IV13, and is restored at line IV18. In addition, Invariant 3.9is potentially relaxed at IV14 and restored at IV16. When a system with only one thread exe
utes this
ode to 
ompletion the invariants there is no way to observe the intermediate states. In e�e
t the invariantsappear to hold for the entire exe
ution. However, when systems use multiple threads or support redire
tionit is possible to observe intermediate states that violate the invariants, potentially 
ausing failures due tothe resulting loss of 
onsisten
y.To avoid this failure, we apply the 
on
ept of permissions outlined in the model to s
ope the invariantsgiven above for the linked list, 
reating invariants that are mu
h easier to relate to the system's 
on
reteimplementation: 37



8(t;M; n) j ((n 2 ReadableRegions(t;M)) ^ (n =2WritableRegions(t;M)) ^ (n.next 6= NULL))=) (n.next.prev) = n))8(t;M; n) j ((n 2 ReadableRegions(t;M)) ^ (n =2WritableRegions(t;M)) ^ (n.prev 6= NULL))=) (n.prev.next) = n))8(t;M; l) j ((l 2 ReadableRegions(t;M)) ^ (l =2WritableRegions(t;M)))=) (l.head 6= NULL � l.tail 6= NULL)These invariants do not restri
t a thread's a
tions when working with writable regions. Therefore, theinvariants hold both between operations and also within operations. These invariants ensure that 
onsisten
ywill be maintained as long as permissions 
hanges are governed by sound poli
ies. First, a thread holdingwrite permission to the region 
ontaining the data stru
ture must restore the representation invariants beforereleasing the permission. Se
ond, no other threads 
an observe the data stru
ture while the writer is makingmodi�
ations. The runtime system des
ribed in Chapter 5 exploits this relationship between poli
ies andinvariants to support redire
tion of operations in progress. It does this by 
opy the 
ontent of the regionbefore ea
h thread gains write permission to the region. In the even of redire
tion it restores the region fromthe 
opy. As a result, all of the invariants for the region are known to hold after redire
tion.3.3 Regions and poli
iesIn many systems, developers reason informally about the permission that threads have to a

ess parts ofthe system's state. A developer may de
lare 
onstraints su
h as �lo
k A prote
ts this array,� or �this arrayis read and written only by thread B.� The informal approa
h adopted by developers to these 
onstraints
reates multiple problems:� The rules governing a

ess to state are rarely do
umented, and are often not apparent to developersexamining the implementation of systems� The behavior of the system's implementation may not 
onform to the rules established by developers,leading to intermittent system failures due to 
onsisten
y errorsIn this se
tion we introdu
e dire
tives to address these problems by relating the informal reasoning ofdevelopers to the formal model given above. The �rst set of dire
tives allows developers to de�ne parts ofthe system state 
alled regions. Ea
h blo
k of memory 
reated by the memory allo
ations routines is pla
edinto region through a pro
ess des
ribed in Se
tion 3.3.1. Developers do
ument the 
onstraints des
ribedabove by 
hoosing an a

ess poli
y, des
ribed in Se
tion 3.3.2, for the region. There are two advantages todevelopers in doing this work. First, the dire
tives allow 
he
ked exe
ution to identify data ra
es that maybe present in the system. Se
ond, the dire
tives allow the runtime system to provide the stop(), continue(),and undo() operations that are needed to redire
t requests.3.3.1 RegionsA region is a set of blo
ks of memory. All of the blo
ks in a region are treated as a single unit with respe
tto thread permissions. Spe
i�
ally, a thread gaining a

ess to one blo
k in a region simultaneously gains38



S1 typedef struct {int i; char *o; } job;S3 int main(int argc, char *argv[]) {S4 pthread_t c;S6 job *j = malloc(sizeof(*j));S7 j�>i = atoi(argv[1]);S8 pthread_create(&c, NULL, do_work, j);S10 ...S12 pthread_join(c, NULL);S13 printf("%s\n", j�>o);S14 return 0;S15 }S17 void *do_work(void *ctx) {S18 job *j = ctx;S19 j�>o = malloc(10);S20 snprintf(j�>o, 10, "%d", j�>i);S21 return NULL;S22 }Listing 3.2: In this example the job allo
ated at S14 a thread-
on�ned blo
k. The statements in boldtype (lines S16 and S20) enfor
e the thread-
on�nement via a 
ombination of blo
king and happens-beforerelationships.a

ess to every other blo
k in the region. A region 
an be as small as a subset of indexes in an array, 
alleda sli
e. However, in most systems a region is either a single blo
k of memory or a 
olle
tion of blo
ks ofmemory. Many other de�nitions of regions will do as long as all threads in the system agree on the identityof regions and the regions are non-overlapping.Our design of regions was originally based on prior work in stati
 analysis tools. This work establishedthat grouping blo
ks of memory redu
es the annotation e�ort for many systems [44℄. While our dire
tivesare based on the annotations developed for this work, our dire
tives make a distin
tion between having areferen
e to a blo
k in a region and having permission to a

ess the region. This distin
tion allows ourdire
tives to dire
tly support 
oding patterns, su
h as the one des
ribed in Listing 3.2, where threads retainreferen
es to blo
ks that they will not a

ess.The region_t new_region(policy) dire
tive 
reates a new region. This dire
tive a

epts a single parameterthat spe
i�es the poli
y that governs a

ess to the region. The a

ess poli
y for a region is �xed for theregion's lifetime, and 
ontrols whi
h Grant a
tions are legal for the region. A list of poli
ies is given in thenext se
tion. By de�nition, the thread invoking the new_region() dire
tive obtains Write permissions to theregion.The new_region() dire
tive returns a region identi�er that 
an be used to referen
e the region in futuredire
tives. It is often not ne
essary to store the region identi�er, sin
e it 
an easily be retrieved by applyingthe region_of(block) to one of the blo
ks of memory in the region. However, when the region is �rst 
reatedit 
ontains no blo
ks, making it ne
essary to referen
e the region with its identi�er.The pro
ess of populating a region is indire
t to a

ommodate systems that 
reate new blo
ks of memoryin reusable 
ode. Our approa
h allows the 
aller of a fun
tion to propose a default region for any new blo
ksthat are 
reated, while allowing the fun
tion to override the proposed region. Fun
tions should overridethe 
aller's region only when allo
ating blo
ks 
ompletely under their 
ontrol. For example, a fun
tion thatinvolves 
omplex 
al
ulations may 
hoose to memoize [73℄ its results, storing them in en
apsulated blo
ks39



guarded by a lo
k. When allo
ating the memory for these blo
ks the fun
tion must override the 
aller'sregion. However, the fun
tion should restore the 
aller's region before allo
ating a blo
k used to return thefun
tion's result.For example, 
onsider the char *strdup(char *input) fun
tion from the C runtime library, whi
h a

epts astring as input and 
reates a new 
opy of the string on the heap, returning a pointer to the new string. One
aller may use strdup() to allo
ate a string that will be part of a region that is prote
ted by a lo
k. Another
aller may use strdup() to 
reate an immutable string. Finally, the 
aller of strdup() may itself be unawareof the poli
y that will be used to prote
t the string.To address these 
ases, we use de�ne a dire
tive�region_t bind(region_t)—that assigns a �
urrent region�to the thread that exe
utes it. When a memory allo
ation routine 
reates a new blo
k, it retrieves the 
urrentregion for the thread doing the allo
ation and pla
es the blo
k into it. The 
urrent region has no e�e
t thethread's exe
ution outside of the memory allo
ation routines. Threads are initially bound to a thread-lo
alregion when they are 
reated. Sin
e the thread-lo
al poli
y is the most restri
tive, using it as the defaulteliminates the possibility that ra
es will go undete
ted due to missing dire
tives.De�ning blo
ks as by single 
alls to a memory allo
ation routine 
an 
reate problems for some systems.Some systems share state in arrays, assigning permissions to a

ess non-overlapping sli
es of the array todi�erent threads. For example, the x264 video en
oder pla
es frames into a two-dimensional array and grantsthreads permission to a

ess individual s
anlines.3 We propose spe
ialized dire
tives�get_rw_slice(array,
low, high), get_ro_slice(array low, high), release_rw_slice(array, low, high), and release_ro_slice(array, low,
high)�that allow threads to request read and write permissions for sli
es rather than the entire array.Threads are not obligated to use the same ranges in the release dire
tives that they used in get dire
tives.For example, an en
oding thread in x264 typi
ally issues a get for the entire array representing a frame, butissues a release for ea
h s
anline as it is en
oded. Allowing the use of arbitrary, but non-
on�i
ting, rangesin the array sli
e dire
tives makes it easier to use dire
tives to model the system.3.3.2 Poli
ies governing a

ess to regionsThe assignment of permissions for every region in the system is governed by an a

ess poli
y. In this se
tionwe propose a 
atalog of a

ess poli
ies, working from the most restri
tive poli
ies to the most �exible. Ingeneral the most restri
tive poli
ies require the smallest number of dire
tives. However, the over use ofrestri
tive poli
ies 
an introdu
e attentiveness failures in systems. For example, poli
ies based on lo
king aresound be
ause they both blo
k threads requesting 
on�i
ting permissions and also establish happens-beforerelationships [65℄ before they transfer permissions among threads. While these poli
ies are simple to applyand verify, their use of blo
king introdu
es a threat to promptness.Other poli
ies rely on developers to 
oordinate the threads of the system to ensure that threads do notattempt to a
quire 
on�i
ting permissions to regions. To preserve soundness, these poli
ies treat any attemptby a thread to a
quire 
on�i
ting permissions as a fatal error. It is possible for developers to write 
ode thatwill fail intermittently when using these poli
ies if the 
oordination among the threads is inadequate. Wedis
uss this issue in more detail in Se
tion 5.2.3.Our poli
ies are a superset of the poli
ies des
ribed in Chapter 3 of Java Con
urren
y in Pra
ti
e [40℄,and are very similar to the types used for 
he
king data sharing strategies in multithreaded C 
ode [3℄.They also in
orporate knowledge from stati
 analysis for 
on
urren
y, whi
h identi�ed patterns of non-lo
k
on
urren
y [97℄:Thread-lo
al regions 
an be a

essed by only the thread that 
reates them. Threads do not need toengage in any 
oordination before a

essing thread-lo
al regions. Thread-lo
al regions 
ould be generated asa spe
ial 
ase of many other poli
ies. However, we believe that there are several advantages to providing anexpli
it thread-lo
al poli
y. First, de
laring a region to be thread-lo
al allows a developer reading the 
ode to3x264 represents the frame as a single obje
t, not an array of s
anlines.40



know that the region will never be shared. In addition, systems with non-uniform memory a

ess (NUMA)
an use the information that a region is thread-lo
al to allo
ate the region in lo
al, fast memory. Finally,we are able to use this knowledge in our runtime systems to make e�
ient use of memory. Permissions tothread-lo
al regions 
an never 
hange. Therefore, any thread exe
uting a dire
tive that would result in aGrant or Revoke a
tion for a thread-lo
al region will stop with an error.Guarded regions are prote
ted by a 
on
urren
y-
ontrol 
onstru
t, de�ned by the memory model for thesystem, su
h as the monitors des
ribed in the Java Memory Model [20℄ or the mutexes des
ribed in a memorymodel being developed for C++ [14℄. These 
onstru
ts provide mutual ex
lusion by blo
king threads. Theyalso 
reate a happens-before relationship between the thread relinquishing the mutual ex
lusion and a newthread that obtains mutual ex
lusion.Developers must point to a spe
i�
 instan
e of an appropriate 
on
urren
y-
ontrol 
onstru
t, su
h asa pthread_mutex, when 
reating a guarded region. The runtime system will automati
ally pro
ess aGrant(Write) a
tion to the region when a thread obtains mutual ex
lusion and pro
ess a Release(Write)a
tion to the region when a thread relinquishes mutual ex
lusion.Immutable regions go through two phases. In the initial phase the thread that 
reates the region hasex
lusive read-write a

ess to it. After initializing the region, the thread will relinquish write a

ess to theregion and publish it. In the abstra
t model, this is equivalent to invoking Release(Write) followed by aGrant(Read) for the thread that 
reated the region. Other threads in the system will eventually also re
eivea Grant(Read) to the region. The timing of this Grant(Read) is left to the implementers of the runtimesystem.4We assume that publishing an immutable region establishes a happens-before relationship between thepublisher and any thread that subsequently a

esses the region. Other threads must 
oordinate with thepublisher to establish a happens-before relationship before a

essing the region. In Java this is 
alled �safepubli
ation� [40℄, and is often implemented with synchronized blo
ks. On
e a region has been publishedthere is no me
hanism that allows a thread to gain write to the region. As a result, there is no way to freethe region after it has been published. Therefore, immutable regions should be used only for state that willneed to exist for the lifetime of the pro
ess that 
reated the region. The phased-immutable poli
y des
ribedbelow 
an be used to implement immutable regions that 
an be destroyed.Thread-
on�ned regions are read and written by only a single thread, 
alled the owner, at any giventime. Unlike thread-lo
al regions, the owner of a thread-
on�ned region may Release(Write) it, allowing atmost one other thread to 
laim ownership of the region via a Grant(Write) a
tion. An example of thread-
on�ned regions is shown in Listing 3.2. The pthread_create() 
all at line S8 allows the parent thread topass a referen
e to j, the job blo
k 
reated at line S6. The parent must not 
hange the data in j while the
hild is running to avoid 
reating a data ra
e. After the pthread_join() 
all at S12 
ompletes, 
reating ahappens-before edge, the parent 
an a

ess j to read the results generated by the 
hild thread.Phased-immutable regions exist in one of three states: ex
lusive, shared, and unassigned. The phased-immutable poli
y is the most �exible sound poli
y in the 
atalog, giving developers dire
t 
ontrol overGrant()and Release() a
tions. When they are �rst allo
ated, phased immutable regions are in the ex
lusive state andowned by the thread that 
reated them, whi
h exe
utes a Grant(Write) a
tion. The owner 
an then issuea Release(Write) a
tion by exe
uting the release_transferable(region_t) dire
tive, pla
ing the region in theunassigned state. When a region is in the unassigned state any thread 
an obtain permissions for it. If thethread obtains both read and write permissions by exe
uting the get_transferable(region_t) dire
tive, it issuesa Grant(Write) a
tion. The thread be
omes the new ex
lusive owner of the region. If the thread obtains onlyread permissions by exe
uting the get_transferable_ro(region_t) dire
tive, it issues a Grant(Read), 
ausingthe region to enters the shared state. In this state no single thread is the owner of the region. When a regionis in the shared state additional threads 
an obtain read permission to it. Threads 
an Release() the readpermission that they have obtained by exe
uting the release_transferable_ro(region_t) dire
tive. When the4 However, the resulting delay must never result in a false report of a violation of the immutable poli
y.41



last thread releases its read permission, the region moves ba
k to the unassigned state. This de�nition ofthe ex
lusive, shared, and unassigned states ensures that threads obtain only non-
on�i
ting permissions tothe region.Listing 3.3 shows an example of the dire
tives that are needed to 
reate a phased-immutable region
ontaining a single blo
k and transfer the region between a parent thread and a 
hild thread. The parentthread, exe
uting at line A9, �rst 
reates a new region governed by the phased-immutable poli
y, in thepro
ess 
reating a Grant(parent;Write) for the new region. Next, still at A9, the parent thread binds theregion. The bind() dire
tive returns the region that was previously bound to the thread, allowing the threadto restore the previous region at line A11. Assuming that the program loader 
alled the main fun
tion, thesaved region will be the thread-lo
al region for the parent thread.Line A10 allo
ates a job blo
k. The runtime system automati
ally adds the blo
k to the bound region.Sin
e the parent 
urrently has ex
lusive read-write a

ess to the region, the parent is able to initialize thejob blo
k at line A13. The parent then releases its permissions to a

ess the region at line A15, generatinga Release(parent;Write).The release happens indire
tly by referring to the job blo
k. We allow developers to get and releaseregions by referen
ing one of the blo
ks in the region rather than referring to the region identi�er expli
itly.This 
an be 
onfusing, sin
e the release will apply to every blo
k in the region. However, using blo
ks asproxies for regions greatly redu
es the e�ort involved in adding dire
tives to existing systems, freeing thedevelopers from the task of storing and forwarding region identi�ers. This de
ision is not fundamental toour approa
h, and 
ould be easily revised in the future.Even though the parent thread has released its permissions to a

ess the job blo
k, it has retaineda referen
e to it. The parent 
an safely pass this referen
e to the pthread_create() 
all at A17 be
ause
pthread_create() will not use this referen
e to a

ess the blo
k. Instead, pthread_create() passes the referen
eas a parameter to the 
hild thread, whi
h starts at line A31. The 
hild must obtain read-write permissionsfor the region by 
alling get_transferable() at A32, 
reating a Grant(
hild;Write). This 
all would result inan error if the region if there were an unreleased Grant(Write). However, a human reader 
an determinethat this will not be the 
ase by examining the 
ode: the release_transferable() at A15 
ompleted beforethe 
hild was started, and the only other get_transferable() o

urs at A21. However, the pthread_join() 
allat A19 ensures that A21 will not exe
ute until the 
hild exits.Obtaining permissions for the region gives the 
hild the ability to a

ess blo
ks within the region, butdoes not 
ause new blo
ks to be pla
ed in the region. Sin
e the 
hild wants to add a new blo
k to the region,it exe
utes bind() at line A33, 
ausing the blo
k at A19 to be pla
ed into the same region as the job blo
k.If the 
hild skipped this binding the new blo
k would have been allo
ated in the 
hild's thread-lo
al region,
ausing the dynami
 analysis to �nd a poli
y violation when the parent a

essed the blo
k at A23. The 
hildthen releases its permissions at line A39 and exits.In the parent, the pthread_join() 
all at line A19 
reates a happen-before relationship with the 
hild atthe point where the 
hild exits. Therefore, the get_transferable_ro() at line A21 will su

eed, granting readpermission to the region to the parent thread. The parent thread then reads both the job blo
k and thestring added to the job blo
k's region by the 
hild and exits.Thread-safe regions grant read and write permissions to every thread in the system when they are
reated. As a result, thread-safe regions are both highly �exible and also unsound. Developers must oftenassign the thread-safe poli
y to some regions. For example, pthread_mutex stru
tures must be a

essible toevery thread in the system to allow threads to use mutexes to 
oordinate their a
tivity. Allowing this a

essis safe be
ause mutexes are a

essed through spe
ial routines, su
h as pthread_mutex_lock(), that a

essthe region with atomi
 low-level atomi
 memory operations that also 
reate happens-before relationships.Similar te
hniques are used to implement other thread-safe regions, su
h as non-blo
king data stru
tures [57℄.Sin
e threads do not use dire
tives to obtain a

ess to thread-safe regions, these regions do not au-tomati
ally propagate dependen
ies. Developers 
an use spe
ial dire
tives, des
ribed below, to propagate42



dependen
ies in 
ode that a

esses these regions.3.4 Dependen
iesWe provide several dire
tives to give developers greater 
ontrol over the propagation of dependen
ies in thesystem. Developers must use these dire
tives to propagate dependen
ies 
reated by thread-safe regions, andmay use to gain �ne-grained 
ontrol of dependen
ies in other types of regions. To do this, they use the
read_dependency() and write_dependency() dire
tives.The read_dependency(region_t region) dire
tive indi
ates that the request asso
iated with the 
urrentthread should inherit the dependen
ies 
urrently asso
iated with the region. The write_dependency(region_t
region) dire
tive indi
ates that the 
urrently bound request should be added to the region's dependen
ies.By default, poli
ies have di�erent e�e
ts on dependen
ies, as des
ribed below:Thread-lo
al regions 
an 
reate dependen
ies among requests. Sin
e threads do not need to use dire
-tives to request a

ess to their thread-lo
al regions, by default the runtime system assumes that using a threadto pro
ess a request makes the request dependent on the thread's lo
al regions. As a result, using a threadto pro
ess two requests, one after another, will 
ause the se
ond request to depend on the �rst requests. Theruntime system will not 
reate these dependen
ies if developers use the no_region_dependencies() dire
tive.This dire
tive informs the runtime system that the thread's lo
al regions are used only for temporary storagewhile pro
essing requests and do not propagate information between requests. Grand Central Dispat
h [4℄pla
es similar restri
tions on 
ode that runs in blo
k obje
ts.Guarded regions normally 
reate a dependen
y between the requests that obtain a

ess to the region.They assume that every request that gains a

ess to the region modi�es the region. Developers 
an gaingreater 
ontrol over the dependen
ies at the expense of writing more dire
tives by using the phased-immutableregions des
ribed below.Immutable regions 
an propagate dependen
ies among requests. Before the region is published, it willa

umulate a dependen
y on every request bound to the thread that 
reated the region. When other threadsobtain read-only a

ess to the region after it has been published every request asso
iated with the threadwill be
ome dependent on the dependen
ies of the region. We expe
t that developers will normally markimmutable regions with the no_region_dependencies() dire
tive to avoid this behavior.Thread-
on�ned regions propagate dependen
ies among requests. The region a

umulates dependen-
ies on every request asso
iated with the thread that owns the region. When the region is transferred, therequest asso
iated with the thread that obtains the region inherits these dependen
ies, the set of dependen-
ies asso
iated with the region is 
leared, and the 
urrently asso
iated request is added to the set. If thethread still has a

ess to the region when new requests are asso
iated with it, they will be added to theregion's set.Phased-immutable regions propagate dependen
ies among requests. Threads that request read-onlya

ess to phased-immutable regions inherit the set of dependen
ies from the region, but do not modify theset. Threads that request read-write a

ess to the region inherit the 
urrent set of dependen
ies from theregion, and add any requests asso
iated with the thread to the set.Threads 
an dea
tivate the default dependen
y propagation for these poli
ies for a parti
ular region byexe
uting the no_region_dependencies(region_t region) dire
tive. For example, developers may use this 
allto dea
tivate dependen
y propagation for a sequen
e 
ounter. The results obtained from sequen
e 
ountersare rarely a�e
ted by the redire
tion of one of the requests that a

essed the 
ounter. On
e this dire
tivehas been exe
uted on a region developers must issue the dire
tives given above to propagate dependen
iesmanually to avoid 
onsisten
y failures during redire
tion.43



A1 typedef struct {A2 int i;A3 char *o;A4 } job;A6 int main(int argc, char *argv[]) {A7 pthread_t c;A9 region_t saved = bind(new_region(PHASED_IMMUTABLE));A10 job *j = malloc(sizeof(*j));A11 bind(saved);A13 j�>i = atoi(argv[1]);A15 release_transferable(j);A17 pthread_create(&c, NULL, do_work, j);A18 ...A19 pthread_join(c, NULL);A21 get_transferable_ro(j);A23 printf("%s\n", j�>o);A25 release_transferable_ro(j);A27 return 0;A28 }A30 void *do_work(void *ctx) {A31 job *j = ctx;A32 get_transferable(j);A33 region_t saved = bind(region_of(j));A34 j�>o = malloc(10);A35 bind(saved);A37 snprintf(j�>o, 10, "%d", j�>i);A39 release_transferable(tW);A41 return NULL;A42 }Listing 3.3: Dire
tives to des
ribe a thread-
on�ned job blo
k, allo
ated on line A21. The dire
tives in thislisting are shown in bold type.
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3.5 Tollgates: handling 
ompositionWhen developers build systems, they often 
hoose to in
orporate third party 
omponents. Developers maynot be able to inspe
t these 
omponents, espe
ially when they are delivered in 
ompiled form. In addition,developers may not have the time or expertise to add dire
tives to these 
omponents. This rarely presentsa problem for dire
tives related to promptness and requests, sin
e they 
an usually be pla
ed outside of themodule. However, the la
k of dire
tives in the module 
reates risk that the system's 
onsisten
y 
ould be
ompromised, either by un
oordinated state sharing within the module or due to in
onsisten
ies introdu
edduring redire
tion due to a la
k of knowledge of the dependen
ies 
reated within the module.We address this problem by allowing developers to atta
h modi�ers to the fun
tion signatures that de�nethe interfa
e of the module. These modi�ers tra
k ownership of the blo
ks referen
ed in the signature,permissions to a

ess these blo
ks, and provide information about the dependen
ies that may be 
reatedby the module. A prepro
essor takes this information and 
reates a tollgate for the module. A tollgateis a layer that wraps the module, inter
epting 
alls from the system to the module and returns from themodule to the system. The tollgate allows the runtime system to enfor
e the information provided in themodi�ers. Exe
ution passes through the tollgate when one of the fun
tions in the module's interfa
e is 
alledor returns. The tollgate has no e�e
t if both sides of the tollgate have dire
tives or both sides of the tollgatela
k dire
tives. In other 
ases, the tollgate �a
tivates.�In our dis
ussion below we assume that the 
alling fun
tion is part of a module that has been augmentedwith dire
tives, but that the 
alled fun
tion is in an �opaque� module. We believe that the de�nition oftollgates developed below 
an also be applied in the opposite situation, a reverse tollgate where the 
allerhas not dire
tives and 
alls 
ode with dire
tives.Tollgates do not support the array sli
es des
ribed in Se
tion 3.3. Therefore, in the blo
ks dis
ussedbelow are 
reated by 
alls to the memory allo
ation routines, su
h as malloc(). Blo
ks that remain underthe 
ontrol of the module are pla
ed in a region that is only a

essible while the tollgate is a
tive. We 
allthis the tollgate region. There is only one tollgate region for the entire system.When 
ontrol 
rosses an a
tive tollgate, the tollgate may reassign ownership of the blo
ks referen
ed inthe fun
tion's parameters and return type. This behavior is 
ontrolled by modi�ers that are atta
hed to thefun
tion signatures that de�ne the tollgate. When blo
ks are reassigned to the 
alled module, the tollgatemoves the blo
ks into the tollgate region. When blo
ks are reassigned to the 
aller, the tollgate pla
es theblo
ks into the 
urrent thread's bound region. Any of the 
aller's blo
ks that are not reassigned remain intheir original regions. The poli
ies atta
hed to the 
aller's region will 
ontinue to be enfor
ed in fun
tionsin the 
alled module during 
he
ked exe
ution.During trusted exe
ution, when poli
ies are not enfor
ed, tollgates a
t mu
h like the annotations devel-oped for MultiRa
e [81℄. MultiRa
e 
he
ks for ra
e 
onditions in systems that are 
omposed from third-party
omponents. The annotations used for MultiRa
e are trusted and predi
t the read and write sets of the 
all.Therefore, ina

urate annotations 
ould 
ause MultiRa
e to fail to dete
t a ra
e. A similar problem willo

ur when the runtime system trusts ina

urate tollgates. Dependen
ies among requests may be missed,
ausing 
onsisten
y failures during redire
tion.3.5.1 Syntax of tollgatesIn some 
ases, the tollgate region may impose too many dependen
ies. For example, in C there are manylow-level fun
tions, su
h as the ones marked with independent in Listing 3.4, that a

ess only the blo
ks ofmemory provided in their parameters. Sin
e these blo
ks are handled by regions, there is no need to 
reatenew dependen
ies due to the 
all to the library.We de�ne three modi�ers that des
ribe the relationship between fun
tions and the tollgate region:45



E1 writer int fclose(opaque FILE * fp);E2 writer int fflush(opaque FILE * fp);E3 writer opaque FILE * fopen(borrowed_ro const char * filename, borrowed_ro const char * mode);E4 writer opaque FILE * fopen64(borrowed_ro const char * filename, borrowed_ro const char * mode);E5 writer int fseek(opaque FILE * fp, long int offset, int whence);E6 writer int fseeko(opaque FILE * fp, off_t offset, int whence);E7 writer int fseeko64(opaque FILE * fp, __off64_t offset, int whence);E9 writer int fgetc(opaque FILE * fp);E10 writer size_t fread(borrowed_rw void * buf, size_t size, size_t count, opaque FILE * fp);E11 writer transparent char * fgets(borrowed_rw char * buf, int n, opaque FILE * fp);E13 writer int fputc(int c, opaque FILE * fp);E14 writer size_t fwrite(borrowed_ro const void * buf, size_t size, size_t count, opaque FILE * fp);E15 writer int putchar(int c);E16 writer int puts(borrowed_ro const char * str);E17 writer int vfprintf(opaque FILE * s, borrowed_ro const char * format, borrowed_rw __gnuc_va_list ap);E18 writer int printf(borrowed_ro const char * format, ...);E20 reader int feof(opaque FILE * fp);E21 reader long int ftell(opaque FILE * fp);E22 reader __off_t ftello(opaque FILE * fp);E23 reader __off64_t ftello64(opaque FILE * fp);E25 independent void free(consumed void * mem);E27 independent transparent void * memcpy(borrowed_rw void * dst, borrowed_ro const void * src, size_t len);E28 independent transparent void * memset(borrowed_rw void * dst, int c, size_t len);E30 independent accepted char * strdup(borrowed_ro const char * s);E31 independent int strcasecmp(borrowed_ro const char * s1, borrowed_ro const char * s2);E32 independent int strcmp(borrowed_ro const char * p1, borrowed_ro const char * p2);E33 independent transparent char * strcpy(borrowed_rw char * dest, borrowed_ro const char * src);E34 independent int strncasecmp(borrowed_ro const char * s1, borrowed_ro const char * s2, size_t n);E35 independent transparent char * strstr(borrowed_ro const char * haystck, borrowed_ro const char * needle);E36 independent double strtod(borrowed_ro const char * nptr, borrowed_rw char * * endptr);E37 independent long int strtol(borrowed_ro const char * nptr, borrowed_rw char * * endptr, int base);Listing 3.4: Examples of modi�ers from the C runtime library
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� Writer indi
ates that the fun
tion obtains a Grant(Write) to the tollgate region on entry and does aRelease(Write) on the region when it exits. The fun
tion may both read and write blo
ks that in thetollgate while it exe
utes. Therefore, the 
all must propagate dependen
ies through this region. If nomodi�er is provided, the tollgate assumes that the fun
tion is a writer. For example, fread() is a writerbe
ause it modi�es the �le's bu�ers, whi
h are under 
ontrol of the C runtime library.� Reader indi
ates that the fun
tion obtains a Grant(Read) on entry to the fun
tion and does a Re-lease(Read) on exit. The fun
tion may read blo
ks that are in the tollgate region, but will not modifythem. Calling request will be
ome dependent on any writers that have entered the tollgate regionbefore the fun
tion exits. For example, feof() is likely to be a reader, sin
e it examines the �le bu�er.However, if the implementation of feof() memoizes its result, it must be treated as a writer.� Independent indi
ates that the fun
tion will not a

ess blo
ks in the tollgate region. Therefore, thetollgate will not 
reate dependen
ies. For example, the memcpy() routine is likely to be independentbe
ause it modi�es only the destination bu�er.Developers also add modi�ers to ea
h parameter and return value in the fun
tion signatures. The modi�ersatta
hed to the parameters are shown in Table 3.2.The accepted modi�er indi
ates that ownership of a blo
k will be transferred from the fun
tion to its
aller as the fun
tion returns. For instan
e, the return value from the malloc() fun
tion would be marked as
accepted.The consumed modi�er indi
ates that ownership of the blo
k will transfer from the 
aller to the fun
tion.For instan
e, the parameter to the free() fun
tion would be marked as consumed.The borrowed_ro and borrowed_rw modi�ers apply to the input parameters to fun
tions, to allow thefun
tion to borrow [18, 19℄ read-only or read-write a

ess to the blo
k until it returns. The C runtime library'sstring 
opy fun
tion, strcpy(destination, source), provides a 
onvenient example of the use of borrowed. The�rst parameter spe
i�es the destination string, whi
h is borrowed_rw be
ause this string will be written. These
ond parameter spe
i�es the string to be 
opied, whi
h is borrowed_ro, indi
ating that strcpy() will readthis blo
k but not write to it. During 
he
ked exe
ution the tollgate will 
he
k that a thread has obtainedthe appropriate level of a

ess to the parameters in question.The borrowed_ro modi�er is parti
ularly subtle when 
allba
ks are involved, as is the 
ase in the Cruntime library's bsearch(key, array, ..., compare) routine. This routine implements a generi
 binary sear
hthat will work with any sorted array. Sin
e the routine will not modify the array, the key and array parametersare annotated with borrowed_ro. Developers must provide a pointer to a fun
tion that 
an 
ompare twokeys in the array when 
alling bsearch(). This leads to two alternatives when a thread 
alls bsearch() whileit has read-write a

ess to an array. In the 
onservative 
ase, read-write a

ess will be dropped before 
ontrolreturns to the compare() fun
tion. A more pragmati
 approa
h would retain read-write a

ess to the array.We believe that the runtime system should be 
onservative during 
he
ked exe
ution.The opaque modi�er indi
ates that the 
aller had no permissions to the blo
k, but grants permissionsto the fun
tion being 
alled. For example, fopen(path, permissions) returns a pointer to an opaque FILEblo
k to its 
aller. The 
aller provides this pointer to other 
alls, su
h as fread() and fclose(), to identify the�le to be a
ted on. However, the 
aller should not examine the �le blo
k dire
tly.The transparent modi�er indi
ates that the 
aller has permissions to the blo
k, but the fun
tion is allowedto hold a referen
e to the blo
k. Ownership of the blo
k is retained by the 
aller, and permissions may varywhile the 
alled 
omponent holds its referen
e to the blo
k. For example, the key and value parameters to
g_hash_table_insert(key, value) in the GLIB library [98℄ would typi
ally be marked as transparent toindi
ate that the hash table will retain a referen
e to the blo
ks while allowing the 
aller to use the blo
ksin other data stru
tures.The tollgate, 
ooperating with the runtime, 
an dire
tly 
he
k the Reader, Writer, Independent, and
opaque modi�ers. This is not true for all of the modi�ers. The accepted, consumed, borrowed_ro, and47



Modi�er Dire
tion Before 
all During 
all After CallOwner Permissions Permissions Owner PermissionsCaller Fun
tion Caller Fun
tion Caller Fun
tion
consumed A 
alls U C ERW X X RW F X RWU 
alls A C RW X X ERW F X P
accepted A 
alls U F X RW X RW C P NU 
alls A F X P X P!ERW C RW X
borrowed_ro A 
alls U C R or ERW X R R C S XU 
alls A C RW X R R C RW X
borrowed_rw A 
alls U C ERW X X RW C ERW XU 
alls A C RW X X ERW C RW X
opaque A 
alls U F N RW N RW F N RWU 
alls A F N P N P F N P
transparent A 
alls U C P X P P C P PU 
alls A C RW X RW N C RW Nunmodi�ed A 
alls U F X RW X RW F N RWU 
alls A F X P X P F N PA 
alls U C P N P P C P NU 
alls A C RW N RW N C RW Nblo
k owner is indi
ated by:C blo
k owned by the 
aller's moduleF blo
k owned by the fun
tion's modulePermissionsE Thread has ex
lusive a

essN Referen
e with no permissionsP Permissions determined by the blo
k's poli
yR Read permissionS Same as before 
allW Write permissionX No referen
eModule statusA AnnotatedU UnannotatedTable 3.2: De�nition of modi�ers that de�ne tollgates. The accepted and consumed modi�ers shown abovethe break are su�
ient for 
ompositional 
he
king. The modi�ers below the break provide more 
ompletedo
umentation of the module's interfa
e. The terms 
aller and fun
tion refer to the 
aller and fun
tion'smodules. The 
aller 
olumn in the during 
all se
tion des
ribes the a

ess granted to blo
ks to other threadsin the 
alling module for the duration of the 
all. Unmodi�ed is a spe
ial 
ase, applying only to defe
tivetollgates, indi
ating the permission 
hanges for blo
ks that 
ross the tollgate without a modi�er.
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borrowed_rw modi�ers des
ribe the presen
e or absen
e of referen
es to regions. The tollgate and runtimehave no way to dire
tly 
he
k these dire
tives: they 
he
k a

esses to regions rather than tra
king referen
esto regions. Instead, the tollgate translates these dire
tives to permissions 
hanges that 
ontinue to be enfor
edafter exe
ution leaves the tollgate. As a result, any attempt to use an invalid referen
e will 
reate an error.We have 
reated a partial tollgate for the C runtime library. The dire
tives needed to 
reate this tollgateare shown in Listing 3.4.3.5.2 Blo
ks allo
ated behind a tollgateThe accepted modi�er allows the 
aller to re
eive blo
ks that were initially allo
ated by the fun
tion behindthe tollgate, 
alled the 
allee below. When this modi�er is absent blo
ks allo
ated by the 
allee 
an be pla
edinto the tollgate region immediately. In this 
ase, the presen
e of the memory allo
ation makes the 
allee a
writer of the tollgate region. Below we will dis
uss two 
ases that o

ur during 
he
ked exe
ution: handlingnew blo
ks when the fun
tion is marked as a writer and handling new blo
ks when the fun
tion is markedas either a reader or independent.WritersWhen a writer allo
ates a new blo
k, the blo
k is logi
ally part of the tollgate region. However, pla
ing theblo
k into the tollgate region immediately 
ompli
ates the implementation of the accepted keyword, sin
ethe tollgate will need to obtain ex
lusive a

ess to the blo
k while moving it to the 
aller's bound region.This would involve for
ing the other threads 
urrently behind the tollgate to issue Release(Write) a
tionsbefore the 
aller 
an exit the tollgate. For
ing this level of syn
hronization among threads is very expensiveand would greatly in
rease the expense of exiting tollgates.Instead, writers pla
e ea
h new blo
k into a phased-immutable region. If a se
ond thread attempts toread or write the blo
k, it will en
ounter an error. However, in this 
ase the error does not indi
ate anin
onsisten
y in the dire
tives, sin
e the new blo
k was logi
ally in the tollgate region. The se
ond threadsimply does a Grant(Write) on the blo
k and resumes exe
ution.When the �rst thread begins to exit from the tollgate, it identi�es the blo
ks that 
orrespond to acceptedkeywords. It then examines the � fun
tions for these blo
ks. If the � fun
tion indi
ates that no other threadshave a

essed the blo
k, the �rst thread is able to reassign the blo
k to the 
aller's region immediately. Ifthe � fun
tion indi
ates that other threads have a

essed the blo
k, the �rst thread 
onta
ts these threads,for
ing them to issue a Release(Write) for the region. When this pro
ess is 
omplete, the region 
an bereassigned. Any blo
ks allo
ated behind the tollgate that are not reassigned are added to the tollgate region.Reader or independentSome fun
tions that allo
ate blo
ks are not writers. For example, accepted char * strdup(char *string)allo
ates a blo
k of memory, 
opies string into the blo
k, and returns the blo
k to its 
aller. It is highlyunlikely that strdup() will a

ess any blo
ks in the tollgate region. Therefore, making strdup() a writer wouldunne
essarily propagate dependen
ies through the system.To handle this 
ase, we use a spe
ial tollgate for fun
tions that have the accepted modi�er but donot have the writer modi�er. In these fun
tions, we 
reate a phased-immutable region for every memoryallo
ation, pla
ing the newly 
reated blo
k into the region. The 
reation of the region issues a Grant(Write)on the region to the thread exe
uting behind the tollgate.If a se
ond thread, also exe
uting behind the tollgate, attempts to read from or write to the blo
k, wereport an error. The a

ess by the se
ond thread indi
ates that the �rst thread a
ted as a writer, making the49



modi�er that de�ned the tollgate in
onsistent. A developer 
an resolve this error by modifying the keywordto be writer. In some 
ases it is possible to resume the exe
ution of the system by imposing the writerkeyword at runtime.Assuming that the fun
tion exe
utes to 
ompletion, the tollgate pro
esses the accepted keyword, as-signing a new poli
y to the referen
ed blo
ks based on the bound region of the 
alling thread. Any blo
ksthat remain are not added to the tollgate region, sin
e this would make the fun
tion a writer. These blo
ksare owned ex
lusively by the thread that allo
ated them, but are a

essible only when the thread is be-hind the tollgate. Therefore the tollgate will issue a Release(Write) on these regions as it exits and issue aGrant(Write) on these regions when it reenters.3.5.3 Rules governing the implementation of tollgatesWe have adopted the following rules in our design and implementation of tollgates. These rules are designedto make the e�e
t of tollgates 
lear and to minimize the 
han
e that 
onsisten
y errors 
an arise as exe
utionmoves through tollgates.Every blo
k in the system is owned by either the 
aller or the 
alled module, but never both.For 
onvenien
e we 
all these blo
ks 
aller blo
ks and 
allee blo
ks. This rule has two impli
ations. First, itspe
i�es that there are no blo
ks in the system that are owned by neither the 
aller nor the 
allee. Se
ond, itasserts that at any given point in time all of the threads in a system agree on the owner of any given blo
k. Ifthis were not the 
ase threads running in a module without dire
tives 
ould possibly update a blo
k after itpassed through a tollgate to the system, 
ausing undete
ted 
onsisten
y failures in blo
ks prote
ted by soundpoli
ies even under 
he
ked exe
ution. Cat
hing these errors during 
he
ked exe
ution allows developers todete
t and resolve in
onsisten
ies in the tollgate for the module in question.Every a

ess to a 
aller blo
k is 
he
ked. This rule ensures that modules without dire
tives arenot able to violate the a

ess poli
y put in pla
e by the 
aller during 
he
ked exe
ution. These violationsindi
ate that the tollgate for the module does not a

urately re�e
t the module's behavior.A 
allee blo
k may be
ome a 
aller blo
k only when a thread 
rosses an a
tive tollgate.The blo
k must be referen
ed dire
tly or indire
tly by the annotated signature. The tollgate will assigna poli
y to the blo
k, taking the poli
y either from the modi�ers in the fun
tion's signature or the poli
ybound to the thread 
rossing the tollgate. The thread 
rossing the tollgate will gain ex
lusive a

ess to theblo
k before exiting the tollgate. This rule governs the behavior of the accepted modi�er, and ensuresthat 
allee blo
ks 
annot be
ome 
aller blo
ks spontaneously.A 
aller blo
k 
an be
ome a 
allee blo
k only when a thread 
rosses a tollgate. The blo
kmust be referen
ed dire
tly or indire
tly in the annotated signature. The 
aller must obtain ex
lusive a

essto the blo
k before entering the tollgate. The blo
k may not be thread-lo
al5 or immutable. We have usedthis rule only for routines that either destroy or relinquish 
ontrol of blo
ks, su
h as free() and fclose(). Thisrule governs the behavior of the consumed modi�er. Like the previous rule, it ensures that blo
ks 
annotbe
ome 
allee blo
ks spontaneously. It also pla
es responsibility on the 
aller for ensuring ex
lusive a

essto blo
ks 
rossing a tollgate. By for
ing the 
aller to obtain ex
lusive a

ess, we ensure that no other threadwill a

ess the blo
k as it 
rosses the tollgate. If these a

esses were allowed they may not be 
he
ked againstthe blo
k's poli
y, potentially 
ausing false negatives.A thread may a

ess a blo
k within a tollgate, but the a

esses must o

ur while the blo
kis a 
aller blo
k. Typi
ally blo
ks are not a

essed within tollgates. However, when a 
olle
tion of blo
kspasses through a tollgate and the ownership of the 
olle
tion is transferred, the tollgate may need to read�elds in one or more of the blo
ks to identify other blo
ks that must be transferred. For example, if a tree ispassed through a tollgate the tollgate would need to read the left and right pointers of ea
h node to identifynodes in the tree. We spe
ify that these a

esses must happen while the blo
k is prote
ted by a poli
y. As5Fun
tions that destroy blo
ks, su
h as free(), are treated as a spe
ial 
ase. See Se
tion Se
tion 5.3.3.50



I1 void call_annotated_module(consumed char *data);I3 char *blocks[3];I4 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;I5 int locked_buf = 0;I7 void *do_work(void *ctx) {I8 int id = ctx;I9 char *obj;I11 pthread_mutex_lock(&lock);I12 obj = blocks[locked_buf];I13 locked_buf = id;I14 pthread_mutex_unlock(&lock);I15 call_annotated_module(obj);I16 return NULL;I17 }I19 int main(int argc, char *argv[]) {I20 pthread_t c1, c2;I22 blocks[0] = malloc(1);I23 blocks[1] = malloc(1);I24 blocks[2] = malloc(1);I25 pthread_create(&c1, NULL, do_work, 1);I26 pthread_create(&c2, NULL, do_work, 2);I27 pthread_join(c1, NULL);I28 pthread_join(c2, NULL);I29 return 0;I30 }Listing 3.5: This is an example of ra
e-free 
ode that is non-deterministi
. blo
k[0℄ will always be passed tothe annotated module in this 
ode. However, the se
ond blo
k will either be blo
k[1℄ or blo
k[2℄, dependingon the interleaving of the two 
hild threads. A ra
e 
ould go undete
ted if developers attempt to 
omposemultiple runs of the 
ode that pass di�erent blo
ks to the tollgate. The lo
ked se
tion from I11-I14 ensuresthat there is no ra
e between the threads that attempt to allo
ate blo
ks.
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a result, 
he
ked exe
ution will dete
t any ra
es that 
ould o

ur as the blo
k passes through the tollgate.These a

esses indi
ate that the ownership transfer spe
i�ed in the tollgate is not sound, sin
e threads inboth the 
aller and the 
allee are attempting to a

ess the blo
k.When 
ombined, these rules allow us to de�ne a set of 
he
ked a

esses for ea
h thread. Ea
h thread'sset of a

esses depends solely on its a
tivity and the identify of blo
ks entering tollgates. As a result, the
ontent of ea
h thread's set is 
ompletely independent of thread interleaving.During 
he
ked exe
ution the runtime will not generate false positives, sin
e it 
he
ks only a

esses thata�e
t blo
ks 
urrently governed by a poli
y. Therefore, every error generated by the system 
an point todire
tives that established a poli
y for the blo
k, the permissions for the thread attempting to a

ess theblo
k, and the a

ess that violates the poli
y. Developers 
an then tra
e ea
h of these reports to a defe
t inthe system's implementation, one or more dire
tives, or one or more tollgates.We 
an trivially demonstrate that the runtime system avoids false negatives during 
he
ked exe
utionwhen all of the modules in a system have dire
tives. However, in systems with a
tive tollgates it is possibleto 
reate intermittent false negatives by manipulating the identity of blo
ks passed through tollgates. Anexample of 
ode that does this is shown in Listing 3.5.3.6 PromptnessPromptness is also a 
on
ern for attentive systems. Therefore, we have developed dire
tives to allow develop-ers to do
ument their assumptions about promptness in implemented systems. Our approa
h to promptnessdi�ers from our approa
h to 
onsisten
y. First, there is some ambiguity in the de�nition of promptness thatwe propose. The 
al
ulus of short and long operations that we propose in Se
tion 2.3 fo
uses on boundedand unbounded sequen
es of operations. However, from the 
lient's point of view, promptness is generallydetermined by measuring the exe
ution time of sequen
es in terms of a
knowledgment times. Our dire
tivesof promptness are based on the 
al
ulus of short and long operations. However, the runtime system 
he
ksthe dire
tives with referen
e to the a
knowledgment time.Se
ond, we do not treat a promptness failure as a fail-stop 
ondition. Instead, promptness failures shouldbe logged. The log entry should point to the dire
tives that were violated. Ideally the entry would alsoin
lude the 
all sta
k.There are several reasons to avoid treating promptness failures as a fail-stop 
ondition. First, unlike
onsisten
y failures, it is possible to allow a system to 
ontinue exe
uting after a promptness failure without
reating an additional threat to attentiveness. Se
ond, runtime systems are often able to address promptnessfailures by falling ba
k to more 
onservative forms of redire
tion that ignore the in
onsistent dire
tives.Finally, the design of many systems makes it mu
h more di�
ult to be 
on�dent that dire
tives related topromptness will be a

urate. Logging rather than stopping allows developers to be aggressive in adding andadjusting these dire
tives, thus allowing them to gain knowledge about their systems qui
kly. In addition,it allows them to leave 
he
king in pla
e in deployed systems, potentially providing debugging informationfor attentiveness failures in these systems.Below we will des
ribe three promptness dire
tives. The �rst allows developers to mark a sequen
e ofoperations that they believe will be short. The se
ond allows developers to inform the runtime system thata short sequen
e of operations should be atomi
 with respe
t to the stop operation. We will demonstratethat these annotations allow developers to 
reate algorithms that 
an be stopped while retaining partial
hanges by applying them to a sorting algorithm. Finally, we will des
ribe annotations that allow developersto identify short-duration lo
ks [43℄. Short duration lo
ks allow developers to 
reate systems that maintain
onsisten
y and promptness while sharing data between threads engaged in short sequen
es and threadsengaged in long sequen
es. 52



Promptness User Toolkit Appli
ationMoves the mouseMotionNotify, b=0, x=75, y=10 Update pointers on rulerReturn to toolkitA
k. TimeTable 3.3: The toolkit and appli
ation must 
ooperate when pro
essing events for simple mouse movements.The promptness of the system depends on the appli
ation returning within the a
knowledgment time.3.6.1 Short se
tionsThe need for short se
tions be
omes apparent when we examine Figure 3.1, whi
h shows an abstra
t modelof a toolkit based appli
ation. The arrows in this model show the path normally taken by requests inthe appli
ation. The appli
ation shown here uses only a single thread, and is therefore very vulnerable topromptness failures.When viewed from the perspe
tive of attentiveness, the system re
eives a stream of events from theuser, uses the toolkit to interpret these events and 
reate a request, and �nally passes the request to theappli
ation-spe
i�
 
ode via a 
allba
k. The abstra
t path of this exe
ution is shown in Table 3.3. Sin
e thetoolkit is single threaded, shares a thread with the 
allba
k, and must exe
ute before requests 
an enter thesystem, the promptness of the entire system depends on this 
allba
k returning within the a
knowledgmenttime.For example, the model given above 
orresponds to the ar
hite
ture of Inks
ape, one of our 
ase studies.Inks
ape is a ve
tor graphi
s editor and does not bound the 
omplexity of do
uments. Therefore, users 
anprodu
e promptness failures in Inks
ape by running 
ommands on 
omplex do
uments. For instan
e, a userdoing a Sele
tAll, followed by a Copy, followed by a Paste 
an 
ause the user interfa
e of Inks
ape to lo
kfor several minutes.While 
areful use of threading 
ould redu
e the risk of an attentiveness failure, threading 
annot beapplied arbitrarily to this system. Spe
i�
ally, most GUI toolkits require that the 
ode in the toolkit andthe appli
ation's 
allba
ks be exe
uted by a single thread. This 
onstraint allows toolkit designers to avoidthe risk of deadlo
ks and in
onsisten
ies that o

ur in multi-threaded toolkits due to reentrant 
alls fromthreads [52℄.Listing 3.6 shows dire
tives that en
ode this requirement. This 
ode is taken from the GTK+ toolkit. We
hose to use the gtk_propagate_event() fun
tion be
ause it is the last fun
tion within the toolkit that is guar-anteed to be on the 
all sta
k of every appli
ation 
allba
k invoked by the toolkit. The begin_short_section()dire
tive indi
ates that exe
ution must rea
h the end_short_section() dire
tive well within the a
knowledg-ment time for the appli
ation. These dire
tives 
an be nested. The timing 
onstraint will always apply tothe outermost pair of dire
tives. However, when reporting in
onsisten
ies the runtime system should reportevery short se
tion that violated the 
onstraint. By providing this information, the runtime system allowsdevelopers to use nested short se
tions to diagnose the underlying 
ause for a promptness failure in their ap-pli
ation while allowing toolkit developers to pla
e dire
tives aggressively to highlight all of the promptnessfailures 
aused by defe
tive 
allba
ks.This example also illustrates the need to pla
e these dire
tives spe
ulatively. Mouse movement is a verysimple operation. In fa
t, the 
allba
k registered by Inks
ape needs only to update two markers that runalong the horizontal and verti
al rulers displayed at the sides of the do
ument to re�e
t the new position ofthe mouse. Therefore, it is fairly 
lear, based on the semanti
s of the request, that this 
all will be short.However, at the level of implementation this 
all involves the 
omplex 
all graph shown in Figure 3.2. This
all graph has been simpli�ed so that it shows only 
alls that 
ross between Inks
ape and the libraries thatit uses, in
luding the GTK+ toolkit. Fun
tions are shown as boxes, and four boxes have been highlighted.53



EV23 /**EV24 * gtk_propagate_event:EV25 * @widget: a #GtkWidgetEV26 * @event: an eventEV27 *EV28 * Sends an event to a widget, propagating the event to parent widgetsEV29 * if the event remains unhandled. Events received by GTK+ from GDKEV30 * normally begin in gtk_main_do_event(). Depending on the type ofEV31 ...EV32 *EV33 **/EV34 voidEV35 gtk_propagate_event (GtkWidget *widget, GdkEvent *event) {EV36 ...EV37 begin_short_section();EV38 if ((event�>type == GDK_KEY_PRESS) || (event�>type == GDK_KEY_RELEASE)) {EV39 ...EV40 handled_event = gtk_widget_event (widget, event);EV41 ...EV42 }EV44 /* Other events get propagated up the widget treeEV45 * so that parents can see the button and motionEV46 * events of the children.EV47 */EV48 if (!handled_event) {EV49 while (TRUE) {EV50 ...EV51 handled_event = gtk_widget_event (widget, event);EV52 if (!handled_event && widget)EV53 g_object_ref (widget);EV54 elseEV55 break;EV56 }EV57 }EV58 end_short_section();EV59 ...Listing 3.6: Dire
tives to express the promptness requirements for 
allba
ks in a general way from withinthe toolkit.
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X11
XNextEvent

591×

GTK
Glib::ustring::at

12766×

GTK
Glib::ustring::ustring

25532×

GTK
gtk_icon_size_lookup

630×

GTK
g_slist_prepend

51139×

GTK
gtk_signal_emit

1100×

inkscape
sp_desktop_widget_event

550×

inkscape
sp_vruler_motion_notify

1×

inkscape
sp_desktop_root_handler

550×

inkscape
SPDesktopWidget::getType

4×

inkscape
sp_dt_vruler_event

1×

inkscape
sp_canvas_motion

547×

inkscape
event_after_cb

556×

inkscape
sp_canvas_crossing

3×

inkscape
sp_button_process_event

3×

GTK
gtk_widget_get_type

20423×

GTK
g_type_check_class_cast

558×

GTK
g_type_check_instance_cast

20525×

GTK
gtk_ruler_get_type

1649×

GTK
gtk_ruler_draw_pos

1099×

GTK
gtk_label_get_type

3959×

GTK
Glib::ustring::operator=

41507×

GTK
g_ascii_strtod

534×

GTK
g_strfreev
15977×

GTK
Glib::ustring::ustring

13338×

GTK
Glib::ustring::compare

548×

GTK
g_free
91291×

GTK
gdk_event_copy

1633×

GTK
gtk_label_set_markup

1686×

GTK
Glib::ustring::c_str

25541×

GTK
gdk_event_get_time

1095×

GTK
gdk_event_free

2264×

GTK
g_source_remove

1112×

GTK
g_strsplit
12766×

GTK
Glib::ustring::rfind

25532×

GTK
Glib::ustring::ustring

25532×

GTK
Glib::ustring::~ustring

77424×

GTK
g_quark_from_string

761023×

GTK
g_strdup_printf

1098×

GTK
Glib::ustring::ustring

13088×

GTK
g_type_check_instance_is_a

279922×

GTK
gdk_window_get_geometry

1×

GTK
gdk_window_get_pointer

5×

GTK
gtk_object_get_type

5514×

GTK
Glib::Timer::reset

1×

GTK
Glib::Timer::Timer

1×

GTK
Glib::Timer::stop

1×

GTK
gtk_object_ref

1100×

GTK
gtk_object_unref

1100×

GTK
Glib::Timer::elapsed

546×

GTK
Glib::Timer::start

1×

inkscape
sp_vruler_draw_pos

550×

GTK
gdk_draw_line

3521×

GTK
gdk_draw_drawable

1136×

GTK
g_malloc
71975×

inkscape
sp_hruler_draw_pos

549×

GTK
Glib::ustring::compare

3731×

GTK
g_filename_from_utf8

80×

GTK
Gtk::Main::run

0×

inkscape
snooper
611×

inkscape
icon_prerender_task

80×

inkscape
sp_event_context_snap_watchdog_callback

2×

GTK
gtk_propagate_event

611×

GTK
gtk_icon_theme_get_default

82×

GTK
Glib::ustring::operator+=

90×

GTK
gtk_icon_theme_has_icon

82×

GTK
g_slist_remove

642×

GTK
gtk_stock_lookup

80×

GTK
g_utf8_validate

4664×

GTK
gdk_pixbuf_new_from_data

80×

GTK
Gtk::IconTheme::add_builtin_icon

80×

GTK
g_file_test

80×

GTK
g_realloc
16464×

GTK
g_hash_table_lookup

812280×

GTK
Glib::wrap

80×

GTK
Glib::ObjectBase::unreference

80×

GTK
Glib::ustring::operator+=

90×

inkscape
main
0×

inkscape
sp_canvas_motion

547×

GTK
gtk_signal_emit

1100×

GTK
gtk_propagate_event

611×

X11
XNextEvent

591×

Figure 3.2: Intera
tions between the toolkit and appli
ation are 
omplex. This is a simpli�ed 
all graphshowing 
alls between Inks
ape and its toolkit for a mouse movement. The do
ument is not 
hanged as aresult of the movement.The GTK+ toolkit uses XNextEvent() to re
eived new events from the user. These events are pro
essed,eventually resulting in a 
all to gtk_propagate_event(). The gtk_signal_emit() 
all invokes a 
allba
k thathandles the event, registered by either the appli
ation or by GTK+. Finally, the sp_canvas_motion()
allba
k in Inks
ape is the �rst point in the 
ode where we 
an identify the semanti
s of the request in the
ode.The numbers shown at the bottom of the highlighted boxes indi
ate the number of times that a fun
tionis 
alled. Note that there are approximately two gtk_signal_event() 
alls for every sp_canvas_motion() 
all,but that the number of sp_canvas_motion() 
alls is approximately the same as the number of XNextEvent()
alls. This, along with the arrows entering gtk_signal_event(), suggests that 
ode in Inks
ape forms ase
ond event, and re-dispat
hes it through the GTK+ toolkit. Indeed, preliminary analysis of the 
allgraph indi
ates that ea
h mouse movement 
auses 
ontrol to 
ross the Inks
ape-GTK+ boundary 201 times.Notable examples in
lude:1. GTK+ 
alls Inks
ape with the mouse-moved event2. Inks
ape 
alls GTK+ to update arrows on the rulers showing the mouse position3. GTK+ 
alls Inks
ape's se
ond mouse-motion 
allba
k4. Inks
ape 
alls the toolkit to emit signals to other widgets5. GTK+ dispat
hes some of these events to Inks
ape's 
ustom ruler widgets6. Inks
ape's ruler widgets 
all inherited methods in GTK+7. GTK+ 
alls overridden drawing methods in Inks
ape's ruler widgets8. Inks
ape 
alls low-level drawing primitives in GTK+This 
omplexity is not spe
i�
 to Inks
ape: resear
hers have dis
overed that developers struggle to answersimilar 
ontrol-�ow questions about other systems [68, 1℄. In light of this, our runtime system does nottreat in
onsisten
ies in promptness dire
tives as a fail-stop 
ondition. Instead, it logs the in
onsisten
y andallows 
omputation to pro
eed. In some 
ases the runtime system may not be able to redire
t the requests inquestion. In other 
ases it will fall ba
k to a more 
onservative, but also more expensive, form of redire
tionsu
h as rolling ba
k to a 
he
kpoint taken before the request was started. Redire
tion is dis
ussed in greaterdetail in Se
tion 5.1. 55



3.6.2 Duration of blo
kingThe blo
king asso
iated with guarded regions 
an present a threat to promptness. To allow threads engagedin short operations, su
h as those involved in a
knowledging requests, to use lo
ks, we allow developers toidentify short duration lo
ks [43℄. These lo
ks 
an be held only for short durations of time.Developers use the short_duration_lock(void *lock) dire
tive to indi
ate that a lo
k is only held for shortperiods of time. On
e this dire
tive has been issued for a lo
k it 
annot be removed. Issuing the dire
tivemultiple times for the same lo
k does not indi
ate an error in the system's model.During 
he
ked exe
ution the runtime system will log an in
onsisten
y when threads attempt to a
quirelo
ks that have not been marked as short duration lo
ks while exe
uting in short se
tions of 
ode. Inaddition, the runtime will log 
ases where a thread holds a short duration lo
k for a long period of time asan in
onsisten
y.3.7 Redire
tion and mediatorsIn this se
tion we des
ribe the dire
tives that o�er an alternative to assigning the responsibility for managing
onsisten
y to the runtime system. Normally, the runtime system ensures the 
onsisten
y of the system'sstate during redire
tion by rolling ba
k the 
ontents of regions. This approa
h helps developers to in
orporatethird-party 
ode that does not dire
tly support redire
tion by removing all eviden
e of the redire
ted requestfrom the system's state. However, the runtime 
annot resolve every 
onsisten
y failure. For example, a systemmay initiate 
ommuni
ation with a 
ollaborating system, su
h as an IMAP server, on behalf of a request.If the request is later rolled ba
k, the runtime has no way of undoing the e�e
ts of the 
ommuni
ation.Developers handle this problem by implementing mediators�
omponents that 
oordinate redire
tion with
ollaborating systems. Mediators must retain information about redire
ted requests to 
ompensate for theire�e
ts in future 
ommuni
ation. To implement a mediator developers must:� Identify the state that must be preserved� Maintain the 
onsisten
y of the state� Allow timely redire
tion� Address problems that 
an o

ur when 
ode is shared by mediators and other parts of the systemIn this se
tion we des
ribe dire
tives that allow developers to address all of these problems. We will use the
qsort() fun
tion shown in Listing 3.7 to dis
uss atomi
 se
tions. The qsort() fun
tion is long, varying betweenO(n log(n)) and O(n2) where n is the number of elements in the array. This fun
tion has been identi�edas the 
ause of attentiveness failures in a CD database [31℄. We will des
ribe the implementation of thisfun
tion in detail below, after using its interfa
e to motivate the dire
tives that support atomi
 se
tions.Developers 
an identify the state that must be preserved by pla
ing it into regions and identifying theseregions to the runtime system. To identify the regions, threads exe
ute the no_rollbacks(region_t r) dire
tive,informing the runtime system that the region should not be modi�ed during redire
tion.There is a risk that a request 
ould leave in
onsistent 
hanges in the region when it rolls ba
k. To avoidproblem, developers use dire
tives to delay rollba
k for a short period of time as they update the region.These dire
tives 
reate atomi
 sequen
es of 
ode that will always exe
ute to 
ompletion on
e they begin toexe
ute. The presen
e of atomi
 sequen
es delays redire
tion, potentially introdu
ing a risk to promptness.Therefore, atomi
 sequen
es must also be short sequen
es. Threads identify the beginning of an atomi
sequen
e by exe
uting the start_atomic() dire
tive and exe
ute the end_atomic() dire
tive to mark the endof a sequen
e. It is possible to nest these dire
tives. When this happens, the outermost pair of dire
tivesde�nes the atomi
 se
tion. 56



Q1 static void swap(char * restrict a, char * restrict b, size_t sz) {Q2 start_atomic();Q3 while(sz��) {Q4 char t=*a;Q5 *a++ = *b;Q6 *b++ = t;Q7 }Q8 end_atomic();Q9 }Q11 static inline int atomic_compare(int (*compare)(const void *, const void *), const void *a, const void *b) {Q12 start_atomic();Q13 int rval = compare(a, b);Q14 end_atomic();Q15 return rval;Q16 }Q18 static inline void qsort_inner(char *base, size_t nel, size_t width, int (*compare)(const void *, const void *)) {Q19 if ((nel == 2) && (atomic_compare(compare, base, base + width) > 0))Q20 swap(base, base + width, width);Q21 if (nel < 3)Q22 return;Q23 char *left = base;Q24 char *right = base + nel * width;Q25 while(left + width != right) {Q26 while ((left + width != right) && atomic_compare(compare, left + width, base) <= 0)Q27 left += width;Q28 while ((left != right � width) && atomic_compare(compare, base, right � width) <= 0)Q29 right �= width;Q30 if (left + width == right)Q31 break;Q32 swap(left + width, right � width, width);Q33 left += width;Q34 right �= width;Q35 }Q36 swap(base, left, width);Q37 qsort_inner(base, (left � base) / width, width, compare);Q38 qsort_inner(right, (base + nel * width � right) / width, width, compare);Q39 }Q41 void gsh_qsort(void *base, size_t nel, size_t width, int (*compare)(const void *, const void *)) {Q42 atomic_sections_are_marked();Q43 qsort_inner((char *)base, nel, width, compare);Q44 atomic_sections_restore();Q45 }Listing 3.7: An implementation of the qsort() routine with atomi
 blo
ks. The routine 
an be stopped ina short period assuming that 
ompare() is short and the size of elements is bounded. When stopped, thelist will be partially sorted, but all of the elements will be present. The dire
tives added to the 
ode areshown in bold type.
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It is di�
ult to apply atomi
 se
tions to 
ode that is shared between mediators and other parts of thesystem. The qui
k sort fun
tion, qsort() provides a model of these problems. The fun
tion's signaturea

epts an unbounded6 number of elements, an unbounded element size, and a pointer to a 
omparisonfun
tion 
alled compare(). The 
urrent implementation pla
es the compare() fun
tion in an atomi
 se
-tion, but 
annot be 
ertain that compare() will return in a bounded amount of time. Sin
e the 
omparefun
tion is provided by the 
aller, the developer of qsort() 
annot ensure that the fun
tion's exe
ution timewill be bounded. To resolve this problem, we require the 
aller to a
tivate the atomi
 se
tions by exe
ut-ing the atomic_sections_are_marked() dire
tive. In exe
uting this dire
tive, the 
aller is making multiple
ommitments:� The compare() fun
tion is short� The size of the elements in the array is bounded, making swap() short� The 
aller is willing to a

ept a reordered, but still 
omplete, array if a request is redire
ted within
qsort()Before returning from the mediator, the 
aller issues the atomic_sections_restore() dire
tive. Assuming thatthere is no nesting, this has the e�e
t of dea
tivating the atomi
 sequen
es, making the start_atomic() and

start_atomic() dire
tives embedded in qsort() noops.It is possible to stop qsort() promptly, leaving the list partially sorted, when the 
aller is willing to makethe 
ommitments outlined above. There are two risks to 
onsisten
y in the implementation of qsort() shownin Listing 3.7:Stopping swap() may 
orrupt the entries being ex
hanged. This happens be
ause swap() modi�es thearray provided by the 
aller. This risk is resolved by pla
ing a start_atomic() at Q2, the beginning of theswap() fun
tion and pla
ing an end_atomic() at Q8. This atomi
 blo
k is known to be short be
ause any
aller that a
tivates the atomi
 se
tion 
ommits to bounding the size of the element.Stopping compare() 
ould leave in
onsisten
ies in the system's state if the fun
tion has side-e�e
ts.7 Thisrisk is resolved by pla
ing an atomi
 se
tion around the compare() fun
tion at lines Q12 and Q14. The 
allto the 
aller's compare() fun
tion is the only operation in the blo
k, and the 
aller 
ommits to making thisa short fun
tion when it a
tivates the atomi
 blo
k. Therefore, the blo
k is known to be short.All of the other state 
hanges in the implementation o

ur in lo
al variables. Sin
e the lo
al variables areabandoned when qsort() returns, they pose no risk to the system's 
onsisten
y when qsort() is interrupted.An example of a 
all with atomi
 se
tions marked is given in gsh_qsort() atomic_sections_are_marked()and dire
tives. These dire
tives are shown at line Q42 and Q44 in Listing 3.7.3.8 Case studiesWe evaluated our dire
tives by applying them to three examples taken from the PARSEC ben
hmark suite:bla
ks
holes, swaptions, and x264. The ben
hmarks are relatively self-
ontained, relying only on the
ode in the ben
hmark and the C runtime library. We applied dire
tives to all of the shared heap state inthe ben
hmarks and 
reated a tollgate for the C runtime library.6Te
hni
ally, this is not true: both the element size and also the number of elements are bounded by the range of size_t.However, the 4GB bound pla
ed on these parameters by 32-bit systems is e�e
tively unbounded given the 
urrent state ofhardware and the timing requirements for human-system intera
tion.7In pra
ti
e this is almost never the 
ase. The interfa
e to qsort() spe
i�es that the compare() fun
tion is not allowed tomodify elements of the array being sorted. In addition, the implementer of the compare() fun
tion 
annot rely on the 
allingpatterns of the qsort() routine. Therefore, the fun
tion would need to gain a

ess to the system's state via thread-lo
al storageor global variables. We deal with this 
ase here for 
ompleteness.58



Poli
ies employedSerial thread 
on�nement: whole blo
ks 2 0.4%Serial thread 
on�nement: sli
eable arrays 1 0.2%Modeling dire
tivesWhole blo
k transfers 8 1.6%Array sli
e transfers 4 0.8%Publishes of immutable blo
ks 2 0.4%Overhead dire
tivesLines 
hanged for sli
eable arrays 3 0.6%Support 
ode 17 3.5%TotalsModi�ed lines 37 7.6%Unmodi�ed lines 453 92.5%Table 3.4: Summary of 
hanges to bla
ks
holesbla
ks
holesbla
ks
holes 
omputes the pri
es of a portfolio of European options by numeri
ally 
omputing a partialdi�erential equation. A master thread distributes the portfolio to a series of worker threads whi
h workindependently.Sin
e the threads are mostly independent, the annotation e�ort for the appli
ation is relatively light, as
an be seen in Table 3.4. The ben
hmark provides a read-only array des
ribing options. Worker threads areassigned a range of options to pri
e when the system is initialized, and write their results into a sli
e of aresults array after 
omputing the pri
es for their options. Most of the lines of support 
ode are for debuggingoutput that we added to ensure that the ben
hmark was working. We made one non-annotation 
hange tobla
ks
holes to eliminate an extra string 
opy of the option type. This 
hange had a negligible e�e
t onthe performan
e numbers.swaptionsswaptions runs a Monte Carlo simulation to 
ompute the pri
e of a portfolio of swaptions. As in bla
ks
-holes, a master thread splits the portfolio into segments and then starts long-running worker threads toparallelize the 
omputation.Table 3.5 shows that swaptions makes use of serial thread 
on�nement. We instrumented swaptionsbefore we developed sli
eable arrays. The dire
tives in swaptions manually 
reate a sli
eable array bypadding the elements of an array to page boundaries, allo
ating an array, and then using dire
tives to moveea
h index of the array into its own transferable region.Unlike bla
ks
holes, the worker threads in swaptions 
reate and free a large number of thread
on�ned data stru
tures. Our 
urrent runtime system does not automati
ally support re
y
ling memory,and so our dire
tives added support for re
y
ling these data stru
tures while maintaining thread-
on�nement.We dis
uss the performan
e impli
ations of these 
hanges in more detail in se
tion Se
tion 5.2.7.x264x264 is a lossy video en
oder that is 
apable of pro
essing multiple frames at one time. A master threadspawns a new worker thread for ea
h frame, giving it referen
es to the un
ompressed data for its frame andreferen
es to prior frames, some of whi
h are still being en
oded by other workers. The workers employ a59



Poli
ies employedSerial thread 
on�nement: whole blo
ks 1 0.1%Modeling dire
tivesWhole blo
k transfers 4 0.2%Conversion to sli
eable array (manual) 1 0.1%Support 
ode 91 5.0%TotalsModi�ed lines 97 5.4%Unmodi�ed lines 1714 94.6%Table 3.5: Summary of 
hanges to swaptions

ombination of striping and pipelining by periodi
ally broad
asting the number of s
anlines that they haveen
oded. Workers en
oding later frames then read these s
anlines. This approa
h allows the workers toen
ode frames in parallel, relying on information about the en
oding of former frames while also avoidingdata ra
es.When we attempted to annotate the version of x264 in
luded in PARSEC (version r1047), we found apla
e where the master thread read from the region transferred to the worker after the worker was started.The worker writes to this part of its region after it has started. The 
ombination of 
ommand line parametersused in the PARSEC ben
hmarks does not trigger this ra
e. Therefore it would not be dete
ted by dynami

he
kers. However, this means that developers 
ould not 
onsistently annotate this 
ode. We noti
ed thatthe o�ending 
ode had been eliminated in a later version (r1185) of x264, so we rolled forward to this versionand 
ompleted our dire
tives.Modeling the sharing rules of x264 required extensive dire
tives, as shown in Table 3.6. Mu
h of the
omplexity of the model is a dire
t 
onsequen
e of the 
omplexity of x264's data stru
tures: frames arerepresented by 8 di�erent shared arrays. Some of these arrays dire
tly represent s
anlines and pixel values.Others represent ma
roblo
ks, a square group of 256 adja
ent pixels.The support 
ode is largely 
on�ned to four lo
ations in x264. First, new frames are typi
ally allo
atedby the master thread as it initializes the worker thread. Therefore, the master thread must release the read-write a

ess that it a
quires to the frame before transferring it to the worker. Se
ond, the worker threadsmust a
quire permissions to their frames before they read and write to them and release permissions beforeterminating. We handle this by inserting a spe
ial wrapper around the 
ode that implements the workerthread.Third, frame writers must release write permissions to sli
es of the 8 shared bu�ers that represent theframe before updating the number of s
anlines 
ompleted. We added this 
ode to the routine that updatesthe number of s
anlines 
ompleted. This 
ode is 
ompli
ated by two fa
tors. The ranges are di�erentfor di�erent bu�ers, in part be
ause of the di�eren
e in data types in the bu�ers. In addition, some of thebu�ers are shared on a page-by-page basis to allow referen
es to the bu�er to be passed to assembly languageroutines. However, multiple s
anlines frequently share the same page. If some of the 
ompleted s
anlinesshare pages with in
omplete s
anlines we retain write a

ess to the page and round the number of s
anlines
ompleted down to ensure that readers do not attempt to a
quire the page. This 
ode would have beenunne
essary if the developers of x264 had 
reated individual blo
ks for s
anlines.Finally, we added 
ode to the routines that readers use to 
he
k the progress of shared bu�ers. When areader observes the number of s
anlines 
ompleted we automati
ally obtain read a

ess to the relevant pagesin the frame. The logi
 in this 
ode 
losely follows the logi
 used by writers.60



Poli
ies employedThread-lo
al 2 0.00%Serial thread 
on�nement: whole blo
ks 8 0.01%Serial thread 
on�nement: sli
eable arrays 8 0.00%Shared: immutable 2 0.00%Shared: thread safe 2 0.00%Guarded 1 0.00%Modeling dire
tivesWhole blo
k transfers 55 0.10%Array sli
e transfers 24 0.04%Publishes of immutable blo
ks 2 0.00%Overhead dire
tivesSplitting multi-poli
y blo
ks 59 0.11%Lines 
hanged for sli
eable arrays 111 0.21%Support 
ode 444 0.82%TotalsModi�ed lines 718 1.33%Unmodi�ed lines 53,144 98.67%Table 3.6: Summary of 
hanges to x264Other PARSEC ben
hmarks examinedWe evaluated several other ben
hmarks as part of this work. Canneal is designed to allow ra
es and thenre
over from them. Sin
e all of our poli
ies involve avoiding data ra
es, we would need to treat all of theshared state as shared thread-safe.The blo
ks in stream
luster use di�erent 
on
urren
y poli
ies for di�erent �elds. We believe that wewill eventually be able to apply our dire
tives to stream
luster by splitting these blo
ks.We also examined fluidanimate, and have been able to annotate it with our te
hnique. However, thevery large number of �ne-grained lo
ks in the system 
auses resour
e allo
ation problems in our dynami

he
king.These ben
hmarks may not be representative of many systems that we will examine for attentiveness.First, the ben
hmarks are transformational systems [53℄, a

epting input, doing some 
omputation, and gen-erating output. By de�nition attentive systems are rea
tive, running in a 
ontinuous loop and transformingtheir internal state in response to messages from their 
lients. Therefore, threading in these ben
hmarks isprimarily used to diving work among multiple pro
essors. As a result, the ben
hmarks make extensive useof array sli
ing and �ne-grained lo
ks. While some parts of attentive systems may adopt similar designs,we expe
t that the primary use of threading in these systems will be to provide prompt responses to theuser while the system is engaged in long operations. Therefore, attentive systems are more likely to rely onlong-duration lo
king and thread-lo
al storage. As a result, the annotation e�ort for attentive systems maybe lower than the ben
hmarks des
ribed in this 
hapter.3.8.1 Limitations of the dire
tivesGlobal and stati
 variables present a parti
ular 
hallenge to our dire
tives, sin
e they are allo
ated andinitialized before the appli
ation begins to exe
ute. Therefore, we added associate_global(), a dire
tive thatpla
es a global variable into the region bound to the thread exe
uting the dire
tive. In some 
ases, su
has assigning a poli
y to stati
 variables within a fun
tion, it may not be possible for developers to ensurethat the associate_global() happens a single time. We permit multiple 
alls for a single global or stati
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variable if the poli
y is identi
al for all of the 
alls. By default we assume that global variables are all sharedthread-safe. This is in
onsistent with our default for blo
ks on the heap. In the future, we would like tomake the default for global variables thread-lo
al, assigning them to the initial thread.We are also unable to assign poli
ies to blo
ks allo
ated on thread sta
ks. Some threaded appli
ations,in
luding the bla
ks
holes ben
hmark, use allo
ations on the main thread's sta
k to allo
ate mutexes,
ondition variables, thread des
riptors, and the appli
ation-de�ned data that is passed to new threads. Inaddition, the pthreads library also does some of the initialization of the 
hild's sta
k from the parent threadbefore starting the 
hild.Two fa
tors make it di�
ult to apply poli
ies to blo
ks that are allo
ated on the sta
k. First, the
ompiler automati
ally assigns these blo
ks an address based on the 
urrent sta
k pointer. These addressesare rarely page-aligned, preventing us from using te
hniques that redu
e the 
ost of 
he
king the dire
tives,as des
ribed in Se
tion 5.2. Se
ond, the blo
ks will automati
ally be deallo
ated if the parent thread returnsfrom the fun
tion that originally 
reated the blo
k. There are several possible solutions to this problem. Our
urrent re
ommendation is to move all shared blo
ks into the heap, managing their lifetime with malloc()and free() 
alls. In the future we may be able to use C++ destru
tors to dete
t 
ases where shared blo
ksare deallo
ated.3.9 Con
lusionIn this 
hapter we have introdu
ed dire
tives, an approa
h to 
onne
ting the design of an attentive systemto its 
on
rete implementation. We have des
ribed three 
lasses of dire
tives, one fo
used on 
onsisten
y,one fo
used on promptness, and a third fo
used on the relationship between 
onsisten
y and promptness inattentive systems. We have also introdu
ed tollgates, a way for developers to maintain many of the bene�tsof dire
tives in systems 
onstru
ted by 
ombining third-party 
omponents. Finally, we have des
ribed 
asestudies that evaluate the dire
tives fo
used on 
onsisten
y by applying them to a series of third-party
on
urren
y ben
hmarks.In Chapter 4 we apply these dire
tives when reasoning about the design and implementation of systems.In Chapter 5 we will des
ribe our 
urrent, partial implementations of runtime systems that support trustedand 
he
ked exe
ution. The runtime that supports trusted exe
ution attempts to avoid 
onsisten
y failuresby rolling ba
k the entire state of the system. Therefore, it does not support the dire
tives that des
riberegions and 
onsisten
y. Our experien
e with this runtime system motivated the �ner-grained approa
h tomanaging 
onsisten
y des
ribed in this 
hapter. The 
urrent implementation of 
he
ked exe
ution uses thedire
tives that we have des
ribed for regions, poli
ies, and tollgates. It does not yet support redire
tion, andtherefore does not implement the dire
tives for requests, dependen
ies, promptness, and atomi
 se
tions.

62



Chapter 4Design for attentivenessThe design of an attentive system should 
on�ne responsibility for attentiveness to a small number of
omponents. Con�ning responsibility for attentiveness both fa
ilitates the reuse of 
omponents, espe
ially
omponents that do not dire
tly support attentiveness, and also allows developers to fo
us their investigationof attentiveness failures. It is di�
ult to address attentiveness 
on
erns within individual 
omponents. First,the 
onstraints on promptness are often spe
i�
 to a parti
ular system, and the e�e
t of any given 
omponenton promptness is determined by the way that it is integrated into the system. Se
ond, maintaining inter-
omponent 
onsisten
y requires 
ollaboration among multiple 
omponents. Attempting to support this
ollaboration within a 
omponent would 
reate inter-
omponent dependen
ies that would limit opportunitiesfor reuse. Unfortunately, the designs of many systems delegate, either intentionally or unintentionally, theresponsibility for maintaining promptness and 
onsisten
y to their 
omponents. Developers using thesedesigns 
annot improve the attentiveness of these systems while avoiding 
hanges to 
omponents.In this 
hapter we 
onsider the relationship between attentiveness and design in three stages. First, weanalyze �ve systems and one network proto
ol to illustrate the 
onne
tion between design and attentiveness.Next we des
ribe two attempts to retro�t attentiveness into one of the systems by modifying the GTK+toolkit, one of the 
omponents in the system. These attempts point to the need for system-level designto support attentiveness. Then, we outline a system-level design for attentive systems that addresses theproblems that we found in the previous systems. This design assumes the presen
e of runtime support, whi
hwe dis
uss in more detail in Chapter 5. We 
on
lude by applying the design to a simple 
lient-server systemand demonstrating that the design addresses the attentiveness failures observed in the system.4.1 Assessment of designsWe 
hose to examine four systems that 
over di�erent parts of the design spa
e for attentive systems:� Inks
ape [60℄: a toolkit-based ve
tor graphi
s editor� A simple 
lient-server system written with Java Remote Method Invo
ation (RMI) [96℄� Thunderbird [99℄: a toolkit-based email 
lient that uses the IMAP proto
ol� RoundCube [85℄: a web-based email 
lient that uses the IMAP proto
olInks
ape is representative of a group of systems that must restri
t the use of threading due to the presen
eof non-thread-safe 
ode. The RMI 
lient-server system allows us both to explore attentiveness in a systemthat does not involve dire
t human-
omputer intera
tion and also to 
onsider the e�e
t of 
ommuni
ationproto
ols on attentive systems. Thunderbird is highly threaded, allowing us to explore attentiveness failures63



Figure 4.1: Diagram showing the stru
ture of Inks
ape from the perspe
tive of threading. This diagramshows the system in an idle state, with the thread exe
uting in the toolkit. Sin
e there is only one thread,attentiveness failures o

ur if any request's pro
essing time ex
eeds the a
knowledgment time.that o

ur in threaded systems. Finally, RoundCube provides similar fun
tionality to Thunderbird but usesweb te
hnologies that isolate the user interfa
e, whi
h runs in the web browser, from most of the pro
essing,whi
h runs on the web server. This separation allows RoundCube to over
ome many of the problemsasso
iated with Thunderbird. However, RoundCube 
ontinues to su�er from attentiveness failures.4.1.1 Inks
apeThe design of Inks
ape is partially di
tated by GTK+ [47℄, the GUI toolkit that provides Inks
ape's userinterfa
e. GTK+ imposes restri
tions on the 
ontrol �ow of appli
ations that use it, requiring the appli
ationto implement the standard intera
tion 
y
le [63℄. First, the appli
ation registers one or more 
allba
ks withthe toolkit. Next, the appli
ation begins the standard intera
tion 
y
le by 
alling gtk_main() to initializeGTK+. The fun
tion does not return until the appli
ation terminates, allowing the toolkit to use the threadthat initialized the toolkit to pro
ess events. In the dis
ussion below we 
all this �the toolkit thread.� Whilethe appli
ation is running the toolkit invokes one or more of the 
allba
ks registered by the appli
ation toinform it of new requests, a property 
alled inversion of 
ontrol [62℄.During the standard intera
tion 
y
le the appli
ation must not make un
oordinated 
alls to GTK+ fromother threads. The appli
ation 
oordinates 
alls with the toolkit thread either by 
alling gdk_threads_enter()and gdk_threads_leave()1 or by making the 
alls from 
allba
ks, whi
h are always exe
uted by the toolkitthread.GTK+ imposes these restri
tions on 
alls be
ause it relies on thread-lo
al regions to prote
t its internalstate. Calls from other threads would a

ess the toolkit's internal state without 
oordination, leading todata ra
es. This design, with minor variations,2 is typi
al of most general purpose GUI toolkits. Whilesome spe
ial-purpose toolkits are able to allow 
alls from multiple threads [37℄, prior attempts to 
reategeneral-purpose multi-threaded GUI toolkits has resulted in designs that lead to errors. Either the designsfor
e developers using the toolkit to follow 
omplex rules for reentrant 
alls, or the implemented toolkitsexhibit 
on
urren
y failures su
h as deadlo
ks [40℄ and data ra
es [52℄.The appli
ation-spe
i�
 
ode in Inks
ape pla
es further restri
tions on threading. The implementationof Inks
ape predates the widespread use of threading in GUI appli
ations. Therefore, mu
h of the 
ode inInks
ape is not thread-safe, in essen
e relying on thread-lo
al regions to avoid ra
es. As a result, any 
odethat uses multiple threads must hide these threads from both the GTK+ toolkit and the non-thread-safe1Te
hni
ally, these 
alls are in the GDK library, one of the support libraries used in the 
onstru
tion of the toolkit. Forsimpli
ity in this work we 
onsider GTK+'s supporting libraries to be a part of GTK+.2For example, in Swing the toolkit 
reates a new thread to be the toolkit thread and returns from the initialization 
all.Appli
ations invoke Swing methods from other threads via the invokeLater() 
all. In part the di�eren
es in design re�e
t di�erentassumptions about the platform. The design of GTK+ assumes that threading may not be present on the platform, while Swing
an assume the presen
e of threading. 64



Figure 4.2: This log-log graph shows the time to 
omplete Paste requests in Inks
ape. For 
larity the numberof obje
ts for ea
h point is shown on the X axis, and the exa
t time for the paste is shown with ea
h datapoint. The time varies linearly with the number of obje
ts pasted for most of the tests, but in
reases withthe �nal test due to swapping (physi
al memory be
omes an over-subs
ribed resour
e). Even at 423 obje
tsthe time to 
omplete the Paste poses a risk to attentiveness, sin
e the a
knowledgment time is roughly 0.1s.
ode in Inks
ape.The resulting ar
hite
ture is shown in Figure 4.1. Sin
e there is only a single thread, attentiveness failureso

ur in Inks
ape if the pro
essing time of any request ex
eeds the a
knowledgment time of the system, whi
his usually 100ms. This problem is widely re
ognized [71℄, and is typi
ally avoided by employing the wrappingpattern in the 
allba
ks to isolate the long operations from the toolkit. Sin
e the use of the wrapping patternis so 
ommon, it may seem to the reader that the pattern should a
tually be in
orporated in the GUI toolkititself. Rather than 
alling the 
allba
k dire
tly, the toolkit thread would spawn a worker thread, instru
t it toa
tivate the 
allba
k, and then 
ontinue to look for requests from the user. Toolkit-based appli
ations do notintera
t with their users in terms of requests. Instead, they re
eive low-level events and infer requests fromthe events, following the model used in the Xerox Alto [7℄. This approa
h is not feasible be
ause 
allba
ksfrequently make 
alls that re
on�gure the user interfa
e [74℄, potentially 
hanging the interpretation of futurerequests. Therefore, the 
allba
k must blo
k the toolkit thread until it has 
ompleted its re
on�gurations ofthe user interfa
e. In addition, the 
allba
ks frequently make 
alls to the toolkit to update the view afterlong operations 
omplete.Unfortunately, the pro
essing time of requests in Inks
ape is unbounded: the exe
ution time of manyrequests depends on the 
omplexity of the do
ument being edited. For example, Figure 4.2 demonstratesthat the pro
essing time for Paste operations varies, more or less linearly, with the number of obje
ts beingpasted. Therefore, a user attempting to merge two do
uments may 
ause an attentiveness failure by:1. Opening the �rst do
ument2. Issuing a Sele
tAll request3. Issuing a Copy request4. Opening the se
ond do
ument 65



5. Issuing a Paste request by using the �Edit� menuIn this 
ase, Inks
ape's only thread is trapped in request pro
essing. Therefore, if the number of obje
tsbeing pasted is large, Inks
ape does not a
knowledge the Paste request by 
losing the Edit menu and doesnot provide the user with a way to submit new requests. As a result, the user has no way to redire
t Inks
ape.Table 4.1 shows how an attentive system would respond to this situation. This table shows the relationshipamong:� A user's goals� His a
tions� The events that arrive at the toolkit� The toolkit's responses� The 
allba
ks registered by Inks
apeFor example, to initiate a Paste request, the user 
li
ks on a menu (A1.1), 
ausing a ButtonPress event(E1.1) to arrive at the toolkit. The toolkit responds by opening the menu (R1.1). Sin
e this intera
tiondoes not form a 
ompleted appli
ation-level request, no 
allba
ks are invoked. A1.2 is also handled by thetoolkit without involving Inks
ape. However, A1.3 forms a 
ompleted request, 
ausing the toolkit to 
allthe Inks
ape's paste routine at CB1.3.1. An attentive system would a
knowledge the request (R1.3.2 andR1.3.3), and then listen for the arrival of a possible redire
tion request su
h as the one shown at G2.However, Inks
ape blo
ks before R1.3.2, failing to a
knowledge the paste request until it 
ompletes. Notonly does this represent a failure to respond to the request within its a
knowledgment time, it also makesit impossible for the user to issue a 
an
el 
ommand to stop the paste operation. Given the restri
tionspla
ed on threading by GTK+ and Inks
ape, developers typi
ally use one of three solutions to address thisproblem:� Polling: inserting 
ode into the 
omponents responsible for Paste and any other long operations to
he
k for in
oming requests and redire
tion. For example, the Ma
intosh operating system requireddevelopers to poll by 
alling WaitNextEvent().� Wrapping: developing a system servi
e that is integrated with the toolkit, supporting 
an
el without
hanges and 
ooperation from the appli
ation. We provide examples of wrapping in Chapter 5.� Threading: refa
toring the appli
ation to use multiple threads, splitting its state into two thread-lo
alregions. For example, the Thunderbird email 
lient uses threading.Polling was used to support both redire
tion and multitasking before threads were available [5℄. Even withthreads, developers often �nd that they must use polling to stop threads without 
orrupting the appli
ation'sstate [70℄. There are two disadvantages to polling. First, developers must ensure that the appli
ation pollsfrequently, in e�e
t ensuring that the delay between any two poll 
alls in their appli
ation is short. If thisis not the 
ase, 
lients 
ontinue to en
ounter promptness failures when intera
ting with the appli
ation.However, developers must also ensure that they do not poll too frequently, sin
e this both represents wastedsoftware development e�ort and also 
an lead to performan
e problems [36℄. Se
ond, implementing polling
an for
e developers to make appli
ation-spe
i�
 
hanges to modules that they wanted to reuse. It is di�
ultto generalize these 
hanges, sin
e the de�nition of short is often appli
ation-spe
i�
. In addition, the lengthof operations within the modules is often a�e
ted by details of the appli
ation's implementation. Finally,these modi�
ations 
reate new dependen
ies between the modules that 
an make them harder to reuse infuture appli
ations. Appli
ations often reuse a large number of modules. For example, Figure 4.3 showsthat Inks
ape, a relatively simple appli
ation, reuses 53 modules. These modules are 
ontrolled by at least20 di�erent open-sour
e development teams.Our early attempts to add redire
tion to Inks
ape used wrapping. A wrapped system uses toolkitmodi�
ations to dete
t requests and assigns responsibility for redire
ting requests to a separate pro
ess66



Table 4.1: This table relates the user's goals and a
tions, shown on the left, to measures of promptness,shown in the middle, to the 
ontrol-�ow in the system, shown on the right. The user-system boundary isillustrated by the double line, and the toolkit-appli
ation boundary is shown by the dashed line. The tableillustrates one of the �aws frequently en
ountered in single-threaded designs: the entire Paste operation,shown on line CB1.3.1, is a part of the a
knowledgment time of the request.
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Inkscape specific 

code

4MB

components

17MB

Other reused Request pro
essingPa
kage NCNB LOC % Pa
kage NCNB LOC %libkdefx 568934 14.59 libutil-2 576009 14.77libqt-mt 568415 14.57 libgtk-x11-2 416547 10.68libxml2 195448 5.01 libgthread-2 124575 3.19libstd
++ 119235 3.06 libX11 100008 2.56libpangomm-1 91622 2.35 libfreetype 77043 1.98libgnutls 83468 2.14 lib
airo 56946 1.46libgnomevfs-2 72784 1.87 pango-basi
-f
 55916 1.43libdbus-1 62489 1.60 libpng12 29294 0.75libaudio 48086 1.23 libfont
on�g 21271 0.55libORBitCosNaming-2 38446 0.99 libz 15547 0.40libg
onf-2 31951 0.82 libexpat 12982 0.33libavahi-glib 31349 0.80 libatk-1 7256 0.19libXt 31314 0.80 libXext 3837 0.10libxslt 30122 0.77 libX
ursor 2809 0.07libg
rypt 25503 0.65 libXrender 2738 0.07libg
 21573 0.55 libXi 2612 0.07libbonobo-a
tivation 20468 0.52 libXdm
p 1116 0.03libl
ms 20016 0.51 libX�xes 996 0.03libjpeg 18696 0.48 libXrandr 654 0.02libglibmm-2 12807 0.33 libXau 582 0.01... libXinerama 228 0.01Total 2152300 55.18 Total 1508966 38.7Figure 4.3: Inks
ape sour
e study as a treemap. The size of ea
h box represents the number of non-
omment,non-blank lines of 
ode in the 
omponent. The bla
k box represents the sour
e 
ode for Inks
ape. All of theother boxes represent third-party libraries that are invoked by the appli
ation as it exe
utes.68




alled a 
an
ellation manager. The 
an
ellation manager relies on operating system servi
es to redire
t thewrapped appli
ation. Wrapping has disadvantages in terms of e�
ien
y and 
onsisten
y. We des
ribe ourwork with wrapping in more detail in Se
tion 4.2.1 and Se
tion 4.2.2.Finally, it is possible to address redire
tion in Inks
ape by introdu
ing an additional thread to handlerequest pro
essing. If 
ommuni
ation between these threads is 
arefully 
onstrained, it is possible to dothis while preserving the thread-lo
al regions of both GTK+ and Inks
ape. These 
onstraints informed thegeneral pattern in Se
tion 4.3. Runtime support, des
ribed in Chapter 5, ensures that developers do nota

ess thread-lo
al regions from the wrong thread.4.1.2 RMI 
lient and serverClient-server systems 
an also su�er from attentiveness failures. Some attentiveness failures are 
aused byfa
tors beyond the 
ontrol of the system's designers, su
h as network failures. Others 
an be addressed by
areful design of the 
lient, server, and their 
ommuni
ation proto
ol. In this se
tion we examine a failurethat is present in many 
lient-server systems that 
an be addressed by design. We use a simple 
lient-serversystem written in Java to produ
e this failure. The 
lient and server in our example 
ommuni
ate via JavaRemote Method Invo
ation [96℄ (RMI), a library that allows developers to 
ommuni
ate with remote obje
tsusing method 
alls on lo
al proxy obje
ts.In our example, 
lients submit requests to a server for remote exe
ution by en
apsulating them in obje
tsthat implement the IRequest interfa
e. This interfa
e 
ontains a single method, execute(), that has a generi
return type. The 
lient passes the request obje
ts to the executeRequest() method provided by the server.RMI serializes the 
lient's request obje
t and transmits it to the server, whi
h deserializes the request obje
t,
alls the request's execute() method, and returns the method's result to the 
lient.There are two potential attentiveness failures in the example, one a�e
ting the 
lient and the othera�e
ting the server. The 
lient will not be attentive if it en
ounters a slow server. Sin
e RMI mimi
sstandard method 
alls, whi
h do not provide the ability to 
an
el 
alls in progress, the 
lient has no way toregain 
ontrol of threads blo
ked by 
alls to slow servers.Developers have several options for working around attentiveness failures on the 
lient. First, they 
oulduse a separate thread to issue RMI 
alls, allowing the 
lient to resume operation before re
eiving the resultof the 
all. Se
ond, they 
an use extensions to RMI, su
h as Interruptible RMI [77℄. These extensions allowa 
lient to 
an
el blo
ked RMI 
alls by 
losing the so
ket used to 
ommuni
ate with the server.The implementation of interruptible RMI relies on the implementation details of so
kets in Java. Spe
if-i
ally, the so
kets must permit close() to pro
eed while threads are blo
ked in other methods of the so
ket.To provide this fun
tionality developers must be willing to a

ept data ra
es in 
ertain 
lasses [44℄, su
has BufferedInputStream.3 The implementation in JDK 1.2 added syn
hronization in the send(), receive(),and close() methods to resolve some ra
e 
onditions that 
ould o

ur when close() was 
alled while anotherthread was a

essing the obje
t. The new syn
hronization 
aused 
alls to close() to blo
k, breaking 
odethat relied on close() to interrupt the send() and receive() methods. Eventually, the designers removed theadded syn
hronization, reintrodu
ing the ra
e 
onditions but allowing developers to use close() to regain
ontrol of threads blo
ked in send() and receive().Attentiveness failures also o

ur on the server. An attentiveness failure o

urs when 
lients abandonrequests, either by 
losing so
kets while the request is being pro
essed or by 
rashing. From the server'sperspe
tive, an abandoned request 
an also o

ur if a long-term 
ommuni
ation failure o

urs while therequest is being pro
essed. This s
enario 
an be observed on high-tra�
 web sites, sin
e browsers make itparti
ularly easy for users to abandon requests by pressing the refresh button. The web browser responds tothe refresh button by dropping the 
urrent HTTP 
onne
tion to the server and opening a new 
onne
tionto re-send the request. When this behavior o

urs at s
ale, it produ
es a troublesome form of positive3We are indebted to Aaron Greenhouse for pointing out this example.69



feedba
k: the site experien
es a signi�
ant in
rease in request submissions as it be
omes overloaded. Some
ommuni
ation libraries, su
h as Interruptible RMI, allow servers to poll for abandoned requests. However,these libraries often must be used on both the 
lient and the server to be e�e
tive, and the polling spreadsthe responsibility for dete
ting abandoned requests throughout the server's implementation.In our simple system, the e�e
t of abandoned requests is easy to observe. A request to 
al
ulate the �rst4,500 digits of � takes 2s. If the 
lient submits and then abandons a request to 
al
ulate 450,000 digits of �,the time to 
omplete the 4,500 digit 
al
ulation in
reases to 4.4s.Our design, des
ried in Se
tion 4.3, addresses both of the problems des
ribed above. Servers 
an addressand terminate abandoned requests promptly, even in the presen
e of 
ommuni
ation failures. In addition, thedesign assigns responsibility for dete
ting abandoned requests to a small part of the server that is independentof the reused 
omponents.4.1.3 ThunderbirdAppli
ations that employ multiple threads are also subje
t to attentiveness failures. Thunderbird 2.0 [99℄,a mail user agent, makes extensive use of threads but exhibits attentiveness failures when intera
ting withan IMAP [23℄ server. The IMAP server maintains a 
opy of ea
h of the user's messages, grouped intovarious folders. Thunderbird and other IMAP 
lients syn
hronize with the folders on the IMAP server, bothupdating their lo
al 
opy of the messages at startup and also updating the IMAP server as users move, 
opy,and delete messages. Frequent syn
hronization ensures that users intera
ting with multiple 
omputers seethe same set of messages on ea
h 
omputer.Thunderbird minimizes the user intervention required to syn
hronize with the IMAP server, initiatingsyn
hronization as a ba
kground task when a user opens a folder. Meanwhile, Thunderbird displays amessage list using the 
ontents of its 
a
he. The syn
hronization task 
ommuni
ates with the IMAP server,
he
king for 
hanged messages, and possibly downloading some messages for the junk mail s
anner. Most ofthis a
tivity is invisible to the user.In its implementation, Thunderbird uses the A
tive Obje
t pattern [69℄, whi
h pla
es most obje
ts intothread-lo
al regions. Other threads manipulate the obje
ts by sending asyn
hronous messages to the threadasso
iated with the obje
t's region. As a result, the A
tive Obje
t pattern greatly redu
es the risk ofdata ra
es; while the asyn
hrony in the messaging system redu
es the 
han
e that blo
king will result inpromptness failures.However, we have dis
overed that Thunderbird su�ers from a variety of promptness failures. Thesefailures arise be
ause Thunderbird fails to prioritize the assignment of network bandwidth, a 
onstrainedresour
e, to the user's requests. When bandwidth is over-allo
ated, Thunderbird promptly a
knowledgesrequests from its user to redire
t but fails to 
omplete the redire
tion. The following s
enario illustrates theproblem:1. The user swit
hes to Folder A2. Thunderbird opens Folder A on the IMAP server, dete
ts new messages, and begins to download theirheaders3. The user swit
hes to Folder B4. Thunderbird opens Folder B on the IMAP server, dete
ts new messages, and begins to download theirheaders5. The user swit
hes ba
k to Folder A6. The user 
li
ks on message A1 in the thread pane, issuing a ViewMessage request7. One minute later Thunderbird displays message A18. The user 
li
ks on message A2 in the thread pane, issuing a ViewMessage request70



9. Five minutes later Thunderbird still has not downloaded the messageUnlike Inks
ape, Thunderbird a
knowledges the ViewMessage request well within the 100ms response timeby highlighting the sele
ted message in the message list. However, the message pane either remains blank or
ontinues to display the previously sele
ted message.The promptness failure between steps 8 and 9 o

urs be
ause Thunderbird allows the junk mail s
annerto 
onsume most of the available network bandwidth rather than allo
ating bandwidth to the user's requests.When the user opens folders A and B, the junk mail s
anner dis
overs many new messages. It begins todownload these messages to s
an them, qui
kly 
reating a queue of requests that 
onsumes the bandwidthto the IMAP server. During the s
enario des
ribed above, Thunderbird downloaded 720 messages betweensteps 8 and 9, 
reating the �ve minute delay. To make matters worse, Thunderbird o

asionally wastesnetwork bandwidth by downloading the same message twi
e, even using two di�erent IMAP 
onne
tions atthe same time for the downloads. These problems disappear when we dea
tivate the junk mail s
anner.Thunderbird also su�ers from multiple 
onsisten
y failures. For example, Thunderbird 
an send spuriousresponses during the delay des
ribed above. This 
an happen when the user sele
ts a se
ond message whilewaiting for a message to download from the server. Thunderbird a
knowledges the request by highlightingthe se
ond message in the message list. The user's expe
tation is that the next update of the messagepane will show the sele
ted message. However, Thunderbird may 
ontinue to download the �rst message,displaying it in the message pane when the download 
ompletes. The user may be 
onfused by this update,either asso
iating the 
ontent of the �rst message with the sender of the se
ond message or 
on
luding thatthere is a permanent loss of 
onsisten
y in Thunderbird's internal state.Finally, Thunderbird and the user 
an disagree about the interpretation of a request. This happens whenThunderbird dete
ts that a message has been deleted from a folder during the ba
kground syn
hronizationtask. Thunderbird may then repaint the message list, shifting the position of messages to remove the deletedmessage. As a result, the position of a message just as the user is 
li
king on it. As a result, Thunderbirddisplays a di�erent message than the one that the user intended.Our analysis of Thunderbird informs several parts of our design:� Attentive systems must manage all s
ar
e resour
es, not just pro
essor time and threads. The failurein Thunderbird o

urs be
ause its design addresses only blo
king in threads as a risk to attentiveness.� A single 
omponent in the system should be aware of all of the system's a
tivities. This allows thesystem to inform the user of its 
urrent a
tivities and also allows the system to dete
t and eliminateredundant work.� A
tivities should have priorities. Requests 
oming dire
tly from users should generally have higherpriority than ba
kground tasks.� The priority of an a
tivity may 
hange. For example, the junk mail s
anner originally s
heduled adownload of A2. However, the priority of downloading A2 in
reased when the user issued a ViewMes-sage request.4.1.4 IMAPThe design of the IMAP proto
ol 
ontributes to the attentiveness failures that we observed in Thunderbird.Some of these failures originate in IMAP's data model. Ea
h a

ount is asso
iated with one or more folders.The number of folders is not bounded. The number of messages in a folder is theoreti
ally bounded: ea
hmessage in the folder must be referen
ed by a unique unsigned 32-bit integer. The size of ea
h message isalso theoreti
ally bounded: the size of the message in o
tets must be representable by a 32-bit integer. Sin
eboth of these bounds are large relative the available network bandwidth, we 
hoose to design systems as ifthey do not pla
e bounds on the length of operations.71



Messages also 
ontribute to attentiveness problems. While the 
ontent of a message is immutable, appli-
ations 
an delete the message, 
opy it to another folder, and atta
h and remove �ags. For example, manyIMAP appli
ations use �ags to mark messages that have been s
anned for junk mail. In addition, manyappli
ations expose the ability to set �ags to their users, allowing them to prioritize messages.IMAP appli
ations assume that their users will manipulate the messages stored on the server frommultiple systems. Therefore, when an IMAP appli
ation is started it 
he
ks for updates on the server.Ideally, from the appli
ation's point of view, it would be able to do this by retrieving a log of updates thato

urred after it was dis
onne
ted.However, IMAP servers do not maintain 
hange logs for folders. Instead the appli
ation must open ea
hfolder, 
he
k for new messages, 
he
k for deleted messages, and retrieve the �ags of every message thatremains in the folder. Sin
e the bounds on the number of messages are relatively high, IMAP appli
ationsmust assume that these are long operations. If these operations are allowed to blo
k user requests theappli
ation will exhibit attentiveness failures.However, treating these operations as low priority ba
kground tasks 
reates a risk of 
onsisten
y failures.When appli
ations display the 
ontents of the folder in a list, these 
he
ks 
an 
ause the position of indi-vidual messages to shift as the appli
ation dis
overs new and deleted messages. An appli
ation a

epting aViewMessage request may dis
over that the message was deleted from the IMAP server when it attempts toretrieve it. In addition, an unexpe
ted shift in messages may 
ause the user to 
li
k on the wrong messagein the list.The large bound on the size of IMAP messages also presents problems when appli
ations attempt todownload messages. The IMAP proto
ol does not permit redire
tion. Therefore an appli
ation downloadinga large message is left with two 
hoi
es. First, the appli
ation 
ould download the entire message, in e�e
tlosing a

ess to the IMAP 
onne
tion in question until the download 
ompletes. This approa
h maximizes thee�
ien
y of the message transfer, and does allow some forms of redire
tion. The appli
ation 
an 
an
elthe download by 
losing the IMAP 
onne
tion before the download 
ompletes. The appli
ation 
an alsopause the download by not reading bytes from the so
ket asso
iated with the IMAP 
onne
tion. This will
ause the so
ket's TCP re
eive window to 
lose, for
ing the server to stop sending pa
kets. Unfortunately,the server has no way to know that this behavior is due to redire
tion, and may interpret it as eviden
e ofeither a network failure or a malfun
tioning IMAP appli
ation.Se
ond, the appli
ation may attempt to download the message in segments. The IMAP proto
ol dire
tlysupports this fun
tionality. However, it leaves the problem of determining the 
orre
t segment size to theappli
ation. If the appli
ation 
hooses a small segment size it 
an redire
t qui
kly, but message downloadingis ine�
ient due to the large number of small requests. If the appli
ation uses larger 
hunks it gains e�
ien
yat the expense of longer redire
tion times. Unfortunately the optimal segment size is very dependent onthe bandwidth and laten
y of the network 
onne
ting the appli
ation and server. Both the laten
y andbandwidth 
an 
hange in ways that 
annot be predi
ted by appli
ations. For example, the user may de
reasethe available bandwidth by initiating a large �le transfer from a di�erent appli
ation.The message identi�ers used by the IMAP proto
ol lead to redundant work when an appli
ation moves amessage from one folder to another. When the message arrives in the destination folder it appears as a newmessage and has a new identi�er.4 Therefore appli
ations will re-download the message, even when theyhave a 
opy of the message in their 
a
he.Finally, the IMAP proto
ol does not provide redire
tion for some 
ommands that are very likely to belong. For example, appli
ations are able to initiate full-text sear
hes a
ross all of the messages stored ina folder. These sear
hes may take many minutes to 
omplete, and users often de
ide to 
hange the sear
h
riteria while they are waiting. Unfortunately, the redire
tion approa
hes adopted for message downloads�4In fa
t, in standard IMAP this is also true for the appli
ation moving the message. However, IMAP servers that supportthe UIDPLUS extension provide the new unique identi�er for the message to the appli
ation initiating the move. Unfortunatelymany IMAP servers do not support the UIDPLUS extension. 72



Figure 4.4: RoundCube, an AJAX email appli
ation, 
reates a 
lear separation between the user interfa
eand the ba
k-end. As a result, it avoids many of the attentiveness failures of Thunderbird.
losing the 
onne
tion or refusing to read the results of the 
ommand�will not be e�e
tive in these 
ases.In most servers 
losing the so
ket will result in orphaned requests. Refusing to read the results is ine�e
tivebe
ause the volume of results in often small, �tting within the TCP transmit window. In addition, mayservers delay transmitting results until the sear
h is 
ompleted.Therefore, the IMAP proto
ol is not well suited to the 
onstru
tion of attentive appli
ations. A moreattentive version of the proto
ol would:� Provide a log that would redu
e the 
ost of syn
hronization when an appli
ation re
onne
ts� Allow the server to promptly dete
t dropped 
onne
tions and 
an
el requests submitted by the
onne
tion� Provide identi�ers for messages that are independent of folders� Allow appli
ations to redire
t requests after submitting them to the serverWe believe that these re
ommendations would also apply to many other network proto
ols.4.1.5 RoundCubeThe reader may 
on
lude that the de�
ien
ies of the IMAP proto
ol enumerated above make it impossibleto avoid the attentiveness failures observed in Thunderbird. However, we believe that a 
arefully designedIMAP appli
ation 
an mask many of these problems from its users. For example, the RoundCube webmailappli
ation uses the IMAP proto
ol to a

ess messages, but manages to hide many of the de�
ien
ies ofIMAP from its users.The attentiveness of RoundCube is largely a result of its design, whi
h is shown in Figure 4.4. Thisdesign bene�ts from the following properties:� Collo
ation of pro
essing with data, both minimizing the impa
t of network delays and also minimizingthe use of network bandwidth� Ca
hing of data to further redu
e the use of network bandwidth� Reservation of resour
es for the user interfa
e, ensuring that it will remain responsive during long-running ba
kground tasks� Limiting the use of ba
kground tasks and minimizing their size73



RoundCube exploits 
ollo
ation in two ways. First, RoundCube uses AJAX [88℄ to implement the user inter-fa
e in the web browser. As a result, simple requests are handled lo
ally, redu
ing both redu
ing their laten
yand also redu
ing their 
onsumption of bandwidth. Se
ond, RoundCube initiates bandwidth-intensive IMAPrequests on the ba
k-end. The ba
k-end summarizes the requests and transmits the summaries to the userinterfa
e. As a result, RoundCube 
onsumes network bandwidth on the ba
k-end, where it is relativelyabundant, to 
onserve bandwidth between the user interfa
e and the ba
k-end, whi
h is often 
onstrained.RoundCube exploits the browser 
a
he to further redu
e its 
onsumption of bandwidth. For example,the use of AJAX 
uts the number of page refreshes dramati
ally when RoundCube is 
ompared to otherwebmail appli
ations. In addition, the 
a
he is likely to retain 
opies of email messages, redu
ing the time
onsumed when a user views the same message multiple times.The user interfa
e often exe
utes on a di�erent ma
hine than the ba
k-end. As a result, the user interfa
eand ba
k-end have di�erent pools of resour
es. Therefore the performan
e of the user interfa
e is not dire
tlya�e
ted by the resour
es used in ba
k-end 
omputations su
h as sear
hes. Network bandwidth is the onlyshared resour
e, and both the front-end and ba
k-end bene�t from minimizing their use of this resour
e. Asa result, ba
k-end a
tivities almost never adversely a�e
t the performan
e of the user interfa
e.Developers have minimized the number of and extent of ba
kground tasks. There are two types ofba
kground tasks in RoundCube. First, RoundCube treats sear
hes as ba
kground tasks, allowing users to
hange sear
h parameters and swit
h folders while a sear
h is in progress. This feature provides attentivenessat the user interfa
e, but results in abandoned sear
hes on the server similar to the abandoned requestsdes
ribed in Se
tion 4.1.2.Se
ond, RoundCube uses a series of ba
kground tasks to 
olle
t the data needed to initialize its userinterfa
e:1. It retrieves the list of subs
ribe folders to initialize the folder pane2. It retrieves the number of unread messages in the INBOX3. It retrieves the �rst 100 messages of the INBOX to initialize the thread pane4. It retrieves the number of unread messages in all of the subs
ribed foldersThe fourth step is very expensive and, while important, does not need to be 
ompleted before the userinterfa
e is usable. Therefore RoundCube postpones it until the �rst three steps are 
omplete.As a result of these design de
isions, RoundCube generally exhibits fewer attentiveness failures thanThunderbird when working with large IMAP a

ounts, even when the network bandwidth between its front-end and ba
k-end is 
onstrained. This assessment highlights the need to 
arefully manage the allo
ationof resour
es in systems and also points to the need for 
an
ellation of requests in distributed systems. Weaddress both of these 
on
erns in the design des
ribed in Se
tion 4.3.
4.2 Assessment of prototypesIn the early stages of this resear
h we developed two approa
hes to support attentive systems. Experien
ewith the �rst system demonstrated that overhead added to the pro
essing of short requests 
ould 
ompromisethe promptness of the system if not 
arefully managed. The se
ond system demonstrated that it is di�
ult toretro�t attentiveness into a system without the knowledge of the relationship between its low-level a
tivitiesand the requests submitted by its users. These lessons motivated the design proposed in Se
tion 4.3.74



Figure 4.5: Lightweight 
he
kpointing in Inks
ape4.2.1 Wrapping with 
he
kpointsIn our initial attempts to improve the attentiveness of systems, we fo
used on adding responsibility forattentiveness through the GTK+ toolkit, one of the 
omponents in many of our examples. We 
alled thisdesign a wrapper, sin
e it inter
epted requests before they appeared at the appli
ation. We applied twovariants of this design, des
ribed in this se
tion and the next, to Inks
ape. We assessed the wrapper againstthe following goals:� Avoid modi�
ations to the appli
ation. One 
onsequen
e of this de
ision was that the wrapper 
ouldsupport only the 
an
el behavior, sin
e other behaviors rely on appli
ation-spe
i�
 knowledge of therequests� A
hieve su�
ient e�
ien
y to avoid introdu
ing new promptness failures due to overhead introdu
edby the wrapper� Avoid 
onsisten
y failures, both within the appli
ation and also between the appli
ation and the Xserver, a 
ollaborating systemThe wrapper was implemented with four 
omponents, whi
h are shown in Figure 4.5. First, we introdu
ed anew 
omponent into the GTK+ library, 
alled a trigger, to dete
t new requests and 
oordinate redire
tion.The trigger is implemented within the gtk_propagate_event() fun
tion, the last fun
tion in the GTK+toolkit that en
ounters every request from the user. Se
ond, we 
reated a separate pro
ess 
alled the
an
ellation manager (CM). The 
an
ellation manager displayed and monitored a 
an
el button wheneverInks
ape pro
essed a request. Third, we implemented a system 
all in the Linux kernel to 
apture and restore
he
kpoints of Inks
ape's state. The 
he
kpointer is implemented as a new system 
all in the kernel, allowingit to use 
opy-on-write to redu
e the 
ost making 
opies of the pro
ess's address spa
e. Our implementationuses existing 
ode in the kernel, allowing us to implement the 
he
kpointer and restorer with about 100lines of new 
ode. Finally, we use a mediator to restore 
onsisten
y between Inks
ape and the X serverwhen requests are 
an
eled. This 
omponent was added in the se
ond wrapping approa
h and is dis
ussedin greater detail in the next se
tion.The �ow of requests in the trigger is given in Figure 4.5. For 
ompleteness, we des
ribe the intera
tionswith both the 
an
ellation manager and mediator below, even though the mediator was not implemented inthe initial system.Events enter the system via N1. The toolkit pro
esses these events, generating a stream of requests.An example of this pro
ess is given in the dis
ussion of Table 4.1 on page 66. The request stream thenenters the trigger via N2. The trigger 
reates a 
he
kpoint, and noti�es the 
an
ellation manager that arequest is about to exe
ute, giving it the 
he
kpoint identi�er at N3. The 
an
ellation manager ensures thata 
an
el button is displayed to give the user the ability to 
an
el the request. The trigger then noti�es the75



mediators of the new request at N4. Finally, the trigger forwards the request to the appli
ation's 
allba
ks atN5, allowing the appli
ation to begin pro
essing the request. If the appli
ation intera
ts with 
ollaboratingsystems, the mediators inter
ept the outgoing requests (N6), logging and modifying them before sendingthem to the 
ollaborating systems (N7). If the request 
ompletes, 
ontrol returns to the trigger, whi
hnoti�es both the 
an
ellation manager (N8) and the mediators (N9) that the request has 
ompleted. The
an
ellation manager runs as an independent pro
ess, allowing it to exe
ute in parallel with the appli
ationwithout threatening its 
onsisten
y.The pro
essing of 
an
el requests begins when the 
an
ellation manager dete
ts that the user pressedthe 
an
el button while another request was a
tive. The 
an
ellation manager begins responds by usinga system 
all to restore the appli
ation's state from the 
he
kpoint 
reated by the trigger. This pro
essalso a�e
ts the sta
k and registers of the appli
ation, 
ausing it to re-exe
ute the trigger 
ode at N2. Thetrigger dete
ts the rollba
k by examining the result of the checkpoint() system 
all. It then a
knowledgesthe rollba
k by sending N3' to the 
an
ellation manager and N4' to the mediators. For more details on theintera
tion with the mediators, see the dis
ussion in the next se
tion. Finally, the trigger returns 
ontrol tothe toolkit without invoking N5.We implemented a prototype of our 
an
el wrapper in the Linux 2.6.14 kernel and ran it on a systemwith a Pentium 4 CPU running at 1.8 GHZ with 1 GB of RAM. We used a referen
e SVG do
umentthat 
ontained detailed street data for Pittsburgh, Pennsylvania for our testing. This do
ument 
ontainedapproximately 4000 obje
ts. While this do
ument may appear to be 
omplex, it is representative of thedo
uments routinely edited by 
artographers at 
ompanies like MapQuest. We were able to produ
e a tenminute attentiveness failure by 
opying all of the shapes in the do
ument and then pasting the shapes intoa se
ond do
ument of similar 
omplexity.Tests of the modi�ed system 
on�rmed that 
he
kpointing was e�e
tive, allowing us to 
an
el arbitraryoperations in Inks
ape without noti
eable delays. The wrapper was able to return 
ontrol to the user within52ms to 142ms of re
eiving the 
an
el request. The system 
all responsible for restoring the 
he
kpointa

ounted for 10ms of this time.However, the modi�ed system exhibited other attentiveness failures due to the overheads added by thetrigger. Most of this overhead was due to the 
ost of 
reating a new 
he
kpoint for ea
h request, whi
hwas approximately 20ms in our system. The overhead was added to all requests, even �requests� su
h astra
king the mouse that o

urred with high frequen
y and had short laten
ies. Even though the operationsfor 
reating and destroying 
he
kpoints were short, our system was unable pro
ess these requests as qui
klyas the X server sent them. As a result, requests a

umulated in Inks
ape's event queue. Eventually thequeue would �ll, 
ausing Inks
ape to blo
k for several se
onds.Redire
ting Inks
ape also 
aused a 
onsisten
y failure when the X Server and Inks
ape began to disagreeabout the sequen
e numbers for requests. The X proto
ol uses an impli
it sequen
e number for requests thatis rarely transmitted on the wire. Sin
e Inks
ape generated a small number of X requests after the 
he
kpointwas 
reated, restoring the 
he
kpoint would 
ause it to repeat the sequen
e numbers. Eventually Inks
apewould noti
e that the sequen
e numbers were misaligned and stop 
ommuni
ating with the X Server.We identi�ed the following problems with the �rst prototype that informed our future designs:� Adding even a short overhead to every request 
an 
reate a promptness failure� Mediators are needed for systems that intera
t with X servers, even when the system does not appearto intera
t with the server before redire
tion4.2.2 Wrapping with redo and mediatorsThe prototype des
ribed in this se
tion employs three related strategies to address the problems with the�rst prototype. First, the prototype avoids adding 
he
kpoints to most short operations by reusing 
he
k-76



RC1 const time_t max_time_for_cancel = 5 * SECONDS;RC2 bool checkpoint_exists=false;RC3 chkptid_t checkpoint_id;RC4 time_t cur_cancel_time = 0;RC6 void done_with_checkpoint() {RC7 free_checkpoint(checkpoint_id);RC8 checkpoint_exists = false;RC9 cur_cancel_time = 0;RC10 }RC12 void issue_request(Request r) {RC13 if (!checkpoint_exists) {RC14 checkpoint_id = create_checkpoint();RC15 checkpoint_exists = true;RC16 }RC17 time_t start_time = gettime();RC18 bool cancelled = r.execute();RC19 time_t end_time = gettime();RC20 if (!cancelled) {RC21 cur_cancel_time += end_time � start_time;RC22 if (cur_cancel_time > max_time_for_cancel) {RC23 done_with_checkpoint();RC24 } else {RC25 add_redo(r, checkpoint_id);RC26 }RC27 } else {RC28 provide_estimate_for_progress_feedback(cur_cancel_time);RC29 restore_checkpoint(checkpoint_id);RC30 while (has_redos(checkpoint_id)) {RC31 Request rr = get_redo(checkpoint_id);RC32 rr.execute();RC33 }RC34 done_with_checkpoint();RC35 }RC36 } Listing 4.1: Che
kpoint reuse expressed in pseudo
ode
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points. Se
ond, the prototype in
ludes a mediator that monitors the 
ommuni
ation with the X server,resyn
hronizing 
ommuni
ation in the event of redire
tion. Finally, the modi�ed wrapper must re
ord re-quests 
ompleted after the 
he
kpoint was established and replay these 
ompleted requests if the 
he
kpointis restored. We des
ribe the design of these three aspe
ts of the system below, 
on
luding with lessons thatinformed our proposed design.Che
kpoint reuseThe 
he
kpointing strategy in the �rst prototype 
reated attentiveness failures be
ause it established a new
he
kpoint before pro
essing ea
h request. Some requests su
h as mouse tra
king requests were extremelyshort, very frequent, and 
ould a

umulate in queues. As a result, the 
he
kpointing time 
ould build up,
reating promptness failures in the wrapped system.Systems 
ould avoid this problem by not 
reating a 
he
kpoint for short requests. However, it may notbe possible for the system to a

urately identify short requests. In systems using this approa
h, if a longrequest were misidenti�ed as a short request there would be no way to redire
t the request after it began toexe
ute.Instead, we adopted an approa
h that identi�ed short requests when they 
ompleted their exe
ution.At this point the system 
an dire
tly observe the exe
ution time of the request, eliminating the risk ofmisidenti�
ation. In the modi�ed system a 
he
kpoint is in pla
e when every request exe
utes, ensuring thatthe request 
an be redire
ted. However, 
he
kpoints are not destroyed after short requests. Therefore, in asequen
e of short requests only one 
he
kpoint is 
reated. The 
he
kpoint will be reused for subsequent shortrequests, and will only be destroyed when the estimated replay time for the sequen
e be
omes a signi�
antrisk to the promptness of redire
tion requests.The modi�ed 
he
kpointing strategy in the trigger follows the one shown in Figure 4.5 with some varia-tions des
ribed below. The trigger maintains three pie
es of persistent state: a 
urrent 
he
kpoint, a timer,and a redo log of 
ompleted requests. The trigger 
he
ks to see if a 
he
kpoint already exists before 
reatinga new 
he
kpoint. If no 
he
kpoint exists trigger 
reates one and sends the identi�er to the 
an
ellationmanager at N3.If a 
he
kpoint is already a
tive, the trigger 
onsults the timer asso
iated with the 
he
kpoint. The timertra
ks the amount of time that was used by requests that have 
ompleted after the 
he
kpoint was 
reated.This timer provides an estimate of the overhead that would be added to a 
an
el the in
oming request ifthe trigger reused the 
urrent 
he
kpoint. If the trigger determines that this overhead is una

eptable, itdestroys the 
urrent 
he
kpoint, resets the timer, 
lears the log of 
ompleted requests, and 
reates a new
he
kpoint. Otherwise, the trigger pro
eeds through steps N3 and N4.Before 
alling N5 the trigger starts the timer. When N5 returns, the trigger stops the timer5 and adds the
ompleted request to the redo log. The trigger does not destroy the 
he
kpoint when the request 
ompletes,allowing future requests to reuse the 
he
kpoint. The logi
 used by the trigger is shown in Listing 4.1.In the event of a 
an
el, 
ontrol returned to the trigger just after N3. After dete
ting that a request was
an
eled, the trigger would 
onsult its queue of 
ompleted requests. The trigger then replays these requestsby reprodu
ing the 
alls at N5. The details of the replay are dis
ussed in greater detail at the end of thisse
tion. Assuming that the 
he
kpoint restoration is non-destru
tive, the mediator 
an 
ontinue to use the
urrent 
he
kpoint for future requests.5We are assuming a single-threaded design like Inks
ape, where the entire pro
essing time for the request happens at N5.This assumption is not valid for appli
ations that a di�erent thread to exe
ute the request.78



MediatorsWe added a mediator to the wrapper to monitor the 
ommuni
ation between the appli
ation and the X server,a 
ollaborating pro
ess that manages the low-level elements of the user interfa
e su
h as windows and mouseevents. The trigger a
tivates the mediator at N4 in the diagram, and also initiates 
ommuni
ation with themediator when requests at N4 when requests are 
an
eled. Communi
ation between the appli
ation andthe X server is governed by the X proto
ol, whi
h atta
hes a sequen
e number to ea
h request 
oming fromthe appli
ation. The proto
ol does not transmit this sequen
e number to 
onserve bandwidth. In addition,requests 
oming from the appli
ation are bu�ered and sent in bat
hes. Therefore, it is impossible for themediator to determine the pre
ise relationship between the requests submitted to the appli
ation by the userand the requests generated by the appli
ation and sent to the X server. Therefore, the trigger provides the
urrent sequen
e number to the mediator at N4 before starting a request.During redire
tion, the appli
ation initiates 
ommuni
ation with the mediator at N4 to inform it that therequest has been 
an
eled. Redire
tion is asyn
hronous, and therefore 
an o

ur while the appli
ation wastransmitting a request to the mediator. Therefore, the appli
ation 
ommuni
ates with the mediator over aseparate so
ket during redire
tion. Redire
tion follows the following steps:1. The so
ket used to forward X requests from the appli
ation to the mediator is destroyed and repla
edwith a new so
ket. This eliminates the risk that a partial X request that is bu�ered in the kernel will
onfuse the mediator after redire
tion.2. The mediator noti�es the appli
ation of the 
urrent sequen
e number. This is likely to be higher thanthe appli
ation's 
urrent sequen
e number, whi
h was restored with the 
he
kpoint3. The mediator then reverses the e�e
ts of any requests that were forwarded to the X server for the
an
eled requestWe believe that mediators for other proto
ols would share similar properties.Replaying requestsGiven the design of our trigger, there are three options for implementing replay that 
orrespond to di�erentlevels of abstra
tion in the appli
ation: at the toolkit interfa
e, at the Xlib interfa
e, and at the system 
alllevel. These levels are shown in Figure 4.6. We de
ided that redire
tion at the toolkit level was not likelyto su

eed, dis
overed that redire
tion at the Xlib level was not feasible, and obtained partial su

ess withredire
tion at the system 
all level.Redire
tion at the toolkit level is 
ompli
ated by reentrant 
alls between the appli
ation and the toolkit.While we normally dis
uss the intera
tion between the toolkit and the appli
ation in terms of inversion of
ontrol, in reality 
ontrol 
rosses between the toolkit and the appli
ation multiple times. For example, duringa paste operation 
ontrol 
rosses the boundary approximately 200 times, and there are reentrant 
alls thatare nested to seven layers, as shown in Figure 4.7. Lower levels of the ar
hite
ture do not feature this levelof 
omplexity, greatly simplifying the implementation replay.Replay 
an be greatly simpli�ed at the Xlib level. Xlib provides a 
ommuni
ation 
hannel to the Xserver, whi
h provides events to the appli
ation, manages windows, and provides simple drawing 
ommands.Replay at this level involves 
apturing the events that were provided to the toolkit, storing these events ina bu�er that will survive 
he
kpoint restores, and sending the bu�ered requests ba
k to the toolkit.In pra
ti
e replay at the Xlib level frequently deadlo
ked. After some 
areful investigation, we dis
overedthat the GTK+ toolkit was gaining a

ess to the so
ket used to 
ommuni
ate with the X server. Eviden
eof this a

ess is shown in Figure 4.6. At P1 in this diagram GTK+ is 
alling poll(), a system 
all that blo
ksuntil data appears on a so
ket. In most 
ases this blo
king is handled within Xlib, as 
an be seen by the 
alls79
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Figure 4.6: This simpli�ed 
all graphs shows that GTK+ uses multiple system 
alls to a

ess the so
ket
oordinating 
ommuni
ation with the X server. As a result, it is di�
ult to replay X events without adeadlo
k.
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Figure 4.7: Inks
ape makes a large number of reentrant 
alls to GTK+ (its toolkit) as it pro
esses requests.This �gure shows only the deepest set of reentrant 
alls made during a simple Paste request. The �gureeliminates 
alls that do not 
ross the boundary between Inks
ape and GTK+, and also eliminates the 
allsthat are not as deeply nested. The nesting shown in this diagram makes it di�
ult to replay requests bysimulating the intera
tions between the toolkit and Inks
ape.80



to select()6 in Xlib, one of whi
h is shown in P2. During replay, events are not being provided by the X server.Instead they are 
oming from a replay bu�er. Therefore, the poll() system 
all will blo
k. Unfortunately,the asyn
hronous nature of the X proto
ol prevents the mediator from 
oordinating the replay. Deliveringevents at the wrong time 
an 
ause Inks
ape to misinterpret the event stream, leading it to identify thewrong requests. Therefore, we abandoned replay at the Xlib level in favor of replay at the system 
all level.Our se
ond relay approa
h fo
used on simulating the results of system 
alls. We used shared libraries tointer
ept the system 
alls made by Inks
ape, pla
ing these 
alls in a log along with the information neededto simulate their e�e
ts. When 
ontrol returned to the trigger at N5 it pla
ed a marker in the log, indi
atingthat the 
alls in the log before this point were asso
iated with the 
ompleted request. This form of replayworked for single-threaded appli
ations. Unfortunately we determined that it would be di�
ult to supportthe same approa
h in a threaded appli
ation pro
essing multiple requests in parallel. Not only would we needto maintain the logs on a per-thread basis, we would also have to examine the logs for dependen
ies amongthe requests. These dependen
ies arise be
ause requests 
an use system 
alls to 
ommuni
ate as they exe
ute.For example, the futex() system 
all implements a form of inter-request 
ommuni
ation by managing a

essto 
ontended lo
ks. Other system 
alls are ambiguous. For example, two requests 
an 
ommuni
ate througha pair of 
onne
ted so
kets via read() and write() system 
alls. In other 
ases read() and write() system
alls represent 
ommuni
ation with 
ollaborating systems that must be managed by mediators. Finally, thesame 
alls may indi
ate that 
hanges are being made to the �lesystems that must be undone in the event ofredire
tion. Di�erentiating these 
ases would involve a detailed study of the semanti
s of the 
alls.Finally, all of these replay approa
hes en
ounter problems with the mode 
hanges that o

ur in thetoolkit. Some of the reentrant 
alls made by the appli
ation 
hange the toolkit's interpretation of futureevents, thereby 
hanging its dete
tion of requests. Unlike the problem of reentran
y, it is not possible tobypass this problem at the toolkit level or below. The Paste s
enario in Inks
ape provides one example ofthis problem. If the user initiates the paste operation by pulling down the Edit menu, dragging to Paste,and releasing the mouse button, the toolkit will forward the request to Inks
ape before 
losing the menu. Ifthe user then 
an
els the Paste, 
ontrol will not return to the toolkit, 
ausing it to leave the Edit menuopen. Not only is this behavior 
onfusing to the user, it also 
reates a risk that a bu�ered button 
li
k willstart a se
ond Paste request if the 
urrent request is 
an
eled. The only way to avoid this problem is toreturn 
ontrol to the toolkit at N5 before the Paste request 
ompletes. However, in the design des
ribedabove the trigger will misinterpret this return, assuming that the request has 
ompleted. It appears that
hanges to the appli
ation are needed to avoid this problem.We learned the following lessons from this work:� Runtime support for attentiveness requires knowledge of requests that 
annot be easily obtained with-out help from the system's developers� There are substantial obsta
les to implementing replay apart from knowledge of the appli
ation� Mediators must have knowledge of the request that initiated 
ommuni
ation with 
ollaborating systems4.3 General design patternGiven the obsta
les that we en
ountered in our prototype system, we de
ided to 
reate a design that wouldallow us to 
apture and exploit appli
ation-level knowledge of the requests in a system. This design 
an beused to stru
ture new systems, but 
an also be retro�tted into existing systems to improve their attentiveness.To avoid spreading responsibility for attentiveness throughout the system, we 
on�ned the design to asmall number of new 
lasses, shown in Figure 4.8. In this �gure the 
ontroller represents an existing
omponent of the system that is responsible for dete
ting new requests. In toolkit-based appli
ations the6The poll() and select() system 
alls provide similar fun
tionality, but were invented by di�erent variants of UNIX. MostUNIX implementations provide both 
alls to maximize 
ompatibility.81



Figure 4.8: This 
lass diagram shows the major 
lasses in our design pattern for attentive systems. Methodsmarked with a '+' are short.
ontroller represents the 
ombination of the toolkit and the 
allba
ks registered by the appli
ation. These
allba
ks 
reate new request obje
ts and submit them to the s
heduler. We do not dis
uss the 
ontroller inmore detail. In the se
tions that follow we dis
uss the three other 
lasses on the diagram�the S
heduler,Requests, and Resour
eManagers�explaining how the 
lasses address responsibilities implied by the de�nitionof attentiveness. In the dis
ussion that follows, we pre�x short 
alls with �+.� Potentially long 
alls have nopre�x.4.3.1 The s
hedulerThe S
heduler provides a 
entral point of 
ontrol for requests in the system. It a

epts requests submittedby the 
ontroller via the +accept() method. The s
heduler de
ides when to start the request by 
onsideringthe request's priority, the priorities of other requests in the system, and the availability of resour
es. Aftera request has been started, the s
heduler 
ontinues to tra
k its priority, whi
h may 
hange as the requestexe
utes. Changes in request priorities and the arrival of new requests may 
ause the s
heduler to redire
tone or more a
tive requests. It does this by invoking methods on individual request obje
ts.In systems that are not thread-safe, su
h as Inks
ape, the s
heduler ensures that at most one request isa
tive in the system at any given time. When this design is applied to these systems there are a
tually twothreads. The s
heduler and the toolkit share a thread. The s
heduler gains a

ess to this thread when the
allba
ks registered with the toolkit 
all the s
heduler's +accept() method. The s
heduler returns 
ontrol tothe toolkit in a short period of time. A se
ond thread is en
apsulated in a request obje
t and exe
utes therequest. This thread has a

ess to the appli
ation's state, whi
h may not be thread-safe. The 
lasses in thisdesign ensure that the toolkit thread never dire
tly a

esses the appli
ation's state, and that the appli
ationdoes not a

ess the toolkit's state. The runtime support des
ribed in Chapter 5 
an enfor
e this separationof state with minimal impa
t on the appli
ation's performan
e.4.3.2 RequestsRequest obje
ts serve several purposes in our design:� Like LISP futures [51℄, they prote
t the s
heduler from potentially long operations that o

ur whilepro
essing requests. As a result, the amount of analysis needed to ensure that the s
heduler will notbe blo
ked is greatly redu
ed.� They allow the s
heduler to 
ontrol requests by 
alling short methods that are part of the requestinterfa
e.� Requests provide a way to tra
k and re
ord the system's a
tivities and resour
e allo
ations. As a result,requests provide information that 
an be used to inform the 
lient of the system's 
urrent state, inform82



the s
heduler's de
isions to start and stop requests, and aid developers in debugging attentivenessfailuresRequests provides up to four short methods that provide low-level me
hanisms that the s
heduler 
an useto redire
t the request: +start(), +stop(), +continue(), and +undo(). The +start() method begins pro
essingof a request, generally by starting a new thread that is en
apsulated in the request. The +undo() methodstops the pro
essing of the request and reverses the request's 
hanges, and will typi
ally be implementedwith the 
he
kpointing s
heme des
ribed in Se
tion 5.1. The +stop() method pauses a request, temporarilyreleasing its resour
es. However, the request preserves as mu
h of its work as possible, rolling ba
k only thework that 
ould 
ause other requests to fail if they are started. To ensure that +stop() is short, some systemsmay make it asyn
hronous, notifying the listeners registered through the +onChange() method when therequest has stopped. It is also possible for systems to implement +stop() by using 
he
kpoints. Finally, the
+continue() method resumes exe
ution of a stopped request.The +changePriority() 
hanges the request's priority and informs the listeners registered with the request(generally the s
heduler) of the priority 
hange. This method is short and may be 
alled from any thread.A request's priority may be 
hanged while it is exe
uting. These priority 
hanges generally 
ome from the
ontroller and may 
ause the s
heduler to +stop() or +undo() the request.Requests provide a short +estimate() method that estimates the request's future resour
e 
onsumption.In systems with a large number of requests and a small number of resour
e types the +estimate() method'simplementation may be delegated to the resour
e managers. The s
heduler uses the information providedby +estimate() to avoid over-allo
ation of the system's resour
es.Finally, a request 
an blo
k, waiting for another request to 
omplete by 
alling the await() method.The +await() method implements priority inheritan
e [90℄, raising the target's priority when the 
aller'spriority is higher. This is useful in 
ases where a high-priority task be
omes dependent on a request thatwas initiated by a lower priority task For example, in Thunderbird a user may attempt to view a messagethat was originally being downloaded by the junk mail s
anner. Sin
e the junk mail s
anner is normally alow priority task, the user's attempt to view the message is very likely to raise the priority of the messagedownload. The problem of determining that the junk mail s
anner and user are attempting to download thesame message is left to the appli
ation. In this 
ase the appli
ation 
ould provide a hash table to map frommessage identi�ers to request obje
ts.Figure 4.9 shows the sequen
e of messages among these 
omponents in a typi
al system. The s
hedulergives in
oming requests the opportunity to make 
alls to the toolkit by 
alling +reconfigure() before returning
ontrol to the toolkit. Requests 
an use this method to make reentrant 
alls to the toolkit that may a�e
tthe interpretation of future events. However, requests must be 
areful to reverse these 
alls if the requestis 
an
eled in the future by a 
all to the +undo() method. In addition, the +reconfigure() method must beshort to avoid blo
king both the toolkit and the s
heduler.Some requests must make toolkit 
alls as the request is pro
essing. For example, a long-running requestmay need to make toolkit 
alls to provide progress feedba
k to the user. Requests a

omplish this by 
reatingnew request obje
ts (
alled subrequests below) and submitting them to the s
heduler. By default these newrequest obje
ts have a dependen
y on the request that 
reated them. This approa
h is similar to Swing's [34℄
invokeLater() 
all and also Sagas [38℄, a te
hnique that is used in database systems to avoid 
on�i
ts whilepro
essing long transa
tions. The s
heduler tra
ks the dependen
y between requests and their subrequests,and 
alls +undo() on the subrequests before +undo() on the request that 
reated them.When requests use 
he
kpoints to implement the +stop() and +undo() methods the s
heduler is responsiblefor ensuring that a 
he
kpoint is in pla
e before it 
alls a request's +start() method. The s
heduler may usethe knowledge provided by the request's isShort �ag to improve e�
ien
y, by not establishing a 
he
kpointbefore 
alling these requests. The s
heduler may also reuse 
he
kpoints when requests 
omplete qui
kly. Ifthe s
heduler de
ides to restore the 
he
kpoint, it is responsible for replaying requests 
ompleted after the
he
kpoint was taken. This approa
h is similar to the way that 
he
kpoints are used to debug long-running83



Figure 4.9: This sequen
e diagram shows the intera
tions among 
omponents when the design is applied ina single-threaded system. Two requests are shown, the se
onds request 
an
els the �rst request. The �rstrequest 
ontinues to exe
ute for a brief period of time after the 
an
el. During this time the s
heduler mustnot submit an additional request.
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programs [101℄. This design allows the s
heduler to limit the overhead of 
he
kpointing at the expense oflonger redire
tion times.4.3.3 Resour
e managersThe promptness of systems often depends on the 
areful management of resour
es. Resour
e 
onstrainso

ur in two of our example systems. In our 
lient-server system, the server must be 
areful to avoid over-subs
ription of pro
essors and memory as requests arrive. Thunderbird, des
ribed in Se
tion 4.1.3, must
arefully manage network resour
es when 
ommuni
ating with IMAP servers. The diverse nature of theseresour
e 
onstraints argues that we should provide a general framework for managing resour
es, allowingdevelopers to 
hoose the resour
es to be managed and the management strategy based on the 
onstraintsen
ountered by their systems. The framework should allow the in
remental addition of new resour
e types,sin
e developers may dis
over new 
onstraints as they implement and test the system.We a

omplish this by allowing developers to 
reate multiple resour
e managers, ea
h of whi
h managesa single resour
e type. Resour
e managers do not exert dire
t 
ontrol over the system. Instead, they tra
kthe 
urrent level of resour
e 
onsumption on a per-request basis. The s
heduler retrieves this informationby 
alling the short +available() method to determine the availability of the resour
e type provided by aresour
e manager. When an exa
t estimate is not possible in a bounded time, the resour
e manager mayreturn an approximation to keep the implementation of +available() short.Resour
e managers also 
ontain methods that requests use to obtain resour
es: the allocate() and re-
lease() methods. These methods are used only by the request's implementation, and therefore may be longwithout 
ompromising the responsiveness of the system.4.4 Applying the pattern to the RMI 
lient and serverWe have applied the pattern des
ribed above to the RMI-based 
lient-server system. Both the 
lient andthe server have request, s
heduler, and resour
e manager 
lasses. Request obje
ts on the 
lient and serverhave similar responsibilities.The s
hedulers on the 
lient and the server have di�erent roles. The s
heduler on the 
lient uses the
+start(), +stop(), and +undo() methods to manage the 
lient's resour
es, in
luding server 
onne
tions andnetwork bandwidth. In addition, it publishes an interfa
e that 
an be polled by the s
heduler on the serverto determine the state of individual requests. The server running on the 
lient noti�es the server of thisinterfa
e by pla
ing a ba
kpointer into ea
h request before forwarding it to the server's s
heduler.The s
heduler running on the server sele
ts the requests to start to a
hieve a fair assignment of resour
esto 
ompeting 
lients. In addition, the s
heduler uses the ba
k-pointer in requests to periodi
ally poll the
lient that submitted the request to 
on�rm that the request has not been abandoned. Polling must beisolated from the s
heduler's other a
tivities to ensure that the s
heduler is not blo
ked. It may appear to besimpler to rely on the 
lients to send redire
tion noti�
ations to the server. However, this would make theserver vulnerable to 
rashed 
lients, network partitions, and denial of servi
e atta
ks from mali
ious 
lients.We applied this modi�ed pattern to our simple RMI 
lient-server system. We did not use 
he
kpointingto implement the request's +stop() and +undo() methods. Instead, we implemented +undo() by invokingthe depre
ated Thread.stop() method. We attempted to prote
t RMI from the e�e
ts of Thread.stop() bymoving the request's pro
essing into a separate thread. This thread returns a single value to the RMI threadvia a volatile �eld in the Request obje
t. Sin
e stores to volatile �elds establish a happens-before relationshipin Java, this approa
h greatly redu
es the 
han
es that an RMI thread 
ould en
ounter a 
orrupted obje
t.The RMI thread will either see a null pointer, indi
ating that the request was 
an
eled before produ
ing aresult, or a non-null pointer to an obje
t 
ontaining a 
omplete result.85



We 
on�gured the s
heduler on the server to poll for dis
onne
ted 
lients every 100ms. The resultingserver was 
apable of 
an
eling abandoned requests promptly. The time to 
ompute the �rst 15,000 digitsof � in
reased from 10.53s to 11.03s. The added overhead was largely due to the polling. De
reasing thepolling rate to on
e every 1000ms yielded a 
omputation time of 10.66s. We did not observe failures due tostate 
orruption due to the use of Thread.stop() during our testing, but would not re
ommend this approa
hfor produ
tion systems.4.5 Con
lusionIn this 
hapter we have 
onsidered several designs that pose a risk to attentiveness:� In Inks
ape restri
tions on the use of threads due to non-thread-safe 
ode in
rease the risk of blo
king,sin
e designers are not free to use threads to isolate the e�e
ts of long operations� Thunderbird and RoundCube abandon requests pose a risk to attentiveness in servers when theirrequests exhaust 
onstrained resour
es. Proto
ols like IMAP, and to some extent RMI, may 
ontributeto this problem by for
ing 
lients to abandon requests in order to remain attentive.� Thunderbird exe
utes ba
kground tasks in parallel with requests from the user and fails to prioritizethe assignment of assign 
onstrained resour
es to user requests.We have also identi�ed strategies that support attentiveness:� Reservation of resour
es for both the user interfa
e and also the user's requests.� Limiting the s
ope and number of ba
kground tasks.� Tra
king all of the tasks that are a
tive in the system, in
luding ba
kground tasks.We in
orporated these strategies into a design of that supports attentiveness and applied the design to asimple 
lient-server system. The use of this design over
omes the limitations of the RMI proto
ol, resultingin measurable improvements in attentiveness.However, runtime support for redire
tion is needed to apply this design safely to more 
omplex systems.We des
ribe this runtime support in the next 
hapter.
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Chapter 5Runtime support for attentive systemsAttentive systems must be able to redire
t requests in progress. The system must preserve relationshipsamong multiple parts of the system's state while redire
ting requests, in
luding:� The threads in the system� Persistent state su
h as �les� The system's memory� Requests that have been submitted to 
ollaborating systemsThe relationships among di�erent parts of the system's state are often not apparent when examining thesystem's implementation. In addition, relationships often o

ur among modules maintained by di�erentdevelopers, making it di�
ult for a single developer to reason about redire
tion. This 
hapter des
ribesthe design and partial implementation of a runtime to manage these dependen
es. The runtime uses thedire
tives des
ribed in Chapter 3 to 
apture intent that 
annot be inferred from the system's implementation,and uses this intent to implement the per-request start(), stop(), continue(), and undo() operations des
ribedin Chapter 4.The soundness of redire
tion depends on the a

ura
y of dire
tives. If the dire
tives do not des
ribethe system's a
tual behavior, the runtime may break some of the relationships among the parts of thesystem's state, potentially leading to data 
orruption and/or the eventual failure of the system. To addressthis problem the runtime is able to verify that the information provided by some dire
tives mat
hes thesystem's behavior as it exe
utes. This validates the dire
tives for the 
urrent exe
ution of the system.Dynami
 
he
king 
an be very expensive. For example, Helgrind [89℄, a dynami
 
he
ker that dete
ts datara
es, in
reases the running time of systems by a fa
tor of 20-1300. However, our runtime is able to 
he
kdire
tives that rule out data ra
es while in
reasing the running time by only a fa
tor of 3. When the runtimeen
ounters an ina

urate dire
tive it halts the system and generates a report. The report 
ontains both areferen
e to the ina

urate dire
tive and also a des
ription of the behavior that was not a

urately des
ribedby the dire
tive. Developers 
an then resolve the ina

ura
y either by modifying the dire
tive or 
hangingthe implementation of the system to pre
lude the event.Two runtimes are des
ribed in two se
tions. Se
tion 5.1 des
ribes the design of a runtime that is able toredire
t requests. The runtime des
ribed in the �rst se
tion has not been implemented. Se
tion 5.2 des
ribesthe design and implementation of a runtime that is able to identify ina

urate dire
tives. It quanti�es theperforman
e impa
t of 
he
king dire
tives by adding dire
tives to ben
hmarks taken from the PARSEC 2.0suite [13℄. These dire
tives are su�
ient to prove that the ben
hmarks do not en
ounter data ra
es duringexe
ution. The work des
ribed in this se
tion was done with help from Andrew Wesie. Se
tion 5.3 
on
ludesby proposing additional work that would improve the design and implementation of the runtimes.87



5.1 Runtime support for redire
tionThe dis
ussion in this se
tion uses a simpli�ed IMAP server as a running example. IMAP servers managemultiple folders 
ontaining email messages. Multiple 
lients 
onne
t to the server and 
an a

ess the samefolder simultaneously. As a result IMAP servers must preserve three forms of 
onsisten
y when operationsare redire
ted:� Consisten
y within the IMAP server� Consisten
y between the IMAP server and its 
lients� Consisten
y among the 
lientsSystems must often employ detailed knowledge of 
ommuni
ation proto
ols to preserve the se
ond and thirdforms of 
onsisten
y. The runtime does not dire
tly in
orporate this knowledge. Instead, the runtime usesmediators, spe
ial 
omponents registered by the developers of the system, to handle redire
tion. Mediatorsare des
ribed in Se
tion 5.1.4.IMAP servers often use multiple threads to support 
on
urrent pro
essing of requests from di�erent
lients. The dis
ussion below assumes that the server has four threads, providing examples of the risksto 
onsisten
y that o

ur in threaded systems. The example assumes that the IMAP server follows thea
tive obje
t pattern, where ea
h thread has ex
lusive a

ess to a de�ned part of the system's state 
alled aregion and 
ommuni
ates with other threads using asyn
hronous messages. The four threads have di�erentresponsibilities:TC handles 
ommuni
ation with the 
lient that initiated the Copy.TO handles 
ommuni
ation with the se
ond 
lient, whi
h observes the destination folder as the 
opyprogresses.TS manages the folder that is the sour
e of the messages.TD manages the folder that re
eives the new messages.The server maintains persistent state in four �les:FS holds the messages in the sour
e folder.FD holds the messages for the destination folder.FL holds a log of requests from the user.FI holds a table with one re
ord per folder giving the next valid UID, the unique identi�er assignedto messages when they are pla
ed in a folder.The system's memory 
onsists of three data stru
tures:MS maps ea
h message id in the sour
e folder to an o�set and length in FS . When the server restartsthis map is re
onstru
ted by s
anning the �le. The system must ensure that MS and FS remain
onsistent during redire
tion.MD maps ea
h message id in the destination folder to an o�set and length in FD . When the serverrestarts this map is re
onstru
ted by s
anning the �le. The system must ensure that MD andFD remain 
onsistent during redire
tion.MI 
a
hes the information in FI , allowing the server to qui
kly assign messages identi�ers to newmessages in folders. MI is loaded from FI when the server starts, and FI is kept in syn
 withthe view in MI .ML represents memory that is 
ontrolled by the runtime libraries on the system. The developers ofthe system do not 
ontrol these libraries and are unaware of their implementation.88



Figure 5.1: Can
eling requests in a server 
an involve negotiation among its 
lients. When the 
opy requestmarked with an A4 is 
an
eled, the 
opy request marked with A5 must be modi�ed to ex
lude messages 11and 12.In an a
tual system there would be additional data stru
tures, in
luding memory that is dedi
ated to ea
h ofthe threads. For simpli
ity the following dis
ussion does not address these data stru
tures. The 
onsisten
yof these data stru
tures 
an be maintained using the te
hniques des
ribed below.The IMAP server allows 
lients to observe the progress of long running 
ommands submitted by other
lients. Figure 5.1 shows the intera
tions between the IMAP server and two 
lients. The �rst 
lient initiatesa 
opy 
ommand to 
opy messages in a sour
e folder to a se
ond folder 
alled the destination folder (A4in the �gure). The se
ond 
lient observes the destination folder, and initiates a se
ond 
opy (marked withA5) while the �rst 
lient's 
opy is in progress. A5 referen
es two messages (11 and 12) that were pla
edin the destination folder by A4. As a result, A5 is also a�e
ted when the 
opier 
an
els A4. The runtimepreserves the internal 
onsisten
y of the server and also noti�es 
lients of the 
hanges. For example, its replyto A5 indi
ates that only 10 messages were 
opied and that messages 11 and 12 have been removed fromthe folder.1 Many IMAP servers, in
luding Dove
ot [27℄ and Cyrus [24℄, implement full isolation of requestsas they exe
ute. Isolation simpli�es the design of the server, but introdu
es other problems. For example,isolation makes it impossible to provide progress feedba
k for long running 
ommands.The dis
ussion follows the issues that arise when A4 is 
an
eled. Se
tion 5.1.1 dis
usses the features of theruntime that allow developers to identify new requests. Se
tion 5.1.6 des
ribes the features of the runtimethat allow the �rst 
lient's 
opy request to be stopped without 
ompromising the system's 
onsisten
y. To dothis, the runtime must undo the request's 
hanges to MD and ML while preserving the 
hanges is MI . The1The diagram shows that message 11 was removed twi
e. This follows the 
onventions of the IMAP proto
ol, where message12 is renumbered to 11 when message 11 is removed. 89



runtime support for managing this pro
ess is dis
ussed in Se
tion 5.1.2. In addition, the runtime must undothe 
hanges that the 
opy request made to FD, removing all of the messages that were added to the �le by the
opy. Support for making these 
hanges, while retaining the 
hanges in FL, is dis
ussed in Se
tion 5.1.4. Theruntime must also restart the se
ond 
opy operation, sin
e it observed some of the 
hanges made by the �rst
opy. To do this, it tra
ks dependen
ies among requests, as des
ribed in Se
tion 5.1.3. Se
tion 5.1.7 des
ribesan approa
h to supporting bla
k-box 
omposition with modules by using tollgates. Finally, Se
tion 5.1.8des
ribes solutions to thread life-
y
le issues problems that 
an o

ur while rolling ba
k requests.5.1.1 Request tra
kingThe runtime is not able to identify new requests without help from dire
tives. Requests 
an arrive throughmany 
ommuni
ation me
hanisms, in
luding network so
kets, pipes, �les, and signals. Systems may use thesame me
hanisms for ba
kground pro
essing that is not dire
tly tied to requests. In addition, in toolkitappli
ations the identi�
ation of new requests o

urs after the 
ommuni
ation in a series of 
allba
ks, asdis
ussed in Chapter 4.Therefore, the runtime relies on the dire
tives shown in Listing 5.1 to identify requests. When a threadinvokes the create_request() dire
tive, the runtime 
reates a new request and returns a request_t obje
tthat 
an be used to referen
e the request in future dire
tives.The runtime assumes that the pro
essing for a request happens on one or more threads. The relationshipbetween threads and requests is dynami
. An in
omplete request may be asso
iated with 0, 1, or manythreads at on
e. Threads are always asso
iated with a single request. The request that is asso
iated with athread may 
hange during the thread's lifetime. New requests are not asso
iated with threads. New threadsare initially asso
iated a spe
ial request 
alled the nullRequest. The nullRequest 
annot be redire
ted.The nullRequest allows developers to identify a
tivities in the system that are not asso
iated with a user-generated request, su
h as the pro
essing that o

urs in a GUI toolkit as it identi�es a new request.Developers indi
ate that a thread is about to do work for a request by invoking the associate_request(request)dire
tive. Developers 
an retrieve the request 
urrently bound to a thread by invoking the current_request()dire
tive. Developers may need to retrieve the 
urrent request to allow additional threads to bind to therequest. For example, in Figure 5.1 ClientThreads would pass the 
urrent request when sending messages,su
h as AddToFolder, to FolderThreads.Developers indi
ate that the request 
urrently bound to a thread has 
ompleted by 
alling complete_request().By 
alling this dire
tive the thread is asserting that there are no other threads asso
iated with the requestand that no thread will 
all associate_request(current_request()) in the future. Code that violates eitherof these 
onditions uses the dire
tives in
onsistently, and will 
ause the runtime to report an error.5.1.2 Tra
king 
hanges to memoryRequests modify memory as they exe
ute. For example, the COPY request at A4 in Figure 5.1 modi�es MDwhen it adds messages to the Dest1 folder, adding entries for the messages that point to their lo
ation inFD . In addition, it modi�es MI as it assigns identi�ers to the messages that it adds. Finally, the librariesthat are used to a

ess and update the �les may make 
hanges to ML. The runtime tra
ks these 
hanges,asso
iating ea
h with the request that 
aused it. It also ensures that the 
hanges 
an be reversed if the
undo() operator is invoked on the request. To do this, the runtime splits the address spa
e of the system intoa series of regions. Threads, exe
uting on behalf of requests, invoke dire
tives to gain read and/or read-writepermissions to regions before a

essing them, as des
ribed in Chapter 3.To avoid una

eptable overhead the runtime does not examine individual memory a

esses. Instead, itrelies on knowledge of the a

ess poli
ies that prote
t regions. These poli
ies are provided by the dire
tives,and are dis
ussed in detail in Se
tion 3.3. For example, multiple FolderThreads may attempt to a

ess MI .90



typedef enum {
ready, running, stopping, stopped, completed, finalized

} state_t;

typedef struct {
map<region_t *, generation_t> readSet;
map<region_t *, writeEvent_t> writeSet;
set<block_t *> deferredFrees;
state_t state;
bool isShort;
int threadsBound;

} request_t;

set<request_t *> allRequests;

__thread request_t *currentRequest;
__thread request_t *nullRequest;

request_t *create_request(bool isShort) {
request_t *rval = new request_t(isShort);
rval.state = stopped;
rval.threadsBound = 0;
allRequests.add(rval);

return rval;
}

void associate_request(request_t *request) {
exit_as_writer(currentRequest, threadRegion);
currentRequest.threadsBound��;
if (request.state != stopping) {

request.threadsBound++;
enter_as_writer(request, threadRegion);
currentRequest = request;
request.state = running;

} else {
thread_stop();

}
}

void complete_request(request_t *nextReq)
{

request_t *comp = currentRequest;
associate_request(nextReq);
if (comp.threadsBound) {

report_error("Attempting to complete with multiple bound threads");
return;

}
if (comp.state == stopping)

completed_rather_than_stopped();
comp.state = completed;

}Listing 5.1: The runtime uses this data model to tra
k requests. The __thread keyword is a storage modi�er,supported by g

, that indi
ates that the variable should be pla
ed in thread-lo
al storage. The map and settypes are pla
e-holders for abstra
t data types that provide a subset of the fun
tionality of the 
orrespondingC++ templates. The operations given above are short and should be 
onsidered to be atomi
.91



To avoid data ra
es the implementation of MI may use lo
king to ensure that at most one thread a

essesthe region at a time. When a thread obtains the lo
k the runtime will assume that the thread is aboutto write to the region. The runtime will ensure that the thread's writes 
an be reversed if its request isredire
ted. When the thread releases the lo
k the runtime will assume that the thread will no longer a

essthe region. Unlike transa
tional memory systems, the runtime must still be able to roll ba
k the thread's
hanges. Changes are 
ommitted only when the request is �nalized, as des
ribed in Se
tion 5.1.5.In other 
ases a single thread may have ex
lusive a

ess to a region. For example, MD is a

essed onlyby TD, the FolderThread that 
ontrols the Dest1 folder. In this 
ase the runtime assumes that any requestthat is bound to TD writes to the region.The dis
ussion below 
overs three aspe
ts of the support for tra
king 
hanges to memory: identifyingregions, making 
opies of regions before they are modi�ed by requests, and managing the address spa
eof the system to ensure that the 
ontent regions 
an be restored during the undo() operation. Tra
king
hanges to regions relies on the fun
tionality for tra
king dependen
ies des
ribed in Se
tion 5.1.3 for part ofits fun
tionality.5.1.2.1 De�ning regionsAttentive systems may in
orporate 
ode that is not aware of regions. In addition, standard memory allo
ationroutines have no 
on
ept of regions. Therefore, the runtime 
onstru
ts regions indire
tly, as the systemexe
utes. Dire
tives embedded within the system spe
ify whi
h region should hold new blo
ks that areallo
ated by a thread. The region that will hold future allo
ations 
an be 
hanged by invoking the bind()dire
tive. The implementation of bind() saves the region in thread-lo
al storage, making it available whenthe memory allo
ation routines are invoked.The runtime inter
epts low-level 
alls that allo
ate memory, in
luding malloc(), calloc(), realloc(), mmap(),and mmap64(). It inter
epts most 
alls by using the LD_PRELOAD environment variable to reroute 
allsto these routines to versions provided by the runtime. However, libc, the library that provides system 
allsupport and memory management for most systems, o

asionally 
alls memory allo
ation routines dire
tly,bypassing the inter
epts. Therefore, the runtime also inter
epts 
alls by pla
ing a jump instru
tion at thebeginning of some of these routines.The runtime also updates data stru
tures that allow addresses to be translated ba
k to the region that
ontains them. These data stru
tures support the region_of(block_t *) dire
tive, whi
h retrieves the region
ontaining a blo
k of memory.5.1.2.2 Preserving the 
ontents of regionsThe runtime system makes a 
opy of a region the �rst time that a request gains a

ess to the region. Whenthe undo() operation is invoked the runtime restores the 
ontent of the region from this 
opy. The runtimesupports two di�erent 
opying approa
hes: an eager 
opy and a lazy 
opy. The eager 
opy is relativelysimple, but 
an be slow for large, sparsely updated regions. In addition, it 
onsumes the address spa
e ofthe system. In the worst 
ase ea
h non-�nalized request 
ould hold a 
opy of every region in the system.The eager 
opying s
heme follows the following steps:1. The runtime 
he
ks for another request that is already writing to the region. If another request iswriting to the same region it will already have a 
opy of the region. The runtime avoids 
reating aredundant 
opy by 
reating a two-way dependen
y between the requests. As a result, issuing an undo()operation with either request will roll ba
k both requests.2. If no other request is writing to the region, the runtime examines the region, 
al
ulating the numberof blo
ks and the total size of the blo
ks. 92



3. It allo
ates a blo
k of memory that is large enough to hold the address, size, and 
urrent 
ontents ofea
h blo
k within the region.4. Finally, it 
opies the blo
ks in the region, noting their size and original address.The primary overhead in the eager s
heme is due to the 
opies of the region's blo
ks. On an Intel XeonE5405 CPU running at 2.0GHz, 
opying 660MB of memory takes approximately 0.1s. Therefore, the pro
essof 
reating a 
he
kpoint on these systems is potentially long, using the terminology outlined in Chapter 2.When systems use the design pattern outlined in Se
tion 4.3 the overhead for the 
opying will not a�e
t thea
knowledgment time of the system.The lazy 
opying s
heme a
hieves better performan
e for large, sparsely written regions by postponingthe 
opy operation. It does this by establishing a 
opy-on-write mapping to the region. The mappingremoves the system's write a

ess to the region. As a result, any attempt to write the region will 
reate afault. The kernel inter
epts the fault, 
opies the page being written, whi
h is generally 4k of memory, grantsthe pro
ess read-write a

ess to the page. Finally, it allows the write to pro
eed.Lazy 
opying is advantageous for large regions that are updated sparsely. The mappings 
an be establishedqui
kly, as shown in Figure 5.2. However, if every page in the region is written the added faults will in
reasethe 
opying time for the region by about 40% when 
ompared to eager 
opying, as shown in Figure 5.3.In addition, lazy 
opying 
an preserve at most one 
opy of a region at any given time. Therefore, theruntime must introdu
e additional dependen
ies among requests to ensure that undo() operations will not
ompromise the 
onsisten
y of the system.The runtime 
an implement lazy 
opying by using standard system 
alls. The implementation reliesheavily on memory mapped �les. It 
reates a memory mapped �le in the tmpfs �lesystem to hold the last�nalized version of the system's memory. When a thread obtains write permission to a region, the runtimeexe
utes the following operations:1. It 
he
ks if another un�nalized request is already modifying the region. If so, it 
reates a bidire
tionaldependen
y between the requests and stops. The dependen
y will ensure that the region is restoredfrom the 
lean 
opy if either request rolls ba
k.2. It 
alls mmap() with the MAP_PRIVATE �ag for ea
h of the pages in the region. On
e this 
all has
ompleted, writes to the pages will be re�e
ting in the pro
ess's memory spa
e but will not a�e
t thepages for the region in the �le in tmpfs.3. During an undo() operation the runtime issues a se
ond mmap() for ea
h of the pages in the region.The mmap() 
all will dis
ard any modi�ed pages, restoring the region from the 
lean 
opy in the tmpfs�lesystem.4. If all of the requests that have modi�ed the region have �nalized, the modi�ed pages are now the 
leanversion of the region. The runtime 
ommits these 
hanges by using the pwrite() system 
all to writethe pages to the �le in tmpfs. Ideally the kernel would optimize this write, skipping any pages thathave not been modi�ed. On
e these 
alls are 
omplete, the modi�ed pages 
an be dis
arded by issuinga se
ond mmap() 
all.To use lazy 
opying the runtime must modify the way that memory is allo
ated so that a page belongs toat most one region. This 
hange 
an be added to the routines that maintain the mapping between regionsand addresses.The appli
ation of 
opy-on-write to 
he
kpointing problems is not novel. Copy-on-write has been usedin the past to support I/O prefet
hing [35℄ and to 
apture snapshots of a system's state before 
ommittingthem to disk [41℄. However, this te
hnique is well-suited to attentive systems, sin
e it is lightweight relativeto the systems' promptness requirements and 
an be employed in systems without engaging in extensiveanalysis of every module used to 
onstru
t the system.93



Figure 5.2: The 
ost of establishing a lazy 
he
kpoint on an Intel Xeon E5405 CPU running at 2.0GHz with4GB of memory.5.1.2.3 Postponing free()The implementations of the undo() operation for both eager and lazy 
opying assume that regions 
an berestored at their original addresses. Therefore, the runtime must ensure that a region's addresses are notreassigned to a se
ond region. If addresses were reassigned, the undo() operation would not be able to restorethe �rst region modifying the se
ond region.To avoid this problem, the runtime inter
epts 
alls to free(), realloc() and munmap(). When there is a
opy for the region, frees of blo
ks in the region are pla
ed in the deferredFrees �eld of the a
tive request.The request will 
omplete these frees when it is �nalized. It may be possible to improve on this design byapplying one of the ideas dis
ussed in Se
tion 5.3.35.1.3 Dependen
y tra
king and undo()Dependen
ies arise in attentive systems when requests observe the partially 
ompleted work of other requestsduring their exe
ution. For example, there are both external and internal dependen
ies between the COPYrequest marked with A5 in Figure 5.1 and the COPY request marked with A4:� The internal dependen
y is 
reated when A5 a

esses regions that have been modi�ed by A4, in
ludingMD, MI , and ML. The dis
ussion in this se
tion addresses internal dependen
ies.� The external dependen
y is 
reated when Observer re
eives the �11 EXISTS� message at TC08 andthe �12 EXISTS� messages at TC12. These messages are generated as A4 exe
utes, and are no longervalid after A4 is 
an
eled. Dependen
y tra
king is able to automati
ally dete
t this dependen
y, but isunable to restore the 
onsisten
y of the system without detailed information about the IMAP proto
ol.Therefore, the runtime 
onta
ts a mediator, whi
h generates the appropriate IMAP noti�
ations toinform the observing IMAP 
lient of the IMAP server's new state.94



Figure 5.3: Cost of establishing and maintaining 
he
kpoints on an Intel Xeon E5405 CPU running at 2.0GHzwith 4GB of memory. The boxes show the results of individual tests. The lines represent a linear �t of thetests. The 
ost of establishing a lazy 
he
kpoint is low and is represented by the bottom line. The middleline shows the 
ost of establishing an eager 
he
kpoint, whi
h immediately in
urs the 
ost of 
opying thedata in the 
he
kpoint. The top line shows the 
ost of preserving a lazy 
he
kpoint when data is modi�ed.Dependen
y tra
king does not examine individual a

ess to the regions. Instead, it uses knowledge extra
tedfrom the dire
tives that threads invoke to gain and release permission to a

ess regions.The runtime uses information provided by the dire
tives to maintain a generation number for ea
h region.Pseudo-
ode for the data stru
tures involved is shown in Listing 5.2. The runtime in
rements the generationnumber for a region every time that a thread obtains write a

ess to the region. The generation numbera
ts as a version number for the 
ontent of the region, with higher numbers 
orresponding to more re
entversion.To illustrate, 
onsider the generation number of MD, the region 
ontrolled by the Dest1 FolderThreadin Figure 5.1. Assuming that the initial generation of MD is 0,2 the generation of MD, as viewed by theregion and TD, will be
ome 1 at TC07, 2 at TC11, and will return to 0 as a result of the undo() operationinvoked by the 
an
el at TC13.Requests be
ome aware of a region's 
urrent generation number whenever a thread bound to the requestinvokes a dire
tive to gain or release permission to a

ess the region. The readSet of the request always
ontains the highest observed generation number. For example, A2 observes that the generation numberof MD is 0 at TO02. A3 observes the same generation number at TO05. A4 dete
ts that the generationnumber is 1 at TC06 and updates it to 2 at TC10. In addition, at TC06 A4 modi�es MD for the �rst time.Therefore, it 
opies the region and saves the 
opy of the region with a generation number of 0 to its writeSet.This is the 
opy that is restored during the undo() operation at TC13.A5 dis
overed that the generation number of MD is 2 at TO08, and re
ords this number in its readSet.During the undo() of A4, shown at TC13, the runtime restores of MD from A4's writeSet, dropping thegeneration number of MD to 0. It dete
ts that A5 depends on A4 when it examines A5's readSet anddis
overs that A5 observed a later version of MD than is now 
urrent. The runtime responds by also rolling2Any initial value will work. 95



typedef struct {
bool createsDependencies;
generation_t generation;
int writers;
request_t *oldestRequestWithCheckpoint;

} region_t;

typedef struct {
checkpoint_t *chkpt;
generation_t time;

} writeEvent_t;

region_t tollgateRegion;

__thread region_t *threadRegion;

void new_thread() {
threadRegion = new_region(THREAD_LOCAL);
enter_as_writer(threadRegion, pthread_self());

}

region_t *new_region(policy_t policy)
{

region_t *rval = new region_t;
rval.createsDependencies = (policy != THREAD_SAFE);
rval.generation = 0;
enter_as_writer(currentRequest, rval);
return rval;

} Listing 5.2: Request-level dependen
y tra
king
ba
k A5's 
hanges. Allowing A5 to 
ontinue without rollba
k 
ould 
ompromise the 
onsisten
y of thesystem, sin
e the 
ontents of MD 
hanged. The runtime invokes undo() on A5 to undo A5's observation ofthe later state of MD.The runtime shares many features with some implementations of software transa
tional memory (STM) [26℄.Like STM, the runtime uses generation numbers to dete
t dependen
ies. However, it di�ers in the followingways:� STM libraries di�er be
ause they isolate transa
tions, and therefore must 
he
k for 
on�i
ts amongtransa
tions whenever a transa
tion 
ommits. The dependen
y tra
king in the runtime is invoked onlywhen the undo() operation is invoked during redire
tion. The runtime assumes that redire
tion willbe relatively rare. Therefore, it has been designed to redu
e the 
ost of tra
king dependen
ies at theexpense of doing more analysis during redire
tion.� Requests are not isolated. Therefore, the runtime is unable to apply 
ertain optimizations that areused in STM implementations. For example some STM systems use a global generation 
ounter,in
remented on ea
h 
ommit, to eliminate the tra
king of read sets for short read-only transa
tions.The STM system assumes a 
on�i
t if this 
ounter updates and restarts the read-only transa
tions.� The runtime uses dire
tives to 
olle
t dependen
ies at the level of regions rather than individualmemory lo
ations. This greatly redu
es the 
ost of 
olle
ting dependen
ies: there is no need to 
olle
tinformation about ea
h memory a

ess. However, the runtime will dete
t false dependen
ies amongrequests that a

ess di�erent parts of the same region, potentially in
reasing the expense of redire
tion.Developers 
an redu
e this problem, at the expense of writing more dire
tives, by using smaller regions.In addition, the runtime 
an fail to dete
t dependen
ies if the dire
tives are ina

urate.96



void no_region_dependencies(region_t *region) {
region.createsDependencies = false;

}

void enter_as_reader(request_t *request, region_t *region) {
if (region.createsDependencies)

request.readSet[region] = region.generation;
}

void exit_as_reader(request_t *request, region_t *region) {
if (region.createsDependencies)

request.readSet[region] = region.generation;
}

void enter_as_writer(request_t *request, region_t *region) {
if (region.createsDependencies) {

enter_as_reader(request, region);
generation_t checkpointGeneration = region.generation;
region.generation++;
if (!request.writeSet.has(region))

request.writeSet[region] = writeEvent_t(checkpointGeneration, makeCheckpoint(region));
region.writers++;

}
}

void exit_as_writer(request_t *request, region_t *region) {
if (region.createsDependencies) {

request.readSet[region] = region.generation;
region.writers��;

}
}

checkpoint_t *makeCheckpoint(region_t *region) {
if (lazy_copy(region) &&

region�>oldestRequestWithCheckpoint &&
region�>oldestRequestWithCheckpoint�>state != finalized) {

// The region holding the checkpoint now depends on current_request()
region�>oldestRequestWithCheckpoint�>readSet[region] = region�>generation;
return NULL;

}
// Checkpointing code goes here

} Listing 5.3: Operations that are invoked during permissions 
hangesThe subse
tions that follow dis
uss the detailed design of the runtime. Listing 5.3 des
ribes operationsthat modify the request and region data stru
tures when threads obtain a

ess to regions. Se
tion 5.1.3.2dis
usses the detailed design of the undo() operation.5.1.3.1 Operations for permissions 
hangesThe detailed design of the operations that tra
k dependen
ies is given in Listing 5.3. Developers 
an spe
ifythat regions do not propagate dependen
ies by using the no_region_dependencies(region_t *) dire
tive. Forexample, developers may do this for the default thread-lo
al regions asso
iated with worker threads in themap phase of a MapRedu
e [25℄ system. By invoking this dire
tive the developers are asserting that theworkers do not retain state after they pro
ess ea
h element in the input set. This assumption is reasonablefor worker threads involved in the Map phase, but may not apply to workers doing the Redu
e. Developersmust be very 
autious when invoking this dire
tive: the runtime has no way of dete
ting in
onsistent use ofthe dire
tive. 97



The enter_as_reader(request, region) operation uses generation to dete
t dependen
ies among requests.It does this by saving the 
urrent value of the region's generation �eld to the request's readSet. It does not
he
k for an existing entry in readSet before saving the value. Any existing entry would either refer to anequal value of generation, making the update a noop, or would refer to a lower value of generation. By up-dating generation to the latest value, enter_as_reader() preserves all of the request's previous dependen
ieswhile potentially adding new ones.The enter_as_writer() operation assumes that every writer of a region is also a reader of the same region.Therefore, enter_as_writer(request, region) starts by 
alling enter_as_reader(request, region). Next, it
he
ks the request's writeSet for a referen
e to the region. Unlike the readSet, existing entries in the writeset must be preserved, sin
e they 
ontain a 
he
kpoint 
reated before the request made 
hanges to the region.Repla
ing this 
he
kpoint with a later 
he
kpoint would make it impossible to undo the request's 
hangesto the region. If the region is not in the writeSet, enter_as_writer() 
reates a 
he
kpoint for the region,saving the 
he
kpoint and the 
urrent value of generation in a new writeEvent_t stru
ture in the writeSet.Finally, enter_as_writer() in
rements the region's generation �eld, indi
ating that the request may modifythe region.Sin
e threads automati
ally obtain read-write a

ess to regions when they 
reate them, the new_region(policy)dire
tive 
alls enter_as_writer(currentRequest, newRegion) after it 
reates a new region. It also initializesthe generation �eld to 0 and provides the appropriate default for the createsDependencies �eld.When a new thread is 
reated the runtime 
reates a symboli
 thread-lo
al region to represent thethread's lo
al state, in
luding its sta
k and registers and any thread-lo
al regions later 
reated by devel-opers. By default this lo
al region will propagate dependen
ies among requests asso
iated with the thread,as shown in the associate_request() dire
tive in Listing 5.1. Developers 
an override this behavior by 
alling
no_region_dependencies(threadRegion).The exit_as_reader() and exit_as_writer() operations update the request's readSet when it releases a

essto a region. These updates address dependen
ies that o

ur when threads write regions while other threadshave a

ess to the region. They ensure that the other threads 
reate a dependen
y on the 
on
urrent writers.During undo() the runtime may need to take additional steps to dete
t these dependen
ies.The partial design of makeCheckpoint() shows the support needed to propagate the dependen
ies for lazy
opies. The approa
h proposed for lazy 
opies in Se
tion 5.1.2.2 
an support at most one 
opy per region.The earliest 
opy for a region must be preserved to ensure that all of the a
tive requests in a system 
an berolled ba
k. Therefore, the 
ode in makeCheckpoint() �rst 
he
ks for a request that has a 
opy of the region.If su
h a request exists, the 
ode makes the request holding the lazy 
opy dependent on current_request().The dependen
y ensures that the request holding the 
opy will be rolled ba
k when current_request() isrolled ba
k. On
e the dependen
y has been established there is no need to 
reate a 
he
kpoint. Therefore
makeCheckpoint() returns immediately after establishing the dependen
y.5.1.3.2 Implementing the undo() operationA design for undo() is shown in Listing 5.4. The undo() operation is implemented in two phases. The �rstphase identi�es the set of regions and requests that must be rolled ba
k to preserve the system's 
onsisten
y.In the worse 
ase, this algorithm will exe
ute O(n2) operations, where n is the number of non-�nal requestsin the system. However, this 
ase will be produ
ed only if ea
h non-�nal request depends on exa
tly oneother non-�nal request and the algorithm pro
esses the requests in the worst possible order.The algorithm begins by restoring the 
he
kpoints of the request being redire
ted without a

ounting fordependen
ies, rolling ba
k the generation values of the a�e
ted regions. Next, the algorithm examines theset of non-�nal requests, 
omparing the values of generation saved in their readSets to the values in theregions. If the readSet indi
ates that the request depended on a later version of the region, the non-�nalrequest must also be rolled ba
k. The algorithm pro
eeds by 
alling simple_undo() on the request and98



void simple_undo(map<region_t*, checkpoint_t *> *deferredRestores, request_t *req) {
foreach ((region_t *region, writeEvent_t ev) in req.writeSet) {

if (region.generation > ev.time) {
region.generation = ev.time;
(*deferredRestores)[region] = ev.chk;

}
}
req.readSet.clear();
req.writeSet.clear();
req.deferredFrees.clear();

}

void undo(request_t *req) {
stop_the_world();

map<region_t*, checkpoint_t *> deferredRestores;
simple_undo(&deferredRestores, req);
req.state = stopped;

queue<request_t *> toCheck;
queue<request_t *> checked;
foreach (request_t *request in allRequests) {

if (request.state != finalized) {
toCheck.add(request);

}
}
while (request = toCheck.removeFront()) {

bool addToChecked = true;
foreach ((region_t *region, generation_t t) in request.readSet) {

if (region.generation < t) {
simple_undo(&deferredRestores, request);
request.state = ready;
toCheck.add(checked);
checked.clear();
addToChecked = false;
break;

}
}
if (addToChecked) {

checked.add(request);
}

}
for ((region *region, checkpoint_t *c) in deferredRestores) {

restoreCheckpoint(c, region);
}

start_the_world();
} Listing 5.4: Pseudo-
ode for request undo99



restarts by appending the queue of checked requests to its queue of requests to be 
he
ked. If the requestbeing examined appears to be 
onsistent, the algorithm adds it to the queue of checked requests. By pla
ingit in this queue the algorithm ensures that the request will be re
he
ked if another request rolls ba
k beforethe algorithm terminates.During the se
ond phase the runtime restores the 
ontent of the regions from the 
opies identi�ed in the�rst phase. Eager 
he
kpoints 
an be restored by using memcpy() to 
opy the memory. Lazy 
he
kpointsare restored by 
alling mmap() on the pages in the region with the MAP_SHARED �ag. As a result of this
all, the modi�ed versions of the pages in the region are abandoned in favor of the original versions. Undoof lazy 
he
kpoints 
an be highly e�
ient, as shown in Figure 5.2.
5.1.4 Handling external dependen
iesThere are two forms of external dependen
ies in the IMAP server. First, the 
ontent of the �les a�e
tedby A4, in
luding FD , must be restored when A4 is 
an
eled. Se
ond, the IMAP server must inform the
Observer that messages 11 and 12 have been deleted. The Observer be
ame aware of these messages atTC08 and TC12, but the IMAP server no longer knows about the messages after the redire
tion at TC13.Unlike internal dependen
ies, the re
on
iliation of external dependen
ies must a

ount for the semanti
sof operations. For example, in the running example it is su�
ient to trun
ate FD to its length before A4began to run. However, if a se
ond 
opy were modifying FD , the tail of the �le would have to be 
arefullyrewritten to preserve the se
ond 
opy's messages. FL, the log of operations on the IMAP server, shouldnot be modi�ed with A4 is redire
ted, even though A4 modi�ed the �le. In addition, the IMAP proto
olspe
i�es that the server must not reuse the UIDs assigned to messages 11 and 12 at any point in the future.As a result, the server must be 
areful to avoid rolling ba
k MI and FI .The strategy for resyn
hronizing the Observer depends on the semanti
s of the IMAP proto
ol andthe state of the system. In the running example the IMAP server is able to resyn
hronize by sending
ompensations [15℄, in this 
ase two �*11 EXPUNGE� messages. The mediator is able to generate thesemessages only be
ause it has detailed knowledge of the previous messages sent to the Observer and knowledgeof the proto
ol.The runtime allows developers to 
reate 
omponents, 
alled mediators, that manage these issues. Me-diators 
an parti
ipate in rollba
k system des
ribed above by 
reating spe
ial regions. The rollba
k systemwill then use 
allba
ks to invoke the mediator during the operations des
ribed in Listing 5.3, and also in-voke the mediator to restore the state of the region during undo(). In addition, the mediators are 
apableof inter
epting, and possibly modifying, operations that 
ould initiate 
ommuni
ation or modify persistentstate on the system. These operations are 
alled subrequests. Mediators may 
hoose to pass through ormodify subrequests. The approa
hes des
ribed below are similar to the ones used in transa
tional memorysystems [54, 84℄.Some subrequests do not require modi�
ation. For example, the �* 11 EXISTS� TC08 
an be passedthrough immediately, sin
e there is always a 
orresponding �EXPUNGE� that reverses its e�e
t on the
Observer.Other subrequests 
ause 
hanges that are di�
ult or impossible to reverse. For example, IMAP 
lients
an initiate a large number of message deletions in a folder with the EXPUNGE 
ommand. Normally, anobserver in the same folder would see ea
h message as it was deleted. However, the IMAP proto
ol does notprovide a way to reverse these 
hanges if the EXPUNGE is 
an
eled. In this 
ase the mediator may 
hoose toisolate the EXPUNGE 
ommand, informing the Observer only after all of the messages have been deleted.100



Figure 5.4: Rollba
k of 
ompleted requests. A11 must be able to roll ba
k if A10 is 
an
eled. As a result,
opies of regions in A11 must be preserved after TO17, the point where A11 stops exe
uting.5.1.5 Freeing 
opies of regions: the pro
ess of �nalizing requestsThe 
opies of regions stored with a request may be needed even after a request 
ompletes. For example,
onsider the sequen
e of IMAP requests shown in Figure 5.4. In this sequen
e A11 be
omes dependent onA10 at TO16. If A11 frees its 
opies of regions when it 
ompletes at TO17 there will be no way to rollba
k A11 if A10 is later 
an
eled. Therefore, A11 must retain its 
opies of regions after it 
ompletes. On
eA10 
ompletes there is no need to retain A11's 
opies of regions. The pro
ess of determining this is 
alled�nalization.Finalization is 
losely tied to undo(). Therefore, the design for the algorithm for �nalizing shown inListing 5.5, starts by simulating the �rst phase of undo(). The algorithm starts by doing a pseudo_undo()of every request that is not 
omplete and not �nal. The pseudo_undo() is similar to the simple_undo()fun
tion, but does not 
hange the 
ontent of regions and does not manipulate the generation number storedin regions. To sear
h for dependen
ies, pseudo_undo() stores the earlier generation numbers that wouldhave resulted from the rollba
k of regions in a map 
alled pseudoTimes. It then 
he
ks all of the 
ompletedrequests to see if the earlier generation numbers would have 
aused them to roll ba
k.When the 
he
ks terminate the requests in checked 
an be �nalized, sin
e the algorithm has establishedthat it is impossible for dependen
ies to 
ause these operations to roll ba
k. The runtime 
an free their
he
kpoints.5.1.6 Implementing the stop() operationMany of the patterns of redire
tion de�ned in Se
tion 2.6 rely on the stop(request) operation, whi
h pausesa request while saving as many of its 
hanges as possible. A trivial, but potentially ine�
ient, approa
h toimplementing the stop(request) is to 
all undo(request). Similarly, the continue(request) operation 
an beimplemented in terms of start(request). These implementations ensure both that the stop() and continue()methods will be short and also that the system's state will be 
onsistent. However, they dis
ard all of thework done by the request before it is stopped. 101



void pseudo_undo(map<region_t*, generation_t> *pseudoTimes, request_t *req) {
foreach ((region_t *region, writeEvent_t ev) in req.writeSet)

if ((!region in pseudoTimes) || (pseudoTimes[region] > ev.time))
pseudoTimes[region] = ev.time;

}
}

void finalize {
map<region_t*, generation_t> pseudoTimes;
queue<request_t *> toCheck;
queue<request_t *> checked;

stop_the_world();
foreach (request_t *request in allRequests) {

if (request.state == finalized) {
continue;

} else if (request.state == completed) {
toCheck.add(request);

} else {
pseudo_undo(&pseudoTimes, request);

}
}

while (request = toCheck.removeFront()) {
bool addToChecked = true;
foreach ((region_t *region, generation_t t) in request.readSet) {

if ((region in pseudoTimes) && (pseudoTimes[region] < t)) {
pseudo_undo(&pseudoTimes, request);
toCheck.add(checked);
checked.clear();
addToChecked = false;
break;

}
}
if (addToChecked)

checked.add(request);
}
foreach (request in checked) {

request.state = finalized;
foreach ((region_t *region, writeEvent_t ev) in request.writeSet)

free_checkpoint(ev.chkpt);
foreach ((block_t *block) in request.deferredFree)

free(block);
request.readSet.clear();
request.writeSet.clear();
request.deferredFree.clear();

}
start_the_world();

} Listing 5.5: Pseudo-
ode for �nalization102



Developers 
an re�ne the implementation of stop() and continue() to redu
e the amount of work lost byusing dire
tives to mark atomi
 se
tions of 
ode. These dire
tives, introdu
ed in Chapter 3, in
lude:� start_atomic(): The blo
k of 
ode up to the 
orresponding invo
ation of end_atomic() must exe
uteto 
ompletion and must not be interrupted by the stop() operation. The blo
k of 
ode must exe
utewithin a short period of time. The restri
tions on the undo() of atomi
 blo
ks have been de�ned toallow mediators to use atomi
 blo
ks to prote
t their data stru
tures.� atomic_sections_are_marked(): Developers have marked all of the atomi
 blo
ks in the 
ode that isexe
uting. If the runtime 
an establish that the 
allers 
an stop before this 
ode 
ompletes, the runtimemay safely stop any thread exe
uting this 
ode if it is outside of a marked atomi
 blo
k.� short_duration_lock(void *lock): The referen
ed lo
k will be held only for short period of time. There-fore, the runtime may be able to avoid an undo by waiting for the lo
k to be released.The runtime uses these dire
tives in the following algorithm:1. Mark the request as stopping.2. Any thread exe
uting an associate_request() dire
tive for a stopping request will stop(). As a result,no new threads 
an enter the set of threads asso
iated with a stopping request. The threads in thisset are 
alled asso
iated threads.3. Any asso
iated thread 
alling deassociate_request() will immediately be removed from the set ofasso
iated threads.4. If an asso
iated thread 
alls complete_request(), then the request will leave the stopping state andenter the completed state. The runtime will return a value from the stop() operation to indi
ate thatthe request 
ompleted rather than stopping. In some 
ases the system will need to report this eventto the 
lient, sin
e it may 
hange the interpretation of future requests.5. If any asso
iated thread is in an atomi
 blo
k and holds a long lo
k the runtime will report in
onsistentannotations: the thread engaged in a long duration operation within an atomi
 blo
k.6. If any asso
iated thread is exe
uting 
ode where atomi
 se
tions are not marked, the runtime musteventually roll ba
k the request with the undo() operation. This rollba
k may be delayed to allow otherthreads to exit atomi
 blo
ks.7. The runtime will wait for threads to exit atomi
 blo
ks, stopping these threads when they exit theoutermost blo
k. The threads will all exit the blo
ks within a short time.8. If a thread is exe
uting 
ode where atomi
 se
tions are marked and is not in an atomi
 blo
k and holdsno lo
ks, the thread 
an safely stop.9. The other asso
iated threads will stop, one at a time, as ea
h thread exits all of its atomi
 blo
ks andreleases all of its short-duration lo
ks.10. On
e all of the asso
iated threads have stopped, then the request enters the stopped state. Sin
edevelopers ensure that all atomi
 blo
ks and short duration lo
ks are short, a stopping request willrea
h the stopped state in a short period of time.5.1.7 TollgatesMany attentive systems in
orporate third party modules that do not provide dire
tives to the runtime. Atollgate is a wrapper that surrounds these modules, providing an approximation of the information thatwould normally be provided by dire
tives within the module. The tollgate is 
onstru
ted from modi�ersthat developers add to the module's interfa
e. The runtime uses the tollgate to manage a

ess to a region,
alled the tollgate region (tgr), that is shared by all of the third party modules. Using a single tollgate regionfor all of the modules allows the runtime to dete
t dependen
ies that arise from 
ommuni
ation among the103



Atomi
 se
tions In atomi
 blo
k? Lo
ks held A
tionUnmarked Either Any Roll ba
kMarked No None StopMarked No All short WaitMarked No Some long Roll ba
kMarked Yes None or all short WaitMarked Yes Some long Error: long duration atomi
 blo
kTable 5.1: Rules for stopping requests. Atomi
 blo
k are honored even when atomi
 se
tions are not markedto simplify the implementation of redo logs. In this table the rules are sorted to demonstrate that all of the
ases have been handled.modules. The dis
ussion below fo
uses on the tollgate from the perspe
tive of propagating dependen
ies andmanaging 
hanges in the tollgate region. For more details on the modi�ers see Se
tion 3.5.During un
he
ked exe
ution the runtime looks ex
lusively at the reader, writer, and independent mod-i�ers on the interfa
e. When a thread 
alls a fun
tion marked with reader, the runtime exe
utes the
enter_as_reader(tgr) operation before 
alling the fun
tion and exe
utes exit_as_reader(tgr) when the fun
-tion returns. The runtime makes similar 
alls to enter_as_writer(tgr) and exit_as_writer(tgr) when a thread
alls a fun
tion marked with the writer modi�er. The runtime takes no a
tion for fun
tions marked with the
independent modi�er.The approa
h des
ribed above is very 
onservative, and re�e
ts a pra
ti
al limitation pla
ed on developers.The information hiding prin
iple [79℄ makes it impossible for developers to know the implementation details ofsome of their modules. Module developers 
an easily introdu
e sharing of state in ways that are not apparentat the module's interfa
e by using of stati
 �elds, pointers in opaque stru
tures, and global variables. Priorexperien
e has indi
ated that this sharing 
an 
reate unexpe
ted dependen
ies among threads that a

essthe module [59℄.5.1.8 Thread issuesThe runtime must address three 
on
erns that o

ur in multi-threaded systems: reviving threads that exitduring requests, 
hanging the run state of threads during redire
tion, and interrupting threads in long system
alls during redire
tion. These issues are dis
ussed below.5.1.8.1 Life-
y
le issuesOne or more of the threads may exit while they are asso
iated with a request. When the exiting threadwas also 
reated by the request there is no risk to the 
onsisten
y of the system. In the event of a rollba
kthe system will automati
ally 
reate a new thread, if needed, after the rollba
k. However, in 
ases wherethe thread existed before the request started the runtime must make some provision for reviving the thread.Creating a new thread will not work, sin
e it will have a new thread identi�er and the old thread identi�ermay be saved in one or more regions that survive rollba
k. In addition, the revived thread must reprodu
ethe values saved in the original thread's lo
al storage. Therefore, the runtime inter
epts the thread's attemptto exit and postpones it until its asso
iated request has �nalized. If the request is rolled ba
k, the runtimerevives the thread by restoring its previous state and allows it to 
ontinue. The runtime must simulate thee�e
ts of thread exit in pthread_join() to preserve the interfa
e of the pthreads library.104



5.1.8.2 Waking threadsIn multi-threaded appli
ations, preserving the 
orre
t run state of threads�either sleeping or running�is extremely important. If a 
an
el request fails to wake threads that should still be running there is apossibility that the appli
ation 
ould deadlo
k. Restoring the thread state to what it was when the 
he
kpoint
an lead to failures. Consider an example where a thread is blo
ked in a system 
all when a 
he
kpoint istaken. After the 
he
kpoint, the system 
all 
ompletes and the thread wakes. Then the user sends a 
an
elrequest that restores the 
he
kpoint. The thread may never wake if the runtime puts it to sleep as part ofrollba
k: the system 
all is no longer a
tive in the kernel.The behavior of the pthread_cond_wait() and pthread_cond_signal() 
alls is espe
ially subtle.3 If athread is sleeping on a 
ondition variable and wakes while another request is a
tive, there are two possible
auses:� The pthread_cond_signal() was generated by a 
ollaborating system, either dire
tly via a sharedmemory window or indire
tly by sending a message. As a result, the pthread_cond_signal() is stillvalid after redire
tion and exe
ution should pro
eed.� The pthread_cond_signal() 
ould have been generated by the redire
ted request. Note that it ispossible for this to happen via an external 
ollaborator. In this 
ase, the �rst thread should a
tuallybe asleep when the request is rolled ba
k.The runtime 
an address these problems by implementing a simple rule: any thread that started to run duringthe redire
ted request should be restarted after the rollba
k. This rule exploits a feature of POSIX [76℄ andJava [55℄ threading, whi
h state that 
ode must use a mutex to guard wait() statements, and must also double
he
k the state of the system against spurious awakenings before pro
eeding allowing the thread to pro
eed.For most other system 
alls the 
orre
t system state is not 
lear in the 
ontext of the system 
all.Therefore developers must provide mediators to restore the system's state after rollba
k. These mediators
an 
ontrol the running state of the threads engaged in the system 
all.5.1.8.3 Interrupting long system 
alls during rollba
kWhen a request is rolled ba
k, it is possible that one or more of its threads will be engaged in a long system
all. It may not be possible to wait for this system 
all to 
omplete before 
ompleting the redire
tion.While this problem 
ould be avoided if developers used asyn
hronous versions of system 
alls [100℄, theruntime implements a more general approa
h that uses pthread_kill() 
all4 to regain 
ontrol of the thread.Any partially 
ompleted state 
hanges in the pro
ess's address spa
e will be reversed by the 
opying s
hemedes
ribed above, while state 
hanges asso
iated with 
ollaborating systems will be handled by their mediators.The runtime will restore the thread's lo
al state, in
luding its instru
tion pointer, register 
ontents, sta
k,and thread-lo
al storage from a mediator that wraps the system 
all.5.2 Che
ked exe
utionChe
ked exe
ution provides the same servi
es as trusted exe
ution while verifying the a

ura
y of the in-formation provided by dire
tives. Most dire
tives 
an be veri�ed with a small number of relatively inexpensive
he
ks. For example, the dire
tives that mark short se
tions�begin_short_section() and end_short_section()�
an be implemented with a 
ounter and a timestamp. The 
ounter starts at 0 and in
rements every time3The 
orresponding Java methods are wait() and notify().4The pthread_kill() 
all does not destroy the thread. Instead, it sends an asyn
hronous signal to the thread that interruptsthe system 
all. This terminology, while 
onfusing, is 
onsistent with the terminology adopted for inter-pro
ess signaling inPOSIX. 105



that the runtime sees a begin_short_section(). When the 
ounter moves from 0 to 1 the runtime updates thetimestamp. When the runtime en
ounters an end_short_section(), if �rst veri�es that the 
ounter is greaterthan 0. If not, the runtime reports that the begin_short_section() and end_short_section() dire
tives donot nest properly. Se
ond, the runtime obtains a new timestamp and 
al
ulates the elapsed time sin
e the
ounter was updated. If a long time has elapsed, the runtime reports that the short se
tion took too long toexe
ute.However, the dire
tives related to 
onsisten
y are mu
h more di�
ult to verify. These dire
tives makeassertions about the system's future behavior at the level of individual memory a

esses. To 
he
k thesedire
tives, the runtime would need to examine ea
h a

ess to memory. Some dynami
 
he
kers for 
on-
urren
y errors, su
h as Eraser [86℄, Helgrind [89℄, and FlashLight [49℄, work at this level. However, thesedynami
 
he
kers have been designed with the assumption that information about 
on
urren
y poli
y is notavailable and must be inferred from the behavior of the system. The runtime is able to exploit the untrustedinformation provided in dire
tives to a
hieve a mu
h higher level of e�
ien
y. It translates the informationinto permissions 
hanges on the page table entries of the thread exe
uting the 
ode, 
ausing the memoryprote
tion hardware in the pro
essor to generate a fault if the thread makes an a

ess that is in
onsistentwith the information provided in the dire
tive. As a result, the runtime 
an 
he
k these dire
tives whilein
reasing the running time of the system by only a fa
tor of 3.We must resolve several problems to implement 
he
ked exe
ution:� The runtime must be able to manipulate a

ess permissions for ea
h thread independently. In tradi-tional systems, every thread in a pro
ess shares a 
ommon set of a

ess permissions. We a

omplishthis by allo
ating page tables for ea
h thread in the system.� The threads in the system must share a 
ommon view of memory. Normally, this happens automati
allydue to the sharing of a

ess permissions among threads. However, this fun
tionality is lost when weallo
ate thread-spe
i�
 page tables and must be reimplemented by the runtime.� The runtime must ensure that threads do not a
quire 
on�i
ting permissions to a

ess sound regions.While some poli
ies, in
luding guarded regions, ensure this, others, su
h as thread-
on�ned regions,give developers the ability to 
ontrol a

ess to regions dire
tly. These 
he
ks are sensitive to theinterleaving among threads, but the runtime is able to ensure that there are no violations of the poli
yfor the observed exe
ution.� Some systems use blo
ks that are too small to be represented in page tables, su
h as individual elementsof arrays. The runtime must provide a reasonably e�
ient way to verify these blo
ks.� Some systems use modules that do not have dire
tives. While the runtime 
annot 
he
k blo
ks ofmemory that are hidden in these modules, it should ensure that the dire
tives applied to blo
ksoutside the module are honored. In addition, it should ensure that the system does not a

ess blo
kssupposedly hidden within the module.The se
tions below dis
uss ea
h of the issues mentioned above and des
ribe some of the implementationdetails of the runtime system for 
he
ked exe
ution. The se
tion 
on
ludes by quantifying the performan
eof the runtime as it exe
utes ben
hmarks 
hosen from the PARSEC ben
hmark suite.5.2.1 The pro
ess model and �lamentsPOSIX threads share a 
ommon address spa
e, permissions to a

ess parts of this address spa
e, and resour
essu
h as �le des
riptors. POSIX pro
esses generally do not share address spa
es and resour
es. However, itis possible to 
onstru
t POSIX pro
esses that share memory by employing the mmap() system 
all to mapparts of a �le into the memory of both pro
esses. Ea
h pro
ess is able to 
ontrol its permissions to a

essthis memory by manipulating the �ags of the 
all.The runtime with dynami
 
he
king relies on an entity 
alled a �lament that shares features of pro
esses106



and threads. Like a pro
ess, the �lament has 
ontrol over its permissions to a

ess memory. Like a thread,the �lament shares resour
es su
h as �les, network so
kets, and a 
ommon address spa
e.We dis
overed that we 
ould 
onstru
t and 
ontrol �laments without modifying the pthreads library usedon Linux systems by inter
epting the clone() system 
all generated by pthread_create(). The clone() system
all 
reates either a new thread or a new pro
ess depending on a set of �ags that are passed as one of itsparameters. In general there is a �ag for ea
h pie
e of state that 
ould be shared. We 
reate new �lamentsby 
learing three of the �ags: CLONE_VM, CLONE_THREAD, and CLONE_SIGHAND.Clearing CLONE_VM 
auses the kernel to allo
ate a new set of page tables for the �lament. This allowsus to manipulate the permission bits in the �lament's page tables to ensure that its a

esses do not violatethe poli
ies spe
i�ed in dire
tives.Clearing CLONE_THREAD allows the new thread to 
all exec() without terminating the pro
ess. Weuse this fun
tionality to run the debugger when the dynami
 
he
ker dete
ts an in
onsistent dire
tive.Finally, we 
lear CLONE_SIGHAND be
ause the clone() system 
all will fail if CLONE_SIGHAND isset while CLONE_VM is not set. By 
learing this �ag we are responsible for propagating 
hanges in signalhandlers among the �laments of the system. We have not yet implemented this feature be
ause the systemsthat we have examined do not make use of signal handlers. We would probably propagate this informationthrough the log des
ribed below.It is important to note that �laments are not totally independent pro
esses. For example, �laments sharea 
ommon set of �le des
riptors just as threads do. As a result, we do not have to 
hange the implementationof system 
alls that work with �le des
riptors. This is the prin
ipal advantage to using the clone() system
all rather than 
reating a separate pro
ess with fork(). However, sin
e the clone() 
all is Linux-spe
i�
 it ispossible that later kernels may 
hange the 
all in ways that make it impossible to 
reate �laments.
5.2.2 Propagating 
hanges among �lamentsThe �laments provided by the clone() system 
all are not ideal. Sin
e the page tables for ea
h �lament areunique, memory allo
ation events are not automati
ally propagated among �laments. This in turn, pointsto an assumption built into the design of most pro
essors that uses a single data stru
ture to 
ontrol boththe 
ontent of the address spa
e and also the permissions to a

ess the address spa
e.We over
ome this limitation by using a log to inform �laments of the 
reation of new blo
ks of memory.This log 
onsists of an array of pointers to the data stru
tures that des
ribe regions. These data stru
turesare preallo
ated in a blo
k of memory, and both the log and the blo
k memory 
ontaining the data stru
turesare automati
ally mapped in to new �laments when they are 
reated.Filaments dis
over new regions asyn
hronously. When a �lament is ready to 
reate a new region it lo
ksthe log, updates its page tables with any new regions that it �nds in the log, allo
ates the region, andadds a pointer to the region to the log, and then releases the lo
k. The lo
k ensures that �laments do notinadvertently allo
ate overlapping regions. We also 
he
k the log when a
quiring lo
ks, 
reating new threads,and pro
essing the get_transferable() and release_transferable() dire
tives. By 
he
king the log on theseo

asions, we ensure that we dis
over new regions using a sound poli
y before a

essing them.However, it is possible for a �lament to a

ess a region with an unsound a

ess poli
y before be
omingaware of the existen
e of the region. The �lament will not have a

ess to the memory asso
iated with theregion, 
ausing the a

ess to generate a fault. We 
he
k for this 
ase in the error reporting 
ode, whi
hhandles it by pro
essing any outstanding log entries and restarting the �lament.107



5.2.3 Che
king transfer dire
tivesDevelopers pla
e the following dire
tives in 
ode to 
ontrol the assignment of permissions to �laments forboth thread-
on�ned regions and phased immutable regions:� get_transferable()� get_transferable_ro()� release_transferable()� release_transferable_ro()If the system does not 
oordinate these dire
tives, for example by using lo
ks, �laments 
ould attempt toobtain 
on�i
ting permissions to a

ess the region. The runtime will report attempts to gain 
on�i
tingpermissions as fatal errors.The 
urrent implementation of 
he
ked exe
ution ensures that no two �laments gain 
on�i
ting permis-sions by examining the region's data stru
ture when it en
ounters these dire
tives. It generates an error if a�lament attempts to gain write a

ess while another �lament has a

ess to the region and when a �lamentattempts to gain read a

ess while a writer is a
tive. We 
all this approa
h best e�ort 
he
king.However, it is possible for developers to write poorly syn
hronized dire
tives that will o

asionally slippast a dynami
 
he
ker relying on best e�ort 
he
king. An example is given in Listing 5.6. Some interleavingswill allow this program to run to 
ompletion without 
reating a data ra
e. Other interleavings 
ould 
ausethe program to read an uninitialized pointer at line B35, potentially 
reating bad output or a 
rash. Finally,it is possible that the get_transferable() annotation at line B5 and the get_transferable_ro() annotation atline B33 
ould overlap, 
ausing the dynami
 
he
ker to report a transfer ra
e on either the parent or the
hild thread.This la
k of determinism happens be
ause the transfer dire
tives are not su�
iently syn
hronized inthe program due to the missing pthread_join() 
all at line B31. Ideally we would like the dynami
 
he
kerto dete
t that the transfers are not su�
iently syn
hronized and report an error. However, this problemis not easily solved, sin
e there are many possible te
hniques that 
an be used to syn
hronize the trans-fers. The variant of the example shown in Listing 5.7 relies on the happens-before relationships 
reated by
pthread_create() and pthread_join() to syn
hronize the permissions 
hanges. This approa
h is often usedwhen a parent thread spawns one or more worker threads.It is also possible to syn
hronize the transfers by using a 
ombination of 
ondition variables and syn-
hronized blo
ks. This approa
h is shown in Listing 5.8. Finally, it is possible to syn
hronize transfers bypassing a message via either an in-memory queue or network so
ket to indi
ate that it is safe to transfer.An example of this form of syn
hronization is given in Listing 5.9. In this example the read() at line M35establishes a happens-before relationship between the 
hild's release_transferable() at M14 and the parent's
get_transferable_ro() at M37. This is only the 
ase be
ause so
ket[0℄ and so
ket[1℄ are 
onne
ted by the
socketpair() 
all. Dire
t 
ommuni
ation between threads via so
kets is less e�
ient than other forms of
ommuni
ation. However, in 
ases where threads use so
kets to 
ommuni
ate with an outside system, su
has an IMAP server, this sort of syn
hronization is possible.There are several strategies that we 
ould employ to improve best-e�ort 
he
king: missing happens-before dete
tion, annotated happens-before 
he
king, and full behavior modeling. Ea
h of these approa
hesinvolves trade-o�s among annotation e�ort, false-positives, false-negatives, the types of systems that 
an beannotated, and the 
omplexity of analysis. We will dis
uss these te
hniques in more detail below.Missing happens-before dete
tion involves tra
king the happens-before relationships 
reated among�laments by thread 
reation, thread joins, and standard 
on
urren
y 
ontrol 
onstru
ts. The dete
tion will
reate an error when a �lament attempts to obtain permissions that were released by a di�erent �lament andno-happens before relationship was established. This approa
h does 
at
h some errors missed by best-e�ort
he
king and adds no annotation e�ort. However, it su�ers both from false positives and false negatives and108



B1 typedef struct {int i; char *o; } job;B3 void *do_work(void *ctx) {B4 job *j = ctx;B5 get_transferable(j);B6 region_t saved = bind(region_of(j));B7 j�>o = malloc(10);B8 bind(saved);B10 snprintf(j�>o, 10, "%d", j�>i);B12 release_transferable(tW);B14 return NULL;B15 }B17 int main(int argc, char *argv[]) {B18 pthread_t c;B20 region_t saved = bind(new_region(PHASED_IMMUTABLE));B21 job *j = malloc(sizeof(*j));B22 bind(saved);B24 j�>i = atoi(argv[1]);B26 release_transferable(j);B28 pthread_create(&c, NULL, do_work, j);B29 ...B30 /* Removing the line below creates a transfer race */B31 /* pthread_join(c, NULL); */B33 get_transferable_ro(j);B35 printf("%s\n", j�>o);B37 release_transferable_ro(j);B39 return 0;B40 }Listing 5.6: An example of a transfer ra
e. The missing pthread_join() 
all at line B31 
ould 
ause a transferra
e depending on the relative progress of threads. If the runtime 
he
ks for happens-before relationshipsthis ra
e will always be 
aught. Table 5.2, above and to the right, show the two possible exe
utions.

Line Valid Justi�
ationB26 YB5 Y pthread_create() at B28B12 Y same threadB33 N Last 
ommon event was B26, needed B12orLine Valid Justi�
ationB26 YB33 Y same threadB37 Y same threadB5 N Last 
ommon event was B26, needed B37Table 5.2: These tables show two exe
utions of the 
odeto the left. In both tables a dire
tive exe
utes without es-tablishing a happens-before relationship. A 'Y' in the valid
olumn indi
ates that the happens-before relationship wasestablished and the relationship is des
ribed in the Justi�-
ation 
olumn.
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A1 typedef struct {int i; char *o; } job;A3 void *do_work(void *ctx) {A4 job *j = ctx;A5 get_transferable(j);A6 region_t saved = bind(region_of(j));A7 j�>o = malloc(10);A8 bind(saved);A10 snprintf(j�>o, 10, "%d", j�>i);A12 release_transferable(tW);A14 return NULL;A15 }A17 int main(int argc, char *argv[]) {A18 pthread_t c;A20 region_t saved = bind(new_region(PHASED_IMMUTABLE));A21 job *j = malloc(sizeof(*j));A22 bind(saved);A24 j�>i = atoi(argv[1]);A26 release_transferable(j);A28 pthread_create(&c, NULL, do_work, j);A29 ...A30 pthread_join(c, NULL);A32 get_transferable_ro(j);A34 printf("%s\n", j�>o);A36 release_transferable_ro(j);A38 return 0;A39 }Listing 5.7: Dire
tives to des
ribe a thread-
on�ned job blo
k, allo
ated on line A21. The dire
tives in thislisting are shown in bold type.

Line Valid Justi�
ationA26 YA5 Y pthread_create() at A28A12 Y same threadA30 Y pthread_join() is always validA32 Y pthread_join() implies A12 HB A30Table 5.3: This table shows an exe
ution of the 
ode to theleft. The 
ode always establishes the ne
essary happens-before (HB) relationship before rea
hing a dire
tive. A 'Y'in the valid 
olumn indi
ates that the happens-before rela-tionship was established and the relationship is des
ribed inthe Justi�
ation 
olumn.
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C1 typedef struct {C2 int i;C3 char *o;C4 int bDone;C5 pthread_mutex_t lock;C6 pthread_cond_t done;C7 } job;C9 void *do_work(void *ctx) {C10 job *j = ctx;C11 get_transferable(j);C12 region_t saved = bind(region_of(j));C13 j�>o = malloc(10);C14 bind(saved);C16 snprintf(j�>o, 10, "%d", j�>i);C18 release_transferable(tW);C20 pthread_mutex_lock(&j�>lock);C21 j�>bDone = 1;C22 pthread_cond_signal(&j�>done);C23 pthread_mutex_unlock(&j�>lock);C25 return NULL;C26 }C28 int main(int argc, char *argv[]) {C29 pthread_t c;C31 region_t saved = bind(new_region(PHASED_IMMUTABLE));C32 job *j = malloc(sizeof(*j));C33 bind(saved);C34 j�>bDone = 0;C35 pthread_mutex_init(&j�>lock, NULL);C36 pthread_cond_init(&j�>done, NULL);C38 j�>i = atoi(argv[1]);C40 release_transferable(j);C42 pthread_create(&c, NULL, do_work, j);C44 pthread_mutex_lock(&j�>lock);C45 while (!j�>bDone) {C46 pthread_cond_wait(&j�>done, &j�>lock);C47 }C48 pthread_mutex_unlock(&j�>lock);C50 get_transferable_ro(j);C52 printf("%s\n", j�>o);C54 release_transferable_ro(j);C55 return 0;C56 } Listing 5.8: An example of transfers syn
hronized via lo
king and 
ondition variables.

Line Valid Justi�
ationC40 YC44 Y pthread_mutex_lock() is always validC46a Y j->lock a
quired at C44C11 Y pthread_create() at C42C18 Y Same threadC20 Y pthread_mutex_lock() is always validC21-C23 Y j->lock is held from C20C46a Y A
quires &j->lockC48 Y j->lock was a
quired at C46aC50 Y C18 HB C50 established by C46aC54 Y same threadTable 5.4: Fully syn
hronized transfers will be a

epted bymissing happens-before dete
tion. * Many other interleav-ings are also possible.
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M1 typedef struct {int i; char *o;} job;M3 int sockets[2];M5 void *do_work(void *ctx) {M6 job *j = ctx;M7 get_transferable(j);M8 region_t saved = bind(region_of(j));M9 j�>o = malloc(10);M10 bind(saved);M12 snprintf(j�>o, 10, "%d", j�>i);M14 release_transferable(tW);M16 write(socket[1], &j, sizeof(j));M18 return NULL;M19 }M21 int main(int argc, char *argv[]) {M22 pthread_t c;M24 socketpair(..., sockets);M25 region_t saved = bind(new_region(PHASED_IMMUTABLE));M26 job *j = malloc(sizeof(*j));M27 bind(saved);M29 j�>i = atoi(argv[1]);M31 release_transferable(j);M33 pthread_create(&c, NULL, do_work, j);M35 read(socket[0], &j, sizeof(j));M37 get_transferable_ro(j);M39 printf("%s\n", j�>o);M41 release_transferable_ro(j);M43 return 0;M44 } Listing 5.9: An example of transfers syn
hronized by 
ommuni
ation through a so
ket.

Line Valid Justi�
ationM31 YM7 Y release_transferable() at M31 beforeM37 before M7M14 Y same thread as M7M37 Y release_transferable() at M14 before
write() at M16 before read at M35M41 Y same thread at M37
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also 
annot be applied to some systems.This approa
h is su�
ient to dete
t the potential for transfer ra
es in Listing 5.6. This 
an be seen byexamining the four possible interleavings of statements B26, B5, B12, B33, and B37.Two of the interleavings, B26:B5:B33 and B26:B33:B5, are 
aught even by best-e�ort 
he
king and willnot be 
onsidered further in this se
tion. The two remaining interleavings are B26:B5:B12:B33:B37 andB26:B33:B37:B5:B12. Both of these interleavings are free of data ra
es. However, the B26:B33... variantinvolves a referen
e through an uninitialized pointer at B35. The analysis shown in Table 5.2 demonstratesthat missing happens-before dete
tion will reje
t both of these interleavings as transfer ra
es due to thela
k of syn
hronization 
aused by the missing pthread_join() at B31. The version of this 
ode shown inListing 5.7 also limits exe
utions to interleavings that are true negatives under missing happens-beforeanalysis. Examples of true negatives generated by missing happens-before analysis for these 
ases are shownin Table 5.4.Unfortunately, missing happens-before analysis is subje
t to both false positives and false negatives. The
ode shown in Listing 5.9 will lead to false positives be
ause the read() and write() system 
alls normally onlya
t as memory barriers for the threads that issue them. A happens-before relationship 
an be establishedonly by examining the state of the so
kets to determine that they are 
onne
ted and that there is no datapending on so
ket[0℄ before the write 
all at M16. There are many 
alls that 
ould add and remove data fromso
kets, and appli
ations are also free to 
reate 
ommuni
ation proto
ols that are mu
h more 
omplex thanthe simple example given here. Therefore, it is not trivial for a dynami
 analysis to infer these relationships.False negatives o

ur when missing happens-before 
reates happens-before relationships based on syn-
hronization that does not a
tually prote
t the transfers. This error 
an be quite subtle, as 
an be seen inListing 5.10. The dynami
 
he
ker may a

ept the interleaving shown in Table 5.5 due to the 
reation of afalse, from the perspe
tive of the transfer, happens-before relationship 
reated by the lo
king inside puts(),whi
h is 
alled at FP13 and FP34.Dire
tives for happens-before 
he
king would eliminate the false negatives of missing happens-before analysis by requiring developers to justify the safety of get_transferable() and get_transferable_ro()by referring to spe
i�
 happens-before relationships in their 
ode. These dire
tives would be limited, allowingdevelopers to spe
ify only transfer poli
ies that 
ould be veri�ed by dynami
 
he
king. These dire
tives maynot be able to handle all sound syn
hronization poli
ies, and developers may �nd them to be di�
ult toapply. For example, systems like the one shown in Listing 5.9 would not �t into any simple system ofdire
tives.Full behavior modeling would be needed to handle 
ases like the one shown in Listing 5.9. Themodeling would be 
omplex, reasoning about system states, the 
ontents of various variables, and isolationguarantees. In the example given in this listing, 
orre
t syn
hronization depends on the following properties:� so
ket[0℄ and so
ket[1℄ are 
onne
ted by socketpair()� The identi�ers in so
ket[0℄ and so
ket[1℄ remain un
hanged� so
ket[0℄ and so
ket[1℄ remain 
onne
ted� so
ket[0℄ has no queued data� There are no other writes to so
ket[1℄These properties are preserved in Listing 5.9, but 
ould be di�
ult to verify in more 
omplex systems. Theresulting system of dire
tives would be very 
omplex and would probably 
onstitute a simple model of thesystem, ne
essitating a model 
he
king approa
h to establish the soundness of the syn
hronization poli
y.This approa
h would be similar to the one that Mi
rosoft adopted for SLAM [9℄.
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FP1 typedef struct {int i; char *o; } job;FP3 void *do_work(void *ctx) {FP4 job *j = ctx;FP5 get_transferable(j);FP6 region_t saved = bind(region_of(j));FP7 j�>o = malloc(10);FP8 bind(saved);FP10 snprintf(j�>o, 10, "%d", j�>i);FP12 release_transferable(tW);FP13 puts("Child done\n");FP15 return NULL;FP16 }FP18 int main(int argc, char *argv[]) {FP19 pthread_t c;FP21 region_t saved = bind(new_region(PHASED_IMMUTABLE));FP22 job *j = malloc(sizeof(*j));FP23 bind(saved);FP25 j�>i = atoi(argv[1]);FP27 release_transferable(j);FP29 pthread_create(&c, NULL, do_work, j);FP30 ...FP31 /* Removing the line below creates a transfer race */FP32 /* pthread_join(c, NULL); */FP34 puts("Our results\n");FP36 get_transferable_ro(j);FP38 printf("%s\n", j�>o);FP40 release_transferable_ro(j);FP42 return 0;FP43 }Listing 5.10: Some transfer ra
es will es
ape missing happens-before 
he
king. The C runtime library'simplementation of puts() is thread-safe. Therefore, it is possible to de�ne a happens-before order betweenthe puts() 
alls at FP13 and FP34. The dynami
 
he
ker may dete
t that a happens-before relationshiphas been established among the �laments. However, the presen
e of the happens-before relationship doesnot indi
ate that there is su�
ient syn
hronization to ensure that FP12 will always happen before FP36.Therefore, under some interleavings the runtime will falsely infer that the transfers are safe. In otherinterleavings the runtime will dete
t a transfer ra
e.

Line Valid Justi�
ationFP27 YFP5 Y pthread_create() at FP29FP12 Y Same threadFP13 Y puts(): FP12 HB FP13FP34 Y puts(): FP13 HB FP34FP36 False negative Same thread: FP34 HB FP36HB is transitive: FP12 HB FP34FP40 Y Same thread: FP 36 HB FP40Table 5.5: Example of a false negative via puts() when us-ing happens-before (HB) relationships to validate permis-sion 
hanges. In this interleaving puts() 
reated a happens-before relationship between the parent and 
hild threadseven though the threads were not syn
hronized. An inter-leaving that swaps FP13 and FP34 is possible and wouldlead to an error under the same analysis.
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5.2.4 Che
king array sli
esThe prior dis
ussion has assumed that blo
ks are individual blo
ks of memory on the heap. Some systemsshare state in arrays, atta
hing poli
ies to ranges of array indexes. To a

ommodate this, the runtime usesa new data stru
ture 
alled a sli
eable array.In most 
ases the interfa
e to sli
eable arrays hides the internal representation. There are at least threeways to 
he
k a

esses to sli
eable arrays. Infrequently a

essed arrays made up of small blo
ks with a smalltransfer granularity 
an be 
he
ked e�
iently by assigning a region to ea
h index and 
he
king a

esses insoftware. The 
urrent implementation uses C ma
ros to implement this approa
h.If the granularity is predi
table and allows the sli
es to be mapped to unique pages the runtime 
anmanage the sli
es as blo
ks in a region. In some 
ases it may be ne
essary to add padding to the arrayto a

omplish this. This approa
h avoids mu
h of the overhead of 
he
king array a

esses in software.In addition, there is no need to rewrite the software to repla
e the array referen
e operators with ma
ros.Finally, it allows us to expose pointers to the array to modules without dire
tives, in
luding assembly routinesoptimized to use SIMD instru
tions, without losing the ability to 
he
k the poli
y atta
hed to the array.This fun
tionality was needed in some of the ben
hmarks dis
ussed below.5.2.5 TollgatesA tollgate is a boundary between a system using dire
tives and a module that does not have dire
tives.The tollgate s
opes the dynami
 
he
ks in the system, ensuring that dire
tives 
ontinue to apply to blo
ks
ontrolled by the system while ensuring that a

esses to blo
ks owned by the module do not produ
e errors.The tollgate also 
ontrols the transfer of blo
ks between the module and the system.The behavior of the tollgate is de�ned by modi�ers that are atta
hed to fun
tion signatures, as des
ribedin Se
tion 3.5.1. This se
tion des
ribes the approa
h that the dynami
 
he
ker uses to 
he
k the poli
iesspe
i�ed by these modi�ers. First, it dis
usses the implementation of tollgates and the way that permissionsare managed to ensure that un
he
ked blo
ks do not leak through tollgates. Next, it des
ribes the behaviorof the runtime as it atta
hes a poli
y to a previously un
he
ked blo
k as a thread passes through the tollgate.Then it 
onsiders the behavior of the dynami
 
he
ker when new blo
ks are 
reated within a module withoutdire
tives. Finally it des
ribes the behavior of the 
he
ker when a 
he
ked blo
k is 
onverted to an un
he
kedblo
k.5.2.5.1 Tollgate implementationIn the runtime tollgates are implemented as wrapper fun
tions. The runtime reroutes 
alls from the systemto the module through the tollgate wrapper by using a #define prepro
essor dire
tive to 
hange the fun
tion'sname when it is 
alled. This approa
h allows us to avoid inter
epting 
alls that the wrapped module makesto itself and also avoid 
alls between the modules prote
ted by tollgates.The runtime uses a spe
ial region, 
alled the tollgate region, to hold all of the un
he
ked blo
ks in thesystem. It does not attempt to asso
iate blo
ks with spe
i�
 modules, sin
e the modules behind a tollgatemay share blo
ks in ways that 
annot be predi
ted from their interfa
es. It ensures that the 
ode in thesystem does not gain a

ess to blo
ks 
ontrolled by these modules by issuing the mprotect() system 
all todisable a

ess permissions to the tollgate region when 
ontrol returns to the system through the tollgate. Bydefault, every blo
k allo
ated while 
ode is exe
uting within the tollgate is pla
ed in the tollgate region.115



5.2.5.2 Che
king the reader, writer, and independent dire
tivesMany modules 
ontain fun
tions that do not a

ess blo
ks within the tollgate region. For example, mostimplementations of strcmp(str1, str2) fun
tion a

ess only the two blo
ks passed to the fun
tion. Theoverhead of the mprotect() 
alls 
ould easily be greater than the pro
essing time of these fun
tions. Theruntime relies on the following dire
tives, whi
h developers add to the fun
tion signatures that de�ne themodule's interfa
e:� Independent indi
ates that the fun
tion will not a

ess blo
ks in the tollgate region. Therefore, mpro-
tect() 
alls are unne
essary when the fun
tion enters and exits the tollgate. Any attempt to a

ess ablo
k within the module will generate a fault, 
ausing the runtime to report that the independent dire
-tive is ina

urate. This is a fatal error, sin
e the dire
tive also 
ontrols the propagation of dependen
iesamong requests.� Reader indi
ates that the fun
tion will read, but not modify, blo
ks within the tollgate region. Thetollgate should grant read, but not write, permission to the blo
ks in the tollgate region. To do thisthe tollgate will have to issue mprotect() 
alls both when 
ontrol enters the module and also when
ontrol returns from the module. There is no performan
e bene�t to the reader dire
tive, but 
he
kedexe
ution should verify it be
ause it a�e
ts the dependen
ies 
reated when requests enter the tollgate.� Writer indi
ates that the fun
tion will read and modify blo
ks in the tollgate. The mprotect() 
alls areneeded. The dynami
 
he
ker may attempt to identify pla
es where the writer dire
tive was unne
essaryto improve the quality of the tollgate. It will do this by postponing the mprotect() 
all when 
ontrolpasses through the tollgate, issuing it only if a fault shows that the module attempted to a

ess one ofthe blo
ks in the tollgate region. This both improves performan
e and provides advi
e to developersthat 
an be used to make the tollgate more a

urate.5.2.5.3 Pla
ing newly allo
ated blo
ks into the tollgate regionFun
tions like strdup() 
reate a new blo
k but return 
ontrol of the blo
k to the system rather than retaininga referen
e to it. In abstra
t terms, new blo
ks 
reated by a module behind a tollgate are immediately pla
edin the tollgate region. However, re
overing a

ess to these blo
ks is quite expensive. In addition, pla
ingthese blo
ks into the tollgate region would for
e developers to apply the writer modi�er to these fun
tions.Therefore, blo
ks allo
ated within tollgates are initially pla
ed in a region following the serial thread
on�nement poli
y. The fun
tion exe
uting within the module retains ex
lusive a

ess to these blo
ks untilone of two events o

urs: the fun
tion returns through the tollgate or another thread, exe
uting 
ode behindthe tollgate, attempts to a

ess the blo
k.When 
ontrol returns through the tollgate, the tollgate �rst pro
esses the modi�ers that allow the 
allerto 
laim blo
ks. Blo
ks are removed from the thread-
on�ned region as they are 
laimed. There is no need toretrieve ex
lusive a

ess to these blo
ks before 
laiming them: their presen
e in the thread's region indi
atesthat no other thread has gained a

ess to the blo
ks. Any blo
ks that remain in the region after the modi�ershave been pro
essed are moved to the tollgate region.If another �lament attempts to a

ess one of the newly allo
ated blo
ks before it is pla
ed in the tollgateregion, the pro
essor will generate a fault. The runtime will immediately suspend the allo
ating �lament.It will move the blo
k into the tollgate region, removing it from the allo
ator's thread-
on�ned region, andthen restart both the allo
ating thread and the thread attempting to a

ess the blo
k.5.2.5.4 Removing blo
ks from the tollgate regionCallers 
an gain ex
lusive a

ess to blo
ks in the tollgate region as a result of exe
uting a fun
tion in thetollgate. To soundly assign a

ess to the 
aller, the tollgate must remove the blo
k from the tollgate region,116



suspend any other threads exe
uting in modules prote
ted by tollgates, and remove their permissions toa

ess the blo
k before reassigning the blo
k to the 
aller. This pro
edure involves a TLB shoot-down,whi
h 
ould involve substantial delays on the thread exiting the tollgate. However, it must be 
ompletedbefore allowing exe
ution of the thread to 
ontinue, sin
e it prevents other threads that are exe
uting inthe tollgate from a

essing the blo
k after it is returned to the 
aller. If the 
aller assumes that the blo
kis prote
ted by a sound a

ess poli
y, these a

esses 
ould 
reate undete
ted data ra
es and dependen
ies.The 
urrent runtime does not implement this feature.5.2.5.5 Adding the system's blo
ks to the tollgate regionSome fun
tions, in
luding free(), transfer 
ontrol of a blo
k from the system to a module prote
ted by atollgate. The pro
edure transferring the blo
k is relatively simple. First the tollgate ensures that the 
allerhas established ex
lusive a

ess to the blo
k. Next, the tollgate ensures that the poli
y for the blo
k allowsit to be transferred. There are two poli
ies whi
h must be 
onsidered. If the blo
k was allo
ated with thethread-lo
al poli
y it 
annot pla
ed into the tollgate region, sin
e doing so would imply that the blo
k 
ouldbe a

essed by another �lament. In addition, blo
ks that have been previously published with the immutablepoli
y 
annot be 
onverted, sin
e this implies that the blo
k 
ould be modi�ed at some point in the future.All of the other poli
ies listed in Se
tion 3.3.2 support 
onversion.On
e the tollgate has determined that the 
onversion is valid, it removes the blo
k from its 
urrent regionand pla
es the blo
k into the tollgate region. The tollgate then pro
eeds to 
hange the permissions to thehidden region, as des
ribed in Se
tion 5.2.5.1.5.2.6 Implementation detailsThere are two aspe
ts of the runtime that may be modi�ed in future versions: the approa
h to error reportingand the approa
h to handling the termination of �laments. It is unlikely that these design 
hoi
es a�e
t theperforman
e numbers reported below.5.2.6.1 Reporting errorsThe runtime installs a signal handler to inter
ept the segmentation violation signal (SIGSEGV) that isgenerated when a �lament attempts to a

ess memory without �rst obtaining permission to do so. In somesituations the signal handler may be 
alled even though no poli
y has been violated. Therefore, the signalhandler 
on�rms that there has been a poli
y violation by �nding the region that 
orresponds to the addressthat generated the signal. It 
onsults the region to see if the 
urrent �lament should have a

ess to thememory. If the signal is a true a

ess violation the handler reports the error by either entering GDB, adebugger, or by writing a log �le and terminating the pro
ess.False faults are often 
aused by regions in the log that have not been mapped into the �lament's pagetables. In these 
ases the runtime pro
esses the new log entries and returns from the signal handler, allowingexe
ution to 
ontinue. False faults are expensive, often 
osting roughly 6,000 
y
les5 of lost exe
ution time.Therefore the runtime attempts to avoid false faults by 
he
king for unpro
essed log entries around the 
allsthat establish happens-before relationships among �laments. In theory it 
ould also avoid false faults byinterrupting �laments whenever a new region is 
reated. However, the performan
e impa
t of these interruptswould be similar to the impa
t of a false fault, and would happen every time a new region is 
reated. In the
urrent implementation false faults are extremely rare. It is likely that interrupting �laments would resultin a less e�
ient implementation.5This number was taken on an Intel® Core®2 Duo E7300 CPU running at 2.66 GHz117



Figure 5.5: Time to 
omplete bla
ks
holes na-tive tests Figure 5.6: Memory use, bla
ks
holes nativetestIt is important to note that the runtime uses log entries only to grant new permissions to �laments, notto take existing permissions away. Filaments always relinquish permissions to memory voluntarily: either by
alling release_transferable() for serial-thread-
on�ned blo
ks, 
alling pthread_mutex_unlock() for guardedblo
ks, or exiting for thread-lo
al blo
ks.5.2.6.2 Kernel supportTo date we have needed to make only one small modi�
ation to the kernel to support �laments. Normally,kernels 
he
k the number of threads in a given memory spa
e when a thread is exiting. Kernels normallyskip some of the pro
essing needed to support pthread_join() when the last thread in a pro
ess exits. Thisoptimization breaks pthread_join(), and so the runtime disables it. It 
ould avoid this modi�
ation by startingand suspending a pla
e-holder POSIX thread within ea
h �lament. However, doing so would 
ompli
ate theruntime. In addition, we anti
ipate adding kernel support for the �nalization of lazy 
he
kpoints.5.2.7 Overhead of 
he
ked exe
utionThe evaluation of the runtime system used bla
ks
holes, swaptions, and x264, three programs from thePARSEC 2.0 ben
hmark suite. The results reported below are from the native series of tests, the largesttests in the ben
hmark suite. The times reported are from a system with two Intel® Xeon® CPUs (E5405)running at 2.00GHz under a modi�ed 2.6.26-2-686 Debian kernel. The system has 4GB of RAM. The testsuse 1 to 16 threads to exe
ute the ben
hmarks. By ex
eeding the number of available 
ores, the tests willreveal overhead added by the �laments to the task swit
h time.Figure 5.9 breaks out time that is spent in thekernel in the mprotect() 
all. This time should be 
ounted as part of the overhead for the dynami
 
he
king.bla
ks
holesThe bla
ks
holes ben
hmark pla
es relatively few demands on the runtime. A master thread initializesseveral large stru
tures 
ontaining data for a basket of options. It then starts a small number of long-running threads to pri
e the options. These threads write their results into shared arrays before exiting.The modi�
ations to the ben
hmark represent this as a sli
eable array using software 
he
king.118



Figure 5.7: Time to 
omplete swaptions nativetests Figure 5.8: Memory use, swaptions native testFigure 5.5 shows the results from the tests. The small number of transfers means that the dynami

he
ker adds very little overhead. The worst 
ase overhead happens with two threads. The ratio of theexe
ution time for the fully 
he
ked version of bla
ks
holes to the original threads version ranges from1.00 to 1.02, with the worst 
ase o

urring at two threads. When the annotated version of the 
ode isre
ompiled for use with pthreads the running time ratio varies between 0.99 and 1.01.Memory is rarely allo
ated in the bla
ks
holes ben
hmark. Therefore, the la
k of memory re
y
lingin the runtime has little e�e
t on the memory 
onsumption, as shown in Figure 5.6. In fa
t, the results areo

asionally lower be
ause we removed unne
essary string dupli
ations when the ben
hmark started.swaptionsThere is also relatively little overhead for enfor
ing poli
ies in the swaptions ben
hmark. Unlike the othergraphs in this se
tion, Figure 5.7 
omputes the overhead of 
he
king the dire
tives by 
omparing the fully
he
ked 
ode to the annotated 
ode 
ompiled for traditional threading. We did this be
ause the memoryre
y
ling modi�
ations redu
ed the running time of the ben
hmark, at times ex
eeding the overhead addedby the dynami
 
he
ker.Figure 5.8 shows the memory 
onsumption of swaptions after we implemented memory re
y
ling in theappli
ation. The memory re
y
ling holds the overhead for dynami
 
he
king to a 
onstant fa
tor relative tothe number of threads.x264As mentioned in Se
tion 3.8, the tests with x264 use a more re
ent version of the program than the onein
luded in the PARSEC ben
hmark suite. The later version has similar performan
e 
hara
teristi
s to thePARSEC version but makes more 
onsistent use of lo
king.The x264 ben
hmark is 
hallenging, from both a modeling and a resour
e 
onsumption point of view.A master thread spawns a series of worker threads, roughly one for ea
h frame in the �le being en
oded.It hands ea
h worker a frame to be en
oded and referen
es to the prior frames in the stream. Ea
h workerfrequently a
quires lo
ks and initiates small transfers of pages to update the other threads with its progress.Figure 5.9 shows the performan
e of x264, 
omparing the exe
ution time of the program when using119



Figure 5.9: Time to 
omplete x264 native tests Figure 5.10: Memory use, x264 native teststhreads to the exe
ution time using �laments. The large number of transfers 
auses a very large number ofsmall mprotect() system 
alls, resulting in substantial kernel overhead. The overhead for the single-threaded
ase is modest be
ause no transfers are initiated. The overhead appears to gradually in
rease with thenumber of threads. At 15 and 16 threads the exe
ution time of the fully instrumented system is roughly2.46 the time of the original version when exe
uted by threads. When the modi�ed 
ode is 
ompiled forexe
ution with standard threads the running time is roughly 
omparable to the unmodi�ed 
ode, with anexe
ution time of 1.03.Figure 5.10 shows the memory overhead of the dynami
 
he
king when running the x264 ben
hmark. Infuture work we plan to address this problem by implementing memory re
y
ling in the dynami
 
he
ker.Comparison to HelgrindDue to the use of page tables, the runtime is mu
h more e�
ient than other dynami
 
he
kers that targetdata ra
es. Table 5.6 shows a 
omparison of the overhead of the approa
h des
ribed here to the overhead ofHelgrind 3.4.1. This table was 
onstru
ted by timing Helgrind as it 
he
ked for data ra
es in the �simlarge�data set using the unmodi�ed 
ode. The table expresses the overhead as a ratio, dividing the time to run theben
hmark with the 
he
ker by the time to run the ben
hmark using native threads. A ratio of 1.0 indi
atesthat the dynami
 
he
ker adds no dete
table overhead to the exe
ution time of the 
ode.The table shows that the overheads for �laments are mu
h lower than the overheads for Helgrind. Thedi�eren
e in overhead 
an largely be attributed to the advan
e knowledge of the poli
y used to prote
tea
h blo
k that the runtime obtains from the dire
tives. This knowledge allows the runtime for �lamentsto target its data 
olle
tion, while Helgrind must 
olle
t data about every shared blo
k in the system. Inaddition, Helgrind's overhead in
reases as the number of threads in
reases, re�e
ting the fa
t that Helgrinddoes not allow threads to exe
ute 
on
urrently. Sin
e the runtime allows threads to exe
ute 
on
urrentlythe overheads do not rise as qui
kly as the number of threads in
reases.The dire
tives also allow us to avoid generating false reports of data ra
es. Helgrind reports 1-9 ra
esfor the bla
ks
holes ben
hmark, 1 data ra
e for swaptions, and 50,000 - 219,000 data ra
es for x264.Sin
e we are able to apply sound a

ess poli
ies to every region in x264, we 
an 
on
lude that all of thesera
e reports are false. 120



bla
ks
holes swaptions x264Fil. Hel. Fil. Hel. Fil. Hel.1 1.0 31 1.0 50 1.1 1552 1.1 68 1.0 104 1.8 4843 1.2 100 1.1 151 2.0 7314 1.0 120 1.1 206 2.2 9475 1.0 143 1.1 205 2.3 11156 1.1 175 1.1 227 2.5 12547 1.1 180 1.0 307 2.3 12608 1.2 205 1.1 384 2.4 13189 1.1 159 1.1 353 2.4 136110 1.1 175 1.0 253 2.5 135611 1.1 180 1.2 228 2.5 137712 1.1 182 1.1 266 2.6 136613 1.1 190 1.2 176 2.7 142814 1.1 197 1.1 219 2.7 143515 1.2 197 1.1 289 2.6 144516 1.2 209 1.1 369 2.5 1366Table 5.6: Overhead of �laments and Helgrind5.3 Future workThe runtime system des
ribed in this 
hapter is a work in progress, and is not fully implemented. Mi-
roben
hmarks, along with the prototype runtime support dis
ussed in Se
tion 4.2, suggest that the runtimewould be feasible. Implementing the runtime and applying it to a set of representative appli
ations wouldboth validate the design and also allow the performan
e impa
t of the runtime system to be quanti�ed.5.3.1 Comparing error ratesOther resear
h proje
ts are redu
ing the number of false ra
es reported by Helgrind. Notably, Helgrind+ [61℄,an improved version of Helgrind, has eliminated the false reports for bla
ks
holes and swaptions, andhas greatly redu
ed the error rate for x264.However, the version of x264 that was annotated in this work does not 
orrespond to the version used forthe published results for these tools. In addition, we may have eliminated data ra
es when we 
hanged thereporting of s
anlines 
ompleted to align transfers on page boundaries. We would like to dire
tly 
omparethe results generated by the runtime to the ones generated by these tools.5.3.2 Assisted development of dire
tivesIt is often di�
ult to infer the design intent of a 
on
urrent system by examining its 
ode. However,traditional dynami
 
he
kers routinely build models that are 
losely related to the dire
tives. For example,the Lo
kSet algorithm [86℄ 
onstru
ts a model that di�erentiates shared and non-shared memory lo
ationsand asso
iates ea
h shared lo
ation with a set of lo
ks. It may be possible to pro
ess su
h a model to generatedire
tives for private and guarded regions, an approa
h suggested by other resear
hers [29℄.121



5.3.3 The problem of re
y
ling memoryThe 
urrent runtime for 
he
ked exe
ution does not re
y
le memory when it is freed. Freeing memoryrepresents a 
hallenge for the approa
h be
ause the 
all to free() happens on a single �lament but e�e
tivelyrevokes a

ess to the memory for all �laments in the system. Sin
e �laments 
ommuni
ate asyn
hronously,the runtime has no fa
ility to ensure that all of the �laments drop permissions to the memory, introdu
ingthe possibility that undete
ted data ra
es will o

ur in the future.Adding dependen
y tra
king and �nalization to the runtime will greatly redu
e this problem for request-oriented systems. When requests are �nalized the runtime is able to prove that no �lament within thesystem has maintained a referen
e to the memory. Therefore, freeing memory during �nalization should besafe assuming that no referen
es were maintained within the modules behind a tollgate.In future work, we believe that we 
an address the problem of freeing memory by using the same per-mission 
he
ks for memory allo
ations and frees that we use for writes. One 
onsequen
e of this approa
h isthat it will be di�
ult to free data in immutable regions without additional stati
 inferen
e to ensure thatthe free is invisible to the immutable poli
y.Frees in atomi
 regions are also problemati
. However, we make no 
laim to dete
t data ra
es on blo
ksin atomi
 regions, sin
e these regions are unsound by de�nition. Therefore, we 
an support frees in theseregions by ensuring that the memory freed in atomi
 regions is used to 
reate new atomi
 blo
ks.Re
y
ling within a region is safe for regions prote
ted by the other poli
ies outlined in this paper. However,re
y
ling within a region does not allow us to handle the destru
tion of entire regions. This question mustbe addressed on a region-by-region basis. The private region for a �lament is destroyed when the �lamentterminates. On
e the �lament has terminated it is possible to give its memory to any other �lament. Thisis simply a 
ase of serial thread 
on�nement where the hand-o� event is tied to the termination of the �rstowner.A similar argument holds for guarded regions. The destru
tion of the region represents a write. Therefore,the lo
k must be held at the time of the destru
tion. Transfer of the memory is permissible after the
orresponding unlo
k 
all as long as the runtime ensures that the required memory barriers are in pla
e.Re
y
ling memory that was part of a transferable region does not introdu
e the risk of undete
ted datara
es. However, there is a risk that a �lament 
ould use a dangling pointer to obtain a

ess to a region. Inthis 
ase, there is a risk that the runtime would misidentify the use of the dangling pointer as a transfer
on�i
t. We 
ould provide a more spe
i�
 error by 
hanging the dire
tives, requiring threads to provide aregion identi�er when requesting a transfer. This would in
rease the annotation e�ort for most appli
ations.5.3.4 Redu
ing the 
ost of mprotect()The ben
hmarks indi
ate that 
hanging the permissions of pages a

ounts for roughly half of the overheadadded by the dynami
 
he
ker. It is likely that most of this time is spent within the mprotect() system
all. Most of the 
alls to mprotect() 
hange the permissions of only a single page. However, permissions
hanges for multiple regions tend to be 
lustered at spe
i�
 points in the 
ode. The large number of 
allsto mprotect() is 
aused by the fragmentation of regions and the inability of the 
urrent dire
tives to expressthat the permissions for multiple regions should 
hange simultaneously.There are at least three opportunities for optimization within the Linux kernel. First, it would be helpfulto have a version of the mprotect() system 
all that 
ould 
hange the permissions of a set of non-
ontiguouspages. Se
ond, it would be helpful to optimize the kernel to better 
ope with frequent permissions 
hanges.Current Linux kernels maintain two 
opies of the permissions for a page, one in the page table entry andone in the page's vm_area_stru
t stru
ture. All of the pages in a vm_area_stru
t must have the samepermissions. Therefore, many of the mprotect() 
alls 
ause vm_area_stru
ts to be split and/or merged.122



The testing indi
ates that the overhead for lo
ating, splitting, and merging vm_area_stru
ts a

ounts for30%-70% of the exe
ution time of typi
al mprotect() 
alls. This overhead 
ould be redu
ed by allowing pagesin a vm_area_stru
t to have di�erent permissions. Finally, the x86 version of the kernel 
urrently �ushesthe entire TLB for ea
h mprotect() 
all. Ben
hmarks indi
ate that �ushing individual TLB entries for thea�e
ted pages would in
rease the time spent in mprotect(), but would in theory redu
e the TLB miss rateafter the 
all 
ompleted.5.3.5 Poli
ies to avoid transfer 
on�i
tsThe runtime generates an error 
alled a transfer 
on�i
t when two �laments attempt to obtain 
on�i
tinga

ess to the same transferable region. Additional 
he
king, often at the hardware level, ensures that�laments do not a

ess blo
ks in transferable regions without requesting a

ess to the region. When these
he
ks are 
ombined we 
an be 
ertain that there are no undete
ted data ra
es for blo
ks within transferableregions.If the dire
tives provided by a developer are unsound, it is possible for transfer 
on�i
ts to be dete
ted onsome runs of the appli
ation and not others. This happens be
ause we do not have dire
tives and poli
ies thatrelate get and release operations of transferable regions. These poli
ies are di�
ult to generalize; they alwaysdepend on a spe
i�
 happens-before relationships in the program, they must ensure that no two �lamentsrely on the same happens-before relationship, and they often depend on knowledge of the appli
ation's state,su
h as the number of s
anlines 
ompleted in frames in x264. When we have examined more 
on
urrentsystems it may be possible to generalize these poli
ies.It would be possible to dete
t transfer 
on�i
ts that o

ur when there is no happens-before relationshipbetween the releasing and getting threads. However, these 
he
ks 
annot avoid false negatives, sin
e it ispossible that the releasing and getting threads will establish a happens-before relationship for some otherpurpose.5.3.6 Using dire
tives to improve e�
ien
yWe believe that it is possible to use the knowledge provided by the dire
tives to improve the performan
e ofappli
ations running on non-traditional memory models. For example, the dynami
 
he
ker 
ould allo
ateblo
ks in private regions from fast, lo
al memory on a NUMA system.The dire
tives may also be useful when implementing software transa
tional memory [91℄. During normaloperation the transa
tional memory system would rely on the dire
tives to maintain the read and write setfor transa
tions. It would manipulate the page tables of �laments to dete
t a

esses that were not predi
tedby the dire
tives. The system would respond to faults by adding the blo
k to the 
urrent transa
tion's readand write set, and 
ould also log these faults to allow programmers to improve the performan
e of their 
odeby in
reasing the number and a

ura
y of the dire
tives.5.4 Con
lusionThis 
hapter dis
ussed the design of two runtimes that use information provided by the dire
tives des
ribedin Chapter 3. The �rst runtime uses the dire
tives to provide operations that 
an stop and undo the e�e
tsof requests. These operations 
an be invoked while requests are a
tive, allowing developers to implementbehaviors that improve the attentiveness of their system. Developers 
an use these operations even whenthe system in
orporates third party modules by pla
ing dire
tives at the module boundary. However, theoperations will 
ompromise the system's 
onsisten
y if the information provided by dire
tives is ina

urate.Therefore, Se
tion 5.2 dis
usses the design and implementation of a se
ond runtime that 
he
ks the a

ura
y123



of dire
tives as the system exe
utes. Together these runtimes allow developers to balan
e the e�
ien
y oftheir system, its level of attentiveness, the implementation e�ort of adding dire
tives, and the reliability ofredire
tion.
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Chapter 6Con
lusionChapter 2 de�ned attentiveness, a quality attribute that des
ribes the behavior of systems as they redire
twork in response to 
hanges in the priorities of their 
lients. The 
on
ept of attentiveness is not entirely novel:attentiveness is similar to the quality attribute addressed by Petra-�ow [33℄, a framework for developingsystems that remain responsive while relying on variable resour
es, su
h as network bandwidth. Like thework des
ribed here, Petra-�ow 
an redire
t work in progress in response to external events. However,Petra-�ow requires developers to implement their systems using spe
ialized state variables and to expressthe relationships between these state variables and tasks. Petra-�ow's approa
h 
an be highly e�
ient, butit requires detailed analysis and extensive rework of third-party 
ode in
orporated in the system.The approa
h outlined in this do
ument di�ers, trading o� the e�
ien
y of redire
tion to fa
ilitate thein
orporation of third-party 
ode. The approa
h must a

ommodate the patterns of state management thatare already present in the 
ode. However, these patterns often do not express all of the intent needed toensure the soundness of the system during redire
tion. Therefore, the runtime requires developers to insertthe dire
tives des
ribed in Chapter 3 to provide some of the missing intent. In most 
ases the 
ode 
anbe in
orporated without 
hange, and analysis 
an be 
on�ned to the 
ode's interfa
e. The runtime system,des
ribed in Chapter 5, propagates the information provided in the dire
tives along the 
ontrol �ow of threadsin the system. The runtime is able to provide low-level operations that allow attentiveness 
on
erns to beisolated, as illustrated in the design outlined in Chapter 4. The approa
h allows developers to improve theattentiveness and e�
ien
y of systems in
rementally by adding additional dire
tives to provide additionalinformation to the runtime system.Developers 
ould use a similar approa
h of do
umenting intent in dire
tives, using a runtime to gatherinformation from the dire
tives as the system exe
utes, and using the runtime to modify the system'sexe
ution to a
hieve other goals:� Refa
toring single-threaded 
ode to use multiple threads. The runtime support des
ribed in Chap-ter 5 
an be applied without modi�
ation to assist developers when adding threads to existing single-threaded systems. When refa
toring these systems developers attempt to identify long 
omputations,
hoosing 
omputations that 
an pro
eed with minimal syn
hronization with the rest of the system.However, developers may miss some shared state, introdu
ing data ra
es. The runtime support 
anidentify shared state qui
kly, redu
ing the time to �nd defe
ts in the refa
toring.� Crash prote
tion. It may be possible to re
over the state of a system after it fails while pro
essing arequest by employing the redire
tion approa
h des
ribed in Chapter 5. The approa
h assumes that therequest 
aused the failure by 
orrupting one or more of the regions. These regions would be restoredwhen the request was redire
ted, reviving the system. If requests are logged the system may be ableto re
over when a prior request is responsible for the failure by replaying the other requests in the logfrom a known good 
he
kpoint. 125



� Unit testing of toolkit-based appli
ations. Testing of toolkit-based appli
ations is often hampered bythe low-level nature of the events used to submit requests to the system. Tools are often unable toreliably submit requests due to subtle timing dependen
ies and 
hanges in the system's user interfa
e.Tools 
an avoid this problem in appli
ations that employ the design dis
ussed in Chapter 4 to inje
trequests dire
tly at the s
heduler.� Limiting a

ess to sensitive in-pro
ess data. Many systems must limit a

ess to data depending on thestate of their 
lients. For example, an IMAP server must not provide email messages to a 
lient beforeit has authenti
ated. Defe
ts in the authenti
ation system may allow unauthenti
ated 
lients to gain
ontrol of the IMAP server. On
e these 
lients have gained 
ontrol of the system they may be ableto a

ess the messages dire
tly. The data a

ess poli
ies developed in Chapter 3 to dete
t data ra
es
ould be extended to 
onsider the level of authenti
ation when threads attempt to a

ess regions. Withadditional kernel support to prevent 
lients from bypassing the runtime, it would be possible to 
reatea runtime system that would enfor
e these poli
ies. The runtime system would stop a 
ompromisedsystem before an unauthorized 
lient gained a

ess to data.� Monitoring distributed tasks. Developers frequently �nd it di�
ult to debug tasks that are submitted tolarge 
lusters of 
omputers. In these 
lusters failures o

ur on nodes that are not under the dire
t 
ontrolof the system's developers. In addition, it is frequently di�
ult to di�erentiate three types of failures:failures 
aused by unreliable nodes, intermittent failures 
aused by software defe
ts, and reprodu
ibleerrors 
aused by software defe
ts. The pro
ess of di�erentiating these failures is 
ompli
ated by the
luster management system, whi
h restarts jobs automati
ally in an attempt to 
ope with defe
tivenodes. As a result, the 
luster management system may mask intermittent failures and may delayreporting reprodu
ible failures. In addition, nodes o

asionally fail slowly or silently, leading to furtherdelays. The 
ombination of dire
tives, mediators, and runtime support developed in this resear
h 
ouldaddress these problems by providing additional information to the 
luster management system and thedevelopers. When software running on a node fails due to the violation of a dire
tive, the 
lustermanagement system 
ould forward the report to developers, allowing them to de
ide if the failure wasdue to a hardware fault or a software defe
t. In addition, the 
luster management system 
ould 
omparethese reports, allowing it to avoid repeatedly restarting a system that exhibits a reprodu
ible failure.As a result, reprodu
ible failures will be reported with less delay, saving the time of both developers andthe 
luster. Finally, the runtime provides an opportunity to monitor the progress of nodes, potentiallyallowing the 
luster management system to dete
t nodes that are not making a

eptable progress andrestarting them to avoid blo
king the overall task.The goals des
ribed above share three features. First, a
hieving the goals depends on intent that is notexpressed in the system's implementation. Dire
tives provide developers a way to do
ument this intent.Se
ond, the goals are di�
ult to assess by a stati
 analysis of the system, but 
an be me
hani
ally 
he
kedduring the system's exe
ution with modest impa
t on performan
e. Finally, the goals are important, makingit plausible that developers would be willing to a

ept a modest loss in performan
e to make in
rementalprogress toward the goal. Therefore, adopting the approa
h outlined in this resear
h may allow developersto make in
remental progress toward the goal, trading o� the e�
ien
y of the system for in
remental e�ortin pla
ing dire
tives.
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Appendix ARisk of redire
tion to intra-
omponent
onsisten
yDevelopers 
annot be expe
ted to re
over the 
onsisten
y of the system's state after redire
tion. For example,
onsider the routines shown in Listing A.1 that maintain a doubly linked list. Figure A.1 shows the stepsthat a system would follow if addAll() were 
alled with two lists, ea
h of whi
h has two nodes. One set ofstates in the diagram, SS01-SS12, shows an unoptimized exe
ution that follows the order of operations inthe 
ode. In this 
ase, its developers 
ould write 
ode to re
over the 
onsisten
y of the system's state afterredire
tion.However, 
ompilers are free to make optimizations to 
ode during 
ompilation, su
h as eliminating re-dundant stores [6℄. These optimizations relax the Sequential Consisten
y model [67℄, leading to states that
ould not be rea
hed from a sequential exe
ution of the 
ode. These states are shown in the diagram asOS01-OS10. Most of these states 
ould not be rea
hed from a sequential exe
ution of the sour
e 
ode. As aresult, developers have no way of predi
ting the 
ontents of memory if the addAll() routine were redire
ted,making it impossible for them to re
over the 
onsisten
y of the system's state. In some 
ases the head andtail pointers of one of the lists would point to the wrong nodes. In other 
ases the forward and ba
kwardpointers in the list would be in
onsistent. Therefore, approa
hes to ensuring intra-
omponent 
onsisten
ymust be pessimisti
, preserving 
onsistent states that 
an be restored in the event of redire
tion.There are also problems for inter-
omponent 
onsisten
y. For example, in the linked list example givenabove states SS04 and SS09 have intra-
omponent 
onsisten
y: ea
h of the linked lists is 
ompletely 
on-sistent. However, one of the nodes has been removed from the sour
e list but has not yet been linked tothe destination list. If the system were to stop in one of these states the node would be lost, violatinginter-
omponent 
onsisten
y. In this 
ase the unstated invariant is that in the event of redire
tion while
addAll(L1, L2) is 
alled, every node in L2 either remains in L2 or is added to L1.
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typedef struct node {
struct node * prev;
struct node * next;

} node_t;

typedef struct list {
node_t * head;
node_t *tail;

} list_t;

static inline void append(list_t *list, node_t *node) {
node�>next = NULL;
node�>prev = list�>tail;
list�>tail = node;
if (list�>head == NULL)

list�>head = node;
else

node�>prev�>next = node;
}

static inline node_t *pop(list_t *list) {
node_t * const rval = list�>head;
node_t * const pop_next = rval�>next;
list�>head = pop_next;
if (pop_next == NULL)

list�>tail = NULL;
else

pop_next�>prev = NULL;
rval�>prev = rval�>next = NULL;
return rval;

}

static inline node_t *push(list_t *list) {
...

}

void addAll(list_t *restrict dst, list_t *restrict src) {
if (src != dst)

while(src�>head != null)
append(dst, pop(src));

} Listing A.1: Code to manage a doubly linked list
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Figure A.1: State 
hanges that o

ur while moving nodes from L2 to L1. Nodes are moved one at a time.First, the front node of L2 is removed, and then it is added to the end of L1. The pro
ess repeats until thereare no nodes in L2. When the 
ode is optimized some of the intermediate steps are eliminated, as shown inthe right 
olumn. 135
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