
 

 

 

 

 

 
 
 

Topes: Enabling End-User Programmers to 
Validate and Reformat Data 

 

Christopher Scaffidi 
 

CMU-ISR-09-105 
May 2009 

  
 
 
 

School of Computer Science 
Institute for Software Research 

Carnegie Mellon University 
Pittsburgh, PA 15213 

 
Thesis Committee: 
Mary Shaw, Chair 

James Herbsleb 
Brad Myers 

Sebastian Elbaum, University of Nebraska-Lincoln 
 

Submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy. 

 
Copyright © 2009 Christopher Scaffidi 

 
 
 

This work was funded in part by the EUSES Consortium via NSF (ITR-0325273) and by 
NSF under Grants CCF-0438929 and CCF-0613823. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author and do not 
necessarily reflect the views of the sponsors. 



 

 

 
 

Keywords: end-user software engineering, end-user programming, data validation, de-
pendability,  assertions, data reformatting, data formats, data consistency, web macros,
web applications, spreadsheets, programming by demonstration.  



 

i 

Abstract 
Millions of people rely on software for help with everyday tasks. For example, a 

teacher might create a spreadsheet to compute grades, and a human resources worker might 

create a web form to collect contact information from co-workers. 

Yet, too often, software applications offer poor support for automating certain activi-

ties, which people must do manually. In particular, many tasks require validating and refor-

matting short human-readable strings drawn from categories such as company names and 

employee ID numbers. These string-containing categories have three traits that existing ap-

plications do not reflect. First, each category can be multi-format in that each of its instances 

can be written several different ways. Second, each category can include questionable values 

that are unusual yet still valid. During user tasks, such strings often are worthy of double-

checking, as they are neither obviously valid nor obviously invalid. Third, each category is 

application-agnostic in that its rules for validating and reformatting strings are not specific to 

one software application—rather, its rules are agreed upon implicitly or explicitly by mem-

bers of an organization or society. 

For example, a web form might have a field for entering Carnegie Mellon office 

phone numbers like “8-3564” or “412-268-3564”. Current web form design tools offer no 

convenient way to create code for putting strings into a consistent format, nor do they help 

users create code to detect inputs that are unusual but maybe valid, such as “7-3564” (since 

our office phone numbers rarely start with “7”). 

In order to help users with their tasks, this dissertation presents a new kind of abstrac-

tion called a “tope” and a supporting development environment. Each tope describes how to 

validate and reformat instances of a data category. Topes are sufficiently expressive for creat-

ing useful, accurate rules for validating and reformatting a wide range of data categories com-

monly encountered by end users. By creating and applying topes, end users can validate and 

reformat strings more quickly and effectively than they can with currently-practiced tech-

niques. Tope implementations are reusable across applications and by different people, high-

lighting the leverage provided by end-user programming research aimed at developing new 

kinds of application-agnostic abstractions. The topes model demonstrates that such abstrac-

tions can be successful if they model a shallow level of semantics, thereby retaining usability 

without sacrificing usefulness for supporting users’ real-world goals. 





 

iii 

Acknowledgements 
 

Thank you to God for infusing the world with an unending wealth of interesting 

phenomena. Thank You for instilling in me a personality that gets satisfaction from learn-

ing about what You have made. In some ways, I feel like I didn’t invent topes but rather 

found them by observing how the people in Your creation communicate with each other. 

Thank you to Karen, my loving and beloved wife, for sharing the joys and trials 

of life with me. Thank you for sacrificing your time and convenience in order that I could 

work these years at Carnegie Mellon. I know that you pay a price for each day that I 

spend here, and I am grateful that you have never begrudged the cost. 

Thank you to my parents for teaching me to work hard. Thank you to Mom for 

encouraging me, for as long as I can remember, to ask questions and to look for answers. 

Thank you to Dad for taking on the burden of not only raising five children but also tak-

ing on the joy of sharing life with us. When I think about the two of you, I often remem-

ber that the apple never falls far from the tree, and whatever accomplishments I have are 

an outgrowth of your love for me. 

Thank you to Mary, my clever and kind advisor, for modeling a deep curiosity 

about life and the world. Thank you also for being my friend both inside and outside the 

office. It is no exaggeration to say that you are the best advisor that I have ever heard of 

or met. 

Thank you to Brad, Jim, and Sebastian for going beyond the role of thesis com-

mittee and becoming partners in fruitful collaboration. Likewise, thank you to the mem-

bers of the EUSES Consortium, particularly Allen and Margaret, for collaborating with 

me. Thank you especially to Brad, who has generously helped me in thousands of large 

and small ways. I appreciate the useful ideas and insights that all of you have provided. 

Finally, thank you to the EUSES Consortium and to NSF for funding this research 

(via ITR-0325273, CCF-0438929, and CCF-0613823).  

 





 

v 

Table of Contents 
 

Chapter 1. Introduction ...............................................................................................................1 

1.1 Two difficult activities: validating and reformatting strings ..................................................3 

1.2 Key traits of data in users’ tasks..........................................................................................6 

1.3 Essential requirements for a string validation and reformatting abstraction .......................8 

1.4 Requirements for reusable string validation and reformatting abstractions ......................11 

1.5 Topes and the Tope Development Environment...............................................................13 

1.6 Evaluations ........................................................................................................................19 

1.7 Thesis and implications .....................................................................................................22 

1.8 Outline ...............................................................................................................................24 

Chapter 2. Motivation ................................................................................................................25 

2.1 Analysis of federal data: numbers of end users and end-user programmers ...................26 

2.2 Information Week survey: finding flawed features in applications.....................................32 

2.3 Carnegie Mellon contextual inquiry: learning what features might help users ..................38 

2.4 Hurricane Katrina interviews: learning what features might help programmers .....................41 

2.5 Interviews asking information workers to describe data....................................................45 

2.6 Requirements for features to help users automate validation and reformatting.....................47 

2.7 Related work......................................................................................................................49 

2.7.1 Type systems............................................................................................................50 

2.7.2 Dimension-unit analysis............................................................................................51 

2.7.3 Grammars and other formal languages....................................................................52 

2.7.4 Outlier finding and other approaches based on inferring constraints .......................55 

2.7.5 Abstractions for sets of non-string entities in end users’ programs..........................56 

2.7.6 Simultaneous editing and editing-by-example..........................................................57 

2.7.7 Federated database systems and data cleaning tools .............................................57 

2.7.8 Value objects and domain values .............................................................................58 

2.7.9 Information extraction algorithms..............................................................................60 

2.7.10 Microformats and the semantic web .........................................................................61 



 

vi 

Chapter 3. Topes .......................................................................................................................63 

3.1 Abstractions for data categories........................................................................................64 

3.2 The topes model................................................................................................................65 

3.3 The interplay between validation and transformation..........................................................67 

3.4 Common kinds of topes.....................................................................................................70 

3.5 Consistency between a tope and a tope implementation..................................................74 

Chapter 4. Data descriptions and the Tope  Development Environment ............................77 

4.1 Walk-through: Creating and using data descriptions.........................................................79 

4.2 Mapping steps of the walk-through to elements of the TDE .............................................86 

4.3 Details of editing data descriptions in Toped++..................................................................89 

4.4 Inferring boilerplate data descriptions ...............................................................................97 

4.5 Correspondence between data descriptions’ variations and topes’ formats...................101 

Chapter 5. Validation functions..............................................................................................103 

5.1 TDE support for implementing and executing validation functions .................................104 

5.1.1 Generating an augmented context-free grammar ..................................................104 

5.1.2 Parsing strings with an augmented context-free grammar .....................................108 

5.1.3 Implementing validation rules with the early Toped prototype ...............................110 

5.2 Evaluation........................................................................................................................115 

5.2.1 Expressiveness for validating web form data .........................................................117 

5.2.2 Expressiveness for validating spreadsheet data ....................................................119 

5.2.3 Usability for validating data.....................................................................................125 

Chapter 6. Transformation functions ....................................................................................131 

6.1 TDE support for generating and calling transformation functions ...................................132 

6.1.1 Generating transformation functions.......................................................................132 

6.1.2 Limitations of transformation functions in the TDE.................................................135 

6.1.3 Implementing transformation rules with the early Toped prototype........................140 

6.2 Evaluation........................................................................................................................142 

6.2.1 Expressiveness for reformatting to find duplicate values .......................................142 

6.2.2 Usability for reformatting data.................................................................................144 



 

vii 

Chapter 7. Reuse of tope implementations ..........................................................................149 

7.1 TDE support for tope reuse .............................................................................................152 

7.1.1 Supporting application-agnosticism of tope implementations.................................154 

7.1.2 Recommending tope implementations that match user-specified examples .........165 

7.1.3 Support for publishing, finding, and combining tope implementations......................169 

7.2 Evaluation........................................................................................................................180 

7.2.1 Accuracy of tope implementations when reused across applications ....................180 

7.2.2 Scalability of example-based recommendation ......................................................182 

Chapter 8. Filtering data descriptions based on reusability traits .....................................189 

8.1 Traits of reusable end-user code in general....................................................................192 

8.1.1 Traits directly reflected in end-user code................................................................194 

8.1.2 Indirect reusability traits reflected in end-user code’s authorship and prior uses...196 

8.2 Evaluation: Effectiveness of using traits to identify reusable end-user code ..................197 

8.2.1 Suitability of the CoScripter repository as a setting for the evaluation ...................197 

8.2.2 Web macro traits: raw materials for a model ..........................................................200 

8.2.3 Computing measures of reuse................................................................................202 

8.2.4 Testing macro traits for correspondence to reuse ..................................................203 

8.2.5 Prediction of reuse..................................................................................................205 

8.3 Reusability-oriented search features in the topes repository ..........................................211 

Chapter 9. Conclusion ............................................................................................................217 

9.1 Contributions and claims .................................................................................................217 

9.2 Future opportunities.........................................................................................................221 

9.2.1 Generalizing the combining of constraints in validation functions ..........................222 

9.2.2 Assuring consistency between topes and tope implementations ...........................224 

9.2.3 Composition and decomposition of topes...............................................................225 

9.2.4 Integrating topes into other applications and programming tools...........................227 

9.2.5 Repository enhancements addressing tope proliferation .......................................230 

9.2.6 Beyond topes: helping users to create, share, and combine code.........................233 

9.3 Conclusions .....................................................................................................................235 

References      ............................................................................................................................241 

 



 

viii 

Figures 
 

Figure 1. Notional depiction of a Carnegie Mellon room number tope, including three formats........... 14 

Figure 2. Computer usage rates rose steeply among American workers since 1984. ......................... 27 

Figure 3. Projected population sizes for American workplaces in 2012, based on federal data. ......... 31 

Figure 4. Invalid data that hurricane survivors entered into a web form that lacked validation ............ 43 

Figure 5. SWYN user interface for defining regular expressions, with notation key ............................. 53 

Figure 6. Grammex user interface for defining context-free grammars................................................. 53 

Figure 7. Apple data detector grammar.................................................................................................. 54 

Figure 8. Lapis pattern grammar............................................................................................................. 55 

Figure 9. TDE add-in for Microsoft Excel (the “Validation” toolbar) and data to be validated............... 80 

Figure 10. An inferred data description with two variations, each containing separators and parts..... 80 

Figure 11. Naming the parts of the data description and editing their constraints ................................ 81 

Figure 12. Annotating invalid or questionable cells with red triangles and tooltips ............................... 82 

Figure 13. Browsing the formats available for reformatting ................................................................... 83 

Figure 14. Results of reformatting example phone numbers with a tope.............................................. 83 

Figure 15. Browsing data descriptions recommended based on highlighted cells and heading.......... 84 

Figure 16. Searching the repository to select a data description........................................................... 85 

Figure 17. Tope Development Environment (shaded), with data flow indicated by labeled arrows..... 87 

Figure 18. Editing a person name data description in Toped++. ............................................................ 90 

Figure 19. UML class diagram of the internal structure of data descriptions ........................................ 91 

Figure 20. UML object diagram of the data description edited as shown in Figure 18......................... 92 

Figure 21. Editing a whitelist for phone numbers ................................................................................... 94 

Figure 22. Editing a linking constraint for validating dates. .................................................................... 96 

Figure 23. “Testing” tab in Toped++......................................................................................................... 96 

Figure 24. Editing a format description in Toped.................................................................................. 111 

Figure 25. Increasing validation accuracy by including additional formats.......................................... 125 
Figure 26. Implementation of trfxy...................................................................................................... 134 

Figure 27. Displaying a warning message due to ambiguity during reformatting. .............................. 139 
Figure 28. Editing a trf function in Toped for reformatting phone numbers ..................................... 140 

Figure 29. Editing a lookup table in Toped for reformatting from state name to state abbreviation... 141 

Figure 30. Copying and pasting a phone number using the add-in for CoScripter/Vegemite ............ 157 



 

ix 

Figure 31. A Vegemite table containing two columns populated by calling tope transformations...... 157 

Figure 32. Validation error messages alongside the input textboxes in a web form........................... 159 

Figure 33. Pseudo-code for the primary functionality of the Excel add-in ........................................... 162 

Figure 34. Some key methods from the C# class Topes.API.............................................................. 163 

Figure 35. Pseudo-code for basic recommendation algorithm............................................................ 166 

Figure 36. Window for publishing / unpublishing data Toped++ descriptions ...................................... 170 

Figure 37. Adding a new repository to a user’s list of recognized repositories ................................... 171 

Figure 38. Searching the repository from within Toped++..................................................................... 172 

Figure 39. Using a web browser to search the repository.................................................................... 173 

Figure 40. Reviewing detailed information about a tope implementation............................................ 174 

Figure 41. Data description created by copying/pasting variations from other data descriptions ...... 176 

Figure 42. Detecting inter-variation inconsistency in a data description.............................................. 178 

Figure 43. Using Toped++ to replace one part specification with another............................................ 179 

Figure 44. Previewing a part's constraints in the Find and Replace dialog window of Toped++......... 179 

Figure 45. Accuracy of reusing topes on Hurricane Katrina (HK) and Google Base (GB) data......... 181 

Figure 46. Accuracy of the search-by-match tope recommendation algorithm .................................. 183 

Figure 47. Speed of the search-by-match tope recommendation algorithm....................................... 183 

Figure 48. Basic search engine parallelization structure...................................................................... 185 

Figure 49. CharSig parallelization structure.......................................................................................... 186 
Figure 50. isa-matching parallelization structure................................................................................ 187 

Figure 51. Algorithm TrainModel for selecting predictors based on training data .................................. 207 

Figure 52. Algorithm EvalMacro for predicting whether a macro will be reused .................................... 207 

Figure 53. Model quality at various parameter values ......................................................................... 210 

Figure 54. Reusability-oriented filters in the search interface of the topes repository......................... 212 

Figure 55. Advanced search filters based on constraints, parts, variations, and formats................... 214 

Figure 56. Advanced search filters based on prior uses of the data descriptions............................... 215 

Figure 57. Advanced search filters based on information about authorship. ...................................... 216 
 



 

x 

Table 1. Preliminary work leading to this thesis 

Chapter or Section  [100]  [101]  [102]  [103]  [104]  [105]  [106]  [107]  [108]  [109]  [110] N/A 
1 – Introduction            x 
 2.1 – End user counts           x  
 2.2 – Info. worker survey     x        
 2.3 – Info. worker contextual inquiry    x         
 2.4 – Hurricane Katrina interviews          x   
 2.5 – Asking users to describe data      x       
2.6 – Requirements for features            x 
 2.7 – Related work            x 
3 – Topes model         x    
 4.1 – TDE UI walk-through      x x      
 4.2 – TDE system overview        x     
 4.3 – Toped++ details      x       
 4.4 – Inferring data descriptions x            
 4.5 – Mapping variations to formats      x x      
 5.1 – TDE support for validation      x       
 5.2.1 – Expressiveness: web form data      x       
 5.2.2 – Expressiveness: spreadsheets         x    
 5.2.3 – Usability for validation      x       
 6.1 – TDE support for reformatting      x x      
 6.2.1 – Expressiveness: web form data         x    
 6.2.2 – Usability for reformatting       x      
 7.1.1 – Add-ins   x         x 
 7.1.2 – Search-by-match       x      
 7.1.3 – Sharing data descriptions            x 
 7.2.1 – Topes’ application-agnosticism         x    
 7.2.2 – Scalability of search-by-match       x      
 8.1 – Traits of reusable end-user code  x           
 8.2 – Repository’s advanced search            x 
 8.3 – Predicting reuse of web macros  x           
9 – Conclusion            x 



 

1 

Chapter 1. Introduction 

Software has become an indispensible part of work and life. By 2012, 90 million 

people in America alone will use computers at work, while millions more will use com-

puters at home. According to recent surveys, “86% of employed Americans use the inter-

net or email at least occasionally” either at home or at work  [66], 76% of online Ameri-

cans have used the internet to purchase products online  [66], and 11% of online Ameri-

can adults have even used Twitter  [58]. While many people rely on software for casual 

tasks like communicating with family, software is also an essential part of productivity in 

businesses, universities, and governments. People rely on it for scheduling meetings, 

managing customer databases, collecting information from workers, and much more  [66]. 

Many software applications actually allow users to create new custom programs 

to complete tasks more quickly or effectively. As an example of end-user programming, 

an accountant might create a spreadsheet to perform calculations so that he can complete 

a report more quickly than he could through performing the calculation by hand. An ad-

ministrative assistant might create a web form in order to collect information from co-

workers, thereby dispensing with hard-to-manage paper forms. To a lesser extent, end 

users also program at home as a way of capturing knowledge or expertise  [96]. In end-

user programming, the program is a tool—often disposable, but nonetheless a valuable 

tool for achieving real-world goals. 

Yet applications often require end users to perform some tedious and error-prone 

activities that impede completing tasks. Many of these activities involve validating and 

reformatting data values. Existing applications provide no practical way for users to 

automate these validating and reformatting activities. 

For example, during a contextual inquiry described later by this dissertation, I ob-

served an office manager attempting to create an employee roster by copying data from a 

few intranet sites into a spreadsheet. This and many other user tasks involved categories 

of short human-readable data, such as phone numbers and job titles. While instances of 

these categories can all be represented as strings, not every string is a valid instance of 

each category. For example, “Student” is a valid string, but it is not a valid phone num-



 

2 

ber. It could be a job title, though a questionable one because “Graduate Assistant” is ac-

tually the official job title at the user’s organization, Carnegie Mellon University. In this 

and other tasks observed during the contextual inquiry, users chose to accept and use 

questionable values, discard them, or check them against another source (such as an 

online directory). If the user had encountered an obviously invalid job title such as “10 

Main Street”, he almost certainly would have not bothered to check it. In short, rather 

than categorizing strings as simply valid or invalid, participants treated the validity of 

data categories in a non-binary manner. This enables users to triage data and focus effort 

on only double-checking questionable strings that are neither obviously valid nor obvi-

ously invalid. 

User tasks were further complicated by the fact that each instance of some catego-

ries can be written in multiple formats. For example, when the office manager copied and 

pasted employee names from different sources into the spreadsheet, some strings were 

formatted one like “Scaffidi, Chris” while others were formatted like “CHRIS SCAF-

FIDI”. In order to put these strings into a consistent format, the user had to manually re-

format the data, which was tedious and error-prone.  

The rules for validating and reformatting instances of a data category are not spe-

cific to a particular user application. Rather, the rules are often implicitly or explicitly 

agreed upon by society at large, or by an organization’s members. Though an application 

developer could conceivably include support in an application for automatically validat-

ing and reformatting certain extremely common data categories, such as person names, it 

would be impossible to anticipate or support every single user’s data categories, which 

include organization-specific job titles, stock ticker symbols, NSF grant numbers, and 

other domain-specific categories. 

Existing approaches for describing data, such as types and formal grammars, are 

insufficient for automating these users’ validation and reformatting activities. One limita-

tion of these approaches is that they treat values as definitely valid or definitely invalid; 

that is, they do not support a non-binary scale of validity, as required for these data cate-

gories. Because of this and other limitations, existing approaches provide an unsuitable 

basis for helping end users to automate the validation and reformatting of strings that they 

encounter during everyday tasks. 



 

3 

In view of the unmet needs of end users and the limitations of existing approaches 

for validating and reformatting strings, this dissertation presents a new kind of abstrac-

tion, called a “tope”, which contains functions for validating and reformatting instances 

of one data category, such as phone numbers. Validation functions are non-binary, in that 

they can identify strings that are questionable.  

This dissertation also presents a supporting development environment, called the 

Tope Development Environment (TDE), which helps users to implement topes and then 

use the tope implementations to automate the validation and reformatting of data. Studies 

show that with the TDE, it is possible to create tope implementations for validating and 

reformatting a large variety of strings from real spreadsheets and web forms. In addition, 

experiments confirm that the TDE enables users to validate and reformat data more 

quickly and effectively than is possible with currently-practiced techniques. Moreover, 

Tope implementations are reusable across different applications and by different people, 

offering the potential to save users the time and effort of implementing a tope when they 

need to validate and reformat data. 

1.1 Two difficult activities: validating and reformatting strings 

People use software for many different tasks. For example, they use software to 

fill out expense reports, build employee rosters, coordinate family gatherings, and survey 

customers. Each of these tasks includes many steps that involve editing, copying, or past-

ing strings. Each string is a series of characters, where each character is a grapheme such 

as a digit, forward slash, or period. For instance, at Carnegie Mellon University, filling 

out an expense report requires going to a certain intranet application and filling out a web 

form with strings like account numbers, person names, dates, per diem rates, claimed ex-

penses, and descriptions of expenses. From the user’s standpoint, even numbers such as 

per diem rates look like strings on the screen. 

Users do more than just edit, copy, and paste strings: their tasks also often call for 

validating and reformatting strings. For example, a contextual inquiry described later by 

this dissertation revealed that workers rarely fill out expense reports for themselves. In-

stead, they typically record their expenses and related information in spreadsheets that 

they send to administrative assistants, who then laboriously enter that information into 



 

4 

the web form on the intranet. As the administrative assistants transfer information from 

the spreadsheets to the web form, they often encounter strings that look a little odd. For 

instance, they sometimes see claimed expenses that seem just a little high, and they some-

times see account numbers for grants that should generally not be charged for everyday 

expenses. Administrative assistants mentally validate the information in order to detect 

such anomalous values, which they usually double-check by sending an email to the 

worker who provided the data. Such strings are “questionable”: neither obviously valid 

nor obviously invalid, and therefore very often worthy of double-checking. Moreover, as 

the administrative assistants transfer information from the spreadsheet to the web form, 

they often need to reformat strings. Dates are particularly troublesome, since the web 

form requires dates to be formatted like “Dec-13-2006”, and strings provided by workers 

are rarely in that format. 

Unfortunately, end-user applications do not provide any convenient means for 

automating these validation and reformatting operations, forcing users to perform the op-

erations manually (or mentally, that is, in the case of validation). This is disappointing, 

since the whole purpose of an application (compared to system software) is to support 

specific user tasks. Wikipedia describes application software as “any tool that functions 

and is operated by means of a computer, with the purpose of supporting or improving the 

software user’s work. In other words, it is the subclass of computer software that employs 

the capabilities of a computer directly and thoroughly to a task that the user wishes to 

perform.” For example, in the case of doing a Carnegie Mellon expense report, the user 

relies on two different applications (the Microsoft Internet Explorer browser and the Mi-

crosoft Excel spreadsheet editor) plus a server-side Oracle application, but none of these 

applications offers convenient support for detecting questionable account numbers or for 

putting dates into a format like “Dec-13-2006” (though Excel does support several other 

date formats). If end users want to reformat strings in their browser, they must retype the 

strings. If they want to automate these validation and reformatting tasks in Excel, they 

must write a macro in the unfamiliar VBScript language. This is no minor limitation, 

since according to one study, 40% of spreadsheet cells contained non-numeric, non-

formula textual data  [33]. 

Some applications are intended to help people create programs, and these, too, 

have insufficient support for creating programs that validate and reformat strings. For ex-



 

5 

ample, this dissertation describes a series of interviews with people involved in creating 

web form programs to collect contact information like person names, phone numbers, and 

mailing addresses. Some interviewees created these web forms by typing in a text editor, 

one interviewee used a sophisticated tool called CodeCharge Studio, and one interviewee 

created a web form by repurposing the “comments” portion of a blogging application.  

Regardless which application was used to create them, all these web forms lacked 

validation on most text input fields (except to check that inputs were non-empty and not 

bigger than a certain length). When asked why they omitted validation, interviewees ex-

plained that they did not want to prevent people from entering unusual but valid strings—

that is, questionable inputs. Their reasoning was logical: the only validation technique 

conveniently supported by web form programming tools is validation of strings based on 

regular expressions, and regular expressions cannot distinguish among obviously valid 

strings, invalid strings, and questionable strings (which deserve double-checking before 

they are accepted). Implementing more sophisticated validation requires writing 

JavaScript, which would have taken longer than the interviewees wanted to spend. In 

fact, many interviewees did not even know how to write JavaScript or regular expres-

sions, which is not surprising because approximately half of the interviewees were end-

user programmers (people who did not consider programming to be their primary profes-

sion). End-user programmers have difficulty understanding and writing regular expres-

sions  [16], and not all are capable of the further leap to JavaScript. In the absence of vali-

dation, web forms ended up accepting many invalid values, such as “12 Years old” as a 

street address. 

Moreover, interviewees’ web forms allowed users to enter each kind of data in a 

wide range of different formats. For example, users could enter phone numbers in any 

format desired. As a result, each kind of collected data ended up in a mishmash of differ-

ent formats. When some programmers wanted to put strings for each kind of data into a 

consistent format (because they wanted to combine data from multiple sites and remove 

duplicate values), their programming tools and languages offered no easy way to create 

programs for reformatting strings. 

In summary, applications for end users provide inadequate support for validating 

and reformatting strings. As a result, end users often perform these operations manually. 

Applications for creating programs also lack adequate support for creating programs that 



 

6 

automatically validate and reformat strings. The resulting data contain invalid strings, as 

well as valid strings in a mishmash of formats. 

1.2 Key traits of data in users’ tasks 

As demonstrated in the examples above, users commonly need to validate and re-

format data with five key traits (Table 2). 

Table 2. Five key traits of data that users commonly need to validate and reformat 

Key traits 
Values are short, human-readable strings. 
Valid strings are in a certain data category. 
Values can be questionable—neither obviously valid nor obviously invalid. 
Instances of data categories can be written in different formats. 
Data categories are application-agnostic and often organization-specific.  

 

First, each of the important data values in these tasks is a short human-readable 

string. Instances of some data categories such as salaries can also be interpreted as num-

bers, but interpretability as a string is a unifying a trait of the data that users commonly 

need to validate and reformat. In contrast, for example, music files are not in scope, since 

instances are not human-readable strings. Users’ data values are short enough so that each 

typically appears in a single GUI widget of a program, such as a spreadsheet cell or a web 

form text field. In contrast, for example, XML documents such as those conforming to 

the RSS 2.0 specification are not in scope, since instances are neither short nor human-

readable by most end users. As another example, mailing addresses are in the scope of 

this research in situations where a mailing address is a unitary string (as when appearing 

in a single widget) but not in situations where a mailing address is broken and scattered 

across many separate strings (as when appearing in several input widgets). Each data 

value of interest is a short human-readable string, not a fistful of strings. 

Second, each application’s problem domain calls for most input widgets each to 

contain values from a certain category, such as company names or mailing addresses. For 

example, in the expense report web form mentioned above, one input text field was in-

tended for collecting a person name while another field was intended for collecting an 

account number. For many such data categories, a value is valid if it refers to what infor-



 

7 

mation extraction researchers call a “named entity”—an object in the real world such as a 

company or a building  [26] [67]. Other data categories, such as salaries or temperatures, 

do not refer to physical entities. Valid values in these categories are consistent with 

physical or social constraints. For example, salaries should be positive and, depending on 

the job, usually but not always within some range. Regardless of whether categories de-

scribe named entities or values meeting physical/social constraints, the categories may 

overlap. For instance, company names and person names have some values in common 

(e.g.: “John Deere”), and human ages and MIT building numbers have some values in 

common (e.g.: “11”). For the purpose of validating a particular string, it only matters 

whether the string is an instance of the correct data category—it does not matter whether 

that string also might possibly happen to be a valid instance of some other data category. 

Third, many data categories lack a formal specification, so strings might be ques-

tionable—neither obviously valid nor obviously invalid. For example, an employer field 

in a web form might usually refer to a company (a named entity). Yet what constitutes a 

“real” company and, therefore, a valid input? A company does not need to be listed on a 

stock exchange or even incorporated in order to be real. Even a private individual can 

employ another person. This category’s boundaries are ambiguous. In such cases, it is 

only possible to identify constraints that are usually true, such as the fact that company 

names usually are title case, usually are no more than a few words long, and rarely con-

tain certain punctuation marks such as dollar signs. 

Fourth, values in many data categories can be “equivalent” but written in multiple 

formats. Specifically, for data categories referencing named entities, two strings with dif-

ferent character sequences can refer to the same entity. For example, “Google”, 

“GOOG”, and “Google Inc.” refer to the same entity, though they have different charac-

ter sequences. The first exemplifies the company’s common name, the second refers to 

the company by its stock symbol, and the third refers to the company by its official cor-

porate title. For categories that do not reference named entities, two strings with different 

character sequences may be equivalent according to that category’s meaning. For exam-

ple, a temperature of “212° F” is equivalent to “100° C”. For some kinds of data, there 

might not be an exact mapping between all formats. For instance, Carnegie Mellon build-

ings are sometimes referenced with a full name or with an abbreviation (as in “Wean” 

and “WeH”). But a new building’s name might be chosen months in advance of its ab-



 

8 

breviation. Consequently, for some strings like “Gates” (a new building on our campus), 

there may literally be no equivalent in the abbreviated format. If a user was asked to re-

format a string to a format for which no equivalent string existed, it is hard to predict 

what the user would do in response. He might simply produce the same string (rather than 

an abbreviation), might produce an empty string, or might invent a new abbreviation. 

Thus, the reformatting rules used by people for these data categories are not mathemati-

cally complete. 

Finally, many categories are associated with specific organizations, kinds of or-

ganizations, kinds of jobs, geographic locations, or other aspects of the problem domain. 

Examples abound: All staff at Carnegie Mellon University use the same category of ac-

counting codes, and all workers at a manufacturing organization might use the same cate-

gory of product codes. ISBNs, ISSNs and DOIs are used by employees of most publish-

ing companies (and sometimes by readers of publishers’ web sites and documents). A 

consequence of the organization- or domain-specificity of data categories is that they are 

application-agnostic: the rules for the data category come from the organization or the 

problem domain, not from the particular application used in the solution domain. For ex-

ample, a string would be a valid Carnegie Mellon account code regardless of whether it 

appears in a spreadsheet or a web form. Sometimes, organizations have local specializa-

tions of more general society-wide data categories. For example, most Carnegie Mellon 

phone numbers have an area code of “412” and an exchange of “268” or “269”. In this 

organization, a string like “609-452-1667” could not be a valid phone number. 

1.3 Essential requirements for a string validation and reformatting 
abstraction 

Upon contemplation of the five key traits of data that users commonly need to 

validate and reformat, it becomes clear that the inadequacies of existing applications are 

deeper than just the feature set exposed to users. The fundamental problem is an inconsis-

tency between the semantics of data in the users’ problem domain and the semantics of 

data in the applications’ solution domain. Users’ data values are strings, but they are also 

something more. 



 

9 

For example, “911-888-9999” is not a valid phone number because that that string 

could not possibly refer to a real phone number. Valid phone numbers mean something, 

in that they refer to a thing in the real world. These semantics are reflected in a string’s 

syntactic structure (the clue here being the fact that “911” is not a valid area code). The 

semantics in the problem domain also explain why it might make sense to reformat “777-

888-9999” to “(777) 888-9999”—both of these strings refer to the same phone in the real 

world.  

Applications are blind to these considerations when they just treat data as strings, 

since the only semantics of a string variable is that it contains a (bounded) series of cer-

tain characters. Treating data as just a string fails to capture four of the five data traits 

identified by Section  1.2: valid strings are in a certain data category, values can be ques-

tionable—neither obviously valid nor obviously invalid, instances of data categories can 

be written in different formats, and data categories are application-agnostic and often or-

ganization-specific. 

Each of these four traits actually only adds a slight amount of semantics to the 

simple string abstraction, but together they result in a troublesome mismatch between the 

string abstraction and the problem domain. This trouble is a specific manifestation of a 

general problem known to human-computer interaction researchers as a poor “closeness 

of mapping”. Green explains the concept of “closeness of mapping” by writing, “Ideally, 

the problem entities in the user’s task domain could be mapped directly onto task-specific 

program entities, and operations on those problem entities would likewise be mapped di-

rectly onto program operations”  [37]. In the case of data in users’ tasks, the problem enti-

ties have slightly more semantics than are captured by the string abstraction provided by 

the application.  

As a result, there is no direct mapping between the validation and reformatting 

operations required by users and actual operations provided by strings. Instead, users 

must map validation and reformatting activities to a series of smaller operations actually 

provided by the string abstraction (e.g.: operations for reading characters and changing 

characters). This mapping process thus involves many small manual actions. The bottom 

line is that this mismatch between abstractions in the problem domain and abstractions in 

the solution domain actually makes it tedious and error-prone for users to complete tasks. 



 

10 

The closeness of mapping can be improved by providing users with a new kind of 

software abstraction that is very closely aligned to the problem domain. In the problem at 

hand, users need to validate and reformat strings, so this new abstraction should provide 

operations for validating and reformatting strings. That way, when a user wants to vali-

date a string, he can call upon the corresponding abstraction’s validation operation. When 

he wants to reformat a string, he can call upon the corresponding abstraction’s reformat-

ting operation. 

The key traits identified by Section  1.2 drive several additional requirements for 

this new kind of abstraction. Since the data values are validated and reformatted based on 

membership in a certain category, it is reasonable to require that each abstraction should 

correspond to one data category. Since values in the problem domain might be question-

able, each abstraction’s validation operation should reflect a non-binary scale of valida-

tion in order to distinguish among obviously valid, obviously invalid, and questionable 

strings.  

Since instances of a data category can be written as different character strings, 

each abstraction must provide reformatting operations as mentioned above. However, one 

crucial point is the question of what these operations should do when called upon to re-

format questionable or invalid strings. The principle of maximizing closeness of mapping 

indicates that the abstraction should do the same thing that a well-informed user would 

do: make a best attempt. For example, if an end user were given the putative street ad-

dress “3043048 Main Street”, which is probably questionable due to its really long street 

number, then the user would have no trouble reformatting it to “3043048 MAIN ST.”  

In the interest of maximizing closeness of mapping, an abstraction’s reformatting 

operations should do likewise and make a best effort to produce a valid string in the re-

quested format. Note, however, that if the string was invalid or questionable to start with, 

then the reformatting might not produce a valid string. In fact, because reformatting rules 

used by people for these data categories are not always mathematically complete (as 

noted in the previous section), reformatting might not even be able to produce a valid 

output when given a valid input. Consequently, the user may want to use the abstraction’s 

validation rules to check reformatting rules’ outputs. 

The last key trait is that users’ data categories are sometimes organization-specific 

and often application-agnostic. Since some categories are organization-specific, applica-



 

11 

tion developers will be unable to create abstractions for every user’s domain-specific 

categories. (Application developers also might not even consider it part of their job to 

provide these abstractions because the data categories are application-agnostic.) There-

fore, people inside the organizations must be able to create new abstractions. 

Table 3 summarizes these requirements. If an abstraction meets these require-

ments, then it will suffice for automating the kinds of user activities identified by Section 

 1.1: when faced with the need to validate or reformat a string, a user can create an ab-

straction (the fourth requirement) that describes the data category containing that string 

(the second requirement). The abstraction contains rules for validating and reformatting 

instances of the data category (the first requirement), so the user can invoke these rules to 

automatically operate on the data. If the validation rules identify invalid data, then the 

user knows that an error needs to be fixed. If the validation rules identify questionable 

data (the third requirement), then the user can choose whether to spend time double-

checking whether the error is real. Similarly, the user can invoke reformatting rules and 

then check the results with the validation rules. 

Table 3. Requirements for a new kind of abstraction to help end users more quickly and effectively 
validate and reformat strings 

Requirement Motivation 
Abstraction’s expressiveness for validation & reformatting 

operations on short, human-readable strings 
Presence of these tedious and error-prone activities in 

user tasks 
Abstraction’s correspondence to a data category Users’ validation and reformatting rules derive from cate-

gorical nature of data 
Abstraction’s non-binary validation scale Presence of questionable values / absence of formal 

specifications for many categories 
Support for creation by people inside organizations Organization- and domain-specificity of many data cate-

gories 

1.4 Requirements for reusable string validation and reformatting 
abstractions 

It might be helpful if the abstractions were reusable, in the sense that users could 

call upon an abstraction at multiple points in time (to validate different strings), though 

reusability is not an essential requirement for the success of this new kind of data abstrac-

tion.  



 

12 

Reusability is not an essential requirement because it could conceivably be possi-

ble to invent a kind of easy-to-create, “disposable” data abstraction that helps users to 

very quickly and effectively validate and reformat data. When faced with a certain task 

involving strings in a certain data category, a user could implement an abstraction, use its 

operations to validate and reformat the strings, and then discard the abstraction imple-

mentation. If the user was not capable of creating the abstraction, he could ask another 

person from the organization to help create the needed abstraction (which is essentially 

the strategy that many users successfully employ when they need to create complicated 

spreadsheets  [79]); after applying the abstraction, the user could discard it. In fact, the 

new kind of abstraction described by this dissertation (Section  1.5 and  Chapter 3) is so 

easy to implement that typical users can create new abstractions for themselves, and the 

abstraction is so easy to apply that users can very quickly and effectively complete tasks, 

even without reuse. Thus, the evaluations described by Section  5.2 and  6.2 show that the 

primary goal of this research is achieved even without abstraction reusability. 

Nonetheless, it would be desirable if each abstraction could sometimes be reused 

without modification when users encounter instances of the abstraction’s data category. 

That way, while users could always simply create and apply a new abstraction, they also 

might have the choice to validate and reformat data with an existing abstraction if one is 

available and if reusing it would be faster or more accurate than creating a new abstrac-

tion. Extending this thought, providing users with a way to use existing abstractions as a 

starting point for creating new abstractions might sometimes make it easier to create new 

abstractions. In particular, users sometimes like to copy parts of an existing end-user pro-

grams and use them as a starting point for creating a new program  [20] [21] [78], when a 

user is implementing a new abstraction for validating and reformatting strings, it would 

be ideal if he could copy and combine pieces of existing abstraction implementations. 

Based on these considerations and the key traits identified by Section  1.2, several 

requirements must be fulfilled in order that people can reuse abstractions for validating 

and reformatting strings. First, since the underlying data categories are application-

agnostic, abstractions should not be tied to particular end-user applications. Second, since 

many data categories are organization-specific or domain-specific, people should have 

ways of publishing abstraction implementations within or across organizational bounda-

ries (at users’ discretion). Third, users should have a way to find a relevant, high-quality 



 

13 

abstraction implementation on-demand when they need to validate or reformat instances 

of some category. Fourth, it should be possible to reuse one abstraction inside another 

(just as a mailing address contains a city, country, and zip code), as well as combine 

pieces of multiple existing abstraction implementations while implementing a new ab-

straction.  

Table 4 summarizes these requirements. If the new data abstraction supports these 

requirements, then one user will be able to publish an abstraction implementation (the 

second requirement), which another user will be able to find and download (the third re-

quirement), then combine and customize as needed (the fourth requirement) in order to 

validate and reformat strings in a wide range of user applications (the first requirement). 

Table 4. Requirements aimed at enabling people to reuse abstractions for validating and reformat-
ting strings 

Requirement Motivation 
Abstraction’s application-agnosticism Application-agnosticism of most data categories 
Support for publishing abstraction implementations (within 

or across organizational boundaries) 
Organization- and domain-specificity of some data cate-

gories 
Support for finding relevant, high-quality abstraction im-

plementation on-demand 
Inability to anticipate when users will encounter instances 

of a data category 
Support for combining and editing parts of existing ab-

straction implementations when creating a new ab-
straction 

Possibility that some users might have implemented ab-
stractions that do not quite exactly fit the reuse context 

1.5 Topes and the Tope Development Environment 

Based on the considerations discussed by Sections  1.3 and  1.4, this dissertation 

presents a new kind of abstraction called a “tope”, as well as a supporting suite of many 

tools. This suite of tools, called the Toped Development Environment (TDE), helps users 

with implementing, publishing, finding, editing, combining, and reusing topes.  

Topes 

The word “tope”, or Greek for “place”, was chosen because each tope describes 

how to validate and reformat instances of one data category that has a place in the prob-

lem domain. A tope is a directed graph, where each graph node corresponds to a function 

that recognizes instances of one format using the same semantics as fuzzy set member-

ship  [125], and each edge corresponds to a function that makes a “best effort” attempt to 



 

14 

transform strings from one format to another. Figure 1 is a notional depiction of one such 

graph, which contains three format nodes and four reformatting edges. 

Each format is defined by a function isa:string [0,1] indicating whether a cer-

tain string is an instance of the format. The semantics are identical to that of fuzzy set 

theory  [125]: though this function’s return value is technically not a probability, it is 

probability-like in that it is an expression of likelihood. As required by Section  1.3, the 

tope’s isa functions enable it to identify questionable values. Specifically, the implemen-

tation identifies a string s as questionable if at least one format does not reject s outright, 

yet s does not perfectly match any format, which is to say 0 < max(isa(s)) < 1. 

Each reformatting function trf:string string indicates how a string in one for-

mat should be transformed to an equivalent string in another format. Here, “transform” 

means “to change in form, appearance, or structure”  [92], indicating a change in form but 

not equivalence. A different function would be responsible for the inverse operation. 

Figure 1. Notional depiction of a Carnegie Mellon room number tope, including three formats 

 
 

As explained by Section  1.3, maintaining a very tight closeness of mapping be-

tween the abstraction and the problem domain means that reformatting operations must 

accept questionable or invalid strings, but there is no requirement for them to always pro-

duce valid outputs. Accordingly, trf functions accept any input string, and they are only 

required to make a “best effort” to produce an equivalent string in the target format. 

Formal building name 
& room number 

Elliot Dunlap Smith Hall 225 

Colloquial building name 
& room number 

Smith 225 

Building abbreviation 
& room number 

EDSH 225 



 

15 

Mechanisms outside of the tope model facilitate detecting and recovering in situations 

where the outputs are not valid (as mentioned shortly). 

 Each trf function is optional: in some topes, some pairs of formats might not be 

connected by a trf function. Because transformations can be chained, a tope’s graph of 

formats does not need to be complete (where each node is directly joined to every other 

node). The graph-like structure of a tope can cause two forms of ambiguity when refor-

matting a string: the appropriate route to take through the tope might be ambiguous, and 

the appropriate starting interpretation (format) of the string might be ambiguous. As a 

result, the output might not be what the user intended. Another potential problem is that if 

the graph is not connected, then it might not be possible to find a route through the tope 

to the target format, resulting in a string that cannot be reformatted. Mechanisms outside 

of the tope model facilitate detecting and recovering from these situations (as mentioned 

shortly). 

Implementing topes with the Tope Development Environment 

Before users can apply a tope’s operations to strings, the tope must first be im-

plemented. With the Toped++ editing tool in the TDE, users create data descriptions, 

which are data structures that specify the constrained parts inside of a particular kind of 

data as well as the different ways in which parts can be concatenated in formats. Based 

on the user-specified data description for a particular data category, the TDE automati-

cally generates a tope implementation for that data category. For example, the user might 

create a data description in Toped++ for American phone numbers, from which the TDE 

would generate a tope implementation with operations for validating and reformatting 

instances of phone numbers. 

Internally, the generated isa functions test strings with a grammar generated from 

the data description. Unlike a standard context-free grammar, this grammar contains in-

structions for identifying strings that are probably instances of the data category, but 

which violate constraints that are usually true about valid instances of the data category. 

Specifically, the format’s isa function returns 0 if the string completely fails to match the 

grammar, 1 if the string perfectly matches the grammar and all the format’s constraints, 

and a value in between 0 and 1 if the string matches the grammar’s basic context-free 

structure but violates some constraints that are usually but not always true.  



 

16 

In addition, the TDE automatically generates trf functions that transform strings 

from one format to another. Each function permutes and/or transforms parts of the string 

in one format to generate strings in another format. Each part of the string corresponds to 

a node in the tree that results from parsing the input string with the grammar of the source 

format. For example, to reformat the person name “Chris Scaffidi” to “SCAFFIDI, 

CHRIS”, the TDE parses the input string according to the source format’s grammar, iden-

tifies the parse nodes corresponding to the first and last name, permutes them, capitalizes 

them, and concatenates them around a comma and a space.  

Calling upon topes’ operations to validate and reformat strings 

The TDE provides more than just a tool for implementing topes. It also includes 

add-ins for popular end-user applications so that users can invoke tope implementations’ 

operations to validate and reformat strings in those applications. To date, prototype add-

ins have been developed for the Microsoft Excel spreadsheet editor, the Microsoft Visual 

Studio.NET web form editor, and the Robofox and CoScripter web macro tools 

 [52] [63] [64]. Each add-in passes data values into the TDE (through a programmatic API 

that wraps tope implementations with convenience functions) for validation and reformat-

ting, then displays results on-screen in an application-appropriate manner. For example, 

to validate Excel spreadsheets, end users highlight some cells, click a button, and select a 

tope implementation. The add-in then passes the highlighted cells’ strings into the tope 

implementation’s format validation operations, thereby returning an isa score for each 

string. If a cell’s string receives a score less than 1, the add-in flags the cell with a little 

red triangle, so that the user can notice the error and fix it. The add-in offers an option for 

the user to hide all flags for questionable strings, so that the user can focus on strings that 

are definitely invalid. 

Depending on the end-user application, add-ins provide a button or other UI con-

trol so that users can override some or all validation flags. For example, spreadsheet users 

can remove all validation flags, regardless of whether the strings are definitely invalid 

(according to the tope) or merely questionable. In contrast, when a tope implementation 

validates a web form field input, the user who provided the input can generally override 

validation warnings for questionable inputs but cannot override warnings for definitely 

invalid inputs (though the programmer who creates the form can configure more strict or 



 

17 

lenient settings). Depending on the add-in and the end-user programmer’s preference, 

these overrides can be temporary (applying only to the particular instance of the string 

that caused the validation warning), or they can be permanently added to a “whitelist” 

appended to the data description. In this way, users can gradually add exceptional values 

as they are discovered at runtime. 

There are several ways in which using trf functions might cause problems. First, 

because each trf function accepts any string as input, it might produce an invalid output. 

Consequently, any time that a trf is called, its output is checked with the isa function of 

the target format. Second, there may be multiple routes through a tope for transforming a 

string from format to another, so the appropriate route through the tope might be ambigu-

ous. The TDE side-steps this potential problem by generating totally connected topes and 

always taking a single-step route through the tope. Finally, when reformatting a string, 

the result might depend on what format is selected as the string’s starting format. The 

TDE automatically detects when ambiguity might affect the result of reformatting, and it 

generates a warning message so the user can double-check the resulting output. 

Reusing tope implementations 

Since the add-ins are responsible for all interactions with end-user applications, 

the actual tope implementations do not need to contain any application-specific code. 

Consequently, they are application-agnostic and reusable without modification in a vari-

ety of applications. 

In order to support reuse across multiple users, the TDE includes a repository sys-

tem where topes can be uploaded and downloaded. Because users are likely to have a few 

examples of data that they would like to validate or reformat with existing tope imple-

mentations, the repository includes a “search-by-match” feature whereby users can look 

for tope implementations that recognize examples; for example, they could search for 

topes that match “5000 Forbes Ave.”.  

The repository includes a variety of “advanced search” features to help users look 

for tope implementations that are likely to be reusable. These features filter tope imple-

mentations based on whether they have certain traits that are empirically associated with 

highly-reusable end-user programs in general.  For example, since many kinds of end-

user programs have proven to be more reusable if they have extensive comments written 



 

18 

in English, the topes repository offers search features that filter tope implementations 

based the extent to which they contain extensive comments written in English. 

The current repository prototype is “wiki-like”, in that all tope implementations 

are publicly readable and writeable (though of course user- or group-based authentication 

and authorization could be added in future implementations). In order that users can 

choose to share tope implementations only within an organization, the repository soft-

ware is designed to be easily installed on an organization’s intranet server. Users can then 

upload and download tope implementations from organizational repositories or from pub-

lic global repositories. When creating a new tope implementation, users can combine for-

mat specifications from other tope implementations (even if those implementations were 

downloaded from different repositories). The TDE analyzes tope implementations to de-

tect common inconsistencies that can easily result from combining format specifications, 

and it presents a summary of any identified problems so that users can fix them. 

Table 5 shows the mapping from requirements to features of topes and the TDE. 

 

Table 5. Relationship between requirements and features of topes and the TDE 

Requirement Fulfilled via 
Abstraction’s expressiveness for validation & reformatting 

operations on short, human-readable strings 
Tope isa and trf functions 

Abstraction’s correspondence to a data category Scope of tope as a package of functions related only to 
the formats of one data category 

Abstraction’s non-binary validation scale Return value of tope isa functions 
Support for creation by people inside organizations Tope development environment 
Abstraction’s application-agnosticism Separation of concerns: application-specific code is fac-

tored out into application-specific add-ins 
Support for publishing abstraction implementations (within 

or across organizational boundaries) 
Wiki-like repository prototype that can be installed on an 

organization’s intranet server, or on a globally-
accessible web server 

Support for finding relevant, high-quality abstraction im-
plementation on-demand 

“Search-by-match” algorithm for finding topes that match 
strings provided by user; model for sorting topes ac-
cording to how likely they are to be reusable 

Support for combining and editing parts of existing ab-
straction implementations when creating a new abstrac-
tion 

Copy-paste and testing features in TDE 



 

19 

1.6 Evaluations 

A series of empirical studies have uncovered many tasks during which users need 

to validate or reformat short, human-readable strings. To summarize the key points made 

in the sections above, these strings are valid if they are instances of a certain category, 

such as university names or corporate project numbers. Many such categories lack a for-

mal specification, with the result that there often are questionable strings that look un-

usual but yet are valid. These categories are also often multi-format, in that strings of 

many data categories can be “equivalent” but written in multiple formats. Many of these 

categories are organization-specific, so developers of applications for end users cannot 

anticipate and support all of these data categories. Existing applications do not provide 

support for automatically validating and reformatting these strings. As a result, users have 

had to do validating and reformatting manually, which is tedious and error-prone. The 

finished data are sometimes questionable or even invalid, and they are often inconsis-

tently formatted.  

In response to users’ needs, this chapter has outlined a new kind of abstraction 

and supporting environment (the TDE) aimed at enabling end users to create abstractions 

that capture the validation and reformatting rules for commonly-occurring data catego-

ries. The TDE includes add-ins that are integrated into user applications, in order to help 

users apply topes’ operations to strings. Separating all application-specific concerns into 

add-ins is intended to make tope implementations reusable across applications. In addi-

tion, the TDE includes a repository aimed at helping users to publish, find, reuse, and 

combine tope implementations. 

As summarized by Table 6, a series of studies has verified that the topes model, as 

supported by the TDE, meets the requirements identified by Sections  1.3 and  1.4. As 

shown by the table’s rightmost column, these requirements and corresponding evalua-

tions fall into three areas of concern: expressiveness requirements related to simply creat-

ing useful validation and reformatting operations for a range of commonly-encountered 

data categories, usability requirements related to the bottom-line question of how well 

implementing and applying topes helps users to validate and reformat data more quickly 

and effectively, and reusability requirements related to helping people repurpose each 

others’ topes in a wide range of applications.  



 

20 

Table 6. Requirements and corresponding evaluations 

Requirement Evaluation Concern 
Abstraction’s expressiveness for validation & 

reformatting operations on short, human-
readable strings 

Implemented topes for the 32 most common 
data categories in corpus of online spread-
sheets, with negligible expressiveness prob-
lems (Sections  5.2.1,  5.2.2, and  6.2.1) 

Expressiveness 

Abstraction’s correspondence to a data cate-
gory 

Correct by construction (Section  3.1) Expressiveness 

Abstraction’s non-binary validation scale Evaluated along with the first requirement 
above, showing that identification of ques-
tionable values slightly increased the accu-
racy of validation, while inclusion of multiple 
formats led to an even more sizable im-
provement in accuracy (Section  5.2.2) 

Expressiveness 

Support for creation by people inside organiza-
tions 

See final requirement, below, describing lab 
studies where users implemented topes with 
the TDE (Sections  5.2.3 and  6.2.2) 

Usability 

Abstraction’s application-agnosticism - Reused spreadsheet-based topes on web 
form data, with negligible loss of accuracy 
(Section  7.2.1) 

- Implemented add-ins for several end-user 
applications, and provided documentation to 
other research teams who implemented 
add-ins for web macro tools (Section  7.1.1) 

Reusability 

Support for publishing abstraction implementa-
tions (within or across organizational bounda-
ries) 

Demonstrated with example (Section  7.1.3) Reusability 

Support for finding relevant, high-quality ab-
straction implementation on-demand 

- Tested search-by-match algorithm on the 32 
spreadsheet-based topes, giving 80% recall 
accuracy with a query time under 1 second 
(Section  7.2.2) 

- Based advanced search filters for identifying 
reusable tope implementations on an earlier 
model that could predict with 70-80% recall 
(at 40% false positive rate) whether a web 
macro would be reused (Section  8.2.4) 

Reusability 

Support for combining and editing parts of exist-
ing abstraction implementations when creat-
ing a new abstraction 

Explained how the TDE works on examples of 
combining and editing format specifications 
from multiple tope implementations to create 
a new implementation (Section  7.1.3) 

Reusability 

Enable end-user programmers to more 
quickly and effectively validate and refor-
mat data 

- Compared user performance for validating 
50 strings with TDE, versus user perform-
ance validating data with Lapis system; TDE 
users were twice as fast and found three 
times as many invalid strings (Section  5.2.3) 

- Compared user performance for reformat-
ting 100 strings with TDE, versus user per-
formance manually reformatting the data; 
TDE users were twice as fast, holding accu-
racy constant (Section  6.2.2) 

Usability 



 

21 

Expressiveness 

By implementing topes and using them to validate and reformat a wide range of 

spreadsheet and web form data, I have shown that the TDE makes it possible to express 

useful validation and reformatting operations for several dozen of the most common 

kinds of string data encountered by users. These evaluations showed that identification of 

questionable values slightly increased accuracy, while inclusion of multiple formats led 

to even more sizeable improvement in accuracy. 

Usability 

Toward verifying that topes and the TDE meet the most important overall “bot-

tom line” requirements of this research, two experiments have confirmed that the TDE 

enables users to validate and reformat data more quickly and effectively than is possible 

with currently-practiced techniques. First, a between-subject experiment has examined 

how well the TDE helps end users to validate strings. With the TDE, users finished their 

tasks twice as fast and found three times as many invalid strings as with the comparison 

system, Lapis  [70]. Second, a within-subjects experiment has shown that users can im-

plement and use topes to reformat spreadsheet cells, and that this process is so fast that 

the cost of implementing a tope is “paid off” after only 47 spreadsheet cells (the alterna-

tive being to do the work manually, which is the only real option for users right now). 

Both experiments included a user satisfaction survey, which confirmed that users are ex-

tremely satisfied with the topes-based approach and eager to see it deployed in commer-

cial applications for end users. 

Reusability 

Several evaluations and experiences have confirmed the reusability of tope im-

plementations. First, I reused spreadsheet-based topes on webform data, with negligible 

loss of accuracy. Second, add-ins have been implemented for several end-user applica-

tions, showing that tope implementations can be reused without modification to validate 

and reformat strings in multiple applications. Third, when tested on tope implementations 

for the most common few dozen kinds of data, the search-by-match algorithm demon-

strated a recall of over 80% and query time of under 1 second, which is sufficient for im-

plementing user interface features that search through the collections of tope implementa-



 

22 

tions that users are likely to have on their computers. Fourth, an analysis of this algorithm 

shows that it is highly parallelizable and suitable for searching through repositories of 

many more tope implementations. Finally, a variety of empirical studies show that the 

tope implementation traits underlying the repository’s advanced search filters tend to be 

useful for identifying reusable end-user programs in general. 

1.7 Thesis and implications 

Drawing together the empirical results described by the previous section, the fol-

lowing thesis statement summarizes the most important claims supported by these 

evaluations: 

 

Topes and the TDE are sufficiently expressive for creating useful, accurate rules for vali-

dating and reformatting a wide range of data categories commonly encountered by end 

users. By using the TDE to implement and apply topes, end users can validate and refor-

mat strings more quickly and effectively than they can with currently-practiced tech-

niques. Tope implementations are reusable across applications and by different people. 

 

This research develops an approach for helping users to automate validation and 

reformatting activities that are now performed manually. This approach is founded on the 

notion of bringing the abstractions supported by end-user applications into closer align-

ment with the data involved in the problem domain. Improving this alignment has proven 

to be an effective way to help users to automate validation and reformatting of strings. An 

implication is that researchers perhaps could help people with other programming tasks 

by finding additional situations in which programmatic abstractions have a poor match to 

the problem domain, then by developing suitable new abstractions with a closer align-

ment to the problem domain. 

As abstractions that are reusable across applications, topes highlight the leverage 

provided by application-agnosticism. One benefit of such abstractions is that when a user 

creates an abstraction, he can then reuse it in many applications and possibly share it with 

other people. A second, even more significant benefit of research aimed at developing 

application-agnostic abstractions is that the resulting research contributions are highly 



 

23 

generalizable, as they can be leveraged in a range of end-user programming applications. 

An implication is that as researchers attempt to develop new abstractions to assist end-

user programmers, it would be desirable if those abstractions were application-agnostic 

rather than confined in applicability to just one programming tool or other application. 

One of the keys to topes’ success as application-agnostic abstractions is that they 

are models of the users’ “real world” problem domain, which naturally cuts across many 

different software applications. The implication is that researchers might find it more 

straightforward to design application-agnostic abstractions if those abstractions are tied to 

phenomena in the real world (rather than one particular application).  

Another key to topes’ success as application-agnostic abstractions is the ap-

proach’s support for incremental modeling of the problem domain. Users can create and 

use topes on an as-needed basis, without having to make up-front investments in a large 

ontology or a carefully designed collection of topes. The implication is that incremental-

ism might be a desirable feature to consider supporting in other application-agnostic ab-

stractions. 

A third key to topes’ success is the approach’s support for semi-automated crea-

tion and use of abstractions. Users can specify validation rules that keep out definitely 

invalid inputs but which allow users to override warning messages for questionable in-

puts. In addition, transformation rules only need to make a “best effort” and are allowed 

to produce invalid outputs if appropriate (which the validation rules can detect for dou-

ble-checking). Thus, users can create and productively use topes even for data categories 

that cannot always be precisely modeled. The implication is that semi-automation might 

be a desirable feature to consider supporting in other application-agnostic abstractions. 

Finally, perhaps the most significant key to topes’ success is that they target a 

level of semantic granularity appropriate for the problem domain at hand. Specifically, 

topes capture more semantics than grammars (such as regular expressions), which are 

purely syntactic, but less semantics than traditional information models (such as the se-

mantic web  [9]), which capture extremely detailed relationships among entities. While 

tope isa functions recognize strings based on syntax, they are part of an abstraction in-

tended to model membership in a data category.  This shallow semantics is deepened 

slightly through trf functions, which capture the equivalence of strings, usually in the 

sense of referring to the same real-world named entity. The success of the topes model 



 

24 

shows that data abstractions can be practical and effective if they model a shallow level 

of semantics, thereby retaining usability without sacrificing usefulness for supporting 

real-world tasks. This result hints that software engineering researchers might be able to 

find other useful application-agnostic abstractions at a shallow level of semantic detail. 

1.8 Outline 

 Chapter 2 presents a series of empirical studies that have identified a widespread 

need for better validation and reformatting features in end-user tools. This chapter re-

views the key insights provided by these studies, as well as the requirements for helping 

users to automate validation and reformatting activities. Examining existing approaches 

that meet fairly large subsets of these requirements shows that no existing approach actu-

ally meets all requirements. Based on the identified requirements,  Chapter 3 describes a 

new kind of abstraction, topes. It explores the role and interplay of isa and trf functions 

as well as several different ways that topes might be implemented. 

Whereas Chapters 2 and 3 lay the motivational and conceptual groundwork for 

this dissertation,  Chapter 4 shifts the focus to tools by giving an overview of the TDE. 

The subsequent four chapters,  Chapter 5 through  Chapter 8, dive into the details of four 

different aspects of the TDE.  Chapter 5 focuses on isa functions, describing both the 

TDE’s support for implementing these functions and for actually calling them to validate 

data.  Chapter 6 focuses on trf functions, including the TDE’s support for implementing 

and calling these functions to reformat data (with an emphasis on handling ambiguity). 

 Chapter 7 describes the TDE’s basic support for reuse of tope implementations; it dis-

cusses the application-agnosticism of tope implementations, the search-by-match algo-

rithm for recommending tope implementation, and repository features for sharing and 

reusing tope implementations. Chapter 8 reviews empirical studies which reveal that re-

usable end-user programs often have certain traits, and it describes advanced repository 

search filters aimed at finding topes that have traits commonly associated with reusable 

end-user code 

 Chapter 9 identifies the key contributions, claims, and conclusions supported by 

this research and outlines opportunities for future work. 



 

25 

Chapter 2. Motivation 

“End users” is the label commonly attached to people who use software in order 

to complete real-world goals such as communicating with families, running businesses, 

and so forth  [51] [78]. But in some cases, achieving these goals quickly and effectively 

requires end users to actually create software to help them with their goals. For example, 

many teachers create spreadsheets to quickly compute grades, and some marketing spe-

cialists create web forms coupled to databases in order to automate the storage of data 

from potential customers.  

In this act of “end-user programming”, an end user creates a program or other 

code as a means toward an end, rather than an end in itself. This contrasts with “profes-

sional programming”, in which somebody creates software because it is the main deliver-

able of his job and an end in itself. Because these programs help to automate certain ac-

tivities in user tasks, end-user programs are extremely valuable to the people who create 

them, despite the fact that these programs are often smaller and less complex than pro-

grams created by professional programmers in traditional textual programming lan-

guages.  

But in entrusting part of a task to a custom program, an end user comes to rely a 

bit on the program. His life or his work becomes a bit dependent on that program’s suc-

cess. If the program malfunctions, or if creating the program takes far longer than the end 

user anticipated, then the act of end-user programming can prove to be a waste of time 

and a source of stress. The same could be said for software in general. By creating hassles 

for users, software can become a hindrance rather than a help. 

Thus, as software becomes increasingly integral to our lives and businesses, there 

is a rising need to understand and solve the problems that end users encounter when using 

and creating software. These concerns prompted me to perform a series of empirical in-

vestigations aimed at understanding the needs of end users, with a particular focus on us-

ers in the workplace. 

My series of investigations began with analysis of federal data, which revealed 

that by 2012, there would be nearly 90 million computer users in American workplaces. 



 

26 

The analysis highlighted another interesting point: the most prominent end-user applica-

tions were data-intensive rather than computation-intensive. In particular, workers regu-

larly created and edited databases and spreadsheets, which often contained string data 

rather than numeric data or computations.  

These preliminary conclusions suggested the need for further studies aimed at 

clarifying the relationship between data-centric applications and users’ tasks, in order to 

identify specific opportunities to help people with their work. I performed a survey, a 

contextual inquiry, and a series of interviews that together confirmed that data-centric 

features were indeed widely used.  

In addition, these studies showed that users had many difficulties related to vali-

dating and reformatting short human-readable strings drawn from data categories such as 

person names, phone numbers, and university project numbers. These categories often 

include values that are questionable yet nonetheless valid, and their values typically can 

appear in multiple formats. The categories are “application-agnostic”, in that the rules for 

validating and reformatting instances are not specific to a particular application (such as 

Excel). Rather, the rules are implicitly or explicitly agreed upon by society at large or 

within an organization. 

Having understood challenges that end users faced, I considered the available ap-

proaches for validating and reformatting this data, but I quickly discovered that they 

poorly fit the needs of end users, motivating me to develop the new approach described 

by this dissertation. 

2.1 Analysis of federal data: numbers of end users and end-user 
programmers 

As a first step toward understanding the size and needs of the end-user population, 

I analyzed government data with an emphasis on answering three key questions about 

end users: How many are there? What jobs do they have? What kinds of software appli-

cations do they use? 



 

27 

How many end users are there? 

As first reported in 1995  [17] and widely disseminated as part of the Constructive 

Cost Model (COCOMO) version 2.0  [18], Boehm et al. predicted that the number of “end 

user programming performers” in American workplaces would reach 55 million by 2005.  

This number originally functioned as an estimate of the number of people who would not 

benefit from COCOMO 2.0, thereby bounding the applicability of that proposed model. 

Boehm’s method depends on a 1989 survey by the US Bureau of Labor Statistics (BLS) 

that asked American workers about personal computer usage on the job.  The method be-

gins by assuming that those usage rates would not change, and it makes the simplification 

that all end users would eventually perform programming-like tasks.  The method then 

copes with these approximations by incorporating judgment-based multiplicative factors 

to adjust for the rising usage of computers and the fact that not all end users are pro-

grammers.  Based on these assumptions, the method yields the prediction of 55 million 

end-user programmers in American workplaces in 1995. 

I developed a more sophisticated model and incorporated more recent BLS data to 

provide an updated projection of computer use in American workplaces.  BLS asked 

workers about computer usage in the 1984, 1989, 1993, and 1997 Current Population 

Surveys (CPS)  Plotting these data shows rising computer usage trends for each occupa-

tional category  [42] (Figure 2). As a result, simply using computer usage rates from 1989 

under-estimates the total number of computer users.  

Figure 2. Computer usage rates rose steeply among American workers since 1984. 

 



 

28 

The key to extending the prediction method is to model the salient S-shaped curve 

of each occupation’s computer usage, which is particularly apparent for the lower four 

curves of Figure 2.  (The top two curves resemble the right halves of S-curves, with the 

left halves occurring prior to the first survey in 1984.)  This “logistic curve” typifies 

many diffusion phenomena—ranging from the propagation of a virus through a popula-

tion to the adoption of technological innovations  [97] [119].  In each case, a phenomenon 

of interest initially affects only a small fraction of the population.  However, as those 

people interact with the population, they share the phenomenon (like an infection), caus-

ing the incidence to increase until it affects virtually everybody.  The rate of increase 

starts flat (since there are few people promulgating it) and ends flat (since the population 

is nearly saturated).  Although more complex functions exist for certain contexts  [119], 

the simple logistic curve is appropriate in this case where only four data points are avail-

able. 

A least-squares fit for each occupation’s computer usage rates yields a function 

predicting how usage will develop in the future. As with Boehm’s original method, these 

now-improved usage estimates can be multiplied against projected occupational head 

counts to estimate the total number of end users in the future in American workplaces.  

Unfortunately, BLS only issues projections for one year per decade; hence, the only pro-

jection available is for the year 2012  [41]. Inserting t=2012 into the fitted functions and 

multiplying each rate against the corresponding projected head count yields a projection 

that approximately 90 million people will use a computer in American workplaces in 

2012 (Table 7). 

This method assumes that computer usage rates can be modeled by a simple inno-

vation diffusion curve.  Such an assumption is somewhat suspect, in part because it pre-

sumes that the innovation under discussion (here, the computer) does not change substan-

tively during the course of diffusion.  This is, of course, not true: computers continually 

increase in power and utility.  Hence, future computer usage rates will likely exceed those 

indicated by the foregoing model.  Therefore, 90 million probably is a lower bound on 

the number of people who will use a computer in American workplaces in 2012. 



 

29 

Table 7. Nearly 90 million people will use computers at American workplaces in 2012 

Occupational Category 

Projected Occupational 
Count in 2012  
(in thousands) [41] 

Projected Percentage 
Using Computer at 
Work in 2012 (fit to [42]) 

Projected Computer 
Usage at Work in 2012 
(in thousands) 

Managerial and Professional 52,030 83.0% 43,209 
Technical, Sales, Administration 42,695 72.1 30,804 
Precision Prod., Craft, Repair 14,860 29.9 4,442 
Service 31,905 19.1 6,098 
Operators, Laborers, Fabricators 22,723 21.0 4,782 
Farming, Forestry, Fishing 1,107 11.1 123 
Totals: 165,320  89,459 

What kinds of work do end users have? 

Breaking down this large and growing population according to occupation pro-

vides insight as to what kinds of work will need to be supported by software. Many of 

these future users would colloquially be labeled as “information workers”—or, more pre-

cisely “knowledge workers”, defined by Drucker as someone whose job performance de-

pends on knowledge of subject matter, rather than manual labor  [29]. Specifically, as 

shown in Table 7, nearly 50% of computer users in American workplaces will have 

managerial/professional jobs, such as those in middle-management, public relations, con-

sulting, human resources, software development, or engineering. Another 35% will have 

technical/sales/administration jobs, such as those in healthcare, bookkeeping, and basic 

office functions. 

This end-user population vastly outnumbers and will continue to vastly outnum-

ber professional programmers in American workplaces. According to CPS data, the total 

number of American “computer scientists and systems analysts,” “computer program-

mers,” and “computer software engineers” ranged from 2.0 to 2.5 million between 2000 

and 2005  [23].  Moreover, BLS projects that the total number of programmers in these 

categories will remain under 3 million in American workplaces through 2012  [41]. So 

based on these projections, there will soon be thirty times as many computer users in 

American workplaces compared to professional programmers in American workplaces. 

Just as end users in American workplaces vastly outnumber professional pro-

grammers in America, end users worldwide also appear to vastly outnumber professional 

programmers worldwide. This conclusion is based on information provided by the former 

chief systems architect at BEA, a division of Oracle focused on Java-based development 



 

30 

environments  [12]. In 2004, he estimated that there were 10 million programmers world-

wide using general-purpose textual programming languages, such as Java, but that there 

were 100 million people worldwide who could “build really complex spreadsheets, do 

Visio, use Access”. This, of course, does not even include less sophisticated end users. 

Thus, Bosworth believed that there were at least ten times as many end users worldwide 

as professional programmers. 

What kinds of software applications will end users require? 

Decomposing the end-user population according to application usage helps to 

clarify what kinds of applications are likely to be required. In particular, this decomposi-

tion provides two alternate directions for getting at the relative importance of end-user 

programming. One direction follows the direct approach of decomposing the end-user 

population based on what kinds of applications are used, with an emphasis on popular 

programming tools (such as Microsoft Excel and Microsoft Access). The other direction 

follows an indirect approach of decomposing the end-user population based on the activi-

ties that they do with the applications—in particular, whether users say that they use ap-

plications to create programs. It turns out that these two directions yield interestingly dif-

ferent answers. 

The direct approach is to decompose the end-user population based on the appli-

cations that they use. CPS interviews since 1989 have included a number of questions 

about application usage. Survey responses show that usage of spreadsheets and databases, 

in particular, grew steeply throughout the 1990’s.  Around 10% of computer users in 

American workplaces reported “using spreadsheets” in 1989, and by 1997 this had risen 

to over 30%.  Likewise, around 10% reported “using databases” in 1989, and by 1997 

this had also grown to over 30%.  Over the next four years, usage of these tools continued 

to explode, with over 60% of American end-user workers reporting that they “used 

spreadsheets or databases” in 2001.  This amounted to over 45 million end users of 

spreadsheets or databases in American workplaces. If at least the same proportion of peo-

ple use spreadsheets or databases in 2012, then at least 55 million people will use spread-

sheets or databases in American workplaces in 2012. 

The indirect approach is to focus on what people say that they do with applica-

tions. The proportion of American end-user workers reporting that they “do program-



 

31 

ming” has remained relatively constant, rising from around 10% in 1989 to only around 

15% in 2001 (about 11 million people in American workplaces).  If the proportion is at 

least 15% in 2012, then at least 14 million end users in American workplaces will say 

that they “do programming”. 

Thus, while the total number of end users in American workplaces is likely to be 

around 90 million, the two approaches for estimating end-user programmer counts give 

projections of approximately 55 million and 14 million people in American workplaces. 

Figure 3 summarizes the key projections described to this point, highlighting the strik-

ingly small number of professional programmers relative to both estimates of the 2012 

end-user programmer population in American workplaces. 

Figure 3. Projected population sizes for American workplaces in 2012, based on federal data. 
Note that the categories overlap. 

3

14

55

90

0 10 20 30 40 50 60 70 80 90 100

professional
programmers

people who say they
"do programming"

spreadsheet /
database users

computer users

Projected population size (millions)
 

A prominent feature depicted by Figure 3 is the wide gap between the projected 

number of spreadsheet / database users and the number of people who say that they “do 

programming”—the two estimates of the end-user programming population. One likely 

explanation for this (growing) divergence is that many end users rely on spreadsheets and 

databases as a place to store information but generally do not create computation-

intensive programs in those environments.  This explanation is supported by the fact that 

Hall’s study of spreadsheets created by well-educated Australian workers found that only 

47% used the “if” function  [39], while  Fisher and Rothermal’s survey of spreadsheets on 



 

32 

the web revealed that only 44% contained any formulas at all  [33].  These numbers sug-

gest that even using an extremely broad definition of “programming” as the use of condi-

tionals or formulas, only around half of spreadsheet and spreadsheet users are “end-user 

programmers”. 

In other words, it appears that the large and growing population of end users relies 

on software applications for data-intensive tasks and less so for automation of computa-

tion-intensive tasks.  

Yet the government data and prior studies of users’ spreadsheets offered few clues 

as to the precise relationship between users’ applications and tasks. Additional studies 

were needed to give more details to help guide the design of improved application fea-

tures. 

2.2 Information Week survey: finding flawed features in applications 

In order to help elucidate which features were most heavily used and what strug-

gles end users encountered when using these features, I conducted an online survey ask-

ing Information Week readers about use of software features during everyday work. 

Data collection method and sample characteristics 

To recruit respondents, Information Week published a link to the survey on their 

web site and emailed 125,000 randomly selected subscribers who had previously indi-

cated their willingness to respond to surveys. Information Week generally runs such sur-

veys every few weeks. Participants were entered into a drawing for one prize of $500 and 

five of $100 each. Within two months, 831 people completed the survey, which Informa-

tion Week reports is a typical response rate for their surveys.1 

                                                 
1 While this is a very low response rate, which could cause sample bias, it is unlikely to reduce the validity 
of the primary results of this study. The reason is that these primary results depend on factor analysis, 
which draws on the inter-relationships of application feature usage rather than absolute proportions, and 
these inter-relationships are probably relatively insensitive to sample bias. For example, while biasing the 
sample toward highly skilled users might raise the proportions of all feature usages, it seems less likely to 
impact the relative difference in usage rates between different features. Empirically, this claim of insensi-
tivity is supported by the validation described below, which shows that there is little internal variability in 
the analysis results despite the range of different users who did choose to participate in the survey. That is, 
for the range of different users that we did see, there were only fairly small differences in the relative usage 
rates among users. 



 

33 

The magazine advertises itself as “exclusively for information managers… in-

volved in computer, communications and corporate planning,” so unsurprisingly, 76% of 

respondents managed at least one subordinate. Only 10% worked for IT vendor firms; 

instead, respondents generally came from business services, education, government, 

manufacturing, and finance/insurance. Only 23% were IT or networking staff, while the 

majority instead were consultants, managers, or administrative staff. Yet respondents 

generally displayed certain characteristics of programmers. For example, the survey 

asked respondents about their familiarity with four specific programming terms (vari-

ables, subroutines, conditionals, and loops), and 79% were familiar with all four pro-

gramming terms; in fact, in the past year, 35% actually created all four of the correspond-

ing constructs during their work. Thus, the respondents could generally be characterized 

as information workers, with a sampling bias that emphasized end-user programmers 

rather than ordinary end users. 

In addition to asking about the demographic data described above, the survey 

covered 23 application-specific software features related to programming within the con-

text of five particular applications: word processors (including support for macros), 

spreadsheets, databases, web application design tools, and server-side web scripting envi-

ronments. For example, the survey asked respondents whether they or their subordinates 

created database tables, created database views, linked tables via foreign keys, and cre-

ated stored procedures. Not surprisingly, just as most respondents reported familiarity 

with the four generic non-application-specific programming terms mentioned above 

(variables, subroutines, conditionals, and loops), most respondents also reported using 

many of these application-specific programming features. On average, these application 

features were used by 50% of respondents. 

What software features can be grouped together? 

Overall trends in data are easier to discern when the individual data variables can 

be grouped or clustered. Because the goal of this study was to go beyond analyzing sim-

ple application usage (as in the analysis of federal data), it was not enough to simply clus-

ter features based on what applications provided the features. Thus, I clustered software 

features according to users’ inclination to use those features, regardless of which applica-

tions provided those features. That is, features were clustered so that people with an in-



 

34 

clination to use one feature in each cluster also were inclined to use other features in that 

cluster, with the recognition that each cluster could contain features drawn from several 

different applications. 

Factor analysis was used to identify these clusters  [3] [48]. A “factor loading” is 

an eigenvector of the variables’ covariance matrix, such that the vector’s cells reflect the 

correlation of a factor with an observed variable. If a factor has large values in two cells, 

then the corresponding two data variables highly correlate with the factor (and with each 

other). For example, an ethnography might record the amount of time that programmers 

spend in sixty activities, ranging from typing code to talking on the phone, and factor 

analysis might reveal a “collaborativeness” factor showing that people who often talk on 

the phone also tend to perform other collaboration activities, such as writing emails and 

attending meetings. 

In preparation for factor analysis, cleaning the data required four steps. First, the 

15 respondents with more than 1000 subordinates reported extremely high usage of soft-

ware features (compared to the other respondents) so I discarded their data, leaving 816 

respondents. Second, since factor analysis models relationships among observed data and 

cannot be applied to unobserved/missing values, it was necessary to filter out all records 

except the 168 from respondents who reported usage of all five applications. (The other 

648 records were retained for validating the factor analysis, below.) Third, I normalized 

the data according to the “significance” of each software feature. For example, 66% of 

respondents reported creating hyperlinks, whereas only 16% reported creating static 

server-side includes. Scaling each feature usage variable to a standardized mean of 0.0 

and standard deviation of 1.0 ensured that a “Yes” for a commonly used feature was 

coded as a value less than 1.0, while a “Yes” for an uncommonly used feature was coded 

as more than 1.0. Fourth, I normalized feature usage based on the overall usage of each 

application, since feature usage co-occurs a great deal within each application. For exam-

ple, people who reported creating JavaScript also tended to create web forms. This “bun-

dling” has nothing to do with abstraction, but rather with the application. Subtracting the 

average feature usage by each respondent for each application removes this bundling ef-

fect, thus revealing inclinations to use features rather than applications.  

After cleaning the data, I performed the actual factor analysis to identify the major 

factors describing the data and to ascertain which variables were strongly related to each 



 

35 

factor. I used a commonly-practiced method to identify the major factors and strong vari-

able relationships: running a preliminary factor analysis on all the data, retaining any fac-

tors with an eigenvalue exceeding 1.0, retaining only variables with a communality 

(squared multiple correlation of the variable with all the other variables) exceeding an 

arbitrary cut-off, and ultimately running a final factor analysis using only the retained 

factors and variables  [48]. As summarized by Table 8, this method yielded 3 factors de-

scribing relationships among 19 features, with 4 features removed due to low communal-

ity (< 0.1). 

Table 8. Software feature use by Information Week readers, with the top ten usage rates bolded  
and factor loadings exceeding an arbitrary cutoff of 0.15 also bolded. 

Factor Loadings 
Application 

Application 
Usage 

(% all users) 
Feature Description 

Feature
Usage 
(% all  
users) 

Macro LinkStruct Imperative 

Creating document templates 73.3 -0.59 -0.02 -0.17 
Making inter-document hyperlinks 53.7 -0.63 -0.04 0.07 
Recording editor macros 33.3 0.86 0.03 0.07 

Slide Editors &  
Word Processors 96.1 

Creating/editing editor macros 30.8 0.87 0.07 0.09 
Using functions (“sum”) linking cells 89.3 -0.21 0.37 -0.10 
Creating charts in spreadsheets 80.1 -0.40 0.27 0.14 
Creating inter-spreadsheet references 66.2 removed removed removed 
Creating spreadsheet templates 50.4 -0.24 -0.19 0.12 
Recording spreadsheet macros 42.3 0.60 -0.35 -0.13 

Spreadsheets 93.1 

Creating/editing spreadsheet macros 38.6 0.68 -0.18 0.02 
Referencing records by key 74.0 -0.02 0.68 -0.06 
Creating tables 71.7 -0.01 0.54 -0.21 
Creating database views 68.1 removed removed removed 

Databases 79.3 

Creating stored procedures 49.5 0.04 -0.72 0.22 
Creating hyperlinks 65.2 -0.05 0.06 -0.62 
Creating web forms 52.2 0.15 0.18 -0.50 
Creating web page behavior scripts 42.9 removed removed removed 
Creating JavaScript functions 34.3 -0.04 -0.09 0.50 

Web Pages 68.6 

Using JavaScript “new” function 23.3 -0.03 -0.07 0.64 
Creating web server script functions 40.9 removed removed removed 
Referencing PHP/Perl libraries 27.9 -0.06 -0.41 -0.06 
Using PHP/Perl “new” function 25.4 0.07 0.01 0.42 

Web Server 
Script Hosts 52.3 

Using server-side static includes 16.3 -0.09 0.25 -0.26 

 



 

36 

I used two approaches to validate the robustness of the results. First, I repeated the 

factor analysis using various subsets of the data, such as only including respondents with 

no subordinates or using alternate factor extraction techniques. In each case, the same 

qualitative structure appeared. Second, because the factor analysis could only use the 168 

respondents with no missing feature usage answers, it was necessary to verify that the 

factors’ qualitative structure generalized to the entire sample by using that structure to 

construct a traditional scale for each of the factors. For example, the first factor positively 

correlated with four items and negatively correlated with two items, so its scale equaled 

the sum of these four items minus the other two. The Cronbach alphas for the scales were 

0.82, 0.62, and 0.64, respectively, indicating that the patterns revealed by the factor 

analysis applied with some consistency throughout the entire data set. 

The factor analysis revealed three clusters of features—macro features, data-

centric “linked structure” features, and imperative features—such that information work-

ers with an inclination to use a feature in each cluster also were inclined to use other fea-

tures in that cluster, even though each cluster spanned several applications.  The three 

clusters were the following: 

• Macro features: The first factor correlated most positively with recording (0.60) 

and textual editing (0.68) of spreadsheet macros as well as recording (0.86) and 

textual editing (0.87) of macros in other desktop applications.  

• Linked structure features: The second factor correlated most positively with creat-

ing database tables (0.54), linking database tables via keys (0.68), creating web 

forms (0.18), creating “static includes” shared by web pages (0.25), creating 

spreadsheet charts (0.27), and linking spreadsheet cells using simple functions 

like “sum” (0.37).  

• Imperative features: The third factor correlated with using Perl and PHP’s “new” 

command in web server scripts (0.42), using JavaScript’s “new” command (0.64), 

creating JavaScript functions (0.50), and creating stored databases procedure 

functions (0.22).  

 

Template and hyperlink features fell outside all three clusters yet were heavily 

used, which might suggest the existence of undiscovered yet important clusters. 



 

37 

What group of software features was most heavily used? 

Even though the survey had a sampling bias toward end-user programmers rather 

than ordinary end users, the most heavily used features were data-centric. Specifically, all 

10 of the most-commonly used features were related to linked data structures rather than 

creating macros or imperative programming. These heavily-used features included link-

ing spreadsheet cells with formulas (reported by 89% of respondents), creating charts in 

spreadsheets (80%), referencing database tables by foreign key (74%), and creating web 

forms (52%). This contrasted with less-widely-used imperative features, such as creating 

JavaScript functions (34%) and creating database stored procedures (50%), as well as 

macro features, including recording word processor macros (33%) and recording spread-

sheet macros (42%). These results confirmed the preliminary broad-brush findings gener-

ated by the prior analysis of government data. 

What problems do end users encounter with software features? 

While respondents demonstrated a strong inclination to use data-centric features, 

they nonetheless reported a number of difficulties with data-centric features in responses 

to a question asking how the applications have “’gotten in the way’ of doing work.” Of 

the 527 people who listed problems in response to this question, 25% mentioned obsta-

cles related to data reuse, especially data incompatibility. (Less common complaints re-

lated to reliability, licensing, feature bloat, and general usability problems.) Example 

comments included the following: 

• “Not always easy to move sturctured [sic] data or text between applications.”  

• “Sometimes hard to ‘share’ infomraiton [sic] between applications- getting better, 

but often requires a lot of user-intervention or duplication of data-entry to get 

work done” 

• “Information entered inconsistently into database fields by different people leaves 

a lot of database cleaning to be done before the information can be used for in-

tended purposes.” 

• “Compatability [sic] problems betweenformats [sic]” 

• “Maintaining output consistency” 



 

38 

These results highlight the need for improving features for “moving” data be-

tween applications and reformatting data. 

2.3 Carnegie Mellon contextual inquiry: learning what features 
might help users 

The Information Week survey provided a great deal of motivation for improving 

data-centric applications, but it had three limitations. First, respondents’ complaints pro-

vided inadequate detail about workflow to identify approaches for achieving improve-

ment. Second, respondents probably were more skilled with programming than end users 

in general, so their views might not be representative of information workers overall. Fi-

nally, end-user programmers may have remembered and reported problems that happened 

to be particularly annoying but relatively rare, thereby failing to mention problems that 

are less acute but more chronic (and, therefore, also potentially serious). 

In order to address these limitations, I performed a contextual inquiry, a user-

centered design method involving the direct observations of users’ tasks  [10]. The pur-

pose of contextual inquiry is to gain substantial insight into the limitations of existing ap-

plications and to provide guidance for designing better applications. 

Data collection method and sample characteristics 

I watched three administrative assistants, four office managers, and three web-

masters/graphic designers at Carnegie Mellon University for between one and three hours 

each, in some cases spread over two days. I used a tape recorder and notebook to record 

information. All participants were recruited by sending emails to university employees 

listed in the organizational roster as administrative assistants, managers, or webmas-

ters/graphic designers; emails were sent to employees in alphabetical order until ten peo-

ple agreed to participate. Participants did not receive any monetary compensation. 

What key problems did users encounter? 

Most subjects used a browser for almost the entire observation period. In particu-

lar, the administrative assistants and office managers spent most of their time filling out 

forms on intranet applications. This task included copying short, human-readable strings 

such as dates, person names and email addresses between spreadsheets and web forms. 



 

39 

For example, the most common task was that of using an intranet web application 

to fill out an expense report. Administrative assistants perform this task when a co-

worker sends a spreadsheet containing a list of expenses. This spreadsheet typically also 

contains a Carnegie Mellon University accounting code as well as one or more dates for-

matted like “12/13/2006” and the name of a locality formatted like “Los Angeles, CA”. 

The user opens up a web browser, navigates to an intranet application, and fills out a web 

form. This requires copying the accounting code into the web form, then inputting a date 

formatted like “Dec-13-2006”, which the user manually must retype because of the for-

matting difference versus the original format. After filling in the date, each user needed to 

look up a per diem rate using a government web site, and looking up per diem rates also 

involved several reformatting operations (such as reformatting the locality). 

Manual reformatting is tedious—over the course of the study, I saw participants 

reformat dozens of dates in this manner. Moreover, manual reformatting is error-prone—

I saw participants periodically make typing mistakes and have to retype their entry. There 

is also the potential (though I did not observe it in practice) that the user might not notice 

having mis-typed a date during reformatting. There is also the potential (though I did not 

observe it) that a co-worker’s spreadsheet might specify invalid states or cities in the lo-

cality. To detect such errors, the administrative assistant would need to mentally validate 

the localities and dates before entering them into the web form. 

Reformatting and validation also played a role in another example user task, 

where a manager wanted to create a roster of employees working on a project. To accom-

plish this task, he visited several intranet applications, each of which listed members of 

different departments along with their job descriptions, project role, phone number, and 

other contact information. After copying and pasting data into a spreadsheet, he often had 

to reformat these short strings, since different sources provided information in different 

formats. For example, some web sites showed person names in a format like “Chris Scaf-

fidi”, while others showed strings formatted like “Scaffidi, Chris”. 

As this user worked, he mentally validated each string (actually moving his 

mouse over each string as he checked it) and occasionally wondered aloud whether a 

value was correct. In some cases, he double-checked a value. For example, according to 

one data source, an employee had an off-campus phone number, which the user con-

firmed by logging into another system.  



 

40 

What software features might help users? 

These observations led to the idea of using a web macro tool such as Robofox 

 [52], Turquoise  [16] or C3W  [35] to automate these interactions among spreadsheets and 

web sites displayed in a browser window. Given the intended uses for these tools, it 

seemed reasonable to think that the tools could automate the process of copying strings 

from spreadsheets into the expense report form, using those strings to submit the per 

diem form, and copying the appropriate per diem rate from that web site back into the 

expense report form. Likewise, it seemed reasonable to think that the tools could auto-

mate the manager’s task of gathering information from web sites into a tidy spreadsheet. 

However, reviewing these tools’ capabilities revealed that these tools actually 

could not automate the study participants’ tasks. The reason is that current web macro 

tools cannot detect if they are copying the wrong string from a web site. For example, the 

per diem web site is often changed by its webmasters, which could cause a web macro 

tool to copy some incorrect string (rather than the per diem rate) from the site. But web 

macro tools cannot differentiate a per diem rate (generally a number between 100 and 

300) from any other string. They cannot tell if a string is a valid per diem rate and cannot 

catch such errors automatically. 

Similarly, Microsoft Excel lacks adequate support for automating validation and 

reformatting rules. For example, the administrative assistant would have to manually ver-

ify all fields in the initial spreadsheet, including the Carnegie Mellon University account-

ing number, date, or locality were valid in the first place. Likewise, in the second task, 

the manager had to manually check through the spreadsheet for invalid data. While some 

strings were questionable and deserved double-checking, the user still sometimes decided 

to use them. 

Ideally, end-user applications like web macro tools and spreadsheets would pro-

vide a way of automatically reformatting and validating strings. The next few sections 

will provide additional data points in order to help refine this objective. 



 

41 

2.4 Hurricane Katrina interviews: learning what features might help 
programmers 

The Carnegie Mellon contextual inquiry documented real problems encountered 

by end users who were less skilled at programming than the Information Week respon-

dents. The contextual inquiry helped to address some of the limitations of the Information 

Week survey (specifically, that the survey only provided information about one kind of 

end user, did not provided detailed information about user problems, and only provided 

general information about perceived problems and not necessarily about real problems).  

Yet all of the problems documented in the contextual inquiry were found specifi-

cally in a university environment. The problems mostly involved spreadsheets and web 

browsers. Moreover, most study participants had zero or minimal programming skill. 

Consequently, it was unclear whether the problems were unique to universities, to par-

ticular applications, or to people with low programming skill (though this last concern 

was somewhat allayed by the fact that the specific problems found in the contextual in-

quiry were fairly consistent with the general problems reported by more sophisticated 

end-user programmers in the Information Week survey). It was therefore desirable to per-

form additional empirical work in order to clarify the generalizability of the contextual 

inquiry’s observations. 

The devastation caused by Hurricane Katrina provided an opportune (albeit sad) 

situation for clarifying the generalizability of the contextual inquiry’s observations. In 

this study, I interviewed people (mostly professional programmers) who had created web 

applications to collect information about hurricane survivors.  

Data collection method and sample characteristics 

On Aug. 29, 2005, Hurricane Katrina made landfall near New Orleans, LA. The 

storm breached levees, cut off phone and electricity service, flooded homes, and dis-

placed hundreds of thousands of people throughout the Gulf Coast. People turned to the 

web in this tragedy’s wake to learn whether friends and family had survived and, if so, 

where they took shelter. To assist in this search, dozens of teams independently created 

web sites so users could store and retrieve data related to survivors’ locations. Within a 

few days, one team recognized that the proliferation of sites forced users to perform sub-

stantial repetitive work, so this team created “screen scraper” scripts to read and aggregate 



 

42 

the other sites’ data into a single site. Since these teams seemed to be demonstrating a great 

deal of altruism by creating these sites for free, it seemed likely that they would be nice 

people and willing to give me information about the problems that they encountered along 

the way. 

Web site creators were recruited for interviews with a sampling bias toward peo-

ple who were likely to be end-user programmers. Specifically, of 22 sites located using 

search engines, 10 were identified that did not display any corporate sponsors’ logo, had 

only a few pages, and lacked extensive graphics. In addition, one aggregator site was 

identified, to provide insight into the struggles of data aggregation. DNS registration and 

information on the sites provided the email address and phone number of each site’s 

owner. Six people agreed to participate in one 30-minute semi-structured telephone inter-

view each. Participants did not receive any monetary compensation for participating in in-

terviews. 

Three interviewees were managers in information technology vendor firms, one 

was an office manager at a hot tub retail outlet, one was a graduate student in computer 

science, and one was a graphic designer at a web developing company. Two people (one 

IT vendor manager and the graphic designer) actually created a site on their own. Two 

people (one IT vendor manager and the graduate student) wrote some of the code and 

then collaborated with professional programmers who finished the coding. Two people 

(one IT vendor manager and the hot tub office manager) simply wrote requirements and 

handed them off to professional programmers. Taken together, the interviewees provided 

a many-faceted view of the web site development process. 

To supplement interview data, one person provided the entire source code for his 

web site. In addition, the client-side code was available online for each interviewee’s site. 

What key problems did programmers encounter? 

The implementation of the five web sites created by these six interviewees had lit-

tle in common. All had one or more web forms for collecting information about hurricane 

survivors, but these forms were created using different technologies. Three sites were im-

plemented in PHP, one of which was created using a sophisticated web application design 

tool called CodeCharge Studio. One site was created by repurposing a blog tool: the blog 

owner posted a blog entry regarding the hurricane and invited readers to use the “com-



 

43 

ments” feature of the page to upload information about their own status or questions 

about loved ones who were missing. (Despite its unsophisticated “implementation”, the 

site succeeded in collecting information from 126 users within 2 months of its inception, 

while garnering 119,713 total views from users.) The fifth and final site was the aggrega-

tor site. Like the other four sites, it had a web form so that people could upload informa-

tion. However, as mentioned above, this Java-based site was primarily populated via 

scripts that screen-scraped data from other Hurricane Katrina web sites. 

Despite the different implementations, these sites’ web forms were similar in that 

they generally did not validate inputs. Some interviewees said that they omitted valida-

tion because they thought it so important to collect any data—even possibly erroneous 

data—that they did not want to put up any barriers to the data input process.  

This decision resulted in numerous data errors, some of which were subtle (Figure 

4). For example, one web application user put “12 Years old” into an “address” field, 

which would be hard to distinguish from a valid value such as “12 Years St”. As another 

example, a user entered “C” as a city name. Interviewees stated that they thought it would 

take too long, or even be impossible, to implement validation that caught such errors yet 

still allowed unusual-yet-valid inputs. 

Figure 4. Invalid data that hurricane survivors entered into a web form that lacked validation  

 
 

Aggregating data was just as difficult as validating data. Since source sites were 

built independently from one another, they used differing data formats. In a few cases, 

aggregators wrote scripts to put data into a common format and to remove duplicates, but 

in most cases, they meticulously and laboriously performed these operations by hand. 

Due to this overwhelming amount of effort, they often simply aggregated the data and 

accepted the fact that it would be a mishmash of formats and duplicates. 



 

44 

What tool features might help these programmers? 

Having personally been a professional web application developer for over five 

years, I found the experience of interviewing these programmers to be surprisingly empa-

thetic and eye-opening. The reason is that as I asked them about their experiences and 

really listened to the details of what they were saying, I realized that I had personally en-

countered many of the same problems that they had. However, until I did this interview, I 

had never been introspective enough about my own experiences to clearly pinpoint the 

key stumbling-blocks that obstruct the implementation of even basic web sites.  

I have created hundreds if not thousands of web forms with a range of technolo-

gies, including PHP and Java, but I could probably count on one hand the number of data 

categories that I regularly validated in my web forms. For example, I generally validated 

email addresses, dates, and phone numbers with regular expressions or JavaScript. But I 

never validated person names, mailing addresses, or cities (except for checking that they 

were non-empty and not longer than a certain length), and I agree with the interviewees 

that one reason for omitting validation is that existing technologies provide no way for 

allowing unusual but valid inputs. On the handful of occasions when I wrote screen 

scraping software, I also had to write a great deal of code for reformatting strings (or left 

it for the customer to do manually in situations when the budget provided inadequate 

man-hours for writing such code). It appears to me, based on my memories, that my fel-

low programmers over the years had essentially the same practices as mine in terms of 

writing validation and aggregation code.  

Programmers like my interviewees (including me, in my previous career) could 

have benefited from having an easy way to validate and reformat a wide range of differ-

ent kinds of strings. 

Ideally, in order to reduce data errors without erecting insurmountable barriers to 

data collection, it would have been helpful if the web application had taken a graduated 

response to “questionable” inputs. For example, the application could have checked 

whether street addresses ended with the more common street types (such as “Str”, “Ave”, 

“Dr”), noticed unusual street types and given the web application user a warning such as, 

“This does not look like a valid street address. Are you sure that you want to enter  

‘12 Years old’ as a street address?” This would allow users to override the system with 

inputs that have unusual street types (such as “12 Years Upas”, whose street type of 



 

45 

“Upas” seems uncommon but happens to be the official abbreviation specified by the US 

Postal Service for “Underpass”). Examples like these helped to motivate the requirement 

for distinguishing between questionable and definitely invalid inputs (Section  1.3). 

In addition, aggregators could have benefited from having a way to automate re-

formatting data into a consistent format, in order to identify duplicates. Automatic refor-

matting could also have prevented each site (individually) from having a mishmash of 

inconsistent formats. These considerations helped to motivate the corresponding require-

ment discussed by Section  1.3. 

Whereas the Carnegie Mellon contextual inquiry described by Section  2.3 in-

volved some organization-specific categories of data, none of the data involved in the 

Hurricane Katrina interviews were organization-specific. Instead, data like phone num-

bers, street addresses, and city names are all widely used and understood across Ameri-

can society. Thus, there is little conceptual reason why every single web developer 

should have to create an abstraction for these data categories. Ideally, it would be desir-

able if individuals could share, find, and reuse validation and reformatting code that have 

already been created by other people, as discussed by Section  1.4. When programmers 

create multiple forms for collecting data on intranet sites (as I did), there might also be a 

benefit to reusing some validation and reformatting rules at an intra-organizational level. 

2.5 Interviews asking information workers to describe data 

Previous projects aimed at supporting end-user programming have benefited from 

first studying how people describe and reason about programming. For example, the in-

sights developed during these studies have inspired specific language features for helping 

young children to write programs as well as tool features for helping older students to 

debug programs  [77].  

Inspired by the prior success of this method in end-user programming research 

projects, I applied it to the problem of understanding how users describe common kinds 

of strings that might need to be validated or reformatted. 



 

46 

Data collection method and sample characteristics 

To learn how end-user developers describe data, four administrative assistants 

were asked to verbally describe two types of data (American mailing addresses and uni-

versity project numbers) so that a hypothetical foreign undergraduate could find those 

data on a computer. This syntax-neutral phrasing was intended to avoid biasing partici-

pants toward or away from a particular notation (such as regular expressions). 

Information workers were recruited by emails sent to administrative assistants in 

the Carnegie Mellon University employee roster. They were contacted in alphabetical 

order until four people agreed to participate. One of these four had previously partici-

pated in the Carnegie Mellon contextual inquiry. No participants received any monetary 

compensation. 

How do information workers describe data? 

In every case, participants described data as a series of named parts, such as city, 

state, and zip code. They did not explicitly provide descriptions of those parts without 

prompting, assuming that simply referring to those parts would enable the hypothetical 

undergraduate to find the data. When prompted to describe the parts of data, participants 

hierarchically described parts in terms of other named parts (such as an address line being 

a number, street name, and street type) until sub-parts became small enough that partici-

pants lacked names for them. 

At that point, participants consistently used constraints to define sub-parts, such 

as specifying that the street type usually is “Blvd” or “St”. They often used adverbs of 

frequency such as “usually” or “sometimes”, meaning that valid data occasionally violate 

these constraints, again highlighting the possibility that data might be questionable but 

not definitely invalid. 

Finally, participants mentioned the punctuation separating named parts, such as 

the periods that punctuate parts of the university’s project numbers. Such punctuation is 

common in data encountered on a daily basis by end users, such as hyphens and slashes 

in dates and parentheses around area codes in American phone numbers. 

These results have an important implication. End users appear to be capable of 

verbally describing these two kinds of data, even something as complicated as a mailing 

address. It is noteworthy that they even identified and described constraints that were 



 

47 

sometimes but not always true. Their answers show that they were keenly aware of the 

existence of unusual values that were questionable yet still valid. 

If these administrative assistants could give these descriptions, including rules for 

identifying questionable values, then it also seems likely that the web developers in the 

Hurricane Katrina interviews also could give similar descriptions, including rules for 

identifying questionable values. Therefore, when the web developers said that they omit-

ted validation because it was too hard to implement validation that would allow unusual 

inputs, these difficulties were probably not caused by an inability to express appropriate 

validation rules (in English). Rather, the problem was more likely caused by an inability 

to implement the validation rules that they knew. Reflecting on the many programming 

technologies that I used while a professional programmer, I am quite certain that I have 

never seen a web application development tool that allowed me to implement validation 

rules that distinguished among valid, invalid, and questionable inputs. 

That is, the problem was not with the people but rather with the programming 

tools’ lack of support for concisely expressing validation and reformatting rules. More-

over, the structure of users’ data descriptions—as a hierarchy of constrained parts—

provides a starting point for designing appropriate tools for helping end users. 

2.6 Requirements for features to help users automate validation and 
reformatting 

The studies above have provided the following insights: 

• Many computer users could be labeled as information workers (Section  2.1).  

• Among information workers who are relatively skilled end-user programmers, the 

most commonly-used applications are data-centric, and when application features 

are clustered in a cross-application manner based on users’ inclination to use 

those features, the most commonly-used application features also turn out to be 

data-centric (Section  2.2). 

• The job tasks of information workers often require validation and reformatting 

operations, which are presently done manually (Section  2.3). 

• The categories of data involved in these tasks are often short, human-readable 

strings. Many of these strings can be written in multiple formats, and some can 



 

48 

appear questionable yet still turn out to be valid. A large fraction of these are or-

ganization-specific kinds of data (Section  2.3). 

• These same traits are typical of data collected by web forms created by profes-

sional programmers. Yet these programmers lack efficient ways to implement 

code to distinguish between invalid, valid, and questionable inputs, as well as to 

reformat strings (Section  2.4). 

• Some categories of data appear to be “application-independent”. That is, certain 

kinds of data such as phone numbers appeared in the Hurricane Katrina study’s 

web forms, yet they also happened to appear in spreadsheets during the Carnegie 

Mellon contextual inquiry (Sections  2.3 and  2.4). 

• When prompted to describe these kinds of data, end users describe them in terms 

of a series of constrained parts. They seem to have no difficulty explaining con-

straints that are usually satisfied but might be violated by questionable-yet-valid 

data (Section  2.5). 

Together, these results point toward an opportunity: to capture rules that users al-

ready know for validating and reformatting strings, and then to invoke those rules as 

needed to automatically validate and reformat strings. 

Capturing the rules requires a way of expressing them as computer-executable in-

structions. Theoretically, there are many possible approaches for doing this, and the next 

section will examine the leading contenders. But regardless of the approach, it will be 

necessary to meet the following requirements (which have already been discussed in 

some detail by Section  1.3). 

Creatable (and usable) by workers “on-site” at organizations: Many strings are 

from organization-specific data categories, and it would be unreasonable for applications 

like Microsoft Excel to ship with validation and reformatting code for every single or-

ganization’s kinds of data. Therefore, somebody “on-site” at each organization would 

need to express rules for validating and reformatting organization-specific kinds of data. 

Ideally, this would be the end users themselves, since they come upon the data in the 

course of daily work and probably would not want to wait for some other person in the 

organization to implement validation and reformatting code on their behalf. In order to 



 

49 

achieve this goal, it might be desirable if the notation for expressing rules also matched 

the constrained-parts mode of description demonstrated by users. 

Expressiveness for “non-binary” validation: Programmers need a convenient way 

to create code that distinguishes among obviously invalid strings, questionable strings 

that deserve double-checking but that still could be accepted, and obviously valid strings 

that should be accepted without hassling the user. While collecting data into spreadsheets, 

end users need a convenient way to identify strings that are questionable or invalid and 

should be double-checked and perhaps replaced with different values. Validation will fall 

short of these needs if it is “binary” and can only categorize data as valid or invalid. 

Expressiveness for reformatting rules: Programmers and end users need ways of 

creating rules that put many strings of the same kind into a consistent format. In particu-

lar, programmers need a way of putting data into a consistent format so that they can then 

identify duplicate values. Thus, programmers and end users need a way to create rules 

that automatically transform data between different formats. 

Reusability: The rules for validating and reformatting data are typically applica-

tion-independent and implicitly or explicitly agreed upon by society at large or within an 

organization. As explained by Section  1.4, reusability is, strictly speaking, not an essen-

tial requirement; however, it would be desirable if people could reuse validation and re-

formatting rules in different applications and could reuse rules created by other people in 

the same society or organization. Moreover, organizations could publish implementations 

of abstractions for data categories that the organizations “own” (such as mailing ad-

dresses as defined by the United States Postal Service, or the URLs as defined by the 

W3C). 

2.7 Related work 

No existing approach meets all of the requirements identified by Section  2.6, 

though some approaches meet subsets of the requirements. The subsections below de-

scribe the existing approaches that meet fairly large subsets of the requirements. 



 

50 

2.7.1 Type systems 

“A type system is a tractable syntactic method for proving the absence of certain 

behaviors by classifying phrases according to the kinds of values they compute”  [87]. 

The positive claim implicit in this definition is that classifying phrases according to their 

kinds of values makes it possible to prove the absence of certain undesirable behaviors.  

This definition of type systems is actually broader than the one familiar to most 

programmers: When a programmer speaks of a “type system”, he probably is referring to 

a nominal type system, which is a type system where the programmer explicitly associ-

ates named types with variables. More generally, type systems can be based on other 

properties of variables, expressions, and other phrases in code; for example, type systems 

can be based on the structure of records or the set of operations exposed by an object 

 [87]. In each kind of type system, a compiler propagates types through expressions and 

other syntactic constructs in order to identify code that attempts to call invalid operations. 

While professional programmers are perhaps most familiar with type systems en-

forced at compile-time, researchers have developed several type systems enforced at run-

time. For example, dependent type systems allows a programmer to express rules that 

validate values before they are assigned to variables  [83]. From these rules, the compiler 

generates instructions that check the values, and if they fail to pass the rules, then the in-

structions throw an exception. Supporting runtime type checking need not entirely sacri-

fice compile-time type checking, since the compiler can also statically check many rules 

at compile-time to see if they might ever be violated at runtime. For example, if x and y 

are declared to be positive integers and z is declared to be a negative integer, then the 

compiler would detect that z = x + y is an invalid assignment; the compiler would also 

generate instructions that would throw an exception if, at runtime, z was assigned from 

user input, and the user entered 3. The range of constraints supported by these systems is 

fairly limited. In particular, they seem to provide only very minimalist support for vali-

dating strings (represented as arrays of characters). In addition, run-time type systems 

share two limitations with other type systems. 

First, type systems make binary distinctions—either an expression is or is not an 

instance of a type. This is the source of a type system’s strength, as it enables a compiler 

to definitively determine whether code attempts to perform certain illegal operations. 



 

51 

However, for the purposes of helping end users with the tasks in the studies described 

above, the binary nature of type checking is a weakness, as it leaves no room for ques-

tionable values that nonetheless are valid and should be allowed. 

Second, while type systems can categorize expressions according to their types, 

their only support for reformatting-like operations is through implicit type conversion and 

type-casting. For example, most type systems allow code to assign integer values to float-

ing point variables (with the actual conversion of the value handled at runtime by a 

mechanism outside the type system), and the reverse is allowed through an explicit type-

cast. Type systems do not provide appropriate string-reformatting operations involved in 

the problem at hand, such as converting between the names and abbreviations of Ameri-

can states (e.g.: “Florida” to “FL”). Instead, it is necessary to go outside the type system 

and use a formatting library, such as the library provided by Java for formatting numbers 

and dates. Such libraries still provide no support for reformatting many kinds of data that 

end users encounter (e.g.: converting between the names and abbreviations of American 

states). 

2.7.2 Dimension-unit analysis 

General dimension-unit analysis systems have been incorporated into at least two 

professional programming languages (such as Java  [2] and ML  [46]). These analysis sys-

tems could, for example, detect if code attempted to add a variable containing a distance 

to a variable containing a weight. 

Researchers have incorporated dimension-unit analysis into spreadsheet editors. 

For example, the σ-calculus associates types with spreadsheet cells (based on the place-

ment of labels at the top of columns and at the left end of rows), and the calculus speci-

fies how these types propagate through the spreadsheet. If two cells with different types 

are combined, then their type is generalized if an applicable type is available (e.g.: “3 ap-

ples + 3 oranges = 6 fruit”), or else an error message is shown  [31]. Slate performs simi-

lar data validation using physical units and dimensions, such as kilograms and meters, in 

order to detect spreadsheet errors  [27]. As in the constraint-inference systems mentioned 

above (Section  2.7.4), these dimension-analysis systems are semi-automatic: they identify 



 

52 

likely errors, but the user of the spreadsheet editor has the option to disregard warning 

messages. 

These approaches are applicable to a wide variety of numeric data, though not to 

string-like categories of data mentioned by Section  1.2, nor are the systems application-

independent (being tied to spreadsheet environments, Java, or ML). 

2.7.3 Grammars and other formal languages 

Several end-user programming tools allow people to use regular expressions and 

context-free languages to validate data. These tools either provide a user-friendly visual 

language overlaid on the underlying grammar notation (thereby sparing users the need to 

understand the notation), or they add “syntactic sugar” making it easier for users to work 

directly with grammars.  

SWYN is a visual language that enables end-user programmers to manipulate 

symbolic pictures that are represented internally as regular expressions ( The example 

provided shown below, corresponds to (trou|w[a-n,p-z]b)b*[a-z]e   (It appears that no 

screenshots of SWYN expressions for common data such as dates or email addresses 

have been published.) Empirical studies show that SWYN helps users to interpret regular 

expressions more effectively than they can with the usual textual regular expression nota-

tion.  

Figure 5)  [16]. The example provided shown below, corresponds to (trou|w[a-

n,p-z]b)b*[a-z]e   (It appears that no screenshots of SWYN expressions for common 

data such as dates or email addresses have been published.) Empirical studies show that 

SWYN helps users to interpret regular expressions more effectively than they can with 

the usual textual regular expression notation.  



 

53 

Figure 5. SWYN user interface for defining regular expressions, with notation key 

 
 

Grammex is an editor for context-free grammars (Figure 6)  [62]. The end-user 

programmer gives examples, shows how to break the examples into grammar non-

terminals, and then specifies the form of each non-terminal (for instance, as an integer or 

a word, or as a list of terminals or non-terminals). In the screenshot, HOST and PERSON 

were already defined (in dialog windows), and the end-user programmer is specifying an 

email address grammar. The usability of Grammex has not been evaluated empirically. 

 

Figure 6. Grammex user interface for defining context-free grammars 

 
 



 

54 

Apple data detectors are also context-free grammars, though in this case, end-user 

programmers define a grammar by typing the productions for non-terminals, which (for 

convenience) can take the form of a regular expression (Figure 7)  [79]. The example date 

format shown below was actually more complicated as published in  [79] (to allow for 

dates with textual month names and other format variations), but has been simplified here 

to conserve space. The usability Apple data detectors apparently has not been evaluated 

in laboratory experiments, but the technology has been successfully commercialized in 

several versions of the Apple operating system (including Leopard). 

Figure 7. Apple data detector grammar 

 
 

Finally, Lapis data patterns are similar to context-free grammars, again typed by 

end-user programmers, though primitives are also provided for common forms such as 

numbers, words, and punctuation (Figure 8)  [70]. The example pattern shown below was 

actually more complicated as published in  [70] (to allow for dates with textual month 

names and other format variations), but has been simplified here to conserve space. Labo-

ratory user studies have shown that Lapis patterns offer an effective, usable mechanism 

for selecting valid strings and identifying invalid strings. In particular, Lapis patterns are 

Date =  
{ 
 (MonthNumber [/\-]+ Day [/\-]* Year?) 
} 
MonthNumber = 
{ 
 [1-9], 
 ([1] [012]) 
} 
Day = 
{ 
 [1-9], 
 ([12] [0-9]), 
 ([3] [01]) 
} 
Year = 
{ 
 ([1-9] [0-9]), 
 ([1-9] [0-9] [0-9] [0-9]) 

} 



 

55 

integrated with a powerful outlier finding method approach for finding invalid strings 

(discussed further by Section  2.7.4) as well as an efficient method for editing multiple 

valid strings simultaneously (discussed further by Section  2.7.6). 

 

Figure 8. Lapis pattern grammar 

 
 

Though specialized for strings and aimed at end users, these systems share the 

same limitations as type systems. Data formats in these systems specify binary recogniz-

ers: either a value matches the format, or it does not. Moreover, these systems only de-

scribe how to recognize strings, not reformat them. Finally, it is cumbersome (though not 

impossible) in these grammars to express many common constraints on data. For exam-

ple, it is extremely difficult to express numeric ranges (e.g.: a date’s day should be in the 

range 1 through 31) and negation over runs of characters (e.g.: phone numbers’ area 

codes never end with “11”). 

2.7.4 Outlier finding and other approaches based on inferring constraints 

Outlier finding refers to a general class of techniques aimed at automatically or 

semi-automatically identifying data points that are inconsistent with the rest of the points 

in a dataset  [6]. In essence, these techniques allow a user to provide examples of data to 

@DayOfMonth is Number equal to /[12][0-9]|3[01]|0?[1-9]/ 
 ignoring nothing 
 
@ShortMonth is Number equal to /1[012]|0?[1-9]/ 
 ignoring nothing 
 
@ShortYear is Number equal to /\d\d/ 
 ignoring nothing 
 
Date is flatten @ShortMonth 
 then @DayOfMonth 
 then @ShortYear 
 ignoring either Spaces 
  or Punctuation 



 

56 

validate, the system infers a constraint-like description of the data, and then the system 

identifies data points that do not satisfy the description. 

For the most part, outlier finding has been used to validate numerical data. For 

example, Cues infers constraints over numeric data from web services  [93], and Forms/3 

is a spreadsheet editor that can infer constraints over values in cells  [25]. The systems 

then check numbers to see if they match the inferred constraints. These systems provide 

user interfaces and testing methods so that end-user programmers can review, debug, and 

customize the inferred constraints. From a conceptual standpoint, it is necessary to gener-

alize these algorithms for validating numeric data to also include the string-like data 

characterized by Section  1.2. 

A handful of outlier-finding systems operate on string-like data. For example, the 

Lapis system mentioned earlier infers patterns, then uses them to find unusual strings that 

do not match the format very well  [70]. Other systems infer context-free grammars  [45] 

and regular expressions, then use them to check strings  [111]. Although the inclusion of 

an inference algorithm greatly simplifies the process of validating inputs, the underlying 

grammar still suffers from the limitations described above, such as the lack of support for 

identifying questionable values. 

2.7.5 Abstractions for sets of non-string entities in end users’ programs 

The aforementioned systems based on types, grammars, and constraints essen-

tially embody approaches for identifying sets of entities. Types identify sets of expression 

values that support certain operations, grammars identify sets of strings with certain 

structure, and constraints identify sets of values that meet syntactic or semantic require-

ments. By referring to sets of entities rather than individual set elements, types, gram-

mars, and constraints abstract away the specific identities of the set elements. Thus, for 

example, a line of program source code can access a variable’s operations based on the 

variable’s type (irrespective of what value actually appears in the variable at runtime), a 

web form can include a text field that should contain a string that matches a certain regu-

lar expression (with the specific value undetermined until runtime), and Forms/3 can 

propagate measures of correctness through the spreadsheet based on how well various 

cells satisfy their constraints (meaning that if cell B references cell A in a formula, and 



 

57 

cell A fails to satisfy its constraint, then the correctness of cell B is impugned regardless 

of what specific value appears in A—it is only the degree to which the constraint is vio-

lated, rather than the specific value, that is needed to propagate correctness). 

Other programming environments also include abstractions for referring to sets of 

entities. For example, in the SmallStar, Pursuit, and Hands programming environments, 

user code can programmatically identify objects whose properties satisfy user-specified 

constraints  [40] [73] [84]. In Gamut and Hands, the user interface displays piles of cards as 

visual graphical containers of objects  [68] [84]. (While these containers can be populated 

programmatically in Hands, they must be statically populated at design-time in Gamut, as 

the programmer drags and drops icons into the container.)  

Because these systems provide for abstractions identifying sets of entities, they 

bear some similarity to types, grammars, and the constraint systems describe in the previ-

ous sub-section. Specifically, in SmallStar, Hands, and Gamut, these abstractions identify 

sets containing graphical objects, while in Pursuit, the abstractions identify sets contain-

ing files. That is, none of them contain abstractions for sets of strings, and therefore they 

do not solve the problem of helping users to validate and reformat strings. 

2.7.6 Simultaneous editing and editing-by-example 

Potluck  [44] and Lapis  [70] support simultaneous editing, in which a user types a 

change on one string, and the system automatically performs similar edits on other 

strings. However, these edits are not stored as rules that can be later executed on other 

data. Consequently, there is no opportunity for reuse. Nix’s editing-by-example technique 

is similar to simultaneous editing, and it infers a macro-like program that can be replayed 

later. However, this technique does not support validation  [80]. In short, none of these 

systems provides integrated support for reusable validation and reformatting rules. 

2.7.7 Federated database systems and data cleaning tools 

A federated database is an assembly of relational databases that are generally cre-

ated, owned, and managed by autonomous groups of people  [115]. Because of this level 

of autonomy, integrating data from the constituent databases often requires validating and 



 

58 

transforming their data. These transformations sometimes go well beyond the simple re-

formatting operations that end users encountered in the studies described above. For ex-

ample, values might undergo schema transformations as well as filtering and complex 

arithmetic operations (including computation of aggregate sums or other statistics) prior 

to combination with data from other databases. Researchers have provided a wide variety 

of tools and other software infrastructure to help skilled database administrators create 

scripts and other programs that perform filtering and other computations; these programs 

typically execute online in order to validate and transform data in response to user queries 

and similar relational database operations. 

Researchers have also provided tools to simplify offline data cleaning and data in-

tegration when combining existing data sources into a single database. Unlike in a feder-

ated database, the resulting database is then decoupled from the initial data sources. One 

example tool is the Potter’s Wheel, which presents database tables in a spreadsheet-like 

user interface, allowing administrators to edit specific cells manually to correct errors or 

to put data into a consistent format  [91]. From these edits, the Potter’s Wheel infers trans-

formation functions, which administrators can save, reload, and replay on other data val-

ues that require the same cleaning steps. 

Federated database systems and data cleaning tools are specifically designed for 

use on relational data, limiting their usefulness for validating and reformatting data in 

web forms, spreadsheets, and other end-user tools. In addition, the user interfaces of the 

systems mentioned above are extremely complex, so while they are suitable for use by 

skilled professional database administrators on complicated database integration tasks, 

they are probably less appropriate for use by ordinary end users such as administrative 

assistants. 

2.7.8 Value objects and domain values 

In object-oriented system design, a “value object” is an object that has no identity 

 [30]. This contrasts with entities, where identity matters. To elucidate the difference, Ev-

ans gives the example of mailing addresses [30]. In an e-commerce system’s design, it 

does not matter if an order today is going to the same address as an order did yesterday; 

the mailing address serves is a value object, since its identity does not matter. In contrast, 



 

59 

in a system for managing electrical company service, two customers should not be able to 

simultaneously register for service at the same address; in this case, the mailing address is 

an entity, since its identity does matter (as two addresses might need to be detected as 

equivalent). 

The notion of a value object is important in system design because variables con-

taining value objects are almost always attributes of entities. Thus, they generally are im-

plemented as members of objects or columns in databases. The notion of a value object is 

relevant to this dissertation because, in terms of surface syntax, value objects generally 

refer to instances of the same categories that users commonly need to validate and refor-

mat. Examples include phone numbers, dates, person names, and so forth. 

However, despite this surface similarity, value objects are exactly the opposite of 

what is needed to help users automate reformatting operations. The reason is that refor-

matting depends on transforming a string from one format into an equivalent string in an-

other format. Usually, this equivalence is a direct consequence of identity (as when two 

mailing addresses refer to the same building). This is precisely the semantics that value 

objects give up, compared to entities. Thus, users’ validation and reformatting tasks bear 

much more resemblance to named entities (described by Section  2.7.9) than they do to 

value objects. 

A related concept is that of the “domain values pattern”, which is a design pattern 

for implementing domain-specific string-validation rules in object-oriented systems 

 [126]. For example, suppose that a system involved interest rates. The domain values pat-

tern prescribes that the programmer should implement an InterestRate class that pro-

vides an IsValid(float) method and an IsValid(string) method. The first of these 

“static” class methods would return a Boolean indicating whether the specified floating 

point number is a valid interest rate (e.g.: to check if the value is positive); the second 

validation method would return a Boolean indicating if the string could be parsed into a 

floating point number that is a valid interest rate. In addition, the pattern prescribes that 

the InterestRate class should include InterestRate(float) and InterestRate(string) 

constructors; each of these would call the corresponding IsValid method during object 

construction and throw an exception if presented with an invalid input. Finally, the do-

main values pattern prescribes that the InterestRate class should provide a ToString() 

method for converting an InterestRate instance into a string, as well as (optionally) 



 

60 

“static” class methods for iterating over all possible values (though of course the iterator 

would be omitted when there are an infinite number of values). 

In short, the domain values pattern prescribes the creation of a specific class that 

can be instantiated from strings, can validate these strings, and can serialize instances to 

strings. Not all domain values are strings, but the pattern assumes that the values can be 

represented as strings. The level of semantic granularity is very similar to that of the data 

categories involved in users’ tasks. 

However, the domain values pattern is limited in the support that it could actually 

provide for users’ tasks. First, it only allows binary validation, so the prescribed classes 

would be unable to differentiate among obviously invalid values, questionable values, 

and obviously valid values. Second, the ToString() method only supports one format, 

which would not adequately capture the range of formats in a multi-format data category. 

Finally, as the pattern calls for implementation of a class, it is somewhat tied to object-

oriented programming environments (though the general concepts described in the pat-

tern certainly would generalize to non-object-oriented programming environments). 

In addition to the limitations above, the value object and domain value concepts 

have only been explored to date in the context of system design by professional pro-

grammers. But Section  2.6 requires that end users should be able to create necessary ab-

stractions for themselves. Therefore, while value objects and domain values offer useful 

insights as to how professional programmers solve similar problems, it will be necessary 

to generalize these concepts in a way that supports the creation and use of abstractions by 

end users across a range of applications. 

2.7.9 Information extraction algorithms 

Information extraction systems examine natural language text and identify in-

stances of certain data categories commonly referred to as “open lexical items” or 

“named entities”  [4] [26] [67]. One of the largest and most successful systems for identify-

ing named entities in text is based on the CYC common sense knowledge base  [57]. As 

of 2004, this system could recognize over 30,000 different types of named entities, in-

cluding many specializations of the handful of types that other systems could recognize. 

“For example, in addition to a class such as ‘Person’ available to current information ex-



 

61 

traction systems, CYC’s  extended type system includes many categories of people, in-

cluding things like Terrorist”; thus, based on a mention of a bomb in a news article, the 

system could recognize that a particular Person is in fact a Terrorist  [28]. The CYC 

knowledge base has been populated through a combination of “spoon-feeding” of facts 

by professional researchers, as well as machine learning algorithms that learn new facts 

by sifting through web pages written by end users. ConceptNet is a second successful at-

tempt to amass information about named entities referenced by natural language text 

 [61]. In order to “teach” this system common sense facts, end users can visit the project’s 

website and type facts into a web form. As of late 2004, the knowledge base contained 

facts about 300,000 concepts.  

These systems take advantage of contextual features. For example, the words 

“worked for” often precedes a company name or a person name, so the words “worked 

for” provide a very good starting point for inferring the data category of the following 

few words. However, these contextual cues are unavailable or not useful in the problems 

encountered by end users during the studies described above. For example, if an end-user 

programmer places a “Phone:” label beside a web form field (so users know what data 

belongs there), then that label provides no information about whether a particular input is 

valid. Although these limitations apparently prevent using the information extraction al-

gorithms for input validation, the notion of a named entity was one source of inspiration 

for the notion of topes, as described by Section  1.2. 

2.7.10 Microformats and the semantic web 

Microformats are a labeling scheme where a web developer affixes a “class” at-

tribute to an HTML element to specify a category for the element’s text  [47]. For exam-

ple, the developer might label an element with “tel” if it contains a phone number. Com-

monly-recognized microformat labels are published on a wiki 

(http://microformats.org/wiki/). Conceptually, microformats are a simplified version of 

the approach used in the semantic web, where programmers affix complex RDF labels to 

HTML and XML elements, thereby indicating the category of data that the element con-

tains  [9].  



 

62 

Regardless of whether data are tagged with microformat labels or with semantic 

web labels, people can write programs that download HTML or XML files and retrieve 

phone numbers or other data values from labeled elements. The values would then re-

quire validation and, perhaps, reformatting to a common format. Thus, while microfor-

mats and the semantic web involve the categories of data that appear in end-user tasks, 

these approaches do not actually directly solve the validation and reformatting problems 

that end users encounter. Another approach is needed. 



 

63 

Chapter 3. Topes 

The empirical studies described in  Chapter 2 revealed that many user tasks in-

volve validating and reformatting short human-readable strings drawn from data catego-

ries such as person names, phone numbers, and university project numbers. These catego-

ries often include values that are questionable yet nonetheless valid, and their values typi-

cally can appear in multiple formats. The categories are “application-agnostic”, in that the 

rules for validating and reformatting instances are not specific to a particular application 

(such as Excel). Rather, the rules are implicitly or explicitly agreed upon by society at 

large or within an organization. 

A tope is an application-independent abstraction that describes how to validate 

and reformat instances of one such data category. Each is called a “tope”, the Greek word 

for “place”, because its data category has a place in the problem domain. For example, 

problem domains involve phone numbers and salaries, rather than strings and floats, and 

it is the user context that governs whether a string is valid. Every phone number is a valid 

string, but not every string is a valid phone number. 

Humans have conceptual patterns for these data categories. The purpose of a tope 

is to take what people know about a particular category and capture this knowledge in a 

form that the computer can use. In particular, tope captures two kinds of conceptual pat-

terns, each represented as a mathematical function. First, a tope contains functions de-

scribing how to recognize instances of each format on a non-binary scale of validity. For 

example, a phone number tope might contain a conceptual pattern describing how to rec-

ognize strings formatted like “800-987-6543”, with the stipulation that a string is highly 

questionable if its exchange is “555” (since this exchange is extremely rare in valid phone 

numbers). Second, if a tope describes a multi-format data category, then it typically also 

contains conceptual patterns describing how to transform instances from one format to 

another. For example, phone numbers can be transformed from a format like “800-987-

6543” to a format like “800.987.6543” by following a simple rule of changing all hy-

phens to periods.  



 

64 

In short, a tope captures validation and reformatting rules that describe a data 

category. It does not explicitly capture other information about instances of the data cate-

gory (such as how often people encounter instances of the category in real life). The func-

tional interface exposed by a tope are precisely intended to help automate validation and 

reformatting tasks—no more, no less. Thus, a tope is a parsimonious computational 

model of a data category used by people in everyday life. 

This chapter begins by laying out the rationale for abstractions describing catego-

ries of string-like data. It precisely defines and discusses what topes are, then explores 

several common kinds of topes. The chapter closes by considering the importance of pro-

viding good support for helping users to create correct tope implementations. 

3.1 Abstractions for data categories 

Each tope is an abstraction that models one category of string-like data. “Abstrac-

tion” is used in the following sense: “The essence of abstraction is recognizing a pattern, 

naming and defining it, analyzing it, finding ways to specify it, and providing some way 

to invoke the pattern.”  [114] Here, “pattern” has the dictionary definition of “a consistent 

or characteristic arrangement”  [92] rather than the specific technical meaning of a Design 

Pattern  [36]. 

Creating an abstraction for a data category involves recognizing the conceptual 

patterns implicit in that category’s valid values, naming the pattern, and carefully defin-

ing the pattern. Ultimately, invoking the pattern’s operations requires implementing the 

abstraction. Just as there may be several possible abstractions each describing a particular 

data category, there may be several different approaches for implementing each abstrac-

tion. 

For example, consider a simple data category, email addresses. A valid email ad-

dress is a username, followed by an “@” symbol and a hostname. At the simplest level, 

the username and hostname can contain alphanumeric characters, periods, underscores, 

and certain other characters. This abstraction—a pattern that succinctly describes the 

category—could be implemented in various ways, such as a regular expression, a con-

text-free grammar, or a Java program. 



 

65 

More sophisticated abstractions for email addresses are possible. For example, a 

more accurate pattern would note that neither the username nor the hostname can contain 

two adjacent periods. A still more accurate abstraction would note that the hostname usu-

ally ends with “.com”, “.edu”, country codes, or certain other strings. 

Some data categories encountered by end users are most easily described in terms 

of several patterns. For example, companies can be referenced by common name, formal 

name, or stock ticker symbol. The common names are typically one to three words, 

sometimes containing apostrophes, ampersands, or hyphens. The formal names may be 

somewhat longer, though rarely more than 100 characters, and they sometimes contain 

periods, commas, and certain other characters. The ticker symbols are one to five upper-

case letters, sometimes followed by a period and one or two letters; more precisely, these 

symbols are drawn from a finite set of officially registered symbols. These three patterns 

together comprise an abstraction describing how to recognize companies. 

In addition to patterns for recognizing instances of a multi-format data category, 

each tope captures patterns for reformatting instances from one format to another. Again, 

the word “pattern” implies that certain rules generally describe how to reformat instances 

of a category. In other words, it is not as if every string in the category has its own par-

ticular rules for reformatting; instead, certain rules generally describe all (or most) of the 

category’s instances. For example, instances of the company data category can be refor-

matted from a ticker symbol format to a full company name by referencing a lookup ta-

ble. The lookup table embodies a conceptual pattern for how to reformat the strings. As 

with patterns for recognizing instances, this lookup table pattern could be implemented 

with a C# “switch” statement, a set of “if/then” conditional statements, a .NET HashMap, 

or other code constructs. In practice, users create tope implementations through the Tope 

Development Environment (TDE), as described by  Chapter 4, though the tope model is 

more general and would allow other possible implementation approaches. 

3.2 The topes model 

The purpose of topes is to validate and reformat strings. Thus, topes capture us-

ers’ conceptual patterns as mathematical functions involving strings. Each string is a se-



 

66 

quence of symbols drawn from a finite alphabet ∑, so each string s∈∑*. A data category 

D is a set of valid strings. 

As shown in Figure 1, each tope τ is a directed graph (F, T). In this graph, a func-

tion is associated with each vertex and edge. For each vertex f∈F, called a “format”, isaf 

is a fuzzy set membership function isaf:∑* [0,1]. For each edge (x,y)∈T, called a 

“transformation”, trfxy is a function isaxy:∑* ∑*. Each vertex’s isa function, also 

known as a “format validation function”, recognizes instances of a conceptual pattern. 

Each edge’s trf function, also known as a “transformation function” converts strings be-

tween formats. 

For a given format vertex f, each isaf defines a fuzzy set  [125], in that isaf(s) in-

dicates the degree to which s is an instance of that format’s conceptual pattern. For ex-

ample, when recognizing strings as company common names based whether they have 

one to three words, a string s with one word would match, so isaf(s) = 1. The conceptual 

pattern might allow an input s’ with four words, but with a low degree of membership, 

such as isaf(s’) = 0.1. The pattern might completely disallow an input s’’ with 30 

words, so isaf(s’’) = 0. 

For each tope τ = (F, T), the “tope validation function” is defined as  
)]([max)( ff

ss
F
isa

∈
=φ  

If φ(s) = 1, then τ labels s as valid. If φ(s) = 0, then τ labels s as invalid. If  

0 < φ(s) < 1, then τ labels s as questionable, meaning that it might or might not be valid. 

The ultimate goal of validation is to identify invalid data. For this particular purpose, τ 

would be perfectly accurate if ∀ s∈∑*, (φ(s) = 0) <=> (s∉D).  

Each trfxy converts strings from format x into equivalent strings in format y. For 

example, as discussed by Section  3.1, a tope implementation for company names might 

use lookup tables to match common names and official titles with stock symbols. Specifi-

cally, for data categories referencing named entities, two strings with different character 

sequences can refer to the same entity. For example, “Google”, “GOOG”, and “Google 

Inc.” refer to the same entity, though the three strings are written in different formats. For 

categories that do not reference named entities, two strings with different character se-

quences may be equivalent according to that category’s underlying semantics. For exam-

ple, a temperature of “212° F” is equivalent to “100° C”. 



 

67 

Transformations can be chained, so in practice, topes do not need to be complete 

(each vertex directly joined to every other vertex). As a result, the number of functions 

can grow linearly with respect to the number of formats. Some topes may have a central 

format connected to each other format in a star-like structure, which would be appropriate 

when one format can be identified as a canonical format. Alternate topologies are appro-

priate in other cases, such as when a tope is conveniently expressed as a chain of sequen-

tially refined formats. 

Ambiguity can affect the use of transformations in two ways. First, when chaining 

transformation functions in order to traverse the tope graph from format x to format y, 

there may be more than one feasible route through the graph, and each route might pro-

duce a different result. A second complication related to choosing a route relates to pick-

ing a starting point for the route: to transform a string to format y, it is necessary to first 

determine the starting format x of the string, and in some cases, it might be the case that 

more than one format matches the string. Section  6.1.2 explains how these two practical 

considerations impact the design of the TDE. 

3.3 The interplay between validation and transformation 

One crucial design decision reflected in this model is to require each transforma-

tion function to accept any string, even a string that is not valid according to the source 

format.  

The reason for this decision is that there are many imperfect strings that still need 

to be reformatted. For example, an isa function might assign a score of 0.9 to the string 

“3043048 Main Street”, as the street number has a rather high number of digits. Yet there 

is no real reason why it could not be transformed to another format, such as “3043048 

MAIN ST.” In fact, it might even be desirable to reformat a clearly invalid string. For 

example, “(911) 818-1010” is not a valid phone number, as area codes can never end 

with “11”. Yet ask an end-user programmer to transform it to his favorite format, and he 

will probably produce “911-818-1010” with very little effort. So a user’s conceptual pat-

tern for transforming strings often “works” on many imperfect strings, which is logical 

because the purpose of transformation is to transform, not to validate.  



 

68 

Accordingly, the job of a trf function is to make a “best effort” at transforming 

rather than to validate (which is properly the job of an isa function). Yet the decision to 

require only that trf functions make a “best effort” has a number of consequences. One 

consequence is that the outputs of transformations might be invalid. Another is that it can 

sometimes be impossible to recover a string after transforming it. The topes model does 

not provide any direct support for coping with these consequences, but tools that rely on 

the topes model can cope with these consequences in a straightforward manner. 

Transformations might not produce valid outputs sometimes 

By requiring each trf function to accept any string, it becomes necessary to ac-

cept that each trf function may sometimes be unable to produce a valid output. For ex-

ample, there is no way to transform a meaningless string like “a8`6” to any phone number 

format, and a trf function might output any string at all when faced with that input. 

In fact, a trf function might produce an invalid string even when it can make 

sense of the input. Carrying along the example above, a good phone number trf might be 

able to convert “(911) 818-1010” to “911-818-1010”, yet the output would still be inva-

lid. Moreover, an output could be questionable or invalid even if the input was perfectly 

valid. As an example, the person name “Smith, Malcolm” cannot be reliably transformed 

to any format that includes a middle initial. Even though the input is a perfectly valid in-

stance of a very commonly used person name format, it does not contain the information 

needed to produce a valid instance of a format that requires a middle initial. For some 

kinds of data, the trf might contain special rules to populate missing fields with default 

values, but there really is no good default for a person’s middle initial. 

Conversely, a trf function might be so robust that it can take a questionable input 

and produce a valid output. For example, the string “SmitH, Malcolm” has an unusual 

mixture of capitalization, so a good isa function might notice this and identify the string 

as questionable. Yet it would be very easy to implement a trf function for transforming 

strings from this format to a format that is all-uppercase with the given name followed by 

the family name. This function would probably produce a valid string like “MALCOLM 

SMITH”. 

In summary, regardless of whether an input is valid, questionable or invalid, the 

output of a trf function could be valid, questionable or invalid.  



 

69 

People manually apply transformations like these every day. In doing so, they 

sometimes improve the quality of data, and they sometimes reduce the quality of data. 

This is a result of the structure and rules of the data categories that people use. Modeling 

and ultimately automating the data categories, including their transformations, does not 

change this fact of reality. If a model is to be true to reality, then it must faithfully reflect 

the strengths as well as the weaknesses of that reality. Identifying those weaknesses ex-

poses them so that we as researchers can help people cope with them. 

In the context of topes, there is a very straightforward way to help people cope 

with the fact that transformations might damage the quality of data: code that calls a trf 

function should validate the output using the isa function of the target format. This will 

immediately indicate whether the result is valid, so that a user can be alerted to double-

check the output if needed. The key is to use transformation functions for what they are 

good at—transforming—and rely on format validation functions for validating. 

It might be impossible to automatically recover a string after transforming it 

Moreover, trf functions might destroy information, in the sense that the output of 

a transformation might not contain enough information to recover the string that was 

originally transformed. For example, transforming “Malcolm T. Smith” to “Smith, Mal-

colm” destroys information, making it impossible to transform the string back to a valid 

instance of the original format. 

By definition, a transformation trfxy is non-invertible any time that there exists 

some string s for which trfyx(trfxy(s)) ≠ s. As function f is invertible if and only if it is 

an injection ( ∀ s, s’ such that s ≠ s’, f(s) ≠ f(s’) ) and if it is a surjection (∀ t in the 

codomain of f,  ∃ s such that f(s) = t). Thus, a tope transformation function trfxy is non-

invertible if it violates the injection property (there are two different strings that map to 

the same transformation output) or if it violates the surjection property (there is some 

string that cannot be generated from any string in the source format). 

A careful consideration shows that of these two ways for a transformation func-

tion to be non-invertible, only violations of the injection property can destroy informa-

tion—violations of the surjection property do not destroy information.  

When the injection property is violated, it can be impossible to look at a string in 

the target format and determine which of several strings could have possibly generated 



 

70 

the output. The discussion above has already identified one way to violate the injection 

property, by dropping part of a string during a transformation. Another way to violate the 

injection property is by rounding a number, and there are surely other ways. 

On the other hand, if injection is preserved but the surjection property is violated, 

then there is some string t nominally in the target format y but which has no equivalent in 

the source format x. Yet this is irrelevant for the purposes of inverting the transformation 

of a string s: by construction, the output trfxy(s) can never be one of those strings that 

cannot be generated by trfxy from some string in the source format. Thus, the violation of 

surjection does not prevent recovering a transformed string through an inverse transfor-

mation. 

The straightforward way to help users with situations like these is for a tool to re-

tain a hidden copy of a string somewhere before calling transformation functions, then 

providing convenient “undo” support for recovering the original string. The TDE does 

not presently happen to provide such support, but it could be added in the future, as 

“undo” functionality is fairly well understood and easily implemented with a Memento 

pattern (which succinctly captures information required for restoring a computational 

element to a previous state)  [36]. 

In fact, the Memento pattern might also be useful when strings are transformed in 

one tool and then exported to another tool, and the user might want to recover the original 

strings. In this case, the second tool will not have an “undo” history in memory for re-

versing the transformation, but the data could be annotated with meta-data containing a 

Memento when the data are exported from the first tool. That way, the second tool would 

have the information required for recovering the original strings. 

3.4 Common kinds of topes 

Four specific kinds of patterns describe most topes. 

Enumeration patterns 

Values in many data categories refer to named entities  [4] [26] [67], of which only 

a finite number actually exist. Each such category could be described as a tope with a sin-

gle format whose membership function isaf(s) = 1 if s∈Δ, where Δ is a set of names of 



 

71 

existing entities, and isaf(s) = 0 otherwise. If two strings can refer to the same named en-

tity, it may be convenient to partition this set, creating multiple formats, each of which 

recognizes values in a partition. The trf functions could use a lookup table to match 

strings in different formats. 

For example, consider a tope for Canada’s provinces. The tope might have two 

formats, one for the full name and one for the postal abbreviation. 

An isa for the first format x could assign 1 for each of Canada’s ten provinces: 

isax(s) = 1 if s∈{“Alberta”, “British Columbia”,…}, 0 otherwise 

Depending on the programmer’s purpose for this category, a slightly more sophis-

ticated format could also recognize the three territories of Canada with uncertainty, per-

haps with 

isax(s) = 0.1 if s∈{“Northwest Territories”, “Nunavut”, “Yukon”}, otherwise 

The tope could include a second format y that recognizes standard postal abbre-

viations: 

isay(s) = 1 if s∈{“AB”, “BC”…}, 0.1 if s∈{“NT”, “NU”, “YT”}, 0 otherwise 

The trf functions could use a lookup table to map values from one format to the 

other. 

Similar topes could be used to describe many other data categories, including 

states in the United States, countries of the world, months of the year, products in a com-

pany’s catalog, and genders. Each of these data categories contains a small number of 

values. 

List-of-words patterns 

Some categories have a finite list of valid values but are infeasible to enumerate, 

either because the list is too large, too rapidly changing, or too decentralized in that each 

person might be unaware of valid values known to other people. Examples include book 

titles and company names. Though a tope could contain a format x with isax(s) = 1 if s∈Δ 

(an enumeration pattern), this format would omit valid values. 

Most such data categories contain values that are lists of words delimited by 

spaces and punctuation. Valid values typically must have a limited length (such as one or 

two words of several characters each), and they may contain only certain punctuation or 

digits. Typical lengths and characters vary by category.  



 

72 

A tope could contain a format y with isay(s) = r∈(0,1) if s has an appropriate 

length and contains appropriate characters. This could be implemented by splitting the 

string on word boundaries, then checking constraints on the words. For a tope with an 

enumeration format x and a list-of-words format y, φ(s) = isax(s) = 1 if s∈Δ, otherwise 

φ(s) = isay(s) = r if s matches the list-of-words format’s pattern, and 0 otherwise. 

The tope could omit trf functions connecting formats x and y. However, from an 

implementation standpoint, the list-of-words format could be generated automatically by 

examining values in Δ and inferring a pattern using an algorithm such as one provided by 

the TDE (as described by Section  4.4). Conversely, at runtime, if a string s appears often, 

then it could be added automatically or semi-automatically to Δ. 

Numeric patterns 

Some data categories contain string representations of numeric data that conform 

to constraints. Examples include salaries, weather temperatures, and bicycle tire sizes. In 

many cases, a dimensional unit is present or otherwise implicit, with possible unit con-

versions. For example, “68° F” is equivalent to “20° C”. Weather temperatures less than 

“-30° F” or greater than “120° F” are unlikely to be valid. 

A tope having one format for each possible unit could describe such a category. 

For each format f, isaf(s) = 1 if s contains a numeric part followed by a certain unit such 

as “° F”, and if the numeric part meets an arithmetic constraint. If s comes close to meet-

ing the numeric constraint, then isa(s) = r∈(0,1). 

For these data categories, converting values between formats usually involves a 

linear transform. Thus, each trfxy could multiply the string’s numeric value by a constant 

and add an offset, then change the unit label to the unit label required for the destination 

format y. 

Some data categories are numeric but have an implicit unit or no unit at all. An 

example is a North American area code, which must be between 200 and 999, and which 

cannot end with 11. For such categories, a suitable tope could have one format. 

The choice to treat data as strings in the topes model can induce a certain amount 

of information loss during numeric operations (for example, due to fixed-precision round-

ing). As discussed by Section  3.3, this can lead to some non-invertibility of transforma-

tions. Topes might not be a precise enough for use in high-precision computations (for 



 

73 

which one of the analysis frameworks mentioned by Section  2.7.2 might be more appro-

priate), but high precision is not required for the kinds of user tasks (discussed by Sec-

tions  2.3 and  2.4) that motivated the development of the topes model. 

Hierarchical patterns 

Values in many data categories contain substrings drawn from other data catego-

ries. One example is American mailing addresses, which contain an address line, a city, a 

state, and a zip code. An address line such as “1000 N. Main St. NW, Apt. 110” is also 

hierarchical, containing a street number (recognizable with a numeric pattern), a predirec-

tional (an enumeration pattern), a street name (a list-of-words pattern), a street type (an 

enumeration pattern), a postdirectional, a secondary unit designator (an enumeration pat-

tern), and a secondary unit (a numeric pattern). Some parts are optional. In most cases, 

spaces, commas, or other punctuation serve as separators between adjacent parts. Other 

examples of hierarchical data include phone numbers, dates, email addresses, and URLs. 

A format x for a hierarchical pattern could constrain each of its parts to match a 

corresponding tope. It could also introduce “linking constraints” that operate on the string 

as a whole to require that the parts are properly coordinated. For example, the format’s 

isa function could evaluate the conjunction of all these constraints as follows: 

∏∏=
j

j
i

ii sss )()()( χφxisa  

Here, i ranges over the value’s parts, each si is the substring for part i (which 

should be valid according to tope τi), and φi(si) is the tope validation function for τi; j 

ranges over “linking constraints” that involve multiple parts, and χj(s)∈[0,1] applies a 

penalty if any linking constraint is violated. As an example of a linking constraint, in a 

date, the set of allowable days depends on the month and the year. If s violates this con-

straint, isax(s) = χj(s) = 0. The isa function could be implemented by parsing the string 

with a context-free grammar, then testing nodes in the tree against the constraints. 

The isa function above uses the most straightforward approach for evaluating the 

conjunction of constraints, and in the context of fuzzy sets it is referred to as an “alge-

braic product”  [125]. Multiplication is a natural extension of probabilistic conjunction, 

but the semantics of fuzzy membership functions are different than that of probabilities: 

there is no requirement that the resulting isa function must return a probability. If it hap-

pens to return a probability, that is fine. But it need not return a probability. Even if the φi 



 

74 

and χj constraints are not statistically independent, their product still yields a valid isa 

score (as each φi and χj returns a value between 0 and 1, so their product is in the same 

range). 

The main potential problem with using multiplication to evaluate the conjunction 

is that isa scores will quickly tend toward zero when strings violate multiple constraints, 

which may not accurately reflect a user’s conceptual pattern for the format. Another 

common approach for evaluating conjunctions is simply to take the minimum among the 

fuzzy constraints  [125]. This would yield  

 
))(),...,(),(),(),...,(),(min()( #21##2211 sssssss constrlinkpartsparts −= χχχφφφxisa  

 

This approach has the opposite potential problem of the one for multiplication: it 

will not penalize strings for violating multiple constraints, which might not match a 

user’s conceptual pattern. Consider a questionable street address like “999787 Elm 

UPAS”, which has a slightly long street number and an unusual but valid street type (the 

officially sanctioned US Postal Service abbreviation for “Underpass”). When using the 

minimal-value approach, this string would be considered just as questionable as “999787 

Elm Street”. While this equality might sit well with some people, it might not match the 

conceptual pattern of other people. Thus, different people might prefer to take different 

approaches for implementing this tope. The topes model allows either approach or any 

other approach for computing isa scores between 0 and 1. 

3.5 Consistency between a tope and a tope implementation 

The preceding section has presented common kinds of topes and outlined ap-

proaches for implementing topes. But having implemented a tope, what if the tope im-

plementation is not correct? Put another way, a user might be thinking of a certain con-

ceptual pattern, then use a tool suite to implement that pattern.  What if the tope imple-

mentation is inconsistent with the intended abstraction? 

One approach would be for the user to create a formal specification describing the 

abstraction. For example, the specification could formally state that the tope should have 

three isa functions for matching a certain set of three formats, as well as four trf func-



 

75 

tions to connect the formats in a certain pattern (for example, as shown in Figure 1). The 

specification could describe additional details that make this tope distinct from other 

topes. For example, if the tope was for recognizing phone numbers, the specification 

could state that any string accepted by any format validation function should contain ex-

actly 10 digits. Finally, (hypothetically speaking) the user could provide this specification 

along with a particular tope implementation to a model checker that would evaluate 

whether the implementation matched the specification. In some areas of professional pro-

gramming, formal approaches like this one have achieved a certain amount of noteworthy 

success. For example, NASA has used the Java Pathfinder model checker to find defects 

in real spacecraft  [22]. However, this approach does not guarantee that the implementa-

tion matches the abstraction. One obvious reason is that the model checker can only 

check properties that are Turing-decideable; in particular, some very simple tope imple-

mentation properties (such as requiring that all isa functions terminate for all inputs) 

would be impossible to check. 

However, in the setting of topes, the main limitation of this formal approach is 

that it assumes that the programmer has the time and expertise to write a formal specifi-

cation. While NASA and organizations with similar high-dependability requirements may 

sometimes find it appropriate to invest in hiring such a person and giving him time to 

write a specification, many other companies’ projects are judged successful even when 

code has implementation errors. Consequently, most professional programmers currently 

rely on less formal methods such as code reviews and testing for detecting programming 

errors, and they never develop expertise at writing formal specifications. End-user pro-

grammers, of course, have even less expertise in formal modeling than professional pro-

grammers do. Moreover, their motivations are to get the programming done and then get 

back to “work”, so they are unlikely to invest time in writing formal specifications, even 

if they had the expertise. 

Consequently, informal approaches will be needed to help users detect inconsis-

tencies between topes and tope implementations, or at least to override the outputs of 

misbehaving tope implementations. After the following chapter gives a high-level over-

view of the TDE, succeeding chapters will delve into system features provided to help 

users create correct tope implementations. For example, the system provides a feature so 

that end-user programmers can enter example strings to test with the tope implementation 



 

76 

(Section  4.3). In addition, the system includes a static analysis for automatically detecting 

common errors that can occur when users combine two tope implementations into 

one(Section  7.1.3). 

In short, topes themselves do not provide formal mechanisms to prevent users 

from creating a tope implementation that is inconsistent with the intended conceptual pat-

tern. However, as the next few chapters will show, the simplicity of the model lends itself 

to various semi-automatic methods for making inconsistencies more obvious and easily 

correctable, ultimately enabling end users to more rapidly validate and reformat data than 

is possible with currently-practiced techniques. 

 



 

77 

Chapter 4. Data descriptions and the Tope  
Development Environment 

 Chapter 3 introduced the concept of a tope, which is an abstraction describing 

how to recognize and reformat strings in one data category. Ultimately, invoking a tope’s 

operations requires implementing them. Chapter 3 mentioned several implementation ap-

proaches, including lookup tables and context-free grammars, each appropriate for a dif-

ferent kind of tope.  

Some programmers might feel comfortable implementing lookup tables and 

grammars by coding in a general-purpose textual programming language such as C#. But 

for most of topes’ target user population, a general-purpose textual language would be a 

poor choice since, as noted by Section  2.1, only a small fraction of all end-user program-

mers are familiar with such languages.  

What, then, is a more appropriate mechanism for helping users to implement 

topes? As a general starting point, most end users rely on visual languages, such as the 

diagramming languages in Microsoft Visio or Access. Even when they use Excel, which 

supports textual formulas, people still much more commonly use it to store and organize 

strings than to write formulas—that is, they rely on Excel more heavily for its visual lay-

out of information than for its textual programming language. These considerations sug-

gest that a visual language might be a good starting point for helping users to implement 

topes. 

When designing visual languages, the Natural Programming Project team has of-

ten found it useful to match the primitives and overall language structure to the terms and 

concepts used by people to describe programs  [77]. This helps to minimize the “gulf of 

execution” that users must cross when translating their intentions to language constructs 

 [81]. Section  2.5 has already discussed a pilot study that asked administrative assistants 

to describe instances of commonly-occurring data categories, revealing that users tend to 

describe data as a series of constrained parts. This provides the basis for designing a vis-

ual language for users to describe instances of data categories. From these descriptions, a 

tool can then automatically implement topes. 



 

78 

To support this approach, the Tope Development Environment (TDE) includes a 

tool called Toped++ that presents a declarative visual language to users who want to im-

plement topes. A “data description” is a program expressed in this visual language. For a 

given data category, a data description identifies the constrained parts that strings must 

have in order to be instances of that data category, as well as the ordering of those parts 

and any intervening separators. The TDE automatically generates tope implementations 

from data descriptions. For example, someone might use the TDE’s Toped++ tool to cre-

ate a data description for American phone numbers; this data description would identify 

three parts (area code, exchange, and local number), constraints on each part, and the al-

lowed permutations and intervening separators for those parts. 

Data descriptions, as well as the tope implementations automatically generated 

from the data descriptions, are application-agnostic. That is, they make no reference to 

any particular user application such as Excel. Architecturally, this design represents a 

separation of concerns: all application-specific functionality is factored into separate TDE 

modules, called add-ins. For example, the TDE includes an add-in for Microsoft Excel; 

this add-in takes care of all application-specific minutiae, such as how to read strings 

from spreadsheet cells, how to display error messages (in tooltips), and so forth. The 

work of add-ins sounds pedestrian, but they play the vital role of seamlessly integrating 

tope implementations into the user interfaces of applications, in order to ensure a smooth 

user experience. Moreover, by taking care of application-specific concerns, add-ins are 

crucial to maintaining the application-agnosticism of data descriptions and the automati-

cally generated tope implementations. This, in turn, facilitates reuse, since each tope im-

plementation can be called (without modification) from many different applications. 

In order to support reuse across multiple users, the TDE includes a repository sys-

tem where data descriptions can be uploaded and downloaded: a user can download an 

existing data description from which the TDE generates a tope implementation that is the 

same as the tope implementation that the original user’s TDE generated (provided that 

both users are running same version of the TDE). In this sense, the TDE supports “reuse” 

of tope implementations by different people, though technically it is a data description 

that is being reused. 

Because users are likely to have some examples of data that they would like to 

validate or reformat, the repository includes a “search-by-match” feature whereby users 



 

79 

can look for data descriptions whose tope implementations recognize user-specified ex-

amples. For example, users could search for data descriptions whose tope implementa-

tions that match “5000 Forbes Ave.” This search feature is also available locally, so that 

the user can search his computer for a needed data description. 

In short, the TDE is more than just a tool for creating topes, as it includes soft-

ware for using tope implementations and for sharing data descriptions. Traditionally, in-

tegrated development environments (IDEs) for professional programmers have offered 

similar support to help people use and share code. For example, Microsoft Visual Studio 

provides runtime libraries required to execute programs written in C++, and it is inte-

grated with a Codezone repository for code sharing. Likewise, by supporting use and re-

use of data descriptions, the TDE aims to help people gain the maximal benefit from data 

descriptions. 

This chapter begins with a walk-through of the steps that a user takes to create a 

data description and use the TDE-generated tope implementation to validate and reformat 

strings. It then discusses the data description editor, Toped++ and supporting algorithms 

related to creating data descriptions. Subsequent chapters will describe the internal details 

of how the TDE uses these data descriptions to generate the format validation and trans-

formation functions of tope implementations, as well as the details of features in the TDE 

to support reuse of tope implementations. 

4.1 Walk-through: Creating and using data descriptions 

As described in  Chapter 2, users are often faced with tasks that require actions to 

validate and reformat strings. To illustrate the process of using the TDE to automate these 

steps, consider a simple scenario where a user has a spreadsheet of phone numbers in 

various formats. The user needs to validate them and put them into a consistent format. 

The TDE’s add-in for Microsoft Excel is a toolbar (Figure 9). This add-in acts as 

a bridge between the Excel application and the rest of the TDE.  

 



 

80 

Figure 9. TDE add-in for Microsoft Excel (the “Validation” toolbar) and data to be validated 

 
 

To create a new data description, the user highlights the strings to be validated or 

reformatted and clicks the toolbar’s “New” button. The add-in reads these strings and 

passes them to the TDE, which infers a boilerplate data description. The TDE presents 

the data description in the Toped++ editing tool for review by the user in a modal dialog 

window (Figure 10).  

Figure 10. An inferred data description with two variations, each containing separators and parts 

 
 

A data description contains one or more variations, each of which Toped++ pre-

sents as a row of icons on the screen.2 Each icon corresponds to a part in the variation or 

                                                 
2 Toped++ uses the word “Variation” in the sense of “a different form of something; variant”  [92]. Perhaps 
“variant” would have been more precise, but “variation” seemed more desirable because it is probably 
more familiar to end users than “variant” (as evidenced by nearly twice as many Google hits for “variation” 
versus “variant”). 



 

81 

a separator between parts. Parts can appear in more than one variation. For example, the 

data description shown in Figure 10 has two variations containing the same three parts 

but different separators. Each part icon shows the name of the part (which defaults to a 

name like “PART1” because the system does not know what names are used by humans 

for the parts) as well as a string that is an example of the part 

If the user clicks on a part’s icon, Toped++ displays a box underneath the varia-

tions so that the user can edit the part’s example name and its constraints, which might be 

“soft” in the sense that they are usually satisfied but can sometimes be violated by valid 

strings. For example, the user can give names to the parts of a phone number and can add 

constraints indicating that a phone number exchange never ends with “11”, and it rarely 

contains “555” (Figure 11). 

 

Figure 11. Naming the parts of the data description and editing their constraints 

 
 

After the user finishes editing the data description, the TDE automatically gener-

ates a tope implementation based on the data description. For each highlighted cell, the 



 

82 

TDE’s Excel add-in then passes the cell’s string through the tope implementation’s isa 

functions in order to validate the string. Based on the isa functions’ return values, the 

add-in flags each invalid or questionable string with a small red triangle (Figure 12). For 

each triangle, the add-in also provides a tooltip that briefly explains why the cell is 

flagged.  

The user can tab through these messages using Excel’s “Reviewing” functional-

ity, can use the drop-down on the toolbar to filter out messages for questionable strings 

(thereby only showing tooltips for definitely invalid strings), and can delete any error 

message to override it. As discussed in detail by Section  4.3, data descriptions can have a 

“whitelist” indicating strings that should be accepted even though they do not match the 

data description. To add one or more strings to the whitelist, the user can click the 

“Whitelist” button in the add-in. From a user interface standpoint, this cancels the corre-

sponding strings’ error messages and ensures that those strings are never flagged in the 

future. 

Figure 12. Annotating invalid or questionable cells with red triangles and tooltips 

 
 

To reformat strings, the user can right-click on the highlighted cells. The add-in 

detects this action and provides a drop-down menu illustrating what the input strings 

would look like if reformatted to each available format (Figure 13).  



 

83 

Figure 13. Browsing the formats available for reformatting 

 
 

When the user selects one of the options, the add-in reads each string and passes it 

through the tope implementation’s trf functions for reformatting to the user’s selected 

format. The add-in displays the result in the spreadsheet (Figure 14). In addition, after 

reformatting each string, the add-in passes the new string through the isa function for the 

user’s selected format, in order to check whether the trf function generated a valid out-

put (since, as noted by Section  3.3, trf functions may produce invalid or questionable 

outputs). Finally, the add-in updates each red triangle and tooltip as needed. 

Figure 14. Results of reformatting example phone numbers with a tope 

 
 

Right-clicking to select a data description actually initiates an implicit search for 

data descriptions on the user’s computer whose tope implementations recognize the high-

lighted cells or whose names include the words in the first row of the spreadsheet. In 

Figure 13, the TDE is searching for data descriptions whose tope implementations match 

the three strings “333-211-3030”, “(777) 555-4444”, and “(808) 484-2020”, and whose 



 

84 

names include the words “phone” and “number”. Sometimes, more than one data descrip-

tion will match this search query (Figure 15). 

Figure 15. Browsing data descriptions recommended based on highlighted cells and heading 

 
 

The user can initiate a finer-grained search for a data description using the “Load” 

button on the toolbar. This brings up a window where the user can specify particular 

keywords and example strings that should be used to search for a data description. The 

window also allows the user to browse through all data descriptions stored on the com-

puter. 

While the user can reuse data descriptions from the computer, another way to ac-

quire data descriptions is by downloading them from online repositories. The window for 

viewing remote repositories is actually the same one as the window used for browsing the 

local computer (Figure 16); to browse the local computer, the user chooses the local 

computer in the drop-down list at the top of the screen. If the user selects a data descrip-

tion from a remote repository, then the TDE copies the data description from the remote 

repository to the computer.  



 

85 

Figure 16. Searching the repository to select a data description 

 
 

While some repositories might be “global”, containing data descriptions of inter-

est to a wide range of users, other repositories might be organization-specific and contain 

only data descriptions of interest to smaller groups of users. For example, the repository 

software might be installed on a server of the Carnegie Mellon University intranet, so that 

users can share and download data descriptions for data categories only used by the uni-

versity. The present repository prototype is “wiki-style” in the sense that any user can 

upload and edit any data description, but additional authentication controls could easily 

be put into place to manage user actions. This would allow university system administra-

tors, for example, to maintain control over some university-specific data descriptions. 



 

86 

4.2 Mapping steps of the walk-through to elements of the TDE 

The walk-through presented by Section  4.1 has illustrated all of the major 

modules of the TDE, though some have not yet been explicitly mentioned by name. 

These include the following: 

 

• Add-ins, which are responsible for all application-specific concerns, especially 

reading strings out of applications as well as displaying error messages and 

reformatted strings in applications 

• Topei, which infers a boilerplate data description from user-provided example 

strings 

• Toped++, which displays data descriptions for review, editing, and testing by users 

• Topeg, which generates tope implementations from data descriptions 

• Local repository, which stores tope implementations in the local computer’s 

memory and records their respective data descriptions in files; add-ins can pass 

strings into the tope implementations stored in the local repository 

• Remote repositories, which store data descriptions on servers to promote sharing 

between users (each remote repository internally also has an instance of Topeg, so 

that it can convert data descriptions into tope implementations as needed in order 

to service search queries by users) 

 

Figure 17 summarizes these modules and the key data flows among them. 



 

87 

Figure 17. Tope Development Environment (shaded), with data flow indicated by labeled arrows 
Dark solid lines: data flow as a data description is created and used to implement a tope. 

Grey solid lines: data flow as strings are validated or reformatted using tope implementations resid-
ing in the local repository. Light grey dashed lines: data flow as data descriptions are shared via re-

mote repositories. 

 
 

 

The walk-through of Section  4.1 began by showing Microsoft Excel and the 

TDE’s toolbar add-in for that application. The TDE also includes add-ins for other popu-

lar end-user programming tools. For example, the TDE currently provides an add-in for 

Microsoft Visual Studio.NET; this add-in enables end-user programmers to create web 

forms that validate strings in textboxes before the forms are submitted to the server. The 

TDE also currently includes add-ins for Robofox and CoScripter, which are tools for cre-

User’s finished 
data description 

Strings from 
applications 

      Strings 
  from applications 

 

Boilerplate data  
description 

Error messages and  
reformatted strings 

Tope implementation 
and data description 

Error messages and 
reformatted strings 

Data description 
(download) 

Data description (upload)  

End user applications 
  Microsoft Excel – spreadsheets 
  Visual Studio.NET – web forms 
  Robofox – web macros 
  Vegemite/Co-Scripter – web macros 
  ... 

Topei 

Toped++ Topeg 

Add-ins 

Remote repositories 

Local repository 



 

88 

ating web macros to automate a series of interactions with one or more web sites (such as 

navigating a browser to a web page, copying a string from the page, and then pasting it 

into a form on another web page). Each add-in is responsible for reading text from an ap-

plication-appropriate location: The Excel add-in validates strings in spreadsheet cells, the 

Visual Studio add-in validates strings in web form textboxes, and the web macro tool 

add-ins validate strings copied by macros from web pages. 

The walk-through then showed an inferred data description being edited in 

Toped++. Section  4.3 describes Toped++ in more detail, while Section  4.4 describes the 

Topei module, which infers boilerplate data descriptions based on examples provided by 

the add-ins. 

When the user had finished editing the data description in the walk-through, the 

TDE automatically generated a tope implementation. Internally, the isa functions test 

strings against automatically generated context-free grammars, and the trf functions re-

format strings by parsing them with the grammar and rewriting nodes of the parse trees. 

Chapters 5 and 6 describe Topeg, the module that generates context-free grammars and 

tree rewriting rules to create tope implementations. 

The walk-through mentioned that the user could search the local and remote re-

positories in order to reuse an existing data description. The repositories are responsible 

for storing and indexing data descriptions and tope implementations. The local repository 

and the remote repository are actually composed of nearly identical software. That is, the 

repository software used for servers is also running locally on the user’s computer. When 

the Excel add-in recommends data descriptions for reuse (as in Figure 15), it actually is 

querying this local repository and showing the results in a context-menu.  Chapter 7 and 

 Chapter 8 describe the repository software and its search features in detail. 

Ultimately, add-ins validate and reformat strings by passing them into the isa and 

trf functions of tope implementations residing in the local repository. They update the 

application’s user interface to display error messages and reformatted strings in an appli-

cation-appropriate way. For example, while the Excel add-in used red triangles and 

tooltips to show overridable error messages, the Visual Studio.NET add-in uses DHTML 

to display error messages dynamically on the web page, and (by default) the application 

user can only override error messages for questionable strings. The reason for this differ-

ence in overridability is that the user of a web page is probably a different person than the 



 

89 

end-user programmer who created the validation rules for the web page, and program-

mers typically create validation code for web forms so that other people cannot submit 

invalid data to the server. Since add-ins take responsibility for all these application-

specific concerns, tope implementations can be entirely application-agnostic. Section 

 7.1.1 delves into this important aspect of reuse in more detail. 

4.3 Details of editing data descriptions in Toped++ 

In accordance with how administrative assistants described instances of common 

data categories (Section  2.5), Toped++ is based on the approach of describing strings as a 

series of constrained parts. A data description may contain more than one “variation”, 

each of which appears as a row of part icons with separators in between the parts. For ex-

ample, the phone number data description shown in Figure 11 has three distinct parts, 

each of which appears in two different variations. As another example, the data descrip-

tion shown in Figure 18 has two distinct parts appearing in two variations. A part’s con-

straints are the same no matter where that part appears. For instance, the area code part in 

Figure 11 has the same constraints when it appears in the first and second variations. In 

addition, the data description as a whole can have a JavaScript-coded “linking constraint” 

that checks relationships between the parts. 

Figure 19 shows the internal structure of a data description, in general, while 

Figure 20 shows the internal structure of the data description that Toped++ has displayed 

for editing in Figure 18. 

 



 

90 

Figure 18. Editing a person name data description in Toped++. 
Dragging and dropping a prototype’s icon from the Toolbox creates a new part, and the editor also 
supports drag/drop re-arrangement of parts as well as copy/paste. Users can click the example in a 
part’s icon to edit it, while clicking other parts of the icon displays widgets for editing its constraints, 
which are shared by every instance of the part. Clicking  adds a constraint while clicking  de-
letes the constraint. 

 
 



 

91 

Figure 19. UML class diagram of the internal structure of data descriptions 
The kind of a part imposes restrictions on what kinds of constraints the user may add to the part (as 

discussed by the text below). 

 

Numeric Part 

Word-Like Part 

Data Description 
name : String 
variations : Variation[] 

Variation 
parts : Part[] 
separators : String[] 

Part 
name : String 
constraints : Constraint[] 

*
1

*
* 

Constraint 
softness : {never, rarely,  

   often, almost always, always} 

Numeric-Range Constraint 

Decimal-Digit Constraint 

Zero-Padding Constraint 

Starts-With Constraint 

Ends-With Constraint 

Containment Constraint 

Word-Count Constraint 

Word-Seps Constraint 

Word-Length Constraint 

Capitalization Constraint 

Hierarchical Constraint 

Whitelist Constraint 

Hierarchical Part 

*
1

Whitelist Constraint 0..1

1

Linking Constraint 

1

0..1



 

92 

Figure 20. UML object diagram of the data description edited as shown in Figure 18 

 

Kinds of parts 

As noted by Section  3.4, certain kinds of parts commonly occur inside of hierar-

chical data. These kinds of parts are directly supported by Toped++: Numeric, Word-like, 

and Hierarchical. Enumeration kinds of data are indirectly supported, as discussed below. 

Each icon in the Toolbox on the left side of the screen corresponds to a prototype in-

stance of a part or separator. Blue boxes represent parts, while grey boxes represent sepa-

rators. The user can put separators before and after the list of parts (in addition to be-

tween the parts); omitted separators are recorded in the data description as a separator 

with a value of “”. The user can drag and drop separators and part icons to move them 

around. 

When the user drags a new part from the Toolbox and drops it into a variation’s 

row, the part is “pre-loaded” with a default set of constraints that are usually appropriate 

for that kind of part. The user can click on a part icon to add, edit, or delete part con-

straints in the box at the lower right corner of the screen. As in users’ verbal descriptions 

o : Data Description 
name = “person name” 
variations = [v1, v2] 

v1 : Variation 
parts = [p1, p2] 
separators = [“”, “ “, “”] 

p1 : Word-Like Part 
name = “first name” 
constraints = [c1,c2,c3,c4,c5] 

c1 : Word-Count Constraint 

v2 : Variation 
parts = [p2, p1] 
separators = [“”, “, “, “”] 

p2 : Word-Like Part 
name = “last name” 
constraints = [c6,c7,c8,c9,c10] 

c2 : Word-Seps Constraint 

c3 : Word-Length Constraint 

c4 : Containment Constraint 

c5 : Capitalization Constraint 

c6 : Word-Count Constraint 

c7 : Word-Seps Constraint 

c8 : Word-Length Constraint 

c9 : Containment Constraint 

c10:Capitalization Constraint 



 

93 

of data categories, these constraints might be true most of the time but not always. Spe-

cifically, most constraints can be marked as “never”, “rarely”, “often”, “almost always”, 

or “always” true. These adverbs of frequency were selected because there is surprisingly 

little variance in the probabilities that people assign to these words, corresponding within 

a few percentage points to probabilities of 0%, 10%, 60%, 90%, and 100%, respectively 

 [76]. This robust correspondence makes it feasible to integrate constraints with formal 

grammars (Section  5.1). 

For Numeric parts, the user can specify that the part is in a certain numeric range, 

has up to a certain number of decimal digits, has padding with leading zeroes, con-

tains/starts with/ends with certain digits, or matches a whitelist of specific values. For 

Word-like parts, the user can specify that the part has a certain number of words of a cer-

tain length, has certain characters between words, contains/starts with/ends with certain 

characters, has words with certain capitalization, or matches a whitelist of specific values. 

For Hierarchical parts, the user can specify that the part matches another data description 

or matches a whitelist of specific values. 

Whitelists 

To support cases when parts or the string in its entirety must be in an enumera-

tion, Toped++ provides a grid-like user interface for entering a whitelist (Figure 21). The 

data description as a whole can have a whitelist, and each part individually can have a 

whitelist, too. 

Each whitelist can be used in three different modes. A whitelist in “Supplemen-

tary” mode specifies certain strings that should be accepted even if they do not match the 

main data description. For example, the user could specify that “311”, “411”, “811”, and 

“911” should be allowed as phone numbers (Figure 21). A whitelist in “Strict” mode 

specifies that only certain strings are allowed (a constraint that must always be satisfied), 

and any other strings are definitely invalid. Finally, a whitelist in “Approximate” mode 

specifies that inputs almost always should generally appear in the whitelist, but if they do 

not happen to appear in the whitelist, then they are merely questionable rather than defi-

nitely invalid (a constraint that is often but not always true). 

Toped++ refers to strings in the second and succeeding columns as “synonyms” 

for strings in the first column. As described in the next two chapters, a synonym format 



 

94 

only accepts the strings that appear in the column, and transformation functions to and 

from the synonym column are implemented with lookup tables.  

Figure 21. Editing a whitelist for phone numbers 

 
 

Add-ins can offer users the opportunity to not only override error messages for 

strings, but also to add those strings to the data description’s whitelist so that the strings 

are never marked as errors in the future. As this data description is stored on the user’s 

computer, adding a string to the whitelist will cause the data description to start accepting 

that string in all applications referencing that data description. Future versions of add-ins 

in the TDE might track per-application whitelists, which they could use to filter errors 

identified by the data description. More or less granular whitelists are also possible. For 

example, the Excel add-in could keep a whitelist of all strings that should be allowed in 

any spreadsheet for any data description (and would ignore any related error messages 

coming back from the TDE for those strings), and it could keep a whitelist of strings that 

should be allowed in any spreadsheet for a particular data description (and would ignore 

any related error messages coming back from the TDE when validating or reformatting 

those strings with that data description). Such a profusion of different, partially-

overlapping whitelists seemed too complex to include in the TDE prototype of this thesis 

research, but they might be useful in future versions of the TDE. 

Linking constraints 

Toped++ provides a screen for entering “linking constraints” in JavaScript that 

check whether the parts are related properly to one another. This is useful for implement-



 

95 

ing conditional constraints where the valid values of one part depend on the values in an-

other part, such as in dates. Linking constraints are conceptually similar to the constraints 

supported by the individual parts (as shown in Figure 18), except that the JavaScript-

based constraint applies to the data description as a whole rather than to just one part. The 

user’s JavaScript function implementing the linking constraint can internally check as 

many rules as desired for validating the data. Because the programming language is 

JavaScript, the full range of Turing completeness is supported.  

To edit a data description’s linking constraint, the user begins by selecting a menu 

option under the “View” menu of Toped++. A button is provided to generate boilerplate 

JavaScript code, in order to help the user see how to programmatically access the values 

of different parts. Actually coding JavaScript-based constraints is currently very verbose 

and error-prone, as shown in the date example in Figure 22. (For succinctness, this exam-

ple only checks whether the day is in a valid range; the month and year are already vali-

dated using standard non-JavaScript constraints on those two individual parts, using a 

whitelist and numeric ranges, respectively.) Fortunately, coding constraints in JavaScript 

is rarely needed (essentially, only when linking constraints are required, or when the part-

specific constraints shown in Figure 19 are inadequate). In particular, JavaScript-based 

constraints were not needed for any of the kinds of data involved in the user studies (Sec-

tions  5.2.3 and  6.2.2). 

Testing features 

Alongside the tab for editing the data description’s whitelist, Toped++ provides a 

“Testing” tab where the user can enter example strings to test against the data description 

(Figure 23). When the user clicks the “Test” button, the TDE automatically generates a 

tope implementation from the data description (as described by the next chapter) and uses 

it to validate each example string. For each invalid or questionable string, Toped++ dis-

plays a tooltip similar to the ones shown by the Excel add-in. In addition, to help the user 

test each individual part’s constraints, each part icon has a user-editable example string 

(such a “von Neumann” in the last name part in Figure 18), which is validated using the 

part’s constraints to generate a targeted message in a tooltip if the example fails to meet 

the constraints. 

 



 

96 

Figure 22. Editing a linking constraint for validating dates. 
The variable v is a helper object. Its GetPartValue method returns the string values of a part, and 
the RecordError method records a constraint violation penalty and a human-readable error mes-
sage. The parseFloat method is built into JavaScript. The constraints for the month and year are 

already checked by non-JavaScript constraints, so this code can assume that those are valid.  

 
 

Figure 23. “Testing” tab in Toped++ 

 



 

97 

 

The “Testing” tab provides additional, more sophisticated features for semi-

automatically identifying potential problems with data descriptions (not shown in Figure 

23, as they are farther down the screen). Since users are probably most likely to encoun-

ter these problems when attempting to reuse existing data descriptions, particularly when 

combining one or more unfamiliar data descriptions created by other users, these features 

are discussed within the context of reuse by Section  7.1.3. 

4.4 Inferring boilerplate data descriptions 

While the user could create a data description from scratch, in practice add-ins 

gently encourage the user to provide examples of the strings to validate, which the add-

ins pass to the Topei module. This module infers a preliminary data description that de-

scribes the examples as best as the inference algorithm can do automatically. The TDE 

passes this data description to the editor for review and customization by the user. 

Topei infers a data description in two phases. First, it identifies the data’s parts. 

Second, it identifies constraints on each part. The discussion below will demonstrate in-

ference on the following example university courses: 

BIO-101 

Math 340 

CS-380 

cs-202 

LIT 373 

Introduction to American History 

SPA-203 

Identifying parts in variations 

In the first phase of inference, Topei replaces each alphanumeric character with 

its character class—uppercase, lowercase, or digit (shown as “A”, “a”, or “0” below). 



 

98 

AAA-000 

Aaaa 000 

AA-000 

aa-000 

AAA 000 

Aaaaaaaaaaaa aa Aaaaaaaa Aaaaaaa 

AAA-000 

Next, Topei collapses runs of characters into number and word tokens. It gener-

ates a numeric part (shown as “N” below) for each number token and combines multiple 

word tokens into a word-like part (shown as “W” below) if they are delimited by certain 

punctuation (“ ”, “-”, “&”, “,”, “.”); such punctuation characters often appear between 

words in multi-word parts such as names of companies.  

W-N 

W N 

W-N 

W-N 

W N 

W 

W-N 

Finally, Topei creates a variation for each distinct sequence of parts and separa-

tors and discards any variations that have a different sequence of parts than the most 

common variation. Thus, the resulting variations all have the same parts (in the same or-

der) but different separators. In the running example, Topei would retain two variations 

and discard the W variation. 

W-N 

W N 

Identifying constraints on parts 

Having matched substrings of the examples to parts, Topei next uses those sub-

strings to identify constraints.  

For numeric parts, Topei creates a mandatory numeric constraint that allows the 

full range of values demonstrated by the examples. These numeric boundaries are not 



 

99 

tight, either: because so many kinds of data (such as the course numbers shown above) 

have numeric parts that have a certain number of digits, Topei creates a numeric con-

straint that allows any number of digits demonstrated by the examples. For example, 

based on the strings above, Topei would constrain the course number’s second part to the 

range 100-999, since all of the examples have 3 digits. If one of the examples happened 

to have 5 digits, then the would constrain the course number’s second part to the range 

100-99999.  

For Word-like parts, Topei creates a mandatory constraint that allows the full 

range of the number of characters in each word. However, if at least 80% of the examples 

demonstrate a specific length, then the constraint instead requires that specific length. Fi-

nally, Topei creates a mandatory constraint on the number of words based on the range of 

counts demonstrated by the examples. In the course numbers above, the examples of de-

partment in the W-N and W N variations were “BIO”, “Math”, “CS”, “cs”, “LIT”, and 

“SPA”. Thus, the inferred word-like part requires 1 word. Fewer than 80% of the exam-

ple words have a specific length—the most common length, 3, only accounts for 50% of 

the examples—so Topei infers a length constraint that allows the full range of lengths, 

which is 2-4 letters per word. 

The constraints inferred by this latest version of Topei are fairly loose in the sense 

that they cover all of the examples of the variations (except in the case above when there 

is a preponderance of evidence that the number of letters in a word should match a fixed 

length). In contrast, an earlier version of Topei inferred tighter bounds that covered 95% 

of the examples rather than all of the examples. The intent behind this was to facilitate 

outlier finding, under the expectation that a small fraction of the user-provided examples 

would be invalid. However, after I personally used that version of Topei for over a year, I 

decided to loosen the inferred constraints, as described above. There were two usability-

related reasons for this change. 

The first reason for broadening the inferred constraints is that although tighter 

bounds generally flagged more strings as invalid, giving the resulting validation a better 

(lower) false negative rate, it also caused a worse (higher) false positive rate. Unfortu-

nately, the worsening of false positives often seemed to be disproportionate to the im-

provement in false negatives. In other words, that last 5% of outliers often turn out upon 

inspection to be valid, meaning that real data often contains a lot of unusual but valid 



 

100 

values. Correcting an over-zealous constraint requires the user to iteratively broaden the 

constraints until it stops issuing false positives. This requires extra effort. If anything, fu-

ture versions of Topei might broaden the constraints even further beyond those demon-

strated by the user-provided examples, under the assumption that the user-provided ex-

amples do not adequately demonstrate the full range of valid values that the resulting tope 

implementation might check.  

The second reason for broadening the inferred constraints to cover all of the ex-

amples is simply that when Topei infers something slightly different from the examples, 

this provokes a feeling of “where did that come from?” In terms of human-computer in-

teraction, this mismatch between the examples and the inferred patterns widens the Gulf 

of Execution—making it more difficult for the user to predict what inputs should be pro-

vided in order to attain a certain computer state  [81]. 

For the most part, similar conclusions about the desirability of broad constraints 

are reflected in the design of the constraint-inference systems discussed in the Related 

Work (Section  2.7). For example, when inferring patterns from example strings, Lapis 

only infers constraints that highlight extremely few outliers, as the system’s designers 

believed that “highlighting a large number of outliers is unhelpful to the user, since the 

user must examine each one”  [70]. It would be fine to draw a large number of outliers to 

the user’s attention if those outliers generally were invalid, but the designers’ empirical 

studies show that the number of invalid outliers is usually relatively low, and experiments 

with the TDE show similar results (Section  5.2.2). 

Of all the inference algorithms in systems mentioned by the Related Work, the 

one that most different from the TDE’s is that of DataProG  [59]. This regular expression 

inference algorithm tunes constraints by tightening them until they cease to satisfy statis-

tical tests. For example, suppose that the example strings were “peel”, “apple”, and 

“leap”, which together only demonstrate five different lowercase letters. Is this enough 

evidence to justify inferring a regular expression that only allows these five different let-

ters? Or should DataProG instead produce a regular expression that allows any lowercase 

letter? To make this decision, DataProG applies a statistical test, and the result would de-

pend on how many examples were provided and their distribution. The null hypothesis 

for these tests is based on the assumption that all strings are independently sampled from 

a uniform probability distribution. In this example, the null hypothesis is that all 14 letters 



 

101 

in the three examples were randomly chosen from the 26 different lowercase letters of the 

alphabet. In this case, it is extremely unlikely—around 1 in a million—that these 14 let-

ters would only contain five distinct values, so DataProG would reject the null hypothese 

and select the tighter constraint. 

One serious practical problem with using this approach in the TDE is that if a 

value appears in one spreadsheet cell or database row, then that value also tends to appear 

in nearby cells or rows. Thus, real data values encountered or provided by end users have 

a non-zero correlation, which violates DataProG’s most basic independence assumption. 

Therefore, assuming a uniform probability distribution could lead to inferring too many 

constraints and excessively tight constraints. This fact and the two usability-related rea-

sons explained above argue in favor of the approach currently implemented in the latest 

version of Topei. 

4.5 Correspondence between data descriptions’ variations and 
topes’ formats 

The next two chapters will describe how the TDE’s Topeg module generates isa 

and trf function implementations. A precondition to understanding these implementa-

tions is understanding how Topeg maps from data descriptions to formats. 

The general relationship between a data description and the automatically gener-

ated tope implementation is that each variation corresponds to one or more of the tope 

implementation’s formats (nodes in the tope graph). Each variation may correspond to 

more than one format because each constituent part in a variation may also have varia-

tions of its own.  

Specifically, each Word-like part has up to four capitalization variations, depend-

ing on the user’s specification (as indicated by the user by selecting checkboxes as shown 

in Figure 18), and each Numeric part has one variation for each number of decimal digits 

specified as allowable by the user. For example, in Figure 18, the user indicated that the 

last name has an upper case variation and a title case variation. The first name part has 

the same variations. Thus, the first variation could match “John von Neumann”, “JOHN 

von Neumann”, “John VON NEUMANN”, and “JOHN VON NEUMANN”. The second 

variation corresponds to four formats, as well (with the two names in reversed order). 



 

102 

A Hierarchical part can also have variations. Since a Hierarchical part references 

another data description, the part’s variations are those of the referenced data description. 

For example, a user might have a spreadsheet cell containing a person’s online name and 

email address, as in “Brad Myers <bam@cs.cmu.edu>”. A data description for this cell 

would need one variation, which would have a Hierarchical person name part, a “ <” 

separator, a Hierarchical email part, and a trailing “>” separator. The person name part 

would reference the person name data description and thus have the eight formats dis-

cussed above. The email address part would reference an email address data description, 

which could also have more than one format (e.g.: matching “bam@cs.cmu.edu”, 

“bam@CS.CMU.EDU”, and “BAM@CS.CMU.EDU”). If the email address happened to 

have three formats, then the overall data description would have 8 x 3 = 24 formats. 

In general, each format is uniquely distinguished by the following information: 

• What variation does the format belong to? Membership in a variation indicates 

what parts and separators compose the format, as well as their ordering. 

• Recursively, what is the format of each part in the format? This indicates how 

each part should be formatted prior to concatenation with other parts and separa-

tors. 

Because a part in Toped++ can reference multiple formats, it is possible to quickly 

build up quite complex validation code. For example, a month data description might 

have three one-part variations (one to recognize “August”, another for “Aug”, and the 

third for “8”), a day data description might have one variation, and a year data description 

might have two one-part variations (for two-digit and four-digit years). Concatenating 

hyphen separators with month, day and year parts (each referencing the respective data 

description) would yield six formats visually represented on-screen by a single date varia-

tion. The user could duplicate this variation by copy/paste, then change the new varia-

tion’s separators to slashes, yielding another six formats in just a few user interface op-

erations. Dates are perhaps the most complex kind of string data encountered on a regular 

basis, in terms of the number of formats. Yet because the parts are shared between varia-

tions, and because parts reference data descriptions rather than particular formats, it is 

possible to show many formats in relatively little space. This conciseness helps to greatly 

reduce the data description’s visual complexity. 



 

103 

Chapter 5. Validation functions 

 Chapter 4 described the editing tools provided in the Tope Development Envi-

ronment (TDE) so that users may create data descriptions. Each data description contains 

a list of variations, each of which has a list of constrained parts with intervening separa-

tors. The TDE does not validate strings directly with a data description. Instead, the 

TDE’s Topeg module generates a tope implementation from the data description, then 

calls the tope implementation’s isa functions to validate strings. 

Thus, there are two important topics related to validation. One is the issue of how 

the TDE generates isa functions, a process which is preparatory to actually validating 

strings. The second topic is what steps the isa functions actually take at runtime to vali-

date strings. As discussed by Section  5.1, the general idea is that the TDE creates isa 

functions that each include an automatically-generated grammar; at runtime, each isa 

function tests input strings against its grammar.  

The initial motivation for this research was to help users to automate validating 

and reformatting operations (as described by  Chapter 2). These operations often involved 

strings located in web forms and spreadsheets. Thus, in the context of this chapter, the 

primary evaluation criterion should be to test whether or not users can actually use the 

TDE to validate strings from web forms and spreadsheets.  

Section  5.2 describes this evaluation in two parts. First, it explores how well an 

expert user (me) can use the TDE to validate strings from web forms and spreadsheets. 

The evaluation shows that an expert user can express validation that is three times as ac-

curate as the commonly-practiced validation method based on using commonly-available 

regular expressions. Most of this benefit comes from the simplicity of packing many for-

mats into a data description, with a smaller benefit coming from the fact that questionable 

inputs can be double-checked and only rejected if they are truly invalid.  

Second, Section  5.2 examines how well an ordinary end user can use the TDE to 

validate strings from spreadsheets, compared to using an alternate system, Lapis  [70]. 

The evaluation shows that with the TDE, users can validate spreadsheet data twice as fast 

and find three times as many invalid strings as they can with the existing Lapis system. 



 

104 

Qualitative analysis suggests that much of this benefit comes from the fact that the TDE 

provides many programmatic primitives that directly correspond to frequently-occurring 

patterns in data categories. In human-computer interaction terms, primitives like these 

give the TDE high directness, tight closeness of mapping, and a small Gulf of Execution 

 [37] [81], simplifying the task of translating a mental description of data categories into 

the user interface’s visual notation, and vice versa. 

5.1 TDE support for implementing and executing validation func-
tions 

Add-ins validate strings by passing them into isa functions. Topeg implements 

these functions by generating a context-free grammar for each of a tope’s formats, then 

attaching the constraints from the data description onto the grammar’s production rules, 

resulting in an “augmented” context-free grammar. Topeg embeds the grammar for each 

format within the respective isa function. At runtime, the function validates strings by 

parsing them according to its grammar, returning a value between 0 and 1 depending on 

whether the parse succeeds and whether the string violates production constraints. Con-

text-free grammars were chosen as a basis for this implementation because existing con-

text-free parsing algorithms were readily extendible to support soft production con-

straints. 

5.1.1 Generating an augmented context-free grammar 

To create a format’s grammar, Topeg generates a hierarchy of context-free gram-

mar productions to represent Hierarchical parts, indicating that a part should match an-

other tope. It inserts separators between parts then generates leaf productions for parts 

based on each part’s Number or Word-like constraints. For example, if a Word-like part 

always contains 1-6 words with 1-8 lowercase letters per word and only hyphens or am-

persands between words, then Topeg would notionally generate a grammar like the fol-

lowing (with # prefixing variables): 

#PART : #WORD 

#PART : #WORD #SEP #WORD 



 

105 

#PART : #WORD #SEP #WORD #SEP #WORD 

#PART : #WORD #SEP #WORD #SEP #WORD #SEP #WORD 

#PART : #WORD #SEP #WORD #SEP #WORD #SEP #WORD #SEP #WORD 

#PART : #WORD #SEP #WORD #SEP #WORD #SEP #WORD #SEP #WORD #SEP #WORD 

#WORD : #CH  

#WORD : #CH #CH 

#WORD : #CH #CH #CH 

#WORD : #CH #CH #CH #CH 

#WORD : #CH #CH #CH #CH #CH 

#WORD : #CH #CH #CH #CH #CH #CH 

#WORD : #CH #CH #CH #CH #CH #CH #CH 

#WORD : #CH #CH #CH #CH #CH #CH #CH #CH 

#CH : a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z 

#SEP : - | & 

The example grammar above is only notional because for compactness, Topeg ac-

tually enforces most constraints by augmenting productions with constraints, rather than 

incorporating every constraint into productions. When parsing strings, these constraints 

can be checked as the productions fire, thereby identifying parses that violate constraints 

(as described by Section  5.1.2). For example, the generated #WORD production would al-

low any number of characters, but Topeg would attach a constraint to the production to 

verify at runtime that the word has an acceptable number of letters. Linking constraints 

(written in JavaScript, as described by Section  4.3) would be attached to the data descrip-

tion’s top-level production, rather than the productions for individual parts. 

This approach has four benefits. 

The first benefit of augmenting productions with constraints is that the resulting 

grammars generally have fewer productions than they would if all constraints were di-

rectly incorporated the productions. For example, all of the productions for #WORD in the 

grammar above could be replaced with a single production. Specifically, if a Word-like 

part almost always contains 1-6 words that each always have 1-8 lowercase letters per 

word and only hyphens or ampersands between words, then Topeg would generate a 

grammar like the following: 

#PART : #WORDLIST : COUNT(#WORD)>=1 && COUNT(#WORD)<=6 {90} 



 

106 

#WORDLIST : #WORD | #WORD #SEP #WORDLIST 

#WORD : #CHLIST : COUNT(#CH)>=1 && COUNT(#CH)<=8 {100} 

#CHLIST : #CH | #CH #CHLIST  

#CH : a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z 

#SEP : - | & 

The constraint in the first line above is pseudo-code indicating that the number of 

#WORD nodes in the parse subtree rooted at the #PART node should almost always be be-

tween 1 and 6, inclusive. The third line indicates that the number of #CH nodes in the sub-

tree rooted at the #WORD node should always be between 1 and 8, inclusive. The grammar 

above shows pseudo-code for the constraints because they are actually implemented in 

much more verbose C# or Java (as the TDE is available in either language). In the case of 

these two constraints, this code implements an attribute grammar  [49] that computes a 

bottom-up count of the number of #WORD nodes in the subtree. (In the case of the C# im-

plementation of the TDE, constraints written in JavaScript are simply wrapped with C# 

that calls the Microsoft JavaScript interpreter via a COM object provided by Microsoft; 

since no such support for JavaScript was readily available for Java, the Java-based im-

plementation of the TDE simply throws an exception if it encounters a linking constraint 

coded in JavaScript.) 

The second benefit of augmenting productions with constraints implemented in 

C# or Java code is that the TDE supports the full range of Turing completeness internally. 

Of course, unless the user wants to resort to writing JavaScript in a linking constraint, it is 

only possible to express the non-JavaScript constraints exposed by the Toped or Toped++ 

user interface. However, the ability to put any computable constraint into the grammar 

makes it feasible to support new kinds of parts besides Numeric and Word-like, as well as 

new kinds of constraints, should they become desirable in the future. 

The third benefit of augmenting productions with constraints is that it provides a 

straightforward mechanism for identifying questionable values based on soft constraints. 

For example, perhaps the Word-like part “almost always” has 1-6 words. Therefore, it 

could theoretically contain more than 6 words, and the production should allow an unlim-

ited number of words. The production would then be augmented with a constraint that 

checked whether the actual number of words in a parse actually fall into the specified 

range. If this constraint is violated, then the parse can be flagged as questionable. In par-



 

107 

ticular, Topeg annotates each soft constraint with a number corresponding to the prob-

ability that people generally associate with the constraint’s adverb of frequency (10% for 

“rarely”, 60% for “often”, and 90% for “almost always”)  [76]. Thus, as described by Sec-

tion  5.1, inputs can be flagged as “more questionable” if they violate stronger constraints. 

The fourth and final benefit of this approach is that it can compute “null” con-

straints (that are always satisfied) whose sole purpose is to track the parse as it proceeds. 

In particular, these null constraints can track which separators are used in a parse tree and 

what permutation of the parts actually appeared in the input string. This is precisely the 

information required to determine what format corresponds to the parse tree, since each 

format is uniquely distinguished by the presence and ordering of parts and separators 

(Section  4.5). 

This last benefit allows Topeg to coalesce the individual format grammars into a 

single “subsuming” grammar for the tope as a whole. When validating against the entire 

tope (rather than a particular format), a string can be tested against this subsuming gram-

mar. In effect, this computes the overall tope validation function )]([max)( ff
ss

F
isa

∈
=φ . 

Thus, although add-ins could iterate through every format in a tope, calling each isa in 
succession to find the maximal isa score, they alternatively can call φ  directly. Calling 

φ  simplifies the code required for add-ins (compared to iterating over all isa functions) 

and generally improves performance.3 

The discussion above has laid out four benefits of generating an augmented con-

text-free grammar rather than incorporating every constraint directly into the context-free 

grammar. The primary disadvantage of this approach is that although the process for gen-

erating an augmented context-free grammar is intellectually straightforward, the actual 

code required inside of Topeg is extremely detailed and several thousand lines long, 

which made it difficult to code, test, and debug.  

                                                 
3 The subsuming grammar is also useful for determining the “source format” that should be used for trans-
forming a string (described further in  Chapter 6). 



 

108 

5.1.2 Parsing strings with an augmented context-free grammar 

At runtime, each isa function parses strings according its augmented grammar. 

Since all functions use the same parsing algorithm, the actual parsing code (which takes 

the grammar and the string as parameters) is factored out into a parsing library called 

“Topep”. This library is based on GLR  [120], which runs in linear time (with respect to 

the length of the input string) when the grammar has low ambiguity, as is generally the 

case with grammars generated by Topeg.  

Unlike GLR, Topep supports constraints on productions. When a completed pro-

duction produces a variable v, GLR always treats v as valid and uses it to complete other 

productions waiting for v. In contrast, Topep associates a score with each variable in-

stance (a parse tree node), ranging from 0 through 1. When a production p for v is com-

pleted, the parser evaluates constraints on p. If v violates a constraint, then Topep down-

grades the score of v by multiplying it by the (estimated) probability that the constraint 

would be violated by chance, based on the adverb of frequency selected by the user for 

how often the constraint should be true. For example, violating a constraint that is often 

true (i.e.: 60% of the time) would result in multiplying the score by 0.4. Violating a con-

straint that is almost always true (i.e.: 90% of the time) would result in multiplying the 

score by 0.1. Since Topep downgrades scores by multiplication, violations of two often-

true constraints would result in a score of 0.4 * 0.4 = 0.16. 

If a variable instance with a downgraded score is later used on the right hand side 

of a production, then the parser uses this score to multiplicatively downgrade the score of 

the variable on the production’s left-hand side. Thus, the score of each node in the parse 

tree depends on child nodes’ scores. In short, these multiplications use penalties from 

violated constraints to score each node, including the root. That way, when the tree is 

complete, the parser can return a score between 0 and 1 for the input as a whole, consis-

tent with the tope model. 

Multiplying the scores is appropriate because it sets a conservative bound on the 

parent’s score. Formally, if two nodes had independent probabilities x1 and x2 of violating 

their constraints, then the correct probability of both of them violating their constraints 

would be the product x1·x2  But perhaps these constraints’ violations are correlated, so x1 
and x2 are not independent. In that case, the product of probabilities provides a lower 



 

109 

bound on the probability of both being violated. Thus, the resulting isa score might be 

closer to 0 (more pessimistic) than the input justifies.  

Reporting this conservative number is appropriate because the worst that happens 

is that a value is flagged as more questionable than it actually is. As a result, users might 

be asked to double-check values that do not really need attention. However, in practice 

this does not turn out to be a problem because at worst, it can only cause a questionable 

input to appear more questionable than it really is. As discussed by Section  5.2.2, only a 

few percent of strings are questionable at all. Thus, empirically, this conservatism of mul-

tiplying probabilities will cause users to double-check at worst only a few more percent 

of the strings than they otherwise would if Topep had used a less conservative estimate.4 

Of course, this approach of multiplying probabilities could be refined in future 

versions of the TDE, as discussed by  Chapter 8. In particular, the TDE could track how 

often different constraints are simultaneously violated, yielding a joint probability of vio-

lation. This measured probability could then be used in place of the product of individual 

constraint probabilities specified by the user, making the resulting isa function precisely 

equal to the probability that the provided string is valid. 

As the parse proceeds, Topep tracks a list of violated constraints and concatenates 

their corresponding English equivalents into an error message, as shown in Figure 12 and 

Figure 23. This English equivalent is essentially the same as the text presented by 

Toped++ to users. When a parse totally fails, making it impossible to identify specific vio-

lated constraints, Topep generates a message by examining the waiting (unfulfilled) 

grammar productions and concatenating the constraints named in Toped++ that were used 

to generate those productions. The resulting message is much more targeted and descrip-

tive than typical hard-coded error messages such as “Please enter a valid phone number” 

on web sites, or “The formula you typed contains an error” in Excel. 

                                                 
4 The statistical independence assumption embodied in Topep is similar to the one rejected while designing 
Topei (Section  4.4). The reason for accepting the assumption in one case but rejecting it in the other is that 
the assumption has a much smaller potential scope of effect in the context of Topep than it does in the con-
text of Topei. In Topep, at worst, the assumption could only affect the few inputs already known to be 
questionable. In Topei, in contrast, the assumption could affect every valid string, as the assumption could 
result in inferring too many constraints. 



 

110 

5.1.3 Implementing validation rules with the early Toped prototype 

Toped++ is actually the second major version of the TDE’s data description editor. 

The initial version, called Toped, was a first attempt at enabling a user to describe the 

constrained parts in a kind of data, as well as their sequence in different formats. The 

biggest difference between Toped and Toped++ is that Toped required users to explicitly 

edit a description of each format and each inter-format transformation. (The transforma-

tion editor is described in detail by Section  6.1.3.) For example, if a tope has three for-

mats with six intervening transformations, then the user would need to edit a description 

for the first format, then edit a description for the second format, then a description for 

the third… and so on. Thus, creating a multi-format tope with Toped can be extremely 

tedious.  

This did not actually create any usability problems in the lab experiment de-

scribed by Section  5.2.3 below, since users could complete the tasks in that experiment 

by implementing a single-format tope for each data category. Nonetheless, users identi-

fied a few problems with Toped, which I addressed in Toped++. Moreover, while I was 

creating the multi-format data descriptions needed for the evaluations discussed by Sec-

tions  5.2.1 and  5.2.2, the tediousness of manually creating many formats made it pain-

fully obvious that the TDE needed a more user-friendly way of implementing multi-

format topes. The main reason was that when the user added constraints to one format, he 

then had to manually add the same constraints to the other formats. That is, each part did 

not “carry along” its constraints from format to format. These considerations motivated 

the development of Toped++, which displays the entire data description at once on the 

screen. Toped++ strongly associates constraints with their respective parts so that each 

part has the same constraints in all the formats where it appears. This new tool was ready 

in time for the usability study described by Section  6.2.2. That study included reformat-

ting and validation activities, ultimately confirming that the new tool was effective at 

helping users with their work. 

Details of the Toped editor 

The format editor of Toped is a form-based user interface with four sections 

(Figure 24).  

 



 

111 

Figure 24. Editing a format description in Toped.  
Adding, removing, and reordering parts/constraints is accomplished with the  ,  , and  buttons. 
Each § indicates a space. 

 



 

112 

 

First, the user gives the data description a name such as “phone number” or “per-

son name” and names the format. If the user is adding a new format to an existing data 

description, then Toped initializes the textbox for the data description name with the ex-

isting value (and propagates any edits back to the data description). 

Second, the user defines the format’s parts, each of which is presented as a section 

in the form. For example, a US phone number has three parts: area code, exchange, and 

local number. The user can add, remove and reorder parts, and he can specify constraints 

on parts. 

In the third step of the editor, the user can enter example strings to test against the 

format. The editor displays a targeted error message in a mouse-over tooltip for each in-

valid test example. These targeted messages show a list of violated constraints. The user 

can iteratively debug the format description. 

Finally, Toped has a button so the user can save the data description. 

Constraints 

Table 9 shows the available constraints, which were initially identified based on a 

review of the data commonly encountered by users (Sections  2.3 and  2.4) and based on 

asking administrative assistants to describe data (Section  2.5). Toped does not distinguish 

between different kinds of parts, so users can mix and match constraints at will (even in 

non-sensical combinations).  

Users may mark the Pattern, Literal, Numeric, Wrapped, and Substring con-

straints as “never”, “rarely”, “often”, “almost always”, or “always” true. These adverbs of 

frequency were selected because there is surprisingly little variance in the probabilities 

that people assign to these words, corresponding within a few percentage points to prob-

abilities of 0%, 10%, 60%, 90%, and 100%, respectively  [76]. This robust correspon-

dence makes it feasible to integrate constraints with formal grammars (Section  5.1). 

Toped has an advanced mode, not shown in Figure 24, for specifying linking constraints 

that span multiple parts (Section  3.4), such as the intricate leap year rules for dates. 



 

113 

Table 9.  Constraints that can be applied to parts in Toped. 

Constraint Description 
Pattern Specifies the characters in a part and how many of them may appear 
Literal Specifies that the part equals one of a certain set of options 
Numeric Specifies a numeric inequality or equality 
Substring Specifies that the part starts/ends with some literal or number of certain characters 
Wrapped Specifies that the part is preceded and/or followed by a certain string 
Optionality Specifies that the part may be missing 
Repeat Specifies that the part may repeat, with possible separators between repetitions 
Reference Specifies that the part matches another format 

 

Earlier studies suggested that end users sometimes have trouble grasping mixtures 

of conjunction and disjunction  [77]. Consequently, all constraints are conjoined in Toped, 

with the exception that disjunction is implied when two constraints have parallel sentence 

structure but are each not always true. For example, a user could specify that the area 

code in a phone number is often followed by a “-“, and that the area code is often fol-

lowed by a “) “. During the user study with Toped (Section  5.2.3), a single participant 

commented that this design choice was unintuitive. 

Upon further consideration of the situations in which disjunction was necessary, it 

became clear that this kind of disjunction resulted from attempts to conflate two different 

formats into one format description (e.g.: formats for recognizing “800-777-8080” and 

also “(800) 777-8080”). Essentially, this conflates the separators between parts with the 

constraints on parts. In Toped++, this conflation is removed by providing icons for speci-

fying separators and eliminating the “Wrapped” constraint. Since moving to the new in-

terface (and using Toped++ in my daily work for over a year), I have never had a need for 

a disjunction of two constraints, even when I used Toped++ to implement topes for the 32 

most common data categories (Section  7.2.2). This has confirmed the appropriateness of 

using a pure conjunction of constraints in Toped++. 

Moving parts around 

Users can move a part specification in Toped by clicking a special  button. This 

slides the part specification upward on the screen (vertically). There are two problems 

with this layout and interaction. First, laying out the part specification vertically on the 

screen does not match the horizontal orientation of parts as they naturally appear in real 



 

114 

strings; some other researchers (though no study participants) have commented that this 

is unintuitive. Second, moving a part in Toped more than one “slot” requires multiple 

clicks (with intervening mouse moves), which is fairly slow because it requires the user 

to aim the mouse several times, leading to high viscosity  [37]. Toped++ improves the 

situation by laying out part icons horizontally and allowing the user to drag and drop 

icons anywhere on the screen. 

Making spaces visible 

One problem with some editing tools is that spaces are invisible and therefore 

could be hard to debug. To counter this, Toped makes spaces visible by representing 

them with a special symbol, §. Though using a special space marker slightly reduces 

readability, it is preferable to having spaces that the user cannot see or debug. (In error 

messages, spaces appear as SPACE to avoid font-related problems.)  

In response to an early (rejected) paper that described Toped, one reviewer com-

mented that this symbol commonly is used as a “section mark” and recommended using a 

very wide underscore instead. This suggestion is incorporated into Toped++, but by de-

fault, Toped++ does not show space markers since most spaces appear in inter-part sepa-

rators, which are plainly visible without a special marker because they are shown as grey 

icons. Users can activate space markers by selecting an option under the “View” menu of 

Toped++. 

Integration with Topei 

To help the end user get started with creating a format description, Toped includes 

a textbox that accepts an example string. There is also a popup window where the user 

can enter more than one example. Toped calls an early prototype of Topei with these ex-

amples to produce a boilerplate format description. 

Since Toped can only display one format description at a time, it discards all for-

mats identified by Topei except for the most common format in the most common varia-

tion. In addition, since Toped does not distinguish between Word-like and Numeric parts, 

the early prototype of Topei treats each W and N as a generic part that could contain letters 

or numbers, depending on what characters were present in the examples. In addition, the 

early version of Topei lacks code for combining different words into a single part.  



 

115 

For example, if a user provided the strings on the left below, the early Topei pro-

totype would infer the formats shown on the right (where X is a generic part) … 

 

BIO-101      X-X 

Math 340      X X 

CS-380      X-X 

cs-202       X-X 

LIT 373      X X 

Introduction to American History   X X X X 

SPA-203      X-X 

 

Of these inferred formats, Toped would retain the most common (X-X) and present 

it for editing. Because this early prototype discarded all but one format, the user had to 

initialize each format one at a time. The example strings above would suffice for initializ-

ing a format that matched “BIO-101”, but then to initialize a format that matched “BIO 

101”, the user would need to provide a new set of examples. 

Toped++ offers improved integration with a newer version of Topei. The new sys-

tem presents an entire data description for editing at once rather than one format at a 

time, it distinguishes between different kinds of parts, and it can identify runs of words as 

a single word-like part. Thus, as detailed by Section  4.4, the TDE would now extract two 

variations (W-N and W N) from the examples above. 

5.2 Evaluation 

There are two key questions related to evaluating the TDE’s support for validating 

strings. First, is it even possible at all for an expert to express useful validation operations 

in the TDE? Second, if the TDE were put into the hands of ordinary end users, would it 

help them to more quickly and effectively validate strings than they can with current 

practices? The first question focuses purely on the expressiveness of the tool (whether it 

is possible to use the TDE to accurately validate strings using the algorithms described in 

Section  5.1), a sort of “best case” scenario that ignores usability. The second question 



 

116 

adds human users to the mix (taking into account the user interface described in  Chapter 

4), which is essential for getting a realistic picture of the TDE’s benefit in practice. 

In answering the first question regarding whether an expert can “express useful 

validation”, the emphasis is on the word useful rather than express. The reason is that ex-

pressiveness has no value within this context unless it ultimately leads toward the goal of 

helping end users to validate inputs. In this light, I evaluated expressiveness by using the 

TDE to implement validation operations for data obtained from real web forms and 

spreadsheets, then measuring how well those operations accurately differentiated between 

valid and invalid inputs. These experiments show that it is possible to express topes that 

are quite accurate at validating strings (Sections  5.2.1 and  5.2.2). In particular, the ex-

periment with spreadsheet data shows that the tope-based validation is much more accu-

rate than current validation approaches based on regular expressions (Section  5.2.2). 

Most benefit comes from the fact that a tope can recognize and validate multiple formats 

of input, while a smaller benefit comes from support for identifying questionable values. 

The second stage of this evaluation addresses whether putting the TDE in the 

hands of end users actually enables them to quickly and effectively validate strings. A 

between-subjects laboratory experiment answers this question by having some users vali-

date data with the TDE and having comparable users validate the same data with the best 

available alternate system, Lapis  [70]. The TDE users completed their work twice as fast 

as the control subjects, and they were able to find three times as many invalid inputs. 

TDE users were also more confident in their ability to complete these tasks and reported 

substantially higher user satisfaction compared to the control subjects. These results 

strongly suggest that the TDE enables users to validate strings much more quickly and 

effectively than is possible with current approaches. 

The evaluations described by this section used the Toped prototype of the data de-

scription editor. Since Toped++ provides many usability-oriented features omitted by 

Toped (such as drag-and-drop editing, as well as support for carrying constraints from 

part to part), the TDE’s final Toped++ tool is arguably even more usable than Toped. 

Thus, the evaluation in this section effectively provides a lower bound on the benefits 

that the TDE would provide in practice for string validation. Moreover, Toped++ was 

ready for the user experiment involving reformatting (discussed by Section  6.2.2), which 

confirmed the usability of Toped++ for string reformatting. 



 

117 

5.2.1 Expressiveness for validating web form data 

To obtain test data for evaluating the expressiveness of the TDE, logging software 

recorded four administrative assistant’s inputs to web forms for three weeks. When a user 

filled out a web form in Internet Explorer (these users’ preferred browser), the logger re-

corded the fields’ HTML names and some text near each field (to capture the fields’ hu-

man-readable labels).  

For each field, the logger recorded a regular expression describing the string that 

the user entered. (It recorded a regular expression rather than the literal string in order to 

protect users’ privacy.) To generate regular expressions, it converted each lowercase let-

ter to the regular expression [a-z], uppercase to [A-Z], and digit to [0-9], then concate-

nated regular expressions and coalesced repeated regular expressions (e.g.: 

“user0@XYZ.EDU”  “[a-z]{4}[0-9]@[A-Z]{3}.[A-Z]{3}”). 

The 5897 logged regular expressions were manually examined and then grouped 

by scripts into semantic data categories such as “email” and “currency” based on HTML 

names and human-readable text near the fields. As shown in Table 10, 5527 (93.7%) fell 

into one of 19 categories.  

Using the regular expressions as a reference, I created data descriptions in Toped 

for the 14 asterisked categories, omitting three (justification, description, and posting ti-

tle) because each would have simply required a sequence of any characters. That is, it is 

doubtful that these fields have any semantics aside from “text.” I omitted two other 

groups (usernames and passwords) so that I could post formats online without revealing 

formats of our users’ authentication credentials. Finally, I tested the formats with sample 

strings generated by referring to concrete regular expressions in the log and by using my 

personal knowledge of formats’ semantics (such as what might constitute an email ad-

dress). 

I had little trouble expressing instances of categories using formats. Some re-

quired 2 formats, but this was reasonable, as web forms generally require inputs to be in a 

certain format. For example, one format was needed for dates like “10/12/2004” and an-

other for dates like “12-Oct-2004”. 

 



 

118 

Table 10.  Data categories gathered from user data. Asterisked groups were used for testing. 

Category Strings Example regular expression from logs Formats 
Needed 

Strings Not 
Covered 

project number * 821 [0-9]{5} 1 1 
justification 820 Very long   

expense type * 738 [0-9]{5} 1  

award number * 707 [0-9]{7} 1  

task number * 610 [0-9][A-Z] 2  

currency * 489 [0-9]\.[0-9]{2} 2 6 
date * 450 [0-9]{2}\/[0-9]{2}\/[0-9]{4} 2 2 
sites * 194 [a-z]{3} 1  

password 155 Several characters   

username 121 Several characters   

description 96 Very long   

posting title 65 Very long   

email address * 50 [a-z]{8}@[a-z]{7}\.[a-z]{3} 2 7 
person name * 48 [A-Z][a-z]{5}\s[A-Z][a-z]{8} 2  

cost center * 41 [0-9]{6} 1  

expense type * 41 [0-9]{5} 1 6 
address line * 37 [0-9]{3}\s[A-Z][a-z]{5}\s[A-Z][a-z]{4} 1  

zip code * 28 [0-9]{5} 1  

city * 16 [A-Z][a-z]{8} 1  

 

Testing formats revealed that I committed four user errors. Three were cases of 

failing to mark a part as optional. The fourth error was an apparent slip of the mouse in-

dicating that a constraint was often true rather than always true. The version of Toped 

used for this evaluation did not yet have the testing feature. This new testing feature was 

largely motivated by the recognition that these four errors probably could have been 

found by testing formats along the way. 

After correcting these errors, the formats covered 99.5% of the 4250 strings used 

for testing. The 22 strings not covered included 17 apparent typos in the original data and 

four cases that probably were not typos by the users (that is, they were intentionally 

typed), yet might have been invalid inputs, nonetheless. For example, in two cases, users 

entered a month and a year rather than a full date. The final uncovered test value was a 

case where a street type had a trailing period, and Toped offered no way to express that a 

street type may contain a period but only in the last position, a limitation addressed in 



 

119 

Toped++. Formats’ effectiveness at identifying invalid values suggests that they are pow-

erful enough for validating a variety of data commonly found in web forms. 

5.2.2 Expressiveness for validating spreadsheet data 

To assess the expressiveness of the TDE for validating spreadsheet data, I created 

data descriptions in Toped based on the 720 spreadsheets in the EUSES Spreadsheet 

Corpus’s “database” section, which contains a high concentration of string data  [33]. As 

with the web form data above, I analyzed the spreadsheet data and classified it into cate-

gories, and then I implemented topes to validate the 32 most common categories. 

Identifying data categories 

Each spreadsheet column in the EUSES corpus typically contains values from one 

category, so columns were the unit of analysis for identifying data categories. To focus 

the evaluation on string data, columns were only used if they contained at least 20 string 

cells (i.e.: cells that Excel did not represent as a date or number), yielding 4250 columns. 

Hierarchical agglomerative clustering provided a preliminary grouping into categories 

 [26]. This algorithm used a between-column similarity measure based on a weighted 

combination of five features: exact match of the column’s first cell (which is typically a 

label), case-insensitive match of the first cell, words in common within the first cell (after 

word stemming  [88]), values in common within cells other than the first cell, and “signa-

tures” in common. The signatures algorithm replaced lowercase letters with ‘a’, upper-

case with ‘A’, and digits with ‘0’, then collapsed runs of duplicate characters (as in the 

first phase of Topei, described by Section  4.4). 

The algorithm yielded 562 automatically-generated clusters containing at least 2 

columns each, for a total of 2598 columns. After I visually inspected these clusters and 

examined spreadsheets as needed to understand each column’s data, it became clear that 

some clusters could be further merged into larger clusters. For example, the columns with 

headers “cognome”, “faculty”, and “author” all contained person last names. 

Of the 2598 columns covered by automatically-generated clusters, 531 (20%) did 

not refer to named entities nor seemed to obey any implicit constraints; this was generic 

“text” and was discarded as in the web form study (Section  5.2.1). In addition, 196 col-



 

120 

umns (8%) contained database data dictionary information, such as variable names and 

variable types. These data appeared to be automatic extracts from database systems, 

rather than user-entered data, and seemed too clean to be a reasonable test of topes, so 

these columns were discarded. In addition, 76 columns (3%) contained text labels—that 

is, literal strings used to help people interpret the “real” data in the spreadsheet—so these 

were discarded. Finally, 82 columns (3%) were discarded because their meaning was un-

clear. A total 1713 columns remained, grouped into 246 clusters that each corresponded 

to a data category. 

The most common 32 categories covered 1199 columns. These included Booleans 

(such as “yes” or “x” to indicate true, and “no” or blank to indicate false), countries, or-

ganizations, and person names. The tail outside of these 32 categories included the Na-

tional Stock Number (a hierarchical pattern used by the US government for requisitions), 

military ranks for the US Marines, and the standard resource identifier codes stipulated 

by the government’s Energy Analysis and Diagnostic Centers. Each of these tail columns 

is domain-specific and only occurs in a few columns. 

Despite the relative infrequency at which each of these tail columns occurs, to-

gether they cover 3051 of the 4250 columns originally extracted from the spreadsheet 

corpus. There simply are a huge number of domain-specific kinds of data. This fact em-

pirically supports a comment made by Section  1.3, that application developers will be 

unable to create abstractions for every user’s domain-specific category. The fact also 

highlights the crucial importance of providing a system that people can use to create their 

own domain-specific tope implementations. 

While the 32 most common kinds of data provide a valuable test for whether the 

TDE is capable of expressing useful validation for the most common kinds of data, it 

could be asked whether they are entirely representative of the 3051 data columns not 

covered by these categories. A cursory inspection of these other kinds of data suggests 

that in many cases, they would be even easier to validate than the 32 most common kinds 

of data. Specifically, the majority of the tail categories appeared to match enumeration 

patterns, whose data descriptions are extremely easy to implement. 

When implementing topes for each of the 32 most common categories in the 

spreadsheet data, 11 had enumeration patterns, 10 had word-like patterns, 7 had hierar-

chical patterns, and 4 had a mixture of hierarchical patterns for some formats and list-of-



 

121 

word patterns for other formats. (Section  3.4 described these common patterns.) None of 

these required numeric patterns, probably because the extract was intentionally biased 

toward string data. 

Evaluating the value of expressing soft constraints 

To evaluate how well these topes classified data as valid or invalid, 100 test 

strings were randomly selected for each category and validated with the corresponding 

tope implementations. After manually determining the validity of these test values, the 

accuracy of the topes was computed. F1 is the standard machine learning statistic used to 

measure the accuracy of classifiers such as document classifiers and named entity classi-

fiers, with typical F1 scores in the range 0.7 to 1.0  [26] [67]. 

 

inputs invalid of # total
invalid as classifiedly successful inputs invalid of #=Recall   

invalid as classified inputs of #
invalid as classifiedly successful inputs invalid of #=Precision     

Precision  Recall
PrecisionRecall2F1 +

⋅⋅=  

Five conditions were considered in order to evaluate the impact of identifying 

questionable inputs that could be double-checked: 

Condition 1—Current spreadsheet practice: Spreadsheets allow any input. Since 

no invalid inputs are identified, recall and F1 = 0. 

Condition 2—Current web application practice: Since current spreadsheet prac-

tice is useless for identifying invalid inputs, I sought an alternate approach that would 

provide a reasonable basis for comparison. For this purpose, I turned to the current web 

application validation practices of professional programmers, who at least make some 

attempt to validate some inputs. In particular, as Section  2.4 discussed, programmers 

sometimes validate text fields, though only when it is convenient to find or create a regu-

lar expression for the field’s data category or (for enumerable categories) when it is pos-

sible to require users to select inputs from a dropdown or radio button widget. Thus, I 

searched several online regular expression repositories and looked at the implementation 

of dozens of web forms in order to find regular expressions, dropdown widgets, and radio 

button widgets that could be used to validate the 32 test categories.  

After several hours (more time than a programmer is likely to spend), this search 

produced 36 regular expressions covering 3 of the 32 categories (email, URL, and 

phone). In addition, based on the visible and internal values in dropdown widgets on the 



 

122 

web, it was possible to construct 34 regular expressions covering 3 additional categories 

(state, country, and gender). Finally, assuming that programmers would use a checkbox 

for Boolean values yielded a regular expression covering the Boolean data category. 

In short, the search yielded 71 regular expressions covering 7 of the 32 categories. 

While searching the web, it became clear that approximately half of the sites omitted 

validation even for some of these 7 categories. Nonetheless, the F1 statistics (below) give 

the benefit of the doubt and are computed under the assumption that programmers would 

always validate these 7 categories and only accept inputs from the remaining 25 without 

validation. 

Condition 3A—Tope rejecting questionable inputs: In this condition, the tope im-

plementations tested each input s, accepting when φ(s) = 1 and rejecting when φ(s) < 1, 

thus making no use of topes’ ability to identify questionable values. For comparability 

with Condition 2, the topes were restricted to a single format each. 

Condition 3B—Tope accepting questionable inputs: In this condition, a single-

format tope validation function tested each input s, which was then accepted when φ(s) > 

0 and rejecting when φ(s) = 0. 

Condition 4—Tope warning on questionable inputs: In this condition, a single-

format tope validation function tested each input s, which was accepted when φ(s) = 1 

and rejected when φ(s) = 0. If s was questionable, the process of asking a human to dou-

ble-check s was simulated, meaning that s was accepted if it was truly valid or rejected if 

it was truly invalid. The advantage of Condition 4 is that it relies on human judgment in 

difficult cases when 0 < φ(s) < 1, thereby raising accuracy. The disadvantage is that a 

user would need to manually double-check each questionable input. Consequently, it is 

necessary to evaluate the tradeoff between increasing accuracy and burdening the user.5 

                                                 
5 This experiment assumes that users are perfect “oracles” for double-checking strings. In practice, users 
are likely to make some errors when double-checking inputs, though no data are available for precisely 
determining the magnitude of this impact. Perhaps the most relevant numbers come from a study of users 
correcting the output of a named entity information extraction algorithm on Wikipedia data  [43]. In this 
study, users were right in 80% of their judgments about whether the correct name entity strings were ex-
tracted by the algorithm. User errors were actually slightly biased toward conservatism (in that they re-
jected some strings that actually were correct). This Wikipedia study’s task was actually harder than what 
users will need to do when double-checking questionable inputs identified by topes, since the experimental 
tasks required users to determine if the extracted string was not only a valid named entity, but also the right 
named entity. These results, particularly the users’ conservatism, are encouraging, as they suggest that us-
ers generally would be able to identify most invalid strings in practice. 



 

123 

Results of single-format validation 

As shown in Table 11, validating the 32 categories with single-format topes was 

more accurate than current practice (though well below the level of F1 = 0.7 typically at-

tained in many classifiers  [26] [67]). 

Table 11. Asking the user for help with validating questionable inputs leads to higher accuracy in 
single-format validation 

Condition F1 
1 – Current spreadsheet practice 0.00 
2 – Current web application practice 0.17 
3A – Tope rejecting questionable values 0.32 
3B – Tope accepting questionable values 0.32 
4 – Tope warning on questionable values 0.36 

 

Condition 2, current web application practice, was inaccurate partly because it ac-

cepted so many categories of data without validation. F1 would likely be higher if pro-

grammers were in the habit of validating more fields. However, even in the 7 categories 

where programmers have published regular expressions on the web, or where it was pos-

sible to convert dropdown or radio button widgets to regular expressions, F1 was only 

0.31 (the same accuracy as Condition 4 in those categories), owing to a lack of regular 

expressions for unusual international formats that were present in the EUSES spreadsheet 

corpus. In other words, even in the 7 data categories where programmers do validate in-

puts, they do no better than a single-format tope. To achieve higher accuracy than topes, 

programmers would need to combine numerous international formats into a single regular 

expression for each data category, which stands in stark contrast to current practice. 

Condition 4 improved accuracy to 0.36 versus 0.32 in conditions 3A and 3B by 

identifying questionable inputs and asking a human to double-check certain inputs. This 

12% relative difference required asking the user for help on 4.1% of inputs. In other 

words, asking for a small amount of help yields a relatively large amount of increase in 

accuracy. The sensitivity is tunable: rejecting more inputs would reduce the burden on the 

user, at the cost of accuracy. For example, rejecting inputs that violate 2 or more produc-

tion constraints, thus only asking about inputs that violate 1 constraint, would require 

asking for help on 1.7% of inputs but would reduce F1 to 0.33. Rejecting inputs that vio-



 

124 

late any constraint would eliminate the need to ask about inputs, reducing to condition 

3A, with F1=0.32. 

Results of multi-format validation 

Evaluating the benefit of implementing multiple formats requires repeating the 

analysis above using more than one regular expression or format per category. In particu-

lar, the number of regular expressions or formats (N) was varied from 1 to 5. For exam-

ple, with N=4, Condition 2 accepted each input s if s matched any of 4 regular expres-

sions (selected from the 71 regular expressions). For each N, the performance of the best 

combination of N regular expressions is reported. 

In Conditions 3A, 3B and 4, φ(s) = max(isai(s)), as discussed by Section  3.2, 

where i ranged from 1 through N. For each condition and each value of N, the perform-

ance of the best combination of N formats is reported. 

Figure 25 shows that as N increased, so did accuracy. F1 reached 0.7 when the 

number of formats reached 5.  

Different regular expressions largely made the same mistakes as one another 

(such as omitting uncommon phone formats), so adding more than 3 regular expressions 

did not improve accuracy further. In contrast, increasing the number of formats continued 

to increase the tope accuracy, since the primitives supported by the TDE made it conven-

ient to implement formats that are difficult to describe as regular expressions (such as ex-

pressing that a street name should contain a certain number of letters, no more than a few 

digits, and no more than a few words). 

For each value of N, a 10% relative difference generally remained apparent be-

tween Conditions 3A/B and Condition 4, highlighting the benefit of identifying question-

able inputs. In fact, as the number of formats increased, the number of questionable in-

puts decreased (as adding formats recognized more inputs as valid). By N=5, the 12% 

relative difference between Condition 4 and Conditions 3A/B required asking the user for 

help on only 3.1% of inputs. 



 

125 

Figure 25. Increasing validation accuracy by including additional formats 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

Number of Formats or Regexps

F1

4
3B
3A
2

Condition

 

5.2.3 Usability for validating data 

A between-subjects experiment assessed whether end users would receive bene-

fits comparable to those described above. Lapis provided a suitable baseline for this ex-

periment because, as discussed by Sections  2.7.3 and  2.7.4, Lapis includes support for 

inferring an editable pattern from examples and then identifying outliers that do not 

match the pattern. Empirical studies also have shown that end users are able to accurately 

read, write, and use Lapis patterns  [70], which made it a more attractive baseline than 

regular expressions, which most end users do not know how to read or write. 

The study was advertised through emails and posters (with emails sent to adminis-

trative assistants in the university roster, as in Section  2.2), recruiting 7 administrative 

assistants and 10 graduate students, who were predominantly master’s students in infor-

mation technology and engineering. None had prior experience with the TDE or Lapis, 

but many had some experience with programming or grammars. Each received $10 as 

compensation. 

Participants were randomly assigned to a TDE or Lapis group. Each condition had 

four stages: a background questionnaire, a tutorial, three validation tasks, and a final 

questionnaire. 

The tutorial introduced the assigned tool, coaching subjects through a practice 

task and showing all features necessary for later tasks. Subjects could ask questions and 

work up to 30 minutes on the tutorial. 



 

126 

The validation tasks instructed subjects to use the assigned tool to validate three 

types of data. Subjects could spend a total of up to 20 minutes on these tasks and could 

not ask questions. Subjects could refer to the written tutorial as well as an extra reference 

packet extensively describing features of the assigned tool. 

Task details 

In Lapis, text appears on the screen’s left side, while the pattern editor appears on 

the right. Users highlight example strings, and Lapis infers an editable pattern. Lapis 

highlights each string in purple if it matches the pattern or yellow if it does not. For com-

parability, Toped was embedded in a text viewer with the same screen layout and high-

lighting. Each example string on the left was highlighted in yellow if it violated any con-

straints (that is, φ(s) < 1) or purple otherwise.  

Each task presented 25 strings drawn from one spreadsheet column in the EUSES 

corpus  [33]. Each column also contained at least 25 additional strings that were not 

shown but instead reserved for testing. All 50 strings were randomly selected. 

The first task used American phone numbers, the second used street addresses 

(just the street address, not a city or state or zip), and the third used company names. 

These data categories were selected to exercise the TDE on data ranging from highly 

structured to relatively unstructured. The data contained a mixture of valid and invalid 

strings. For example, most mailing addresses were of the form “1000 EVANS AVE.”, 

but a few were not addresses, such as “12 MILES NORTH OF INDEPENDENCE”.  

Subjects were told that the primary goal was to “find typos” by creating formats 

that properly highlighted valid strings in purple and invalid strings in yellow. To avoid 

biasing subjects, the instructions did not use Toped or Lapis keywords in the description 

of validity. To further clarify the conditions for validity, the task instructions called out 

six strings for each data type as valid or invalid. These instructions were precise and 

made it possible to classify every single string as definitely valid or definitely invalid, 

which was essentially for comparability to Lapis, which is incapable of identifying ques-

tionable values. 



 

127 

Results 

Subjects were asked to think aloud when something particularly good or bad oc-

curred in the tool. One TDE subject interpreted these instructions differently than the 

other subjects, as she spoke aloud about virtually every mouse click. Her data were dis-

carded, leaving 8 subjects assigned to each group. 

As shown in Table 12, the conservative Mann-Whitney (Wilcoxon) statistical test 

was used to assess results, since the sample was small and not necessarily normally dis-

tributed data (though all measures’ medians were very close to the respective means).  

Table 12.  Results comparing TDE to Lapis. 

 TDE Lapis Relative 
Improvement 

Significant? 
(Mann-Whitney) 

Tasks completed 2.79 1.75 60% p<0.01 
Typos identified     
  On 75 visible strings 16.50 5.75 187% p<0.01 
  On all 150 strings 31.25 9.50 229% p<0.01 
F1 accuracy measure     
  On 75 visible strings 0.74 0.51 45% No 
  On all 150 strings 0.68 0.46 48% No 
User satisfaction 3.78 3.06 24% p=0.02 

 

In the allotted time, TDE subjects completed an average of 2.79 tasks, while Lapis 

subjects averaged 1.75 (Table 12), a significant difference (p<0.01). TDE users were 

more successful at their primary goal, finding typos. Of the 18 actual invalid strings in 

the 75 visible strings, TDE subjects found an average of 16.5 invalid strings, compared to 

5.75 for Lapis subjects, which was a significant difference (p<0.01). In addition, of the 35 

typos in the total set of 150 test strings, the completed TDE formats found an average of 

31.25 invalid strings, whereas completed Lapis patterns found only 9.5, a significant dif-

ference (p<0.01). 

Finding invalid data is not sufficient alone. Validation should also classify valid 

data as valid. As in Section  5.2.2, the standard F1 statistic was used  [26]. The 23 com-

pleted TDE formats had an F1 of 0.74 on the 75 visible strings and 0.68 on all 150 strings, 

whereas the 14 completed Lapis patterns had respective scores of 0.51 and 0.46.  

Thus, the measured F1 accuracy scores for the TDE are higher than the measured 

F1 accuracy scores for Lapis (though the inter-tool differences are not statistically signifi-



 

128 

cant at p<0.05). In fact, these TDE scores are comparable to those demonstrated by Sec-

tion  5.2.2, showing that the TDE is highly effective at helping actual end users to create 

abstractions for validating strings. 

Subjects had different job categories and varying experience with grammars and 

programming. Yet for each tool, there were no statistically significant effects (p<0.05) on 

task completion, format accuracy, or user satisfaction based on this prior experience or 

job category.  

The study closed with a user satisfaction questionnaire because users such as stu-

dents and administrative assistants typically do not need to program to get their work 

done: they can choose a manual approach rather than a programmatic approach if they do 

not like their programming tool  [78]. 

Subjects generally commented that the TDE was easy to use, “interesting” and “a 

great idea”. Most suggested other types of data to validate, such as email addresses, li-

cense plate numbers, bank record identifiers, and other application-specific data. One 

subject commented that it was unintuitive to represent “two options” (disjunction) as two 

constraints with parallel structure (as was the case in the old Toped tool), which helped to 

prompt the new structure reflected in the Toped++ user interface.   

The satisfaction questionnaire asked subjects to rate on 5-point Likert scale how 

hard the tool was to use, how much they trusted it, how pleasant it was to use, and if they 

would use it if it was integrated with spreadsheets or word processors. Answers had mod-

erate internal consistency (Cronbach’s alpha=0.74) and were combined into a scale. On 

this scale, subjects reported an average satisfaction of 3.78 with the TDE and 3.06 with 

Lapis, a significant difference (p=0.02). 

Comparison to regular expressions 

Though not perfectly comparable, it appears that subjects completed these tasks 

with the TDE more quickly and accurately than subjects completed tasks with regular 

expressions in a study during SWYN’s development  [16]. For each of 12 data types pre-

sented in random order, that study asked 39 graduate students to identify which of 5 

strings matched a provided regular expression that was written in one of four notations. 

Average speeds on the last six tasks (after subjects grew accustomed to the notations) 

ranged from 14 to 21 seconds per string, and error rates ranged from 27% to 47%. (No F1 



 

129 

was reported.) In contrast, the TDE subjects were faster and more accurate, not only 

checking strings, but also constructing a format at an average of 15 seconds per string 

(373.8 sec / task) with an error rate of only 19%. Statistical tests between the two studies 

would be meaningless, due to the differences in the task details, but these results suggest 

that just as the TDE offers a significant improvement over Lapis, it also offers a substan-

tive improvement over regular expressions when placed in the hands of end users. 





 

131 

Chapter 6. Transformation functions 

When users combine data from multiple sources into a data set such as a spread-

sheet, the result is often a mishmash of different formats, since instances of a string-like 

data category typically can appear in a variety of formats. For example, a phone number 

copied from one web site might be formatted like the string “393-202-3030”, while a 

phone number copied from another web site might be formatted like “(262) 444-5000”. 

Putting instances of each data category into a consistent format then requires reformatting 

some or all of the instances. Although spreadsheet-editing applications like Excel provide 

features for reformatting numbers and a few specific kinds of string data, they do not 

provide any support for reformatting the wide range of other kinds of string data encoun-

tered by users. Likewise, web forms and web macro tools provide no support at all for 

automatically reformatting data. As a result, users must manually perform these reformat-

ting operations, which is tedious and error-prone. 

As described in  Chapter 3, a tope can include functions that each reformat strings 

from a source format to a target format. Once implemented, the TDE can pass strings into 

these functions as needed, thereby enabling the TDE to reformat strings automatically. 

The latest TDE prototype automatically implements reformatting functions based on the 

data description created by the user in Toped++. 

As with format validation functions, there are two key questions related to refor-

matting functions. First, does the TDE provide enough expressiveness to accomplish the 

job (in this case to reformat data in a way that supports user tasks)? Second, does the 

TDE enable end users to accomplish useful work (in this case, to reformat strings)? After 

Section  6.1 presents features in the TDE related to reformatting, Section  6.2 presents two 

studies that answer these questions. The first study, described by Section  6.2.1, shows 

that the TDE is sufficiently expressive for reformatting Hurricane Katrina web site data 

in order to help identify duplicate values; as explained by Section  2.4, this reformatting 

had required a huge amount of manual labor. The second study, described by Section 

 6.2.2 shows that once a user has created a tope and used it to validate and reformat 47 

strings, the effort of creating the tope would have “paid off”. Moreover, the tope could be 



 

132 

reused later to validate and reformat an unlimited number of strings in this format in fu-

ture spreadsheets, as described in  Chapter 7. 

6.1 TDE support for generating and calling transformation functions 

The TDE automatically implements trf functions based on the data descriptions 

created by users for data categories. When reformatting a string at runtime, the TDE 

checks whether ambiguity might cause the TDE to reformat the string incorrectly, then 

displays an overridable warning message if needed so that the user can double-check and 

possibly correct the result. 

6.1.1 Generating transformation functions 

As with format validation functions, the Topeg module can automatically gener-

ate implementations of trf functions. Previous versions of the system (described by Sec-

tion  6.1.3) required users to manually implement trf functions. Topeg implements these 

functions based on the data descriptions created in Toped++.  

It is most straightforward to first describe the implementation of simple functions 

for a data description containing a single variation with a single individual Word-like and 

Numeric parts, then explain how Topeg implements trf functions for data descriptions 

that have more structure. 

Data description containing a single variation with a single Word-like part 

If a data description has a single variation with a single Word-like part, then there 

is a one-to-one correspondence between the variations of the Word-like part (as deter-

mined by the checkboxes on Figure 18) and the formats of the data description. Specifi-

cally, the user may indicate that the part can be in upper case, lower case, title case, or 

mixed case formats. 

For each pair of formats (x, y) in a data description with a single variation con-

taining a single Word-like part, Toped++ automatically implements a function trfxy that 

reformats inputs into the capitalization required by format y. For example, if y is the up-

per case format, then each trfxy converts each character to upper case. If y is the title case 

format, then trfxy title-cases each word except for those in the exception list. (As an ex-



 

133 

ception to the exception, English prepositions are capitalized if they are the first word in 

the string, but explicit user-specified exceptions are left in the case specified by the 

user—such as “von” and “van” shown in Figure 18.) If y is the mixed case format, then 

trfxy simply returns the input unaltered. Thus, without any explicit effort by the user, 

Topeg automatically implements reformatting functions to output strings matching the 

target format. If the user enables or disables a format (by toggling its checkbox in Figure 

18), then Topeg adds or removes trf functions accordingly. 

Data description containing a single variation with a single Numeric part 

Topeg handles numeric parts similarly. In the part editor for Numeric parts, the 

user can specify that up to a certain number of digits d are allowed for that part, yielding 

d formats. For example, a part might be written as “4.560”, “4.56”, “4.6” or “5”. For each 

pair of formats (x, y) in a tope with a single variation containing a single Numeric part, 

Topeg generates a trfxy(s) that rounds s (or appends ‘0’ characters) so the output has the 

number of decimal digits required by y. As with a data description containing one Word-

like part, the resulting format graph is totally connected by trf edges, so there is no need 

for successive reformatting: the input is rounded or ‘0’-padded once to give the output. 

Data description containing a single variation with a single hierarchical part 

A hierarchical part matches some other data description t. Thus, if a data descrip-

tion u has a single variation with a single hierarchical part matching t, then u has one-to-

one formats with t. For each pair of formats (x, y) in u, Topeg implements a function 

trfxy that calls the corresponding trf in t. That is, the task of putting the part into some 

format y is recursively delegated to the reformatting functions in that part’s respective 

data description. 

Data description containing than one part or variation 

The discussion above explained how Topeg implements trf functions for single-

variation, single-part data descriptions. In general, data descriptions have multiple varia-

tions and multiple parts.  

Suppose that a data description has formats x and y. In particular, let y contain 

separators <s0, s1, …, sm> and parts <y1, y2, …, ym> in formats <f1, f2, …, fm>. (Some 



 

134 

separators might be blank; s0 is to the left of the first part, and sm is to the right of the last 

part.) A string parsed with x’s grammar is reformatted into y as shown in Figure 26. 

Figure 26. Implementation of trfxy 

 
 

Note that the trf implementation in Figure 26 reformats each part yk to format fk. 

This is achieved by treating yk as a single-variation, single-part data description, one of 

whose formats is fk, and calling a corresponding trf that is implemented as explained in 

the sub-sections above. For example, to put a Word-like part into title case, Topeg treats 

it as a single-variation data description with a single Word-like part and calls the trf 

function described above to put that part into title case. 

The automatically-generated transformation functions have a number of limita-

tions explored in Section  6.1.3. 

Supporting transformation based on whitelist entries 

The automatically-generated reformatting rules typically suffice for most data re-

formatting tasks, since the formats in most data categories are usually related to one an-

other via straightforward permutations of parts, changes of separators, changes of capi-

talization, and padding or rounding of numbers. However, some categories such as build-

ing names (as in Figure 1) call for a fixed list of allowed values, each of which might 

have a synonym such as an abbreviation. 

Sometimes, these synonyms do not match any of the usual formats for that kind of 

data. For example, in Pittsburgh, “411” is a valid phone number equivalent to “(412) 555-

1212”, which provides directory assistance. To accommodate these situations, the TDE 

supports whitelists. The “whitelist” tab of Figure 10 provides a grid where the user can 

enter a column of values that match the main data description, as well as synonyms 

(Figure 21).  

Internally, Topeg creates a new format x for each synonym column; isax returns 1 

for any string that matches a value in the column, or 0 otherwise. For each pair (x1, x2) of 

Start with an empty string str 
For k = 0 through m 
 If k > 0, and format x includes part yk   
  reformat the value of yk to fk 
  and concatenate it to str 
 Concatenate sk to str 
return str 



 

135 

whitelist formats, Topeg implements a trfx1x2(s) that looks up the row of s in column x1, 

then returns the corresponding value in column x2. If this value is blank, then s is returned 

rather than a blank value; as with all reformatting, this result is checked with the target 

format’s isa, which would return 0 in this case, resulting in a warning message. 

For each non-whitelist format y, Topeg reformats each value in the whitelist’s 

leftmost column to format y, yielding an array WLy. For each pair (x, y), where x is a 

whitelist format and y is a non-whitelist format, Topeg implements a trfxy that looks up 

the row of s in column x and returns the corresponding value in WLy. (Again, if the value 

is blank, s is returned and checked against isay.) Conversely, trfyx reformats s from y to 

x by looking up the row of s in WLy, then returning the corresponding value in x. 

Supporting custom JavaScript-based transformation functions 

While automatically-generated reformatting functions suffice for virtually all data 

categories, the TDE supports full Turing-completeness by allowing users to override 

automatically generated trf functions by writing custom code. This is helpful when 

transforming a string from one format to another requires a complicated computation in 

order to determine what the value of a certain part should be. For example, converting an 

ISBN from 10 digits to 13 digits involves truncating the last digit, prepending “978”, cal-

culating a check digit (using modulo arithmetic), and appending this check digit to the 

string. Implementing a function in JavaScript requires turning on a custom view (under 

the “View” menu of Figure 10) and drawing arcs from one variation another. For each 

arc, the user can specify JavaScript instructions that reformat and concatenate the parts of 

the variation. These instructions are called at runtime instead of automatically imple-

mented functions. In practice, JavaScript-based functions are almost never needed. In 

particular, none of the data categories involved in any studies actually called for 

JavaScript. 

6.1.2 Limitations of transformation functions in the TDE 

Although the TDE’s support for automatically implementing transformation func-

tions saves a great deal of work, since it is rarely necessary to write JavaScript, the ap-

proach overall has three primary limitations. First, transformation functions sometimes 



 

136 

produce invalid outputs. Second, transformation functions sometimes destroy informa-

tion, meaning that the user is unable to apply the inverse transformation to automatically 

recover the original string. Finally, ambiguity about which transformation function to ap-

ply can sometimes cause the TDE to reformat strings in a way that is not intended by the 

user. In practice, these limitations rarely come into play, and the TDE also provides sev-

eral features to help users identify situations where these limitations might affect the re-

sults of a transformation. 

Applying transformations can generate invalid outputs 

While the automated transformations generally work well, they can sometimes 

produce erroneous outputs. Almost always, this is because the target format contains 

parts that the source format does not (so the transformation has no way of determining 

how to fill in the missing part during the transformation). For instance, in Figure 18, 

every person name format had the same parts (albeit in a different order). But there could 

also have been a variation (corresponding to several formats) with a middle name. In that 

case, some formats would require parts that other formats lack. In cases like these, the 

output of trfxy might not match y.  

To detect errors of this kind, the TDE always checks the output of the transforma-

tion with the grammar for the target format, yielding an error message prompting the end 

user who provided the input to review and manually correct the output. 

Reversing transformations automatically can be impossible 

For any pair of formats x and y and any string s such that isax(s) = 1, 

trfyx(trfxy(s)) generally equals s. In other words, the automatically generated transfor-

mations generally behave as inverses of one another when applied to valid strings. The 

reason is that most strings in most spreadsheets or web forms are valid, and most trans-

formations involve just capitalization changes (which are invertible for most common 

strings), permutation (which is perfectly invertible), separator changes (again perfectly 

invertible), and lookup tables (which are almost always invertible). Because trfyx and 

trfxy generally behave as inverses of one another, a user can apply trfyx to transform 

trfxy(s) back into s. 



 

137 

However, many of the transformation operations described in Section  6.1.1 are 

not perfectly invertible. First, even with a single Numeric part, rounding destroys infor-

mation and prevents recovering the original string through the reverse operation (padding 

with zeroes). Second, even with a single Word-like part, capitalization can destroy infor-

mation when changing from the mixed case format to any other format (e.g.: converting 

“McCain” to lowercase yields “mccain”, which is left as “mccain” by the function that 

transforms to mixed case). Third, transformation within a single Hierarchical part or be-

tween two variations can drop parts when transitioning from one format to another (as 

when converting “Christopher P. Scaffidi” to “Scaffidi, Christopher”). Finally, lookup 

tables theoretically could destroy information if they map multiple strings in one format 

to a single string in another format (e.g.: mapping both of the airport codes “SFO” and 

“OAK” to “San Francisco”).  

Of these four forms of information loss, the third one (dropping of parts between 

variations) seems to occur most often, probably because users commonly work with a 

handful of data categories whose strings are sometimes written with missing parts. The 

principal examples are person names, phone numbers (where the area code is sometimes 

dropped), and URLs (where the leading protocol is sometimes dropped if it is “http”). 

It should be noted that even with these forms of information loss, the automati-

cally-generated transformation functions perform no worse than a user would if he per-

formed the same transformations. For example, regardless of whether a tool automati-

cally rounded a number or a human manually did it, the information is still gone: there is 

no way to inspect the resulting number and determine what number it came from. Thus, 

the TDE’s support for automation does no harm to users’ ability to invert transformation 

operations—and in most cases, it does a great deal of good, by saving users the time and 

attention required to perform so many tedious and error-prone operations manually. 

Choosing the right transformation can be ambiguous  

The TDE’s approach for implementing reformatting rules yields a totally-

connected tope graph, so there is no need for “chaining” reformatting functions. Instead, 

for any two formats x and y, there is always a direct route through the tope graph. When 

reformatting strings, the TDE always takes this direct route, thereby addressing one form 



 

138 

of ambiguity identified by Section  3.2: the question of which route to take through the 

tope graph.  

However, to actually transform a string s at runtime to a format y selected by a 

user, it is necessary to first determine the starting format x of s so that the TDE can call 

the appropriate trfxy. To achieve this, the TDE parses s with the subsuming grammar 

generated by Topeg (described by Section  5.1) to determine what format is the best 

match to s. The TDE chooses the format x with the maximal isa score as the starting 

format. 

However, this raises the possibility of ambiguity: two or more formats might tie 

for the maximal isa score. In this case, arbitrarily choosing one format x as the starting 

format for reformatting could lead to errors. Specifically, there might be some other for-

mat x’ for which isax’(s)=isax(s) but trfx’y(s)≠trfxy(s). For example, Americans might 

interpret “04/01/2009” as April Fool’s Day, but Europeans might not immediately inter-

pret the string this way because their preferred date formats generally place the day be-

fore the month. Formatting the string “04/01/2009” to the international standard date no-

tation (ISO 8601) could produce “2009-04-01” or “2009-01-04”, depending on which 

continent’s preferred format is used as the source format. It would be ideal to compute 

trfx’y(s) and compare it to trfxy(s) so that the user could be warned to check the output 

if the two possible outputs differ. However, this is practically infeasible, since there 

might be many such x’ rather than just a couple.  

Nonetheless, some x’ can be ruled out, in the cases where trfx’y(s) could not pos-

sibly differ from trfxy(s). Specifically, ambiguity at the Word-like part and Numeric 

part levels can be disregarded. For example, regardless of whether s is interpreted as up-

per case or title case, its lower case equivalent is the same. Ambiguity between numeric 

formats is impossible by construction, since each Numeric part has a certain number of 

decimal digits. 

Thus, ambiguity can only cause incorrect reformatting outputs if s matches one or 

more formats in a Hierarchical part or in a tope as a whole. Even then, ambiguity will not 

affect outputs unless different formats x and x’ assign different values to parts. For ex-

ample, the date “10/10/10” is ambiguous, but regardless of its interpretation, the correct 

reformatting to the international standard date notation is “2010-10-10”. “04-01-08”, on 



 

139 

the other hand, is problematically ambiguous precisely because different formats match 

different substrings to month, day, and year. 

Because of these restrictions on when ambiguity can affect reformatting outputs, 

it turns out that ambiguity rarely causes incorrect reformatting outputs in practice. For 

example, none of the randomly selected data values used in the studies described by Sec-

tion  6.2 happened to have reformatting problems caused by ambiguity. Perhaps the rea-

son why ambiguity is not a problem in practice is that ambiguous notations are generally 

hard for humans to use (regardless of whether they are using a computer), so perhaps 

subconsciously or consciously, people avoid creating and tolerating notations that lead to 

ambiguous interpretations. 

Nevertheless, for completeness, the TDE automatically detects when ambiguity 

might have caused an incorrect reformatting, and it presents a warning message that the 

user can override after double-checking the string. Specifically, if parsing a string s with 

a subsuming grammar yields more than one parse tree, then the TDE checks whether any 

of these trees match different literal substrings of s to the parts of the data description. If 

even a single part is assigned different strings by different parses, then the ambiguity is 

problematic and could an unintended output, so the TDE displays the overridable warn-

ing message, “You might want to double-check this, as it might not have reformatted 

properly.” For example, if a person’s first and last name could each contain more than 

one word, then “Smithfield” in “Charlie Smithfield Thomas” could be part of the first or 

last name. In this case, permuting the names when reformatting “Charlie Smithfield 

Thomas” would involve problematic ambiguity, resulting in a warning message (Figure 

27). 

Figure 27. Displaying a warning message due to ambiguity during reformatting. 

 



 

140 

6.1.3 Implementing transformation rules with the early Toped prototype 

Like the Toped format description editor (described by Section  5.1.3), Toped’s 

transformation editor is forms-based. The user interface has two sections (Figure 28). The 

first section shows a list of steps required for reformatting each part of the source format. 

Clicking the “+ step” button allows the user to select from three kinds of primitives: a 

primitive to change the capitalization, a primitive to replace a part’s substring using a 

lookup table, and a primitive to call a trf function in another tope (which is useful when 

the part is defined to match a format in another tope). A transformation description for 

phone numbers does not require any of these primitives, but just for illustration, Figure 

29 shows what a lookup table for state names looks like. This would be useful, for exam-

ple, if a user needed a tope for reformatting the last line of an address from a string like 

“PITTSBURGH, Pennsylvania” to a string like “Pittsburgh, PA”. 

The second section of the editor shows what separators to use when concatenating 

reformatted parts to produce a string in the target format.  The user can specify a new 

separator to the left and right of each part. In addition, because a format can specify that 

parts may repeat (with separators between the parts), the editor allows the user to specify 

what the inter-repetition separators should become during concatenation. The editor sup-

ports permutation of parts (with the “^" buttons) and omission of parts (by unchecking 

the “Include” checkbox) though these features are not required for phone numbers. 

 

Figure 28. Editing a trf function in Toped for reformatting phone numbers 

 



 

141 

Figure 29. Editing a lookup table in Toped for reformatting from state name to state abbreviation. 

 
 

Data descriptions created in Toped are somewhat brittle, in that modifying for-

mats often breaks the transformations that join one format to another. For example, if the 

user adds a new part to a format, then any transformation rules sourced from or targeted 

to that format must be updated. Toped++ automatically implements reformatting rules and 

repairs them as needed as users add, edit, or delete parts. By performing this work auto-

matically, Toped++ greatly reduces the time and effort required to create and maintain 

multi-format data descriptions. The automatically-generated reformatting rules typically 

suffice for most data reformatting tasks. In the rare situations requiring complex refor-

matting, users who know JavaScript can override automatically generated trf functions, 

as described by Section  6.1.1. 



 

142 

6.2 Evaluation 

Since the primary goal in this research is to help end users reformat short, human-

readable strings, one of the most important evaluation criteria is whether the TDE enables 

end users to create and use topes to reformat inputs. As with evaluating the TDE’s sup-

port for validation (in Section  5.2), evaluating support for reformatting strings has two 

questions: does the system provide adequate functionality for expressing reformatting, 

and does this functionality enable end users to complete tasks more quickly and effec-

tively than through the currently practiced techniques? 

First, is it even possible at all to express useful reformatting operations in the 

TDE? This question leaves aside the issue of usability by end users and focuses on the 

intrinsic capability of the system. In Section  6.2.1, expressiveness is evaluated by using 

the primitives of the Toped-based TDE to implement reformatting operations for data ob-

tained from a Hurricane Katrina “person locator” site, then measuring whether applying 

those operations to the data would have helped identify duplicate values. While this pro-

cedure only identified 8% more duplicate values, the process was relatively straightfor-

ward and fully automated (after creating the needed topes), which would have saved a 

great deal of the manual labor described by Section  2.4. 

The second stage of this evaluation addresses whether putting the TDE in the 

hands of end users actually enables them to quickly and effectively reformat strings. A 

within-subjects laboratory experiment described by Section  6.2.2 answers this question 

by having some users reformat spreadsheet data with the Toped++-based TDE and then 

perform the same tasks manually (since existing end-user applications currently require 

people to perform string reformatting by hand). The results show that, on average, once a 

user has created a tope and used it to validate and reformat 47 strings, the effort of creat-

ing the tope would have “paid off”. These results strongly suggest that the TDE enables 

users to reformat strings much more quickly and effectively than is possible with current 

approaches. 

6.2.1 Expressiveness for reformatting to find duplicate values 

After the proliferation of Hurricane Katrina “person locator” sites (Section  2.4), 

some teams of developers attempted to combine the sites into unified databases. Since 



 

143 

some hurricane survivors were mentioned in records on multiple web sites, a straightfor-

ward aggregation of the data led to many duplicate values. Unfortunately, since different 

teams independently developed different sites, their data often had different formats.  

Consequently, putting data into a consistent format was a necessary precondition 

to identifying duplicates. Having put strings into a consistent format, the workers could 

find duplicate strings, and then could identify duplicate records (person name + phone 

number + address information) based on duplicate strings. Due to the large number of 

sites to be combined and the fact that most volunteers on the aggregation project lacked 

skills for writing scripts, this reformatting was done manually for the most part. Ideally, it 

should be possible to automate the reformatting actions by expressing the necessary re-

formatting rules with the TDE. 

Thus, an important test for the effectiveness of the TDE is to check whether it is 

possible to express suitable reformatting functions for putting strings into a consistent 

format. One measure of this effectiveness is to see how many new duplicate strings are 

uncovered. (Another possible measure would be to see how many duplicate records could 

be found based on duplicate strings, but this is a less suitable measure of the TDE’s effec-

tiveness because it would conflate whatever record-matching algorithm was used with an 

evaluation of reformatting.) 

To generate test data, a script downloaded the web pages from one person locator 

site6 that had 5 text fields: person last name, first name, phone, address line, and city. (It 

also had state names, but this was not an appropriate kind of data for this evaluation, 

since the site provided a dropdown field for users to select a state in a consistent format.) 

The script randomly extracted 10000 values for each of the five categories. 

As described by Section  5.2.2, 32 topes had been created in the Toped-based TDE 

to validate spreadsheet data. Five of these served as a starting point for reformatting in-

stances of the corresponding data categories in the Hurricane Katrina data. For each tope, 

the best five formats (identified by Section  5.2.2) were retained without modification and 

used to validate the Hurricane Katrina data, thereby identifying the most commonly-

occurring format for each data category in the Hurricane Katrina data. Reformatting func-

tions were manually created to put strings into the format that occurred most often. 

                                                 
6 http://www.publicpeoplelocator.com/ 



 

144 

Finally, after putting strings into their category’s most common format, the num-

ber of duplicate strings were counted and compared to the number of duplicates prior to 

reformatting. Reformatting produced approximately 8% more duplicates after transfor-

mation. The person first and last names categories benefited the most (with 16% and 9% 

additional duplicates, respectively), largely because users often entered middle initials 

into these fields. Each of the matching topes had a format that accepted a name and an 

initial, and the reformatting removed the initial, thereby enabling duplicate detection. The 

address line data (with 9% additional duplicates) largely benefited because of replacing 

abbreviations such as “Ave.” with equivalents such as “Avenue”. There were a moderate 

number of new phone duplicates (8%). There were few additional city duplicates (2%) 

because almost all inputs contained “New Orleans”, leaving only a few new duplicates to 

be discovered (largely due to replacing uppercase city names with title case names). It 

has also been suggested that additional duplicates could be found based on incorporating 

abbreviations for city names into that data description. Regardless, it seems likely that 

topes would be even more effective on a more diverse city dataset. 

Perhaps the number of new duplicates (8%) might seem small. However, the main 

benefit here is that a task was automated that had not been effectively automated by Hur-

ricane Katrina volunteers. Thus, it was possible to perform in minutes what literally re-

quired hundreds of man-hours of labor. The next question, addressed by Section  6.2.2, is 

if end users would also reap these benefits in practice. 

6.2.2 Usability for reformatting data 

A within-subjects experiment assessed the usability of the Toped++-based TDE for 

helping users to create topes and to reformat spreadsheet data. As a baseline, this experi-

ment compared using the TDE to how long it would take each user to perform the same 

tasks by manually typing changes into Excel. 

The study was advertised by emails and posters to recruit 9 master’s students, 

who were predominantly in the school of business. None had prior experience with the 

TDE. To filter out users who already understood the concept of designing string recog-

nizers, participants were screened to ensure that none had experience with regular expres-

sions. 



 

145 

The experiment had four stages: a tutorial, three tasks with the TDE, the same 

tasks but without the TDE, and a user satisfaction questionnaire. Because the study did 

not counter-balance users (that is, giving some participants the manual tasks prior to the 

TDE tasks), users were more familiar with their goals when they started the manual tasks 

than when they started the tasks with the TDE. Consequently, this experiment probably 

measured lower bounds on the relative benefits of the TDE. Users could take up to 30 

minutes for the tasks in the TDE (though all participants finished sooner), but they could 

only spend 60 seconds on each of the 3 manual tasks. This time limit was chosen with the 

intention to avoid wearying participants with tedium yet to allow measuring the average 

number of seconds needed to manually validate and reformat a spreadsheet cell. 

Task details 

Each task required subjects to find and fix typos in one kind of data, and then to 

reformat all cells to a specific alternate format. For example, one task required users to 

find typos in a spreadsheet column of email addresses, some of which were missing a 

user name or a “.com”. Some cells had an extra email address. Participants had to fix 

these typos or to flag them if they could not be fixed and then to put the addresses into a 

format with the user name capitalized, as in “USERNAME@domain.com”. 

Different kinds of data were assigned to different participants. Three participants 

worked on person first names, person last names, and university names; three worked on 

course numbers, US state names, and country names; three worked on email addresses, 

phone numbers, and full person names. This organization placed data categories into 

groups based on similarity: the first group contained single-word single-variation data 

categories, the second group contained data categories whose instances could be refor-

matted using a whitelist, and the third group contained multi-part multi-variation data 

categories. This organization was motivated by the expectation that most users would not 

be able to master all of the features of the TDE within a short tutorial. 

For whitelist-based tasks, participants were provided with a table in Microsoft 

Word, which they could copy-and-paste into the Toped++ whitelist editor. These tables 

were copied from the web; for example, the list of US states was copied from Wikipedia. 

This saved participants the trouble of searching the web to find appropriate tables. How-

ever, this does not bias the study in favor of the TDE, since participants would need to 



 

146 

search the web anyway even if they performed the tasks manually (except, of course, for 

those rare users who have memorized all US state names, country names, or courses in a 

course catalog). 

In terms of ecological validity, these data categories were among the most com-

mon identified in the earlier analysis of how well topes could validate the EUSES corpus 

of spreadsheets  [33] (Section  5.2.2). For each kind of data, 100 strings were randomly 

selected from one spreadsheet column in the corpus. 

Speed and accuracy 

Using the TDE, participants spent an average of 4.5 minutes on each task. Tasks 

in Group 2 (whitelist-validated data) took longer, at 6.9 minutes. Regardless of group, 

implementing a tope required approximately 3-5 minutes, so the extra time for Group 2 

tasks was not spent on creating topes, but rather on fixing typos identified by topes. Do-

ing this was slow because it required referring to the whitelist (in Word) to find each er-

roneous value’s correct spelling, then switching back to Excel to type the right value. Re-

gardless of group, participants had a very low error rate, leaving an average of just under 

0.1 fixable typo per column of 100 cells. (This is in addition to one column of cells for 

one kind of data, university names, where one participant put every cell into a different 

format than the format that we requested. However, he also did the same for the corre-

sponding manual task, so it seemed to be a matter of misunderstanding instructions rather 

than a usability problem in the tools.) 

Different participants took different approaches to manually perform each task. In 

14 out of the 27 cases, they first went down the column and fixed typos, then went back 

to the top and spent remaining time on reformatting cells. In 11 cases, they simply started 

at the top and reformatted cells one after the other; in this case, typos generally did not 

get fixed, as manual reformatting is fairly slow, so participants only edited a few cells 

and encountered few typos along the way. In the last 2 cases, participants were flum-

moxed about where to begin and gave up without changing any cells. 

For each manual task by each user, four statistics were computed: the number of 

seconds spent fixing typos, the number of typos fixed, the number of seconds spent re-

formatting, and the number of cells reformatted. For each group, these statistics sufficed 

for computing the average number of seconds to fix each typo and average number of 



 

147 

seconds required to reformat each cell. (The two cases where users gave up were omitted 

from this computation.) Combining this with the rate of typos in the columns yielded pro-

jections of how long it would take participants to manually fix every typo in each 100-

cell column, which ranged from 5.0 to 15.9 minutes (Table 13). As when using the TDE, 

fixing typos in whitelist data (Group 2) required repeatedly referring to the list in Word, 

which was relatively slow. Moreover, whereas the TDE automated reformatting, saving 

the users from having to refer to the Word document during reformatting, manual refor-

matting required referring to Word, further slowing these tasks.  

The statistics also provided enough information to compute the number of cells 

that would need to be in the spreadsheet column to justify creating a tope. This breakeven 

point ranged from 35 to 60 cells. Thus, once a user has validated and reformatted a few 

dozen cells, the tope would have “paid for itself”. 

Table 13. Comparing time required to fix typos and reformat 100-cell columns 

 Minutes Required Breakeven 
 TDE 

(actual) 
Manual 

(projected) 
point 

(# cells) 

Group 1: Single word data 3.0 5.0 60 
Group 2: Whitelist data 6.9 15.9 43 
Group 3: Multi-part data 3.6 10.2 35 
Overall Average: 4.5 9.6 47 

User satisfaction 

The user satisfaction questionnaire asked each participant if he preferred using the 

new Excel feature or doing the tasks manually. Every participant indicated a strong pref-

erence for the TDE. In addition, the questionnaire asked users to rate on 5-point Likert 

scale how hard the TDE was to use, how much they trusted it, how pleasant it was to use, 

and if they would use it if it was integrated with spreadsheets or word processors. Every 

participant but one gave a score of 4 or 5 on every question (the satisfied end of the 

scale). Moreover, two people verbally launched into detailed descriptions of how they 

wished that a tool like this had been available in office environments where they previ-

ously had worked, in order to perform these kinds of reformatting tasks. These results 

suggest that users would eagerly adopt the TDE if it were made widely available. 





 

149 

Chapter 7. Reuse of tope implementations 

Successful communication requires people to have a common model for interpret-

ing the signals that they exchange. For example, if someone speaks Spanish, then only 

people who know that language can understand the speaker’s words. As the speaker con-

verts messages into sentences composed of words and converts words into spoken 

sounds, the listeners rely on their knowledge of the language to interpret those sounds 

and understand the speaker’s message. Essentially, speaking is an encoding process, 

while listening is a decoding process. It is not necessarily the case that the speaker and 

the listener must have precisely the same language model, but their two models must 

have enough in common to reduce the risk of misinterpretation to a manageable level. 

In a similar fashion, people must have a (mental) tope in common in order to 

communicate the short, human-readable strings in data categories discussed by this dis-

sertation. For example, if one person writes a US postal address, another person relies on 

familiarity with that kind of data in order to understand the written string. The writer and 

the reader each call upon a common mental model to make this communication success-

ful. The writer relies on this mental model in order to format and concatenate the parts of 

a mailing address into a series of characters, while the reader relies on the mental model 

to interpret the series of characters. This shared mental model corresponds to one tope 

abstraction. The reader and the writer have the same tope—or, if their topes differ a bit, 

they must have enough in common that the reader and the writer experience no more than 

a manageable level of miscommunication. 

Since communicating such strings requires people to have a tope in common, it is 

unsurprising that few topes are unique to individual people. Instead, topes are generally 

used throughout a society or an organization. US postal addresses are an example of a 

society-wide tope; university accounting codes are an example of an organization-wide 

tope uncovered in the Carnegie Mellon contextual inquiry (Section  2.3). While not every 

string is necessarily communicated between people, enough instances of these data cate-

gories are communicated often enough that many people benefit from knowing topes for 

these data categories. For example, when a new employee joins Carnegie Mellon Univer-



 

150 

sity, he may not immediately know how to read and write university accounting codes, 

but because other people use those codes, there is a value to learning a tope for that data 

from other employees. 

Likewise, if one citizen in a society or one employee in an organization finds it 

useful to create a tope implementation so that his computer can automatically recognize 

and reformat instances of a data category, then other citizens in the same society or other 

employees in the same organization might also benefit from using that tope implementa-

tion. For example, if one employee creates a tope implementation to validate university 

accounting codes in a spreadsheet, then another employee might also benefit from using 

that implementation to validate accounting codes in another spreadsheet. Even if the two 

employees are working with completely different spreadsheets containing different actual 

strings, the same tope implementation might be useful to both employees because they 

have an organization in common and thus a tope in common. 

Moreover, because data categories are generally tied to societies or organizations, 

they are generally independent of particular software applications. For example, it would 

be very annoying if university’s staff had to use one system of accounting codes when-

ever they worked in Microsoft Excel, an entirely different system of accounting codes 

whenever they worked in Oracle databases, and a third entirely different system of ac-

counting codes on web pages. In this hypothetical example, there would be three different 

data categories. Such a situation is nonsensical: what kind of an organization would (will-

ingly use a different data category for essentially the same purpose every time its users 

moved from one application to another? Thus, data categories tend to be application-

agnostic. If a person needs to validate or reformat instances of a particular data category 

in more than one application, it would be ideal if he could use the same tope implementa-

tion in each application. 

Reuse of tope implementations could have a number of benefits. First, it could be 

faster for people to reuse an existing implementation, rather than creating one from 

scratch, thereby saving people time. Second, if a certain person (such as a new employee) 

is not yet familiar with a certain kind of data, then it might be impossible for him to im-

plement a tope for that data, so reusing an existing tope implementation might be the only 

way to acquire one. Third, if different people reuse the same tope implementation, then 

their computers would validate and reformat the corresponding data with the same rules, 



 

151 

which might help to reduce inconsistency and possibly the potential for miscommunica-

tion; likewise, reusing the same tope implementation to validate a certain kind of data in 

multiple applications could help to ensure consistency among those applications. Fourth, 

some people in an organization (such as the system administrators, or highly-skilled end 

users sometimes called “gardeners”  [78]) are more likely than other people (such as ad-

ministrative assistants) to have the skills needed to design high-quality tope implementa-

tions, particularly for especially complex topes. For example, a system administrator 

would probably be more cognizant of the fact that the top-level domain part of a URL 

should fall into a certain set that includes a large number of two-character country codes. 

If all workers could reuse these good tope implementations, then they would not need to 

create potentially-buggy tope implementations on their own. Fifth, regardless of the skill 

level of the person who uses an existing tope implementation, just having it on hand 

might help to speed the creation of new tope implementations, since he could refer to it as 

an example of how to implement a tope, and he might even be able to incorporate it into a 

larger tope implementation (as when reusing a person name tope implementation and an 

email address tope implementation to validate strings like “Christopher Scaffidi <cscaf-

fid@cs.cmu.edu>”). 

In short, reuse is feasible because many topes are not unique to a single applica-

tion or to a single person. Reuse is desirable because it could save users time, reduce er-

rors, and help ensure consistency.  

In the TDE, reusability of tope implementations is predicated on a simple two-

part strategy: factor out all tope-specific concerns into an application-agnostic tope im-

plementation that can be stored on a users’ computer or a server, then recommend par-

ticular tope implementations based on keywords and examples of the data to be validated 

and reformatted. Therefore, the most crucial evaluation criteria for reusability are 

whether tope implementations really are application-agnostic, and whether the TDE actu-

ally can accurately recommend appropriate tope implementations in a reasonable amount 

of time. 

As the first part of the reuse strategy, the TDE separates tope-specific concerns 

from application-specific concerns by providing a programmatic API called by applica-

tions via add-ins. Each add-in passes strings from the application into the TDE via the 

API, then displays return values on-screen in an application-appropriate manner. The API 



 

152 

effectively acts as a partition between application-specific concerns handled in the add-

ins and application-independent concerns handled in the tope implementations. Section 

 7.1.1 describes this API in more detail, with a particular focus on what specific steps are 

required to implement a new add-in. Section  7.2.1 evaluates the cross-application reus-

ability of tope implementations, demonstrating that they can be reused in an application-

agnostic fashion without loss of accuracy in both spreadsheets and web forms. 

As the second part of the reuse strategy, the TDE recommends tope implementa-

tions for reuse through a “search-by-match” algorithm described by Section  7.1.2. This 

algorithm recommends tope implementations based on how well they match example 

strings provided by the user. For example, this algorithm could quickly locate tope im-

plementations that match “888-555-1212”. The algorithm can be used to search a user’s 

personal computer for topes; in addition, as described by Section  7.1.3, the algorithm has 

been incorporated into repository software that allows users to upload, search, and 

download data descriptions. Section  7.2.2 shows that this algorithm has a recall of over 

80% and a query time of under 1 second when searching, making the algorithm accurate 

enough and fast enough to observe data being edited by a user and to search the user’s 

computer for a tope implementation for that data. Section  7.2.2 concludes by describing 

how the search-by-match algorithm could be parallelized in order to search through large 

repositories. 

7.1 TDE support for tope reuse 

Suppose that Bob wants to validate and reformat some data in a spreadsheet. Per-

haps a suitable tope implementation was already created by Alice and stored on a reposi-

tory server. Or perhaps a suitable tope implementation was already created by Bob and 

stored on his own machine. In either scenario, it is necessary to get the string data from 

the spreadsheet into the tope implementation’s isa and trf functions, then use the func-

tions’ return values to update the spreadsheet application. 

To support the first scenario, with the tope implementation on a repository, the 

TDE provides a user interface so that Bob can search through the repository and find a 

desired tope implementation (Figure 16). Architecturally, this user interface runs on 

Bob’s computer as a client to the repository, which is a server. When Bob clicks on a but-



 

153 

ton for the desired tope implementation, the client downloads the selected tope imple-

mentation’s data description and stores a copy locally. A tope implementation is now lo-

cated on the same machine as the spreadsheet, just as if Bob had created it himself, 

thereby reducing the first scenario to the second.  

In the second scenario, the needed tope implementation is an old one already on 

the local machine—either because Bob created it himself, or because he already 

downloaded it. For these situations, the TDE provides a user interface so Bob can enter 

keywords and example strings, which the TDE uses to search through the tope implemen-

tations stored on the local computer. Individual add-ins can provide custom user inter-

faces as well (Figure 15). Internally, these user interfaces rely on a copy of the repository 

software running locally, communicating via memory with the user interface, rather than 

via a network connection (as in the case of browsing a repository server). 

Once Bob has selected a tope implementation that is stored on the local computer, 

it is still necessary to get the strings from the spreadsheet into the tope implementation, 

then display the functions’ results to the user. To achieve this, the TDE provides a pro-

grammatic API called by applications via add-ins. Each add-in passes data values into the 

TDE via the API, then displays return values on-screen in an application-appropriate 

manner. For example, the Excel add-in passes spreadsheet cells’ strings through the API 

into the TDE, which parses the cells using the grammars generated from the tope imple-

mentation, thereby returning an isa score for each string. Based on these scores received 

back through the API, the add-in flags invalid strings with small red triangles. 

To summarize, there are three key parts of the TDE that together support reuse. 

Working outward from the application, these parts are the following: add-ins to connect 

applications to the TDE via an API, a local copy of the repository software to support lo-

cal search-by-match, and a remote repository server so that users can share tope imple-

mentations with one another.  

The following sections describe these three parts in detail. Section  7.1.1 describes 

how the add-ins and TDE API make it possible for tope implementations to be applica-

tion-agnostic. Section  7.1.2 describes the TDE’s support for finding tope implementa-

tions on the local machine using the search-by-match algorithm. Section  7.1.3 broadens 

this discussion to include issues related to sharing tope implementations via a remote re-

pository. 



 

154 

7.1.1 Supporting application-agnosticism of tope implementations 

Topes are application-independent abstractions. For example, a string matches a 

conceptual abstraction of a phone number regardless of whether the string is in a spread-

sheet or a web form. As far as the abstraction goes, the application does not matter. 

Correspondingly, data descriptions in the TDE are application-independent, and 

the automatically generated tope implementations exist independently of whether their 

isa and trf functions are used on data from spreadsheets, web forms, or any other 

source. Architecturally, this represents a separation of concerns: the tope implementation 

contains functions for validating and reformatting data, with all application-specific con-

cerns totally factored out of the tope implementation. As far as the abstraction implemen-

tation goes, the target application does not matter. This architecture helps to increase the 

reusability of tope implementations. 

At some point, however, it is necessary to address application-specific concerns. 

For example, when validating a spreadsheet, code of some sort must read strings out of 

the spreadsheet cells and later act on isa functions’ outputs by showing error messages 

for low isa scores, or updating the spreadsheet’s user interface based on the output of trf 

functions.  

Addressing these application-specific concerns is the role of an add-in. Each add-

in essentially acts as a liaison between an application and the TDE. The add-in issues 

calls from the application to the TDE via an API provided by the TDE. To date, add-ins 

have been developed for several applications: the Robofox web macro tool, IBM’s Co-

Scripter web macro tool, the web form design tool in Microsoft Visual Studio.NET, and 

Microsoft Excel. 

An example add-in connecting Robofox to the TDE 

A web macro tool like Robofox  [52] watches end-user programmers perform op-

erations in a web browser and attempts to determine the intent behind those actions. The 

tool generates a macro to represent that intent (generally as a sequence of steps) which 

the tool can later execute on new data. For example, with Robofox watching, end-user 

programmers might go to a certain URL and copy a person’s name from a particular tag 

in the web page. In order to identify which tag was selected, Robofox would record the 

tag’s XPath and HTML ID attribute. In addition, it would record a visual pattern, which 



 

155 

is an expression that identifies tags based on their proximity to key labels such as 

“Name:”. EUPs could demonstrate pasting the person’s name into a web form on another 

page. When Robofox replays the macro later, it would go back to the original URL, find 

the tag referenced by the XPath, ID and visual pattern, copy whatever text appeared in 

that location at runtime (which might be a different name than when Robofox created the 

macro), then paste the name into the form on the next page. 

Unfortunately, web sites evolve: There have been many cases where webmasters 

changed pages’ structure, added or removed form fields, and made other changes that 

would have confused web macro tools  [52]. When Robofox executes the macro described 

above, the person name tag might have moved on the page. While Robofox has sophisti-

cated heuristics that combine XPath, ID and visual path information to locate moved tags, 

these heuristics might lead Robofox to locate the wrong tag—such as a tag containing a 

social security number, credit card number, or some other data. Robofox would then pro-

ceed to execute the macro using this wrong information. For example, this might cause 

Robofox to paste a social security number into the form in the other page, which obvi-

ously would be highly undesirable. 

To counter errors of this kind, the developers of Robofox at the University of Ne-

braska have used the TDE to extend Robofox with assertions based on tope formats.7 The 

add-in is a JavaScript library called by Robofox’s core application code to access the 

Toped-based TDE. When constructing a macro, end-user programmers can highlight a 

clipboard item, which is a variable that is initialized by a copy operation in the macro, 

and use the TDE to create a new format or select an existing format stored on the com-

puter. Robofox then creates an assertion specifying that after the copy operation, the clip-

board should contain a string that matches the specified format. At runtime, if a string 

violates any constraint in the format, then Robofox displays a warning popup to explain 

that the assertion is violated, enabling users to modify the macro or cancel execution if 

necessary. For example, if the user specified that the clipboard should match a person 

name, but at runtime the clipboard contains a social security number, then Robofox 

would display a warning popup before proceeding to send the social security number to 

another server. Thus, topes can detect errors that would otherwise have gone unnoticed. 

                                                 
7 Available for download at http://esquared.unl.edu/wikka.php?wakka=RobofoxDownload (click on 
v0.2.3). 



 

156 

An example add-in connecting CoScripter to the TDE 

IBM’s CoScripter web macro tool—formerly called “Koala”  [64]—has a new 

component called Vegemite  [63], which allows end-user programmers to copy and paste 

data from web pages into tables in a “scratch space”. While end-user programmers can 

type strings directly into scratch space cells, they can also create web macros that com-

pute table cell values by posting other cell values through a web form and retrieving 

strings from the web server. Thus, CoScripter could automate many operations involved 

in user tasks uncovered by the Carnegie Mellon Contextual Inquiry (Section  2.3). For ex-

ample, it could automate the process of gathering employee roster information from web 

sites into a spreadsheet. To date, however, CoScripter has lacked primitives for automat-

ing the reformatting operations involved in these tasks, such as reformatting a person 

name like “Chris Scaffidi” to “Scaffidi, Chris”. Topes fill a critical need in automating 

these reformatting operations.  

To support string reformatting, IBM used the Toped-based TDE API to imple-

ment a proof-of-concept feature as a popup menu in Vegemite. As with Robofox, the 

Vegemite add-in is a JavaScript library. After populating a cell value with a string, an end 

user can right-click on the cell value and select “Copy”, which copies the string into the 

system clipboard. (Alternatively, end-user programmers could put a string on the system 

clipboard by executing a system copy command in another application.) Clicking on an 

empty cell and selecting “Paste Special” displays all possible reformatted versions of the 

string on the clipboard (Figure 30). End-user programmers can select a version, which 

Vegemite then pastes into the cell. 

Vegemite populates the list of options by calling the TDE through the API to get a 

list of the available tope implementations, then iterating through them and calling the 

TDE via the API to test the string with each tope implementation. For each successful 

parse, Vegemite calls the tope’s transformation functions (again through the API) to gen-

erate previews of the value as it would appear in the tope’s other formats. In addition, 

Vegemite displays what parts of the string could be extracted from the value. Vegemite 

builds this list of parts by inspecting the data description (via a TDE API function) for the 

selected tope implementation. 

For example, Figure 30 shows the options for pasting a phone number. Figure 31 

shows a table whose second column was populated by copying each cell of the first col-



 

157 

umn and pasting the state abbreviation (which was extracted through a tope that recog-

nizes strings in “City, ST” format). The third column was populated by copying each cell 

of the second column and pasting the string using the state name format. 

 

Figure 30. Copying and pasting a phone number using the add-in for CoScripter/Vegemite  

 

Figure 31. A Vegemite table containing two columns populated by calling tope transformations 

 
 

This proof-of-concept has three limitations to be addressed in future versions of 

Vegemite. First, Vegemite provides no user interface buttons or other controls to launch 

Toped, so end-user programmers presently have no way to add new formats via Vege-

mite. Second, this feature operates on individual cells; to save end-user programmers 

time, IBM could extend this feature to iteratively populate every cell in a column using 

the selected reformatting or extraction operation. Third, while the feature allows end-user 

programmers to populate cells through direct manipulation, selected operations are not 

recorded for replaying later on different data; addressing this limitation will require im-

proved integration between Vegemite and the replay facilities of CoScripter. While these 

three limitations highlight further opportunities to improve the usability of Vegemite, 

they do not diminish topes’ contribution as a mechanism to recognize and reformat string 

data. 



 

158 

An example add-in connecting Microsoft Visual Studio.NET to the TDE 

Even professional programmers often omit validation for input fields, including 

many form fields in “person locator” web applications that were created in the aftermath 

of Hurricane Katrina (Section  2.4). End-user programmers generally have less program-

ming training than professional programmers, and tools for end-user programmers offer 

no more support for validation than do tools for professional programmers—in both cases 

requiring programmers to create a regular expression or a script to effect validation 

 [11] [95]. Thus, even more than professional programmers, end-user programmers proba-

bly struggle to implement validation with existing techniques. 

As in web macros, the fundamental problem is that for many kinds of data, it is 

difficult to conclusively determine validity. For instance, no regular expression can de-

finitively distinguish whether an input field has a valid person name. For any regular ex-

pression that does a reasonably good job of checking person names, there is almost cer-

tainly a valid person name that violates the regular expression. The “binary” validation of 

a regular expression is tolerable in the web macro and spreadsheet domains, where users 

can simply dismiss warning messages. In contrast, this limitation becomes a serious prob-

lem in the web application domain, since there is no way for web application users to 

override an “overzealous” regular expression that rejects an unusual but valid input. Con-

sequently, web application designers often omit validation so as to avoid rejecting any 

valid inputs. 

Topes offer a solution: warn the application user about questionable inputs, so 

that they can be double-checked rather than rejected outright, as demonstrated with an 

add-in for the web form design tool in Microsoft Visual Studio.NET (which comes in an 

Express Edition for end-user programmers).  

In Visual Studio.NET, the normal way for end-user programmers to implement 

validation code is to drag and drop a textbox widget from a toolbox onto the web form, 

then to drag and drop a RegularExpressionValidator widget alongside the textbox. They 

then specify a regular expression and a fixed textual error message. At runtime, if an in-

put violates the regular expression, then the error message appears in red to the right of 

the textbox.  

The Visual Studio.NET add-in is a new validator widget. After dragging and 

dropping a textbox, end-user programmers drag the new widget from the toolbox and 



 

159 

drop it alongside the textbox. Once dropped on the page, the validator gives the option of 

selecting an existing tope, or creating a new tope by typing in examples of the data to be 

validated. The validator passes these examples to the Toped++-based TDE via the API, 

which infers a format from the examples and presents it for review and customization be-

fore the tope’s description file is stored on the web server by the add-in. 

End-user programmers can add additional formats, if desired, and select a pre-

ferred format that this textbox’s inputs should match. The validator automatically uses 

the tope to generate the necessary code for validating inputs. At runtime, this code calls 

the TDE API to reformat the input string, if necessary, to the preferred format. The code 

then calls the TDE API to validate the resulting string with the preferred format’s isa 

function. 

If the string matches the preferred format perfectly, then the code accepts the 

string. If the string does not match the format’s grammar at all, or violates an “always” or 

“never” constraint, then the input is rejected; error messages are displayed using the stan-

dard red text beside the textbox. If the string is questionable, the generated code displays 

an overridable blue warning message so the end user can double-check and possibly cor-

rect the string before it is accepted. The application’s programmer can also specify alter-

nate settings (by configuring the property-value list of the validator in Microsoft Visual 

Studio), such as always rejecting any input that does not match the preferred format ex-

actly, thus dispensing with overridability. Figure 32 illustrates the resulting web applica-

tion user interface by depicting a web form for collecting information similar to the data 

that Hurricane Katrina developers wanted to collect. 

Figure 32. Validation error messages alongside the input textboxes in a web form 
In this example, the first error message is overridable, while the second and third are not. 

 

An example add-in for Microsoft Excel 

Section  4.1 already presented the Microsoft Excel add-in. This add-in appears as a 

toolbar in Microsoft Excel (Figure 9). The user can highlight a column of spreadsheet 



 

160 

cells, then click the “New” button of the add-in. The add-in reads the highlighted cells 

and passes their strings into the Toped++-based TDE (via the API), which infers a boiler-

plate data description and presents for customization and review by the user; alterna-

tively, the user can right-click on a column of cells, which the add-in passes to the TDE 

to retrieve a list of recommended tope implementations for the user to choose from 

(Figure 15). After the user selects a tope implementation, the add-in can pass strings back 

into the TDE in order to call isa functions. The add-in creates small red triangles (Excel 

comments) to flag cells with low isa scores (Figure 12). While the current add-in does 

not visually distinguish between questionable and definitely invalid strings, it does pro-

vide a drop-down menu (on the toolbar) enabling users to filter out errors for question-

able strings, to show only error messages for definitely invalid strings. If the user clicks 

the “Reformat” button to select a format in the tope implementation, then the add-in 

passes each cell’s string into the TDE to call the trf functions, then updates the user in-

terface with the resulting strings. 

Implementing an add-in 

Since they are application-independent, tope implementations can be reused with-

out modification in other applications. Leaving aside nuances about whether specific add-

ins are integrated with the Toped-based TDE or the newer Toped++-based TDE, every 

one of the aforementioned add-ins can call exactly the same tope implementations. For 

example, a user could create a tope implementation for validating data on a spreadsheet, 

then reuse that implementation for validating web form inputs. 

While the architecture insulates the tope implementation from tool-specific con-

cerns, the architecture has a second advantage: it helps to insulate the application (Robo-

fox, CoScripter, Microsoft Visual Studio.NET, or Excel) from concerns related to tope 

implementations. In other words, application developers can integrate topes into their ap-

plications without having to worry about the gory details of inferring data descriptions 

from examples, presenting data descriptions for editing, generating context-free gram-

mars, and so forth. Application developers simply need to create an add-in that calls TDE 

API functions and updates the application’s user interface. This API is available in C# or 

in Java and can be downloaded as open source. 8 

                                                 
8 http://www.topesite.com 



 

161 

Another benefit of wrapping tope implementations with the TDE API is that it 

simplifies add-in code required to call isa and trf functions. For example, the TDE API 

provides a function that can be called to compute the maximal isa score when a string is 

tested with all of a tope implementation’s isa functions. This makes it possible to test, 

with a single line of code, whether a string matches any of the tope’s formats. In fact, the 

TDE API returns more than just a raw isa score: it also returns the automatically gener-

ated human-readable description of any constraints violated by each invalid string, so that 

add-ins can display targeted error messages. 

To concretely illustrate what is required to create an add-in, the following discus-

sion delves into the implementation of the Excel add-in. For simplicity, the discussion 

below presents pseudo-code (Figure 33), rather than actual implementation code. Note 

that each event handler only needs to call one or two Topes.API methods. This helps to 

keep the handlers extremely short, even after exception-handling code is added to the 

pseudo-code. 

The C# Topes.API class serves as a façade  [36] for calling the TDE (Figure 34). 

Most add-ins simply call this class’s methods. For example, when the user highlights 

cells and clicks the Excel add-in’s “New” button, the add-in’s event handler for this but-

ton passes the cells’ text into Topes.API.InferEditSave(), which infers a data description 

from the examples, presents it for customization and review, saves it to the local com-

puter, and returns the tope’s globally unique identifier (GUID string) back to the add-in.9 

The add-in stores this GUID in an annotation attached to each highlighted cell. This an-

notation does not actually validate the cells; it just records the appropriate GUID for each 

cell. After recording the annotation, the add-in passes the cells’ text and the tope GUID to 

Topes.API.BulkValidate(), which validates each cell’s text and returns an isa score for 

each, along with an error message for invalid strings and a copy of the text that was 

passed in. The add-in takes each error message and attaches it as a “comment” tooltip to 

the corresponding cell. 

                                                 
9 “GUIDs” are Microsoft’s implementation of the universally unique identifier (UUID) standard specified 
in RFC 4122. UUIDs are pseudo-random 128-bit numbers usually represented as a hexadecimal string used 
to identify a computational artifact. UUIDs are well-established and widely used in a range of different 
systems, including Microsoft Windows and Intel hardware chips. Microsoft’s guid-generation algorithm 
“never produces the same number twice, no matter how many times it is run or how many different ma-
chines it runs on” http://msdn.microsoft.com/en-us/library/ms221064.aspx. 



 

162 

The add-in also has an event handler (not shown in Figure 33) that is called when 

the user edits any cells. This handler revalidates the cells if they have an annotation speci-

fying a tope GUID. In addition, the add-in has an event handler for the toolbar’s drop-

down widget (Figure 9), in order to hide or show tooltips for questionable strings. Fi-

nally, the add-in has a context menu (discussed further by Section  7.1.2) that allows the 

user to browse through existing tope implementations; the add-in populates this menu by 

calling API.Search(), which returns an enumeration of matching topes on the computer. 

 

Figure 33. Pseudo-code for the primary functionality of the Excel add-in 

 

In the "New" button's event handler… 
topeGuid = Topes.API.InferEditSave(highlightedCells) 
validationResults = Topes.API.BulkValidate(highlightedCells, topeGuid) 
displayValidationResults(highlightedCells, validationResults, topeGuid) 
 
In the "Load" button's event handler… 
topeGuid = Topes.API.BrowseForTope() 
validationResults = Topes.API.BulkValidate(highlightedCells, topeGuid) 
displayValidationResults(highlightedCells, validationResults, topeGuid) 
 
In the "Edit" button's event handler… 
topeGuid = highlightedCells[0].annotation 
topeGuid = Topes.API.EditSave(topeGuid) 
validationResults = Topes.API.BulkValidate(highlightedCells, topeGuid) 
displayValidationResults(highlightedCells, validationResults, topeGuid) 
 
In the "Reformat" button's event handler… 
topeGuid = highlightedCells[0].annotation 
formatGuid = Topes.API.BrowseForFormat(topeGuid) 
validationResults = Topes.API.BulkTransformAndValidate( 
     highlightedCells, topeGuid, formatGuid) 
displayValidationResults(highlightedCells, validationResults, topeGuid) 

 
A helper function used by the event handlers above… 
displayValidationResults( 
        List<string> cells, List<IsaResult> isaResults, string topeGuid) 
for (int i = 0; i < cells.Count; i++)  
     cells[i].annotation = topeGuid 
     cells[i].tooltip = isaResults[i].Message 
     cells[i].text = isaResults[i].Text 



 

163 

Figure 34. Some key methods from the C# class Topes.API 

 
The amount of code required for interacting with the TDE API is extremely small 

compared to the code overall required to write the Excel add-in. Of the 1160 lines of code 

in the add-in, only 10 actually make calls to the TDE API. Another few dozen lines call 

methods exposed by objects returned by the API. The remaining 1000 lines of code relate 

to presenting security credentials so that Excel will load the add-in, initializing the add-

in’s toolbar, registering the nested context menu, reading/writing values from/to the 

spreadsheet cells, exception handling, and displaying an “About this Add-In” informa-

// Shows a dialog window where the user can choose a data description, then 
// returns a tope guid to the caller 
public static string BrowseForTope() 
 
// Presents a dialog so the user can choose one of the tope's formats, then  
// returns a format guid to the caller 
public static string BrowseForFormat(string topeGuid) 
 
// Validates the strings and returns an IsaResult for each.  
// Note that an IsaResult object (as returned by the TDE’s Topep module)  
// provides more than just an isa score. 
// Each IsaResult contains an isa score and possibly a non-null error message. 
// Each IsaResult also repeats back the string that was used to generate the IsaResult. 
public static List<IsaResult> BulkValidate( 
                                   List<string> strs, string topeGUID) 
 
// Transforms each string to the selected format,  
// validates each string against the format's isa function, and  
// returns an array of IsaResults.  
// Each IsaResult contains a non-null string indicating transformation output,  
// as well as an isa score for this non-null output string and possibly a non-null error message 
public static List<IsaResult> BulkTransformAndValidate( 
           List<string> strs, string topeGUID, string targetFormatGUID) 
 
// Presents a data description for editing and returns a tope guid  
// (which may differ from the original topeGuid,  
// if the user chooses to replace the tope with another tope) 
public static string EditSave(string topeGuid) 
 
// Infers a data description from the examples, presents it for review and customization, saves it,  
// and returns a tope guid to the caller; pass null if no examples are available  
public static string InferEditSave(IEnumerable<string> examples) 
 
// Returns a list of all the topes known to the system. 
public static IEnumerable<string> ListAllTopes() 
 
// Finds tope implementations that matching a query  
// (space-delimited keywords, and/or list of examples), 
// returning the tope guid, name, and stars for each tope implementation 
// (1-4 stars, depending on how well the tope matches the query)  
public static IEnumerable<Tuple<string, string, float>> Search( 
                   string keywords, IList<string> examples) 



 

164 

tional screen. In short, the amount of code required to interact with the TDE API is far 

smaller than the amount of code required to interact with Excel. Once a programmer has 

mastered the process of writing any add-in for Excel, there is relatively much less that 

must be learned in order to interface to the TDE API. 

Steps for implementing an add-in 

The essential steps for implementing an add-in for a new application are the following: 

 

1. Decide which user interface widgets to validate/reformat with topes. Topes oper-

ate on strings. So fire up the application and find the fields that have text in them. 

In a web form, the text is in text fields. In a spreadsheet, the text is in cells. The 

key question to answer is, “Where do the strings live in the application?” 

2. Add controls to the application’s user interface so users can select a tope for the 

text widgets. For example, the Excel add-in provides a button for this (in the tool-

bar) as well as a context menu, while the CoScripter/Vegemite add-in provides a 

context menu. Choose whatever control fits in most seamlessly with the style of 

user interaction supported by the application (e.g.: if the application generally 

provides context menus for interaction, then use a context menu rather than a 

drop-down widget or button). In each control’s event handler, call the TDE’s API. 

3. At runtime, pass the text widget’s value, a string, to the TDE API for validation 

and reformatting. Receive the API’s return values and update application user in-

terface. Again, follow the standard user interaction style for displaying outputs. 

Web forms generally display error messages to the right of text boxes, so that is 

the approach taken by the TDE add-in for Microsoft Visual Studio.NET. Excel 

usually uses modeless flags on cells (usually little green triangles), so that TDE 

add-in takes a similar approach.  

4. Try out the resulting add-in for a while, perhaps in a user study, and iterate as 

needed. My first add-ins for Excel and Visual Studio were fairly unattractive and 

slow because I didn’t really know the applications’ legacy interfaces too well. My 

second attempts were better, as I learned out how to select more attractive icons, 

how to read/write data from the application more efficiently, and how to add con-

text menus to Excel. The most recent version of the add-in is very good, with ex-



 

165 

tremely attractive graphics that took hours to make, amazingly fast read/write 

from the application, and a context menu that users found extremely intuitive to 

use (Section  6.2.2). 

7.1.2 Recommending tope implementations that match user-specified ex-
amples 

As described by Section  5.2.2, 32 topes accounted for 70% of all spreadsheet col-

umns that could be categorized in a corpus of spreadsheets from the web. In addition to 

these, a user might have dozens of uncommon or organization-specific topes that rarely 

appear in spreadsheets published on the web. To reduce the need for users to browse 

through so many topes, the Excel add-in shows a list of recommended topes in a context 

menu when the user right-clicks on a group of highlighted cells (Figure 15). The add-in 

retrieves this list via a call to API.Search(), a function that accepts two parameters: a list 

of keywords and a list of example strings. The add-in gets the keywords from the first 

row above the highlighted cells (since a column’s first cell often has a header describing 

the column  [1]) and gets the example strings from the highlighted cells.  

This context-menu is actually functionally redundant with the dialog window dis-

played in a call to API.BrowseForTope(), since this dialog window also allows users to 

enter keywords and examples to search for tope implementations. Displaying the list in a 

context-menu simply provides a tighter integration with the user interface of the Excel 

application. As described by Section  7.1.3, the repository also provides a similar search 

feature so that users can look for tope implementations on the server. 

Basic search-by-match tope recommendation algorithm 

Given a set of keywords K, a set of examples E, and a positive integer N indicating 

the maximum number of topes to return, the algorithm in Figure 35 retrieves the list of 

recommended topes T.  

This “search-by-match” algorithm first sorts topes according to how many key-

words case-insensitively match words in tope names. The set of tope candidates is pruned 

so each remaining candidate matches at least a certain number of keywords; the threshold 

s0 is chosen so at least N candidates remain under consideration. Each tope’s keyword 



 

166 

count is augmented with a score w[τ] indicating how many examples appear in each 

tope’s whitelist (in any column). Since 0 ≤ w[t] ≤ |E|, whitelist matches effectively break 

ties between topes with the same keyword count. After another round of pruning, scores 

are incremented by a score c[τ] indicating on how well each tope matches the examples. 

Because 0 ≤ c[t] ≤ 1/(|E| + 2), c[τ] scores effectively break ties between topes with 

the same keyword and whitelist counts. 

 

Figure 35. Pseudo-code for basic recommendation algorithm 

 
 

Optimizations and CharSigs 

The pseudo-code above is straightforward to understand, but it is not quite fast 

enough for interactive use, so I have optimized it by inverting the “For each” loops with 

the score computations. For example, rather than looping through all topes to count key-

word occurrences, the algorithm uses an inverted index to retrieve topes that match each 

keyword. The same approach is used for whitelists. 

Recommend(K, E, N) 
 Let T = all topes 

 

 For each  τ∈T, 
   s[τ] = |{k ∈K : k is in τ’s name}| 
 Prune(T, s, N) 

 

 For each  τ∈T, 
   w[τ] = |{e ∈E : e is in τ’s whitelist}| 
   s[τ] = s[τ] + w[τ] / (|E| + 1) 
 Prune(T, s, N) 

 

 For each  τ∈T, 
   c[ τ] = 1 / (|E| + 2) 
   For each e∈E, 
     cx = maximal isa(e) among τ’s formats 
     if (cx == 0) cx = 0.00001 
     c[τ] = c[τ] * cx 
   s[τ] = s[τ] + c[τ] / (|E| + 2) 
 Prune(T, s, N) 
 Sort T by s and return top N topes 
 
Prune(T, s, N) 
 Sort T by s 
 Compute the maximal s0 such that  
     at least N topes in T have s[t] ≥ s0 
 For each tope t in T such that s[t] < s0 
   Remove t from T



 

167 

Inverting the third loop to retrieve topes that match a certain example is more 

complicated. In contrast to retrieving tope implementations by keyword, the potentially 

infinite number of values matched by each tope implementation makes it impossible to 

index tope implementations according to what examples they match. Instead, tope im-

plementations are indexed according to what strings they might match, based on topes’ 

“character content”.  

For example, a phone number can never contain a dollar sign, so if an example 

string contains a dollar sign, then there is no need to test it against a phone number tope. 

Likewise, for a string like “ABC-DE20” with 5 letters, 2 digits (for a total of 7 alphanu-

meric characters) and a hyphen, it is only necessary to test this string against topes whose 

instances could possibly contain those characters.  

A new data structure called a CharSig records the possible character content of a 

tope. A CharSig records the range of how many digits might occur, the range of how 

many letters might occur, the range of how many alphanumeric characters may occur, 

and the range of how many times each other character may occur. For example, if a 

phone number tope had two formats to match values like “800-555-1212” and 

“800.555.1212”, its CharSig would be 10 digits, 10 alphanumerics, 0-2 hyphens, and 0-2 

periods. 

The CharSig is computed bottom-up from the tope’s data description. Each Nu-

meric part’s hyphen, period, and digit content is computed based on if the number could 

be negative, how many decimal digits (if any) are allowed, and how many digits are in 

the maximal and minimal allowed values. The content of each word in a Word-like part is 

read directly from its constraints. To compute the content of the entire Word-like part, 

content ranges are multiplied by the number of words allowed, then further adjusted up-

ward based on separators between words. In a Hierarchical part, the character counts of 

parts and inter-part separators are then added together to yield the range of possible oc-

currences for each variation in the data description. As in the phone number example 

above, the data description’s CharSig is computed by considering the disjunction of these 

variations. 

At runtime, topes are selected from the CharSig index if they could have the char-

acters demonstrated by each example. For each character class cc (digits, letters, alpha-

numerics, and each other character) and each i in the range 0-10, the index records the set 



 

168 

i
ccS of topes that could have i instances of character class cc. It also records ∞

ccS , indi-

cating topes that could have 11 or more instances. These sets are intersected to identify 

topes that could possibly match each user-specified example.  

For instance, a tope could only match the license plate number “ABC-DE20” if its 

instances could have 5 letters, and if its instances could have 2 digits, and if its instances 
could have 7 alphanumerics, and if its instances could 1 hyphen. The set 5

letterS  contains 
the topes whose instances could have 5 letters, 2

digitS contains the topes whose instances 

could have 2 digits, 7
alnumS  contains the topes whose instances could have 7 alphanumer-

ics, and 1
−S  contains the topes whose instances could have 1 hyphen. Thus, to find topes 

that could match “ABC-DE20”, it is only necessary to consider topes in 
17

alnum
2
digit

5
letter −∩∩∩ SSSS  

These optimizations do not improve the asymptotic complexity of the algorithm, 

which remains O(|T|), as shown by examining the steps of the algorithm. Computing 

keyword and whitelist hits with an inverted index is trivially O(1) for each string pre-
sented by the user. Each set i

ccS  has worst-case size of O(|T|),  so intersecting those sets 

to get the list of candidate topes is O(|T|). Testing each tope in this set of O(|T|) topes is 

O(1), so the total cost of calling isa functions is also O(|T|). Finally, the intervening 

Prune operations use the O(|T|) bucket sort to achieve linearity (taking advantage of the 

fact that s[τ] can take on only a finite number of values, which ultimately results from 

the mapping from a finite number of distinct adverbs of frequency such as “often” in 

Toped++ to isa return values).  

While the simulation discussed by Section  7.2.2 empirically confirms that these 

optimizations produce an O(|T|) implementation, it also shows that the optimizations do 

help to improve performance by a constant factor. Specifically, the simulation indicates 

that filtering topes by CharSig improves performance by a factor of 2, making it quite 

adequate for interactive use.  

When a new tope is created, inserting it into the index is essentially instantaneous, 
since computing the CharSig and updating the i

ccS  sets can be done in O(1) time with 

respect to the total index size. 

In passing, note that a CharSig could also be computed bottom-up for regular ex-

pressions. Specifically, for the empty regular expression ε, every character class must oc-

cur 0 times. The character content of a single character c is 1 of the class for c. When a 



 

169 

regular expression r1 is concatenated with another regular expression r1, the lower (up-

per) bound of each character class in r1r2 is equal to the sum of the lower (upper) bounds 

in r1 and r2. In a disjunction of r1 and r2, the lower (upper) bound of each character class 

in r1|r2 equals the minimum (maximum) of the lower (upper) bounds in r1 and r2. When 

a regular expression r is wrapped with a Kleene star, the lower (upper) bound of each 

character class in r* is 0 (∞). This direct applicability of CharSigs to regular expressions 

suggests that it may be possible to use the tope recommendation algorithm to search regu-

lar expressions by example in future systems. 

7.1.3 Support for publishing, finding, and combining tope implementations 

While the basic search-by-match algorithm provides a way for the TDE to rec-

ommend tope implementations that already exist on the user’s computer, it is insufficient 

to support reuse of tope implementations by multiple people. The TDE’s repository 

server and related user interfaces fill this need. First, the TDE provides a simple user in-

terface for publishing tope implementations to a repository server. Second, the repository 

includes a web server application for searching a repository for tope implementations; 

Toped++ embeds an instance of Internet Explorer so that the user can access the reposi-

tory via this web application without ever leaving the context of the data description edi-

tor. The repository’s search interface presently uses the same search-by-match algorithm 

used for searching the user’s local machine, though this algorithm could be parallelized in 

future versions of the repository. 

Publishing a tope implementation 

While editing a data description in Toped++, the user can open the “Publish / Un-

publish” dialog (Figure 36). Toped++ populates the list of servers by looking in a specific 

directory, where a repository descriptor file is stored for each server. This repository de-

scriptor file, formatted in XML, specifies a URL for publishing and unpublishing data 

descriptions using the standard REST protocol  [34] (where an HTTP POST or PUT op-

eration publishes a new object, DELETE unpublishes it, and GET retrieves the latest 

copy). Whereas the REST URL is for programmatically reading and writing descriptor 



 

170 

files in XML via HTTP, the repository descriptor file also specifies a “human interface” 

URL (discussed below) that a regular web browser can use to access the web site. 

The user can add new repositories to the list of recognized repositories. This is 

accomplished in three steps. First, the repository’s owner puts a copy of the repository 

descriptor file on some web server somewhere and puts a hyperlink to it on a web page. 

Second, when a user who has the TDE installed clicks on that hyperlink, the TDE is 

alerted by Windows (through a special “asynchronous pluggable protocol event handler” 

that the TDE registers with Windows), and the TDE prompts the user to confirm that he 

wants to add the repository into the user’s list of recognized repositories (Figure 37). If 

the user confirms that this repository should be recognized, then the TDE stores the re-

pository’s descriptor file on the local computer, and the repository is added to the user’s 

list of recognized repositories. The TDE does not presently have any dialog window for 

removing repositories from the list of recognized repositories, but this can be accom-

plished by simply deleting the repository’s configuration file from the hard drive. Future 

versions of the TDE will include a user interface for deleting configuration files so that 

the user can prune the list of recognized repositories, or for changing the directory where 

configuration files are stored. 

Figure 36. Window for publishing / unpublishing data Toped++ descriptions 
(before and after clicking “Publish”) 

 



 

171 

Figure 37. Adding a new repository to a user’s list of recognized repositories 

 
 

Returning again to the Publish/Unpublish dialog window (Figure 36), the “Pub-

lish” link allows the user to send a copy of the data description that he is currently editing 

up to the repository. The TDE accomplishes this by performing an HTTP POST opera-

tion to the REST URL specified in the repository’s descriptor file. It immediately per-

forms a GET to verify that the data descriptor was uploaded correctly. The “Unpublish” 

link allows the user to remove the data description from the repository. The TDE accom-

plishes this by performing an HTTP DELETE operation using the same URL. 

The current repository implementation is a simple wiki-style content management 

system. Any user can edit or delete any other user’s content. The wiki does, however, re-

quire all users to have an account; so the first time that a user accesses a repository, he 

will be prompted to create an account by entering a new user name and password. Future 

versions of the repository may provide more sophisticated content management. 

Finding and downloading tope implementations 

The repository server includes a web application allowing users to search through 

the data descriptions currently stored on the server. This search interface is based on the 

same search-by-match algorithm supported on the user’s local machine. The user can ac-

cess it through a dialog window inside of Toped++ (Figure 38) or can access the web ap-

plication through a browser (Figure 39). Toped++ achieves this by hosting an instance of 

Internet Explorer inside the dialog window and directing the browser to the “human inter-

face” URL specified in the repository descriptor file. 

In either case, the repository uses icons to show how well each example string 

matches each tope implementation in the search (with green up arrows flagging good 

matches, yellow squares flagging questionable matches, and red down arrows flagging 

poor matches). One to four blue stars summarize the closeness of the each search result to 



 

172 

the user’s query—in the example shown in Figure 39, the “name” keyword hit the “Com-

pany Name”, “Last Name” and “First Name” data descriptions, but these have less than 

four stars because they missed the “person” keyword, and in the case of the latter two 

search results, they even missed some example strings. The number of stars is approxi-

mately proportional to the score of the search result as computed in the search-by-match 

algorithm (the final value of s[τ] in Figure 35), where four stars corresponds to the 

maximal possible score possible by hitting all keywords and all example strings. (This 

proportionality is not precise because of rounding to the nearest number of stars.) 

 

Figure 38. Searching the repository from within Toped++ 

 



 

173 

Figure 39. Using a web browser to search the repository 

 
 

The search results page also shows a link allowing the user to engage in an “ad-

vanced search”, which  Chapter 8 describes in detail. This advanced search provides fea-

tures for filtering search results based on criteria related to the apparent reusability of 

each tope implementation. 



 

174 

If the user clicks on one of the search results, the web application displays de-

tailed information about the selected tope implementation (Figure 40). This page shows 

the tope implementation’s name, author, and various statistics. Scrolling down in the 

page shows comments by other users. These statistics and comments are used for filtering 

in the advanced search feature and are described in detail by the next chapter. 

When the user views the web application through Toped++ (as in Figure 40) rather 

than through a web browser, a “Download” button appears. If the user clicks this button, 

then Toped++ is notified through a special event handler from the web page that it hosts, 

and Toped++ retrieves the data description’s XML via the REST URL specified in the re-

pository descriptor file. It saves this data description on the local computer, just as if the 

user had created the data description himself.  

 

Figure 40. Reviewing detailed information about a tope implementation 

 
 



 

175 

Combining data descriptions 

Once the user has stored a data description on the local computer, it can be used 

in exactly the same way as any other data description on the computer, regardless of 

where these descriptions came from. In particular, the user could combine data descrip-

tions from multiple repositories. For example, the user could download a person name 

data description from one repository and an email address data description from another 

repository, then combine these to produce a data description for strings like “Christopher 

Scaffidi <cscaffid@cs.cmu.edu>”. 

Some caution is required, however, when the user wants to combine multiple data 

descriptions that each describe the same data category, since data descriptions might have 

different (inconsistent) names or specifications for parts. This caution is required regard-

less of whether the descriptions come from the same repository, but there probably is a 

higher likelihood of inconsistency when the descriptions come from different reposito-

ries, since different user communities might have different topes for the same kind of 

data. 

For example, suppose that the user wants to combine a variation from one phone 

number data description with a variation from another phone number data description to 

produce a third data description. The act of combining the two variations is very simple. 

The user could open the first source data description in Toped++, highlight the desired de-

scription, type Control+C to copy it into the clipboard, open the target data description, 

and hit Control+V to paste the variation. He could then repeat the same steps to copy a 

variation from the other source data description into the target data description.  

After the user performs the steps described above, he will have successfully pro-

duced a data description containing two variations. Figure 41 illustrates what this data 

description might look like to the user. However, lurking beneath the surface, this result-

ing data description could have two kinds of inconsistencies. 



 

176 

Figure 41. Data description created by copying/pasting variations from other data descriptions 

 
 

First, even though both variations have parts that play the role of an exchange and 

a local number, they do not use the same names for those parts. This will prevent the tope 

implementation generated by Topeg (Section  6.1.1) from successfully reformatting 

strings between formats in these variations. For example, if a string “+1 123 456 1234” is 

parsed with the first variation’s grammar, then the parse tree will have a node labeled 

“area code” containing “123”, a node labeled “exchange” containing “456”, and a node 

labeled “local number” containing “1234”. When the trf function targeting a format in 

the other variation executes, it will attempt to find parts called “area code”, “middle dig-

its”, and “last four digits” (as in the algorithm shown in Figure 26). Because it will be 

unable to find the latter two parts, it will be unable to concatenate their values to the re-

sult string, so the algorithm will end up generating “123--”. To catch errors of this kind at 

runtime, all outputs are tested against the target format’s grammar and flagged for the 

user’s review (Section  6.1.1). To help detect the potential for errors of this kind at design 

time, Toped++ presents a summary on the “Testing” tab of all parts that appear in only a 

subset of the variations (Figure 42).  

Second, even though both variations have a part named “area code”, these two 

parts have a different definition. In this example, the area code part in the first variation 



 

177 

does not have a constraint indicating that the area code needs to be 200 or greater, while 

the area code part in the second variation does have this constraint. So, for instance, the 

string “+1 123 456 1234” would match the first variation, but “123-456-1234” would not 

match the second variation. This inconsistency is not readily apparent in the user inter-

face because the user must click on each part in order to view its constraints (though there 

is a clue to the presence of this inconsistency in that mousing over one of the two part 

icons will only highlight that part icon, rather than both part icons, which would happen 

if both icons corresponded to the same part specification). To help the user detect errors 

of this kind, the bottom half of the “Testing” tab of Toped++ displays a summary of parts 

that have multiple specifications (Figure 42). 

To help the user fix both kinds of inconsistency, Toped++ provides a “Find and 

Replace” dialog window (Figure 43). For example, the user can replace all instances of 

the “middle digits” specification with the “exchange” specification, thereby addressing 

the first kind of inconsistency described above. The second kind of inconsistency is more 

subtle, as the user might need to actually view the parts’ constraints in order to decide 

which specification to keep and which to replace. When making this decision, the user 

can click on a preview icon ( ) to examine a part specification’s constraints. After re-

placing all instances of parts in the first variation with the corresponding parts from the 

second variation, the user will have remedied every inconsistency described above. 

An alternate approach would be for Toped++ to aggressively detect the same kinds 

of inconsistencies at the moment that the inconsistencies are created (i.e.: when the user 

pastes the second variation into the data description), to interrupt the user and force him 

to immediately focus his attention on the inconsistencies, and to prevent him from mov-

ing forward with any additional editing activities until the inconsistencies had been ad-

dressed. This would prevent any of these inconsistencies from forming. On the other 

hand, it would probably be very annoying to the user (as modal interruptions are well-

known to be distracting and frustrating), not to mention inconsistent with the style of the 

TDE overall (which identifies questionable behavior or data, then lets the user work at his 

own pace to double-check whether the problems are real). 

In short, Toped++ does not prevent users from combining variations in an incon-

sistent manner. However, it provides testing features so that the inconsistencies are more 

obvious, as well as a simple dialog window for fixing these inconsistencies. 



 

178 

 

 

Figure 42. Detecting inter-variation inconsistency in a data description 

 



 

179 

Figure 43. Using Toped++ to replace one part specification with another. 

 
 

Figure 44. Previewing a part's constraints in the Find and Replace dialog window of Toped++ 

 



 

180 

7.2 Evaluation 

The reusability of tope implementations is predicated on a simple strategy: factor 

out all tope-specific concerns into an application-agnostic tope implementation that can 

be stored on a users’ computer or a server, then recommend particular tope implementa-

tions based on keywords and examples of the data to be validated and reformatted. There-

fore, the most crucial evaluation criteria for reusability are whether tope implementations 

really are application-agnostic and whether the search-by-match algorithm actually can 

recommend appropriate tope implementations in a reasonable amount of time based on 

just a few keywords and examples. 

Section  7.2.1 addresses the first evaluation criterion with a simulation showing 

that tope implementations do indeed retain their accuracy when carried from one kind of 

application to another. Section  7.2.2 addresses the second evaluation criterion with a 

simulation showing that the search-by-match algorithm is fast enough and accurate 

enough for searching the user’s computer. A qualitative analysis suggests that the algo-

rithm offers straightforward opportunities for high-performance parallelization in a re-

pository setting. 

7.2.1 Accuracy of tope implementations when reused across applications 

To evaluate reusability, I tested if the Toped-based topes that I implemented for 

spreadsheet data (Section  5.2.2) could accurately be reused to validate data from web ap-

plications. I used two applications as data sources for this experiment. 

The first web application was Google Base, a site developed by professional pro-

grammers. Of the 32 spreadsheet-based tope implementations described by Section  5.2.2, 

7 corresponded to fields in Google Base. I validated an eighth category in Google Base, 

mailing addresses, by concatenating existing address line, city, state, and country topes 

with separators and a zip code field. (That is, these topes corresponded to distinct cells in 

spreadsheets but were concatenated into one field in Google Base.) 

The second web application was a Hurricane Katrina person locator site (de-

scribed by Section  2.4), which was built by a team of professional and end-user pro-

grammers. Of the 32 spreadsheet-based tope implementations described by Section  5.2.2, 

5 corresponded to text fields in this web application. 



 

181 

I manually validated 100 randomly-selected test values from each of the 13 cate-

gories and tested whether the tope implementations produced the correct validation 

scores. As in Section  5.2.2, I measured accuracy by computing the topes’ F1 for three dif-

ferent configurations (3A being the case where questionable strings were rejected, 3B 

being the case where questionable strings were accepted, and 4 being the case where a 

user would be prompted to double-check questionable strings). Comparing the results 

shown by Figure 45 to the earlier spreadsheet-based results shown by Figure 25 in Sec-

tion  5.2.2, it is clear that the topes actually were more accurate when reused on the web 

application data than they originally were on the spreadsheet data. Specifically, the high-

est F1 score on the spreadsheet data was approximately 0.7 (at the low end of acceptable), 

while here on web application data, the lowest F1 score is 0.7 (and that is for cases HK 3B 

and GB 3A, which are cases that do not make use of topes’ ability to identify question-

able data for double-checking by users).  

The main reason for this higher accuracy during reuse on web application data is 

that the web application data demonstrated a narrower range of different formats com-

pared to the spreadsheet data. In fact, for Hurricane Katrina data, accuracy was so close 

to 1 even with a single format that including more formats yielded little additional bene-

fit. 

Figure 45. Accuracy of reusing topes on Hurricane Katrina (HK) and Google Base (GB) data. 

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5

Number of Formats or Regexps

F1

HK 4
HK 3B
HK 3A

GB 4
GB 3B
GB 3A

Condition

 
 

Incidentally, the Hurricane Katrina 3B line in Figure 45 highlights the importance 

of asking users to double-check questionable values. As in Section  5.2.2, condition 3B 



 

182 

accepts questionable values without double-checking them. As formats were added in this 

Hurricane Katrina experiment, topes started recognizing unusually-formatted, invalid 

strings that did not match the first couple of formats. The soft constraints in the topes 

identified these unusual strings as questionable, which causes condition 3A to reject them 

(correctly) and prompts condition 4 to simulate asking a user for double-checking (also 

correctly rejecting the strings). But condition 3B simply accepts the strings (since it ac-

cepts questionable strings). Normally, adding formats to validation code improves the 

quality of validation because it allows unusual-yet-valid strings. The lesson is simply 

adding formats to validation code can actually harm the accuracy of validation, if it doing 

so starts to allow unusual-and-invalid strings. 

7.2.2 Scalability of example-based recommendation 

To evaluate the responsiveness and accuracy of the tope recommendation algo-

rithm as the number of topes increases, I ran simulations using Toped++-based topes for 

all 32 most common kinds of data in the EUSES spreadsheet corpus (as identified by the 

procedure described by Section  5.2.2). Simulating what would happen if a user had a cer-

tain number of topes, I randomly chose a subset T of topes from these 32. For each tope, I 

randomly selected a corpus column that was known (based on our previous study) to have 

that that tope’s kind of data. Using the words in the first cell as keywords K, and using 

examples E randomly selected from the other rows, I retrieved the recommended topes. I 

then checked if the correct tope appeared in the result set. I computed the average recall 

and query time for different values of |T|, |E|, and number of results N. I then repeated 

the same process without using keywords. 

Searching based on examples (even without keywords) provided a huge im-

provement over searching based on keywords alone, raising recall from 0.44 to as high as 

0.65 even when the algorithm returned only a single search result (Figure 46). When the 

algorithm returned 5 search results, keyword-based search was still only 0.52, but key-

word-based recall was as high as 0.83. The best recall resulted for |E|=4 examples. Add-

ing more examples caused the algorithm to spuriously match the whitelist of other topes. 

Adding more examples also substantially increased the time required to perform queries 

(Figure 47), suggesting that in practice, it is best to limit the number of examples passed 



 

183 

to the recommender. Including keywords slightly improved recall. Since recall rose sub-

stantially with N, it is desirable to return multiple options rather than simply assuming that 

the first is best. 

Figure 46. Accuracy of the search-by-match tope recommendation algorithm 
showing that keywords and |E|=4 examples gave maximal recall. 

In this simulation, the number of topes |T| = 32. 

 

Figure 47. Speed of the search-by-match tope recommendation algorithm 
showing that recommendations were computed in under 1 s.  

In this simulation, the number of search results N=5. 

 



 

184 

A linear fit for the query time of the configuration |E|=4 |K|>0 yields  

time=4.6 |T| + 25.9 ms (R2=0.96). As noted earlier in this chapter, users are likely to 

have a few dozen topes on their computer (perhaps including tope implementations for 

the most common 32 data categories, as well as some organization-specific tope imple-

mentations). Searching a collection of 50 topes would require approximately 250 ms, 

while searching through 200 topes would require just under 1 sec. Instrumenting the code 

showed that the CharSig optimization was able to rule out approximately half of all topes 

during queries. 

Scaling up the search-by-match algorithm through parallelization 

The analysis above showed that the search-by-match algorithm is fast enough to 

search through a couple hundred topes in under a second. This probably is fast enough for 

searching a small organization-sized repository. However, to search through all the topes 

that a large organization might produce, or to search through thousands of topes produced 

by members of an entire society, the algorithm would need to be parallelized. This sec-

tion describes one straightforward approach (that has not been implemented) for parallel-

izing the algorithm nearly completely, showing the feasibility of scaling the search-by-

match algorithm to support extremely large repositories.  

The search-by-match algorithm has three parts, each of which lends itself to 

nearly total parallelization. These three parts are the index-based search (for keywords 

and whitelist matches), the tests of examples against topes (using CharSigs then isa func-

tions), and periodic pruning (for sorting and filtering results).  

The keyword and whitelist portions of the algorithm have the general structure of 

receiving a list of literal strings (keywords and example strings, respectively), then re-

turning a list of tope implementations with the number of “hits” for each tope implemen-

tation. This is precisely the same algorithmic structure embodied by a standard web 

search engine, which accepts a set of user-specified keywords and returns a list of docu-

ments with the number of hits for each document. Companies like Google have been very 

successful at parallelizing this kind of algorithmic structure by partitioning the index over 

tens of thousands of computers  [7]. 

For example, one computer could be responsible for returning documents that 

match the keywords “hunter” and “rant”, while another could be responsible for returning 



 

185 

documents that match the keywords “twelve” and “umbrella” (Figure 48). To improve 

load balancing, keywords are randomly assigned to pools (which is why two totally unre-

lated words like “hunter” and “rant” might be served by the same pool). When a com-

puter acting as a front-end for the search engine receives a query such as “umbrella 

hunter”, it calls the appropriate server for each keyword to ask which documents contain 

the specified keyword, and the appropriate server reports a list of documents which front-

end combines into a result set. A similar parallelization structure is used to satisfy more 

sophisticated search filters (as in queries requiring that two keywords appear adjacent to 

one another in the source document). 

Figure 48. Basic search engine parallelization structure 

 
As an implementation detail aimed at avoiding poor throughput, intolerable la-

tency, and unreliability in the event of hardware malfunctions, each box in Figure 48 ac-

tually corresponds to a load-balanced pool of replicated computers rather than a single 

computer. Moreover, the parallelization tree might have more than two levels, in order to 

pre-filter results prior to combination by the front-end pool. High-speed network switches 

connect the computers, which typically reside in the same rack of a data center. 

This parallelization strategy would work well for the keyword phase and the 

whitelist phase of the first part of the search-by-match algorithm. In the first phase, a tree 

of computers would find tope implementations (rather than documents, as in web search) 

that match certain keywords. This would yield a list of tope implementations sorted in 

order of how many keywords they match. Then a second tree could find tope implemen-

tations using an index mapping literal examples to tope implementations that contain 

those strings in their respective whitelists. When bubbling the results up this second tree, 

“hunter” and “rant”  
keyword-matching server 

“twelve” and “umbrella”  
keyword-matching server 

… 
(other keyword servers) 

Search engine front-end 

… 
(other keyword servers) … 

(other keyword servers) 



 

186 

the results would first be sorted by the number of keyword hits that were reported by the 

first phase of the search, and whitelist hits would only be used as tie-breakers. This would 

yield a sorted list of search results based on the desired combination of keyword and 

whitelist matches. 

A very similar parallelization strategy could be used for the second main part of 

the search-by-match algorithm, finding tope implementations based on how well they 

match the examples. This second part would be divided into two phases, each requiring a 

parallelization tree. 

In the CharSig phase, each computer in a tree would be responsible for certain 

CharSigs, rather than certain keywords (Figure 49). For example, one computer might be 
responsible for returning tope implementations that are in 5

letterS  or 2
digitS , while another 

computer might be responsible for returning tope implementations that are in 7
alnumS  or 

1
−S . When faced with an example like “ABC-DE20”, the front-end would intersect re-

sults from these different computers to find topes that match 17
alnum

2
digit

5
letter −∩∩∩ SSSS , 

yielding a short list of tope implementations.  

The next phase would refine this prospective list of tope implementations by test-

ing each example s against each tope implementation to determine the maximal isa(s). 

This could be parallelized by partitioning the set of known tope implementations in the 

repository among another pool of computers in a (fourth) tree of computers (Figure 50). 

For example, tope implementations could be assigned to servers based on their GUID mod 

10. When bubbling the search results up this tree, the results would first be sorted by the 

number of keyword hits, with whitelist hits as a tie-breaker, and with maximal isa scores 

acting as a final tie-breaker. 

Figure 49. CharSig parallelization structure 

 

5
letterS  and 2

digitS  
CharSig-matching server 

7
alnumS  and 1

-S  
CharSig-matching server 

… 
(other keyword servers) 

Search engine front-end 

… 
(other keyword servers) … 

(other CharSig servers) 



 

187 

Figure 50. isa-matching parallelization structure 

 
 

The last part of the algorithm, pruning, actually occurs at several points along the 

algorithm. This part of the algorithm ensures that at any point in time, no tope implemen-

tations remain under consideration if they could not be part of the final set of N search 

results.  The front-end server could perform this step between calls to each of the paral-

lelization trees described above. 

In short, the tope recommendation algorithm could be parallelized with a combi-

nation of four trees: one for keyword-matching, one for whitelist-matching, one for 

CharSig-matching, and one for isa-matching. The first two trees would look essentially 

identical to standard search engine parallelization trees. The CharSig-matching tree 

would map CharSigs to tree leaves (instead of mapping keywords to tree leaves), and the 

isa-matching tree would map tope implementations to tree leaves. In a relatively small 

deployment, a single front-end server could act as the tree root for each of these trees, or 

as in the case of larger search engine systems, a multi-level tree could be used to perform 

pre-filtering prior to combining search results. Having put a parallelization structure in 

place, each node in each tree could then be implemented with a load-balanced replication 

pool in order to provide adequate levels of scalability.  

Server for testing strings on 
tope implementations with 

GUIDs ending in ‘0’ 

Server for testing strings on 
tope implementations with 

GUIDs ending in ‘1’ 

… 
(other keyword servers) 

Search engine front-end 

… 
(other keyword servers) … 
(other tope-matching servers) 





 

189 

Chapter 8. Filtering data descriptions based on 
reusability traits 

Different tope implementations will not be equally reusable, even when they are 

intended to describe the same data category. For example, ten data descriptions might 

match every single example provided to the search-by-match algorithm, yet some might 

be much easier to reuse than others. One reason for varying reusability is that the people 

who create the tope implementations might have different skill levels, so some imple-

mentations might have some errors. Another reason for varying levels of reusability is 

that some people might design certain tope implementations for very specific purposes 

(perhaps only matching a few of a data category’s formats), rather than for general reuse. 

Conversely, some tope implementations on a repository might only contain very generic 

constraints, while a user might need a tope implementation that contains specific special-

ized constraints (such as a tope implementation for Carnegie Mellon University phone 

numbers, which must obey more constraints than just any phone number). 

Consequently, it would be helpful if the repository supplemented the search-by-

match algorithm with additional features for identifying tope implementations that are 

likely to be reusable. In particular, the topes repository provides features for filtering the 

search results to identify those that are probably reusable. (Even better would be to allow 

the user to sort the search results based on a combination of reusability criteria and 

search-by-match criteria, but this is reserved for future work.) 

But tope implementations are hardly the first kind of reusable end-user code. 

Other examples of sometimes-reused end-user code include web macros  [20], Scratch 

animations  [94], AgentSheets (simulations written in a visual programming language) 

 [117], Matlab files  [38], spreadsheets  [121], VisualBasic  [123], and HTML  [98]. 

Thus, the need for reusability-oriented search features is not unique to the topes 

repository. Many repositories for end-user code successfully meet similar requirements. 

One example is the coscripter.com web macro repository, which can sort web macros in 

the search results based on how often they have previously been downloaded, as an indi-

cation of the reusability of each macro. Another example is the AgentSheets repository 



 

190 

for sharing simulation code, which allows users to filter search results based on the 

code’s hardware requirements (which are specified by the code author in an annotation). 

A third example is the mathworks.com repository for sharing Matlab code, which allows 

users to filter search results to only include code that has an “M-file” structure allowing 

the code to be reused by running it from the command-line (or from another Matlab 

script). This search filter essentially helps a user to find code that he can try out even be-

fore reading the code: he can simply run the code by double-clicking on its M-file’s icon 

in Windows, then can inspect the results to see if they meet his needs. This allows him to 

understand and evaluate the code’s function without first having to read the actual text of 

the code. 

Each of the search features described above is driven by one trait of the code 

stored in the corresponding repository. In the case of CoScripter macros, the trait is indi-

rect and automatically collected by the repository: a record of how often each macro has 

been downloaded. The AgentSheets filter is driven by information about hardware re-

quirements that is manually provided by the publisher in the form of an annotation. The 

Mathworks M-file filter is based on a trait that is directly computed from the code itself, 

reflecting the structure of the source file. 

None of these traits are guarantees of reusability, as each provides evidence about 

only one dimension of reusability. The number of web macro downloads is an indication 

of how broad a macro’s appeal seems to be, such that users consider it worth download-

ing to try out (with no further indication about other dimensions of reusability, such as 

whether the users were actually satisfied after downloading a macro). The AgentSheets 

hardware annotation indicates whether a piece of simulation code can be used on a broad 

range of different computers, which is something of an indication about the compatibility 

or flexibility of the code to different execution contexts, but it does not address the di-

mension of mass appeal hinted at by the number of downloads. The Mathworks M-file 

trait reflects how easy it is for users to understand the code by trying it out, but this trait 

in turn tells nothing about mass appeal or compatibility / flexibility. Thus, while each trait 

provides a limited amount of evidence of reusability, it is not proof of reusability. 

Despite the limited evidentiary content of these traits, and despite the fact that 

each repository provides only a few search features based on such traits, each repository’s 

search engine has sufficed for helping thousands of users to share and reuse code. In gen-



 

191 

eral, these search features do not take advantage of more sophisticated traits that re-

searchers have identified for finding reusable code created by professional programmers. 

For example, Basili et al have found that certain metrics computed on object-oriented 

code give a very good estimate of how likely it is that the code contains defects  [8], 

which perhaps might give an insight about reusability if defects interfere with code reuse. 

Researchers have even begun to incorporate simple object-oriented metrics into features 

that search through repositories for highly reusable code created by professional pro-

grammers  [5]. 

To sum up, a few simplistic reusability-oriented search features have generally 

sufficed in repositories for end users, yet researchers are actively investing a great deal of 

effort into developing more sophisticated search features for repositories aimed at profes-

sional programmers. This state of affairs raises several questions. 

First, if we were similarly to develop more sophisticated search features for re-

positories aimed at end users (such as the topes repository), what reusability traits should 

those features rely on? Put another way, what are the traits of reusable end-user code? 

Section  8.1 addresses this question by examining a wide range of empirical studies con-

ducted by a variety of research groups, thereby identifying several kinds of traits that 

generally characterize highly reusable code created by end-user programmers. Many of 

these traits can be computed directly from the code, therefore requiring no additional in-

vestment of effort from any end users beyond uploading code to the repository. 

Second, how much incremental benefit is gained by supporting increasingly com-

plex reusability-oriented search features? As mentioned before, most repositories for end-

user programmers have proven quite successful despite being fairly minimalist, offering 

only a few reusability-oriented search filters. Would search features based on reusability 

traits actually help an end-user repository to accurately identify reusable artifacts? Sec-

tion  8.2 addresses this question in the context of one particular kind of end-user program, 

web macros, where a large user community already exists. Using information from the 

CoScripter repository, this analysis identifies traits that statistically correspond to higher 

levels of reuse. Further analysis shows that combining these traits through a machine 

learning model can accurately identify reusable code, though with generally diminishing 

returns after using more than 6 to 11 traits.  



 

192 

This result suggests that although a handful of simple reusability-based search fil-

ters generally suffice for many repositories aimed at end users, it may be desirable to in-

clude a few more filters. In particular, the presence of additional search filters could help 

users to identify reusable tope implementations. Section  8.3 presents the tope repository’s 

“Advanced Search” set of twenty reusability-oriented search filters, from which users 

could select a desired subset of traits that should be demonstrated by tope implementa-

tions in search results. 

8.1 Traits of reusable end-user code in general 

Since tope implementations are a variety of end-user code, new tope repository 

search features are motivated by considering what traits are typically manifested by reus-

able end-user code in general. A variety of empirical studies provide a starting point for 

understanding what traits characterize reusable code created by end-user programmers.  

These studies include the following: 

 

• Retrospective analyses of the CoScripter web macro repository  [20] 

• Interviews of software kiosk designers  [21] 

• A report about running a Matlab code repository  [38] 

• Observations of college students in a classroom setting  [50] 

• An ethnography of spreadsheet programmers  [78] 

• Observations of children using programmable toys  [86] 

• Interviews  [98] and a survey of web developers  [124] 

• Interviews of consultants and scientists  [112] 

• Interviews of K-12 teachers  [123] 

These empirical studies are supplemented by one simulation of end-user pro-

grammer behavior  [15], as well as empirical work related to professional programmers 

 [13] [24] [74] [99]. In the sub-sections below, citations of work related to professional pro-

grammers are underlined in order to make it clear when a statement is only supported by 

research on professionals. 



 

193 

Most of the traits uncovered by the empirical studies are reflected in the code it-

self (see Table 14). For example, the empirical studies suggest that for a given end-user 

programming environment, understandability seems to strongly affect reusability. (In par-

ticular, code with comments tends to be more reusable than code without comments be-

cause code lacking comments is hard to understand.) These traits could be called “direct” 

traits, since they are inherent properties of the code or other annotations directly provided 

in the code by the author. 

A few reusability traits mentioned by empirical studies are indirect—not reflected 

in the code. In particular, these traits are reflected in information about the author and the 

code’s prior uses. For example, the Matlab repository allows users to rate scripts on the 

repository, and its search engine allows users to sort search results based on average rat-

ing. The repository’s designers report that, empirically speaking, they find that this fea-

ture helps users to successfully identify code that they can reuse  [38]. In this case, the 

trait of reusable code is a high rating by end users. The user interface is designed to re-

flect the fact that that scripts with this trait are more reusable than scripts that lack the 

trait (having low ratings instead).  

The next sub-sections discuss the direct and indirect kinds of reusability traits in 

more detail. A recurring theme throughout these sub-sections is that these traits do not 

guarantee reusability. For example, even if a web macro has comments and has been 

downloaded many times, this does not guarantee that it will be reusable to a particular 

programmer. Even when taken together, these traits are evidence of reusability, not proof. 

 

Table 14. Traits of reusable code, as uncovered by empirical studies of end-user and professional 
programmers. 

End users Professionals 
Traits reflected in… 

 [15]  [20]  [21]  [38]  [50]  [78]  [86]  [98]  [112]  [123]  [124]  [13]  [24]  [74]  [99] 

Code                

  Mass appeal     x      x x   x 

  Flexibility  x   x  x x  x x x    

  Functional size x           x x x  

  Understandability   x  x x  x x x  x   x 

Code’s authorship      x          

Code’s prior uses    x            

 



 

194 

8.1.1 Traits directly reflected in end-user code 

It is widely believed that professional programmers’ code is more reusable if it 

meets four criteria  [13]: the code should be functionally relevant a wide variety of pro-

grammers’ problems, it should be flexible enough to meet those varying requirements 

without requiring a great deal of modification of existing code, it should be functionally 

large enough to justify reuse without involving substantial extension by programmers, 

and it should be understandable to the people who reuse it. 

Meeting these four requirements also apparently contributes to the reusability of 

end-user programmers’ code, since the eleven end-user programming studies produced 

many findings of the form, “Code was hard to reuse unless it had X,” where X was a trait 

suggesting that the code met one of the four requirements.  For example, unless code con-

tained comments, teachers had difficulty understanding it and therefore had trouble reus-

ing it  [123]. In this example, the trait is the presence of comments in the code and the re-

quirement is understandability. 

Traits suggesting that the code has mass appeal / functional relevance to a wide audience 

When programmers search a repository, they want code that meets some func-

tional need in the context of the programmer’s work  [24] [50] [99]. Typically, only a small 

amount of code is functionally relevant to many contexts, so a simple functional categori-

zation of code can be evidence of its reusability. For example, 78% of mashup program-

mers in one survey created mapping mashups  [124]. All other kinds of mashups were 

created by far fewer people. Thus, just knowing that a mashup component was related to 

mapping (rather than photos, news, trivia, or the study’s other categories) suggested mass 

appeal. In addition, since repositories and programming environments usually provide a 

keyword-based search interface, code that matches popular keywords tends to be returned 

more often in search results and apparently reused more often than code that does not 

match these popular keywords  [50]. Certain keywords, therefore, can suggest functional 

relevance to a broad audience. 

Traits suggesting that the code has flexibility to support reuse 

Reusable code must not only perform a relevant function, but it must do it in a 

flexible way so that it can be applied in new usage contexts. Flexibility can be evidenced 



 

195 

by use of variables rather than hardcoded values. In a study of children, parameter-

tweaking served as an easy way to “change the appearance, behaviour, or effect of an 

element [component]”, often in preparation for composition of components into new pro-

grams  [86]. Web macro scripts were more likely to be reused if they contained variables 

 [20].  

Flexibility can be limited when code has non-local effects that could affect the 

behavior of other code. Such effects reduce reusability because the programmer must 

carefully coordinate different pieces of code to work together  [50] [123]. For example, 

web page scripts were less reusable if they happened to “mess up the whole page”  [98], 

rather than simply affecting one widget on the page. In general, non-local effects are evi-

denced by the presence of operations in the code that write to non-local data structures 

(such as a web page’s entire document object model in the case of reusing a web page 

script). 

Finally, flexibility can be limited when the code has dependencies on other code 

or data sources. If that other code or data become unavailable, then the dependent code 

becomes unusable  [124]. Dependencies are evidenced by external references reflected 

directly in the source code. For example, users were generally unable to reuse web mac-

ros that contained operations which read data from intranet sites (i.e.: sites that cannot be 

accessed unless the user was located on a certain local network)  [20]. 

Traits suggesting that the code has adequate functional size to justify reuse 

When asked about whether and why they reuse code, professional programmers 

made “explicit in their verbalisation [sic] the trade-off between design and reuse cost” 

 [24], preferring to reuse code only if the effort of doing so was much lower than the effort 

of implementing similar functionality from scratch. In general, larger components give a 

larger “payoff” than smaller components, with the caveat that larger components can be 

more specialized and therefore have less mass appeal  [13]. Empirically, components that 

are reused tend to be larger than components that are not reused  [74]. 

Simulations suggest that end-user programmers probably evaluate costs in a simi-

lar manner when deciding whether or not to reuse existing code  [15], though there do not 

yet seem to be any interviews or other empirical studies showing that end-user program-

mers evaluate these costs consciously. 



 

196 

Traits suggesting that the code is understandable 

Understanding code is an essential part of evaluating it, planning any modifica-

tions, and combining it with other code  [50]. Moreover, understanding existing code can 

be valuable even if the programmer chooses not to directly incorporate it into a new pro-

ject, since people often learn from existing code and use it as an example when writing 

code from scratch  [98] [99]. This highlights the value of existing code not only for verba-

tim blackbox or near-verbatim whitebox reuse, but also for indirect conceptual reuse. 

Many studies of end-user programmers have noted that understandability is 

greatly facilitated by the presence of comments, documentation, and other secondary no-

tation. Scientists often struggled to reuse code unless it was carefully documented  [112], 

teachers’ “comprehension was also slow and tedious because of the lack of documenta-

tion”  [123], and office workers often had to ask for help in order to reuse spreadsheets 

that lacked adequate labeling and comments  [78]. End-user programmers typically 

skipped putting comments into code unless they intended for it to be reused  [21]. In short, 

the presence of comments can be strong evidence of understandability and, indirectly, of 

reusability. 

8.1.2 Indirect reusability traits reflected in end-user code’s authorship and 
prior uses 

A few studies suggest that the identity of code’s author can provide evidence 

about the code’s reusability. For example, in some organizations, certain end-user pro-

grammers have been tasked with cultivating a repository of reusable spreadsheets; in 

these organizations, just knowing who wrote a spreadsheet provides some information 

about its reusability  [78]. In another study, scientists reported that they only tended to re-

use code if it was written by certain other scientists  [112].  

Once someone has tried to reuse code, recording that person’s experiences can 

capture information about the code’s reusability. Repositories of end-user code typically 

record this information as reviews, recommendations, and ratings  [38] [64]. In the Matlab 

repository, capturing and displaying these forms of reusability evidence has helped users 

to find high-quality reusable code  [38]. 



 

197 

8.2 Evaluation: Effectiveness of using traits to identify reusable 
end-user code 

I performed an in-depth analysis of logs from the CoScripter repository in order to 

empirically evaluate how well the traits of end-user code actually could identify reusable 

code. The evaluation proceeded in several stages.  

First, an extract of logs for a 6-month time period was retrieved from the reposi-

tory server, as well as the source code of the first version of each web macro that was 

created or executed during this time period. Second, for each macro, 35 traits were com-

puted. Each trait was selected because it seemed like a plausible indicator of reusability 

based on the analysis described by Section  8.1. Third, four measures of reuse were com-

puted for each web macro. Fourth, for each combination of trait and reuse measure, a sta-

tistical test was computed to determine whether the trait actually statistically corre-

sponded to that measure of reuse; this provided a general picture of how strongly each 

trait was related to reuse. Finally, for each measure of reuse, a simple machine learning 

model was trained on the traits to predict whether each macro would be reused. 

These experiments show that the selected traits do indeed contain enough infor-

mation to fairly accurately predict whether a web macro will be reused. In fact, using as 

few as 6 to 11 traits provides enough information to predict reuse with 70-80% recall (at 

40% false positive rate). 

8.2.1 Suitability of the CoScripter repository as a setting for the evaluation 

There are three reasons why the CoScripter web macro repository is an appropri-

ate setting for this evaluation of the effectiveness of using traits to identify reusable end-

user code. 

First, with macros provided by nearly 10,000 users over the past two years, this 

repository offers an insight into the dynamics of reuse once a user community grows be-

yond the tiny number of people commonly involved in research studies evaluating new 

end-user programming tools. As researchers and colleagues, the developers of CoScripter 

at IBM have been generous in providing historical data, which is typically difficult or 

impossible to obtain about commercial programming tools once they leave the research 



 

198 

stage. As a result, the CoScripter repository offers a uniquely realistic insight into what 

happens in large communities of end-user programmers. 

Second, CoScripter macros and tope data descriptions are alike in several ways 

that make studying reuse of web macros a sensible surrogate for studying reuse of data 

descriptions (in the absence of a large user base for topes). For each of the four primary 

requirements driving reusability (summarized by Section  8.1.1), data descriptions and 

web macros have key similarities: 

 

• Understandability: Both web macros and data descriptions can be annotated with 

comments, which was by far the most oft-cited understandability trait mentioned 

in the empirical studies.  

• Functional size: CoScripter and data descriptions have comparable visual com-

plexity, typically requiring a few lines of information on the screen (with lines 

corresponding to constraints in data descriptions and executable instructions in 

web macros). These lines of information offer a measure of functional size for 

each kind of code.  

• Flexibility: For both web macros and data descriptions, the primary approach for 

supporting flexibility is to allow “sloppiness”. Specifically, CoScripter makes a 

best-effort attempt to interpret macro code in the context of a web page, while the 

TDE supports soft constraints that might not be perfectly satisfied at runtime.  

• Mass appeal: The primary search screens of CoScripter and the TDE allow users 

to search the respective repository based on keywords, which might be indicative 

of code’s mass appeal.  

 

The third and most important reason why the CoScripter repository is an appro-

priate setting for this evaluation is that, like the reuse of tope implementations, the reuse 

of web macros is fundamentally predicated on the fact that end-user programmers often 

have certain kinds of data in common. Consider: the reason why a CoScripter script is 

reusable at all between two people is because those two people have a reason to access 

the same web sites and perform the same operations on those web sites. Those operations 

manipulate web form widgets, so two people who use the same web macro not only use 



 

199 

the same web site, but they work with exactly the same web form widgets (often text 

fields and drop down lists). If two people need to manipulate the same web form widget, 

then they both need to work with the same kind of data—whatever the data in that widget 

happens to be. Thus, CoScripter reuse is fundamentally predicated on the assumption that 

end users have certain kinds of data in common. That commonality is the fundamental 

bedrock that ultimately motivates inter-person reuse of tope implementations, as ex-

plained in  Chapter 7. 

Now, CoScripter reuse is also predicated on a variety of additional assumptions, 

and the TDE “knocks down” many of these assumptions. In particular, CoScripter macro 

reuse requires users to not only have a data category in common, but they also must be 

working in the same application tool (Firefox) with data from the same source (a certain 

web site), and it must be acceptable for the macro source code to be publicly visible (as 

coscripter.com is open to all users). In contrast, tope implementations can be reused even 

when users are not working in the same application tool (as tope implementations are ap-

plication-agnostic) and when they are not working with data from the same source (as a 

tope can be reused to validate strings in multiple web applications, spreadsheets, and so 

forth). Moreover, data descriptions can be kept private to organizations (as users can reg-

ister organization-specific repositories).  

These additional assumptions probably reduce the potential for reuse in the Co-

Scripter context, making it harder for users to find reusable web macros. Indeed, one 

study of the CoScripter repository found that only 9% of all web macros were ever exe-

cuted by more than three users  [20]. Finding a reusable web macro can be like looking 

for a needle in a haystack. 

Yet as described below, reusability-oriented web macro traits still contain enough 

information to find those needles automatically. This result suggests that analogous traits 

will suffice for identifying reusable code in situations where reuse is more commonly 

feasible because reuse is predicated on fewer assumptions. In particular, if reusability-

based search would work for the CoScripter repository, then it also seem likely to work 

for the topes repository. 



 

200 

8.2.2 Web macro traits: raw materials for a model 

For this analysis, I selected web macro traits based on the general requirements 

for reuse as outlined by Section  8.1.1. Specifically, users need to be able to find function-

ally relevant macros (with more widely reused macros probably being those with more 

mass appeal), macros need to be flexible enough to be reused with minimal modification, 

macros need to contain enough functionality so that users do not need to modify them 

much to add missing functionality, and users need to be able to understand macros well 

enough to choose appropriate macros and make any necessary modifications. These iden-

tified traits were supplemented with traits based on information about authorship. No 

traits were considered that required information about prior uses of macros (since relying 

on such traits would have limited the applicability of the evaluation’s results to situations 

in which macros had previously been used). In total, these considerations led to the iden-

tification of 35 traits in the following 5 categories (summarized in Table 15): 

 

• Mass appeal: Macros might be more likely to be found if they are relevant to the 

interests of the CoScripter community, as reflected by website URLs and other 

tokens in macros. Promotion of a macro as a tutorial (on the homepage) might 

suggest mass appeal, since CoScripter tutorials are designed to be of general in-

terest to many users. 

• Flexibility: Parameterization and use of mixed-initiative instructions might in-

crease the flexibility of macros, reducing the need for modification. A prior study 

found that reuse seemed lower for macros with preconditions such as requiring the 

browser to be at a certain URL prior to execution, requiring the user to be logged 

into a site prior to execution, or requiring that many sites are online during execu-

tion  [20]. Extra effort might be needed to understand or modify macros with pre-

conditions. 

• Functional size reflected in length: Longer code requires more effort for under-

standing, and many studies indicate that longer code tends to have more defects 

 [32] that might require modification prior to reuse. Counterbalancing these fac-

tors, longer macros contain more functionality, which often increases the value of 

reuse. 



 

201 

Table 15: Each row shows one macro trait tested for statistical correspondence to four measures of reuse. Traits 
are sorted in the order of introduction in Section  8.2.2. A + (-) hypothesis Hyp indicates that I expected higher (lower) 
levels of reuse to correspond to the characteristic. Non-empty empirical results indicate statistically significant differ-
ences in reuse, with + (-) indicating that higher (lower) reuse corresponds to higher levels of the characteristic. One + 
or - indicates one-tail significance at p<0.05, ++ or -- indicate p<0.01, and +++ or --- indicate p<0.00036 (at the 
Bonferroni correction of p<0.05). Shaded cells were particularly useful in the machine learning model (Section  8.2.5). 
 
Trait  Empirical Results 
Category Name Meaning Hyp Self 

Exec 
Other 
Exec 

Other
Edit 

Other
Copy

keycnt real: normalized measure of how many scripts contain the 
same tokens as this script + +    

keydom real: normalized measure of how many other scripts contain 
the same URL domains as this script +  +++ ++ + 

nmchost int: # URLs in script that use numeric IP addresses -     
niinet int: # hosts referenced by script that seem to be on intranets -  -   M

as
s a

pp
ea

l 

tutorial bool: true if script was created for tutorial list +  + +++ +++
npar int: # parameters (configuration variables) read by script + ++ + +++ +++
nlit int: # literal strings hardcoded into script + +++    
nyloc int: # mixed-initiative “you manually do this” instructions +  + + ++
assmurl bool: true if first line of script is not a "go to URL" instruction -  ---   
ctnclstt bool: true if script contains "log in", "logged in", "login", or 

"cookie" -     

Fl
ex

ibi
lity

 (i
nc

lud
-

ing
 p

re
co

nd
itio

ns
) 

nhosts int: # distinct hostnames in script’s URLs -  +++   
sloc int: total # non-comment lines in script - ++    
tloc int: total # lines (sloc + cloc) - +    

Fu
nc

. 
Si

ze
 

ndloc int: total # distinct non-comment lines in script - +++   ++
enus int: # US URLs in script + + +   
nonenus int: # non-English words in literals + # of URLs outside USA - -  - --
unklang bool: true if nonenus and enus are each 0 -  ---   
nonroman pct: % of non-whitespace chars in title or content that are not 

roman -  - -  

cloc int: # comment lines + + ++ +++ +++
titlts bool: true if script title contains the word "test" - --    
titlcp bool: true if script title contains the phrase "Copy of" - -- -   
titled bool: true if script has a title + +++ ++   

Un
de

rs
ta

nd
ab

ilit
y: 

lan
gu

ag
e 

an
d 

an
no

ta
tio

ns
 

titlpn bool: true if script title contains punctuation other than periods - -    
aid int: id of the user who authored the script (lower for early 

adopters) - +++ --- -- ---

sid int: id of the script (tends to be lower for early adopters) -  --- --- ---
ibm bool: true if script's author was at an IBM IP address + ++  +++ +++
nforum int: # posts by the script author on the CoScripter forum + ++  ++  
auloname  bool: true if script author’s name starts with punctuation or 'A' +  -   
npcreated int: # scripts by same author created prior to this script + +++ ---   
npselfexec int: # scripts by same author executed by author prior to this 

script's creation + +++ --- --  

npoexec int: # scripts by same author executed by other users prior to 
this script's creation + --- +++ - - 

npoedit int: # scripts by same author edited by other users prior to this 
script's creation + --- +++ - - 

npocopy int: # scripts by same author copied by other users prior to this 
script's creation + --- +++ - - 

ctnordin bool: true if script uses ordinals (eg: “third”) to reference fields + +++    

Au
th

or
sh

ip 

ctlclick bool: true if script uses "control-click" or "control-select" key-
words +  +  +++



 

202 

• Understandability: Macros might be more understandable if their data and target 

web sites are written in the community’s primary language (English). Code com-

ments and proper macro titles might increase understandability. 

• Authorship: Early adopters, IBM employees, active forum participants, and users 

who have already created many widely-reused macros might be more likely to 

produce macros that work properly and can be reused with minimal modification. 

If macros contain advanced keywords (control-click instructions, and ordinal 

widget references), this might suggest that their authors were experts who could 

produce macros that work properly without modification, though advanced syntax 

might inhibit understandability.10 

8.2.3 Computing measures of reuse 

The 6 months of web server logs extracted from the CoScripter web server re-

corded operations on 937 macros. Four measures of reuse were computed for each macro: 

 

• Self-exec: Did the macro author ever execute the macro between 1 day and 3 

months after creating the macro? (Executions within 1 day were omitted, since 

such executions could relate to the initial creation and testing of the macro, rather 

than reuse per se.) {17% of all macros met this criterion} 

• Other-exec: Did any other user execute the macro within 3 months of its creation? 

{49%} 

• Other-edit: Did any other user edit the macro within 3 months of its creation? 

{5%} 

• Other-copy: Did any other user copy the macro to create a new macro within 3 

months of the original macro’s creation? {4%} 

 

                                                 
10 It is debatable whether these last two traits really belong in the authorship category, as they are computed 
from the code to provide hints about authorship. An alternative would be to categorize them under Under-
standability, with a hypothesis that the traits will correspond to lower understandability. The absence of a 
perfect categorization highlights the fact that some traits might simultaneously have positive and negative 
effects on reusability. 



 

203 

Binary measures of reuse were more suitable than absolute numbers of reuse 

events for two reasons. First, unless a repository user chooses to sort macros by author, 

the user interface sorts macros by the number of times that each has been run. This ap-

pears to result in a “pile-on” effect (properly called an “information cascade”  [14]): oft-

run macros tend to be reused very much more in succeeding weeks. This interferes with 

using absolute reuse counts as a measure of reuse for testing macro traits. Second, macros 

can recursively call themselves (albeit without parameters), and some users also appar-

ently set up non-CoScripter programs to run CoScripter macros periodically (e.g.: once 

per day), clouding the meaning of absolute counts.  

Though no macros in the time interval were recursive, some ran periodically. 

When computing reuse measures, a macro was considered to have been reused if a peri-

odic program ran it. However, a careful examination of the logs identified several auto-

mated spiders that walked the site and executed (or even copied) many macros in a short 

time, so those events were filtered. Most such spiders ran from IBM IP addresses, appar-

ently owing to automated analyses by colleagues at IBM. 

The 3 month post-creation observation interval was a compromise. Using a short 

interval runs the risk of incorrectly ruling a macro as un-reused, if it was only reused after 

the interval ended. Selecting a long interval reduces the number of macros whose obser-

vation interval fell within the 6 months of available logs. Selecting half of the log period 

as the observation interval resulted in few cases (20) of erroneously ruling a macro as un-

reused yet yielded over 900 macros for study. 

8.2.4 Testing macro traits for correspondence to reuse 

For each trait, macros were divided into two groups based on whether each macro 

had an above-average or below-average level of the trait (for Boolean-valued traits, treat-

ing “true” as 1 and “false” as 0). For each group’s macros, I computed the four reuse 

measures. Finally, for each combination of trait and reuse measure, I performed a one-

tailed z-test of proportions. In cases where the correspondence between macro trait and 

reuse measure was actually opposite the expected result, Table 15 reports whether a one-

tailed z-test would have been significant in the opposite direction. The table shows statis-

tical significance at several levels, including a level based on a Bonferroni correction that 



 

204 

compensates for the large number of tests (140). Some macro traits are not statistically 

independent (e.g.: sloc rises with tloc), nor are the measures of reuse (e.g.: an other-exec 

event almost always preceded each other-copy and other-edit event). Thus, the correction 

is likely to be over-conservative and establishes a lower-bound on the statistical signifi-

cance of results.  

In terms of robustness, I noted that many candidate macro traits are count integers 

that could be normalized by the overall macro length. Consequently, I tested these traits 

twice, once with the traits shown in Table 15, and again with length-normalized traits as 

appropriate. In virtually every case, results were identical. 

Results of statistical tests 

As expected, many macro traits corresponded to reuse. Interestingly, different re-

use measures corresponded to different traits, suggesting that different kinds of reuse oc-

cur for different reasons. Thus, rather than combining macro traits into one model that 

attempts to accurately predict all possible forms of reuse, we need a generalized model 

that can be instantiated for each measure of reuse. 

The Authorship expertise traits did not correspond to reuse exactly as expected. 

Macros created by apparent experts were more likely to be run by other users, but less 

likely to be edited—perhaps such macros worked properly and rarely needed modifica-

tion. 

The Functional Size / Length traits corresponded to higher likelihood of reuse by 

the macro author, though this was not a complete surprise. Empirically, the increased 

functionality in longer macros seemed to outweigh any risk of increased defects: just as 

popularity is an imperfect proxy for reusability, defect-proneness need not correspond 

directly to reusability. 

These statistical tests show it is possible to find traits that correspond to reuse and 

that are automatically computable when a macro is created. Thus, while this set is not a 

definitive list of all traits that might correspond to reuse, it can serve as a basis for devel-

oping a predictive model of macro reuse. 



 

205 

8.2.5 Prediction of reuse 

The machine learning model predicts reuse based on how well a macro’s traits 

satisfy a set of simple arithmetic constraints that I call “predictors”. A machine learning 

algorithm selects constraints that predict the reuse measure used during training. For ex-

ample, one predictor might be a constraint on the number of comments such as cloc ≥ 3, 

another might be that the number of referenced intranet sites niinet ≤ 1, and a third might 

be titled ≥ 1. Ideally, all such predictors will be true for every reused macro and false for 

every un-reused macro. 

After the first algorithm selects a set of predictors, a second algorithm uses this set 

to predict if some other macro will be reused. It counts the number of predictors matched 

by the macro and predicts that the macro will be reused if the macro matches at least a cer-

tain number of predictors. Continuing the example above, requiring at least 1 predictor 

match would predict that a web macro will be reused only if cloc ≥ 3 or niinet ≤ 1 or titled 

≥ 1. 

Training and using the predictive model 

The algorithm trains a predictive model in three stages (Figure 51). Its inputs are a 

training set of macros R’, real-valued traits C defined for each macro, a measure of reuse 

m that tells whether each macro is reused, and a tunable parameter α described below. Its 

output is a set of predictors Q. 

First, the algorithm determines if each macro trait ci corresponds to higher or lower 
reuse. To do this, the algorithm places macros into two groups (Rm and mR ), depending on 

if each macro was reused according to measure m. It compares the proportion of reused 

macros that have an above-average value of ci to the proportion of un-reused macros that 

have an above-average value of ci. If higher levels of ci correspond to lower reuse, then the 

algorithm adjusts the trait by multiplying it by -1, so higher levels of adjusted traits ai corre-

spond to higher levels of reuse. 

Second, for each adjusted trait ai, the algorithm finds the threshold value τ i that 

most effectively distinguishes between reused and un-reused macros. The algorithm se-

lects the threshold that maximizes the difference between the proportion of reused macros 

that have an above-threshold level of adjusted trait versus the proportion of un-reused 

macros that have an above-threshold level of adjusted trait. 



 

206 

Finally, the algorithm creates a predictor for each adjusted trait that is relatively 

effective at distinguishing between reused and un-reused macros. As noted above, each 

predictor should ideally match every reused macro but not match any un-reused macros. 

Of course, achieving this ideal is not feasible in practice. Instead, a predictor is created if 

the proportion of reused macros that have an above-τ i amount of the adjusted trait is at 

least a certain amount α higher than the proportion of un-reused macros that have an 

above-τ i amount of the adjusted trait. 

The minimal difference α between proportions in the reused and un-reused groups 

is a tunable parameter. Lowering α allows more adjusted traits to qualify as predictors, 

which increases the amount of information captured by the model but might let poor-

quality predictors enter the model. This is a typical over-training risk in machine learning 

 [72], so it is necessary to evaluate the empirical impact of changing α.  

After training the model, predicting whether a new web macro will be reused re-

quires testing each predictor on the macro (Figure 52). If the macro matches at least a 

certain number of predictors β, then the model predicts that the macro will be reused. 

This minimal number of predictors β is tunable. Lowering β increases the number of 

macros predicted to be reused, decreasing the chance that useful macros slip by. How-

ever, lowering β risks erroneously predicting that un-reused macros will be reused. As 

with α, this leads to a trade-off typical of machine learning, but in the case of β, the 

trade-off is directly between false negatives and false positives, rather than between wast-

ing information and over-training. As with α, it is necessary to evaluate the empirical im-

pact of changing β. 

 



 

207 

Figure 51. Algorithm TrainModel for selecting predictors based on training data 

 
 

Figure 52. Algorithm EvalMacro for predicting whether a macro will be reused 

 

EvalMacro 
 Inputs: One macro  R Repositorys ∈  
    Minimal predictor matches ]Q (0,  ∈β  

    Predictors 1}} {0,  R : iq {  Q →=  

 Outputs: Prediction of reuse 1} {0, ∈  
 
Let nmatches = 0 
For each Qiq ∈  

 If  1  (s)iq = then nmatches = nmatches + 1 
 
If nmatches ≥ β then return 1 else return 0

TrainModel 
 Inputs: Training macros  R, RepositoryR' ⊆  
     where R is a set of macros  
    Macro traits )}[0,  R : i{c  C ∞→=  

    Measure of reuse 1} {0,  R : m →  
    Minimal proportion difference 1) (0,  ∈α  
 Outputs: Predictors } 1} {0,  R : iq {  Q →=  

 
Let the reused macro set 1}  m(s) : R'  {s Rm =∈=  

Let the un-reused macro set 0}  m(s) :R'  {s  mR =∈=  
Let S}  c(s) : S  {s  ) c, p(S, ττ ≥∈=  
 
Initialize Q to an empty set of predictors 

For each Cci ∈ , 

 Let ∑
∈

=
R's

R'(s)iciμ  

 Let adjusted trait 
  ),), μμ i ci ,Rmp(    i ci ,Rmp(  if  (s)ci  (s)ia ≥=  

   or otherwise  (s)c- i   (s)ia =  
 Compute threshold (through exhaustive search) 
  ),), τττ  ai ,Rmp(  -   ai ,Rmp(  argmax  i =  

 If αττ   i ai ,Rmp(  -  i ai ,Rmp( ≥),),   
  then add the following predictor to Q… 
  otherwise 0 and  i    ai  if  1  (s)iq τ≥= )(s  
Return Q



 

208 

Design decisions behind this model 

Designing this model involved a number of choices that deserve further evalua-

tion. 

First, when selecting predictors, TrainModel chooses a threshold based on differ-

ences in proportions rather than commonly used entropy-based measures  [72]. This deci-

sion seemed sensible because difference-in-proportions corresponds more directly than 

difference-in-entropy to the principle that ideal predictors match all reused macros but no 

un-reused macros. Evaluating this decision’s impact (below) showed that the selected 

choice contributed to model quality. 

Second, another option would have been to select a threshold maximizing the dif-

ference in means (between reused and un-reused macros), rather than the difference be-

tween above-threshold proportions. Evaluating this decision (below) showed that it had a 

negligible impact. 

Measures and goals for prediction quality 

Ten-fold cross-validation is the usual method used when training and evaluating a 

model on the same data set  [72]. This approach seemed sensible for comparing the qual-

ity of the model with the quality of the model variants. 

A variety of quality measures have been used in machine learning research. The 

approach used here of training a model on macro traits in order to predict reuse resembles 

the standard approach in software engineering defect prediction, which trains a model on 

module traits (static code traits or process data) in order to predict the presence of defects. 

The primary quality measures used in that literature are False Positive (FP) and True 

Positive (TP) rates (Table 16)  [19] [53]. 

 

Table 16. Quality measures commonly used in defect prediction literature 
  Actual 
  Reused Un-reused 

Reused a b Predicted 
Un-reused c d 

 

 

c)(a
a  TP +=   d)(b

b  FP +=  

 



 

209 

TP is the same as the recall measure used in information retrieval, indicating the 

fraction of interesting items (reused macros) that are successfully identified. FP indicates 

the fraction of uninteresting items (un-reused macros) that are erroneously identified. It is 
similar in purpose to the precision measure b)(aa + used in information retrieval to quan-

tify prediction specificity, but FP is often preferred over precision in defect prediction. 

One reason for this preference is that FP is more stable than precision to small changes in 

the data when b + d » a + c  [69], which is often the case in defect prediction and certainly 

the case in web macro reuse. 

In terms of choosing target values of FP and TP, “Detectors learned in the domain 

of software engineering rarely yield high precision [low FP] detectors”  [69]. For example, 

FP ≥ TP – 0.3 for many defect prediction models  [75]. Such high FP is usually acceptable 

because these models are generally used to identify items that should be brought to the 

attention of humans, who can then review the items. For applications like these, TP is 

somewhat more important than FP, since a person cannot review an item unless it is first 

brought to his attention. Menzies et al’s review of software engineering papers that use 

machine learning  [69] shows that at least in software engineering, TP is often around 0.7 

or less. In fact even skilled software engineers achieve a recall of only 0.6 when they 

manually review modules for defects  [116]. Meeting or exceeding these results calls for a 

model goal of TP > 0.7 and FP < 0.4. 

Results: predictive power of reusability traits 

For each reuse measure, 10-fold cross-validation at varying levels of α and β 

showed that TP reached the goal of 0.7 when FP ranged from 0.05-0.35, depending on the 

reuse measure (Figure 53). Conversely, TP was in the range 0.7-0.8 when FP reached 0.4. 

So for each measure, the model exceeded the goals.  

For the self-exec reuse measure, FP is closest to 0.4 at α = 0.16 and β = 5. For the 

other measures of reuse, FP is also closest to 0.4 at α = 0.16 but with β = 3. Adjusting α 

and holding β constant, or vice versa, generated the full range of TP and FP. 

 



 

210 

Figure 53. Model quality at various parameter values 

 
 

As noted above, the training algorithm could have used other heuristics for select-

ing the optimal threshold for each trait. To evaluate the algorithm’s design decisions, I 

repeated the evaluation using variants of the model that selected each adjusted trait’s op-

timal threshold τi based on difference-in-means or difference-in-entropy rather than dif-

ference-in-proportions (Table 17). The results confirmed the design decision, as differ-

ence-in-proportions yielded slightly higher quality than difference-in-means and substan-

tially higher quality than difference-in-entropy. 

Table 17. TP at FP  ≈ 0.4, with variant methods for selecting each trait’s threshold 
 Selecting thresholds based on… 
 Proportions Means Entropy 
Self-exec 0.78 0.78 0.62 
Other-exec 0.79 0.79 0.40 
Other-edit 0.77 0.70 0.50 
Other-copy 0.72 0.70 0.62 

Information content of reusability traits 

The bottom line of these experiments is that the traits generated by the considera-

tions of Section  8.1 contained sufficient information to fairly accurately predict several 

measures of web macro reuse. In fact, these predictions did not even need to rely on very 

many macro traits. In particular, Table 15 shows shaded cells where macro traits were 

active at α = 0.16 (FP = 0.4). At this level, 17 traits were active and accounted for the 

model’s predictiveness. Shaded cells generally corresponded to cases where a trait had 

shown strong statistical correspondence to reuse. The match is not perfect since the z-



 

211 

score used in statistical tests depends not only on differences in proportions, but also the 

absolute sizes of these proportions. This is a common phenomenon in statistics: a differ-

ence might be statistically significant yet not meaningful. The most useful traits were in 

the Mass appeal, Functional size / length, and Authorship categories, with more minor 

contributions from the Understandability and Flexibility categories.  

Depending on the particular measure of reuse, as few as 5 traits were active or as 

many as 11, suggesting that a repository designer might be able to collect fewer than a 

dozen different traits in order to drive reusability-oriented search features. 

8.3 Reusability-oriented search features in the topes repository 

The empirical studies of end-user programmers described by Section  8.1 suggest 

that a wide variety of end-user code tends to be more reusable if it has certain traits. The 

CoScripter experiment described by Section  8.2 shows these traits can be used to predict 

whether macros will be reused. Together, all of these results suggest that a repository 

could effectively guide users to find reusable code.  

Motivated by these considerations, the topes repository offers an “Advanced 

Search” feature that allows users to filter search results based on traits like those dis-

cussed by Sections  8.1 and  8.2. The intent of this design is simply to explore one way to 

incorporate the results of the empirical studies above into the design of a repository sys-

tem. Usability studies would likely identify possibilities for moving forward further with 

the TDE repository’s Advanced Search feature. 

Advanced Search overview 

After doing a basic search-by-match query, the user can activate the reusability-

oriented filters by clicking on the “Refine results based on advanced search filters” link 

(Figure 39). The user interface shows a tabbed set of search filters (Figure 54). The user 

can enter values for one or more filters, then click “Search”, which applies the filters to 

the search results.  



 

212 

Figure 54. Reusability-oriented filters in the search interface of the topes repository 

 
 



 

213 

Supported filters 

Table 18 shows the list of search filters. Many of these are based on traits directly 

reflected in the code provided by the data description’s author—where “code” is taken 

(as with web macros) to include comments and other annotations provided by the author. 

The traits reflected in code are based on the same general requirements for reuse men-

tioned by Section  8.1.1 and considered throughout this chapter: findability (with more 

reusable code generally having more mass appeal), flexibility (so that minimal modifica-

tion is needed to fit into the reuse context), substantial functional size (so that minimal 

extension is needed to cover the reuse needs), and understandability (so that the user can 

make any necessary modifications or extensions). In addition, the topes repository in-

cludes several filters based on prior uses and authorship. 

Table 18. Reusability-based filters in search interface of the topes repository 
Tab on user interface Search filter Reflected In (Related to) 
Annotations # distinct words Code itself Understandability 
 % English words Code itself Understandability 
 % English letters Code itself Understandability 
 Do not include the word “test” Code itself Mass appeal 
Parts, etc % soft constraints Code itself Flexibility 
 # constraints Code itself Functional size 
 # parts Code itself Functional size 
 # parts with non-trivial names Code itself Understandability 
 # variations Code itself Functional size 
 # formats Code itself Flexibility + functional size 
 Have no references to other topes Code itself Flexibility 
Uses # prior downloads Prior uses  
 Average rating Prior uses  
 # times referenced by other topes Prior uses  
Publisher # previous topes published Authorship  
 # previous topes rated Authorship  
 # days since joined repository Authorship  
 Email address has a certain domain Authorship  
 Is from a certain geographic location Authorship  
 Is a system administrator Authorship  

 

The first tab, “Annotations”, contains four search filters driven by the name, tags, 

and notes entered by the data description’s author through Toped++ (Figure 54). (The 

name is entered on the main tab of Toped++, shown in Figure 10, while the tags and notes 

are entered in the “Notes” tab of Toped++.) These filters allow the user to restrict the re-

sult set to only include data descriptions that have a substantial amount of intelligible an-

notation. During the CoScripter experiment, macro reuse was related to several traits 



 

214 

based on the “English-ness” of the annotations, which motivated the inclusion of analo-

gous search filters on the “Annotations” tab of the topes repository’s search filters. Con-

versely, the presence of the word “test” corresponded to lower macro reuse, which moti-

vated a comparable topes repository filter. 

The “Parts, etc.” tab of the tope repository’s advanced search is based on statistics 

concerning the number and characteristics of each data description’s constraints, parts, 

variations, and formats (Figure 55). A high concentration of soft constraints (those that 

are not “always” or “never” true) might indicate higher flexibility, as soft constraints 

might enable a tope implementation to gracefully question but not reject unusual inputs 

that the original author did not anticipate. Adding parts and variations (and, consequently, 

formats) to a data description increases its functional size, raising the amount of time po-

tentially saved by reusing it. In addition, the provision of more formats aids in flexibility 

by allowing the tope implementation to recognize a wider variety of strings. On the other 

hand, if a data description has dependencies on other data descriptions, then this can re-

duce flexibility, since the referring data description can be “broken” if the referenced data 

description changes. 

 

Figure 55. Advanced search filters based on constraints, parts, variations, and formats. 

 
 

The “Uses” tab includes three simple filters based on information about prior uses 
of data descriptions (Figure 56). The first filter, like the primary reusability-oriented fea-

ture of the CoScripter repository, is based on a count of how often each item is 



 

215 

downloaded. The second filter is based on the average rating of data descriptions; these 

ratings are collected through a “Comments” form that appears at the bottom of each data 

description’s “detail” page (scrolling down the inner frame of Figure 40). The third filter 

on the “Uses” tab is based on a count of how many other data descriptions in the reposi-

tory refer to the data description, under the assumption that data descriptions are probably 

more reusable if they have already been successfully reused in multiple other data de-

scriptions. 

 

Figure 56. Advanced search filters based on prior uses of the data descriptions. 

 
 

The final tab, “Publisher”, is driven by information collected about the author of 

each data description (Figure 57). In the CoScripter experiment, several traits represent-

ing the author’s prior experience were related to levels of macro reuse, motivating com-

parable traits in the topes repository. In addition, several macro traits indirectly corre-

sponded to the date in which an author adopted CoScripter and also related to levels of 

reuse; these motivated a filter in the topes repository to focus search results on data de-

scriptions that were created by people who created a repository account many days in the 

past. The next search filter is based on the email address of authors, which was motivated 

by the recognition that many topes are organization-specific. The penultimate search fea-

ture is motivated by the recognition that many topes are tied to geographical region, and 

it allows the user to filter search results based on what geographic region each data de-

scription author specified when creating a repository account; this piece of information 

must selected from a drop-down list showing all the world’s continents, broken into sev-

eral smaller regions such as North America, South America, Central Asia, and East Asia. 

Finally, since tutorial web macros created by CoScripter system administrators tended to 

be highly reused, the topes repository includes a filter for showing only data descriptions 

created by users flagged as repository administrators. 



 

216 

 

Figure 57. Advanced search filters based on information about authorship. 

 
 

Possible future next steps 

The filters shown here are not intended as a definitive final answer for how to 

provide reusability-oriented search features in the tope repository. Rather, they are in-

tended to illustrate that it is straightforward to create search filters directly tied to the end-

user code traits that have empirically corresponded to reuse in many studies, including 

the CoScripter experiment.  

There is not yet a large multi-user tope repository for performing an experiment to 

directly evaluate how well these search features would help people to reuse topes. None-

theless, many end-user repositories are quite successful despite providing a far less com-

prehensive suite of search features. This fact, combined with the empirical results de-

scribed in the preceding sections, suggests that reusability-oriented search filters may 

provide a basis for helping end users to locate reusable tope implementations.  

Future implementations of this approach might build on the basic user interface, 

shown above. One possibility would be to provide sliders for the fields that require nu-

meric inputs, with notches in the sliders indicating suggested values; these values might 

be determined using an algorithm similar to that described in Section  8.2. Another possi-

bility would be to track what data descriptions a user has downloaded and rated highly, 

then to train a machine learning algorithm to recommend other data descriptions that 

have reusability traits similar to those of the user’s preferred data descriptions. Section 

 9.2.5 discusses other possible future opportunities to enhance the TDE topes repository.  



 

217 

Chapter 9. Conclusion 

A series of empirical studies identified a common problem in applications for end 

users: these applications lack adequate support to help end users validate and reformat 

instances of data categories containing short, human-readable strings. In response to these 

user needs, this dissertation has presented a new kind of abstraction and supporting de-

velopment environment that helps users to quickly and effectively validate and reformat 

data. This approach relies on a new abstraction called a “tope”, which describes how to 

validate and reformat instances of one data category, such as phone numbers. Validation 

is non-binary, in that it can identify strings that are questionable and might be either valid 

or invalid.  

Topes enable users to more quickly and effectively complete validation and re-

formatting tasks than they can with currently-practiced techniques. Moreover, because 

topes capture domain knowledge in a form that is application- and user-agnostic, they are 

highly reusable. Thus, topes not only help end users to succeed in their immediate tasks, 

but topes also can facilitate the successful completion of future tasks in a wide range of 

applications. These results are indicative of the potential benefits that can accrue from 

research aimed at helping end users to create and use models of data encountered in eve-

ryday life. 

After Section  9.1 describes the contributions and claims supported by this work, 

Section  9.2 presents several opportunities for future work, including prospects for further 

extending and applying the topes model and the TDE. Section  9.3 concludes by discuss-

ing the implications of this thesis research, such as the desirability of end-user program-

ming research whose results generalize beyond particular applications or programming 

tools. 

9.1 Contributions and claims 

A series of empirical studies have uncovered many tasks during which users need 

to validate or reformat short, human-readable strings. In most cases, these strings are 

valid if they are instances of a certain category, such as university names or corporate 



 

218 

project numbers. Many such categories lack a formal specification, with the result that 

there often are questionable strings that look unusual but yet are valid. These categories 

are also often multi-format, in that strings of many data categories can be “equivalent” 

but written in multiple formats. Many of these categories are organization-specific, so 

developers of applications for end users cannot anticipate and support all of these data 

categories. In fact, most applications have virtually no support for automatically validat-

ing and reformatting strings. As a result, users have had to do validating and reformatting 

manually, which is tedious and error-prone. The finished data are sometimes questionable 

or even invalid, and they are often inconsistently formatted. 

In response to the needs of end users, this research has produced the following six 

primary contributions: 

 

• A new kind of abstraction, called a “tope”, providing operations for validating and 

reformatting short, human-readable strings in data categories, where those strings 

may be questionable and may appear in different formats 

• Algorithms for generating tope implementations from data descriptions provided 

by users, and for executing tope implementations’ operations on data 

• User interfaces and supporting code that enable users to create accurate data de-

scriptions, then use the generated tope implementations to quickly and effectively 

validate and reformat strings 

• A software architecture that effectively factors out application-specific concerns 

from application-independent validation and reformatting concerns 

• A parallelizable “search-by-match” algorithm that searches through existing tope 

implementations to find those that match user-provided keywords and example 

strings 

• A repository server that extends the search-by-match algorithm with features for 

filtering tope implementations based on traits that are generally useful for identi-

fying reusable end-user code 

 

The subsections below express three specific claims about these contributions, 

along with evidence supporting those claims. These results show that topes provide prac-



 

219 

tical value right after they are created, and that they can be reused over and over to pro-

vide ongoing value in a wide range of applications and to multiple people. 

Topes and the TDE are sufficiently expressive for creating useful, accurate rules for vali-

dating and reformatting a wide range of data categories commonly encountered by end 

users. 

In the form of isa and trf functions, Topes provide functionality for validating 

and reformatting the short, human-readable strings that should be instances of data cate-

gories. By implementing topes and using them to validate and reformat a wide range of 

spreadsheet and web form data, I have shown that the TDE makes it possible to express 

useful validation and reformatting operations for several dozen of the most common 

kinds of string data encountered by users (Sections  5.2.1,  5.2.2, and  6.2.1). 

In particular, the evaluation with spreadsheet data shows that through the TDE, 

topes can express validation that is three times as accurate as validation based on regular 

expressions (Section  5.2.2). This evaluation confirmed that topes were able to ferret out 

questionable strings, which yielded some of the benefit over regular expressions. Most of 

the improvements in accuracy came from the simplicity of packing many formats into a 

tope with the TDE. 

In short, topes are capable of expressing useful validation and reformatting opera-

tions for short, human-readable strings. Each tope corresponds to a particular data cate-

gory. Each tope can validate strings on a non-binary scale if so required by its data cate-

gory. These results show that the topes model and TDE meet the expressiveness require-

ments identified in  Chapter 1 (summarized in Table 6). 

By using the TDE to implement and apply topes, end users can validate and reformat 

strings more quickly and effectively than they can with currently-practiced techniques. 

Two experiments have confirmed that the TDE enables users to validate and re-

format data more quickly and effectively than is possible with currently-practiced tech-

niques. First, a between-subject experiment has examined how well the TDE helps end 

users to validate strings (Section  5.2.3). With the TDE, users finished their tasks twice as 

fast and found three times as many invalid strings as with the comparison system, Lapis 

 [70]. These results also compare favorably with statistics provided by an earlier study in-



 

220 

volving another system, SWYN, which was based on regular expressions  [16]. Second, a 

within-subjects experiment has shown that users can implement and use topes to reformat 

spreadsheet cells, and that this process is so fast that the cost of implementing a tope is 

“paid off” after only 47 spreadsheet cells—the alternative being to do the work manually, 

which is the only real option for users right now (Section  6.2.2). Both experiments in-

cluded a user satisfaction survey, which confirmed that users are extremely satisfied with 

the topes-based approach and eager to see it deployed in commercial applications for end 

users. 

Since topes can be created by people inside organizations, and they enable people 

to more quickly and effectively validate and reformat strings than is possible with cur-

rently-practiced techniques, these results show that the topes model and TDE meet the 

usability requirements identified in  Chapter 1 (summarized in Table 6). Thus, topes are 

not only theoretically expressive enough to be useful, but they are usable enough to pro-

vide practical value to real users. 

Tope implementations are reusable across applications and by different people. 

For a tope implementation to be reusable in different applications by different 

people, it must be callable from those applications, it must be findable, and it must be ca-

pable of robustly validating and reformatting data regardless of which application pro-

vided the data. 

To support cross-application reuse of tope implementations, the TDE provides a 

programmatic API called from applications via add-ins. The API effectively acts as a par-

tition between application-specific concerns handled in the add-ins and application-

independent concerns handled in the TDE. The feasibility of cross-application reuse has 

been demonstrated by including add-ins in the TDE for many different applications (Sec-

tion  7.1.1). 

In order to help find an existing tope implementation, the TDE provides a heuris-

tic-based “search-by-match” algorithm that finds topes based on how well they match 

keywords and example strings. When tested on tope implementations for the most com-

mon few dozen kinds of data, the algorithm demonstrated a recall of over 80% and query 

time of under 1 second, which is sufficient for implementing user interface features that 

search through the collections of tope implementations that users are likely to have on 



 

221 

their computers (Section  7.2.2). An analysis of this algorithm shows that it is highly par-

allelizable and suitable for searching through repositories of many more tope implemen-

tations (Section  7.2.2). A prototype repository system extends the basic search-by-match 

algorithm with additional search features aimed at helping users to filter search results 

based on whether tope implementations present certain traits. A variety of empirical stud-

ies show that traits like these tend to be useful for identifying reusable end-user code in 

general (Sections  8.1 and  8.2). 

Finally, I tested whether tope implementations created for several dozen catego-

ries of spreadsheet data would be equally accurate at validating and reformatting data 

from web applications (Section  7.2.1). This evaluation showed that the tope implementa-

tions actually were more accurate on the web application data than on the spreadsheet 

data, largely because the web form data corpus demonstrated a narrower variety of for-

mats for each category. In addition, calling reformatting functions proved to be an effec-

tive means of putting web application data into a consistent format and ultimately identi-

fying duplicate values (Section  6.2.1). 

In short, topes are application-agnostic abstractions whose implementations can 

be published, found, shared, combined, and customized. These results show that the topes 

model and TDE meet the reusability requirements identified in  Chapter 1 (summarized in 

Table 6). Thus, topes not provide practical value right after they are created, but they can 

be reused over and over to provide ongoing value in a wide range of applications and to 

multiple people. 

9.2 Future opportunities 

This section concludes this dissertation by exploring a few opportunities for in-

cremental improvements on topes and the TDE, then by moving on to more significant 

avenues for extending, generalizing, and applying the results of this thesis research to 

other forms of end-user programming. 



 

222 

9.2.1 Generalizing the combining of constraints in validation functions 

The TDE generates isa functions that check each input string against constraints 

specified in a user-provided data description. Each constraint carries a penalty between 0 

and 1, and if a string violates more than one penalty, then the isa function multiplies 

these penalties to generate a validity score. Multiplication is just one conceivable way of 

combining penalties, but it is worth considering what other approaches might be tractable 

and useful. 

Multiplication is a reasonable starting point for combining penalties because each 

constraint’s penalty is an estimate of the probability that the constraint will be violated by 

valid strings, so the product of the penalties yields an estimate of the joint probability that 

a valid string will violate both constraints. Since this computation yields a number in the 

range 0 and 1, it is an acceptable fuzzy set membership function and therefore a suitable 

way to implement isa scores. 

Nonetheless, there are two ways in which the resulting isa scores could be ad-

justed so that they are more accurate estimates of the joint probability function. 

First, each constraint’s penalty is computed based on a simple interpretation of an 

adverb of frequency selected by the user for the constraint. These adverbs of frequency 

were selected because there is surprisingly little variance (on the order of a few percent) 

in the probabilities that people assign to these words. Yet there is still a non-zero variance 

in this mapping, and there is always the potential for people to select an incorrect adverb. 

One approach that might improve on the current situation would be for the TDE to dy-

namically update probability estimates by tracking how often each constraint is actually 

violated by valid strings, then using that information to update the base figure specified 

by the user. Bayesian statistics would be a natural and easy way to combine these pieces 

of information, though empirical investigation would be required to determine what 

weighting factors (if any) would be appropriate. This determination would not be trivial, 

since the resulting factors would either need to be universally applicable, or mechanisms 

would be needed to determine the appropriate factors for different situations. 

Second, the improvement described above could be taken one step further: the 

TDE could track how often different combinations of constraint violations occur in valid 

data. Since there are 2n combinations of n constraints, it would probably not be sensible 



 

223 

to track every single combination’s probability of “co-violation”. Instead, perhaps the 

TDE could select only certain constraints for co-violation tracking based on information 

theoretic principles. For example, constraints that tend to be violated often (on their own) 

are probably also relatively likely to be violated at the same time as other constraints; 

thus, the TDE might select constraints for co-violation tracking if their adverbs of fre-

quency (or Bayesian posterior) indicated a high likelihood of violation. With statistics of 

co-violations in hand, the TDE could then directly compute the actual joint probability 

that constraints might be violated by valid strings. 

While the two possible improvements described above aim to tighten the corre-

spondence between isa scores and joint probabilities, there are also other entirely differ-

ent approaches for combining constraint penalties into isa scores. Most of these ap-

proaches do not aim to produce an isa function that corresponds to a true probability. In-

stead, they might offer alternative ways to tune the sensitivity of the isa function to mul-

tiple constraint violations. Section  3.4 pointed out one such alternate approach based on 

using arithmetic minimums of several scores. A second approach would be for the differ-

ent constraints to “vote”, and to take the arithmetic average of their results.  

It would certainly be possible to invent many other alternate calculi for reasoning 

about constraint violations, but it is likely that each form of reasoning has its limitations. 

In this regard, the problem of identifying invalid strings resembles program verification 

problems encountered by other researchers in other domains, where no single approach 

was universally superior to the others. For example, researchers have provided algorithms 

for detecting probable spreadsheet formula errors, and several calculi have been proposed 

for combining the results of these algorithms into what might be called a unified spread-

sheet “formula error detector”  [54]. But preliminary empirical investigation shows that 

each approach has strengths and weaknesses and might be preferred in some situations 

but not in others  [54]. Similarly, while the multiplication of probabilities in the TDE pro-

totype serves as an effective start for implementing isa functions, it might be desirable to 

develop alternative approaches for implementing isa functions and then to empirically 

evaluate the strengths and weaknesses of these approaches. 



 

224 

9.2.2 Assuring consistency between topes and tope implementations 

As explained by Section  3.5, a tope does not provide formal mechanisms to pre-

vent users from creating a tope implementation that is inconsistent with its tope. The rea-

son is that it seemed unlikely that users would be capable of or interested in writing a 

formal specification of each tope. As a result, this thesis research has relied on providing 

testing features and algorithms for detecting certain kinds of errors, with the intent of 

helping users understand whether the tope implementation matches the intended tope. 

These features include the testing tab of Toped++ (Section  4.3), algorithms for automati-

cally detecting if ambiguity might have caused an incorrect reformatting (Section  6.1.2), 

and algorithms for automatically detecting inconsistencies between parts in different 

variations of a data description (Section  7.1.3). Personally, I have found the testing tab to 

be very useful almost every time that I implement a tope, and I observed during the em-

pirical studies that users also extensively relied on this feature. The other features for 

automatically detecting errors are only useful once in a while. 

Perhaps the features for automatically detecting errors could be made more useful 

if they were more aggressive about ferreting out potential errors in a tope implementa-

tion. For example, it might be useful to augment them with an algorithm that takes the 

strings provided in the testing tab and “runs them around” the tope graph by successively 

calling trf functions and calling isa functions at each step of the way. The algorithm 

could signal potential errors by identifying situations where trf functions turn valid 

strings into invalid or questionable strings.  

With each new design-time static analysis aimed at detecting certain classes of er-

rors in tope implementations, it would also be desirable to provide users with a way to 

quickly fix those errors. For example, consider the existing algorithms for automatically 

detecting inconsistencies between parts in different variations of a data description. 

Toped++ provides a simple “Find/Replace” dialog window so that it is very easy to fix 

these inconsistencies.  

Likewise, with each new runtime dynamic analysis aimed at detecting when a 

tope implementation is producing invalid outputs, it would be ideal to provide users with 

a way to override or otherwise deal with those errors. For example, consider the existing 

algorithms for automatically detecting if ambiguity might have caused an incorrect re-



 

225 

formatting. When strings are identified by this algorithm as potentially incorrect refor-

matting outputs, they are flagged so that the user can review the strings and fix them if 

needed. 

Design-time and runtime algorithms aimed at detecting errors might still be valu-

able even if the user is never provided with any way to deal with those errors. One reason 

is that the error-detection algorithms could be incorporated into the repository to provide 

another measure of reusability. Another reason is that the algorithms could be used for 

research purposes to analyze tope implementations created by end users, in order to pro-

vide additional measures of correctness beyond the F1 measure used by this dissertation. 

9.2.3 Composition and decomposition of topes 

A tope’s interface exposes isa and trf functions that each accept a string parame-

ter. Consequently, with a single function call, it is only possible to validate or reformat a 

single string. It is not possible to issue a function call that validates or reformats several 

strings of different data categories. This limits topes’ ability to detect certain kinds of er-

rors. 

For example, a spreadsheet might split a mailing address into several cells. One 

cell might contain the street address, another might contain the city, another might con-

tain the state, and another might contain the zip code (as illustrated in Figure 15). The 

user could assign a different tope to each of these cells with the current tope model and 

Excel add-in. The TDE could then validate and reformat each of those cells. And, in fact, 

the evaluations described by Sections  5.2 and  6.2 show that topes and the TDE do enable 

users to validate and reformat data more quickly and effectively than is possible with cur-

rently-practiced techniques. 

But it might possible to go even further, to address situations where the validity of 

a string depends on nearby strings. Returning to the mailing address example, the street 

address string should correspond to a real building located in a real city referenced by the 

city string. The city, in turn, should refer to a real city located in the specified state. To-

gether, physical location together identified by the street address, city, and state should be 

geographically positioned within the real region referenced by the zip code string. (Inci-



 

226 

dentally, zip codes can cross state boundaries.) Validating each of the strings with a sepa-

rate tope, as in the current model, fails to capture these semantics. 

One way to address this limitation would be for the add-in to let the user concate-

nate the strings (with some sort of separators) and feed the resulting string into a tope 

specifically designed to validate the entire mailing address. Actually modeling such a 

data category would be well beyond the capabilities of the basic data description editor. 

Theoretically, the necessary validation rules could be expressed with JavaScript “linking 

constraints” in Toped++. But in reality, it might be more efficient if the data description 

could instead act as a stub to call a web service validates the entire string. For example, 

the data description could pass the string to maps.google.com and see if the server returns 

the HTML for a map. 

One problem with this approach is that it needlessly requires parsing the concate-

nated string. A more efficient approach would be to create a sort of “record-tope” with 

validation and reformatting functions that accept more than one string. That is, whereas a 

tope’s operations accept a single string (that might be a concatenation of multiple mean-

ingful sub-strings), a record-tope’s operations would accept multiple strings. Each pa-

rameter would need to match a certain tope (which could be a multi-format tope of the 

kind described in this dissertation, or it could in turn be a record-tope). For example, a 

validation function record-tope for mailing addresses might accept an address line, a city, 

a state, and a zip code. It would not stipulate that these parameters should match any par-

ticular format of the corresponding tope. For example, the first actual parameter could be 

an address line written as “12 Main Street” or “12 MAIN ST.” or “12 Main Str.” After 

all, the record-tope could always call referenced topes to put actual parameters into what-

ever format is preferred internally by the record-tope. 

Another useful extension of the topes model might be for each tope to provide 

functions for decomposing strings. The TDE actually does provide functions for parsing a 

string and retrieving the parts of the string that are named by the data description. For ex-

ample, an address line string could be parsed with the TDE to retrieve the street number, 

predirectional, street name, postdirectional, and street type (or whatever other parts hap-

pened to be named by the address line data description). This has proven useful for writ-

ing unit tests to help me ensure that the TDE is performing properly. Actually exposing 

this functionality through the topes interface might be useful for helping users to auto-



 

227 

mate tasks that involve decomposing strings. Further research will be required to pre-

cisely characterize situations where users must perform such tasks manually, as well as to 

empirically evaluate what user interfaces might enable users to quickly and correctly in-

voke string decomposition functions. 

9.2.4 Integrating topes into other applications and programming tools 

As described by Section  7.1.1, topes have already proven useful for validating and 

reformatting strings in web forms, web macros, and spreadsheets. Other potential applica-

tions abound, including the potential for integrating topes into the operating system, tex-

tual programming languages, and various additional end-user programming environ-

ments. 

Integrating topes with the operating system 

When a user needs to transfer data from one application to another, the data might 

need an intervening transformation. In such situations, integration with topes at the oper-

ating system level might help to facilitate inter-application transfers. 

For example, Section  2.3 mentioned that administrative assistants often need to 

copy data from spreadsheets into web forms when creating expense reports. Sometimes, 

the data in the spreadsheet is not in the format required by the web form, which has 

forced users to manually reformat data after copying and pasting it. This thesis research 

has provided two ways to address this problem: the user can now either use a tope in the 

spreadsheet environment to automatically reformat (and then copy-paste it into the web 

form), or the user can simply copy-paste the string in its old format into the web form and 

let the web form automatically reformat the string as needed (assuming that the web 

form’s programmer has attached a tope to the web form input field). 

But what if the user has a spreadsheet editor that does not yet have a TDE add-in, 

and the web form field does not have an associated tope for reformatting the string? Then 

the user is forced to manually reformat the string, returning to the tedious and error-prone 

process that this research aimed to avoid. 

One way to address this problem would be to integrate topes into the operating 

system clipboard in order to support a form of “smart copy-and-paste”. After the user 



 

228 

copies a string from the source application, he could press a special key combination 

(Ctrl-Shift-F11?) signaling to the operating system that reformatting is needed. The oper-

ating system could bring up a list of recommended topes and their available formats by 

calling on the algorithm described by Section  7.1.2. After the user selects or creates a 

new tope and format, the operating system would call the specified tope to reformat the 

clipboard’s string. This new string would be stored in the clipboard so that the user could 

proceed with a paste operation as usual. 

Even better, since users often need to copy and paste the same kinds of data over 

and over (as when filling out many expense reports from several co-workers), the operat-

ing system could track a list of recently used topes. Then, then when the user needs to 

reformat a string using a recently-used tope, he could press a key combination (Ctrl-Shift-

F12?) instructing the operating system to put the clipboard string into the most recently 

used tope for that kind of data. The operating system would take the clipboard string, re-

trieve the list of recommended topes, select the recommended tope that was used most 

recently, reformat the string to the format that had been selected the last time that the tope 

was used, and then put the new string onto the clipboard. This would allow the user re-

format a string in a single keystroke, without having to repeatedly browse through the list 

of recommended topes and their formats. 

A further extension would be to integrate this basic smart copy-and-paste with the 

“record-tope” model outlined by Section  9.2.3. Users would be able to define a record-

tope, copy strings into a clipboard, use the record-tope to reformat the string and to 

“burst” the string’s parts into sub-strings, and then simultaneously perform multiple paste 

operations to transfer the sub-strings into multiple text widgets. This would effectively 

generalize the capabilities of the Citrine tool, which can copy, decompose, and paste cer-

tain kinds of data into multiple text widgets at the same time  [118]. For example, a user 

could copy a mailing address from an email message and then paste it into multiple web 

form fields at the same time. At present, Citrine only supports a small, restricted set of 

certain data categories (mailing addresses, research paper citations, personal contact data 

such as phone numbers, and event-related data such as time and date); another limitation 

is that Citrine cannot perform intervening transformations. Integrating record-topes with 

the smart copy-and-paste functionality described above would eliminate these two restric-



 

229 

tions, since users could define new record-topes for custom data categories, and they 

could invoke the reformatting rules of the topes referenced by a record-tope. 

Integrating topes with traditional textual programming languages 

As described by Section  2.7, professional programmers often need to create “do-

main value” classes in order to work around the limitations of the object-oriented type 

systems. For example, the programmer might create an “interest rate” class for checking 

whether a value like “2.5%” is a valid interest rate. Right now, programmers would need 

to manually write the code for implementing such a class. This code might parse the 

string “2.5%” to strip the “%” symbol, convert the “2.5” into a floating-point number, 

check whether 2.5 falls within an acceptable range, and finally return true or false. 

Topes offer the possibility quickly implementing such classes. A programmer 

might define a data description for interest rates. An extension of the TDE (perhaps an 

add-in to Eclipse) might automatically generate a Java class with a method that accepts a 

string, then checks the string against a tope generated from the data description. The 

method would return true if and only the string had an isa score of 1. 

Moreover, topes offer the possibility of going beyond traditional domain value 

classes. A class’s validation method could actually return the isa score (rather than just 

converting it to a Boolean), thereby making it possible for whatever code calls the valida-

tion method to ask users for help with questionable values. Furthermore, the domain 

value class could expose all of the tope’s reformatting functionality. 

Integrating topes with various additional end-user programming environments 

Preliminary steps have already been taken toward integrating topes with other 

end-user programming environments. For example, I have developed a very minimalist 

proof-of-concept add-in for Microsoft SQL Server (described in  [100]) for validating 

strings in database columns. In addition, I have experimented with integrating topes into 

Adobe Dreamweaver, a popular end-user tool for designing web pages and web forms. 

Two companies, RedRover and LogicBlox, have identified opportunities for integrating 

topes into spreadsheet auditing and decision support software, respectively. Other re-

searchers have suggested integrating topes with Matlab, Forms/3, and analysis frame-

works for identifying dimension-unit errors. Additional opportunities will probably arise 



 

230 

if topes become widely popular and come to the attention of many software development 

companies. 

9.2.5 Repository enhancements addressing tope proliferation 

If topes do become widely successful, they might begin to “proliferate in the 

wild”. What are the potential problems associated with proliferation, and how might these 

problems be countered? These problems can be grouped into three logical categories: 

problems searching repositories for topes, problems with deciding whether to use one of 

the search results or to create a new tope, and problems with managing topes after they 

are on the user’s computer. 

Searching through large repositories for topes 

While the evaluation in Section  7.2 showed that the tope recommendation algo-

rithm can search through a few hundred topes within a second, and it showed that the al-

gorithm could be parallelized in a way that remains fast even as the number of topes 

grows further, this evaluation did not address whether the search results would remain 

accurate for very large tope repositories. Thus, if more topes eventually become avail-

able, it will be necessary to determine how well repositories are able to find topes for the 

data that users have at hand. 

The scalability of the search algorithm actually might not turn out to be a signifi-

cant problem, however, since so many data categories are organization-specific: users 

might naturally publish most topes to organization-specific repositories. This would ef-

fectively partition the total set of topes into smaller, more searchable sets. 

Helping users to decide whether to customize topes in the search results or to create from 

scratch 

On the other hand, the organization-specific nature of so many data categories 

might also work against the usability of the repositories, since users might frequently find 

that the available topes are not quite what they were looking for. For example, the avail-

able topes might lack certain organization-specific formats or organization-specific con-

straints. Conversely, the available topes might have unusual format or constraints that are 

inappropriate for a particular setting.  



 

231 

In such situations, users have a choice of downloading an available tope imple-

mentation and customize it, or starting from scratch by creating their own. The TDE pro-

vides functionality for both strategies (as discussed by Chapters 4 through 7). The ques-

tion is, how can the TDE (particularly the repository) help the user to decide which strat-

egy to apply? 

The current repository prototype offers some assistance with this: users can pro-

vide examples of strings that they would like a tope to match, and the repository will dis-

play visual indicators showing whether the available topes matched those examples 

(Figure 16). Going one step further, the repository could actually show the usual human-

readable, targeted error messages actually explaining why strings do not match the avail-

able topes, thereby calling out specific constraints that the user might be able to remove 

or modify in order to tune topes to the current need. In addition, if the repository allowed 

users to specify strings that should not be accepted by a tope, then the TDE could propose 

constraints that should be added to existing data descriptions; this would require incorpo-

rating fairly standard machine learning techniques (such as entropy maximization  [72]) 

into the tope inference algorithm. 

Helping users to manage customized versions of topes 

If a user does decide to download and customize a tope implementation, then a 

new problem arises: what to do if the original tope implementation changes? Should the 

user’s customized version also change? Or should the user’s customized version stay the 

same? Actually, some of the same considerations also apply even if the user never ac-

cesses any repository at all, since he might maintain many different versions of topes on 

his own computer, for use in specialized situations. For example, the user might create a 

project number tope for validating company data, but there might be a certain situation 

(monthly reports?) when only certain project numbers should be allowed, prompting the 

user to create a specialized project number data description that has an extra constraint. 

One unified approach for addressing these considerations would be for the TDE to 

track the starting source of every data description, and then to periodically check whether 

a new version becomes available at that source. For example, if a certain data description 

A is downloaded from a repository, and the user customizes it to produce data description 

B, then the TDE would record the fact that B’s source is A. If the user then further cus-



 

232 

tomized B to produce data description C, then the source of C would be B. Thanks to the 

REST-based protocol implementation of the repository (Section  7.1.3) all such source 

pointers can be represented as URLs. (The source of B would look something like 

“http://repositoryserver.domain.com/path/webapp.aspx?URL=tope-guid”, while the 

source of C would look like “file://c:/documents and settings/user/local set-

tings/Application Data/topesv4/tope-guid.xml”). 

The TDE could poll remote URLs for changes to remote sources’ implementa-

tions, and it could listen for file system events to detect changes to local sources’ imple-

mentations. At a reasonable, configurable level of frequency, it could then offer to 

download remote implementations (with a standard Windows system tray popup like, 

“You have available updates. Upgrade now?”).  

In order to help users make a reasoned decision about whether to accept remote 

updates, the TDE could log strings that have been tested recently with the current data 

description, and it could show a summary of strings that the new data description would 

validate or reformat differently. This essentially would represent an end-user-friendly 

form of regression testing. Moreover, if the new tope implementation would treat those 

strings differently than the current version does, then the TDE could identify specific 

constraints in the old or the new implementations that are causing the different behavior. 

Thus, the TDE could spell out exactly what has changed in the new version (and, per-

haps, offer users the ability to accept or reject changes at a fine level of granularity). 

Finally, if the user decides to accept an updated source implementation, the TDE 

could determine whether the user wants to propagate any changes to customized versions 

based on the changed source (regardless of whether the new source is remote or local). 

Internally, the TDE actually already provides a starting point for helping users to make 

this decision. Specifically, the TDE currently tags every part and constraint in every data 

description with a GUID; thus, the TDE could easily compute a “diff” to determine addi-

tions, modifications, and deletions made by the user during customization. To help the 

user decide whether to propagate changes to customized topes, the TDE could perform a 

“diff merge” of the new source with the user’s customizations, and then use the regres-

sion testing approach to check whether the tope from the resulting merged data descrip-

tion would perform the same as the old customized tope. It could then spell out exactly 



 

233 

what would the effects would be if the user chose to propagate changes to the customized 

version (and, perhaps, offer users the ability to propagate some changes but not others). 

9.2.6 Beyond topes: helping users to create, share, and combine code 

When considered as a general approach for helping users to accomplish their 

tasks, it is clear that end-user programming is extremely successful. One measure of suc-

cess is the large diversity of end-user programming tools such as Excel and Matlab that 

have been commercially profitable for many years. Another measure of success is the 

sheer number of people who create programs with these applications—perhaps as many 

as 100 million worldwide  [12]. Still a third measure of success is how integrated these 

applications have become with users’ lives. For example, despite the non-trivial potential 

for errors in spreadsheets and web macros, many employees rely on these end-user pro-

grams in order to accomplish everyday work tasks [21] [60] [85].  

However, end-user programmers run into trouble when trying to connect one 

piece of user-created data or code to another piece of user-created data or code. For in-

stance, Section  2.3 mentioned that administrative assistants often need to copy data from 

a spreadsheet into a web form, but they had no tool that could automate this data transfer 

(including intervening reformatting). In this case, the administrative assistants needed to 

copy data from a spreadsheet created by another user into a web form created by profes-

sional programmers. Nonetheless, the administrative assistants would have had just as 

much trouble automating the transfer of data from a user-generated spreadsheet into a 

user-generated web form.  

In fact, the administrative assistants might have had even more trouble automati-

cally transferring data into a user-generated web form. One reason is that web forms pro-

duced by end-user programmers might be more likely to contain JavaScript bugs than 

web forms produced by professional programmers (potentially forcing the administrative 

assistant to put extra effort into fail-safe, error-resistant code). Also, web forms produced 

by end-user programmers might be more likely to be located on obscure or not-easily-

discovered web pages, compared to web forms produced by the organization’s profes-

sional information services staff (potentially forcing the administrative assistant to hunt 

for the web form’s location before being able to automate the data transfer). Of course, 



 

234 

this list of potential problems is not exhaustive, and there are probably many other prob-

lems that uses would encounter when trying to automate tasks like the ones performed by 

administrative assistants in the contextual inquiry.  

To further illustrate with a more complex although hypothetical example, end us-

ers currently have no easy way to automatically read bank borrower names from another 

user’s spreadsheet, to look up corresponding loan information from a database created by 

another co-worker, to compute each borrower’s monthly interest payments with a script 

created by still another co-worker, and to display the results beside each borrower name 

in the original spreadsheet.  

Automating tasks like these will be impossible until end-user programmers can 

easily create, share and combine code to produce a new program. The results from this 

thesis research might help researchers to overcome three key stumbling blocks that stand 

in the way of achieving these objectives. 

First, end-user programmers need a reliable way of finding existing code to reuse 

and combine. The topes repository has offered a start in this direction, as it has provided a 

venue for understanding the traits of reusable end-user code in general, as well as for ex-

ploring one point in the design space for how those traits could be integrated into a search 

engine. Helping users to share and combine code could involve generalizing and further 

validating the notion of identifying reusable code based on these traits. In addition, it 

would be desirable to use these traits for other system features in addition to search inter-

faces. For example, if an end-user programmer uploads new code, the repository could 

check whether the code appears to be reusable and could issue suggestions for how the 

end-user programmer might improve the code. (The repository could check the code for 

other quality attributes other than reusability, such as checking for common performance 

problems or potential buffer overrun exploits.) If effective, such a feature could lead to a 

repository containing more useful code, which probably would indirectly make it easier 

for end-user programmers to find reusable code in the repository. 

Second, after identifying useful existing code, end-user programmers need a reli-

able way to integrate code, which often requires writing code that performs intervening 

transformation operations. Topes’ trf functions provide a beginning for implementing 

these operations, but further work will be required to fully automate data exchange be-

tween pieces of end-user code. Specifically, in this thesis research, transformations were 



 

235 

only called under human oversight. If a string happened to be invalid, or if ambiguity 

could cause improper reformatting, an add-in can ask a user for help. But when automati-

cally exchanging data between pieces of code, no human will be in the loop. In that case, 

it would be necessary to develop alternative approaches for automatically preventing or 

coping with problems. 

Finally, there has been little work aimed at helping end users to produce code that 

other people can understand and reuse. For example, while virtually every empirical 

study mentioned by Section  8.1.1 emphasized the importance of code comments in pro-

moting understandability, the same studies also showed that end-user programmers rarely 

take time to embed comments in code. End users lack the time to make significant up-

front investments in understandability, which in turn hampers reusability by peers. As a 

step toward improving this situation, perhaps annotating spreadsheet cells, text input 

fields and other widgets with references to topes would help to make their programs more 

understandable (just as labeling variables with types is claimed to help improve the read-

ability of professional programmers’ code  [87]). In order to reduce the time required for 

users to make these annotations, add-ins might recommend tope annotations by taking 

advantage of the TDE’s search-by-match algorithm. 

9.3 Conclusions 

This research has investigated an approach for helping users to automate activities 

that they currently must perform manually. This approach is founded on the notion of 

bringing the abstractions supported by end-user applications into closer alignment with 

the data involved in the problem domain. For decades, researchers of human-computer 

interaction have warned that a poor alignment between constructs in computer systems 

and constructs in the problem domain can interfere with humans’ ability to use those sys-

tems  [37] [81]. This research shows that improving this alignment is an effective way to 

help users to automate validation and reformatting of strings.  

An immediate implication of this result is that researchers might be able to help 

end users with other programming tasks by finding additional situations in which pro-

grammatic abstractions have a poor match to the problem domain. In response, research-

ers could design new kinds of abstractions that are more closely matched to the problem 



 

236 

domain. By instantiating and applying such abstractions, users might be able to more 

quickly and effectively complete everyday tasks. 

Application-agnosticism as high-leverage research 

Moreover, as exemplified by this thesis research, a possible consequence of 

closely matching programming abstractions to the problem domain is that the resulting 

abstractions can be application-agnostic. The direct benefit of this is that when a user 

creates an abstraction, he can then reuse it in many applications and possibly share it with 

other end users. This in turn enables users to build up a toolkit that they “leverage” in or-

der to more quickly and effectively complete future tasks, in addition to the task that ini-

tially prompted the instantiation of an abstraction. 

A second, even more significant benefit of research aimed at inventing applica-

tion-agnostic abstractions is that the results are highly generalizable, as they can be im-

mediately leveraged outside of one particular end-user programming application. This 

topes research has demonstrated this benefit, and much of topes’ future research opportu-

nities (Section  9.2) promise benefits only because topes are application-agnostic. Another 

initiative that has demonstrated similar benefits is the Open Minds Common Sense pro-

ject, whose ConceptNet application-agnostic model captures common-sense relationships 

among entities (e.g.: dogs have teeth); researchers have tapped this model in order to pro-

vide powerful new features in nearly a dozen different user applications  [61]. Similarly, 

Apple Data Detectors can be activated by any application on MacOSX simply by instan-

tiating a text box widget with the new functionality for calling detectors and displaying 

the context-menu of available scripts  [79], and Lapis patterns can be used to select text in 

HTML, Java, or ordinary text  [70]. 

Yet, to date, a great deal of end-user programming research has instead focused 

on producing non-application-agnostic systems, algorithms, or programming tools, which 

can have the effect of “locking away” research contributions inside of particular applica-

tions. This can lead to multiple research teams producing fairly similar results that mainly 

differ only in their target application or programming environment. For example, 

Forms/3 can infer constraints for validating numeric data in spreadsheets  [25], while 

Cues can infer constraints for validating numeric data in web service data  [93]. Could 

these two constraint-inference models be generalized into application-agnostic models? 



 

237 

Would doing this make it possible to unify the models, extend the unified application-

agnostic model, and apply it in other user applications where numeric data appear (such 

as Access databases and web pages)? On their own, each of these two research projects 

makes significant contributions and offers valuable insights, but what additional benefit 

might be gained by decoupling them from specific applications and then combining 

them? Other examples of contributions potentially worthy of “application-agnoticizing” 

include the file manipulation interface of Pursuit  [73], the lightweight semantic labeling 

approach of HTML microformats  [47], the set-selection abstractions of Hands  [84], and 

the Potter’s Wheel system for performing data cleaning on tuples  [91]. Section  9.2.3 

identified a related kind of data, which essentially consists of records of topes, that also 

might prove to be a worthy candidate for an application-agnostic abstraction.  

Four keys to topes’ application-agnosticism 

One of the keys to topes’ success as application-agnostic abstractions is that they 

are models of the users’ “real world” problem domain rather than models of a particular 

solution domain. Topes are not models of strings in spreadsheets, nor models of strings in 

web forms. They are models of strings in data categories that belong to societies or or-

ganizations. The implication is that researchers might find it more straightforward to de-

sign application-agnostic abstractions if those abstractions are tied to phenomena in the 

real world (rather than one particular application).  

Another key to topes’ success as application-agnostic abstractions is the model’s 

support for incremental modeling of the problem domain. Since so many data categories 

are organization-specific, it would have been impossible (or at least intolerably slow and 

costly) to design a single perfect tope ontology of the world. Consequently, the topes 

model is designed so that people can grow a toolkit incrementally by implementing and 

using topes as needed. Moreover, users can incrementally refine tope implementations 

over time, if so desired. The implication is that incrementalism might be a desirable fea-

ture to consider providing in other application-agnostic abstractions. 

A third key to tope’s success as application-agnostic abstractions is their support 

for semi-automated creation and use of domain models. This frees tope creators from the 

need to make perfectly precise topes. For example, as described in  Chapter 2, one reason 

that web developers omit validation for web form inputs like person names is because 



 

238 

they are worried that the validation will prevent people from entering unusual but valid 

inputs. With topes, this false choice between intended-to-be-perfect validation and no 

validation at all is removed: the programmer can specify validation that keeps out defi-

nitely invalid inputs but which allows users to override warning messages for question-

able inputs. In addition, transformation rules only need to make a “best effort” and are 

allowed to produce invalid outputs if appropriate (which the validation rules can detect 

for double-checking). Thus, programmers can add new topes to their toolkit even for data 

categories that cannot always be precisely modeled. The implication is that semi-

automation might be a desirable feature to consider providing in other application-

agnostic abstractions. 

Finally, perhaps the most significant key to topes’ success is that they target a 

shallow level of semantic granularity appropriate for the problem domain at hand. In par-

ticular, topes are an entirely new kind of abstraction at a level of semantic depth that has 

not been thoroughly explored. Regular expressions recognize strings based on syntax, but 

they do not require strings to have any particular meaning. While tope isa functions rec-

ognize strings based on syntax, they are part of an abstraction intended to capture mem-

bership in a data category.  This shallow semantics is deepened slightly through trf func-

tions, which capture the equivalence of strings, usually in the sense of referring to the 

same real-world named entity (such as a person or a mailing address).  

Thus, topes are a shallow-semantics abstraction describing one data category. 

They capture a level of semantics that is appropriate to their particular kind of data from 

the problem domain. There are other modeling approaches that allow much richer ab-

stractions capturing deeper semantics. For example, Cyc and ConceptNet allow for rela-

tions among named entities  [55] [61]. Object-oriented systems generally allow for arbi-

trary operations on objects, polymorphism, and often even more exotic semantic con-

structs. These alternate approaches appropriately capture more semantics than topes do, 

since they attempt to model a problem domain that is more semantics-rich than the data 

categories modeled by topes. Thus, the level of semantics should be tuned to the problem 

domain. More is not always better. 

From a software engineering standpoint, a vast gulf had remained largely unex-

plored between these semantics-rich modeling systems and the humble semantics-free 

grammars. This thesis research has not only identified a meaningful abstraction within 



 

239 

this gulf, but it also has shown that capturing that abstraction in a simple model makes it 

possible to help people accomplish real-world goals. This result hints that software engi-

neering researchers might be able to find other useful abstractions within the gulf of shal-

low semantics. 

Toward future application-agnostic generalizations of research contributions 

These four keys to topes’ success offer signposts for how other researchers might 

be able to produce useful application-agnostic abstractions. Each key to topes’ success 

provokes a question that researchers could ask of their own contributions: What aspects 

of this contribution are tied to the real world, and which therefore could potentially be 

captured in application-agnostic abstractions? To what extent could these abstractions be 

developed incrementally? How might semi-automation allow a user to benefit from such 

abstractions even if they are still incomplete and imprecise? Given the problem domain, 

what is the semantic depth required to capture useful information without resulting in 

unwieldy abstractions? 

To illustrate the role of such questions as signposts for developing application-

agnostic abstractions, consider the possibility of generalizing the numeric constraint 

models of Forms/3 beyond spreadsheets. These constraints not only take into account 

particular cell values, but also inter-cell dependencies resulting from formulas. One ques-

tion is whether there is anything about a user’s spreadsheet constraints today that would 

be worth capturing in an abstraction for reuse in checking spreadsheets tomorrow. Does a 

typical user make the same kinds of constraint-violation errors in spreadsheets day after 

day? Do groups of users (perhaps users who have similar kinds of work) make similar 

errors to one another? Do these users make the same kinds of errors even when they work 

in different applications (such as Excel, Access, or JavaScript)? If the answers to these 

questions are “yes”, then it might be possible to develop a system that watches over a 

user or groups of users, learns what kinds of errors they commonly make in all the appli-

cations that they use, and then offers suggestions in all these applications based on in-

ferred constraints. 

The keys to topes’ success provoke questions that could serve as signposts for 

moving such a research agenda forward. One signpost question could address whether 

there is anything in the real world that causes repeated errors in multiple applications. 



 

240 

For example, in healthcare industries, do novice users tend to make certain domain-

specific dimension-unit errors when computing dosages in spreadsheets or other applica-

tions such as Medical Expression Language  [82] or Microsoft Access)? In banking, do 

novice users tend to compute compound interest incorrectly? As a second signpost ques-

tion, can such common errors be detected incrementally, to grow a domain-specific sys-

tem that is increasingly smart about detecting errors? Or would it be necessary to set up a 

huge domain ontology before any common errors could be learned? As a third signpost 

question, how could semi-automation facilitate the training and invocation of a domain-

specific system’s capabilities, so that the system grows in accuracy and does not get out 

of control? As a final signpost question, given the nature of the problem domain, what is 

the appropriate semantic depth for capturing information about common errors? Model-

ing no semantics at all will probably fail to capture any information of interest, but mod-

eling too much semantics could make the system hard to train, manage, and use. 

The value of these signposts is that they highlight questions that might lead re-

searchers to identify powerful new application-agnostic generalizations of their research 

contributions. Now, for a given research contribution, the answer might turn out to be 

“No, this particular contribution does not generalize across applications.” But in other 

cases, the answer might be, “Yes, this contribution does generalize—and it might even 

transform the world some day.” 



 

241 

References        
[1] R. Abraham and M. Erwig. Header and Unit Inference for Spreadsheets through 

Spatial Analyses. 2004 IEEE Symposium on Visual Languages and Human-
Centric Computing, 2004, 165-172. 

[2] E. Allen, et al. The Fortress Language Specification, Version 1.0., Sun Microsys-
tems, 2008. 

[3] M. Anderberg. Cluster Analysis for Applications, Academic Press, 1973 
[4] D. Appelt. Introduction to Information Extraction, AI Communications (12), No. 

3, 1999, 161-172. 
[5] S. Bajracharya, T. Ngo, E. Linstead, and Y. Dou. Sourcerer: A Search Engine for 

Open Source Code Supporting Structure-Based Search. Companion to the 21st 
ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Lan-
guages, and Applications, 2006, 6f81-682. 

[6] V. Barnett and T. Lewis. Outliers in Statistical Data, Wiley, 1984. 
[7] L. Barroso, J. Dean, and U. Hölze. Web Search for a Planet: The Google Cluster 

Architecture, IEEE Micro (23), No. 2, 2003, 22-28. 
[8] V. Basili, L. Briand, and W. Melo. A Validation of Object-Oriented Design Met-

rics as Quality-Indicators, IEEE Transactions on Software Engineering (22), No. 
10, 1996, 751-761. 

[9] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web, Scientific Ameri-
can (284), No. 5, 2001, 34-43. 

[10] H. Beyer and K. Holtzblatt. Contextual Design: Defining Customer-Centered Sys-
tems, Morgan Kaufmann, 1998. 

[11] H. Bhasin. Asp.NET Professional Projects, Muska & Lipman Publishers, 2002. 
[12] BEAs Bosworth: The World Needs Simpler Java, eWeek Magazine, February 19, 

2004. 
[13] T. Biggerstaff and C. Richter. Reusability Framework, Assessment, and Direc-

tions, IEEE Software (4), No. 2, 1987, 41-49. 
[14] S. Bikhchandani, D. Hirshleifer, and I. Welch. A Theory of Fads, Fashion, Cus-

tom, and Cultural Change as Informational Cascades, Journal of Political Econ-
omy (100), No. 5, 1992, 992-1026 

[15] A. Blackwell. First Steps in Programming: A Rationale for Attention Investment 
Models, 2002 IEEE Symposium on Human Centric Computing Languages and 
Environments, 2002, 2-10. 

[16] A. Blackwell. SWYN: A Visual Representation for Regular Expressions, Your 
Wish Is My Command: Programming by Example, 2001, 245-270. 

[17] B. Boehm, et al. Cost Models for Future Software Life Cycle Processes: CO-
COMO 2.0, Annals of Software Engineering Special Volume on Software Process 
and Product Measurement, J.C. Baltzer AG Science Publishers, 1995, 57-94. 

[18] B. Boehm, et al. Software Cost Estimation with COCOMO II, Prentice-Hall, 
2000. 



 

242 

[19] G. Boetticher, T. Menzies, T. Ostrand, and G. Ruhe. 4th International Workshop 
on Predictor Models in Software Engineering, Companion to the 30th Interna-
tional Conference on Software Engineering, 2008, 1061-1062. 

[20] C. Bogart, M. Burnett, A. Cypher, and C. Scaffidi. End-User Programming in the 
Wild: A Field Study of CoScripter Scripts, 2008 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, 2008, 39-46. 

[21] J. Brandt, P. Guo, J. Lewenstein, and S. Klemmer. Opportunistic Programming: 
How Rapid Ideation and Prototyping Occur in Practice, 4th International Work-
shop on End-User Software Engineering, 2008, 1-5. 

[22] G. Brat. Experimental Evaluation of Verification and Validation Tools on Martian 
Rover Software, Formal Methods in System Design (25), No. 2, 2004, 167-200. 

[23] Bureau of Labor Statistics.  Current Population Survey (CPS) Computer Owner-
ship/Internet Usage Supplement.  Reports for all years may be retrieved from…     
www.census.gov/population/socdemo/computer/  
while raw data for 1994 and later may be downloaded through the DataFerrett 
program available at… 
     dataferrett.census.gov/TheDataWeb/index.html 

[24] J. Burkhardt and F. Détienne. An Empirical Study of Software Reuse by Experts 
in Object-Oriented Design. 5th International Conference on Human-Computer In-
teraction, 1995, 38-138. 

[25] M. Burnett, et al. End-User Software Engineering with Assertions in the Spread-
sheet Paradigm. Proc. 25th International Conference on Software Engineering, 
2003, 93-103. 

[26] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data, 
Morgan Kaufmann, 2002. 

[27] M. Coblenz, A. Ko, and B. Myers. Using Objects of Measurement to Detect 
Spreadsheet Errors. 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing, 2005, 314-316. 

[28] Cycorp. Cyc Enhancement of Information Extraction, whitepaper downloaded 
April 30, 2009, http://www.cyc.com/cyc/technology/whitepapers_dir/IE-
Improvement-Whitepaper.pdf 

[29] P. Drucker. The Age of Discontinuity, Transaction Publishers, 1992. 
[30] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software, 

Addison-Wesley Professional, 2003. 
[31] M. Erwig and M. Burnett. Adding Apples and Oranges. 4th International Sympo-

sium on Practical Aspects of Declarative Languages, 2002, 173-191. 
[32] N. Fenton and M. Neil. A Critique of Software Defect Prediction Models. IEEE 

Transactions on Software Engineering, (25), No. 5, 1999, 675-689. 
[33] M. Fisher II and G. Rothermel. The EUSES Spreadsheet Corpus: A Shared Re-

source for Supporting Experimentation with Spreadsheet Dependability Mecha-
nisms, Technical Report 04-12-03, University of Nebraska—Lincoln, 2004. 

[34] R. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures, PhD Thesis, Department of Information and Computer Science, Uni-
versity of California - Irvine, 2000. 

[35] J. Fujima, A. Lunzer, K. Hornboek, and Y. Tanaka. Clip, Connect, Clone: Com-
bining Application Elements to Build Custom Interfaces for Information Access, 



 

243 

17th Annual ACM Symposium on User Interface Software and Technology, 2004, 
175-184. 

[36] E. Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley, 1995. 

[37] T. Green and M. Petre. Usability Analysis of Visual Programming Environments: 
A “Cognitive Dimensions” Framework. Journal of Visual Languages and Compu-
tation (7), No. 2, 1996, 131-174. 

[38] N. Gulley. Improving the Quality of Contributed Software and the MATLAB File 
Exchange, 2nd Workshop on End User Software Engineering, 2006, 8-9. 

[39] J. Hall. A Risk and Control-Oriented Study of the Practices of Spreadsheet Appli-
cation Developers. 29th Hawaii International Conference on System Sciences, 
1996, 364-373. 

[40] D. Halbert. SmallStar: Programming By Demonstration in the Desktop Metaphor, 
Watch What I Do: Programming By Demonstration, 1993, 102-123. 

[41] D. Hecker. Occupational Employment Projections to 2012, Monthly Labor Re-
view (127), No. 2, 2004, 80-105. 

[42] S. Hipple and K. Kosanovich. Computer and Internet Use at Work in 2001, 
Monthly Labor Review (126), No. 2, 2003, 26-35. 

[43] R. Hoffmann, et al. Amplifying Community Content Creation with Mixed Initia-
tive Information Extraction,  27th International Conference on Human Factors in 
Computing Systems, 2009, 1849-1858. 

[44] D. Huynh, R. Miller, and D. Karger. Potluck: Data Mash-Up Tool for Casual Us-
ers. Lecture Notes in Computer Science (4825), 2007, 239-252. 

[45] B. Keller and R. Lutz. Evolving Stochastic Context-Free Grammars from Exam-
ples Using a Minimum Description Length Principle. 1997 Workshop on Auto-
mata Induction Grammatical Inference and Language Acquisition, 1997, 
http://citeseer.ist.psu.edu/59698.html 

[46] A. Kennedy. Programming Languages and Dimensions, PhD thesis, St. Catha-
rine’s College, University of Cambridge, 1996. 

[47] R. Khare and T. Çelik. Microformats: A Pragmatic Path to the Semantic Web. 
15th International World Wide Web Conference, 2006, 865-866. 

[48] J. Kim and C. Mueller. Factor Analysis: Statistical Methods and Practical Issues, 
Sage Publications, 1978. 

[49] D. Knuth. Semantics of Context-Free Languages, Journal of Mathematical Sys-
tems Theory (2), No. 2, 1968, 127-146. 

[50] A. Ko, B. Myers, and H. Aung. Six Learning Barriers in End-User Programming 
Systems, 2004 IEEE Symposium on Visual Languages and Human-Centric Com-
puting, 2004, 199-206. 

[51] A. Ko, et al. The State of the Art in End-User Software Engineering, Submitted to 
ACM Computing Surveys, 2008. 

[52] A. Koesnandar. Using Assertions to Help End-User Programmers Create Depend-
able Web Macros, 16th International Symposium on Foundations of Software En-
gineering, 2008, 124-134. 

[53] M. Lanza, M. Godfrey, and S. Kim. 5th Working Conference on Mining Software 
Repositories, Companion to 30th International Conference on Software Engineer-
ing, 2008, 1037-1038. 



 

244 

[54] J. Lawrance, R. Abraham, M. Burnett, and M. Erwig. Sharing Reasoning about 
Faults in Spreadsheets: An Empirical Study, 2006 IEEE Symposium on Visual 
Languages and Human-Centric Computing, 2006, pp. 35-42. 

[55] D. Lenat. CYC: A Large-Scale Investment in Knowledge Infrastructure, Commu-
nications of ACM, (38), No. 11, 1995, 33-38. 

[56] D. Lenat. From 2001 to 2001: Common Sense and the Mind of HAL, HAL’s Leg-
acy: 2001's Computer as Dream and Reality, MIT Press, 2001, 193-209. 

[57] D. Lenat, R. Guha, K. Pittman, and D. Pratt. Cyc: Toward Programs with Com-
mon Sense, Communications of ACM, (33), No. 8, 1990, 30-49. 

[58] A. Lenhart and S. Fox. Twitter and Status Updating, Pew Internet & American 
Life Project, 2009. 

[59] K. Lerman, S. Minton, and C. Knoblock. Wrapper Maintenance: A Machine 
Learning Approach, Journal of Artificial Intelligence Research (18), 149-181. 

[60] G. Leshed, E. Haber, T. Matthews, and T. Lau. CoScripter: Automating & Shar-
ing How-To Knowledge in the Enterprise, 26th  SIGCHI Conference on Human 
Factors in Computing Systems, 2008, 1719-1728. 

[61] H. Lieberman, H. Liu, P. Singh, and B. Barry. Beating Common Sense into Inter-
active Applications, AI Magazine, (25), No. 4, 2004, 63-76. 

[62] H. Lieberman, B. Nardi, and D. Wright. Training Agents to Recognize Text by 
Example, 3rd Annual Conference on Autonomous Agents, 1999, 116-122. 

[63] J. Lin, et al. End-User Programming of Mashups with Vegemite, 2009 Interna-
tional Conference on Intelligent User Interfaces, 2009, 97-106. 

[64] G. Little, et al. Koala: Capture, Share, Automate, and Personalize Business Proc-
esses on the Web, 2007 SIGCHI Conference on Human Factors in Computing 
Systems, 2007, 943-946. 

[65] H. Liu and P. Singh. OMCSNet: A Commonsense Inference Toolkit, whitepaper 
from MIT, downloaded April 30, 2009, 
http://web.media.mit.edu/~hugo/omcsnet/omcsnet.pdf 

[66] M. Madden and S. Jones. Networked Workers, Pew Internet & American Life 
Project, 2008. 

[67] E. Marsh and D. Perzanowski. MUC-7 Evaluation of IE Technology: Overview of 
Results, 7th Message Understanding Conference, 2001. 

[68] R. McDaniel and B. Myers. Getting More Out of Programming-By-
Demonstration, Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems, 1999, 442-449. 

[69] T. Menzies, et al. Problems with Precision: A Response to Comments on ‘Data 
Mining Static Code Attributes to Learn Defect Predictors’, IEEE Transactions on 
Software Engineering (33), No. 9, 2007, 637-640. 

[70] R. Miller. Lightweight Structure in Text, PhD thesis, Computer Science Depart-
ment, Carnegie Mellon University, 2002.   

[71] R. Miller and B. Myers. Creating Dynamic World Wide Web Pages by Demon-
stration, Technical Report CMU-CS- 97-131, School of Computer Science, Car-
negie Mellon University, 1997. 

[72] T. Mitchell. Machine Learning, McGraw-Hill, 1997. 



 

245 

[73] F. Modugno and B. Myers. Pursuit: Graphically Representing Programs in a 
Demonstrational Visual Shell, Proceedings of the CHI '94 Conference Compan-
ion on Human Factors in Computing Systems, 1994, 455-456. 

[74] P. Mohagheghi, R. Conradi, O. Killi, and H. Schwarz. An Empirical Study of 
Software Reuse vs. Defect-Density and Stability, 26th International Conference 
on Software Engineering, 2004, 282-291. 

[75] R. Moser, W. Pedrycz, and G. Succi. A Comparative Analysis of the Efficiency of 
Change Metrics and Static Code Attributes for Defect Prediction, 30th Interna-
tional Conference on Software Engineering, 2008, 181-190. 

[76] F. Mosteller and C. Youtz. Quantifying Probabilistic Expressions, Statistical Sci-
ence (5), No. 1, 1990, 2-12. 

[77] B. Myers, J. Pane, and A. Ko. Natural Programming Languages and Environ-
ments, Communications of ACM (47), No. 9, 2004, 47-52. 

[78] B. Nardi. A Small Matter of Programming: Perspectives on End User Computing, 
MIT Press, 1993. 

[79] B. Nardi, J. Miller, and D. Wright. Collaborative, Programmable Intelligent 
Agents, Communications of the ACM (41), No. 3, 1998, 96-104. See 
http://www.miramontes.com/writing/add-cacm/index.html for screenshots. 

[80] R. Nix. Editing By Example, ACM Transactions on Programming Language Sys-
tems (7), No. 4, 1985, 600-621. 

[81] D. Norman. Psychology of Everyday Things, Basic Books, 1988. 
[82] E. Orrick. Position Paper for the CHI 2006 Workshop on End-User Software En-

gineering, 2nd Workshop on End User Software Engineering, 2006, 10-11. 
[83] X. Ou, et. al. Dynamic Typing with Dependent Types, Technical Report TR-695-

04, Department of Computer Science, Princeton University, 2004. 
[84] J. Pane. Designing a Programming System for Children with a Focus on Usabil-

ity, Conference on Human Factors in Computing Systems, 1998, 62-63.  
[85] R. Panko. What We Know About Spreadsheet Errors, Journal of End User Com-

puting (10), No. 2, 1998, 15-21. 
[86] M. Petre and A. Blackwell. Children as Unwitting End-User Programmers, 2007 

IEEE Symposium on Visual Languages and Human-Centric Computing, 2007, 
239-242. 

[87] B. Pierce. Types and Programming Languages, MIT Press, 2002. 
[88] M. Porter. An Algorithm for Suffix Stripping, Program (14), No. 3, 1980, 130-

137. 
[89] A. Pras and J. Schoenwaelder. RFC 3444: On the Difference between Information 

Models and Data Models, IETF, 2003. 
[90] E. Rahm and H. Do. Data Cleaning: Problems and Current Approaches, IEEE 

Data Engineering Bulletin (23), 4, 2000, 3-13. 
[91] V. Raman and J. Hellerstein. Potter’s Wheel: An Interactive Data Cleaning Sys-

tem, 27th International Conference on Very Large Data Bases, 2001, 381-390. 
[92] Random House Unabridged Dictionary, Random House, 2006, 

http://www.dictionary.com 
[93] O. Raz, P. Koopman, and M. Shaw. Semantic Anomaly Detection in Online Data 

Sources, 24th International Conference on Software Engineering, 2002, 302-312. 



 

246 

[94] M. Resnick, M. Flanagan, C. Kelleher, and M. MacLaurin. Growing Up Pro-
gramming: Democratizing the Creation of Dynamic, Interactive Media, 27th In-
ternational Conference Extended Abstracts on Human Factors in Computing Sys-
tems, 2009, 3293-3296. 

[95] J. Rode. Web Application Development by Nonprogrammers: User-Centered De-
sign of an End-User Web Development Tool. PhD thesis, Department of Com-
puter Science, Virginia Polytechnic Institute and State University, 2005. 

[96] J. Rode, E. Toye, and A. Blackwell. The Fuzzy Felt Ethnography—Understanding 
the Programming Patterns of Domestic Appliances, Journal of Personal and 
Ubiquitous Computing (8), No. 4, 2004, 161-176. 

[97] E. Rogers. Diffusion of Innovation, Simon & Schuster, 1995. 
[98] M. Rosson, J. Ballin, and H. Nash. Everyday Programming: Challenges and Op-

portunities for Informal Web Development, 2004 IEEE Symposium on Visual 
Languages and Human-Centric Computing, 2004, 123-130. 

[99] M. Rosson and J. Carroll. The Reuse of Uses in Smalltalk Programming, Transac-
tions on Computer-Human Interaction (3), No. 3, 1996, 219-253. 

[100] C. Scaffidi. Unsupervised Inference of Data Formats in Human-Readable Nota-
tion, 9th International Conference on Enterprise Information Systems - HCI Vol-
ume, 2007, 236-241. 

[101] C. Scaffidi, C. Bogart, M. Burnett, A. Cypher, B. Myers, and M. Shaw. Predicting 
Reuse of End-User Web Macro Scripts. Submitted to 2009 IEEE Symposium on 
Visual Languages and Human Centric Computing. 

[102] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, J. Lin, B. Myers, and M. 
Shaw. Using Topes to Validate and Reformat Data in End-User Programming 
Tools, 4th Workshop on End-User Software Engineering, 2008, 11-15. 

[103] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, and B. Myers. Scenario-Based 
Requirements for Web Macro Tools, 2007 IEEE Symposium on Visual Languages 
and Human-Centric Computing, 2007, 197-204. 

[104] C. Scaffidi, A. Ko, B. Myers, M. Shaw. Dimensions Characterizing Programming 
Feature Usage by Information Workers, 2006 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, 2006, 59-62. 

[105] C. Scaffidi, B. Myers, and M. Shaw. Fast, Accurate Creation of Data Validation 
Formats by End-User Developers, 2nd  International Symposium on End-User De-
velopment, 2009, to appear. 

[106] C. Scaffidi, B. Myers, and M. Shaw. Intelligently Creating and Recommending 
Reusable Reformatting Rules, 14th International Conference on Intelligent User 
Interfaces, 2009, 297-306. 

[107] C. Scaffidi, B. Myers, and M. Shaw. Tool Support for Data Validation by End-
User Programmers, Companion to 30th International Conference on Software En-
gineering, 2008, 867-870. 

[108] C. Scaffidi, B. Myers, and M. Shaw. Topes: Reusable Abstractions for Validating 
Data, 30th International Conference on Software Engineering, 2008, 1-10. 

[109] C. Scaffidi, B. Myers, and M. Shaw. Trial By Water: Creating Hurricane Katrina 
“Person Locator” Web Sites, Leadership at a Distance: Research in Technologi-
cally-Supported Work, Lawrence Erlbaum Publishers, 2007, 209-222. 



 

247 

[110] C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users and 
End User Programmers, 2005 IEEE Symposium on Visual Languages and Hu-
man-Centric, 2005, 207-214. 

[111] J. Schlimmer and L. Hermens. Software Agents: Completing Patterns and Con-
structing User Interfaces, Journal of Artificial Intelligence Research (1), 1993, 
61-89. 

[112] J. Segal. Professional End User Developers and Software Development Knowl-
edge, Technical Report 2004/25, Department of Computing, Faculty of Mathe-
matics and Computing, The Open University, Milton Keynes, United Kingdom, 
2004.  

[113] M. Shaw. An Input-Output Model of Interactive Systems, 1986 SIGCHI Confer-
ence on Human Factors in Computing Systems, 1986, 261-273. 

[114] M. Shaw. Larger Scale Systems Require Higher-Level Abstractions, 5th Interna-
tional Workshop on Software Specifications and Design, 1989, 143-146. 

[115] A. Sheth and J. Larson. Federated Database Systems for Managing Distributed, 
Heterogeneous, and Autonomous Databases, ACM Computing Surveys (22), No. 
3, 1990, 183-236. 

[116] F. Shull, et al. What We Have Learned About Fighting Defects, 8th IEEE Interna-
tional Software Metrics Symposium, 2002, 249-258. 

[117] G. Stahl, T. Sumner, and A. Repenning. Internet Repositories for Collaborative 
Learning: Supporting Both Students and Teachers, 1st International Conference 
on Computer Support for Collaborative Learning, 1995, 321-328. 

[118] J. Stylos, B. Myers, and A. Faulring. Citrine: Providing Intelligent Copy-And-
Paste, 17th Annual ACM Symposium on User Interface Software and Technology, 
2004, 185-188. 

[119] J. Teng, V. Grover, and W. Güttler. Information Technology Innovations: General 
Diffusion Patterns and Its Relationships to Innovation Characteristics, Transac-
tions on Engineering Management (49), No. 1, 2002, 13-27. 

[120] M. Tomita. An Efficient Augmented-Context-Free Parsing Algorithm, Journal of 
Computational Linguistics (13), No. 1-2, 1987, 31-46. 

[121] R. Walpole and M. Burnett. Supporting Reuse of Evolving Visual Code, 1997 
IEEE Symposium on Visual Languages, 1997, 68-75. 

[122] A. Westerinen, et al. RFC 3198: Terminology for Policy-Based Management, 
IETF, 2001. 

[123] S. Wiedenbeck. Facilitators and Inhibitors of End-User Development by Teachers 
in a School Environment. 2005 IEEE Symposium on Visual Languages and Hu-
man-Centric Computing, 2005, 215-222.  

[124] N. Zang, M. Beth Rosson, and V. Nasser. Mashups: Who? What? Why?. 2008 
SIGCHI Conference on Human Factors in Computing Systems - Work-in-
Progress Posters, 2008, 3171-3176. 

[125] L. Zadeh. Fuzzy Logic, Technical Report CSLI-88-116, Stanford University, 
1988. 

[126] H. Züllighoven. Object-Oriented Construction Handbook, Morgan Kaufmann, 
2003. 


