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Abstract

Supply chains are a central element of today’s global ecgndexisting management practices
consist primarily of static interactions between estddadds partners. Global competition, shorter
product life cycles and the emergence of Internet-medibatesihess solutions create an incentive
for exploring more dynamic supply chain practices. The $u@main Trading Agent Competition
(TAC SCM) was designed to explore approaches to dynamiclguain trading between auto-
mated software agents. TAC SCM pits against one anothengagdents developed by teams from
around the world. Each agent is responsible for running teeyrement, planning and bidding
operations of a PC assembly company, while competing wiibrstfor both customer orders and
supplies under varying market conditions. This paper priss€arnegie Mellon University’s 2005
TAC SCM entry, the CMieux supply chain trading agent. CMiéwplements a novel approach
for coordinating supply chain bidding, procurement andplag, with an emphasis on the ability
to rapidly adapt to changing market conditions. We presergigcal results based on 200 games
involving agents entered by 25 different teams during wiaat lse seen as the most competitive
phase of the 2005 tournament. Not only did CMieux perform agnthe top five agents, it sig-
nificantly outperformed these agents in procurement whidéching their bidding performance.
We also simulated 40 games against the best publicly alaitdent binaries. Our results show
CMieux has significantly better average overall perforngati@an any of these agents.






1 Introduction

Existing supply chain management practices consist pifynaf static interactions between es-
tablished partners [5]. As the Internet helps mediate areaging number of supply chain trans-
actions, there is a growing interest in investigating thadfigs of more dynamic supply chain
practices [2, 13], such as those involving automated sofwgents. The Supply Chain Trading
Agent Competition (TAC SCM) was designed to explore suchi@gghes to dynamic supply chain
trading. TAC SCM pits against one another trading agenteldped by teams from around the
world. Each agent is responsible for running the procurapmanning and bidding operations of
a PC assembly company, while competing with others for basliamer orders and supplies under
varying market conditions. Specifically, the game featwesimber of different types of com-
puters, each requiring different sets of components thateaprocured from multiple suppliers.
Agents make money by selling and delivering finished PCs sbtorners. Supplier and customer
market conditions stochastically change over time and faora game to another to ensure that
agents are tested across a broad range of representatigBsits.

This paper presents Carnegie Mellon University’s 2005 TATVSentry, the CMieux auto-
mated supply chain trading agent. CMieux’s architectuggads markedly from traditional Enter-
prise Resource Planning architectures and commerciafifedle supply chain management so-
lutions due to its emphasis on tight coordination betwegpluchain bidding, procurement and
planning. Through this coordination, our trading agentapable of adapting rapidly to chang-
ing market conditions to outperform its competitors. Intgadar, we present empirical results
based on 200 games involving agents entered by 25 diffeeantg during what can be seen as
the most competitive phase of the 2005 tournament. Not adlZieux perform among the top
five agents, it significantly outperformed these agentsacyrement while matching their bidding
performance. We also present results from 40 simulatedéidn games against the top five pub-
licly available agent binaries. The results of these garhes/gshat CMieux has significantly better
average overall performance than any of the public agerttasrsetting.

The remainder of this paper is organized as follows. Se@isummarizes the TAC SCM en-
vironment, and highlights the features and challenges aigianning and scheduling perspective.
Section 3 presents an overview of CMieux and a detailed geser of its underlying modules.
Section 4 presents empirical results. Section 5 brieflyutises the changes that were made to
CMieux in preparation for the 2007 tournament where it was ohthe finalists. Finally in Sec-
tion 6 we give a few concluding remarks and directions foufatwork.

2 TAC Supply Chain Management

This section provides a summary of the TAC Supply Chain Managnt game. The full description
can be found in the official specification document [6].

A typical supply chain [5] may involve a variety of participg, such as: customers, retailers,
wholesalers/distributors, manufacturers, and compdraemimaterial suppliers. The objective of
a supply chain is to maximize the overall value it generatdsch is typically measured through
profitability.
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Figure 1: Summary of the TAC SCM Scenario from the official TRCM specification [6].
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In a direct sales model [5], such as the one used by Dell IHeading PC distributor, manu-
facturers fill customer orders directly. Retailers, whaless and distributors are bypassed, leaving
only three participants - customers, manufacturers anglgip. This is the most dynamic supply
chain framework presently in use, which is the main reason

that TAC is built around this SCM model. However, TAC SCM gdeyond the limits of
present practices by providing manufacturers with the ojity to simultaneously search daily
for the best supply prices, while concurrently adjustingiag prices based on changing market
conditions. Competitiveness in dynamic supply chain seesasuch as those considered in TAC
SCM, require significantly tighter integration of procurem, bidding and planning functionality
than implemented in today’s systems [2].

The TAC SCM game is a simulation of a supply chain where sixmater manufacturer agents
compete with each other for both customer orders and conmgefrem suppliers. A server simu-
lates the customers and suppliers, and provides bankinduption, and warehousing services to
the individual agents. Every game has 220 simulated daykseach day lasts 15 seconds of real
time. The agents receive messages from the server on a @aily informing them of the state of
the game, such as the current inventory of components, astisend responses to the same server
indicating their actions prior to the end of the day, sucheapiests for quotes from the suppliers.
At the end of the game, the agent with the highest sum of manégdlared the winner. Typically,
each manufacturer agent separates its decisions into fy@tamt sub-problems of a supply chain:
procurement of components, production and delivery of aatiens, and computer sales. Figure 1
summarizes the high level interactions between the vaeatises in the game.



2.1 Procurement of Components

By using different combinations of components, each aggatble to produce and store 16 different
computer configurations in its own production facility. Beecomputers are made from four basic
components: CPUs, motherboards, memory, and hard drivhsreTare a total of 10 different
components: two brands and speeds of CPUs, two brands oermotirds, and two sizes of hard
disks and memory. The game includes 8 distinct suppliexseach component has a base price
that is used as reference for suppliers making offers. E&kype also has a base price equal to
the sum of the base prices of its components.

Every day, agents can send requests for quotes (RFQs) tbesgppith a given reserve price,
guantity, type and delivery date. A supplier receives al{}Rfon a given day, and processes them
together at the end of the day to find a combination of offeat #pproximately maximizes its
revenue. On the following day, the suppliers send back tb egent an offer corresponding to
each RFQ with a price, a quantity, and a delivery date. Duepacity restrictions, the supplier
may not be able to supply the entire quantity requested iiRtF@ by the requested due date. In
this case it responds by issuing up to two modified offershedavhich relaxes one of the two
constraints:

e Quantity, in which case offers are referred to@ertial offers
e Due date in which case offers are referred to@arliest offers

The suppliers have a limited capacity for producing a congmbrand this limit varies throughout
the game according to a mean reverting random walk. Moresugpliers limit their long-term
commitments by reserving some capacity for future businélse pricing of components is based
on the ratio of demand to supply, and higher ratios resulighdr prices. Each day the suppliers
estimate their free capacity by scheduling production ahponents previously ordered as late
as possible. The manufacturer agents normally face an baptotrade-off in the procurement
process: pre-order components for the future yielding kqeviees but where customer demand is
difficult to predict, or wait to purchase components at the tainute and risk being unsuccessful
due to high prices or low availability.

A reputation rating is also used by the suppliers to disogei@gents from driving up prices
by sending RFQs with no intention of buying. Each supplieggsetrack of its interaction with
each agent, and calculates the reputation rating basedeoratio of the quantity purchased to
guantity offered. If the reputation falls below a minimunmuwe, then the prices and availability
of components begin to deteriorate for that agent. Theeefogents must carefully plan the RFQs
that they send to suppliers.

2.2 Computer Sales

The server simulates customer demand by sending customeests for quotes (RFQ) to the

manufacturer agents. Each customer RFQ contains a proghs;ta quantity, a due date, a reserve
price, and a daily late penalty. Moreover, these custonograsts are classified into three market
segments: high range, mid range, and low range. Every daysdhver sends a number of RFQs



for each segment according to a Poisson distribution, witlaxaerage that is updated on a daily
basis by a random walk. The total number of RFQs per day rahgegeen 80 and 320, and
demand levels can change rapidly throughout the game. &@gests are limited in their ability to
plan sales, production and procurement. The manufactgesta respond to the customer RFQs
by bidding in a first price sealed bid reverse auction: agerghnot see competitors bids, and the
lowest offer price wins the order. Agents do receive margpbrts each day that inform the highest
and lowest winning bid prices for each PC type on the previays

2.3 Production and Delivery

Each manufacturer agent manages an identical factory,enhean produce any type of computer.
The factory is simulated by the game server, and also insladearehouse for storing components
and finished computers. Each computer type requires a sgmboifimber of processing cycles, and
the factory is limited to produce 2000 cycles (approx. 36@)per day.

Each day the agent sends a production schedule to the gavee, serd the simulated factory
produces all the PCs in the schedule, as long as the requiredanents are available. A delivery
schedule is also sent to the server on a daily basis, and itspesify the products and quantities
of computers to be shipped to each customer on the followayg @nly computers available in
inventory can be shipped to customers. When a customewne=sctie PCs it ordered the agent’s
bank account is credited with the payment equal to its bidepior the order times its quantity.

2.4 Related Work

Development teams of TAC SCM agents have proposed sevéfierkedit approaches for tackling
important sub-problems in dynamic supply chains. Deep BIfi¥ used game theoretic analysis
to factor out the strategic aspects of the environment, amgtine an expected profitable zone of
operation. The agent used market feedback [9] to dynargicabrdinate sales, procurement and
production strategies in an attempt to stay in the profitablee. SouthamptonSCM [8] employed
a strategy for using fuzzy reasoning to compute bid priceRRb@Qs. RedAgent [12] used an
internal market architecture with simple heuristic-basgeénts that individually handle different
aspects of the supply chain process. TacTex [10, 11] is &wolind machine learning techniques
for predicting supply and demand. These techniques are@atktto form the customer bid price
probability distributions in CMieux (described in Secti®d). The Botticelliteam [4] showed how
the problems faced by TAC SCM agents can be modeled as maibahprogramming problems,
and used heuristic algorithms for bidding on RFQs and sdiveglarders.

3 CMieux

CMieux is dynamic supply chain trading agent that implera@uaptive strategies to support the
tight integration of procurement, bidding and planningdtionality. In contrast to many other

TAC SCM entries, CMieux continuously re-evaluates both-level strategies, such as its current
procurement plan, and high-level strategies, such as itsmiutarget market share. The following
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section provides a high-level overview of the modules tlbatigose CMieux and how they interact.
Each module is explained in detail in subsequent sections.

3.1 Overview

Figure 2 shows the architecture of our CMieux supply chaiditrg agent, highlighting key in-
teractions between its five main modules. Theding modules responsible for responding to
customer requests with price quotes. Tgrecurement modulsends RFQs to suppliers and de-
cides which offers to accept. Thleeheduling moduleroduces a tentative assembly schedule for
several days based on available and incoming resourcesgpacity and components). Thiat-
egy modulemakes high-level strategic decisions, such as what fracfdhe assembly schedule
should be promised to new customers and what part of the dittoediocus on. Thdorecasting
moduleis responsible for predicting the prices of components aeduture demand.

Figure 3 gives a general overview of CMieux’s main daily exeamn path. The agent begins
by collecting any new information from the server, such as nlew set of supplier offers, and
customer requests. This information is fed to the forecamtute, which updates its predictions
of future demand and pricing trends accordingly. The foseckemand is given to the strategy
module to determine what part of it our agent should targeimRhe set of forecast future RFQs
the strategy module chooses a subset as the target demaagrddurement module then deter-
mines whether or not to accept each newly acquired suppfier. All offers from suppliers are
accepted unless they are too late to be useful, or too expetosiemain profitable. The scheduling
module builds a tentative tardiness minimizing producschedule for up to twenty days in the
future. The schedule includes the agent’s actual ordedstranfuture orders composing the target
demand. The target demand orders are used to determine howfmeshed PCs the agent has
Available to Promise (ATP). On the Business to Consumer (B2d, the strategy module uses the
tentative ATP and the forecast selling conditions from thie¢asting module to determine what
the agent Desires to Promise (DTP). The DTP is used by therngddodule, along with learned
probabilistic models of competitor pricing. The bidding dute chooses prices to maximize the
agent’s expected profit, while offering the amount of pradspecified by the DTP in expectation.
The procurement module determines how many componentseaded to reach the level of in-
ventory specified by the strategy module. It compares thieetblevels to the projected levels, and
determines what additional components are needed. Eadheayocurement module attempts to
procure a fraction of the needed components based on thesgaiad availability predicted by the
forecasting module.

3.2 Forecast Module

The forecast module is an important part of the pro-actia@ping strategies employed by CMieux.
It helps inform a number of key decisions, such as the planofrRFQs sent to suppliers and the
setting of target market shares for different end produtirmal description of the main inputs
and outputs of the forecast module are provided in Figure He module’s two primary func-
tions arecustomer demand forecastiagdprice forecastingFigure 5 shows examples of the two
prediction techniques used by the forecast module.
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(a) B2C Interaction Overview. The forecast module feedsligteons to the strategy mod-
ule, which uses the scheduling module to determine the agales target. The bidding
module sends bids to customers that maximize its expectedue while reaching the strat-
egy module’s target.
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(b) B2B Interaction Overview. As on the B2C side, the foréeagdule feeds predictions
to the strategy module, which uses them to generate the'sgafes target. On the B2B
side, the sales target is fed to the procurement module hig@inds requests to the suppliers
to procure components to meet the sales target as cheapbgsible.

Figure 2: Primary interactions between modules for B2C a@B Bperations in CMieux.



7a.

7b.

. Update daily data structures with server information.

Forecast Module— update forecasts.

e Predict future orders and prices using regressions

e Predict component arrivals based on observed delays

. Strategy Module — compute target demand.

Procurement Module — accept supplier offers.

e Accepts offers that are reasonably priced.
e Accepts partial offers that are sufficiently large.

e Accepts earliest offers that are not excessively late.

. Scheduling Module— make production schedule.

e Uses dispatch scheduling and minimizes tardiness.

e Available to Promise (ATP) products come from scheduleddast orders.
Strategy Module — compute target sales.
Bidding Module — compute customer offers.
— Probability models of competitor pricing are used to mazienéxpected profit and sell DTP in expectation.

Procurement Module — send supplier requests.

— Target demand is broken into requests to minimize expedfed apst.

Figure 3: Overview of CMieux’s daily main loop.

Forecast Inputs & Constants:

e R, the set of observed customer RFQs.

OC, the set of customer orders received by the agent.

e OS, the set of supplier orders received by the agent.

e DF, the number of days to forecast into the future.

Forecast Outputs:

e R, aset of RFQs representative of those the agent will see [} tays in the future.

e fC:j,d — R, afunction predicting the selling price of SKjUon dayd.

e fS:k,d— R,afunction predicting the purchase price of comporieoih dayd.

Figure 4: Forecast module inputs and outputs.



3.2.1 Customer Demand Forecasting

One of the forecast module’s responsibilities is to cortgtauset of customer RFQs that are repre-
sentative of those our agent expects to see in the futureselioeecast RFQs are then used by the
strategy module to determine the agent’s target demand.

The actual daily number of RFQs of each product grade (higgdiom and low) is indepen-
dently drawn from a Poisson distribution. The distribusdor different grades have different
means and trend values, which change stochastically thomighe game. The mean for each
product grade changes geometrically each day based ogrits (i.e., each day the trend is multi-
plied by the mean and the result is added to the subsequentrdagin), and the trend changes by
a small amount each day according to a random walk.

The forecast module generates the forecast RFQs by praglitie two parameters governing
the current stochastic demand process for each type, ite aued trend, and extrapolating into
the future. The module predicts the changing mean and tréedah grade’s distribution using
a separate linear least squares (LLSQ) fit of that grade’srehtons from the past several game
days (additionally, we enforce a lower and upper bound omptedictions of 20% below and above
the current day’s number of RFQs, to ensure the predictiemsain relatively conservative). The
predicted means and trends into the future, along with tloevknparameters of distributions over
other attributes (e.g., quantity, penalty, due date) [63, @sed to generate an appropriate set of
RFQs.

3.2.2 Price Forecasting

The second responsibility of the forecast module is pradicthe selling price of each product,
and the purchasing price of each component uptodays into the future. This information is
useful to several of the other modules in the agent that baxsisidns on current and future market
conditions, such as the procurement module.

The product selling prices are predicted in the same fasasothe demand trends. A linear
least squares fit is calculated for the selling prices of gachluct over the past several game
days. The future purchasing prices of each supplier areiggegtiusing a nearest-neighbor (NN)
technique. The nearest-neighbor technique predicts ibe pf a supplier request for delivery on
dated as an average of thie historical quotes with due dates nearest/tn our 2005 agent we
usedk = 5). The contribution of each of thee price quotes is weighted inversely proportionately
to its due date’s distance froth and decayed over time as it becomes stale.

On any given day in TAC SCM the agent is limited to a maximun3 oéquests per supplier
and component type. Most of these requests are used by tharpmoent module to purchase
components, and the responses to these requests are tholute collection of historical quotes
used by the NN technique. In addition, the requests that rmusad by the procurement module
are used as probes, and also included in the collection dequesed by the NN technique. The
probes are sent with due dates chosen to provide the mostiafon (i.e., dates that are farthest
from the due dates of previously observed quotes).

An additional responsibility of the forecast module is potidg the delays that the agent can
expect on outstanding supplier orders. Suppliers delagliiment of orders when their capacity
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(b) This figure shows how supplier prices are predicted byatient. The
x-axis represents the due date of an RFQ sent to a partiaipatisr. The
y-axis represents the unit price that the agent expectsciive (or has
received in the case of observations) for offers due on eagh d

Figure 5: Examples of the techniques used by the forecastitaoal predict customer demand and

supplier prices.



stochastically descends below the level they had prewqusimised. The forecast module pre-
dicts the delays on outstanding orders based on the delagswaa previously for each supplier
and component type. For each product line it determines ¢eeycbn the most recent order and
propagates it as the expected delay on all other outstandiggs. This relatively simple technique
helps the planning aspects of the agent react early to afmdtback-log in supplies.

3.3 Strategy Module

The strategy module continuously re-evaluates and coatelnstrategic decisions, including set-
ting market share targets and selling quotas. These tagetontinuously tweaked to reflect both
present and forecast market conditions. More specifictily,strategy module determines what
subset of the forecast customer RFQs the agent should ainmt@he “target demand”) and what
fraction of the its finished products the agent should plaseailing on any given day (the “desired
to promise” products, or DTP). In other words, the strategydoie modulates how the output of
the forecast module impacts the procurement, schedulidgoatding modules (as illustrated in
Figure 2). The primary inputs and outputs of the strategy ul®ere summarized formally in
Figure 6.

Strategy Inputs & Constants:

e O, the set of pending orders.

e R, future customer RFQs frofiorecast module

e fC, customer price function frofforecast module

o 1S, supplier price function fronforecast module

e SATP the component of the production schedule fromgbleeduling modulallocated to future orders.
Strategy Outputs:

e O, the set of orders representing a target demand, generatadftual orders and forecast future RFQs.

e S, quantities of PC that the agent currently desires to preméch day (DTP).

Figure 6: Strategy module inputs and outputs.

3.3.1 Computing Target Demand

On any particular day in the game, the strategy module firsgrdenes the part of the forecast
demand that the agent will target. The goal of the strateggiut®ois to target a fraction of the
forecast demand that will lead to the highest overall prafifTAC SCM each agent competes with
only five other agents. The agents can significantly impaait thwn profit margins by flooding

or starving a market. Thus, targeting a larger percentagheoforecast will push profit margins
down. On the other hand, agents have a limited factory capaach day. If products are selling
for a profit and factory capacity goes un-utilized, the ueédisapacity is lost earning potential.
This creates the need for a balance between decreasing demend to increase profit margins,
and still targeting enough demand to maintain high factaitization.
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Figure 7: The strategy module adjusts the percentage ofdstdoreach producin the target
demand based on its profit margin. The value of the increade@ease each das, depends on
the percentage of the agent’s total profit accounted for byptioduct type on the previous day.

An agent’s profit margins can also be affected by the amouwbaipetition in the market.
For example, if the other agents are targeting a larger sbiatiee market, an agent must lower
its prices to reach its target. However, managing the imphother agents is primarily handled
by the bidding module (see Section 3.5), which adjusts priogeach the target specified by the
strategy module.

The strategy module uses the following heuristic to set genés target demand. When prod-
ucts are selling for a profit, it always targets exactly eodgmand to stay at full utilization. The
relative percentage of each product, or pneduct mixtureused to fill the target to full capacity is
slightly adjusted each day based on the profit margins of peatiuct type. The exact percentage
of each product in the mixture is set equal to the percentagleeoagent’s total profit margin it
accounted for on the previous day. Thus, when the profit marya product increases (decreases)
relative to the profit margins of the other products, its patage in the product mixture increases
(decreases).

When a product is no longer being sold for a profit, the styatagdule calculates the product
mixture in the same way. However, the mixture is post-preedsso that the contribution of the
unprofitable product is significantly decreasedhis may cause the total target demand to fall
below full factory utilization. Towards the end of a game #ggent revises this heuristic to ensure
it completes the game with as little inventory as possible.

3.3.2 Computing Desired to Promise (DTP)

After the target demand is computed by the strategy modukeysed by the scheduling module to
develop a tentative production schedule for several dagstive future (thescheduling windoyv
The scheduling module uses information about incoming amdladble components, as well as

YIn practice we found that completely removing unprofitableducts from the product mixture provided too
much of an advantage to competing agents. This motivatedemision to allow the agent to occasionally sell a small
percentage of products at a loss.
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Figure 8: This figure shows an example of the agent’s ATP foaysdstarting at the current day.
Each row represents a different finished product and eachnmoolepresents a different day. The
numbers in the boxes indicate the quantity of each prodwattithexpected to be added to the
agent’s inventory each day. The strategy module instringtsagent to promise the first two days
of available PCs, which are enclosed in dotted lines.

previously committed orders. Using this information it el@ines when, if at all, each of the
target orders will be produced (this process is describegkiction 3.4). The part of this schedule
assigned to filling target demand orders (as opposedttaal orders) indicates production that is
not yet allocated to filling existing customer orders, or &vailable to promise (ATP) production.

As we have already explained, even at times when sellingtecpkar product is profitable, an
agent cannot arbitrarily increase the quantity of that pobdt sells. This is in part because in order
to sell more of that product the agent has to lower its pricelance its profit margin. iln the worst
case, the agent might find itself in a situation where it hasnised more than it can produce and
will suffer from tardiness penalties. Accordingly, theatggy module relies on the ATP schedule
to determine what the agent should try to promise each dayéfee to this as the agent’s desire
to promise quantities, or DTP). In an effort to sell as littkepossible and still maintain full factory
utilization, the DTP consists of PCs appearing only in th& fivo day of the ATP schedule. The
products in the first two days of the ATP are used because #mgsent the un-promised finished
products and the current day’s un-promised factory utilira(see Figure 8). Thus, this is the
fewest number of PCs that can be sold while still maintairfiidigfactory utilization. 2

This technique for computing the DTP ensures that the ageas@rrsells more than its available
capacity and left over inventory for a single day. It also rqudéees that the products being sold
are as flexible as possible with respect to satisfying custaeguests. Since all of the DTP is
available to ship on the very next day, it allows the biddingdule to safely bid on any customer
request without worrying about late penalties.

2Experiments in which the window was extended beyond two daysed the agent to over promise and negatively
impacted its profit margin.
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Scheduling Inputs & Constants:

e O, a set of orders representing target demand fstrategy moduleeach ordeti includes the following infor-
mation:

d;, the due date of théth order.

pi, the daily late penalty associated with thia order (the contractual penalty for actual orders and a
small constant for forecast orders).

— s;, the SKU for the product type associated with thle order.
— qi, the quantity of products associated with ifth order.

— b; € {0, 1}, aflag indicating whether or not thi&h order is an actual order or a forecast order.

e [, the projected component inventory for all remaining ddysg.is the projected inventory level of component
k on dayd.

e DS, number of days in the schedule (scheduling window)
e «, the slack weighting parameter for ATC priorities.
Scheduling Outputs:

e S, a production schedule fdp® days,S; is the set of orders scheduled for production on day

Figure 9: Scheduling module inputs and outputs.

3.4 Scheduling Module

The scheduling module continuously maintains a producdredule over a horizon of several
days. This schedule reflects current contracts, forecagtais and projected component inven-
tory levels. It helps drive other planning decisions inghgidwhich customer RFQs to bid on and
which RFQs to send to suppliers. More specifically, the salied module makes a tentative pro-
duction schedule foDS days into the future. The primary inputs and outputs of thelnte are
summarized formally in Figure 9. The inputs include a setrless,O, from the strategy mod-
ule and the projected component inventafyfor the remainder of the game. The orders(n
represent the target demand of the agent and include baihlatd forecast future orders. The
scheduling module’s inputs and outputs are described inr€i§ The scheduling module uses a
heuristic to sort orders according to “slack” (time beforeedlate) and penalty, and a greedy dis-
patch technique to fill the production schedule. The digptgchnique (presented in pseudo-code
in Figure 11) proceeds as follows. It iterates through eaghid the scheduling window and com-
putes the priority of each unscheduled order during eachtiter. The priorities are computed
according to the Vepsalainen’s apparent tardiness cost) Alispatch rule [14]. The ATC priority
favors orders with large penalties and little time to conglsince these are likely to be orders that
require the most immediate attention. The slack weightamgameterq, dictates the exact trade off
in priority between slack and tardiness. An example of th€ AFiorities for different orders with

«a = 1 (the value used in our agent) is graphed in Figure 10 as thedsiting day increases. While
building a particular day’s segment of the production scitedhe dispatch scheduler attempts to
add each order to the production schedule according to ibsityr (orders with larger priorities
are considered first). When an order is considered, the sitdredetermines whether or not there
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Example ATC Order Priorities
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Figure 10: This figure illustrates how the priority of threierent orders are calculated on differ-
ent scheduling days by the ATC priority rule (with= 1). Notice that ATC prioritizes by penalty
for orders with the same due date (Order 2 vs. Order 3). Itigwitizes by slack for orders with

the same penalty (Order 1 vs. Order 3).

are enough available resources (i.e. capacity and compg)n@amthe current day of the iteration
through the scheduling window. If there are enough uncldimesources, the order is scheduled
for production and the necessary components and producyidaes are allocated. If there are not
enough resources available on the day in question, the demoved from the queue and is
considered again the next day. The scheduler proceeds folkhing day when all orders have
been considered and either scheduled or delayed. Thiggmticess repeats until the scheduling
window is exceeded.

3.5 Bidding Module

The bidding module is responsible for responding to a subistte current customer RFQs. Its
goal is to sell the resources specified in the DTP at the highéses possible. The inputs and
outputs of the bidding module are formally summarized inuFegl2.

3.5.1 Predicting Offer Acceptance Distributions

The bidding module first predicts a probability distributjaz, for each RFQ that specifies the
likelihood of winning the RFQ at any price. The distributsoare learned offline using RFQs from
previously played games to builddistribution tree A distribution tree is similar to a regression
tree or a decision tree, but instead of predicting a singlgevat each leaf it predicts a distribution
that best fits the historical data that the leaf representse distribution trees used in CMieux
predict a Normal distribution over winning bid prices forchaRFQ based on its features (such as

14



procedure di spat ch(O,I, DS, «)

O 0
for d = 0to DS do
Sd — @
sort O’ according to apparent tardiness priority. The priorityloé 'th order, r;, is calculated as:

S— {exp (_é max(0, d; — d))}

while O" # 0 do
pop the highest priority ordes; from O’
if the agent has enough inventory and capacity onddayschedule; then
add o; to the dayd’s schedule
subtract the required parts fron,.
end if
end while
O —0\S
end for

Figure 11: A summary of the Apparent Tardiness Cost (ATCpalish scheduling technique used
by the scheduling module.

Bidding Inputs & Constants:
e R, the set of current RFQs.

e G :r,p— (0,1), a cumulative density function that takes an RFQand a unit pricep, and provides the
probability that the winning price for will be greater tham.

e G71:r (0,1) — p, the inverse of7, takes an RFQ and a probability and returns the correspgrmmtioe.
e S, the DTP fromstrategy module
Bidding Outputs:

e [C a set of offers for customers. Each offer corresponds tofe@ R R, and includes a unit price.

Figure 12: Bidding module inputs and output&ndG—! are maintained internally).
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due date, penalty, and reserve price) and the features ofifinieet at the time it was sent (such as
the previous day’s high and low winning bid prices).

3.5.2 Bidding for Customer Orders

The bidding module uses the distributions predicted by tb&idution tree to send offers to cus-
tomers that maximize the agent’s expected revenue, sutgebie constraint that the expected
amount of products sold be less than or equal to the amouaifiggein the DTP. In CMieux, the
problem of choosing prices is reduced to a continuous krekppeoblem (CKP) instance. The
CKP is a variant of the knapsack problem classically studheattificial intelligence and opera-
tions research that represents a convenient abstractitregdricing problem in TAC SCM. The
CKP asks: given a knapsack with a weight limit and a set of teidj items — each with a value
defined as a function of the fraction included in the knapsatfik the knapsack with fractions of
those items to maximize its value. The pricing problem cambeeled as a CKP by considering
the agent’s sales capacity as the knapsack that must bewilledtems, each of which represents
the demand of a different customer. We assume that a fragtjari a customer’s demand can be
captured by choosing a price that will be accepted by theoowst with probabilityp.

Specifically, a CKP instance is created for each productityfiee DTP. The CKP is created by
the items in the CKP instance reduced from the pricing problpresent RFQs with weights equal
to their quantities. The knapsack weight limit in the CKFhis uantity of the product appearing in
the DTP. The value of a fractiom, of an RFQy, is the expected unit revenue that yields a winning
probability of z. The expected unit revenue is defined as the probability witith the customer
is expected to accept the offer (as specified by the biddinduteds probability distribution) times
the offer price G~*(r, z) x z.

CMieux uses a binary search algorithm to solve the CKP imstéor each product that is guar-
anteed to provide a solution withinof optimal expected revenue. The search algorithm operates
on the derivatives of the expected unit revenue functiarfds the largest derivative value corre-
sponding to a solution that does not violate the weight lohihe knapsack. Since the distributions
are Normal the expected unit revenue functions are stricthcave, and the solution corresponding
to the largest feasible derivative value is optimal. Fot dd@scriptions of the reduction to a CKP,
the e-optimal algorithm, and the regression tree method used Mye(Gx the reader is directed
to [3].

3.6 Procurement Module

The procurement module handles all aspects of requestitdigparchasing components. It is de-
signed to rapidly adapt to changing market conditions. Eday) it considers sending requests
with widely varying quantities and lead times in an effortetxploit gaps in current supplier con-
tracts. By finding such gaps, or slow days for the suppliés aigent ensures that its procurement
prices tend to fall below its competitors. The flexibilityiged by considering so many different
procurement strategies in this way sets CMieux apart frorstrxisting supply chain practices, as
well as those of other agents designed for TAC SCM. Each tayptocurement module performs
two tasks: i.) it attempts to identify a particularly prommig subset of current supplier offers, and
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Procurement Inputs & Constants:
e IS, the set of offers from suppliers.

e [, the projected component inventory for all remaining ddys.is the projected inventory level of component
k on dayd.

e O, target demand fromtrategy module
e £C, customer price function froforecast module
o fS, supplier price function fronflorecast module
e (D, D%, D®), the earliest, and latest days to consider requestingrfidrttae granularity to discretize search.
e IS, the number of requests allowed per supplier.
Procurement Outputs:
e [, the set of supplier offers to accept.

e 7, the procurement requests for each suppli®y, = {z1,...,zxs} is the set of requests for supplieand
component. Each request includes the following information:

— qi, the quantity of the request.
— d;, the due date of the request.

- r;, the reserve price of the request.

Figure 13: Procurement module inputs and outputs.

i.) it constructs a combination of RFQs to be sent to supplieat balances the agent’'s component
needs with identified gaps in current supplier contractse ptocurement module takes as input
the set of recent supplier offers, the projected inventibiy target demand and the forecast pricing
functions (see Figure 13).

3.6.1 Accepting Supplier Offers

The module accepts supplier offers using the following-h#dsed decision process.

1. The agent begins by rejecting offers that are above aiogstece threshold (the threshold
was chosen empirically to be 20% of the offered componengEsaaye purchase price).

2. In an effort to keep the agent’s reputation as high as plessithe agent accepts any re-
maining offers that satisfy the quantity and due date respénts of the corresponding RFQ
(“full offers”).

3. Next, if more components are needed, offers with quastidibove an empirically chosen
threshold (half of the requested quantity), or offers witreddates before an empricially
chosen deadline (less than 15 days of the requested dueada¥yo accepted.

3Maintaining a perfect reputation was identified as an imguurstrategic goal for the 2005 competition.
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procedurer equest (1,0, fC, fS,(D~, D+, D®), KS)
let I be a fraction of the difference between inventory maintajni

production levels o), and inventory available if. procedureapprox_utility({di,...,dgs; 1}, Ik, fC, 9
for each componentk do KS
& —{} b
let J be the set of products that componéris used in

u* — Ostl
for each set of K'S + 1 dates {d1, ..., dgs 1}, betweenD~
andDT, discretized byD® do

for j € J do
let 3; and3;;, be base prices of produgtand componenk from
the game specification

u—approx.utility({di,...,dgsq1}, 1,k fC, f5) for i — 2 to KS + 1do
if sum(w) > sum(u*) then ded; 4
A" = {di, . dgs i} while d < d; do
u* —u N )
end if i — (%156 4)) = £5(k,a)
end for * @ is unit profit from jﬁ*/
for i = 1to KSdo wi—1 = ui—1 + leaty
let [ be the supplier ok with the lowest price on day; d—d+1
gi — X474 Tra end while

end for
end for
return u

zi — (di, qi,u} /qi)
Zik — Zye U{zi}
end for
end for
return Z

Figure 14: Pseudo-code for the requisitioning proceduesl ly the procurement module.

3.6.2 Sending Supplier Requests

Since offer prices, due dates and quantities are dictateithdogpecific requests they are offers
for, the primary responsibility of the procurement moduderéquisitioning. The requisitioning
procedure used in CMieux attempts to request some of the aoemps it needs (that it has not
already purchased) to maintain its target production kEveach day. Its main goal is to ensure
that the prices offered in response to the requests are aadgwssible. The requisitioning pro-
cedure chooses between many different lead times and tjganbased on the forecast supplier
market landscape. Figure 14 provides pseudo-code ouglihis process. In order to determine
what requests to send to suppliers, the procurement modui@uates,/, the difference between
the inventory required to maintain production levels sfiediby the target demand, and the pro-
jected inventory for the remainder of the game (i.e., the ponents that it needs but has not yet
purchased). However, our agent doesmextdto procure this entire difference each day. The com-
ponents are not needed immediately, thus it can divide thehpsing of components ihacross
several days. To that end, the quantities specifidddayondDS days in the future (the scheduling
window) are linearly depleted. This enables the agent toesgively procure components within
its scheduling window, so that late penalties are not iremion existing contracts. In addition, it
allows the agent to buy some of the components it needs wadliance, when they are likely to be
cheapest. The process of computing what specific requesentbto suppliers is then decomposed
by component type. For each component type, the procuremedtile generates several sets of
KS(the limit on RFQs sent each day) lead times and searchebddrest set. More specifically,
the module uses brute force to enumerate all ways to choag#eadf XS + 1 dates betwee ~
and D, discretized byD®. The firstK'S dates in the tuple specify the RFQ lead times. Each of
the RFQs requests the components needed by the agent bétsvead time, and the next date in
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the tuple (this is why there must be one more tfhahdates in the tuple). For example Jif- = 5,
DT =20, D® = 5, andK*® = 2, then the procurement module would consider the followinmes

of dates(5, 10, 15), (5, 10, 20), (5, 15, 20) and(10, 15, 20). Each RFQ is used to procure the parts
specified in/ between its due date and the subsequent due date in the @phsider the tuple
(5,10, 15), which involves two RFQs. The first has a lead timé ahd a quantity equal to the sum
of the parts specified if between 5 and 10 days in the future. The second RFQ has aneadti
10 and a quantity equal to the sum of the parts specifidchietween 10 and5 days in the future.
The utility of the RFQs generated by each tuple is computeaidpyoximating the sum of the util-
ity of the components they request and subtracting theegcast prices. In order to approximate
the utility of a componenti, we compute the ratio between its base prige,and the base price
of each producty, it is included in,3;. The base price ratlcf— provides an approximation of the
fraction of product;’s revenue attributable to componelnt Thus the utility of a component is
approximated as the average selling price, weighted bydke price ratio, of each of the products
it is included in, minus its cost as predicted by the supgigging forecast functionf®.

For each component, the RFQ tuple providing the greatesk titiity is chosen. The RFQs
in this tuple are then sent to the suppliers with the lowestigted prices on each due date. The
reserve price of each RFQ is set as the average utility of dhgponents it includes. In addition,
we augmented this procedure with the following improveraent

Increased bottleneck component utility: The utility of a component can be further refined by
taking into account situations where the agent has all batajrthe components required to as-
semble a particular type of PC (making itoattleneck component This situation can become
more severe toward the end of the game as the agent facesoiept of being stuck with mis-
matched components. For example, our agent can have hsnafreadbtherboards, memory, and
CPUs to make a specific product, and be missing only the hardsdrTo address this issue, the
procurement module artificially inflates the base priceorafibottleneck components (such as the
hard drives in the example), and decreases the base piicefall other components The infla-
tion factor is increased as the agent nears the end of the.game

Dynamically refined search granularity: An additional observation was that, for short lead times,
supplier pricing was often drastically different even beén lead times as little as 1 day apart. In
practice, our agent used a search granularity of abtiut= 5 days, which caused it to frequently
miss promising early lead times. To address this issue, fafiding the most promising lead time
tuple at a particular granularity our agent generated neégvafeuples using finer and finer granu-
larity around previously identified promising tuples. Thislped the agent more effectively cover
the space without drastically effecting its runtime.

Parallelization across components:The requisitioning technique described above decomposes
its search through lead time tuples by component type. lerdi@ give our agent the ability to
perform a finer search we parallelized the requisitioningcpss across multiple CPUs, each of
which was responsible for considering a subset of compaend&nie to the natural decomposition
of our problem formulation, the parallel processes had remre interact (other than to aggregate
their final solutions) making this a relatively simple refiment to implement.

4This can be thought of as a coarse approximation of a compismearginal utility
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4 Empirical Evaluation

To validate the adaptive and dynamic techniques utilizedunagent we present three sets of
empirical results. The first are taken from the 2005 TAC SCMdseg rounds, and summarize
CMieux’s bidding and procurement performance over 200 gaimelving agents entered by 25
different teams. A second set of hon-competition resultdse presented showing that CMieux
significantly outperforms five other publically availablersions of top agent binaries over several
repeated games. A third set of results examines the accafacy forecast module when it comes
to predicting supplier prices and customer demand.

4.1 Procurement and Bidding Performance

Evaluating the performance of a supply chain trading agechallenging even in the context of
TAC SCM. The competition effectively consists of two diféat tournaments:

1. a seeding round tournament featuring a large number aitagempeting over a period of 2
weeks in about 400 games

2. aset of final rounds, where small sets of agents are pitjaishst one another in a relatively
limited number of games (ranging from 8 to 16 per round).

Not only do they feature a small number of games but, becdweserepeatedly pit the same
agents against one another, final rounds also potentiallgrcedestructive strategies that may not
be representative of real world competition (e.g., an agesrupting competitors at the expense
of its own bottom line). In 2005, CMieux finished 4th in the dieg rounds and reached the tour-
nament’s semi-finals. While encouraging, these resultg pradvide a partial picture of CMieux’s
performance. In this section, we provide a more in-depthyarsof our agent during what can be
viewed as the most competitive phase of the competitionghathe 200 games played by the 25
agents participating in the second week of the seeding soulitlagents at that phase had already
been fine tuned over the course of about 600 games (two weeksibifying rounds, and one week
of seeding).

Our results provide a statistical comparison between thfepeance of the agents with the top
5 mean overall scores during the second week of the seedimglspnamely CMieux (abbreviated
CM), FreeAgent (FA), GoBlueOval (GBO), MinnieTAC (MT) ana@dTex-05 (TT).

Performance was measured so as to identify those agentsd¢hable to extract the highest
sale price and lowest purchasing price in each game theggleé§pecifically, for each of the top 5
agents in each game it played we computed how far it was frognmgahe least for its components
and how far it was from obtaining the most for its end produatsong the agents in that particular
game. This was measured as the relative difference from dise dverage procurement pfice
and the best average selling price. For each of the top 5 sgenteport the mean (with 95%
confidence intervals) of these values across all of the gédmegplayed in during the second week
of the 2005 seeding rounds in Figure 15.

SCompetition data is available st cs. se/ t ac/ scnser ver
6All prices are considered as fractions of the correspongieguct or component’s base price.
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Figure 15: The mean (with 95% confidence intervals) diffeesbetween each of the top 5 agents’
average game unit price and the best unit price in the ganmmgtihe second week of the 2005
TAC SCM seeding rounds.

The bidding results for all 5 agents are relatively simil&s can be seen, each of the top 5
agents is on average within about 3% of the base price fromglibe best in its games. However,
while MinnieTAC (MT) was the closest to the best agent in aengs, with an average difference of
about 2% of the base price, there is no statistically sigamificlifference between any of the top 5
agents (as evidenced by their overlapping confidence ia®nOn the other hand the procurement
results show that for procurement performace our agent,e0ki(CM), is significantly closer
to being the best than all 4 of the other top 5 agents. Thesd#tseseem to validate CMieux’s
approach to tightly coordinating its bidding, planning gm@curement operations. They also
suggest that the agent’s approach to optimizing the RF@sdsto suppliergéquisition process
was significantly more effective than the procurement strigis implemented by its competitors.

4.2 Results Against Public Binaries

In order to further validate the overall performance of ogeat in a statistically significant fashion
we simulated 40 games against the same mix of the best agamta ¢tom a pool of publicly
available binarie$. The binaries used in our experiments included TacTex “Th& (2005 cham-
pion agent), Mertacor “MC”, MinneTac “MT” (both finalists he 2005 competition), Phantagent
“PH” and GoBlueOval “GBQO” (both in the top 10 agents from tleeding rounds).

To achieve statistically significant results with relatwgew samples compared to the parame-
ter space of the game we used the following analysis tecknigiust, for each game, we shifted all
scores by adding a constant value that left the worst peifragent with a score of zero. Next,
we computed the sum of all the shifted scores in each gameénarfcaction of the sum represented
by each agent’s shifted score. This provided us with a maklstnormalized value represent-
ing the fraction of total profit accumulated by each agentachegame that is comparable across

"These agents are availablesaics. se/ t ac/ showagent s. php
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Figure 16: Mean (with 95% confidence interval) fraction ofrgaprofit over 40 games.

games. We computed the mean and 95% confidence intervalsofdhie for each agent in our
experiments accross the 40 games. The results in Figureakbthlat CMieux makes significantly
more average relative profit per game than any of the otheafjents.

4.3 Forecast Accuracy

In this section, we report additional results investigatow well a top performing agent such as
CMieux can predict supplier prices and customer demanengilie high degree of stochasticity
associated with these markets. This includes looking at el the agent is able to predict
supplier prices, given the limited number of RFQs allowedhwy game specifications as well as
how accuracy is affected by the forecast horizon in diffegame phases.

Results reported below were obtained by pitting CMieux agfab publicly available agents,
namely TacTex-05, Phantagent, Mertacor, CrocodileSCMBIG&Oval. All 5 of these agents were
among those qualifying for the final rounds of the 2005 coritipet

Figure 17(a) plots CMieux’s error in predicting suppliergas during the early, mid, and late
segments of the games as a function of lead time. For congpapigrposes, the results in Fig-
ure 17(b) show the error of the early segment predictionsotif Mieux’s forecasting technique
and a baseline variant that relaxes the game’s restricticth@® number of probes that can be sent
by an agent — results for the mid and end game phases arersiitiaplots provide the mean error
(with 95% confidence intervals) of the component price priains as a fraction of each compo-
nent’s base price. The prediction error is measured for paskible lead time between 5 and 40
days at 5 day intervals. The results show that the early segaieéhe game is the most difficult
segment for CMieux’s forecast module to accurately presigiplier pricing, for all lead times.
Even the baseline variant with an unlimited number of prabasable to achieve high accuracy
during this segment. This is not surprising considering diggnts are not likely to have settled into
an equilibrium during this early phase and are most likeilly rgtacting to start up effects (effects
introduced by the fact that all agents begin the game withamponents). Additionally, we can
see that both our technique and the baseline variant have eroyr when predicting prices on
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orders with shorter lead times during all game segments.diifieulty of predicting prices with
short lead times is exaggerated during the early segmertodbhe previously mentioned instabil-
ity. Despite the instability we see that the greatest emahe supplier price forecasting is only
about 10% of the base price, resulting from the predictioshairt lead time prices during the early
segment of the game. Forecasting of orders with longer lieaglst and short lead times later in
the game, is generally accurate within 95% of their basespric

Figure 17(c) shows an example of a changing customer demaad,rand the predictions of
the forecast module based on observations of draws from ss&widistribution with that mean.
The results on this particular example show that the fotevasiule is relatively effective at pre-
dicting the mean and following its trend. To gain a betteramsthnding of the effectiveness of
our forecast module for predicting customer demand, we @etpit to a naive technique that
assumed the current mean to be the most recently observedesaiom the Poisson distribution.
A more detailed analysis of our technique and the naive fgci@across multiple games revealed
that on average our forecast module was within 7% (plus oumit% with 95% confidence) and
the naive technique was within 12% (plus or minus 1% with 9%#tfidence) of properly predict-
ing the mean of each product type’s demand distribution.I&\this result does not show a largely
significant difference between our forecast module and #igerntechnique, our forecast module
was much better at predicting the trends of the means. Olnigge was within 2% (plus or minus
less than 1% with 95% confidence) of predicting the trendsvamage, whereas the naive tech-
nique had an average of about 18% (plus or minus 2% with 95%d=mte) error when predicting
the trends.

5 Recent Developments

In both 2007 and 2008, CMieux reached the finals of the TAC SGMpetition. In [1], the authors
show that in the 2006 TAC SCM competition, the top agents npadehases with longer lead
times. The preference for long-term procurement contliaasnsistent with real world managerial
insight that such contracts have better guarantees ofadiiity, and lower prices. In this section,
we briefly describe a few changes we made to the procuremettilenéor the 2007 competition
to incorporate this insight.

We adopted different strategies for the different procueatead times, which we divided into
short-term (2 - 10 days), medium-term (11 - 25 days) and lemgy (greater than 25 days) pur-
chases. The short-term and medium-term procurements veedidd similar to the procurement
module in the 2005 agent as described in Section 3.6. Ouegiran these markets mainly differed
in how we calculated reserve prices — bidding at slightlydowrices in the medium range than
prices forecast by odprecasting module

We predominantly used the long-term procurements for quaeang base stock (by base stock
we mean a low level of components that we aimed to maintaoutitrout the game). We computed
the average and standard deviation of the customer demamudtfre game specification, and set
the base stock level at a standard deviation below the meigece 8 was difficult to determine
the exact customer demand while placing long-term ordeesysed this conservative quantity to
ensure that we did not order more than what we actually ne€eteel difference in actual demand
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and the base stock at hand was supplemented by the shor&telrmedium-term markets when
we had better estimates of the actual demand.

It was difficult to consider all days in the long-term markade€pendently when calculating the
order delivery dates for the long term orders. To addressiisue we split the long-term period
into non-overlappinduckets We then aggregated our desired components in each buctet an
probabilistically chose buckets to target for our longxieteliveries, with a preference for buckets
with greater need and lower prices. We chose this approaduse@ more deterministic method
to deter other agents from learning our strategy and emipipgdversarial tactics. In the 2007 and
2008 competitions, we found that our long term procureménategyy helped our agent procure
components significantly cheaper and with greater reiigbil

6 Conclusions

This paper presented a high level view of the interactiomséen the different modules composing
CMieux, Carnegie Mellon University’s 2005 TAC SCM entry,\asll as detailed descriptions of
its decision making processes. CMieux’s architecture depaarkedly from traditional Enterprise
Resource Planning architectures and commercially-édailsupply chain management solutions
through its emphasis on tight coordination between supipfyrcbidding, procurement and plan-
ning. CMieux finished 4th in the 2005 seeding rounds of the BXM tournament and reached
the competition’s semifinals. In this paper, we presentedeenm-depth analysis of the agent’s
performance based on 200 games involving agents enteref diff@rent teams during what can
be seen as the most competitive phase of the 2005 tournamedOagames against the same 5
top performing public binaries. The results show that owerdgperformed on par with the best
in its bidding while significantly outperforming these agem terms of procurement during the
2005 seeding rounds, and made more relative profit per ganavenage than any of the other
public binaries tested. These results seem to validate @Miepproach to tightly coordinating
its bidding, planning and procurement operations. They sigjgest that the agent’s approach to
optimizing the RFQs it sends to suppliersquisition processwas significantly more effective
than the procurement strategies implemented by its cotopeti
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