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Abstract

For many object-oriented systems, it is useful to have a runtime architecture, that shows networks of ob-
jects. But it is hard to statically extract runtime object graphs that provide architectural abstraction from
an arbitrary program written in a general purpose language that follows common design idioms.
Previous approaches extract low-level non-hierarchical object graphs that do not provide architectural ab-
straction, change the language too radically for many existing implementations, or use a dynamic analysis.
Static analysis, which takes all possible executions into account, is essential to extract a sound architecture,
one that reveals all entities and relations that could possibly exist at runtime.
Ownership domain type annotations specify in code architectural intent related to object encapsulation and
communication. We propose a static analysis that leverages such types and extracts a hierarchical approxi-
mation of all possible runtime object graphs. The representation provides architectural abstraction, first by
ownership hierarchy, and then by types. We proved core soundness results for the technique and evaluated
it on several extended examples of medium-sized representative programs that we annotated manually.

1This report updates the following paper: Abi-Antoun, M. and Aldrich, J. Compile-Time Views of Execution Structure
Based on Ownership. In International Workshop on Aliasing, Confinement and Ownership in object-oriented programming
(IWACO), 2007. A shorter and updated version of this document will appear as: Abi-Antoun, M. and Aldrich, J. Static
Extraction of Sound Hierarchical Runtime Object Graphs. In Proceedings of the ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI), January 2009.
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“An object-oriented program’s runtime structure often bears little resemblance to its code struc-
ture. The code structure is frozen at compile-time; it consists of classes in fixed inheritance
relationships. A program’s runtime structure consists of rapidly changing networks of communi-
cating objects. In fact, the two structures are largely independent. Trying to understand one from
the other is like trying to understand the dynamism of living ecosystems from the static taxonomy
of plants and animals, and vice versa.” (Gamma et al., 1994 [18]).

3



1 Introduction

Many architectural views are needed to describe a software system. The code architecture or module view
organizes code entities in terms of classes, packages, layers and modules [13], and is useful for studying
properties such as maintainability. Another useful view is the runtime architecture of a system [13]. A
runtime architecture, also known as a Component-and-Connector (C&C) view, models runtime entities and
their potential interactions1.

A runtime component is a unit of computation and state that has a runtime presence. Thus, in an
object-oriented system, a component is an object or a group of objects [13]. A connector is an abstraction of
a runtime interaction. In an object-oriented system, a connector models one or more object relations. Archi-
tectures often organize components into tiers. A tier is a conceptual partitioning of functionality2. Finally,
architectures are often hierarchical whereby a component can have a nested sub-architecture consisting of
lower-level components and connectors [30].

While the above definitions are consistent with formal Architecture Description Languages (ADLs) and
software architecture research, developers intuitively draw such runtime architectures on whiteboards. Fig-
ure 1 is a runtime architecture drawn by the developer of a system we study in Section 6.3.

Architectural-level analyses for properties such as performance, reliability or security require runtime
views. Moreover, having an up-to-date as-built runtime architecture enables checking the conformance of a
system with its as-designed architecture. Despite receiving much research attention, architectural extraction
remains a hard problem.

Recovering meaningful runtime architectures statically is hard for object-oriented systems since their run-
time architecture often bears little resemblance to their code architecture. In fact, most recovery approaches
employ a mix of static and dynamic information. To simplify the problem of relating architecture to code,
previous research mandated specific implementation frameworks [30] or extended the language to specify a
component-and-connector architecture directly in code [6, 43]. Such proposals require re-engineering existing
implementations. Our goal in this paper is to support existing object-oriented languages, design idioms and
existing libraries and frameworks.

Intuitively, many have preferred dynamic analyses to extract the as-built runtime architecture. Such an
analysis monitors one or more program runs and shows snapshots of the system’s runtime architecture for
those runs [45, 15, 44]. But these descriptions are partial and cover only a few representative interactions
between objects, based on particular inputs and exercised use cases. A true architecture is meant to capture
a complete description of the system’s runtime structure. To meet this goal, a static analysis is preferred.

A static analysis must also be sound and not fail to reveal entities and relationships that actually exist at
runtime. For instance, an architectural-level security analysis requires a complete architectural description
to handle the worst, not the typical, case of runtime component communication.

In this paper, we propose the static extraction of a runtime view of an object-oriented system with a
two-pronged approach: (a) assume that annotations encode and enforce the architectural intent in code,
as discussed by Aldrich et al. [5, 3]; and (b) leverage the annotations in a static analysis to extract a
sound3runtime architecture from an annotated program. Our contributions in this paper are:

• A static analysis for extracting an instance-based hierarchical runtime architecture based on program
annotations;

• A soundness proof of the extracted architecture;
• An evaluation of the analysis on several representative medium-sized object-oriented systems.

Outline. The paper is organized as follows. We first discuss the requirements on a runtime architecture
(Section 2) and how the annotations help with architectural extraction. In Section 3, we describe the core

1A related notion is that of an object diagram, a diagram of object structures which shows object instances exclusively.
Gamma et al. use object diagrams extensively to explain the Gang of Four design patterns [18].

2A layer denotes a partition in the code architecture or a module view [13]; it can be represented as a package and enforced
using dependency rules [42]. A tier denotes a partition in a runtime view [13].

3In the software architecture literature, a sound architecture often means an architecture with desirable quality attributes. In
this paper, a sound architecture shows the as-is actual architecture with tight coupling between components or other undesirable
quality attributes notwithstanding. The analysis does not give any judgment about the architecture of a system.
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analysis informally. In Section 4, we describe the analysis formally and prove key soundness theorems. In
Section 5, we discuss abstraction by types. Section 6 presents highlights of our evaluation on several real
systems. We conclude with a discussion (Section 7) and a survey of related work (Section 8).

2 Overall Strategy

A runtime object graph represents a running object-oriented program where nodes correspond to runtime
objects, and edges correspond to relations between objects. A sound runtime architecture must statically
approximate all the runtime object graphs that any program run may generate.

Existing static analyses that extract a system’s execution structure produce low-level, non-hierarchical
object graphs that explain runtime interactions in detail but convey little architectural abstraction [33, 21,
46]. Figure 2 shows the output of a static object graph analysis, Womble [21], on a 15,000-line program,
JHotDraw (http://www.jhotdraw.org (Version 5.3)). Low-level objects such Dimension and Rectangle

appear at the same level as the root application object, JavaDrawApp. Such a view is a far cry from what
a developer might draw for a runtime architecture (See Figure 1). The Pangaea output for JHotDraw is
even more complex (Fig. 3).

Figure 1: A runtime architecture of an 8,000-line system drawn by an experienced programmer with a Ph.D.
in computer science but no formal training in software architecture [6]. The drawing follows the Model-
View design pattern with the user interface above the line in the middle of the diagram and the circuit and
computational code below the line. Notice node and net inside circuit’s sub-architecture. The unlabeled
arrows (including the thick arrows) represent data flow while the arrows labeled call represent control flow.
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2.1 Requirements on Solution

We listed earlier several requirements on a solution, namely that it be a static analysis and not require
language extensions. Furthermore, an analysis for object-oriented code must also handle aliasing, recursion
and inheritance. Key properties of a runtime architecture include:

• Component = Objects. An architecture must show components that correspond to runtime entities.
For object-oriented systems, a component represents an object or a group of objects. A group of objects
must be a meaningful abstraction, such as the circuit or viewer in Figure 1.

• Connector = Object Relations. An architecture has connectors that correspond to relations
between runtime entities. For object-oriented systems, a connector represents a runtime interaction
between some object in one component and some object in another component.

• Tier = Group. An architecture often groups conceptually related components into runtime tiers or
partitions.

• Hierarchy. A component can have a nested sub-architecture consisting of lower-level components
and connectors. Hierarchy also provides abstraction since it enables both high-level understanding and
detail.

• Summarization. Different executions generate a different number of objects. Furthermore, the
number of objects in the runtime object graph is unbounded. The architecture must be a finite
representation of the runtime object graph. It is common practice to represent multiple objects at
runtime with one canonical component.

• Scalability. Meaningful architectures would be most helpful for large systems. An architecture must
scale, i.e., the size of top-level diagram should remain mostly constant as the program size increases
arbitrarily.

• Aliasing. Ignoring aliasing may produce a misleading architecture. For instance, Womble sometimes
shows multiple nodes for the same runtime object. In Figure 2, there are multiple JavaDrawApp nodes
highlighted in black. Figure 2 also shows a separate DrawingEditor instance when it is the same object
as the JavaDrawApp instance at runtime (JavaDrawApp extends DrawingEditor). If two components
are shown as distinct when they are the same, an architectural analysis may assign them different
values for a key trustLevel property. As a result, the validity of such an analysis may be suspect at
best. Some object graph analyses do not ignore aliasing but use unscalable whole-program analyses
[33].

• Soundness. An architecture must be sound and represent all objects and relations between objects
that may exist at runtime. We define soundness as:

– Component Soundness: An architecture is sound if for every runtime object graph, there
exists a map from objects to components, such that each runtime object o is mapped to exactly
one component C in the architecture, i.e., the same runtime object must not map to multiple
components in the architecture.

– Connector Soundness: If there is a runtime connection between object o1 and object o2 in the
runtime object graph, then there is a connector between components C1 and C2 corresponding to
o1 and o2.

– Tier Soundness: If object o is in a runtime tier d in the runtime object graph, then component
C corresponding to o is in tier D in the architecture.

• Precision. An architecture is precise if it shows two runtime entities that represent different conceptual
design elements as two different architectural entities. An architecture is imprecise if its elements are
too coarse grained and lump together runtime elements that serve different conceptual purposes in the
design. For instance, an architecture with one component that represents the entire system is sound
but imprecise. This definition of precision can be refined as:

– Component Precision: The architecture shows two runtime entities that represent two different
conceptual design elements as two different components.

– Connector Precision: The architecture shows two runtime relations that represent two different
conceptual interactions as two different connectors.
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1 class List<ELTS T> {

2 ELTS T obj; // "Virtual field"

3 ...

4 }

5 interface Listener {

6 }

7 class BaseChart<M> // Declare domain parameter M

8 implements Listener {

9 domain OWNED; // Declare protected domain OWNED

10 // Declare reference to List object in OWNED

11 // Inner annotation M is for the list elements

12 OWNED List<M Listener> listeners;

13 }

14 class BarChart<M> extends BaseChart<M> {

15 }

16 class PieChart<M> extends BaseChart<M> {

17 }

18 class Model<V> implements Listener {

19 domain OWNED;

20 // Inner annotation V is for the list elements

21 OWNED List<V Listener> listeners;

22 }

23 class Main {

24 domain DOCUMENT, VIEW; // Top-level domains

25 // Bind domain parameter V to actual domain VIEW

26 DOCUMENT Model<VIEW> model;

27 VIEW BarChart<DOCUMENT> barChart;

28 VIEW PieChart<DOCUMENT> pieChart;

29 }

Figure 4: Document-View system with annotations.

2.2 Mapping from Source to High-Level Models

Consider a two-tiered Document-View architecture where BarChart and PieChart components are in a
VIEW tier, and render a Model component in a DOCUMENT tier. All types implement a Listener interface to
respond to change notifications. The code for this example is in Fig. 4, where the annotations are shown as
underlined. We will explain the annotations in Section 2.4.

One way to view architectural extraction is that it maps code elements to elements in a high-level
architectural model. Let us qualify a component by the tier that contains it using the :: symbol. Our
approach does not do this, but let us hypothetically map the BarChart class from the code (on the left) to
the barChart element in a VIEW tier in the architecture (on the right).
class BarChart to VIEW::barChart

class Model to DOCUMENT::model

A class is not a runtime entity. So the above map does not produce a runtime architecture. The above could
indicate that all instances of the BarChart class map to a barChart component. But in an object-oriented
system, there is usually more than one instance of any given class, and each instance can map to a different
component in a runtime architecture. Instead of mapping a class or all of its instances, we need to map
runtime objects. But a static analysis knows only about field or variable declarations in the program, which
denote references to runtime objects. In the line below, we use System.barChart to denote a barChart field
declared in class System, which points to an instance of the BarChart class at runtime. So we map:
object System.barChart to VIEW::barChart

object System.model to DOCUMENT::model

In Fig. 6(a), dashed boxes represent runtime tiers, solid-filled boxes represent objects and edges represent
field references. At runtime, instances of BarChart and Model each contain an List object that holds listener
objects. So, similarly, we map:

9



object BarChart.listeners to VIEW::listeners

object Model.listeners to DOCUMENT::listeners

In a runtime architecture, we model these listeners as part of BarChart, PieChart and Model objects,
instead of showing them at the top-level. Conceptually, each view has a separate listeners object, and the
listeners object of a pieChart is distinct from that of a barChart, and that of a model. So we map:
object BarChart.listeners to VIEW::barChart.OWNED::listeners

object PieChart.listeners to VIEW::pieChart.OWNED::listeners

Fig. 6(b) uses the nesting of boxes to indicate hierarchical containment. The thick dashed borders indicate
that these listeners are owned or strictly encapsulated by their outer components.

A key difference between the code and the runtime architecture is that a single code element, e.g., the
Listener element of a List<Listener>, could map to multiple design elements, based on the context.
Indeed, model registers itself as a Listener for a barChart, and vice versa. So we map:
object Listener in BarChart.listeners to DOCUMENT::model

object Listener in Model.listeners to VIEW::barChart

To get this mapping, one solution is to annotate the Listener reference inside a List<Listener> by some
parameter ELTS:
object Listener in List<Listener> to ELTS::obj

and to bind the ELTS parameter once to the DOCUMENT context, and once to the VIEW context [25]. Our
system uses a similar solution. But in addition to being able to bind a context parameter to one of the
top-level contexts, it can bind a context parameter to a local nested context, such as barChart.OWNED or
model.OWNED. This expressiveness is crucial to extract a hierarchical representation.

Of course, multiple code elements could map to the same element in the runtime architecture. A reference
of type Model and one of type Listener, an interface that Model implements, could alias and refer to the
same object. So, they must map to the same component in the runtime architecture. Moreover, an analysis
for object-oriented code must handle inheritance. In the above example, PieChart and BarChart extend a
BaseChart class, and BaseChart declares the listeners object.

Finally, hierarchy enables displaying or eliding information at any level to show overviews of the runtime
architecture at the desired level of abstraction. The (+) symbol indicates that the sub-structure of an object
is elided (Fig. 6(c)).

In summary, this paper generalizes previous work [25], accounts for inheritance and aliasing, and extracts
a hierarchical representation of the runtime structure of source code entities.

2.3 Strategy: Ownership Annotations

In this paper, we propose a principled two-pronged approach for extracting statically a runtime architecture
of a system: (a) assume developers add to the source code annotations to clarify the architectural intent;
and (b) use a sound static analysis that leverages the annotations and the code to extract a sound runtime
architecture.

For adoptability, the annotations we propose to use are not radical language changes and do not affect
the system’s runtime semantics. The annotations support existing object-oriented languages, design idioms,
frameworks and libraries. Instead of specifying components and connectors directly in code [6], the anno-
tations specify and enforce the sharing of data between objects and constrain how the program can alias
objects [5], which is a significant problem in creating architectural models.

In object-oriented programs, this state sharing is often not explicit but instead is implicit in the structure
of references created at runtime. The idea of using annotations to recover a design from the code is not new
[25]. But previous annotation-based systems did not specify the runtime instance structure or data sharing
precisely and did not handle inheritance [25].

Ownership type annotations are appealing because they track objects not classes4and provide some pre-
cision about aliasing [12, 5]. Moreover, a type system checks the annotations at compile-time. Different
ownership type systems have various degrees of expressiveness, but all support making an object owned by,
i.e., part of another object’s representation, to enforce instance encapsulation. This is a stronger guarantee
than changing the visibility of a field by marking it private; the latter does not prevent a developer from
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(a) Code architecture by Eclipse UML. (b) Code architecture by AgileJ.

Figure 5: Code architecture for Document-View system.
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(b) Hierarchical runtime architecture using nested boxes.
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Figure 6: Runtime architecture for Document-View system.
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defining a public method that returns an alias.

2.4 Ownership Domains: Quick Overview

The ownership domains type system by Aldrich and Chambers uses annotations on the reference types in
the program to make the state sharing between objects more explicit [5]. A developer indicates what domain
an object is part of by annotating each reference to that object in the program.

An ownership domain is a conceptual group of objects with an explicit name and explicit policies that
govern how it can reference objects in other domains. Each object belongs to a single ownership domain
that does not change at runtime.

Ownership domains may be declared at the top level of the application or within an object. Each object
can declare one or more public or private domains to hold its internal objects, thus supporting hierarchy.
Permission to access an object implies permission to access its public domains. Two objects can access
objects in the same domain by declaring a formal domain parameter on one object and binding that formal
domain parameter to another domain as long as the permissions allow that access. Finally, objects inside
a private domain are encapsulated — unless a policy explicitly links a domain parameter to the private
domain.

Relevance to Architectures. We propose a straightforward mapping between ownership domains and
the architectural concepts we discussed earlier. Ownership domain annotations support abstract reasoning
about data sharing by assigning each object in the runtime object graph to a single ownership domain.

The ownership domains declared at the top level map to the system’s runtime tiers. Ownership domains
declared within an object express a sub-architecture within the object, one that consists of other objects
that represent its parts. This hierarchical containment relation enables architectural abstraction: the top-
level domains may have only a few architecturally relevant objects, i.e., components. And each of those
components can be made up of more objects representing subcomponents and so on, until low-level less
architecturally relevant objects are reached. No programming language has an explicit tier construct, but
ownership domain annotations can express and enforce a tiered architecture in code [5, 3].

The annotations also describe policies that govern references between ownership domains. Objects within
the same ownership domain can refer to one another. But references can only cross domain boundaries if
there is a domain link between the two domains [5]. Each object can declare a policy to describe the
permitted aliasing among objects in its internal domains, and between its internal domains and external
domains. ADLs typically express such policies using constraints.

In short, the annotations specify and enforce in code, architectural intent related to object encapsulation,
logical containment (hierarchy), architectural tiers and object communication permissions.

Example. Figure 7 shows two classes with ownership domain annotations. In this paper, we use
a simplified syntax similar to Java generics, but the concrete syntax uses existing language-support for
annotations [3]. Domain names are arbitrary (except for a few special annotations); we use capital letters
to distinguish them from other identifiers.

Class DataAccess declares a public domain STATE. and Integer and Number objects in STATE. Any
object that has a reference to a DataAccess object can access the objects in its public domain. In addition,
DataAccess requires some environment state that it does not own, so it declares a domain parameter PENV.
The outer PENV annotation is for the list object itself; the inner PENV annotation is for the list elements, the
Integer objects. Some other object of type UnitTest, which has the ENV domain, binds its ENV domain to
DataAccess’s PENV domain parameter so that both objects can access the same state.

Next, we use the ownership domain annotations to extract statically a sound runtime architecture of a
system.

4Related to ownership types, confined types track classes not objects [10].
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1 class DataAccess<PENV> { // Declare domain parameter PENV

2 public domain STATE; // Declare public domain STATE

3 STATE Integer int1; // Declare Integer reference in STATE

4 STATE Number num1;

5

6 // Outer PENV annotation is for the ArrayList reference (Line 9)

7 // ArrayList has domain parameter ELTS for its elements

8 // Nested PENV annotation is bound to ArrayList ELTS (Line 9)

9 PENV ArrayList<PENV Integer> v2;

10 }

11 class UnitTest {

12 domain DATA, ENV; // Declare top-level domains

13

14 // Bind domain parameter PENV to actual domain ENV

15 DATA DataAccess<ENV> dataAccess;

16

17 static void main(lent String[shared] args) {

18 lent UnitTest test = new UnitTest();

19 }

20 }

D C cObj: declare object cObj of type C in domain D;
[public] domain D: declare private [or public] domain D;
class C<P>: declare formal domain parameter P on class C;
C<ACTUAL> cObj: bind formal domain parameter;
link b -> d: give domain b access to domain d;
Special Annotations. A few special annotations add expressiveness to the type system [5]:

• unique: indicates an object to which there is only one reference, such as newly created objects. Unique
objects can be passed linearly from one object to another;

• lent: one ownership domain can temporarily lend an object to another domain and ensure that the
second domain does not create persistent references to the object;

• shared: the object may be aliased globally. shared references may not alias non-shared references.

Figure 7: DataAccess code with annotations.
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Figure 8: The abstract graph for DataAccess. A dark-filled box represents a type with white-filled domains
declared inside it, and grey objects declared inside each domain. A formal domain parameter such as PENV

has a dotted border. Actual ownership domains such as STATE and ENV have a dashed border. A thick dotted
edge represents a type relationship (is-a). A solid edge represents a field reference (has-a).
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Figure 9: Graphical illustration of the abstract graph, runtime graph and display graph.

3 Analysis

The analysis uses different intermediate representations to extract the runtime architecture: it first builds
an abstract graph, converts it into a runtime graph, from which it builds a display graph, also known as the
Ownership Object Graph (OOG) (See Figure 9).

3.1 Abstract Graph

The abstract graph has the abstract domains declared in each abstract type. Each abstract domain represents
fields and variables declared inside it as abstract objects. A visitor builds the abstract graph from the Abstract
Syntax Tree (AST) of the annotated program (it must also account for certain characteristics discussed in
Section 5). Figure 8 shows the abstract graph of the DataAccess system.

The abstract graph is inadequate as an architecture:
• No instances. The abstract graph is not hierarchical in the sense of an object having children. Rather,

an abstract object has an abstract type, an abstract type has abstract domains, and an abstract domain
has abstract objects. For example, abstract object dataAccess has type DataAccess, and abstract
type DataAccess has domains STATE and PENV, and abstract domain STATE contains the abstract
object int1:Integer.

• Aliasing unaware. The abstract graph does not reflect possible aliasing. The ownership domains
type system guarantees that two objects in different domains can never alias, but two objects in the
same domain may alias. As discussed in Section 2.1, if two objects could be aliased, the architecture
must show them as one. In the example above, int1:Integer and num1:Number in the STATE domain
may refer to the same object.

• Incomplete. An abstract domain in the abstract graph does not directly show all the objects that are
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Figure 10: Legend for ownership domains.

in a given domain. It contains abstract objects only for the locally declared fields. E.g., DataAccess
declares its v2:ArrayList field in its domain parameter PENV. Such non-local fields do not appear
where the domain is declared. Hence, the empty ENV domain inside UnitTest in the abstract graph in
Figure 8.

So the analysis converts the abstract graph into a runtime graph to approximate the true runtime object
graph (ROG)5.

We represent ownership domains as in Figure 10. A dashed border white-filled rectangle represents
an actual ownership domain. A solid border grey-filled rectangle with a bold label represents an object. A
dashed edge represents a link permission between two ownership domains. A solid edge represents a creation,
usage, or reference relation between two objects. An object labeled “obj : T” indicates an object of type
T as in UML object diagrams. The symbol (+) is appended to an object’s label when its substructure is
elided.

3.2 Runtime Graph

The runtime graph instantiates the types in the abstract graph and shows only objects and domains. Each
runtime object contains runtime domains and each runtime domain contains runtime objects. Thus, in the
runtime graph, one can view the children of an object without going through its declared type. Furthermore,
to support the goals in Section 2.1, the runtime graph must address object merging, object aliasing, object
pulling and object edges. We discuss each one in turn.

Object Merging. Different executions may generate a different number of objects, but an architecture must
represent all possible executions. To address this, the runtime graph summarizes multiple runtime objects
with a canonical runtime object. Further, exactly one object in the runtime graph represents each object in
the ROG.

For instance, a dynamic analysis might display individual cells in a linked list of Integer objects, as
cons1:Cons, cons2:Cons, etc. In our approach, all the Cons cells would get unified into a cons1:Cons object
and a self-edge would represent the reference to the next cell, as shown in Figure 12(a).

5The runtime graph is an approximation of the true runtime object graph. We will explicitly refer to the true runtime object
graph (ROG) to avoid confusion with the runtime graph. We hope the meaning will be clear from the context. A dynamic
analysis take the runtime graph as input and does not have to compute it.
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Figure 11: Partial DataAccess runtime graphs under construction.

Object Aliasing. When converting abstract objects from the abstract graph into runtime objects, the
analysis merges two abstract objects in the same domain, if their types are related by inheritance. The
ownership domains type system guarantees that two objects in different domains can never alias.

The runtime graph for the annotated code in Figure 7 is in Figure 11(b). One runtime object, labeled
with num1:Number, merges the abstract objects int1 and num1 in domain STATE (Integer is a subtype of
Number). The runtime graph still shows object v2 in its formal domain parameter PENV.

Object Pulling. For soundness, each runtime object that is actually in a domain must appear in that
domain in the runtime graph. To ensure this property, an abstract object declared inside a formal domain
is pulled into each actual domain that is bound to the formal domain parameter.

Figure 11(b) shows object v2 in the formal domain parameter PENV (dotted border). In Figure 11(c),
object v2 is pulled from the formal domain parameter PENV to the actual domain ENV in UnitTest (the
former is bound to the latter using the annotation DataAccess<ENV> in Figure 7). In most cases, we elide
formal domains after pulling, so Figure 11(c) no longer displays PENV. Similarly, an ArrayList<Integer>

object has a domain parameter ELTS that contains Integer objects; those get pulled from ELTS into ENV
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 LIST

 OWNED
 ITERS  DATA

current(+):
Cons

integer:
Integeriterator(+):

SequenceIterator

lst:
IntList

test:
IntListTest

(a) OOG for an IntList object.

 LIST  DATA

lst(+):
IntList

v1:
Integer

test:
IntListTest

(b) Summary edge between objects lst and
v1.

Figure 12: Summary edges added after limiting the projection depth or hiding lst’s substructure.

(See Figure 17).

Object Edges. Finally, the analysis adds field reference edges to the RuntimeGraph, shown as solid edges
in Figure 11(c). Most edges are straightforward. For instance, DataAccess declares the two fields int1

and num1 in domain STATE. Objects int1 and num1 were merged so there is a field reference edge from a
DataAccess object to the merged object. In future work, it is possible to add usage edges that show field
accesses or method invocations.

3.3 Ownership Object Graph (OOG)

A runtime object can contain itself, so the runtime graph must represent a potentially unbounded ROG with
a finite representation. For example, consider a class QuadTree that declares several fields of type QuadTree

in its owned domain6:

class QuadTree {

owned QuadTree _nwQuadTree;

...

}

Since there is a unique canonical object for each type in each domain, the object representing QuadTree

in domain owned must also represent the child object of type QuadTree in the owned domain of the parent;
it is therefore its own parent in this representation. A finite representation is essential to ensure that the
analysis terminates. But, in a hierarchy, no object is its own parent. So the analysis creates the OOG as
a finite depth-limited unrolling of the runtime graph. In the example above, we show one QuadTree object
within another, down to a finite depth (QuadTree is the middle of Figure 27).

Cycle Detection. To break the recursion in the runtime graph, the analysis that generates the OOG stops
when, from a given runtime object, it reaches the same runtime object a second time. Unlike the runtime
graph, the OOG is a strictly hierarchical structure.

Edge Summaries. The OOG is depth-restricted but must still show all relations that exist at runtime.
Merely truncating the recursion may fail to reveal all relations. For instance, child objects in a hierarchy
may have fields that point to external objects, and the child objects may be beyond the visible depth. The
analysis automatically adds summary edges from the parent objects to those external objects.

For example, consider a list of Integer objects. IntList declares a public domain ITERS for its iterators
and a private domain OWNED to hold the linked list7. After pulling, the head of the list refers to a Integer

object in a DATA domain containing the list elements (Figure 12(a)). If the projection depth is reduced to

6owned is a default private domain that need not be declared [5].
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 ENV

num1:
Number

dataAccess:
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v2:
ArrayList<Integer>
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Integer

X

test:
UnitTest

Figure 13: Final DataAccess OOG.

elide IntList’s substructure, the analysis adds a summary edge from IntList to the pulled Integer object
in Figure 12(b).

Figure 13 shows the final dataAccess OOG. In addition to the domains and objects previously discussed,
the ENV domain declares an object Integer. Object Integer was pulled from the ELTS formal domain
parameter to the ENV domain. The bold edge marked with the symbol X is an example of an edge that is not
added, even though Integer is a subtype of Number because the ELTS formal domain parameter is not bound
to the STATE domain. This shows how OOG edges are more precise than those obtained by superimposing
field reference edges based on the associations in a class diagram.

Recapitulation. The OOG is a graph with two types of nodes, objects and domains. The nodes form a
hierarchy where each object node has a unique parent domain and each domain node has a unique parent
object. The root of the graph is a top-level domain. There are two edge types. Edges between objects
correspond to field reference or usage relations. Edges between domains correspond to domain links. Finally,
the OOG handles object merging, object aliasing and object pulling. Compared to earlier definitions of object
graphs [36], the OOG explicitly represents clusters of objects (domains) and edges between these clusters
(domain links). In contrast to other object ownership hierarchies [20, 35], in an OOG, the owner of an object
is a domain not another object.

Finally, in this paper, we sometimes elide the root domain and root object from the displayed OOGs for
readability. Often times, the root object is an instance of a fake class whose sole purpose is to declare the
top-level domains [3].

4 Formalization

In this section, we formally describe the analysis as a rewrite system to generate instances from types, merge
equivalent instances in a domain, and deduce edges between instances.

7This is a canonical example to evaluate an ownership type system’s expressiveness. The annotated code is in the ownership
domains paper [5].
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4.1 Rewriting Rules

We use a labeled record notation for the data type declarations of the AbstractGraph and the RuntimeGraph.
We use (. . .) for a tuple, {o . . .} for a set and [d . . .] for a sequence. We use <: to denote subtyping. We
sometimes qualify a domain d by the type T that declares it as T ::d. We describe the algorithm to construct
a RuntimeGraph from an AbstractGraph using small-step rewriting rules (Fig. 14).

To help keep the representations distinct, we use English letters (o, d, . . .) for AbstractGraph elements
and Greek letters (θ, . . .) for RuntimeGraph elements. The AbstractGraph consists of the AbstractTypes in the
program, the AbstractDomains declared in each type and the AbstractObjects declared in each domain. Each
AbstractObject maintains bindings, each from a formal to an actual domain, shown as (dformal 7→ dactual)
to avoid ambiguity.

There are no RuntimeDomains. To avoid copying, we directly add AbstractDomains to the RuntimeGraph.
A RuntimeObject knows what AbstractDomain owns it and maintains a set of AbstractObjects it merges.
Since all the AbstractDomains are represented in the RuntimeGraph, the analysis converts AbstractObjects
into RuntimeObjects, starting with a root AbstractObject.

A context Θ is the set of valid RuntimeObjects that are part of the RuntimeGraph. Once a RuntimeObject

is removed from Θ, as may happen during a replace operation, it is no longer part of the RuntimeGraph.
Given the list of all RuntimeObjects ({oi . . .}, d) in Θ, the RuntimeObjects that are in a given Abstract-

Domain dx, are those in Θ that have d = dx.
The analysis obtains the AbstractDomains inside a RuntimeObject θ by looking up each AbstractObject

oi : Ti that θ merges, the declared AbstractType Ti of each oi, and each AbstractDomain di that Ti declares.
The algorithm works by applying these rules until it can no longer generate new facts, i.e., RuntimeObjects

and RuntimeEdges. Some rules add RuntimeObjects to the context Θ, other rules replace existing RuntimeOb-

jects with others. Despite this non-monotonicity, the algorithm is stable because rule preconditions prevent
regenerating facts that have been removed.

For a given input, we believe the rules will always produce the same graph structure, regardless of
the potentially non-deterministic order in which the rules are applied. A different execution of the rules
may, however, label a RuntimeGraph differently. A RuntimeObject merges multiple AbstractObjects and each
AbstractObject might have multiple types. The analysis picks one of those types nondeterministically as the
label for a RuntimeObject.

Subtyping and Type Compatibility. R-Aux-Compat defines type compatibility: the first two
disjuncts are necessary to handle the potential aliasing of variables based on subtyping, the third and fourth
disjuncts are heuristics which we discuss in Section 5 and can be turned off. The rules use ownership domains
subtyping [5], which follows standard nominal subtyping, and in addition, checks that all domain parameters
are invariant with subtyping.

CT (C) = class C<α, β> extends C ′<α> . . .

C<d, d′> <: C ′<d>
Subtype-Class

Runtime Objects. The judgment for creating objects is of the form Θ =⇒ Θ′. Before creating a
RuntimeObject for an AbstractObject o of type t in AbstractDomain d, the analysis checks if d already has a
RuntimeObject θ of type t′ where t and t′ are compatible according to R-Aux-Compat. If such an object
does not exist, R-New-Object creates a new RuntimeObject, which we represent as θ = ({o . . .}, d). If
there exists a RuntimeObject θ = ({o1 . . .}, d), R-Merge-Objects replaces θ with a new RuntimeObject

that unions the two sets {o . . .} and {o1 . . .}.
An object about to be created in a domain may have a type that is compatible with two existing Run-

timeObjects that are not compatible with each other. In this case, the new object merges nondeterministically
with one of the existing objects, and then merges with the other using R-Merge-Existing. This avoids
multiple interface inheritance from triggering unsoundness [2].

Next, R-Pull-Object pulls up each RuntimeObject θ from its owning formal domain dparam into the
dactual domain bound to dparam, possibly replacing RuntimeObjects (See Fig. 15 for an illustration of the
rule).
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h ∈ AbstractGraph ::= (RootObject = o, AbstractTypes = {t . . .})

t ∈ AbstractType ::= (Id = t, Domains = {d . . .}, Edges = {e . . .})

d ∈ AbstractDomain ::= (Id = d, Objects = {o . . .}, DeclaringType = t)

o ∈ AbstractObject ::= (Id = o, Domain = d, DeclaredType = t, Bindings = {b . . .})

b ∈ Binding ::= (FormalDomain = dFormal 7→ ActualDomain = dActual)

e ∈ AbstractEdge ::= (FromType = tsrc, ToDomain = ddst, ToType = tdst)

γ ∈ RuntimeGraph ::= (RootObject = θ,Objects = {θ . . .}, Edges = {η . . .})

θ ∈ RuntimeObject ::= (MergedObjects = {o . . .}, OwnerDomain = d)

η ∈ RuntimeEdge ::= (FromPath = [dsrc . . .], FromType = tsrc, ToPath = [ddst . . .], ToType = tdst)

Θ ::= ∅ | Θ, RuntimeObject({o . . .}, d)

AbstractObject(o, d, t, {b . . .})

Θ ` try({o}, d)
[R-Convert-Object]

RuntimeObject({opull . . .}, dparam) ∈ Θ RuntimeObject({oparent . . .}, dparent) ∈ Θ
AbstractDomain(dparam, typeof(oparent)) aparam(oparent, dparam, dactual)

Θ ` try({opull . . .}, dactual)
[R-Pull-Object]

Θ ` try({o . . .}, d) ∀o1, ∀RuntimeObject({o1 . . .}, d) ∈ Θ 6` compat(typeof(o), typeof(o1))

Θ =⇒ Θ, RuntimeObject({o . . .}, d)
[R-New-Object]

Θ ` try({o . . .}, d) compat(typeof(o), typeof(o1))

Θ, RuntimeObject({o1 . . .}, d) =⇒ Θ, RuntimeObject({o . . .} ∪ {o1 . . .}, d)
[R-Merge-Objects]

compat(typeof(o1), typeof(o2))

Θ, RuntimeObject({o1 . . .}, d), RuntimeObject({o2 . . .}, d) =⇒ Θ, RuntimeObject({o1 . . .} ∪ {o2 . . . }, d)
[R-Merge-Existing]

AbstractObject(o, d, t, {dparam 7→ dactual, . . .})

aparam(o, dparam, dactual)

AbstractObject(o, d, t, {b . . .})

typeof(o) = t

compat(t1, t2) iff t1 <: t2 or t2 <: t1 or existsNonTrivialLUB(t1, t2) or mapToSameDIT(t1, t2) [R-Aux-Compat]

RuntimeObject({o...}, d) ∈ Θ AbstractObject(o, d, tsrc, {b . . .}) AbstractEdge(tsrc, ddst, tdst)

Θ; RuntimeObject({o...}, d) ` RuntimeEdge([d], tsrc, [d, ddst], tdst)
[R-New-Edge]

Θ; RuntimeObject({o...}, d) ` RuntimeEdge([dsrc...], tsrc, [ddst...], tdst) AbstractDomain(d, typeof(oparent))
RuntimeObject({oparent . . .}, dparent) ∈ Θ nocycle([dparent, dsrc...]) nocycle([dparent, ddst...])

Θ; RuntimeObject({oparent...}, dparent) ` RuntimeEdge([dparent, dsrc...], tsrc, [dparent, ddst...], tdst)
[R-Pull-Edge]

Θ; RuntimeObject({o...}, d) ` RuntimeEdge([dsrc1 , dsrc2 ...], tsrc, [ddst...], tdst)
RuntimeObject({o...}, d) ` mapFtoA(dsrc1 , dsrc2) = dsrc′

Θ; RuntimeObject({o...}, d) ` RuntimeEdge([dsrc′ ...], tsrc, [ddst...], tdst)
[R-Subst-Edge-L]

Θ; RuntimeObject({o...}, d) ` RuntimeEdge([dsrc...], tsrc, [ddst1 , ddst2 ...], tdst)
RuntimeObject({o...}, d) ` mapFtoA(ddst1 , ddst2) = ddst′

Θ; RuntimeObject({o...}, d) ` RuntimeEdge([dsrc...], tsrc, [ddst′ ...], tdst)
[R-Subst-Edge-R]

AbstractObject(o, d, t, {dformal 7→ dactual, . . .})

RuntimeObject({o...}, d) ` mapFtoA(d, dformal) = dactual

[R-Path-Subst]

Figure 14: Data type declarations and rewriting rules to convert an AbstractGraph into a RuntimeGraph.
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 PARENT

 PARAM  ACTUAL

oPull:
TPull

oParent : TParent
[PARAM ->ACTUAL]

oPull:
TPull

Figure 15: Illustration of the pulling rule: opull gets pulled from PARAM to ACTUAL. Of course, ACTUAL

can be the same as PARENT .

Runtime Edges. An AbstractEdge comes from a field reference, and thus includes tsrc, the type that
declares the field, and ddst and tdst, the domain and type of the object the reference points to. Because
RuntimeObjects may get replaced, a RuntimeEdge is not defined in terms of a source and destination Run-

timeObjects. Instead, we define a RuntimeEdge as a source path psrc, a source type tsrc, a target path pdest,
and a target type tdst.

A path is a sequence, possibly empty, of type-qualified domains to traverse to locate an object. In
Fig. 17, the root object is in a lent domain, which is a global domain. So the path [dlent, dDATA] and the
type tDataAccess uniquely identify the dataAccess object, reachable starting from the lent domain, and into
the DATA domain in the UnitTest class (the tuples are in Fig. 18).

The judgment for creating RuntimeEdges is of the form:

Θ;RuntimeObject ` RuntimeEdge(psrc, tsrc, pdest, tdst)

R-New-Edge converts an AbstractEdge into a RuntimeEdge by identifying an object o of type tsrc, and
recording the edge as two paths starting at the parent of o. The source path is the domain d of o. The
destination path includes d followed by ddst, the domain pointed to by the AbstractEdge. The destination
type tdst is the type of the field pointed to by the AbstractEdge.

A domain in the source or destination path of a RuntimeEdge might be a formal domain. In that case,
R-Pull-Edge performs an edge pulling operation similar to pulling objects, so that edges appear in any
actual domains to which the formal domain is bound. R-Pull-Edge may lengthen the domain paths. The
rule checks that it does not create cyclic paths, to avoid non-termination, using the nocycle side condition.

R-Subst-Edge-L and R-Subst-Edge-R substitute formals with actuals in the source path and des-
tination path, respectively, based on the binding information in the origin RuntimeObject. R-Path-Subst

actually performs the substitution, by looking at the binding information in the origin RuntimeObject. In
some cases, a substitution can shorten a path (see Fig. 18 for examples).

Edges and path-dependent domains. The ownership domains type system allows path-dependent
annotations that are of the form obj1.obj2...DOMAIN, where obj1, obj2, . . . , are chains of final fields or
variables, and DOMAIN is a public domain declared on the type of the last object in the path. Handling these
domains requires extending the formal system to define a Binding to be from a formal AbstractDomain to a
sequence of AbstractDomains, instead of a single AbstractDomain, to generate longer paths for RuntimeEdges.
We did not include this feature into the core formal system for simplicity, but it is straightforward to extend
the data structures and the rules.

Domain Links. The analysis adds to the runtime graph RuntimeLinks in a similar manner to Run-

timeEdges. Observe, in Figure 14, a RuntimeLink is a simpler RuntimeEdge, one that only has source and
destination domain paths without source and destination types. Those are already computed when com-
puting RuntimeEdges. Moreover, the underlying ownership domains type system guarantees that objects
communicate only when permitted, so a RuntimeEdge cannot violate a RuntimeLink.
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T-Store
. . . S[`] = C<`′.n>(v) ⇐⇒ Σ[`] = C<`′.n>

fields(Σ[`]) = T f =⇒ (S[`, i] = `
′′) ∧ (Σ[`′′] <: Ti) . . .

Σ ` S

Figure 16: Partial store typing rule from FDJ [5].

4.2 Soundness

For the OOG to be most useful, it should be a sound approximation of the true runtime object graph for any
program run. We formally revisit the earlier definitions in Section 2.1 and formally prove a key property.
Since the OOG is just a depth-limited projection that should preserve the soundness of the runtime graph
by adding summary edges, the true runtime object graph (ROG) relates to the RuntimeGraph as follows:

• Unique Representatives: Each object ` in the ROG is represented by exactly one representative in
the RuntimeGraph. Similarly, each domain in the ROG is represented by exactly one domain in the
RuntimeGraph. Furthermore, if object ` is owned by domain d in the ROG, then the representative of
` is owned by the representative of e in the RuntimeGraph. Similarly, if ` has a domain d in the ROG,
then the representative for ` has a representative domain for d in the RuntimeGraph.

• Edge Soundness: If there is a field reference from object `1 to object `2 in the ROG, then there is a
field reference edge between RuntimeObjects θ1 and θ2 corresponding to `1 and `2 in the RuntimeGraph,
and similarly for domain links;

Soundness Proof. The proof builds on the formalization of ownership domains using Featherweight
Domain Java (FDJ) [5]. Figure 16 shows a subset of the store typing rule T-Store. An overbar represents a
sequence. In FDJ, locations represent object identity. A store S maps locations ` to their contents: the class
of the object, the actual ownership domain parameters, and the values stored in its fields. A type in FDJ
is a class name and a set of actual ownership domain parameters. S[`] denotes the store entry for `. Given
an object in the runtime object graph represented by location `, Σ[`] = C<`′.n>. Here, each `′i.ni refers to
a domain named ni that is part of the runtime object `′i. By Rule Aux-Owner, the first actual domain is
the owner, i.e., owner(C<`′.n>) = `′

1
.n1

8. S[`, i] denotes the value in the ith field of S[`]. T-Store ensures
that the store type Σ gives a type to each location in S, one that is consistent with the classes and actual
ownership domain parameters in S. CT is the class table.

Proof of Unique Object Representatives. The proof is by induction over the ownership tree (from FDJ).
The ownership relation has no cycles and is well-founded. The base case for the induction is trivial. The top-
level object in the runtime object graph has a unique representative in the RuntimeGraph corresponding to
the root RuntimeObject. We strengthen the inductive hypothesis (i.h.) as follows: Each object in the runtime
object graph of runtime type C is represented by exactly one RuntimeObject θ that merges an AbstractObject

o of type C in the RuntimeGraph.
We first show that the representative is unique. Given an object in the runtime object graph represented

by location `, Σ[`] = C<`o.n1, . . . >. Similarly, Σ[`o] = To<d>. We also have n1 ∈ domains(To), i.e., n1 is
declared on To or a supertype thereof Ri with To <: Ri. By (i.h.), `o maps to a unique RuntimeObject θo

that merges at least one AbstractObject of type To.
The RuntimeGraph obtains the AbstractDomains inside RuntimeObject θo from the declared type t of each

AbstractObject that θo merges and the AbstractDomains that t declares. By (i.h.), θo merges an AbstractObject

o such that o : To. By Rule R-Aux-Compat, there are two cases to consider:

Case oi : Ri and To <: Ri, for any such Ri. So either To::n1 or Ri::n1. For each domain declaration on
a type, there is a unique AbstractDomain in the RuntimeGraph. Because AbstractDomains corresponding to
inherited domains are unified, there is a unique AbstractDomain for To::n1 and Ri::n1, for any such Ri. This
is ensured by the construction of the AbstractGraph (See Figure 19).

8The formal system treats the first domain parameter of a class as its owning domain. The practical system uses a slightly
different syntax to emphasize the semantic difference between the owner domain of an object and its domain parameters.
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Case oi : Ui and Ui <: To. AbstractDomain (Ui::n1) is the same as AbstractDomain (To::n1) and has the
same representative in the RuntimeGraph for any such Ui.

Once AbstractDomain n1 is uniquely identified, there can be only one RuntimeObject θo that merges o : To

inside n1, by the Unique Object per Domain and Type Lemma.
Next, we show that the representative exists. Given an object in the runtime object graph represented

by location `, Σ[`] = C<`o.n1, . . . >. In turn, `o is such that Σ[`o] = To<. . . >. ` must have been created by
object `this. As before, Σ[`this] = Tthis<`′this.n

′, . . . >.
By rule R-New in FDJ, there must be a new C<d>(v) creation expression. Recall, FDJ treats the first

domain parameter of a class as its owning domain. There are several cases depending on whether d1 is of
the form n.x or a formal domain parameter.

Case d1 is of the form n.x where `this = `o. Then To = Tthis. Then n1 ∈ domains(Tthis). By construction,
all the AbstractDomains declared in the program exist in the RuntimeGraph, hence AbstractDomain n1 exists.
From the AbstractObject, R-New-Object will create a RuntimeObject that merges at least AbstractObject

o : C in n1. So the representative exists.

Case d1 is of the form n.x where `this 6= `o. By induction, `o has a representative ({o′ : To}, n
′). Then n1 ∈

domains(To). The RuntimeGraph obtains the AbstractDomains inside from o′ : To, the declared AbstractType

To and AbstractDomain n1 that To declares. Similarly to the case above, the RuntimeObject exists.

Case d1 is a formal domain. By the Binding Chains Lemma, there exists a set of object creation expressions
new C<d>(v) and a chain of formal to actual domain bindings. By the transitivity of the binding relation,
we have C ::α1 7→∗ To::n1. All the AbstractDomains declared in the program exist in the RuntimeGraph,
hence AbstractDomain α1 exists. By the AbstractGraph construction, there must exist an AbstractObject

o : C declared in α1. By the Object Pulling Lemma, if o is merged by RuntimeObject θi in AbstractDomain

dfi and dfi is transitively bound to dfj , then o is merged by some RuntimeObject θj in AbstractDomain

dfj . Intuitively, the lemma means that the pulling of o either creates a new RuntimeObject owned by
AbstractDomain dfj or merges o into an existing RuntimeObject owned by dfj . Thus, the representative
RuntimeObject({o : C . . .}, n1) exists.

The proof required the following lemmas which are well-formedness rules on the RuntimeGraph.

Lemma: Unique Object per Domain and Type. If there exists a RuntimeObject θ = ({o : T, . . .}, d)
and a RuntimeObject θ′ = ({o′ : T ′, . . .}, d) with T ′ <: T or T <: T ′, then θ is the same as θ′.
Proof. Immediate from R-Merge-Objects. Note, this proof does not reflect the existence of virtual abstract
objects. Although those virtual abstract objects appear in the RuntimeGraph (and violate the uniqueness
invariant), they are omitted from the OOG.

Assume there are two such RuntimeObjects that merge AbstractObjects o and o′ of types T and T ′ inside
domain d, i.e., θ1=({o : T, . . .}, d) and θ2 = ({o′ : T ′, . . .}, d) with T <: T ′ or T ′ <: T . By R-Aux-Compat,
isCompat(T, T ′) true. Then R-Merge-Objects replaces θ1 and θ2 with θ = ({o, o′, . . .}, d).

Lemma: Object Pulling. If ∃ RuntimeObject({o . . .}, dfi) and dfi 7→
∗ dfj then ∃ RuntimeObject({o . . .}, dfj).

Proof. By induction on the length of the binding sequence. We abbreviate RuntimeObject and AbstractDomain
as RO and AD.

Base case dfi = dfj.

∃ RO({o . . .}, dfi) Assumption

dfi 7→
∗

dfi Trivially

∃ RO({o . . .}, dfj) Since dfi = dfj
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Assume: ∃ RO({o . . .}, dfi) and dfi 7→
∗ dfj and dfj 7→ dfk. To show: ∃ RO({o . . .}, dfk)

∃ RO({o . . .}, dfi) Assumption

dfi 7→
∗

dfj Assumption

∃ RO({o . . .}, dfj) By i.h.

dfj 7→ dfk Assumption

∃ AD(dfj , Tthis) dfj formal domain

∃ AO(op, dp, Tthis, {dfj 7→ dfk, . . .}) By domain visibility

try RO({o . . .}, dfk) R-Pull-Object

R-New-Object or

∃ RO({o . . .}, dfk) R-Merge-Object

Lemma: Ownership Tree. Tree structure must follow order of object creation.

Proof. The owner of an object is set at creation time and has to be an existing domain on an existing object,
so the ownership relation is well-founded and has no cycles. This assumes that unique is not part of the
system (having unique and assignment of ownership after creation could create cycles).

Lemma: Binding Chains. Given a location ` such that Σ[`] = C<`o.n1, . . . >, and `o such that Σ[`o] =
To<. . . >. If the corresponding object creation expression is of the form new C<d>(v) with d1 a formal
domain, there exists a sequence of new C1<f1>(v1) . . . new Cn<fn>(vn), with CT (Ci) = Ci<α> and a
chain of bindings C::α1 7→ Ci::αi, Ci::αi 7→ Cj ::αj , . . . , Ck::αk 7→ To::n1.
Proof. By induction on the evaluation rules (using rules R-New and T-New) in FDJ.

Limitations. The proof assumes that objects are only created in locally visible domains or domain
parameters: it does not reflect the existence of the lent, shared and unique domains [5]. Indeed, the OOG
may not reflect an object marked unique until it is assigned to a specific domain. Thus, an inter-procedural
flow analysis is needed to track an object from its creation (at which point it is unique) until its assignment
to a specific domain. The current tool does not implement this flow analysis, so a unique object returned
from a factory method must be annotated with the domain in which it should be displayed. Similarly, the
flow analysis can determine what domain a lent object is really in. Again, objects annotated with lent,
except for the root object, are currently missing from the OOG. Objects that are shared would be trivial
to display in the OOG but would add many uninteresting edges (the analysis may also excessively merge
objects in the shared domain), so we currently exclude them.

Assumptions. The OOG inherits other properties that are guaranteed by the soundness of the under-
lying ownership type system. For example, every object is assigned an owning domain which is consistent
with all program annotations and does not change over time. These invariants are correct up to the following
assumptions:

• All Sources Available: The program’s whole source code is available, and the program operates by
creating some main object and calling a method on it (this justifies the focus on a single root object,
although multiple root objects could in principle be shown). The class of that main object is the type
of the root of the OOG;

• No Reflective Code:Reflection and dynamic code loading may violate the above invariants by intro-
ducing unknown objects and edges, and possibly violating the guarantees of the underlying ownership
system;

• Flow Analysis: Objects annotated with shared and unique are not currently shown in the OOG.
Objects that are shared would be trivial to add but would add many uninteresting edges to the OOG.
Objects that are unique would require a flow analysis to be handled properly. Usage edges (e.g.,
method invocations, field accesses) could be generated for a system with only ownership, but a flow
analysis is required for usage edges to be sound in the presence of lent objects.

Despite the assumptions about the whole program source being available and restrictions on reflection
and dynamic loading, our system is still relatively sound in the presence of these features. As long as the
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num1:
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v2:
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dataAccess:
DataAccess

v2(+):
ArrayList<Integer>

integer:
Integer

X

test:
UnitTest

Figure 17: DataAccess OOG showing formal domains.

reflective operations are annotated correctly and consistently with ownership information, then any object
referred to by some field in the source code that is available will show up in the OOG, as specified above.

4.3 Illustrative Example

Figure 18 shows a few representative rewrites that the reader can follow along with the OOG in Figure 17,
which shows formal domains to clarify the binding of formals to actuals and the object pulling operation.
We simplified the ArrayList inheritance hierarchy, by collapsing the abstract base class AbstractList and
interface List into ArrayList, and eliding other types it implements, e.g., Comparable and RandomAccess.

We manually added to Figure 17 a thick edge labeled X as an example of an imprecise edge that the
rules do not generate. Intuitively, ELTS is not bound to STATE so no rule should ever add an edge from
v2:ArrayList to num1:Number in STATE — even though Integer is a subtype of Number. This makes OOG
edges more precise than those obtained by superimposing field reference edges based on the associations in a
class diagram. The rewriting rules here generate edges that are more precise than our earlier algorithm [2].
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(onum1, dSTATE , tNumber, {}) (oint1, dSTATE , tInteger, {}) Field decl. num1 and int1 (1)

(dSTATE , {onum1, oint1}, tDataAccess) Domain decl. STATE and PENV (2)

(dPENV , {ov2}, tDataAccess) Domain decl. STATE and PENV (3)

(ov2, dPENV , tArrayList<Integer>, {dELTS 7→ dPENV }) Field decl. v2 (4)

e1 := (tDataAccess, [dPENV ], tArrayList<Integer>) Field ref. DataAcces → v2 (5)

e2 := (tDataAccess, [dSTATE ], tInteger) Field ref. DataAccess → int1 (6)

e3 := (tDataAccess, [dSTATE ], tNumber) Field ref. DataAccess → num1 (7)

(tDataAccess, {dSTATE , dPENV }, {e1, e2, e3}) Type decl. DataAccess (8)

(odataAccess, dDATA, tDataAccess, {dPENV 7→ dENV }) Field decl. dataAccess (9)

(dDATA, {odataAccess}, tUnitTest) (dENV , {}, tUnitTest) Domain decl. DATA and ENV (10)

e4 := (tUnitTest, [dDATA], tDataAccess) Field ref. UnitTest→ dataAccess (11)

(tUnitTest, {dDATA, dENV }, {e4}) Type decl. UnitTest (12)

(tInteger, {}, {}) (tNumber, {}, {}) Type decl. Integer and Number (13)

(oobj , dELTS , tInteger, {}) Field decl. for ArrayList element (14)

(dELTS , {oobj}, tArrayList<Integer>) Domain to store ArrayList elements (15)

e5 := (tArrayList<Integer>, [dELTS ], tInteger) Field ref. to ArrayList elements (16)

(tArrayList<Integer>, {dELTS}, {e5}) Type decl. for ArrayList<Integer> (17)

(otest, dlent, tUnitTest, {}) Variable decl. for test (18)

RootObject := otest Root object (user selected) (19)

Sample rewrites to convert a few AbstractObjects into RuntimeObjects:

R-Convert-Object(otest) # R-New-Object(otest) # RuntimeObject({otest}, dlent) (vo1)

R-Convert-Object(onum1) # R-New-Object(onum1) # RuntimeObject({onum1}, dSTATE) (vo2)

R-Convert-Object(oint1) # RuntimeObject({onum1}, dSTATE) ∈ Θ

and onum1 : Number and oint1 : Integer and Integer <: Number

# R-Merge-Objects(oint1) # replace RuntimeObject({onum1}, dSTATE) with RuntimeObject({onum1, oint1}, dSTATE)
(vo3)

R-Convert-Object(odataAccess) # RuntimeObject({odataAccess}, dDATA) (vo4)

R-Pull-Object(({ov2}, dPENV )) and RuntimeObject({odataAccess}, dDATA) ∈ Θ and AbstractDomain(dPENV , tDataAccess)

and aparam(odataAccess, dPENV , dENV ) # try({ov2}, dENV ) #
∗ RuntimeObject({ov2}, dENV ) (vo5)

Sample rewrites to convert a few AbstractEdges into RuntimeEdges:

({odataAccess}, dDATA) and AbstractEdge(5) (20)

# RuntimeEdge([dDATA], tDataAccess, [dDATA, dPENV ], tArrayList<Integer>) (ve1)

Binding dPENV 7→ dENV on (9) and R-Path-Subst maps [dDATA, dPENV ] to [dENV ] (newpath1)

#
∗ RuntimeEdge([dDATA], tDataAccess, [dENV ], tArrayList<Integer>) (ve1.1)

({ov2}, dPENV ) and AbstractEdge on (16) (21)

# RuntimeEdge([dPENV ], tArrayList<Integer>, [dPENV , dELTS ], Integer) (ve2)

Binding dELTS 7→ dPENV on (4) and R-Path-Subst maps [dPENV , dELTS ] to [dPENV ] (newpath2)

#
∗ RuntimeEdge([dPENV ], tArrayList<Integer>, [dPENV ], tInteger) (ve2.1)

Figure 18: Rewriting rules illustrated on the DataAccess example. The top-half of the diagram shows
selected AbstractGraph tuples. The lower-half shows selected RuntimeObjects and RuntimeEdges that the
rewriting rules create. # denotes the next generated fact, and #

∗ denotes the fact obtained at the fixed
point. 27



1. For each type declaration C in the program
(a) Create AbstractType t and add it to Types
(b) For each actual or formal domain in C

i. Create corresponding AbstractDomain d

ii. Add d to t.Domains
(c) Create default owned domain in t

(d) For each domain link between d1 and d2 in C

i. Create AbstractLink between the AbstractDomain of d1 and the AbstractDomain of d2

ii. Add AbstractLink to t.Links
(e) For each declaration d C ′<a> o in C (DBV) or else
(f) For each creation new C ′<a>(. . .) in C (IBV)

i. If C ′ has no AbstractType, create t′ for C ′

ii. If AbstractType t of Type C has no AbstractDomain d, create d and add d to t.Domains
iii. Create AbstractObject o and add to d.Objects
iv. Create bindings {b . . .} from formals f of AbstractType t′ to actuals a of t and add to

o.Bindings
v. If field declaration (in DBV) or object creation assigned to a field (in IBV)

A. Create AbstractEdge e from AbstractType t to AbstractDomain a1 and AbstractType t′

B. Add e to t.Edges
2. Unify domains related in an inheritance hierarchy

(a) If C <: T , unify domains C::d and T ::d
(b) If interface I declares public domain I::d, unify with C::d if C implements I

3. Expand generic types (perform type substitutions)
4. Synthesize AbstractEdges from array type to array element

Figure 19: Visitor to generate the AbstractGraph.

5 Abstraction by Types

We motivate several advanced features of the analysis using a real system, JHotDraw, that we revisit in the
evaluation. Section 6.1 highlights how we annotated JHotDraw. We now discuss additional features of the
analysis to provide abstraction by types, in addition to abstraction by ownership hierarchy. We motivate
these features using a real object-oriented system.

We motivate and extricate abstraction by types from the core algorithm. The rewriting rules already
include it (See Rule R-Aux-Compat). The instantiation-based view mainly requires constructing the Ab-

stractGraph differently (See Figure 19) but the transformation from the AbstractGraph to the RuntimeGraph

stays mostly the same.
JHotDraw is rich with design patterns, uses composition and inheritance and has evolved through several

versions. Version 5.3 has 200 classes and 15,000 lines of Java. We defined three top-level domains to organize
the core types as follows:

• MODEL: has instances of Drawing, Figure, Handle, etc. A Drawing is composed of Figures. A Figure

has Handles for user interactions;
• VIEW: has instances of DrawingEditor, DrawingView, etc.;
• CONTROLLER: has instances of Tool, Command and Undoable. A DrawingView uses a Tool to manipulate

a Drawing. A Command represents an action to be executed.

5.1 Instantiation-Based View

JHotDraw uses inheritance heavily, whereby many types extend or implement listener interfaces to realize
the Observer design pattern. For instance, both interfaces Command and Tool are in CONTROLLER and both
extend the interface ViewChangeListener.
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myWrappedHandle:
Handle

readStorable(+):
Figure

lView(+):
DrawingView

undoActivity(+):
UndoActivity

fAnimator:
Animator

fStorageFormatManager(+):
StorageFormatManager

myUndoManager(+):
UndoManager

painter:
Painter

grid:
PointConstrainer

fCommand(+):
Command

Figure 20: JHotDraw OOG with a declaration-based view.

Consider θTool = ({oTool, oV CL, . . .}, dC) and θCmd = ({oCmd, oV CL, . . .}, dC) with oCmd:Command, oTool:Tool
and oV CL:VCL. Command <: VCL and Tool <: VCL but neither Tool <: Command nor Command <: Tool.
VCL is ViewChangeListener and dC is CONTROLLER. R-Merge-Existing replaces θTool and θCmd with
θToolCmd = ({oCmd, oTool, oV CL, . . .}, dC).

As a result, the analysis merges the abstract objects for Command and Tool into the same runtime object.
In keeping with the good practice of programming to an interface instead of an implementation, many
abstract objects have interface types. As a result, the OOG that the analysis produces for JHotDraw merges
too many architecturally relevant objects (See Figure. 20).

A key insight, however, is that there are no object creations of interface types. To regain some precision,
we construct the AbstractGraph differently (Fig. 19). Line (c) generates a declaration-based view (DBV)
by generating abstract objects for all field and variable declarations. In contrast, Line (d) generates an
instantiation-based view (IBV) by considering only object creation expressions. This is similar to how Rapid
Type Analysis (RTA) determines a method call’s receiver during call graph construction [8].

In the example above, the analysis never generates an abstract object of type ViewChangeListener.
Rather, it creates abstract objects for types SelectionTool and AlignCommand. When constructing the
runtime graph, AlignCommand and SelectionTool are kept distinct since there is no subtyping relation
between them. This achieves the goal of keeping Command and Tool distinct (SelectionTool <: Tool,
ViewChangeListener and AlignCommand <: Command, ViewChangeListener).
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 View

undoableCommand4(+):
UndoableCommand

selectAreaTracker(+):
SelectAreaTracker

undoActivity(+):
UndoActivity

app(+):
JavaDrawApp

tileCommand(+):
WindowTileCommand

myTool(+):
SelectionTool

undoableTool:
UndoableTool

tool(+):
URLTool

borderTool(+):
BorderTool

dragTracker(+):
DragTracker

scribbleTool(+):
ScribbleTool

nullTool(+):
NullTool

tool(+):
DragNDropTool

fTool(+):
FollowURLTool

connectionTool2(+):
ConnectionTool

polygonTool(+):
PolygonTool

textTool(+):
TextTool

handleTracker(+):
HandleTracker

deleteCommand(+):
DeleteCommand

groupCommand(+):
GroupCommand

redoCommand(+):
RedoCommand

rectangleFigure(+):
RectangleFigure

group(+):
GroupFigure

roundRectangleFigure(+):
RoundRectangleFigure

figure(+):
AnimationDecorator

imageFigure(+):
ImageFigure

textFigure1(+):
TextFigure

fPolygon(+):
PolygonFigure

lineConnection(+):
LineConnection

ellipseFigure(+):
EllipseFigure

borderDecorator(+):
BorderDecorator

bouncingDrawing(+):
BouncingDrawing

ungroupCommand(+):
UngroupCommand

cmd(+):
NewCommand

changeAttributeCommand(+):
ChangeAttributeCommand

duplicateCommand(+):
DuplicateCommand

bringToFrontCommand(+):
BringToFrontCommand

cmd(+):
BufferedUpdateCommand

cmd(+):
StartAnimationCommand

cutCommand(+):
CutCommand

copyCommand(+):
CopyCommand

pasteCommand(+):
PasteCommand

polyLineConnector(+):
PolyLineConnector

shortestDistanceConnector(+):
ShortestDistanceConnector

panel(+):
JPanel

alignCommand2(+):
AlignCommand

cmd(+):
NewViewCommand

sendToBackCommand(+):
SendToBackCommand

cmd(+):
ExitCommand

cmd(+):
NewWindowCommand

cmd(+):
StopAnimationCommand

toggleGridCommand(+):
ToggleGridCommand

cmd(+):
PrintCommand

choice(+):
CommandChoice

windowMenu(+):
WindowMenu

duplicateButton(+):
CommandButton

selectAllCommand(+):
SelectAllCommand

undoCommand(+):
UndoCommand

cascadeCommand(+):
WindowCascadeCommand

cmd(+):
SaveAsCommand

cmd(+):
DebugCommand

insertImageCommand(+):
InsertImageCommand

cmd(+):
LookAndFeelCommand

polygonHandle:
PolygonHandle

undoableHandle:
UndoableHandle

nullHandle:
NullHandle

elbowHandle:
ElbowHandle

triangleRotationHandle:
TriangleRotationHandle

polyLineHandle:
PolyLineHandle

radiusHandle:
RadiusHandlesw:

FontSizeHandle

polygonScaleHandle:
PolygonScaleHandle

changeConnectionEndHandle:
ChangeConnectionEndHandle

changeConnectionStartHandle:
ChangeConnectionStartHandle

cmd(+):
OpenCommand

fLocator(+):
OffsetLocator

startArrowTip(+):
ArrowTip

fAnimator:
Animator

undoManager(+):
UndoManager

bufferedUpdateStrategy:
BufferedUpdateStrategy

constrainer:
GridConstrainer

simpleUpdateStrategy:
SimpleUpdateStrategy

Figure 21: Thumbnail of the JHotDraw OOG based on object instantiations (but without abstraction by
types). The embedded image becomes readable after zooming in by 800%.

An instantiation-based view as discussed above lacks abstraction because it shows objects for RedoCommand,
NewViewCommand, etc., as well as objects for ConnectionTool, CreationTool, etc (See Figure 21). What
we really wanted is to merge all Command instances together and all Tool instances together, but not merge
Tool and Command instances together. For soundness, the analysis adds an edge from or to each object in the
source or target path that is type compatible with the source or target type. So the analysis adds an edge
from CommandMenu to RedoCommand, NewViewCommand, etc. Moreover, a Command wraps another Command.
So this results in an almost fully connected graph. Needless to say, this OOG is hardly an improvement over
the earlier object graph (Figure 2) that Womble obtains from bytecode without any annotations!

Special Cases. Even in an instantiation-based view, the analysis must still handle variable declarations
of interface types. For example, in JHotDraw, CommandMenu declares a Vector<Command>. Due to the
presence of a virtual field, the analysis must still create a Command abstract object inside Vector’s ELTS

formal domain that stores the elements. Recall that Command is an interface. The analysis cannot pick a
more precise concrete type. The analysis also cannot simply ignore these abstract objects, as it must pull
them, and have them carry the binding information to generate the appropriate RuntimeEdges. For instance,
ELTS is transitively bound to CONTROLLER; after pulling a Command abstract object from ELTS to CONTROLLER,
the analysis creates a RuntimeEdge from a CommandMenu object inside VIEW to any subclass of Command inside
CONTROLLER, such as RedoCommand. Simply adding a Command abstract object to the ELTS domain would
result in excessive merging as in a declaration-based view. Instead, the analysis creates a virtual abstract
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object, one that gets pulled just like any other. But the analysis excludes a virtual abstract object from the
list of objects inside an AbstractDomain — except to avoid re-adding it to that same domain. However, a
virtual abstract object does not affect object merging. Finally, when creating the depth-limited projection
of the runtime graph, the analysis omits virtual abstract objects after they have served their purpose. For
simplicity, we exclude virtual objects from the formal system.

Finally, even when using an instantiation-based view, an object creation expression of the form new Object()

would create an abstract object that would cause the analysis to merge all the objects in that domain into
one object. To avoid this problem, the abstract graph construction synthesizes for such an abstract object
an abstract type similar to an implicit anonymous class.

5.2 Abstraction by Trivial Types

To improve abstraction and reduce clutter, one heuristic makes the analysis merge abstract objects whenever
they share one or more non-trivial least upper bound (LUB) types. The resulting runtime object has an
intersection type that includes all the least upper bounds. This heuristic can be turned off by taking out the
existsNonTrivialLUB disjunct in R-Aux-Compat (Fig. 14).

Merging all the abstract objects in a domain into a single runtime object of type Object would result
in a sound but uninteresting OOG. So the heuristic does not merge abstract objects that only share triv-
ial types as supertypes. Trivial types are user-configurable and typically include Object, Cloneable and
Serializable from the Java Standard Library. Many marker interfaces that do not declare any methods,
such as RandomAccess, are good candidates.

The result of using abstraction with default trivial types on JHotDraw is in Figure 22, and again, suffers
from the same excessive merging as when not using the instantiation-based view.

We can achieve better results for JHotDraw by carefully selecting the trivial types. JHotDraw has its own
list of interfaces that many classes implement such as Storable and Animatable. We added those to the list
of trivial types, as well as constant interfaces such as SwingConstants (inheriting from a constant interface is
a bad coding practice that predates Java 1.5 static imports). We also added the listener interfaces as trivial
types. Based on the discussion above, the analysis merges RedoCommand and NewViewCommand, because
Command is their non-trivial LUB, and similarly, for ConnectionTool and CreationTool. But the analysis
does not merge ConnectionTool and RedoCommand because their LUB, ViewChangeListener, is a trivial
type. The result of using abstraction with the non-default trivial types on JHotDraw is in Figure 23.

5.3 Abstraction by Design Intent Types

Abstraction by trivial types can quickly unclutter an OOG, but is not very precise. For instance, the JHot-
Draw OOG based on trivial types does not show distinct Drawing and Figure objects (Fig. 27). Presum-
ably, both interfaces are architecturally relevant. This is because the base class that implements Drawing,
StandardDrawing, extends CompositeFigure, which in turn implements Figure. But Drawing does not
extend Figure and is not a trivial type. Merging objects based on non-trivial LUBs, coupled with merging
objects after the fact for soundness, causes abstract objects of type Drawing and Figure to get merged in
MODEL. An object may have multiple types, but some types may be more architecturally relevant than others.
In this example, StandardDrawing extends CompositeFigure to enable nesting a Drawing inside another
Drawing. In this case, we would like to view a StandardDrawing object as a Drawing object, instead of a
Figure object.

To achieve this precision, the analysis also supports the following heuristic. A developer defines a list of
design intent types. To decide whether to merge two abstract objects o : t and o′ : t′, the analysis finds the
first design intent types in the list, t̂ and t̂′, such that t <: t̂ and t′ <: t̂′. The analysis merges objects o and
o′ if t̂′ <: t̂ or t̂ <: t̂′. If the design intent type list does not include a type for t or t′, then this heuristic
does not apply. This heuristic corresponds to the disjunct mapToSameDIT in R-Aux-Compat and can also
be turned-off.

JHotDraw’s framework package includes abstract classes and interfaces that define the core framework.
We added to the list of design intent types all the types in the framework package and ordered them from
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storable(+):
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Handle

undoable(+):
Undoable

fAnimator:
Animator
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UndoManager
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painter:
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Figure 22: JHotDraw OOG with abstraction by trivial types (the default list).

32

_lentMain_MainModelStorable
_lentMain_MainViewComponent
_lentMain_MainModelHandle
_lentMain_MainControllerUndoable
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainControllerToolListener
_lentMain_MainViewGridConstrainer
_lentMain_MainViewPainter


 View

 Controller

 Model

jButton(+):
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painter:
Painter

versionRequester(+):
VersionRequester
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Handle

jMenu(+):
JMenu

undoManager(+):
UndoManager

fAnimator:
Animator
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UndoableAdapter
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Figure
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Connector

tool(+):
Tool

fLocator:
OffsetLocator

endArrowTip:
ArrowTip

Figure 23: JHotDraw OOG with abstraction by trivial types (the fine-tuned list).
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most to least architecturally relevant (Drawing appears before Figure). Abstraction by types merges objects
of type StandardDrawing and BouncingDrawing with objects of type Drawing into one object. This heuristic
also merges objects of type AbstractFigure, CompositeFigure, among others, with objects of type Figure.
But it keeps objects of type Drawing and Figure distinct in MODEL, just as we desired.

Finally, it is worth noting that since abstraction by types leads only to additional merging of objects, it
does not compromise soundness (unsoundness would mean showing two components for the same runtime
object).

6 Evaluation

We evaluated the quality of the extracted OOGs on several extended examples of medium-sized representative
programs to answer the following research questions:

• Can an OOG have a meaningful level of abstraction (or does it suffer from too much or too little
merging)?

• Based on an OOG, can a developer learn what annotations she can adjust to get a desired architectural
view?

• Can an automatically extracted OOG be comparable to a runtime architecture manually drawn by a
developer?

Methodology. The tool support for architectural extraction consists of two Eclipse plugins. JavaDo-
mains is a typechecker to validate ownership domain annotations that a developer inserts as Java 1.5 an-
notations [3]. OOG Wizard is a plugin to extract an OOG. It allows the developer to select the projection
depth, elide substructure on selected objects and set the trivial types (see screenshot in Figure 25). The
OOG is laid out automatically using GraphViz [19].

The study’s subject (one of us, hereafter “we”) developed the OOG Wizard but none of the subject
systems. He mostly learned their architectural structure from iteratively annotating the code, examining the
extracted OOGs and relating the OOGs to diagrams drawn by others. For one system (JHotDraw), he had
access to a tutorial by the original designers, but for a slightly older version than the one he annotated. The
tutorial discusses the design patterns that JHotDraw implements but does describe the system’s runtime
architecture. We previously studied another subject system (HillClimber) by re-engineering it to ArchJava
[4]. The re-engineering case study also produced a version that cleaned up the original code, for instance
by making most class fields as private. For this case study, we started from the refactored Java version and
added ownership domain annotations to it. We discuss in detail the annotation process of the subject systems
elsewhere [3]. In particular, for the HillClimber subject system [3], we discuss the differences between adding
ownership annotations to the plain Java program, compared to the re-engineered ArchJava program.

6.1 JHotDraw

JHotDraw is rich with design patterns, uses composition and inheritance and has evolved through several
versions. Version 5.3 has 200 classes and 15,000 lines of Java.

Design documentation for JHotDraw is available, e.g,. [17, 40, 22]. The class diagram in Figure 26 shows
some of the core types. An often cited article [22] discusses how JHotDraw follows the Model-View-Controller
design pattern (the package structure does not reveal that fact since all the types in Figure 26 are in one
framework package).

Annotations. We defined the following three top-level domains and organized instances of the core
types as follows:

• MODEL: has instances of Drawing, Figure, Handle, etc. A Drawing is composed of Figures. A Figure

has Handles for user interactions;
• VIEW: DrawingEditor, DrawingView, etc., instances;
• CONTROLLER: has instances of Tool, Command and Undoable. A DrawingView uses a Tool to manipulate

a Drawing. A Command represents an action to be executed — the Command pattern without undo.
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command(+):
Command

drawingEditor(+):
DrawingEditor

undoManager(+):
UndoManager

fAnimator:
Animator

painter:
Painter

drawingChoice(+):
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WindowMenu
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drawingView(+):
DrawingView
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OffsetLocator

endArrowTip:
ArrowTip

Figure 24: JHotDraw OOG with abstraction by design intent types.
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Figure 25: The left pane shows the ownership tree and the right pane shows the depth-limited projection.
The tool shows the abstract objects merged into a runtime object and helps a developer set the trivial types
for the abstraction by types.
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Figure 26: JHotDraw class diagram showing how we annotated instances of the selected types (Source: [40]).

Evaluation. In Section 5, we showed some earlier OOGs we extracted for JHotDraw. The OOG is in
Figure 20 suffered from too much merging: it merged DrawingView and DrawingEditor and made it hard to
recognize many of the key abstractions from the class diagram in Figure 26. Moreover, the OOG in Figure 21
was unreadable and required abstraction by types.

Abstraction by Types. We turned on abstraction by trivial types, initially using the default list of
trivial types. This results in an OOG where each visual object merges too many abstract objects. The
developer selects the trivial types as follows. First, he graphically selects an object which appears to merge
too many objects. The OOG Wizard then displays an inheritance hierarchy of the types of the abstract
objects that are merged into the selected object. The general principle is that the developer must select a
type that would cut the path from an interesting leaf type in the inheritance hierarchy up to an uninteresting
common ancestor. This results in fewer objects getting merged into an abstract object.

For JHotDraw, we started with the list of default trivial types, which includes several interfaces from
the Java Standard Library such as Serializable, Cloneable, etc. Many are marker interfaces that do not
declare any methods. Others are constant interfaces that only define constants, such as SwingConstants9.
JHotDraw had its own list of interfaces that many classes implement such as Storable and Animatable. We
also included several listener interfaces, such as ViewChangeListener (as discussed in Section 5.1). Because
of JHotDraw’s complex inheritance hierarchy, the list of trivial types needed fine-tuning to achieve the desired
level of abstraction — more so than the other subject systems. We did not use abstraction by types on the
last subject system (Section 6.3).

Riehle previously studied JHotDraw and produced the code architecture in Figure 26. Riehle posited
that the original JHotDraw designers used the following techniques to present the JHotDraw design in their
tutorials: (a) merge interface and abstract implementation class — although important for code reuse, such
a code factoring is often unimportant from a design standpoint; and (b) subsume a set of similar classes
under a smaller set of representative classes — showing many similar subclasses that vary only in minor
aspects often leads to needless clutter [40, pp. 139–140].

The OOG achieves results similar to the above heuristics. For instance, all runtime Handle objects
referenced in the program by the Handle interface, its abstract implementation class AbstractHandle, or
any of its concrete subclasses ElbowHandle, NullHandle, etc., appear as one Handle component in the Model
tier. An OOG can sometimes suffer from a precision loss: not all Handle classes have a field reference to
a Locator as Figure 26 indicates. Only NullHandle and its subclasses do. But since they were all merged

9Inheriting from a constant interface is a bad coding practice, the Constant Interface antipattern [9, Item #17], and Java
1.5 supports static imports to avoid it. This is one more reason to avoid it!
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into Handle, the OOG shows an edge from Handle to Locator in Figure 27.
We were slightly surprised when we inadvertently added interface Handle as a trivial type. This resulted

in an OOG with one object for NullHandle (which directly implements Handle) and another object for
all instances of the concrete subclasses that implement Handle by extending AbstractHandle. While this
result seemed counter-intuitive, that OOG was sound: there is no runtime object that can have both types
NullHandle and AbstractHandle, so one runtime object does not appear as two in the OOG.

Potential Design Flaw. We were surprised that the OOG did not show distinct Drawing and Figure

objects, presumably core types in the class diagram in Figure 26.
We used the tool to determine that one object in the Model domain merged both Drawing and Figure.

We examined the type hierarchy and learned that the base class implementing the Drawing interface,
StandardDrawing extends CompositeFigure. Thus a Drawing is-a Figure. We researched this finding
and found a brief mention in the Version 5.1 Release Notes. Still, in the framework package, interface
Drawing does not extend Figure! We then checked the JHotDraw tutorial. Indeed, the JHotDraw designers
explicitly asked to “not commit to the CompositeFigure implementation since some applications need a
more complicated representation” [17, Slide #16].

OOG = Architecture? The OOG in Figure 27 seems to have the right level of abstraction since we
recognize in it most of the core types from Figure 26.

There are three top-level domains: Model, View and Controller. Object Figure merges objects of type
Figure, TriangleFigure, etc. Because a Drawing is implemented as a Figure, object Figure also merges ob-
jects of type Drawing, StandardDrawing, etc. The DrawingView interface extends the DrawingChangeListener
interface. Hence the edge from object fListeners inside object Figure to the DrawingView object. Inside
object Figure, object fFigures contains the composite Figure objects. Object Handle merges objects of
type NullHandle, GroupHandle, etc. Point objects are immutable and passed linearly, hence they do not
appear in the OOG.

The number of components in each tier is typical of architectural diagrams [24]: Model has 7 components;
View has 7 components; and Controller has 3 components. More precise annotations could split the Model

domain into a domain for application model objects, such as UndoManager and StorageFormatManager, and
one for domain model objects such as Figure and Handle objects, as in the Model-Model-View-Controller
pattern10.

A key issue in architectural extraction is distinguishing between architecturally relevant and non-architecturally
relevant objects. The OOG provides architectural abstraction by folding lower-level objects into higher-level
architectural components. As a result, the OOG does not show non-architecturally relevant objects in the
top-level domains. Collapsing many nodes into one is a classic approach to shrink a graph. However, the
OOG statically collapses nodes based on the execution and ownership structure, and not according to where
objects were declared in the program, or according to some naming convention. Abstraction by types causes
more collapsing, but it applies only within a domain, i.e., it never merges two objects in two different
domains.

There are two ways to control the level of detail. One is to control the OOG projection depth, which
affects the depth of object substructure uniformly for all objects starting from the root of the ownership tree
(slider control in the OOG Wizard in Figure 25). Because one object’s substructure may be more interesting
than that of some other object, the OOG Wizard tool allows the developer to collapse the internals of a
selected object; in that case, the tool appends the (+) symbol to that object’s label. In Figure 27, we
manually elided the substructure of all the objects in the top-level domains except for Drawing because we
wanted to highlight the Composite pattern. Inside Drawing, the owned domain shows several objects. We
recognize a Vector<Figure>, fFigures, that maintain the list of sub-figures, and a summary edge from
fFigures to figure:Figure in Model.

In principle, one could manually elide objects in Womble’s output (Figure 2) to obtain a more abstracted
diagram. One could also apply heuristics similar to the ones we used for abstraction by types. Indeed, in
many architectural recovery approaches, the developer filters elements that satisfy certain query criteria to
produce more abstracted views — e.g., collapse all nodes labeled with a common prefix according to some

10http://c2.com/cgi/wiki?ModelModelViewController
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naming convention into a single subsystem [47]. However, in both cases, the result would still be a non-
hierarchical view. Moreover, selecting and eliding from many objects at the same level involves more trial
and error. It is also not clear how the developer can decide which implementation details can be elided.
Indeed, O’Callahan mentions that object graphs tend to expose the implementation of data structures [33,
p. 252].

6.2 HillClimber

By many accounts, JHotDraw is the brainchild of object-oriented analysis and design (OOAD) experts. The
second subject system HillClimber is a 15,000 line Java application that was developed by undergraduates.
HillClimber is also interesting because it uses a framework and its architectural structure had degraded over
the years [3]. Our goal was to evaluate the OOG of a program that was not well-designed by OOAD experts.
In HillClimber, the application window uses a canvas to display nodes and edges of a graph to show the
output of a computational engine.

Annotation. The ownership annotations organized objects into a data domain to store the graph, a ui

domain to hold user interface objects, and a logic domain to hold the engine, search objects, and associated
objects. While adding annotations to HillClimber, we refactored the code to reduce coupling between ui

and data objects [3].
Evaluation. The reader can compare the HillClimber OOG in Figure 28 to the one we previously

published [2]. The tool shows the abstract objects merged into a runtime object (Figure 25). We used that
information to learn what abstract objects in the program required different annotations. We refined those
annotations using the following two strategies.

Strategy #1: Use encapsulation. We reduced the clutter in the dataTier by pushing more objects into
private domains of other objects. For instance, we placed heap:HillHeap inside a private domain of
graph:HillGraph. We also pushed several Vectors into private domains and ensured that the other refer-
ences to them were unique (they were actually passed linearly between objects). In a few cases, we changed
the code to prevent representation exposure by returning a copy of an internal list instead of an alias.

Strategy #2: Use logical containment. We defined public domains to reduce the number of top-level objects.
A public domain groups related objects, pushes the inner objects it contains down the ownership tree and
removes them from the top-level domains, while keeping those inner objects accessible to objects that can
access the outer object. Object search has a HEURISTICS public domain with two array objects inside it;
its peer object heuristics inside logicTier accesses those array objects directly11.

6.3 Aphyds

Aphyds is an 8,000 line circuit layout application that Aldrich et al. studied previously [6]. Aphyds follows
the Document-View style where the views are user interface objects, and the model consists of a circuit and
computational objects to partition and route the circuit.

Annotations – Round 1. We initially organized the Aphyds objects into two top-level domains:
• UI: containing a CircuitViewer object and several subsidiary user interface objects;
• Model: holds a Circuit object and a set of computational objects that act on it, such as Floorplanner

and Partitioner.
Evaluation – Round 1. These annotations produced an OOG with too many components in the top-

level domains (Figure 6.3). This OOG is not very comparable to the diagram drawn by the original Aphyds
developer (Figure 1). In particular, objects Circuit, Net, Terminal and Node are at the same level.

Annotations – Round 2. We examined the OOG and determined which runtime objects needed to
be pushed down the hierarchy. Using the tool, we learned what abstract objects declared in the program
required different annotations. For instance, we needed to push Net and Node objects underneath Circuit.
Using Figure 1 as a guide, we created public domains as follows:

11An owner-as-dominator type system [12] would not allow such an edge.
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 owned

 owned

 Controller

 View

fLocator(+):
OffsetLocator

handle:
Handle

connector(+):
Connector

figure:
Figure

undoActivity(+):
UndoActivity

standardDrawingView(+):
StandardDrawingView

fAttributes(+):
FigureAttributes

fDisplayBox:
Rectangle

_theHashtable:
Hashtable<Figure,Rectangle2D>

_nwQuadTree(+):
QuadTree

_theQuadTree:
QuadTree

fListeners:
Vector<DrawingChangeListener>

fPoints:
Vector<Point>

fFigures:
Vector<Figure>

start(+):
ArrowTip

fAnimator:
Animator

undoManager(+):
UndoManager

cmd(+):
Command

javaDrawApp(+):
JavaDrawApp

tool(+):
Tool

duplicateButton(+):
CommandButton

menu(+):
CommandMenu

drawingChoice(+):
JComboBox

simpleUpdateStrategy:
SimpleUpdateStrategy

constrainer:
GridConstrainer

Figure 27: Top-level JHotDraw OOG. The objects in the top-level domains are collapsed, except for Figure.
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 HEURISTICS
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canvas(+):
HillCanvas window(+):

HillWindow

engine(+):
HillEngine

edge(+):
Edge

mediator:
CanvasMediatorImpl

newHillGraph(+):
HillGraph

simPanel(+):
SimPanel

batchSteps:
Vector<BatchStep>

searchAlgs:
Search[]
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Search
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varHeurs:
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Figure 28: Top-level HillClimber OOG. The objects in the top-level domains are collapsed, except for search.
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• CircuitViewer.DISPLAY: a public domain on the CircuitViewer to hold a Displayer object that all
the other UI objects had references to;

• Circuit.DATABASE: a public domain on the Circuit object, that includes the objects associated with
the Circuit, such as Net, Node, and Terminal;

• Partitioner.DATABASE: a public domain on Partitioner to hold PartitionTranscript and PTnode

objects;
• Floorplanner.DATABASE: a public domain on Floorplanner for the floorplanning objects, such as
SlicingTree;

• GlobalRouter.DATABASE: a public domain on GlobalRouter to hold NetGlobalRouting objects.
Just as with HillClimber, we also reduced the clutter by pushing objects such as Vector<Floorplan>

into private domains or by passing them linearly between objects.
Evaluation – Round 2. The Aphyds OOG with the revised annotations is in Figure 6.3. There

are two top-level domains, UI and Model. Many objects that were in the Model domain were moved into
public domains of other objects in the Model domain, such as Channel, GlobalRouter, Partitioner and
Circuit. Those public domains are elided except for the Circuit object. Inside object Circuit, public
domain DATABASE has Node, Net and Terminal objects inside it. The owned domain inside Circuit stores
Hashtable objects.

Indeed, this OOG is very comparable to the developer diagram of the Aphyds runtime architecture
(Figure 1). For instance, viewer, circuit and fp in the OOG map to circuitViewer, Circuit and
FloorPlanner in Figure 1. Objects Node, Net in Circuit’s public domain DATABASE map to node and net

inside circuit’s sub-architecture in Figure 1.
The up-to-date extracted OOG somewhat contradicts the documented runtime architecture. As to be

expected from a manually generated diagram, Figure 1 omitted several edges between UI and Model objects
as well as edges between objects in the Model tier. Many connections thought to be unidirectional in the
developer’s diagram, such as between the CircuitViewer and the various Dialogs, turned out to be bi-
directional in the implementation. The OOG has an additional object in UI, PartDialog, which connects to
the Partitioner. Upon a closer examination of the OOG, we noticed a reference from placer in Model to
PlacerDialog in UI. This was a potential red flag since Aphyds is a multi-threaded application: a worker
thread executing long running operations cannot carelessly call back into the user interface thread. The
traceability information in the OOG helped us relate this callback to a field of type PlaceRouteDialog

declared in class Placer. We did verify however that the code correctly handled the callback.
Discussion. When Aldrich et al. re-engineered Aphyds to specify its architecture in ArchJava, they used

component classes to create the hierarchy [6]. Here, we used public domains to create logical containment.
The information we gleaned from the OOG is consistent with what Aldrich et al. found [6], but did not
require re-engineering the application. There was a mismatch between the edges that the developer diagram
intended to show and the ones that the OOG currently shows (field references). We plan to add control and
data flow edges to the OOG.

7 Discussion

Evaluation. Our evaluation on these representative subject systems answers adequately our earlier research
questions. We form the following hypotheses for future research, outlined in italics below. The requirements
for a runtime architecture from Section 2.1 dictated some of the hypotheses. We also applied a taxonomy
for software exploration tools by Storey et al. to runtime architectures instead of code architectures [47].
H1: The abstraction by types in an OOG effectively abstracts related instances. The developer controls the
abstraction by selecting appropriate trivial types or design intent types.
H2: A developer can use the OOG to relate the runtime architecture and the code architecture and identify
potential design flaws.
H3: The OOG hierarchy effectively abstracts instances compared to a raw object graph. Manually expanding
or collapsing a few key substructures fine-tunes the visual representation.
H4: The OOG helps a developer learn how to refine the annotations to obtain the desired architectural view.
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 Model

pdiag(+):
PartDialog

viewer(+):
CircuitViewer

pt(+):
PartitionTranscript

part(+):
Partitioner

PRDialog(+):
PlaceRouteDialog

target(+):
Node

CircuitPlacement(+):
Placer

fp:
Floorplanner

circ(+):
Circuit

Tnet(+):
NetCircuitGlobalRouting(+):

GlobalRouter

floordialog1(+):
FloorplanDialog

floorplan:
Floorplan

channelroutedialog1(+):
ChannelRouteDialog

channel(+):
Channel

term:
Terminal

pTnode(+):
PTnode

results:
Vector<Floorplan>

FirstChild:
SlicingTree

terminalNGR(+):
NetGlobalRouting

gainarray0(+):
Bucket

Figure 29: Aphyds OOG obtained with two top-level domains and many private domains. Note the (+)
symbol on most objects to indicate that their substructure was elided.
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Figure 30: Aphyds OOG obtained by defining additional public domains.
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Annotation Overhead. We currently add the ownership domains annotations manually so we used
medium-sized programs for the evaluation. The annotation cost could be reduced by ownership inference
[7, 28] and amortized over other uses of ownership, e.g., for program verification [27]. On the other hand, the
annotations allow the developers to obtain meaningful architectural abstractions, rather than automatically
inferred ones that are likely to be poor matches to the desired software architecture.

For the proposed approach to be adoptable, better ownership inference must be developed. Existing
ownership inference tools adopt restrictive notions of ownership, do not map their results to a type system,
do not infer ownership parameters [28] or infer imprecise ones [7].

ArchJava. The annotation burden is lower than re-engineering to ArchJava. Both authors previously re-
engineered existing systems to ArchJava. ArchJava prohibits returning references to instances of “component
classes” when most object-oriented code returns object references liberally. For Aphyds, Aldrich et al.
converted dynamic connections into static ones and inadvertently injected several defects to produce a
system with over 20 components and 80 “ports” in the code [6]. Aldrich et al. previously added ownership
annotations to a subset of the Aphyds subject system (around 3,500 lines) in “three hours and 40 minutes
— less than a quarter of the time that it took the same programmer to express the control-flow architecture
of the same part of Aphyds” in ArchJava [6]. Similarly, when we re-engineered HillClimber, we initially
introduced runtime exceptions due to disconnected ports and had to change the application’s initialization
order [4].

What are “good” annotations? Just as there are multiple architectural views of a system, there is no
single right way to annotate a program. Good annotations minimize the number of top-level components
in the OOG by pushing more objects underneath other objects. The best annotations produce an OOG
that is comparable to what an architect might draw for the as-designed architecture, as long as the program
supports them!

The OOG can guide a developer to refine the annotations. For JHotDraw, we initially placed Handle

instances in the CONTROLLER domain and later moved them to the Model domain since Handle is related to
Figure12.

How is the Process Iterative? Obtaining an OOG is a semi-automated iterative process, which involves
the following steps:

1. Decide on the right top-level domains;
2. Decide on the right top-level objects in the top-level domains. This may involve moving objects between

the top-level domains;
3. Achieve an adequate number of objects in each top-level domain:

(a) Push secondary objects underneath primary objects, using:
i. Strict encapsulation (private domains);
ii. Logical containment (public domains);

(b) Pass low-level objects linearly between domains;
(c) Use abstraction by types to merge fewer or more objects in each domain, using:

i. Trivial types (Section 5.2): when there are many interfaces that are implemented by many
types;

ii. Design intent types (Section 5.3): when the design can be represented in terms of a few core
types;

4. Achieve an appropriate level of visual detail:
(a) Hide or show the substructure of a selected object;
(b) Change the projection depth uniformly across objects;

The tool adds any summary edges corresponding to the elided substructure.

Why was one system refactored? Adding the annotations to HillClimber highlighted refactoring op-
portunities [3, 4]. Without refactoring, the annotations would enforce a degraded architecture. We did not
refactor JHotDraw or Aphyds, except to use generic types. These were code bases that were developed prior
to Java 1.5. Most Java code is being refactored to use generics using available tool support [16].

12Ralph Johnson, who worked on the HotDraw precursor to JHotDraw, examined an earlier extracted OOG and recommended
this change.
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When adding annotations, one must choose between enforcing a degraded architecture or refactoring to
reduce tight coupling, e.g., by programming to an interface, or introducing a mediator object [3]. E.g., in
HillClimber, the mediator object was introduced during a refactoring.

OOG ≈ C&C View? We implemented a separate analysis to convert an OOG into a standard component-
and-connector architecture. We also designed an analysis to compare the as-built C&C view obtained from
the OOG to an as-designed architecture, and check their structural architectural conformance [1]. This paper
focuses on architectural extraction.

Why Ownership Domains? The approach was presented in terms of the ownership domains type system,
where each object contains one or more public or private domains, and each object is in exactly one domain.
In principle, the approach also applies to ownership type systems that assume a single context per object [12].
However, in an owner-as-dominator type system, any access to a child object must go through its owning
object [12]. In contrast, the ownership domains type system supports pushing any object underneath any
other object in the ownership hierarchy: a child object may or may not be encapsulated by its parent object.
A child object can still be referenced from outside its owner if it is part of a public domain of its parent,
or if a domain parameter is linked to a private domain [5]. This expressiveness makes it possible to avoid
an architecture that has too many top-level objects, as in the first Aphyds OOG (Figure 6.3). If making an
object owned by another object restricts access to the owned object, this forces more objects to be peers.

Dynamism. The OOG is an approximation of the actual runtime architecture, one that is conservative
and may include more than actually will be there by virtue of using a sound static analysis. However,
the experimental evidence we have gathered on several extended examples, as well as many other smaller
examples, indicates that the extracted architectures do not suffer from too much or too little abstraction. In
comparison, Rayside et al. reported that a static object graph analysis based on RTA produced unacceptable
over-approximations for most non-trivial programs [38]. Finally, the approach currently describes a static
component-and-connector architecture of a system, but offers no facilities for specifying runtime architectural
changes [34], as in dynamic architecture description languages. As a result, the approach does not address
dynamic architectural reconfiguration [29]. In addition, our approach works for applications that run in a
single virtual machine, so it handles neither heterogeneous nor distributed systems.

Performance. Table 1 measures the execution time of the static analysis on several subject systems.
The OOG time includes parsing the program’s abstract syntax tree to retrieve the annotations, build the
abstract graph, convert it into a runtime graph, and then into a display graph. The IBV time is lower
because when using the instantiation-based view, there are fewer abstract objects that the analysis must
manipulate. Overall, the OOG tool is sufficiently interactive to allow iteration.

8 Related Work

Architectural Recovery. There is a large body of research on architectural recovery or architectural
extraction. Most approaches use a mix of dynamic and static information such as naming conventions
and directory structures [39]. The extractors often play detective and use trial and error with clustering

Table 1: OOG measures the extraction time on an Intel Pentium 4 (3 GHz) with 2 GB of memory. WARN
is the remaining annotation warnings. IBV and ABST indicate if instantiation-based views or abstraction
by types were used, respectively.
System LOC OOG ABST IBV WARN
JHotDraw 15,000 2’18” No No 60
JHotDraw 15,000 0’16” Yes Yes 60
HillClimber 15,000 0’26” No No 42
HillClimber 15,000 0’09” Yes Yes 42
Aphyds 8,000 0’24” No No 72
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algorithms [23]. Even so, existing compile-time approaches mostly obtain abstracted code architectures, not
runtime architectures [11]. In many approaches, the abstraction mechanism is hard-coded in a tool and
cannot be controlled with user-specified annotations.

Clustering methods are complementary to this approach and may help with annotating an unfamiliar
system. For instance, if a clustering method derives how classes in a package interact with other classes in
another package, this may suggest creating two top-level domains corresponding roughly to the two packages.
A small cluster that interacts with almost all other packages may indicate a possible library or utility package,
and often times, objects in such a package are shared.

Mapping source to high-level models. Murphy el al. produce a mapping of a source to a high-level
model using the Reflexion Models (RM) approach [32]. In RM, the developer assigns component families to
classes using an external file. Then the tool checks the relationships between these components and reports
any differences to the developer. There are several important differences with RM. First, the object-oriented
version of the RM method (embodied in the jRMTool) maps classes to components. Such a mapping is not
appropriate for an object-oriented runtime architecture and is more suitable for the code architecture. A
runtime architecture models runtime entities and their potential interactions. Thus, in an object-oriented
system, a component is one or more objects. More specifically, RM cannot map the same code entity to
multiple design elements, depending on the context of where they were used. A runtime view of an object-
oriented system may distinguish between two instances of the same class in two different contexts. For
instance, a dataAccess component may connect to a settingsDB component to read trusted configuration
settings, and a dataDB component to access untrusted user data. A security analysis that operates on that
runtime view may assign a High trustLevel for settingsDB and a Low trustLevel for dataDB. In contrast,
a module view would show one element, assuming that the components are implemented as two instances
of the same java.io.File class. RM can only map the java.io.File class to a single node in the high-level
model. Second, RM does not extract a complete abstraction to avoid obtaining a model that developers do
not recognize. In our method, the OOG represents a complete model, but developer-specified annotations
help obtain meaningful abstractions. RM uses non-hierarchical high-level models and maps, whereas our
method produces hierarchical representations. A developer writing the map manually must ensure that a
type and its subtypes are mapped to the same entity in the high-level model. When mapping field or local
variables, the developer must also ensure that all objects that may be aliased are mapped to the same high-
level entity. In contrast, in our method, a type system checks that the annotations are consistent, and that
the code is consistent with the annotations. And the construction of the runtime graph handles aliasing
and inheritance. Producing the mapping file in the RM approach appears more straightforward than adding
ownership annotations, but it is not amenable to type inference. The more sophisticated source abstraction
method is needed to handle the runtime architectures of object-oriented systems soundly, in the presence of
inheritance and aliasing.

Dynamic Analyses. There are several dynamic analyses for visualizing runtime structures [44, 15]. As
mentioned earlier, a static analysis is often preferred to a dynamic analysis. First, runtime heap information
does not convey design intent. Second, a dynamic analysis may not be repeatable, i.e., changing the inputs
or executing different use cases might produce different results. Compared to dynamic ownership analyses
— which are descriptive and show the ownership structure in a single run of a program, the OOG obtained
at compile time is prescriptive and shows ownership relations that will be invariant over all program runs.
Third, a dynamic analysis cannot be used on an incomplete program still under development or to analyze
a framework separately from a specific instantiation. Finally, some dynamic analyses carry a significant
runtime overhead — a 10x-50x slowdown in one case [15], which must be incurred each time the analysis is
run, whereas the main cost of adding annotations is incurred once.

DiscoTect [44] recovers a non-hierarchical C&C view from a running program, one that shows one
component for each instance created at runtime. Such views must be manually post-processed to consolidate
multiple components into one. An automated analysis can convert an OOG into a C&C view that is
hierarchical and does not require manual post-processing [1].

Visualization. Software visualization research shows different aspects of the execution structure of a
running program [45, 14]. Compared to our approach, dynamic visualization approaches do not require source
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code annotations and allow more fine-grained user interaction in producing abstractions. But these analyses
often work at the granularity of an object or a class and produce task-specific views. Our contribution in this
paper is not a visualization, it is in having developer-specified ownership annotations drive a sound static
extraction of a system’s runtime architecture.

Dynamic Ownership Analyses. More closely related are dynamic analyses that infer the runtime
ownership structures. These techniques do not require program annotations but assume a strict owner-as-
dominator model which cannot represent many design idioms.

Rayside et al. [37] produce matrix displays of the ownership structure. Similarly, Mitchell [31] uses
lightweight ownership inference to examine a single heap snapshot rather than the entire program execution,
and scales the approach to large programs through extensive graph transformation and summarization.
Noble, Potter, Potanin et al. showed both matrix and graph views of ownership structures [20, 35] and
demonstrated that ownership is effective at organizing runtime object structures. We use the same key
insight but in a static analysis that addresses additional challenges.

Object Graph Analyses. Several static analyses produce non-hierarchical object graphs without
using annotations. Pangaea [46] produces a flat object graph without an alias analysis and is unsound
(the Pangaea output for JHotDraw is even more complex than Figure 2). Womble [21] uses syntactic
heuristics and abstraction rules for container classes to obtain an object model including multiplicities. The
Womble analysis is unsound and aliasing-unaware by design. Ajax [33] uses a sound alias analysis to build
a refined object model as a conservative static approximation of the heap graph reachable from a given
set of root objects. However, Ajax does not use ownership and produces flat object graphs. Its output
was manually post-processed to remove “lumps” with more than seven incoming edges [33, p. 248]. In our
approach, we often suppress shared objects and their associated edges since they often add needless clutter.
Even though excluding shared objects makes the resulting architecture unsound, the use of the shared

annotation is entirely under the control of the developer adding the annotations. A developer can avoid
the shared annotation if she is interested in reasoning about all the objects in the system: shared is an
escape hatch mainly designed to easily inter-operate with legacy code or third-party libraries [7]. Moreover,
Ajax’s heavyweight but precise alias analysis does not scale to large programs. Flat objects graphs do not
provide architectural abstraction and do not scale, because the number of top-level objects in the architecture
increases with the program size.

Lam and Rinard [25] proposed a type system and a static analysis (which we refer to here as LR) whereby
developer-specified annotations guide the static abstraction of an object model by merging objects based
on tokens. LR supports two kinds of tokens. The first kind, token parameters, are a loose adaptation of
ownership type parameters that predate them [12], and correspond roughly to domain parameters. Compared
to Reflexion Models, LR can map a single code element to multiple design elements. Token parameters
lack semantics, i.e., they do not give any precision about aliasing. The second kind, global static tokens
correspond loosely to top-level domains. In LR, each token parameter C<p1> is bound to another B<p2>,
and transitively to a global token. In ownership domains, a class C can declare a private or a public domain
D. Each instance of C gets a fresh instance of D, so obj1.D 6= obj2.D for fresh obj1 and obj2. In addition
to binding to another domain parameter B<d2>, a domain parameter C<d> can bind a locally declared
domain, e.g., objB.D. These local domains create the OOG hierarchy. As a result, an analysis based on
LR can only extract non-hierarchical object models. For instance, for Aphyds, we used private domains in
Round1 – note the (+) sign on most objects for the elided substructure in Figure 6.3. To get the OOG
in Figure 6.3, one that is comparable to the as-designed architecture in Figure 1, we used public domains
in Round 2, thus confirming that hierarchy is indispensable. Lam and Rinard do not mention inheritance
in their paper and their formal system omits inheritance entirely [25, Fig. 10]. This paper discussed the
challenges that multiple interface inheritance introduces. Lam and Rinard gave no soundness proof of the
underlying type system or of the extracted object model. Finally, the LR system was evaluated on one
1.7KLOC system, whereas we evaluated the OOG extraction on several systems of 8-15KLOC each. Unlike
the ownership domains type system, the LR type system is only descriptive and does not enforce a tiered
architecture in code [5, 3]. Our approach does not require special annotations just to extract a design [25]
but leverages well-researched ownership types [12, 5] that also have uses in program verification [27]. Finally,
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work on ownership inference could reduce the annotation cost [7, 26, 28].
Similarly, a package in confined types [10], which track classes not instances, can be considered a package-

level static ownership domain and thus coarser than a token. However, confined types carry a lower syntactic
overhead than ownership types.

Shape Analysis. Our analysis creates a graph that summarizes possible relationships among objects
at runtime. Shape analysis, e.g., [41], is related but differs on two counts. First, shape analyses are whole-
program analyses that do not scale. Second, they produce heap abstractions that show a graph consisting
of nodes to represent a set of objects and edges to represent points-to relations. Our representation is
hierarchical, whereby a set of objects is contained inside a domain of another object. Hierarchy allows
varying the level of architectural abstraction (See Fig. 6(c)). Shape analysis represents objects that are
being used by the program using unique materialized objects, while it summarizes objects that are not in
use. In contrast, our analysis, once it merges two objects in a domain, never separates them. So, shape
analysis could produce more precise results for small non-hierarchical graphs. But our analysis can keep as
separate two objects that are in distinct domains, because the underlying type system guarantees they can
never alias.

9 Conclusion

We proposed a novel approach to statically extract a sound hierarchical object graph from an object-oriented
program that is written in an existing language and that uses existing libraries and general design idioms.
The approach relies on ownership domain annotations to specify and enforce in code the architectural intent
related to object encapsulation and communication.

We evaluated the approach using several real medium-sized programs. From an annotated program,
a tool can quickly extract a runtime architecture that conveys meaningful abstractions and gives various
insights by identifying undocumented information or contradicting manual documentation. In follow-up
work, we convert an extracted object graph into a standard component-and-connector architecture and
check its conformance with an as-designed architecture [1]. In future work, we plan to run architectural-level
analyses for properties such as performance or security on an extracted runtime architecture.
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APPENDIX

A Edge Imprecision

The earlier pseudo-code for the OOG [2] generated imprecise edges (Figure 31), i.e., the OOG showed
statically edges that do not really exist at runtime. While still sound, these extra edges needlessly clutter
the OOG. We changed the data structures we use and the pseudo-code for adding edges to fix this imprecision.
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(a) OOG with imprecise edges from dom1.data1 to dom2.biff and dom2.baz.
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Figure 31: An illustration of possible imprecision in the edges to “pulled objects” in the OOG.
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