
Verifying Correct Usage of Atomic Blocks and
Typestate: Technical Companion

Nels E. Beckman† Jonathan Aldrich†

August 2008
CMU-ISR-08-126

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

†Institute for Software Research, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA

This work was supported by a University of Coimbra Joint Research Collaboration Initiative, DARPA grant
#HR00110710019, Army Research Office grant #DAAD19-02-1-0389 entitled “Perpetually Available and Secure In-
formation Systems”, the Department of Defense, and the Software Industry Center at CMU and its sponsors, especially
the Alfred P. Sloan Foundation.

Keywords: transactional memory, typestate, proof

Abstract

In this technical report, we present a static and dynamic semantics as well as a proof of soundness
for a programming language presented in the paper entitled, Verifying Correct Usage of Atomic
Blocks and Typestate [1]. The proof of soundness consists of a proof of preservation, which shows
that well-typed expressions evaluate to other well-typed expressions, and a proof of progress,
which shows that well-typed expressions are either values or can take an evaluation step in the
dynamic semantics. The notion of progress is complicated by a specific notion of a well-typed
heap, which ensures that only one reference in the entire thread-pool can know the exact state of
an object of share or pure permission.

1 Proof of Soundness
Our soundness criterion is as follows: It is either the case that all of the threads in a program are
values, or their exists one thread such that the expression this thread is evaluating is well-typed
and can take a step to another well-typed expression. If one of the threads in the thread-pool is
currently executing within a transaction, then that thread must step, and if no threads in the thread-
pool are currently executing within a transaction, then any threads that is not a value must be able
to step. The dynamic semantics track typestate, and there is no evaluation rule to allow a method
call if method preconditions are not met. In order to prove that method preconditions are always
met for well-typed programs, our store typing judgment requires the invariant that only one thread
can pinpoint the state of a share or pure object at a time.

The language of proof differs from the language used in the paper in a few ways. We have
restored the original effects system used by Bierhoff and Aldrich [2]. This system was removed
from the paper for purposes of clarity. The effects system keeps track of the fields that are modified
in a subexpression to ensure that only the fields of the unpacked object are modified, and no field
permissions “escape” beyond the packing of that object. Otherwise, our proof language resembles
their proof language in most ways. As it was for Bierhoff and Aldrich, we have simplified the
language of proof by removing linear disjunction (⊕) and additive conjunction (&). In the paper,
an object is known to be unpacked if there is an unpacked(k, s) permission inside of the linear
context. In the system shown here, we use a separate context u. One u appears on the left-hand side
of the judgment. This shows us which object is unpacked before the expression takes an evaluation
step. The other u appears on the right-hand side, and shows us which object is unpacked after the
expression has finished an evaluation step.

For the majority of the proof, things proceed much as they did in the proof of soundness pre-
sented by Bierhoff and Aldrich [2] with many of the multi-threaded features coming from Moore
and Grossman [3]. Our system is different in a few ways. In Bierhoff and Aldrich the stack per-
missions, that is the dynamic representation of permissions that are currently available for use by
the evaluating expression, were actually stored inside the heap. Because we have many threads,
we have a separate environment Sp attached to each thread expression which holds these stack per-
missions. Additionally, when typing a pool of threads, T (essentially a list of expressions and their
stack permissions), we associate each with their own linear context ∆ and incoming unpacking flag
u. We often must refer to the entire collection of linear contexts and packing flags, and this will
usually be written ∆ and u. Keep in mind that each linear context and unpacking flag is associated
with one specific thread. This would most accurately be written as a list of tuples except that our
∆ and u usually appear on the left-hand side of the rule, while the thread itself will appear on the
right-hand side, and so treating them as a tuple would be notationally awkward.

When type-checking the top-level thread pool, the members of ∆ and u are tagged with an
additional bit of information, and are written ∆E and uE . At most one ∆ and u pair are allowed
to contain specific state information about pure and share permissions. If this is the case, that ∆
and u will be tagged with wt, whereas others may not be. The fact that at most one linear context
and unpacking flag is allowed to contain state information about share and pure permissions is
checked by the a; 〈∆E , uE〉 ok judgment.

1

1.1 Proof Language

program PG ::= 〈CL, e〉
class decls. CL ::= class C { F I N M}

methods M ::= Cr m(C x) : P1 (∃result : Cr.P2 = e
terms t ::= x, y, z | o

expressions e ::= k · t | k · t.f | t1.f := k · t2

| new C(k · t) | k · t.m(k · t)
| inatomic (e)
| let x = e1 in e2

| spawn (k · t.m(k · t)) | atomic e
| unpackEk · t@s in e | pack t to s′ in e

expression types E ::= ∃x : C.P

I ::= init〈∃f : C.P, s〉
atomic E ::= wt | ot | emp
states S ::= s | unpacked(k) | unpacked(s)

Predicates P ::= k · r@$ | P1 ⊗ P2

$::= s | ?
N ::= s = P

valid contexts Γ ::= · | Γ, x : C
linear contexts ∆E ::= · | ∆E , P

stores Σ ::= · | Σ, o : C

heaps H ::= · | H, o 7→ C(f = k · o)@S
k ::= full | pure | share | immutable | unique
u ::= − | k · t@s
ω ::= ∅ | {t.f} | ω1 ∪ ω2

2

1.2 Judgment Forms
Judgment Judgment form Description
Top-Level
Evaluation

a; H; T → a′; H ′; T ′ Under transaction state a and heap
H the thread-pool T evaluates to T ′,
which may modify an expression and
add a new expression, while possibly
modifying the heap H ′ and changing
the transaction state a′.

Expr. Evalua-
tion

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T In heap H , with transaction state a and
stack permissions Sp, the expression e
takes a step to e′, potentially modify-
ing each and potentially adding a new
thread.

Expression
typing

Γ; Σ; ∆; E ; u ` e : E \ ω|u′ In variable context Γ, store Σ, linear
context ∆, transaction effect E , and
unpacking flag u, expression e has type
E and may assign to fields in ω and
and changes unpacking to u′.

Store typing
(definition
1.5.1)

Σ; ∆E ; uE ` H; Sp In store context Σ with lists of linear
contexts ∆E and packing flags uE , each
tagged with a transaction effect, the
heap H and the list of all stack permis-
sions Sp is well-typed.

Linear logic
entailment
(figure 6)

Γ; Σ; ∆ ` P In variable context Γ and store Σ, lin-
ear context ∆ proves P .

Runtime prop-
erty check
(definition
1.5.2)

H; Sp|k · o ` P Heap H with stack permissions Sp re-
stricted to stack permissions k · o sat-
isfies property P .

Γ; Σ; ∆ `E P

E = ot|emp Γ; Σ; ∆ ` P
k · o@s /∈ ∆, P where k = pure|share

Γ; Σ; ∆ `E P

Γ; Σ; ∆ ` P

Γ; Σ; ∆ `wt P

Figure 1: Transaction-aware linear judgement

1.3 Thread Pool and Expression Typing

3

k · o@s /∈ ∆

k · o@s /∈ ·
k · o@s /∈ P k · o@s /∈ ∆

k · o@s /∈ ∆, P

k · o@s /∈ P

k · o@s /∈ k · o@?

(k 6= k′|o 6= o′|s 6= s′)

k · o@s /∈ k′ · o′@s′

a; 〈∆E , uE〉 ok

not-wt(〈∆E , uE〉1) not-wt(〈∆E , uE〉2)

•; (〈∆E , uE〉1〈∆wt, uwt〉, 〈∆E , uE〉2) ok

not-wt(〈∆E , uE〉)
◦; 〈∆E , uE〉 ok

Figure 2: Well-formedness of all linear contexts.

not-wt(〈∆E , uE〉)

not-wt(·)
not-wt(〈∆E , uE〉) not-wt(〈∆E , uE〉)

not-wt(〈∆E , uE〉, 〈∆E , uE〉)

not-wt(〈∆E , uE〉)

not-wt(∆E) where E = share|pure
not-wt(〈∆E , uE〉)

not-wt(∆E)

k · o@s /∈ ∆E where k = share|pure
not-wt(∆E)

4

not-active(e)

mbody(C, m) = x.em

not-active(em) not-active(k · t)

not-active(k · t.f) not-active(t1.f := k · t2)

not-active(new C(k · t)) not-active(k · t.m(k · t))

not-active(e1) not-active(e2)

not-active(let x = e1 in e2)

not-active(e)

not-active(unpackEk · t@s in e)

not-active(e)

not-active(packE t to s in e)

not-active(e)

not-active(atomic (e))

Figure 3: Expressions with no active subexpressions.

active(e)

active(inatomic (e))

active(e1) not-active(e2)

active(let x = e1 in e2)

Figure 4: Expressions with an active subexpression.

forget(P) = P ′

k = immutable|unique|full
forget(k · o@s) = k · o@s

k = pure|share
forget(k · o@s) = k · o@?

forget(P1) = P ′1 forget(P2) = P ′2
forget(P1 ⊗ P2) = P ′1 ⊗ P ′2

Figure 5: The forget judgement.

5

forgetE(P) = P ′

E = wt
forgetE(P) = P

E 6= wt forget(P) = P ′

forgetE(P) = P ′

writes(k)

writes(unique) writes(full) writes(share)

readonly(k)

readonly(pure) readonly(immutable)

S ≤ S ′

S ≤ S S ≤?

unpacked(s) ≤ s s ≤ unpacked(s)

k ≤ k′

k · o@s V k′ · o@s
k ≤ k′

k · o@s V k′ · o@s⊗ k′′ · o@s
k ≤ k′

6

Γ; P ` P
LINHYP

Γ; ∆ ` P ′ P ′ V P

Γ; ∆ ` P
SUBST

Γ; ∆1 ` P1 Γ; ∆2 ` P2

Γ; (∆1, ∆2) ` P1 ⊗ P2
⊗I

Γ; ∆ ` P1 ⊗ P2 Γ; (∆′, P1, P2) ` P

Γ; (∆, ∆′) ` P
⊗E

Γ; · ` 1 1I
Γ; ∆ ` 1 Γ; ∆′ ` P

Γ; (∆, ∆′) ` P
1E

Γ; ∆ ` P1 Γ; ∆ ` P2

Γ; ∆ ` P1 & P2
&I

Γ; ∆ ` P1 & P2

Γ; ∆ ` P1
&EL

Γ; ∆ ` P1 & P2

Γ; ∆ ` P2
&ER

Γ; ∆ ` > >I no > elimination

Γ; ∆ ` P1

Γ; ∆ ` P1 ⊕ P2
⊕IL

Γ; ∆ ` P2

Γ; ∆ ` P1 ⊕ P2
⊕IR

Γ; (∆′, P1) ` P
Γ; ∆ ` P1 ⊕ P2 Γ; (∆′, P2) ` P

Γ; (∆, ∆′) ` P
⊕E

no 0 introduction
Γ; ∆ ` 0

Γ; (∆, ∆′) ` P
0E

(Γ, z : H); ∆ ` P

Γ; ∆ ` ∀z : H.P
∀I

Γ ` h : H Γ; ∆ ` ∀z : H.P

Γ; ∆ ` [h/z]P
∀E

Γ ` h : H Γ; ∆ ` [h/z]P

Γ; ∆ ` ∃z : H.P
∃I

Γ; ∆ ` ∃z : H.P (Γ, z : H), (∆′, P) ` P ′

Γ; (∆, ∆′) ` P ′
∃E

Figure 6: Linear logic for permission reasoning

` a; H; T

·; Σ; ∆E ; u ` H; Sp Σ; ∆E ; u ` T

correct-atomic(a, T) where T = 〈e, Sp, 〉
` a; H; T

Figure 7: Top-level typing rules

7

Σ; ∆; u ` T

Σ; ·; · ` ·
Σ; ∆E1 ; E1; u1 ` e1 : E1 \ ω|u Σ; ∆E2 , . . . , ∆En; u2, . . . , un ` T

Σ; ∆E1 , ∆E2 , . . . , ∆En; u1, u2, . . . , un ` 〈e, Sp〉1, T

Figure 8: Well-typed thread-pool

(o : C) ∈ Σ ·; Σ; ∆ `E P

·; Σ; ∆; E ; u ` k · o : ∃x : C.[x/o]P \ ∅|u T-LOC

readonly(ku) implies readonly(k) ·; Σ; ∆ `E P localFields(C) = f : C

·; Σ; ∆; E ; ku · o@Su ` k · o.fi : ∃x : Ti.[x/fi]P \ ∅|ku · o@su
T-READ

localFields(C ′′) = f : C (o′ : C ′) ∈ Σ writes(k′)
·; Σ; ∆ `E k · o : ∃x : Ci.P ·; Σ; ∆′ `E [o′.fi/x

′]P ′

·; Σ; ∆, ∆′; E ; k′ · o′@s′ ` o′.f ′i := k · o : ∃x′ : Ci.P
′ ⊗ [o′.fi/x]P \ {oi.f}|k′ · o′@s′

T-ASSIGN

·; Σ; ∆ `E [o/f]P o : C ⊆ Σ init(C) = 〈∃f : C.P, s〉
·; Σ; ∆; E ; u ` new C(k · o) : ∃x : C.unique · x@s \ ∅|u

T-NEW

forgetE(k · o@s) = k · o@$
k = immutable | pure implies s = s′ ·; Σ; ∆′, k · o@$; E ;− ` e′ : E \ ∅|−

localFields(C) = f : C (o : C) ∈ Σ ·; Σ; ∆ `E [o/this]invC(s, k)

No temporary permissions for o.f in ∆′

·; Σ; (∆, ∆′); E ; k · o@s ` pack o to s′ in e′ : E \ {of}|−
T-PACK

k = unique | full | immutable (o : C) ∈ Σ ·; Σ; ∆ `E k · o@s
E = emp|ot ·; Σ; ∆′, [o/this]invC(s, k); E ; k · o@s ` e′ : E \ ω|−

·; Σ; (∆, ∆′); E ;− ` unpackE k · o@s in e′ : E \ ∅|− T-UNPACK

(o : C) ∈ Σ ·; Σ; ∆ `wt k · o@s
·; Σ; ∆′, [o/this]invC(s, k); wt; k · o@s ` e′ : E \ ω|−
·; Σ; (∆, ∆′); wt;− ` unpackwt k · o@s in e′ : E \ ∅|− T-UNPACK-WT

8

(o : C) ∈ Σ o : C ⊆ Σ

·; Σ; ∆ `E [o/this][o/f]P mtype(C, m) = ∀x : C.P (∃x : C.Pr

forgetE(Pr) = P ′r

·; Σ; ∆; E ;− ` k · o.m(k · o) : ∃x : C.P ′r \ ∅|−
T-CALL

o : C ∈ Σ o : C ∈ Σ mtype(C, m) = ∀x : C.P (E

·; Σ; ∆ot `ot [o/this][o/f]P

·; Σ; ∆; ot;− ` spawn (k · o.m(k · o)) : ∃ : Cd.immutable · od@sd \ ∅|−
T-SPAWN

Σ; ∆2, P `E P ′

·; Σ; ∆1; E ; u ` e1 : ∃x : T.P \ ω1|u2 x : C; Σ; P ′; E ; u2 ` e2 : Eω2|u′
No permissions for ω1 in ∆2

·; Σ; (∆1, ∆2); E ; u ` let x = e1 in e2 : E \ ω1 ∪ ω2|u′
T-LET

·; Σ; ∆; wt; u ` e : ∃x : C.P \ ω|u′ forgetE(P) = P ′

·; Σ; ∆; E ; u ` inatomic (e) : ∃x : C.P ′ \ ω|u′ T-INATOMIC

·; Σ; ∆; wt; u ` e : ∃x : C.P \ ω|u′ forgetE(P) = P ′

·; Σ; ∆; E ; u ` atomic (e) : ∃x : C.P ′ \ ω|u′ T-ATOMIC

9

1.4 Dynamic Semantics

a; H; T → a′; H ′; T ′

a; H; e→ a′; H ′; e′; T ′

a; H; Ta, e, Tb → a′; H ′; Ta, e
′, Tb, T

′

Figure 9: Top-level Dynamic Semantics

10

k = pure | immutable o 7→ C(. . . , fi = k′ · o′)@unpacked(s′′) ∈ H

a; H; 〈k · o.fi, Sp〉 → a; H[o 7→ C(. . . , fi = (k′ − k) · o)]; 〈k · o′, (Sp + k · o′)〉; · E-READ-R

k ≤ k′ o 7→ C(. . . , fi = k′ · o′)@unpacked(k′′) ∈ H

a; H; 〈k · o.fi, Sp〉 →
a; H[o 7→ C(. . . , fi = (k′ − k) · o′)@unpacked(k′′)]; 〈k · o′, (Sp + k · o′)〉; ·

E-READ-RW

k1 · o1 ∈ Sp o1 7→ C(. . . , f = k′ · o′, . . .)@unpacked(k′′) ∈ H
k2 · o2 ∈ Sp o2 7→ C(. . .)@S2 ∈ H

H ′ = H[o1 7→ C(. . . , f = k · o2, . . .)@unpacked(k′′)] S ′p = Sp[(k2 − k) · o2], k′ · o′

a; H; 〈o1.f := k · o2, Sp〉 → a; H ′; 〈k′ · o′, S ′p〉·
E-ASSIGN

H; Sp ` [o/f]P init(C) = 〈∃f : C.P, s〉 S ′p = Sp − k · o on /∈ dom(H)

a; H; 〈new C(k · o), Sp〉 → a; H, on 7→ C(f = k · o)@s; 〈unique · on, (S ′p, unique · on)〉; ·
E-NEW

E = ot | emp k′ · o ∈ Sp readonly(k) o 7→ C(. . .)@S ∈ H k ≤ k′

k = immutable ⊃ S = (unpacked(s)|s), k = pure ⊃ S = s

a; H; 〈unpackE k · o@S in e′, Sp〉 →
a; H[o 7→ C(. . .)@unpacked(s)]; 〈e′, SP [(k′ − k) · o]〉; ·

E-UNPACK-R

k′ · o ∈ Sp readonly(k) o 7→ C(. . .)@S ∈ H k ≤ k′

k = immutable ⊃ S = (unpacked(s)|s), k = pure ⊃ S = s

◦; H; 〈unpackwt k · o@s in e′, Sp〉 →
◦; H[o 7→ C(. . .)@unpacked(s)]; 〈e′, SP [(k′ − k) · o]〉; ·

E-UNPACK-R-WT

E = ot | emp k′ · o ∈ Sp writes(k) o 7→ C(. . .)@s ∈ H k ≤ k′

a; H; 〈unpackE k · o@s in e′, Sp〉 →
a; H[o 7→ C(. . .)@unpacked(k)]; 〈e′, SP [(k′ − k) · o]〉; ·

E-UNPACK-RW

k′ · o ∈ Sp writes(k) o 7→ C(. . .)@s ∈ H k ≤ k′

◦; H; 〈unpackwt k · o@s in e′, Sp〉 →
◦; H[o 7→ C(. . .)@unpacked(k)]; 〈e′, SP [(k′ − k) · o]〉; ·

E-UNPACK-RW-WT

invC(s) satisfied by o′s fields

ko · o ∈ Sp o 7→ C(f = k · o)@unpacked(s) ∈ H

a; H; 〈pack o to s′ in e′, Sp〉 → a; H[o 7→ C(f = k · o)@s]; 〈e′, Sp〉
E-PACK-R

invC(s) satisfied by o′s fields

ko · o ∈ Sp o 7→ C(f = k · o)@unpacked(k) ∈ H

a; H; 〈pack o to s in e′, Sp〉 → a; H[o 7→ C(f = k · o)@s]; 〈e′, Sp[(k + ko) · o]〉
E-PACK-RW

11

mbody(C, m) = x.em mtype(C, m) = ∀x : C.P (E

H; Sp|k · o, k · o ` [o/this][o/x]P

a; H; 〈k · o.m(k · o), Sp〉 → a; H; 〈[o/this][o/x]em, Sp〉; ·
E-CALL

mbody(C, m) = x.em mtype(C, m) = ∀x : C.P (E

H; Sp2|k · o, k · o ` [o/this][o/x]P

◦; H; 〈spawn (k · o.m(k · o)), (Sp1 , Sp2)〉 → ◦; H; 〈od, Sp1〉; 〈[o/this][o/x]em, Sp2〉
E-SPAWN

a; H; 〈e1, Sp〉 → a′; H ′; 〈e′1, S ′p〉; T
a; H; 〈let x = e1 in e2, Sp〉 → a′; H ′; 〈let x = e′1 in e2, S

′
p〉; T

E-LET-E

k′ · o ∈ Sp o 7→ C(. . .)@S ∈ H k ≤ k′

a; H; 〈let x = k · o in e2, Sp〉 → a; H; 〈[o/x]e2, Sp〉; ·
E-LET-V

◦; H; 〈atomic (e), Sp〉 → •; H; 〈inatomic (e), Sp〉; ·
E-ATOMIC-BEGIN

•; H; 〈inatomic (k · o), Sp〉 → ◦; H; 〈k · o, Sp〉; ·
E-ATOMIC-EXIT

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T
•; H; 〈inatomic (e), Sp〉 → •; H ′; 〈inatomic (e′), S ′p〉; T

E-INATOMIC

1.5 Preservation
1.5.1 Definition of Store Typing

Σ; ∆E ; uE ` H; Sp

The above judgement is true if:

1. Σ; ∆E ` Sp

2. Σ; ∆E ; Sp; uE ` H

12

Σ; ∆E ` Sp

Σ; ∆E1 ` Sp1 Σ; ∆E2 , . . . , ∆En ` Sp2 . . . Spn

Σ; ∆E1 , ∆E2 , . . . , ∆En ` Sp1, Sp2, . . . , Spn Σ; · ` ·

Σ; ∆E ` Sp

{o|k · o@$ ∈ ∆} ⊆ {o|k · o ∈ Sp} ∀k · o ∈ Sp ·; Σ; ∆ ` k′ · o@$⊗> ⊃ k′ ≤ k

Σ; ∆E ` Sp

Where the above rule ignores permissions on fields.

Σ; ∆E ; Sp; uE ` H

The above judgement is true if:

1. dom(Σ) = dom(H)

2. a; 〈∆E , uE〉 ok

3. ∀uE ∈ uE , uE = k · o@s ⊃ E = wt|k = immutable|unique|full and o 7→ C(. . .)@S ∈ H ,
where S = unpacked(s) if readonly(k) or S = unpacked(k) if writes(k). Also, o /∈ u ⊃
o is packed in H and invC(o, unique).

4. ∀o ∈ dom(Σ),∀∆ ∈ ∆ : if o 7→ C(f = k · o)@S ∈ H then

(a) (o : C) ∈ Σ

(b) Either S = unpacked(k) or S = unpacked(s) and [o/this]invC(s, immutable) is
satisfied by o’s fields, or S = s and [o/this]invC(s, unique) is satisfied by o’s fields.

(c) If ·; Σ; ∆ ` k · o@$⊗> then S ≤ $.

(d) If ·; Σ; ∆ ` k′i · o.fi@$ ⊗ >, then k′i ≤ ki (and o = ounp) and oi 7→ Co(. . .)@so ∈ H
and either S = unpacked(s), which implies readonly(k′i), or S = unpacked(k′). If
S = unpacked(s) then $ = so or $ =?.

(e) unique · o@s ∈ ∆, u ⊃ k · o@$ not in any other ∆ or u in ∆ or u. Also, full · o@s ∈
∆, u ⊃ full · o@$ and k · o@s not in any other ∆ or u in ∆ or u.

(f) immutable · o@s ∈ ∆, u ⊃ (k · o@$ ∈ ∆, u ⊃ k = immutable&($ = s|$ =?))

(g) Where ki = unique implies k · oi /∈ ∆, u, where ki = full implies full · oi@$ and
k · oi@s /∈ ∆, u and where ki = immutable and o 7→ C(. . .)@S, where S =
s|unpacked(s) implies k′ · oi@s′ /∈ ∆, u, where k′ 6= immutable|s′ 6= s.

13

1.5.2 Property Satisfied at Runtime

If

• o 7→ C(. . .)@s ⊆ H and k′ · o ∈ Sp

• ·|o : C|k · o@s ` P (an instance of Γ|Σ|∆ ` P)

• k ≤ k′

then H; Sp|k · o ` P

1.5.3 Lemma: Compositionality

If Σ; ∆E ; uE ` H; Sp and ∆i = ∆i1, ∆i2 then Σ; ∆E ′ ; uE ` H; Sp where ∆i is replaced with ∆i1

and and Σ; ∆E ′′ ; uE ` H; Sp where ∆i is replaced with ∆i2.
Proof: Immediate from the definition of store typing. We are always allowed to know less statically
about permissions than what is true at run-time, so long as what we know statically is consistent
with the run-time information.

1.5.4 Lemma: Packing Flag

If Γ; Σ; ∆; E ; u ` e : E \ ω|u′ then either (a) u = − and ω = ∅ or (b) u = k · t@s and ω contains
only fields of t.
Proof:(a) u = − is not a valid precondition for producing effects (using assignment or packing).
(b) By induction on typing derivations, using (a). Only one object can be unpacked at a time,
permission for unpacked object is needed for assignments and packing, and effect of unpack
expression is ∅.

1.5.5 Object Weight

• w(o, ∆) = Σk·o∈∆k, ignoring fields.

• w(o, u) = k, if u = k · o@s, and 0 otherwise.

• w(o, Sp) = Σk·o∈Spk

Where:
k + k′

is defined as:

• full + pure = full

• share + pure = share, share + share = share

• immutable + immutable = immutable

• pure + pure = pure

14

1.5.6 Preservation for Thread Pools

If

• a; H; T → a′; H ′; T ′

• ` a; H; T

Then there exists

• Σ′ ⊇ Σ

• ∆E
′

• uE
′

• ω′

such that

• Σ′; ∆
′
; ot; u′ ` e′ : E \ ω′|u′′

• Σ′; ∆E
′
; uE

′ ` H ′; Sp
′
, where T ′ = < e′, S ′p >

• correct-atomic(a’,T’)

• ∀o ∈ dom(H) : w(o, Sp) − w(o, ∆) − w(o, u) ≤ w(o, S ′p) − w(o, ∆′) − w(o, u′), for each
∆ in ∆, Sp in Sp, ∆ in ∆

′
, and Sp in Sp

′

Proof: By structural induction on the derivation of a; H; T → a′; H ′; T ′.

CASE TOP-LEVEL

` a; H; T Assumption
a; H; e→ a′; H ′; e′; T ′ where Ta||e||Tb

Inversion of only eval rule.
·; Σ; ∆E ; u ` H; Sp

Σ; ∆E ; u ` T

correct-atomic(a, T) where T = 〈e, Sp, 〉
Inversion of only typing rule. ·; Σ; ∆; ot; u ` e : E \ ω|u′′

From well-typed thread pool.
Invoke preservation for single threads.
Σ′,∆E ′ , uE

′ , ω′, a′, s.t.
·; Σ′; ∆′; ot; u′ ` e′ : E \ ω′|u′′

Single-threaded lemma.
If T 6= ·:

15

·; Σ′; ∆ot
t ; ot;− ` et : Et \ ωt|u′′′

Single-threaded lemma.
Σ; ∆E ; uE ` H; Sp Single-threaded lemma.
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′),
for each ∆ in ∆, Sp in Sp, ∆ in ∆

′
, and Sp in Sp

′

Single-threaded lemma.
not-active(T ′) by single-threaded lemma.

If a = ◦ implies not-active(T). If a′ = •, then by single-threaded lemma active(e′). If a′ = ◦ the
by single-threaded lemma not-active(e′). Thus, correct-atomic(a′, T ′).
If a = • and active(e) implies not-active(Ta||Tb). If a′ = • then by single-threaded lemma
active(e′). If a′ = ◦ then by the single-threaded lemma not-active(e′) Thus, correct-atomic(a′, T ′).
If a = • and not-active(e) implies active(Ta) or active(Tb). Only one may be active but neither
will change during e’s step, so a′ = •. Single-threaded lemma gives us not-active(e′) Thus,
correct-atomic(a′, T ′).

1.5.7 Preservation for Single Threads

If

• Σ; ∆; E ; u ` e : E \ ω|u′′

• Σ; ∆E ; uE ` H; Sp, where ∆E = (∆1, ∆∗1)E , (∆2, ∆∗2)E , . . . (∆n, ∆∗n)E , where ∆∗i contains
extra permissions that contain no temporary state information and no permissions for fields
in ω.

• a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T

• And exactly one of the following:

– a = ◦ and not-active(e)

– a = • and not-active(e)

– a = • and active(e)

Then there exists

• Σ′ ⊇ Σ

• u′ tagged with E , written uE
′ .

• ω′, where either (a) a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T unpacks an object o, i.e., uE = − and
uE

′
= k · o@s and ω′ − ω only mentions fields of o, or (b) ω′ ⊆ ω.

16

• ∆′ tagged with E , written ∆E
′ .

• Spt, ∆Et and uEt .

such that

• T is either et or ·

• ·; Σ′; ∆′; E ; u′ ` e′ : E \ ω′|u′′

• Σ; ∆E ; uE ` H; Sp, where ∆
′

and Sp
′

are ∆ and Sp with (∆′, ∆∗) swapped for (∆, ∆∗) and
S ′p swapped for Sp (and including Spt and ∆t if T = et).

• ∀o ∈ dom(H) : w(o, Sp) − w(o, ∆) − w(o, u) ≤ w(o, S ′p) − w(o, ∆′) − w(o, u′), for each
∆ in ∆, Sp in Sp, ∆ in ∆

′
, and Sp in Sp

′

• If T is et then ·; Σ′; ∆t; ot;− ` et : Et \ ω|−

• As well as all of the following, although exactly one will not be vaccuous:

– if a = a′ and not-active(e) then not-active(e′)

– if a = a′ and active(e) then active(e′)

– if a = ◦ and a′ = • and not-active(e) then active(e′)

– if a = • and a′ = ◦ and active(e) then not-active(e′)

Proof: By structural induction on the derivation of a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T .

CASE E-UNPACK-RW-WT

So e = unpackwt k · o@s in e2, e′ = e2, a = a′ = ◦, H ′ = H[o 7→ C(. . .)@unpacked(k)],
S ′p = Sp[(k′ − k) · o] and T = ·.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
writes(k) o 7→ C(. . .)@s ∈ H k′ · o ∈ Sp k ≤ k′

Inversion of only eval rule
o ∈ Σ ∆E = ∆wt = (∆wt

1 , ∆wt
2) = (k · o@s, ∆2)

·; Σ; ∆1 `wt k · o@s u = u′′ = − ω = ∅
·; Σ; ∆2, [o/this]invC(s, k); wt; k · o@s ` e2 : E \ ω2|− Inversion of only typing rule
Let Σ′ = Σ, ∆wt′ = ∆2, [o/this]invC(s, k), uwt′ = k · o@s, ω′ = ω2.
·; Σ′; ∆′; wt; u′ ` e′ : E \ ω′|− Substitution
Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆wt′ , ∆∗);` S ′p
We have removed k · o from ∆ and Sp, and added field perms to ∆ which are ignored.

Σ′; ∆′ ` S ′p

17

No other ∆ or Sp changed.
Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)
2.) ok ∆wt′ and uwt′ were and remain the only wt elements.
3.) ok For uwt′ , E = wt. o 7→ C(. . .)@unpacked(k) ∈ H ′ and writes(k).
4.a.) ok No change
4.b.) ok S = unpacked(k)
4.c.) ok No new stack perms in ∆′.
4.d.) ok 4.b. was true before step. Fields added to ∆′ are given by invC(s, k).
4.e.) ok 4.g. was true before step. Any unique or full fields cannot be in other ∆s and u.
4.f.) ok 4.g. was true before step. Other permissions to fields must agree with state.
4.g.) ok No fields altered.
o was unpacked. u = − and u′ = k · o@s.
ω′ − ω = ω′ only contains fields of o. Packing flag lemma
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

Net is unchanged. Permission moved from ∆ to u′.
T = ·
not-active(unpack) implies not-active(e2) Inversion of not-active.
active(unpack) cannot be derrived.
a = a′ and not-active(e) implies not-active(e′) Above

CASE E-UNPACK-RW
So e = unpackE k · o@s in e2, e′ = e2, a = a′, H ′ = H[o 7→ C(. . .)@unpacked(k)],

S ′p = Sp[(k′ − k) · o] and T = ·.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
writes(k) o 7→ C(. . .)@s ∈ H k′ · o ∈ Sp k ≤ k′ E = ot|emp

Inversion of only eval rule
o ∈ Σ ∆E = (∆1, ∆2)
·; Σ; ∆1 `E k · o@s u = u′′ = − ω = ∅
k = unique|full|immutable ·; Σ; ∆2, [o/this]invC(s, k); E ; k · o@s ` e2 : E \ ω2|−

Inversion of only typing rule
Let Σ′ = Σ, ∆E

′
= ∆2, [o/this]invC(s, k), uE

′
= k · o@s, ω′ = ω2.

·; Σ′; ∆′; E ; u′ ` e′ : E \ ω′|− Substitution
Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆E
′
, ∆∗);` S ′p

We have removed k · o from ∆ and Sp, and added field perms to ∆ which are ignored.
Σ′; ∆′ ` S ′p

No other ∆ or Sp changed.
Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)

18

2.) ok We have not changed the number of wt elements from before.
If E 6= wt, then not-wt(∆′) because invariants cannot contain pure and shared information.

3.) ok k = immutable|full|unique. o 7→ C(. . .)@unpacked(k) ∈ H ′ and writes(k).
4.a.) ok No change
4.b.) ok S = unpacked(k)
4.c.) ok No new stack perms in ∆′.
4.d.) ok 4.b. was true before step. Fields added to ∆′ are given by invC(s, k).
4.e.) ok 4.g. was true before step. Any unique or full fields cannot be in other ∆s and u.
4.f.) ok 4.g. was true before step. Other permissions to fields must agree with state.
4.g.) ok No fields altered.
o was unpacked. u = − and u′ = k · o@s.
ω′ − ω = ω′ only contains fields of o. packing flag lemma
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

Net is unchanged. Permission moved from ∆ to u′.
T = ·
not-active(unpack) implies not-active(e2) Inversion of not-active.
active(unpack) cannot be derrived.
a = a′ and not-active(e) implies not-active(e′) Above

CASE E-UNPACK-R
So e = unpackE k · o@s in e2, e′ = e2, a = a′, H ′ = H[o 7→ C(. . .)@unpacked(s)],

S ′p = Sp[(k′ − k) · o] and T = ·.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
E = ot | emp k′ · o ∈ Sp readonly(k) o 7→ C(. . .)@S ∈ H k ≤ k′

k = immutable ⊃ S = (unpacked(s)|s), k = pure ⊃ S = s
Inversion of only eval rule

·; Σ; (∆1, ∆2); E ;− ` unpackE k · o@s in e2 : E \ ∅|−
k = unique | full | immutable (o : C) ∈ Σ ·; Σ; ∆1 `E k · o@s
E = emp|ot ·; Σ; ∆2, [o/this]invC(s, k); E ; k · o@s ` e2 : E \ ω2|−

Inversion of only typing rule
Let Σ′ = Σ, ∆E

′
= ∆2, [o/this]invC(s, k), uE

′
= k · o@s, ω′ = ω2.

·; Σ′; ∆′; E ; u′ ` e′ : E \ ω′|− Substitution
Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆E
′
, ∆∗);` S ′p

We have removed k · o from ∆ and Sp, and added field perms to ∆ which are ignored.
Σ′; ∆′ ` S ′p

No other ∆ or Sp changed.
Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)
2.) ok We have not changed the number of wt elements from before.

19

If E 6= wt, then not-wt(∆′) because invariants cannot contain pure and shared information.
3.) ok k = immutable|full|unique. o 7→ C(. . .)@unpacked(k) ∈ H ′ and writes(k).
4.a.) ok No change
4.b.) ok Before step, either S = unpacked(s) and invariant holds

by this rule, or S = s and invariant held by this rule.
Fields have not changed.

4.c.) ok No new stack perms in ∆′.
4.d.) ok 4.b. was true before step. Fields added to ∆′ are given by invC(s, k).
4.e.) ok 4.g. was true before step. Any unique or full fields cannot be in other ∆s and u.
4.f.) ok 4.g. was true before step. Other permissions to fields must agree with state.
4.g.) ok No fields altered.
o was unpacked. u = − and u′ = k · o@s.
ω′ − ω = ω′ only contains fields of o. Packing Flag lemma
∆′ does not contain any fields in ω − ω′ ω − ω′ = ∅
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

Net is unchanged. Permission moved from ∆ to u′.
T = ·
not-active(unpack) implies not-active(e2) Inversion of not-active.
active(unpack) cannot be derrived.
a = a′ and not-active(e) implies not-active(e′) Above

CASE E-UNPACK-R-WT

So e = unpackwt k · o@s in e2, e′ = e2, a = a′, H ′ = H[o 7→ C(. . .)@unpacked(s)],
S ′p = Sp[(k′ − k) · o] and T = ·.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
k′ · o ∈ Sp readonly(k) o 7→ C(. . .)@S ∈ H k ≤ k′

k = immutable ⊃ S = (unpacked(s)|s), k = pure ⊃ S = s
Inversion of only evaluation rule.

·; Σ; (∆1, ∆2); wt;− ` unpackwt k · o@s in e′ : E \ ∅|−
(o : C) ∈ Σ ·; Σ; ∆1 `wt k · o@s ·; Σ; ∆2, [o/this]invC(s, k); wt; k · o@s ` e′ : E \ ω2|−

Only typing rule and its inversion.
Let Σ′ = Σ, ∆wt′ = ∆2, [o/this]invC(s, k), uwt′ = k · o@s, ω′ = ω2.
·; Σ′; ∆′; E ; u′ ` e′ : E \ ω′|− Substitution
Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆wt′ , ∆∗);` S ′p
We have removed k · o from ∆ and Sp, and added field perms to ∆ which are ignored.

Σ′; ∆′ ` S ′p
No other ∆ or Sp changed.

Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)

20

2.) ok Still the only wt, no need to prove not-active.
3.) ok E = wt.
4.a.) ok No change
4.b.) ok Before step, either S = unpacked(s) and invariant holds

by this rule, or S = s and invariant held by this rule.
Fields have not changed.

4.c.) ok No new stack perms in ∆′.
4.d.) ok 4.b. was true before step. Fields added to ∆′ are given by invC(s, k).
4.e.) ok 4.g. was true before step. Any unique or full fields cannot be in other ∆s and u.
4.f.) ok 4.g. was true before step. Other permissions to fields must agree with state.
4.g.) ok No fields altered.
o was unpacked. u = − and u′ = k · o@s.
ω′ − ω = ω′ only contains fields of o. Packing Flag lemma
∆′ does not contain any fields in ω − ω′ ω − ω′ = ∅
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

Net is unchanged. Permission moved from ∆ to u′.
T = ·
not-active(unpack) implies not-active(e2) Inversion of not-active.
active(unpack) cannot be derrived.
a = a′ and not-active(e) implies not-active(e′) Above

CASE E-PACK-R
So e = pack o to s in e2, e′ = e2, a = a′, H ′ = H[o 7→ C(. . .)@s], S ′p = Sp[(k + ko) · o]

and T = ·.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
invC(s) satisfied by o’s fields
ko · o ∈ Sp o 7→ C(f = k · o)@unpacked(s) ∈ H

Inversion of only evaluation rule
o ∈ Σ ∆E = (∆1, ∆2)
Σ; ∆1 `E [o/this]invC(s, k)
Σ; k · o@s `E k · o@$

·; Σ; ∆2, k · o@$; E ;− ` e2 : E \ {l.f}|−
No temporary permissions for o.f in ∆2

Inversion of only typing rule
Let Σ′ = Σ, DE

′
= ∆2, k · o@$ uE

′
= − ω′ = ∅

·; ∆′; E ; u′ ` e′ : E \ ω′|− Substitution
Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆E
′
, ∆∗);` S ′p

k added back to ∆, Sp Σ′; ∆′ ` S ′p No other ∆ or Sp changed.
1.) ok No change to dom(Σ) or dom(H)

21

2.) ok We have not added a wt that was not previously there.
If E 6= wt, not-wt(∆E ′

) by inversion of Σ; ∆′ `E k · o@$.
3.) ok

We have only removed a permission from uE . This o is packed and invC(o, unique) from above.
4.a.) ok No change
4.b.) ok
For only modified o, S = s and invariant satisfied from assumption and 4.d being true before step.
4.c.) ok Only one new permission added to ∆, and S = s.
4.d.) ok We have only removed fields from ∆.
4.e.) ok True before step. Can be no other full or uniques to u, now in ∆′.
4.f.) ok True before step. u, now in ∆, must be consistent.
4.g.) ok From 4.e. and 4.f before step.
ω′ = ∅ ⊂ ω
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

Net is unchanged. Permission moved from u to ∆′.
T = ·
not-active(pack) implies not-active(e2) Inversion of not-active.
active(pack) cannot be derrived.
a = a′ and not-active(e) implies not-active(e′) Above

CASE E-PACK-RW
So e = pack o to s in e2, e′ = e2, a = a′, H ′ = H[o 7→ C(. . .)@s], S ′p = Sp[(k + ko) · o]

and T = ·.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
o 7→ C(. . .)@unpacked(k) ∈ H ko · o ∈ Sp invC(s) satisfied by o’s fields

Inversion of only eval rule
o ∈ Σ ∆E = (∆1, ∆2)
Σ; ∆1 `E [o/this]invC(s, k)
Σ; k · o@s `E k · o@$

·; Σ; ∆2, k · o@$; E ;− ` e2 : E \ {l.f}|−
No temporary permissions for o.f in ∆2

Inversion of only typing rule
Let Σ′ = Σ, DE

′
= ∆2, k · o@$ uE

′
= − ω′ = ∅

·; ∆′; E ; u′ ` e′ : E \ ω′|− Substitution
Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆E
′
, ∆∗);` S ′p

k added back to ∆, Sp Σ′; ∆′ ` S ′p No other ∆ or Sp changed.
Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)
2.) ok We have not added a wt that was not previously there.

22

If E 6= wt, not-wt(∆E ′
) by inversion of Σ; ∆′ `E k · o@$.

3.) ok
We have only removed a permission from uE . This o is packed and invC(o, unique) from above.
4.a.) ok No change
4.b.) ok
For only modified o, S = s and invariant satisfied from assumption and 4.d being true before step.
4.c.) ok Only one new permission added to ∆, and S = s.
4.d.) ok We have only removed fields from ∆.
4.e.) ok True before step. Can be no other full or uniques to u, now in ∆′.
4.f.) ok True before step. u, now in ∆, must be consistent.
4.g.) ok From 4.e. and 4.f before step.
ω′ = ∅ ⊂ ω
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

Net is unchanged. Permission moved from u to ∆′.
T = ·
not-active(pack) implies not-active(e2) Inversion of not-active.
active(pack) cannot be derrived.
a = a′ and not-active(e) implies not-active(e′) Above

CASE E-ASSIGN

So e = o1.f := k·o2, e′ = k′·o′, a = a′, H ′ = H[o1 7→ C(. . . , f = k·o2, . . .)@unpacked(k′′)],
S ′p = Sp[(k2 − k) · o2], k′ · o′ and T = ·.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
k1 · o1 ∈ Sp

o1 7→ C(. . . , f = k′ · o′, . . .)@unpacked(k′′) ∈ H
k2 · o2 ∈ Sp o2 7→ C(. . .)@S2 ∈ H

Inversion of only eval rule
∆E = (∆1, ∆2) ω = {oi.f}
localFields(C ′′) = f : C (o′ : C ′) ∈ Σ writes(k′)
·; Σ; ∆1 `E k · o : ∃x : Ci.P
·; Σ; ∆2 `E [o′.fi/x

′]P ′

Inversion of only typing rule
Let Σ′ = Σ, ∆E

′
= [o′/x′]P ′ ⊗ [oi.f/x]P uE

′
= uE = k′ · o′@s′ ω′ = ∅

·; Σ′; ∆′; E ; u′ ` e′ : E \ ω′|u′′ By rule T-LOC. Must show Σ; ∆E ; uE ` H; Sp

∆′ = [oi.f/o2]([o′/oi.f]∆)) From above.
Σ′; (∆wt′ , ∆∗);` S ′p

k′ · o′ went into both ∆′, as subst. for field permission and S ′p.
Field permissions inserted, which are ignored.

Σ′; ∆′ ` S ′p
No other ∆ or Sp changed.

23

Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)
2.) ok We have not changed the number of wt elements from before.
The permissions added to ∆′ were cleansed, by the inverse of transaction-aware linear judgment.

3.) ok uE unchanged.
4.a.) ok No change
4.b.) ok S = unpacked(k)
4.c.) ok From 4.d. true before step.
4.d.) ok From 4.c. true before step.
4.e.) ok From 4.g. true before step.
4.f.) ok From 4.g. true before step.
4.g.) ok From 4.d,e,f. true before step.
ω′ =⊃ ω = {o1.f} ∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

k · o2 and k′ · o′ move between field and stack.
T = ·
a′ = a and only not-active(e) can be derrived.

not-active rules for field.
not-active(e′) not-active rules for loc.

CASE E-CALL

So e = k · o.m(k · o), e′ = [o/this][o/f]em, H ′ = H ′, Sp = Sp, a′ = a,

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
mbody(C, m) = x.em mtype(C, m) = ∀x : C.P (E

H; Sp|k · o, k · o ` [o/this][o/x]P
Inversion only eval rule

·; Σ; ∆; E ;− ` k · o.m(k · o) : ∃x : C.P ′r \ ∅|−
(o : C) ∈ Σ o : C ⊆ Σ

·; Σ; ∆ `E [o/this][o/f]P mtype(C, m) = ∀x : C.P (∃x : C.Pr

forgetE(Pr) = P ′r
Only typing rule and its inversion.

x : C, this : C; ·; P ; wt;− ` em : ∃x : C.Pr \ ∅|−
x : C, this : C; ·; P ; ot;− ` em : ∃x : C.P ′′r \ ∅|−

Inversion of M ok
E = wt implies Pr = P ′r
E 6= wt implies P ′′r = P ′r

Inversion of forget
·; Σ′; ∆′; E ; u′ ` [o/this][o/f]em : E \ ω′|u′′

Above and substituion.
Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

No changes

24

∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)
No changes

a′ = a and not-active(e) Only notactive can be derrived for call.
not-active(e′) Well formed method body cannot be active.

CASE E-SPAWN

So e = spawn (k ·o.m(k · o)), H ′ = H ′, Sp
′
= Sp,Sp2 with Sp1, immutable ·od@Sd replacing

Sp.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
mbody(C, m) = x.em mtype(C, m) = ∀x : C.P (E

H; Sp2|k · o, k · o ` [o/this][o/x]P
Inversion of only eval rule

o : C ∈ Σ o : C ∈ Σ mtype(C, m) = ∀x : C.P (E

·; Σ; ∆ot `ot [o/this][o/f]P
Inversion of only typing rule

Let e′ = immutable · od, T = 〈[o/this][o/f]em, Sp2〉, Σ′ = Σ, ∆ot′ = immutable · od@Sd,
∆ot

t = ∆, uot
t = −, uot′ = −

·; Σ′; ∆t; ot;− ` et : Et \ ∅|−
x : C, this : C; ·; P ; ot;− ` em : Et \ ∅|− Inversion of mtype.
·; Σ′; ∆′; ot;− ` immutable · od : ∃ : Cd.immutable · od@Sd

Always true of od, which is implicitly in all ∆.
Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆ot′ , ∆∗);` S ′p Only one permission in ∆′ and we added it to S ′p.
Σ′; ∆ot

t ;` Sp2 From above
Σ′; ∆′ ` S ′p No other ∆ or Sp changed.
Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)
2.) okNew ∆s are tagged with ot. ∆′ on has immutable objects and ∆t is clean, inverse of TALJ.
3.) ok New us are both −.
4.a.) ok No change
4.b.) ok No states or fields changed.
4.c.) ok Nothing new in ∆s w.r.t. the heap.
4.d.) ok Nothing new in ∆s w.r.t. the heap.
4.e.) ok Nothing new in ∆s w.r.t. the heap or u.
4.f.) ok Special default object, od, is always in state sd.
4.g.) ok No fields modified.
ω′ ⊆ ω ω′ = ω = ∅
ωt ⊆ ω ωt = ω = ∅
∆′ contains no permissions for fields in ∅
∆t contains no permissions for fields in ∅

25

∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p ∪ Stp)− w(o, ∆′, ∆t)− w(o, u′, ut)
Net is unchanged. immutable · od@sd added to S ′p and ∆′

a′ = a and not-active(e) not-active rule for Spawn.
not-active(e′) not-active rule for od.
not-active(et) Property of well-typed method body.

CASE E-READ-R
So e = k · o.fi, e′ = k · o′, T = ·, a′ = a, H ′ = H[o 7→ C(. . . , fi = (k′ − k) ·

o, . . .)@unpacked(s′′)], S ′p = Sp, (k · o′).

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
k = pure | immutable o 7→ C(. . . , fi = k′ · o′)@unpacked(s′′) ∈ H

Inversion of only eval rule
·; Σ; ∆; E ; ku · o@Su ` k · o.fi : ∃x : Ti.[x/fi]P \ ∅|ku · o@su

readonly(ku) implies readonly(k) ·; Σ; ∆ `E P localFields(C) = f : C
Only typing rule and its inversion

Let Σ′ = Σ, uE
′
= uE , ∆E

′
= [o′/o.fi]P , ω′ = ω = ∅.

·; Σ′; ∆′; E ′; u′ ` k · o′ : E \ ω′|u′
Rule T-LOC.

Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆E
′
, ∆∗);` S ′p ∆′ only has permissions for o′, this object was added to Sp.

Σ′; ∆′ ` S ′p Σ′; ∆′ ` S ′p No other ∆ or Sp changed.
Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)
2.) ok We have not added a wt that was not previously there.

If E 6= wt, not-wt(∆E ′
) by inversion of Σ; ∆′ `E k · o@$.

3.) ok u′ has not changed.
4.a.) ok No change
4.b.) ok By inversion of − on permissions and invC(s, immutable)
4.c.) ok States are correct by invC(s, immutable) of o’s fields.
4.d.) ok We have only removed field permissions from ∆.
4.e.) ok There can be no full or unique perm in P after downgrading.
4.f.) ok From 4.g. true before step.
4.g.) ok True by inversion of subtraction on permissions.
ω′ ⊆ ω ω′ = ω = ∅
∆′ contains no permissions for fields in ∅
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

Net unchanged. k · o′ added to Sp and ∆.
T = ·
a′ = a and only not-active(e) can be derrived. not-active rule for field reads.
Only not-active(e′) can be derrived. not-active rule for location reads.

26

CASE E-READ-RW
So e = k · o.fi, e′ = k · o′, T = ·, a′ = a, H ′ = H[o 7→ C(. . . , fi = (k′ − k) ·

o, . . .)@unpacked(k′′)], S ′p = Sp, (k · o′).

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
k ≤ k’ o 7→ C(. . . , fi = k′ · o′)@unpacked(k′′) ∈ H

Inversion of only eval rule.
·; Σ; ∆ `E P localFields(C) = f : C
·; Σ; ∆; E ; ku · o@Su ` k · o.fi : ∃x : Ti.[x/fi]P \ ∅|ku · o@su

Inversion of only typing rule.
Let Σ′ = Σ, uE

′
= uE , ∆E

′
= [o′/o.fi]P , ω′ = ω = ∅.

·; Σ′; ∆′; E ′; u′ ` k · o′ : E \ ω′|u′
Rule T-LOC.

Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆E
′
, ∆∗);` S ′p ∆′ only has permissions for o′, this object was added to Sp.

Σ′; ∆′ ` S ′p No other ∆ or Sp changed.
Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok No change to dom(Σ) or dom(H)
2.) ok We have not added a wt that was not previously there.

If E 6= wt, not-wt(∆E ′
) by inversion of Σ; ∆′ `E k · o@$.

3.) ok u′ has not changed.
4.a.) ok No change
4.b.) ok S = unpacked(k)
4.c.) ok 4.d.) was true before step.
4.d.) ok We have only removed field permissions from ∆.
4.e.) ok 4.g.) was true before step.
4.f.) ok 4.g.) was true before step.
4.g.) ok True by inversion of subtraction on permissions.
ω′ ⊆ ω ω′ = ω = ∅
∆′ contains no permissions for fields in ∅
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

Net unchanged. k · o′ added to Sp and ∆.
T = ·
a′ = a and only not-active(e) can be derrived. not-active rule for field reads.
Only not-active(e′) can be derrived. not-active rule for location reads.

CASE E-INATOMIC

So e = inatomic (e1), e′ = inatomic (e′1), a′ = a, H ′ = H ′ from I.H., S ′p = S ′p from
I.H., ω′ = ω′ from I.H.

27

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
a; H; 〈e1, Sp〉 → a′; H ′; 〈e′1, S ′p〉; T

Inversion of only eval rule
·; Σ; ∆; E ; u ` inatomic (e1) : ∃x : C.P ′ \ ω|u′
·; Σ; ∆; wt; u ` e1 : ∃x : C.P \ ω|u′ forgetE(P) = P ′

Inversion of only typing rule
Apply induction hypothesis.
Σ; ∆E ; uE ` H; Sp I.H.
T ok I.H.
ω′ ok I.H.
a′ = a and active(inatomic (e1)) active rule for inatomic .
active(e′) active rule for inatomic .

CASE E-ATOMIC-EXIT

So e = inatomic (k · o), e′ = k · o, S ′p = Sp, H ′ = H , a′ = ◦.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆; E ; u ` inatomic (e) : ∃x : C.P ′ \ ω|u′′
·; Σ; ∆; wt; u ` e : ∃x : C.P \ ω|u′′ forgetE(P) = P ′

Only typing rule and its inverse. Let Σ′ = Σ, ω′ = ω
Case: E = wt

Let ∆wt′ = ∆, uwt.
·; Σ′; ∆′; wt; u′ ` k · o : ∃X : C.P \ ω|u′′

By sustitution, and P’=P when E = wt
Tag for u and ∆ did not change.
〈∆E , uE〉 ok Above

Case: E 6= wt
Let ∆E = P ′, uE = u.
·; Σ′; ∆′; E ; u′ ` k · o : ∃X : C.P ′ \ ω|u′′

Rules T-LOC

∆E contains no share or pure perms. inv. forget.
uE contains no share or pure permissions.

Unpacking share or pure requires E = wt
〈∆E , uE〉 ok Above
Heap cond 3 satisfied. Above

Σ; ∆E ; uE ` H; Sp

Rest of heap unchanged. T = · a′ = ◦ 6= • = a, active(e) Active rule for inatomic
not-active(e′) Only derivable rule for k · o

28

CASE E-ATOMIC

So e = atomic (e1), e′ = inatomic (e1), H ′ = H , S ′p = Sp, a′ = •, ω′ = ω.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆; E ; u ` atomic (e1) : ∃x : C.P ′ \ ω|u′′
·; Σ; ∆; wt; u ` e1 : ∃x : C.P \ ω|u′′ forgetE(P) = P ′

only typing rule and its inversion. Let Σ′ = Σ, u′ = u, ∆′ = ∆, ω′ = ω.
·; Σ′; ∆′; E ` e′ : ∃x : C.P \ ω′|u′′

By rule T-INATOMIC. Let u′ and ∆′ be tagged with wt.
〈∆E , uE〉 ok

a = ◦ implies no u or ∆ tagged with wt before step.
Σ; ∆E ; uE ` H; Sp

No other changes to heap.
a′ = ◦ 6= • = a. Given not-active(e).
active(e′) active rule for inatomic .

CASE E-NEW

So e = new C(k · o), e′ = unique · on, H ′ = H, on 7→ C(f = k · o)@s, S ′p = (Sp −
k · o), unique · on, a′ = a.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
H; Sp ` [o/f]P init(C) = 〈∃f : C.P, s〉

Inversion of only evaluation rule
·; Σ; ∆; E ; u ` new C(k · o) : ∃x : C.unique · x@s \ ∅|u
·; Σ; ∆ `E [o/f]P o : C ⊆ Σ init(C) = 〈∃f : C.P, s〉

Only typing rule and its inversion.
Let Σ′ = Σ, on : C, uE

′
= u, ∆E

′
= unique · on@s, where E tag is the same as before step,

ω′ = ω = ∅.
·; Σ′; ∆′; E ; u′ ` unique · on : ∃x : C.unique · x@s

By rule T-LOC

Must show Σ; ∆E ; uE ` H; Sp

Σ′; (∆E
′
, ∆∗);` S ′p

We removed k · o from both Sp and ∆ and added unique · on@s to both.
Σ′; ∆′ ` S ′p

No other ∆ or Sp changed.
Must show Σ′; ∆E ′ ; S ′p; uE ′ ` H ′

1.) ok Added on to both.
2.) ok We have not changed E tagging. Only new permission is unique, so invariant holds, if nec.
3.) ok on is packed. invC holds b/c inverse of init and runtime proof of P .

29

4.a.) ok o : C added to both.
4.b.) ok S = s for on and invariant holds from above.
4.c.) ok We know on@s in ∆′ and H ′ b/c we added them.
4.d.) ok No fields added to ∆.
4.e.) ok True b/c on /∈ dom(Σ) until now.
4.f.) ok None added.
4.g.) ok Fields were all in ∆ before step, therefore by 4.e and 4.f property now holds for fields.
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

k · o removed from S ′p and ∆′.
T = ·
a′ = a and only not-active(e) can be derrived. inv on not-active rule.
not-active(e′) not-active rule for locations.

CASE E-LET-E
So e = let x = e1 in e2, e′ = let x = e′1 in e2.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
a; H; 〈e1, Sp〉 → a′; H ′; 〈e′1, S ′p〉; T Inversion of only eval rule
∆E = (∆1, ∆2) ·; Σ; ∆1; E ; u ` e1 : ∃x : C.P \ ω1|u2

Σ; ∆2, P `E P ′

x : C; Σ; P ′; E ; u2 ` e2 : E \ ω2|u′′
Inversion of only typing rule

Σ; ∆E ; uE ` H; Sp where ∆E has ∆1 instead of ∆.
Compositionality

Apply induction hypothesis where (∆2, ∆∗) is the additional linear context.
Σ′; ∆

′
; u′ ` H ′; Sp

′

∆
′
is the same as ∆ except ∆ is now ∆′1, ∆2, ∆∗. I.H.

Gives us Σ′ ⊇ Σ. uE
′ and ω′1

I.H.
Either (a) u = − and u′ = k · o@s and ω1-ω′1 only contains fields of o or (b) ω′1 ⊇ ω1.

I.H.
·; Σ′; ∆1; E ; u′ ` e′1 : ∃x : C.P \ ω′1|u2

I.H.
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

I.H. Fractions in ∆2 unchanged.
T ok

I.H.
SUBCASE: u = − and u′ = k · o@s and ω′1 − ω1 only contains fields of o.

∆2, ∆∗ do not contain permissions for fields of o.
Definition of well-typed store.

∆2, ∆∗ do not contain permissions for fields in ω′1 ω′1 − ω1 contains only fields of o

30

·; Σ′; ∆′; E ; u′ ` e′ : E \ ω′|u′′
By rule T-LET

SUBCASE: ω′1 ⊇ ω1

∆2, ∆∗ do not contain permissions for fields in ω′1
ω′1 ⊇ ω1

·; Σ′; ∆′; E ; u′ ` e′ : E \ ω′|u′′
By rule T-LET

If a = a′ and active(e), then active(e1), not-active(e2) Inversion active
active(e1) implies active(e′1) Induction
active(e′1) and not-active(e2) imply active(e′) Active rule, Let
If a = a′ and not-active(e) then not-active(e1) and not-active(e2) Inversion not-active(e)
a = a′ and not-active(e1) implies not-active(e′1) Induction
not-active(e′1) and not-active(e2) imply not-active(e′) Not-active rule, Let
If a = ◦ and a′ = •, then not-active(e1) and active(e′1) Induction
a = ◦ implies not-active(e) Assumption
not-active(e) imples not-active(e2) Inversion, not-active Let
active(e′1) and not-active(e2) imply active(e′) Active rule, Let
If a = • and a′ = ◦ then active(e1) and not-active(e1) Induction
a = • implies either active(e) or not-active(e) Assumption
Given active(e1), not-active(e) impossible Definition of active for Let
active(e) Above
active(e) implies not-active(e2) Active rule, Let
not-active(e′1) and not-active(e2 implies not-active(e′) Not active rule, Let.

CASE E-LET-V
So e = let x = k · o in e2, e′ = [o/x]e2, H ′ = H,S ′p = Sp, a′ = a.

·; Σ; ∆; E ; u ` e : E \ ω|u′′ Assumption
Σ; ∆E ; uE ` H; Sp Assumption
k′ · o ∈ Sp o 7→ C(. . .)@S ∈ H k ≤ k′

Inversion of only eval rule.
·; Σ; (∆1, ∆2); E ; u ` let x = e1 in e2 : E \ ω1 ∪ ω2|u′
Σ; ∆2, P `E P ′

·; Σ; ∆1; E ; u ` e1 : ∃x : T.P \ ω1|u2 x : C; Σ; P ′; E ; u2 ` e2 : Eω2|u′
No permissions for eff1 in ∆2

Only typing rule and its inversion.
Let Σ′ = Σ, ∆E = P ′, uE = u, ω′ = ω. ·; Σ′; ∆′; E ; u′ ` e2 : E \ ω1|u2

Substitution
Must show Σ; ∆E ; uE ` H; Sp

No change at all except forgetting permissions in ∆.
∀o ∈ dom(H) : w(o, Sp)− w(o, ∆)− w(o, u) ≤ w(o, S ′p)− w(o, ∆′)− w(o, u′)

No changes
T = ·

31

a′ = a.
not-active(e) No active rule for locations, let rule.
not-active(e2) notactive Let rule.

1.6 Progress
1.6.1 Top-Level Progress

If ` a; H; T
Then there exists either:

• v such that T =< v, Sp >, or

• a′; H ′; T ′ such that a; H; T → a′; H ′; T ′

Proof: By structural induction on the derivation of ` a; H; T
CASE T-TOP-LEVEL

` a; H; T Asssumed
correct-atomic(a, T) Inversion of above
SUBCASE: a = ◦

Every ei in 〈ole, Sp〉 is not-active(ei). Inversion of correct-atomic
SUBCASE: Every e in e is a value

Proof satisfied
SUBCASE: ∃ei in e s.t. ei not a value

ei must take a step Single-threaded lemma
Global thread pool steps rule E-THREAD-POOL

SUBCASE: a = •
There is a ei in e such that active(ei).

Inversion of correct-atomic
ei must take a step Single-threaded lemma
Global thread pool steps rule E-THREAD-POOL

1.6.2 Thread-Level Progress

If

• Σ; ∆E ; uE ` H; Sp

Then the following three items must hold true:

1. If ·; Σ; ∆; E ; u ` e : E \ ω|u and active(e), then ∃e′, a′, H ′, T, S ′p such that •; H; 〈e, Sp〉 →
a′; H ′; 〈e′, S ′p〉; T , where ∆ and Sp come from ∆ and Sp respectively and are associated.

32

2. If ·; Σ; ∆; E ; u ` e : E \ ω|u, and not-active(e), then e is a value, or ∃e′, a′, H ′, T, S ′p such
that ◦; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T , where ∆ and Sp come from ∆ and Sp respectively
and are associated.

Proof: By structural induction on the derivation of Γ; Σ; ∆; E ; u ` e : E \ ω|u′′

CASE T-LOC k · o is already a value.
CASE T-CALL

So e = k · o.m(k · o).

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆; E ;− ` k · o.m(k·) : ∃x : C.P ′r|− Assumption
(o : C) ∈ Σ o : C ⊆ Σ

·; Σ; ∆ `E [o/this][o/f]P mtype(C, m) = ∀x : C.P (∃x : C.Pr

forgetE(Pr) = P ′r
Inversion of typing rule. o, o ∈ dom(H) Heap condition 1
o, o ∈ dom(Sp) Σ; ∆ ` Sp

{k′ · o, k · o} ⊆ Sp Above
k ≤ k′, k ≤ k′ Σ; ∆ ` Sp

H,Sp|k · o, k · o ` [o/this][o/f]P
Σ; ∆ ` Sp and heap well-typed

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′
By rule E-CALL

not-active(e) No rule for active Call.
Rule works for a = ◦

CASE T-SPAWN

So e = spawn (k · o.m(k · o)).

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆; ot;− ` spawn (k · o.m(k · o)) : ∃ : Cd.immutable · od@sd \ ∅|−

Assumption
o : C ∈ Σ o : C ∈ Σ mtype(C, m) = ∀x : C.P (E

·; Σ; ∆ot `ot [o/this][o/f]P
Inversion of only typing rule.

o, o ∈ dom(H) Heap condition 1
o, o ∈ dom(Sp) Σ; ∆ ` Sp

{k′ · o, k · o} ⊆ Sp Above
k ≤ k′, k ≤ k′ Σ; ∆ ` Sp

H,Sp|k · o, k · o ` [o/this][o/f]P
Σ; ∆ ` Sp and heap well-typed

33

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′
By rule E-SPAWN

not-active(e) No rule for active Spawn.
Rule works for a = ◦

CASE T-UNPACK-WT

So e = unpackwt k · o@s in e2.

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; (∆, ∆′); wt;− ` unpackwt k · o@s in e′ : E \ ∅|− Assumption
(o : C) ∈ Σ o : C ⊆ Σ

·; Σ; ∆ `E [o/this][o/f]P mtype(C, m) = ∀x : C.P (∃x : C.Pr

forgetE(Pr) = P ′r
Inversion of only typing rule

k′ · o ∈ Sp Σ; ∆ ` Sp

o ∈ dom(H) Σ; ∆ ` Sp

k ≤ k′ From Σ; ∆ ` Sp

SUBCASE: readonly(k)
k = immutable implies o 7→ C(. . .)@s ∈ H or o 7→ C(. . .)@unpacked(s) ∈ H

From heap condition 4.c and ≤. k = pure implies o 7→ C(. . .)@s ∈ H
From heap conditions 4.c, 2 and 3.

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′
By rule E-UNPACK-R-WT

Only not-active(e) can be derrived, and we can step when a = ◦.
SUBCASE: writes(k)

k = share|full|unique implies o 7→ C(. . .)@s ∈ H
Heap condition 4.c.

k′ ∈ Sp k ≤ k′ Σ; ∆ ` Sp

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′
By rule E-UNPACK-RW-WT

Only not-active(e) can be derrived, and we can step when a = ◦.

CASE T-UNPACK

So e = unpackE k · o@s in e2.

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; (∆, ∆′); E ;− ` unpackE k · o@s in e′ : E \ ∅|−

Assumption
k = unique | full | immutable (o : C) ∈ Σ ·; Σ; ∆ `E k · o@s
E = emp|ot ·; Σ; ∆′, [o/this]invC(s, k); E ; k · o@s ` e′ : E \ ω|−

Inversion of only typing rule

34

k′ · o ∈ Sp Σ; ∆ ` Sp

o ∈ dom(H) Σ; ∆ ` Sp

k ≤ k′ From Σ; ∆ ` Sp

SUBCASE: readonly(k)
k = immutable implies o 7→ C(. . .)@s ∈ H or o 7→ C(. . .)@unpacked(s) ∈ H

From heap condition 4.c and ≤.
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-UNPACK-R
Only not-active(e) can be derrived, and we can step when a = ◦.
SUBCASE: writes(k)

k = full|unique implies o 7→ C(. . .)@s ∈ H
Heap condition 4.c.

k′ ∈ Sp k ≤ k′ Σ; ∆ ` Sp

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′
By rule E-UNPACK-RW

Only not-active(e) can be derrived, and we can step when a = ◦.

CASE T-PACK

So e = pack o to s′ in e2.

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; (∆, ∆′); E ; k · o@s ` pack o to s′ in e′ : E \ {of}|− Assumption
forgetE(k · o@s) = k · o@$
k = immutable | pure implies s = s′ ·; Σ; ∆′, k · o@$; E ;− ` e′ : E \ ∅|−
localFields(C) = f : C (o : C) ∈ Σ ·; Σ; ∆ `E [o/this]invC(s, k)

No temporary permissions for o.f in ∆′

Inversion of only typing rule.
SUBCASE: writes(k)

o 7→ C(. . .)@unpacked(k) ∈ H Heap condition 3
o’s fields satisfy [o/this]invC(s, k)

Above and heap condition 4.d.
k′ · o ∈ Sp Σ; ∆ ` Sp

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′
By rule E-PACK-RW

Only not-active(e) can be derrived.
We can step when a = ◦.

SUBCASE: readonly(k)
o 7→ C(. . .)@unpacked(s) ∈ H Heap condition 3
o’s fields satisfy [o/this]invC(s, k)

Above and heap condition 4.d.
k′ · o ∈ Sp Σ; ∆ ` Sp

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

35

By rule E-PACK-R
Only not-active(e) can be derrived.
We can step when a = ◦.

CASE T-ATOMIC

e = atomic (e1)

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆; E ; u ` atomic (e1) : ∃x : C.P ′ \ ω|u′ Assumption
·; Σ; ∆; wt; u ` e1 : ∃x : C.P \ ω|u′ forgetE(P) = P ′

Inversion of only typing rule
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-ATOMIC-BEGIN

Only active(e) can be derrived.
e can step when e = ◦

CASE T-INATOMIC

e = inatomic (e1)

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆; E ; u ` inatomic (e) : ∃x : C.P ′ \ ω|u′ Assumption
·; Σ; ∆; wt; u ` e : ∃x : C.P \ ω|u′ forgetE(P) = P ′

Inversion of typing rule.
SUBCASE: e1 is a value It is only possible to derrive active(e).

When a = •, we can step.
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-ATOMIC-EXIT

SUBCASE: e1 is not a value.
e2 can take a step Induction hypothesis
It is only possible to derrive active(e).
When a = •, we can step.
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-INATOMIC

CASE T-READ

So e = k · o.fi.

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆; E ; u ` k · o : ∃x : C.[x/o]P \ ∅|u Assumption
readonly(ku) implies readonly(k) ·; Σ; ∆ `E P localFields(C) = f : C

Inversion of typing rule

36

o 7→ C(. . . , fi = ki · oi, . . .)@S
Heap condition 3

k ≤ ki Heap condition 4.d
SUBCASE: writes(ku)

S = unpacked(ku) Heap condition 3
Only not-active(e) can be derrived.
We can step when a = ◦
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-READ-RW
SUBCASE: readonly(ku)

S = unpacked(s) Heap condition 3
k = immutable|pure Above
Only not-active(e) can be derrived.
We can step when a = ◦
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-READ-R

CASE T-LET

So e = let x = e1 in e2.

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; (∆1, ∆2); E ; u ` let x = e1 in e2 : E \ ω1 ∪ ω2|u′ Assumption
Σ; ∆2, P `E P ′

·; Σ; ∆1; E ; u ` e1 : ∃x : T.P \ ω1|u2 x : C; Σ; P ′; E ; u2 ` e2 : Eω2|u′
No permissions for ω1 in ∆2

Inversion of typing rule
SUBCASE: e1 is a value.

e1 = k · o No other values.
k′ · o ∈ Sp k ≤ k′

By inversion of T-LOC and Σ; ∆ ` Sp

o ∈ H Heap condition 1
Only not-active(e) possible when e1 is a value.
We can step when a = ◦.
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-LET-V
SUBCASE: e1 is not a value.

e1 is well-typed Above
e1 must step Induction hypothesis
If active(e) then active(e1) active for Let
e1 must step when a = • I.H
If not-active(e) then not-active(e1) not-active for Let
e1 must step when a = ◦ I.H

37

a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′
By rule E-LET-E

CASE T-NEW

So e = new C(k · o).

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆; E ; u ` new C(k · o) : ∃x : C.unique · x@s \ ∅|u

Assumption
·; Σ; ∆ `E [o/f]P o : C ⊆ Σ init(C) = 〈∃f : C.P, s〉

Inversion of typing rule
H; Sp ` [o/f]P

Heap condition 4.c.
k · o ∈ Sp Σ; ∆ ` Sp

k ≤ k′ Σ; ∆ ` Sp

We can only derrive not-active(e)
We can step when a = ◦
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-NEW-E

CASE T-ASSIGN

Σ; ∆E ; uE ` H; Sp Assumption
·; Σ; ∆, ∆′; E ; k′ · o′@s′ ` o′.f ′i := k · o : ∃x′ : Ci.P

′ ⊗ [o′.fi/x]P \ {oi.f}|k′ · o′@s′

Assumption
localFields(C ′′) = f : C (o′ : C ′) ∈ Σ writes(k′)
·; Σ; ∆ `E k · o : ∃x : Ci.P ·; Σ; ∆′ `E [o′.fi/x

′]P ′

Inversion of typing rule.
o 7→ C(. . .)@unpacked(k′) ∈ H Heap condition 3
k′i ∈ Sp Heap condition 4.d
ki ≤ ki Heap condition 4.d
Only not-active(e) can be derrived.
We can step when a = ◦
a; H; 〈e, Sp〉 → a′; H ′; 〈e′, S ′p〉; T ′

By rule E-ASSIGN-E

References
[1] Beckman, N., Bierhoff, K., Aldrich, J. Verifying Correct Usage of Atomic Blocks and Types-

tate. OOPSLA ‘08, Nashville, TN. October, 2008.

38

[2] Bierhoff, K., Aldrich, J. Modular Typestate Checking of Aliased Objects. OOPSLA ‘07, Mon-
treal, Canada. October, 2007.

[3] Moore, K., Grossman, D. High-Level Small-Step Operational Semantics for Transactions.
POPL ‘08, San Francisco, CA. January, 2008.

39

	1 Proof of Soundness
	1.1 Proof Language
	1.2 Judgment Forms
	1.3 Thread Pool and Expression Typing
	1.4 Dynamic Semantics
	1.5 Preservation
	1.5.1 Definition of Store Typing
	1.5.2 Property Satisfied at Runtime
	1.5.3 Lemma: Compositionality
	1.5.4 Lemma: Packing Flag
	1.5.5 Object Weight
	1.5.6 Preservation for Thread Pools
	1.5.7 Preservation for Single Threads

	1.6 Progress
	1.6.1 Top-Level Progress
	1.6.2 Thread-Level Progress

