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Abstract 
 

The identification and management of work dependencies is a fundamental challenge in software 
development organizations. This paper argues that modularization, the traditional technique intended to 
reduce interdependencies among components of a system, is not a sufficient representation of work 
dependencies in the context of software development. We build on the idea of congruence proposed by 
Cataldo et al [10] to examine the relationship between the structure of technical and work dependencies 
and their impact on software development productivity. Our empirical evaluation of the congruence 
framework showed that when developers’ coordination patterns are congruent with their coordination 
needs, the resolution time of modification requests was, on average, reduced by 32%. Those findings 
highlight the importance of identifying the “right” set of product dependencies that drive the coordination 
requirements among software developers. 
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1. Introduction 

A growing body of work on coordination in software development suggests that the 
identification and management of work dependencies is a fundamental challenge in software 
development organizations, particularly in those that are geographically distributed (some 
examples are: [11][16][25][28]). The modular product design literature has extensively examined 
issues associated with dependencies, for instance, the work on design structure matrices to find 
alternative structures that reduce dependencies among the various components of the system [19, 
43]. Those research streams could inform the design of software development organizations so 
they are better able to identify and manage work dependencies. However, we first need to 
understand the assumptions of the different theoretical views and how those assumptions relate 
to the characteristics of software development tasks.  
This study argues that modularization is a necessary but not a sufficient mechanism for handling 
the work dependencies that emerge in the process of developing software systems. We build on 
the concept of congruence introduced by Cataldo et al [10] to examine how different types of 
technical dependencies related to work dependencies among software developers and, ultimately, 
how those work dependencies impact development productivity. Our empirical evaluation of the 
congruence framework illustrated the importance of understanding the dynamic nature of 
software development. Identifying the “right” set of product1 dependencies that determine the 
relevant work dependencies and coordinating accordingly has significant impact on reducing the 
resolution time of software modification requests. The analyses showed traditional software 
dependencies, such as syntactic relationships, tend to capture a relatively stable view of product 
dependencies that is not representative of the dynamism in product dependencies that emerges as 
software systems are implemented. On the other hand, logical dependencies provide a more 
accurate representation of the most relevant product dependencies affecting the development 
effort. The rest of this paper is organized as follows. We first discuss the theoretical background 
related to the relationship between technical and work dependencies in software development 
projects. Next, we present the socio-technical congruence framework followed by a description 
of data, measures and models used in the empirical analysis. Finally, we discuss the results, their 
implications and future work. 

 

2. The Nature of Software Development and Modular Design 

The idea of dividing a complex task into smaller manageable units is consistent with the 
reductionist view [41, 44] which is well developed in the product development literature [19]. 
Projects, typically, have a general description of the system’s components and their relationships 
or a more detailed report such as architectural or high-level design document. Managers use the 
information in those documents to divide the development effort into work items that are 
assigned to specific development teams minimizing the interdependencies among those teams 
[13, 19, 43]. In the system design literature, it has long been speculated that the structure of a 
product inevitably resembles the structure of the organization that designs it [13].  In Conway’s 
original formulation, he reasoned that coordinating product design decisions requires 
communication among the engineers making those decisions.  If everyone needs to talk to 
everyone, the communication overhead does not scale well for projects of any size.  Therefore, 
                                                 
1 The terms “technical dependency” and “product dependency” are used interchangeably through out this paper. 
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products must be split into components, with limited technical dependencies among them, and 
each component assigned to a single team.  Conway [13] proposed that the component structure 
and organizational structure stand in a homomorphic relation, in that more than one component 
can be assigned to a team, but a component must be assigned to a single team. 

A similar argument has been proposed in the strategic management literature. Baldwin and Clark 
[2] argued that modularization makes complexity manageable, enables parallel work and 
tolerates uncertainty. The design decisions are hidden within the modules which communicate 
through standard interfaces, then, modularization adds value by allowing independent 
experimentation of modules and substitution [2]. Moreover, Baldwin and Clark [2] argued that a 
modular design structure leads to an equivalent modular task structure. Then, their view aligns 
with Conway’s idea that one or more modules can be assigned to one organizational unit and 
work can be conducted almost independently of others. In the context of software engineering, a 
similar approach was first articulated by Parnas [39] as modular software design. Parnas [39] 
argued that modules ought to be considered work items instead of just a collection of 
subprograms. Then, development work can continue independently and in parallel across 
different modules. Parnas’ views also coincide with the theoretical arguments from product 
design and strategic management literatures. 

All three theoretical views rely on two interrelated assumptions. The authors assumed a simple 
and obvious relationship between product modularization and task modularization. Hence, 
reducing the technical interdependencies among the modules of a system, the modularization 
theories argued, task interdependencies are reduced, which consequently, reduces the need for 
communication among work groups. Unfortunately, there are several problems with these 
assumptions when applied in the context of software development. First, existing software 
modularization approaches only use a subset of the technical dependencies, typically syntactic 
relationships, of a software system [23]. Then, potentially relevant work dependencies might be 
ignored. Secondly, recent empirical evidence indicates that the relationship between product 
structure and task structure is not as simple as previously assumed. Moreover, the theorized 
similarity between product and task structures diminishes over time [10]. 

Thirdly, promoting minimal communication between teams responsible for interdependent 
modules is problematic. Recent studies suggest that minimal communication between teams, 
collocated or distributed, is detrimental to the success of projects. The product development 
literature argues that information hiding, which leads to minimal communication between teams, 
is an inevitable antecedent of variability in the evolution of projects resulting, typically, in 
integration problems [46]. In context of software development, de Souza and colleagues [17] 
found that information hiding led development teams to be unaware of others teams’ work 
resulting in coordination problems. Grinter and colleagues [25] reported similar findings for 
geographically distributed software development projects. The authors highlighted that the main 
consequence of reducing the teams’ need to communicate was the increased costs because 
problems were discovered too late in the development process. Those findings do not suggest 
that modularization is not useful. They highlight the need to supplement it with coordination 
mechanisms to allow developers to deal correctly with the assumptions that are not captured in 
the specification of the dependencies. 

Finally, another important problem associated with the assumptions of modular design is the role 
of change which can be characterized along three interrelated dimensions: the evolution of 
requirements, the stability of the interfaces between software modules and the dynamic nature of 
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technical dependencies that arise as design and implementation decisions are made. First, it is 
widely accepted among software engineering researchers and practitioners that the requirements 
of the system become known over time or those requirements change as time progresses [35]. In 
some cases, the changes in the requirements result in minor alterations of specific development 
tasks. In other instances, new features have to be added or features under development are 
eliminated. These events introduce a certain level of dynamism in software development that 
challenges the determinism and stability assumptions of the modularization approach. 

The second dimension of change in software development is the nature and stability of the 
interfaces between software modules. The interfaces between software modules might differ in 
complexity and little is known about its impact on coordination among development teams. 
However, recent research has started to examine those issues. Cataldo et al [11] presented case 
studies where even simple interfaces between modules developed by remote teams create 
coordination breakdown and integration problems. The authors reported that semantic 
dependencies were even more problematic and they argued that the developers’ ability to 
identify and manage dependencies was hindered by several inter-related factors such as 
development processes, organizational attributes (e.g. structure, management style) and 
uncertainty of the interfaces. In relation to the stability of interfaces, de Souza [16] encountered, 
in a field study of a large software project, that interfaces tended to change often and their design 
details tended to be incomplete, increasing the likelihood of future changes to them and leading 
to serious integration problems. This lack of stability represents a constant challenge for software 
development organizations in terms of coordination and, ultimately, productivity and quality. 

Finally, the third dimension of change is the dynamic nature of finer-grain dependencies that 
arise as part of the development of a piece of code. The act of developing a software system 
consists of a collection of design decisions, either at the architectural level or at the 
implementation level. Those design decisions introduce constraints that might establish new 
dependencies among the various parts of the system, modify existing ones or even eliminate 
dependencies. The changes in dependencies can generate new coordination requirements that are 
quite difficult to identify a priori, particularly when they are not obvious, or as a project matures 
over time [27, 42]. Failure to discover the changes in coordination needs might have a profound 
impact on the quality of the product [15], on productivity [28] and even on the projects’ overall 
design [4]. In addition, little is known about the specific impact of the various types of 
dependencies that arise among parts of a software system such as explicit versus implicit 
dependencies or syntactic versus logical dependencies.  

The previous paragraphs highlight the limitations of the product modularization approach which 
does not necessarily yield an equivalent task modularization structure. The nature of software 
development such as the attributes and stability of interfaces among modules and the dynamics 
of technical dependencies, are a constant challenge for software development organizations, 
particularly, for those geographically distributed. Mechanisms to complement the modular 
design approach are required to maintain appropriate levels of coordination among development 
groups. This leads us to the following research questions: 

RQ1: How relevant task dependencies can be identified from technical dependencies? 

RQ2: What is the impact of those task dependencies on development productivity? 
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3. Socio-Technical Congruence 

Product development endeavors involve two fundamental elements: a technical and a social 
component. The technical properties of the product to develop, the processes, the tasks, and the 
technology employed in the development effort constitute the technical component. The second 
element is composed by the organization and the individuals involved in the development 
process, their attitudes and behaviors. In other words, a product development project can be 
thought of a socio-technical system where the two components, the technical and the social 
elements, need to be aligned in order to have a successful project. Then, a key issue is to 
understand how we can examine the relationship between those two, the technical and the social, 
dimensions. Two lines of work are particularly relevant in this context. First, the idea of “fit” 
from the organizational theory literature provides the conceptual framework. Fit is defined as the 
match between a particular organizational design and the organization’s ability to carry out a task 
[6]. This line of research has, traditionally, focused on two factors: the temporal dependencies 
among tasks that are assigned to organizational groups and the formal organizational structure as 
a means of communication and coordination [9, 36]. The second relevant line of work is the 
research on dynamic analysis of social networks which provides an innovative approach, called 
the meta-matrix, to examine the dynamic co-evolution of relationships among multiple types of 
entities such as resources, tasks, and individuals [8, 33]. Building on those two streams of 
research, we define socio-technical congruence as the match between the coordination 
requirements established by the dependencies among tasks and the actual coordination activities 
carried out by the engineers. In other words, the concept of congruence has two components. 
First, the coordination needs determined by the technical dimension of the socio-technical 
system and, secondly, the coordination activities carried out by the organization representing the 
social dimension. The following paragraphs discuss in detail the mathematical framework to 
measure the two components of congruence originally introduced by Cataldo and colleagues 
[10].  

3.1 Identification of Coordination Requirements  
In order to identify which set of individuals should be coordinating their activities, we need to 
represent two sets of relationships. One set is given by which individuals are working on which 
tasks. The relationships or dependencies among tasks represent the second element. In the 
framework proposed in this section, assignments of individuals to particular work items is be 
represented by a people by task matrix where a one in cell ij indicates that worker i is assigned to 
task j. We will refer to this matrix as Task Assignments (TA). Following the same approach, the 
set of dependencies among tasks can be represented as a square matrix where a cell ij (or cell ji) 
indicates that task i and task j are interdependent. We will refer to this matrix as Task 
Dependencies (TD).  Now, if the Task Assignment and Task Dependencies matrices are 
multiplied, a people by task matrix is obtained that represents the set of tasks a particular worker 
should be aware of, given the work items the person is responsible for and the dependencies of 
those work items with other tasks.  Finally, a representation of the coordination requirements 
among the different workers is obtained by multiplying the product of the Task Assignment and 
Task Dependencies matrices by the transpose of the Task Assignment matrix. This product results 
in a people by people matrix where a cell ij (or cell ji) indicates the extent to which person i 
works on tasks that share dependencies with the tasks worked on by person j. In other words, the 
resulting matrix represents the Coordination Requirements or the extent to which each pair of 
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people needs to coordinate their work.  Formally, the Coordination Requirements matrix is 
determined by the following product: 

CR = TA * TD * TA
T          (Eq. 1) 

where, TA is the Task Assignments matrix, TD is the Task Dependencies matrix and TA
T is the 

transpose of the Task Assignments matrix. This framework provides alternatives ways of 
thinking about coordination requirements among workers depending on what type of data is used 
to populate the Task Dependencies matrix. Past work had focused on temporal relationships 
between tasks, for instance, task A needs to be done before task B (e.g. [36]). In the context of 
software development, such way of thinking about task dependencies is quite common. 
Alternative views could be based on high level roles in the development organizations (e.g. 
integration and testing depends on development) or task dependencies based on product 
dependencies in the actual software code (e.g. function calls between modules). The focus on 
this paper is on the work dependencies structure-product dependency structure relationship 
because, as discussed earlier, the difficulty of identifying and managing certain types of product 
dependencies is a critical factor in coordination success and ultimately in productivity and 
quality. 

3.2 Computing Congruence  
Given a particular Coordination Requirements matrix constructed from relating product 
dependencies to work dependencies, we can compare it to an Actual Coordination (CA) matrix 
that represents the interactions workers engaged in through different means of coordination. 
Then, given a particular set of dependencies among tasks, congruence is the proportion of 
coordination activities that actually occurred (given by the Actual Coordination matrix) relative 
to the total number of coordination activities that should have taken place (given by the 
Coordination Requirements matrix). For example, if the Coordination Requirements matrix 
shows that 10 pairs should coordinate, and of these, 5 show Actual Coordination interactions, 
then the congruence is 0.5. Formally, we define congruence as follows: 

Diff (CR, CA) = card { diffij | crij > 0 & caij > 0 } 

|CR| = card { crij > 0 } 

Then, we have: 

Congruence (CR, CA) = Diff (CR, CA) / |CR|        (Eq. 2) 

In sum, the value of congruence belongs to the [0,1] interval that represents the proportion of 
coordination requirements that were satisfied through some type of coordination activity or 
mechanism. The measure of socio-technical congruence proposed here provides a new way of 
thinking about coordination, particularly, by providing a fine-grain level of analysis of different 
types of product dependencies and allowing us to examine how coordination needs are impacted 
by them. 

3.3 Two Approaches to Identify Technical Dependencies in Software Systems  
The measure of congruence presented in the previous section relies on a representation of 
dependency that drives the engineers’ coordination needs. In this section, we discuss two 
approaches to identify technical dependencies from a software system.  
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The traditional view of software dependency has its origins in compiler optimizations and they 
focus on control and dataflow relationships [30]. This approach extracts relational information 
between specific units of analysis such as statements, functions or methods, as well as modules, 
typically, from the source code of a system or from an intermediate representation of the 
software code such as bytecodes or abstract syntax trees. These relationships can represent either 
a data-related dependency (e.g. a particular data structure modified by a function and used in 
another function) or a functional dependency (e.g. method A calls method B). This type of 
dependency analysis techniques has been widely used in a research context to examine the 
relationship between coupling and quality of a software system (see for instance [31, 40]). 
Syntactic dependency analyses are also used by software developers to improve their 
understanding of programs and the linkages among the various parts of those programs [37]. 

One characteristic of these relational structures such as a call-graph, and for that matter other 
graphs such as inheritance and data dependencies graphs, is that they provide a particular view of 
the system-wide structure. Moreover, the accuracy of the information represented in these graphs 
depends on the ability of the tool used to identify all the appropriate types of syntactic 
relationships allowed by the underlying programming language [37]. 

An alternative mechanism of identifying dependencies consists of examining the set of source 
code files that are modified together as part of a modification request. This approach is 
equivalent to the approach proposed by Gall and colleagues [22] in the software evolution 
literature to identify logical dependencies between modules. A source code file can be viewed as 
representing a “bundle” of technical decisions. If a modification request can be implemented by 
changing only one file, it provides no evidence of any dependencies among files.  However, 
when a modification request requires changes to more than one file, it can be assumed that 
decisions about the change to one file in a modification request depend in some way on the 
decisions made about changes to the other files involved in implementing the modification 
request.  Dependencies could range from syntactic, for instance a function call between files, to 
more complex semantic dependencies where the computations done in one files affects the 
behavior of another files. This approach would represent a better estimate for semantic 
dependencies relative to call graphs or data graphs because it does not rely on language 
constructs to establish the dependency relationship between source code files. The remainder of 
this paper refers to this approach to identify dependencies as the “Files Changed Together” 
(FCT) method. We will refer to the method to identify dependencies based on syntactic 
functional and data relationships described earlier as the CGRAPH method. 

 

4. Method 

4.1 Description of the Data 
We collected data from a software development project of a large distributed system produced by 
a company that operates in the data storage industry. The data covered a period of 39 months of 
development activity and the first four releases of the product. The company had one hundred 
and fourteen developers grouped into eight development teams distributed across three 
development locations. All the developers worked full time on the project during the time period 
covered by the data. Software developers communicated and coordinated using various means. 
Opportunities for interaction existed when the developers worked in the same formal team or 
when they were located in the same development site. Developers also used tools such as 
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Internet Relay Chat (IRC) and a modification request (MR) tracking system to interact and 
coordinate their work. For instance, the MR tracking system kept track of the progress of the 
task, comments and observations made by developers as well as additional material used in the 
development process. We collected communication and coordination information from those two 
systems. Finally, we also collected demographic data about the developers such as their 
programming and domain experience and level of formal education. 

The unit of analysis is the modification request which corresponds to a development work item 
associated with a defect or a new feature. A total of 2375 multi-team modification requests were 
identified. Those modification requests belonged to the first four releases of the product and 
involved more than one software development team. The decision to focus on such modification 
requests is based on a growing body of research which shows that difficulties in communication 
and coordination breakdowns are recurring problems in software development [15, 28, 34], 
particularly when the work items are geographically distributed [28] and the task involves more 
than one organizational team [15, 20, 34]. 

4.2 Descriptions of Measures 
The literature has identified a number of factors that affect development time and, consequently, 
the resolution of modification requests. Some of those factors are related to characteristics of the 
task such as the amount of code to be written and the priority of the task, whereas other factors 
capture relevant attributes of the individual developers and the teams that participate in the 
development task. In the following paragraphs, we first describe our dependent variable, 
resolution time of modification requests. Secondly, the procedures used to construct the 
measures of congruence are described. Finally, we describe a number of control measures that 
were also included in the statistical models. 

Productivity Measure: Our measure of productivity is Resolution Time which captures the time 
it took to resolve a particular modification request, and it accounts for all the time that the MR 
was assigned to developers. The modification requests reports contain records of when the MR 
was opened and resolved as well as every time the MR was assigned to a particular developer. 
Given this information, we can compute the amount of time that developers were actually 
working on the task. 

Congruence Measures: The data for building the Coordination Requirements matrix (equation 
1) was extracted from several data sources such as the modification request reports, the version 
control system as well as the software code itself. A modification request provides the 
“developer i modified file j” relationship that constitutes our Task Assignment matrix. Since, two 
different methods for identifying dependencies were used, FCT and CGRAPH, we constructed 
two different Task Dependency matrices. In the case of the FCT method, the cell cij of the Task 
Dependency matrix represents the number of times a particular pair of source code files changed 
together as part of the work associated with a modification request. A moving window of 19 
months was used to capture a representative set of logical dependencies among the software 
modules. The resolution date of the modification request was paired with the end of the time 
window used to collect the task dependency information. In the case of the CGRAPH method, 
the cell cij of the Task Dependency matrix represents the number of data/function/method 
references from file i into file j. The syntactic relationships were extracted from the system’s 
source code using the C-REX tool [26]. We constructed quarterly call-graphs of the entire 
system. The data from the quarter associated with the resolution date of the modification request 
was used to collect the task dependency information. Given the Task Assignments and Task 
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Dependencies matrices just described, we computed as described in equation 1, two 
Coordination Requirement matrices, one based on the FCT and a second based on the CGRAPH 
method. 

In order to compute a measure of congruence, we also need to build the Actual Coordination 
matrix which represents the coordination activities that took place during the work associated 
with a modification request. These activities could take numerous forms and the communication 
and information exchanges could occurs over different means. Hence, four coordination paths 
were used to construct the Actual Coordination matrices. First, Structural Congruence captures 
the potential paths of communication and coordination that members of a formal team have 
through various mechanisms such as team meetings and other work-related activities. We built 
the actual coordination matrix where a coordination activity between engineers i and j exists if 
they belong to the same formal team. Geographical congruence, similarly to the case of 
organization structure, is built around the idea of potential paths of communication and 
coordination that exist when individuals work in the same physical location [1, 38]. Then, in 
terms of the matrix of coordination activities, engineers i and j have a linkage if they work in the 
same location. Higher levels of congruence would mean that the geographic location of people 
matches their coordination needs so that relatively little coordination is required across sites.  MR 
communication congruence considers an exchange of technical information between engineers i 
and j only when both i and j explicitly commented in the modification request report. Multiple 
modification requests might refer to the same problem and later be marked as duplicates of a 
particular modification request. All duplicates of the focal MR were also used to capture the 
interactions among developers.  Finally, IRC communication congruence was computed based 
on interaction between developers from the IRC logs. Three raters, blind to the research 
questions, examined the IRC logs corresponding to the period of time associated with each MR 
and established an interaction between engineers i and j if they made reference to the bug ID or 
to the task or problem represented by the MR in their conversations. In order to assess the 
reliability of the raters’ work, 10% of the MRs where coded by all raters. Comparisons of the 
obtained networks showed that 98.2% of the networks had the same set of nodes and edges. All 
four Actual Coordination matrices were symmetric. 

Control Measures: Past research has proposed several additional factors that impact 
development time [20, 28, 34]. We collected a number of control variables that capture attributes 
of the task, the individuals and the teams associated with the development work. Several task-
specific factors such as the temporal dependency among MRs, task priority and task re-
assignments could have an important effect on development time. Temporal Dependency was 
measured as the number of modification requests that the focal MR depends on in order for the 
task to be performed. Management prioritized the activities of the developer by using a scale 
from 1 to 5 in the modification request report where level 5 as the highest priority and level 1 as 
the lowest priority. This rating constituted our measure of priority of the MR. Task re-
assignment was measured as the number of times an MR was re-assigned to a different engineer 
or team. Re-assignment impacts resolution time because each new developer needs to build up 
contextual information about the task. In addition, MRs opened by customers could represent 
work items with higher importance consequently affecting the resolution time.  A dummy 
variable was used to indicate if the MR is associated with the service request from a customer. 
Multiple Locations is a binary variable that indicates whether the all the developers that worked 
on a particular MR were in the same geographical location (a value of 0) or were distributed 
across the development labs (a value of 1). Finally, the release variable identifies the release of 
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the product that the modification request is associated with. This variable could also be 
considered as a proxy for time to control for efficiencies that might develop over time and, 
consequently, affect the resolution time of the modification requests. 

The amount of code written or changed is a proxy for the actual amount of development work 
done. The change size was computed as the number of files that were modified as part of the 
change for the focal MR. Prior research [20] has used lines of code changed as a measure of the 
size of the modification; however, a comparative analysis of both measures showed equivalent 
results in the statistical model used in this study. Therefore, the results presented in this chapter 
are based on the measure computed from the number of files modified. The change size measure 
was highly skewed so a log transformation was applied to satisfy the normality requirements of 
the regression model used in our analysis. 

An experienced software engineer familiar with tools and programming languages can be 
substantially more productive than an inexperienced developer [5, 14, 15]. Furthermore, 
experience with the domain area and the technical characteristics of the application being 
developed help accelerate development time [15]. We used archival information as well as data 
from the software repositories to compute several individual level measures of experience. First, 
programming experience was computed as the average number of years of programming 
experience prior to joining the company of all the engineers involved in the modification request. 
Tenure was measured as the average number of months in the  company of  all the engineers that  
worked in the modification request at the time the  work  associated  with  the  MR  was  
completed.  Component experience was computed as the average number of times that the 
engineers responsible for the modification request have worked on the same files affected by the 
focal modification request. This measure was also log-transformed to satisfy normality 
requirements. Finally, Team load is a measure of the average work load of the teams responsible 
for the components associated with the modification request. This control variable was computed 
as the ratio of the average number of modification requests in open or assigned state over the 
total number of engineers in the groups involved in the focal modification request during the 
period of time the MR was in assigned state. 

4.3 Description of the Model 
Past research has found that linear [20, 29] and hierarchical linear [20, 34] models are 
appropriate techniques for examining the effects of different factors on development 
productivity. In this study, we examined the effect of congruence on resolution time using the 
following linear regression model: 

∑ +

+∑=

j
jiableControlVarj

i
iMeasureCongruenceieolutionTim

εδ

β

*

*Res
 

An examination of descriptive statistics and Q-Q plot indicated that several of the variables 
(Resolution Time, Chang Size and Component Experience) were highly skewed to the left. The 
log transformation provided the best approximation to a normal distribution. Table 1a 
summarizes the descriptive statistics of the dependent and control variables included in our 
model. Table 1b summarizes the descriptive statistics of the congruence measures computed 
using the FCT method. Table 1c presents the descriptive statistics for the congruence measures 
computed using the CGRAPH method. The analysis of the pair-wise correlations amongst the 
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variables in the model (Table 2) suggested no relevant collinearity problems. Only a small set of 
correlations were statistically significant but their levels did not exceed +/- 0.343.  

The measures of structural and geographical congruence could be affected by personnel turnover 
and mobility across teams. We examined archival data collected from the company and we 
determined a yearly turnover rate of only 3% and an inter-group mobility rate of less than 1%. 
The modification requests that involved individuals that left the company or changed group 
membership were eliminated from the analysis. However, an analysis including those 
modification requests showed results consistent with those reported in section 5. 

 

Table 1a: Descriptive Statistics for Dependent and Control Variables 

 Mean SD Min Max Skew Kurtosis 
Resolution Time (log)  3.260  1.236  0  6.490 -0.809  3.127 
Temporal Dependency  0.834  1.721  0  7  2.144  6.759 
Priority  3.388  1.111  1  5  0.115  1.694 
Re-assignment  1.457  1.599  0  6  0.481  1.605 
Customer MR  0.483  0.499  0  1  0.067  1.004 
Release  2.323  1.093  1  4  0.269  1.769 
Change Size (log)  1.163  1.781  0  4.741  0.302  4.005 
Team Load  9.104  2.938  1.016 58.800 -0.361  2.342 
Multiple Locations  0.779  0.414  0  1 -1.346  2.814 
Programming Exp.  4.429  3.654  2 22  1.074  4.462 
Tenure 23.921 17.107  0 76  0.175  1.685 
Component Exp.  (log)  3.051  0.958  0  5.601  -0.015  2.145 

 
Table 1b: Descriptive Statistics for Congruence Measures (FCT method) 

 Mean SD Min Max Skew Kurtosis 
Structural Cong.   0.663  0.217  0.156  0.995  -0.931  3.754 
Geographical Cong.  0.684  0.237  0.142  0.993  -0.863  3.201 
MR Cong.   0.567  0.283  0.070  0.982  -0.319  1.965 
IRC Cong.  0.599  0.274  0.079  0.982  -0.506  2.233 

 

Table 1c: Descriptive Statistics for Congruence Measures (CGRAPH method) 

 Mean SD Min Max Skew Kurtosis 
Structural Cong.   0.544  0.273   0.111  0.614 -0.322  1.849 
Geographical Cong.  0.571  0.266  0.193  0.967 -0.062  2.048 
MR Cong.   0.093  0.086  0.002  0.348  1.434  4.114 
IRC Cong.  0.133  0.142  0.001  0.313  1.324  3.448 
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Table 2: Pair-wise Correlations (N=2375, bold values are significant at p < 0.05). 
 

  1 2 3 4 5 6 
1 Temporal Dependency -      
2 Priority  0.341 -     
3 Re-assignment -0.013  0.029 -    
4 Customer MR  0.012 -0.031 -0.224 -   
5 Release  0.004  0.001  0.025 -0.019 -  
6 Change Size  0.113  0.332  0.031 -0.046  0.003 - 
7 Team Load -0.001 -0.029 -0.329  0.103 -0.008 -0.044 
8 Programming Exp.  0.314  0.343  0.033 -0.021 -0.015  0.218 
9 Tenure  0.243  0.023  0.009  0.001 -0.026 -0.216 
10 Component Exp. -0.043 -0.013  0.016 -0.001 -0.002 -0.122 
11 Multiple Locations -0.160 -0.013 -0.006  0.002  0.037  0.014 
12 Struct. Cong. (FCT) -0.030  0.022 -0.031  0.032 -0.015  0.049 
13 Geo. Cong. (FCT) -0.097 -0.035  0.008 -0.013  0.024 -0.008 
14 MR Cong. (FCT)  0.007 -0.014 -0.003 -0.032 -0.013 -0.001 
15 IRC Cong. (FCT) -0.019 -0.006  0.079 -0.129 -0.016 -0.021 
16 Struct. Cong. (CGR) -0.024 -0.001  0.124 -0.196  0.035  0.055 
17 Geo. Cong. (CGR)  0.004 -0.034  0.094 -0.064  0.002 -0.045 
18 MR Cong. (CGR)  0.007 -0.014 -0.003 -0.032 -0.012 -0.001 
19 IRC Cong. (CGR) -0.063  0.010  0.058 -0.051  0.039  0.013 

  7 8 9 10 11 12 
7 Team Load -      
8 Programming Exp. -0.012 -     
9 Tenure  0.011  0.266 -    
10 Component Exp.  0.018  0.161  0.245 -   
11 One Location  0.010  0.012 -0.022  0.041 -  
12 Struct. Cong. (FCT)  0.031 -0.021 -0.052 -0.038  0.049 - 
13 Geo. Cong. (FCT) -0.009 -0.005  0.003 -0.003  0.087  0.127 
14 MR Cong. (FCT) -0.062 -0.004 -0.009  0.007 -0.040  0.033 
15 IRC Cong. (FCT) -0.044 -0.003 -0.022 -0.011 -0.003  0.028 
16 Struct. Cong.(CGR) -0.062 -0.021 -0.053 -0.003  0.059  0.041 
17 Geo. Cong. (CGR) -0.085 -0.004 -0.016 -0.010  0.072  0.015 
18 MR Cong.(CGR) -0.051 -0.014 -0.093 -0.039 -0.021  0.032 
19 IRC Cong.(CGR) -0.029 -0.008  0.002  0.001 -0.008  0.021 

  13 14 15 16 17 18 
13 Geo. Cong. (FCT) -      
14 MR Cong. (FCT)  0.017 -     
15 IRC Cong. (FCT)  0.005  0.009 -    
16 Struct. Cong.(CGR)  0.009  0.009  0.027 -   
17 Geo. Cong. (CGR)  0.035  0.004  0.041  0.188 -  
18 MR Cong.(CGR)  0.032  0.039  0.001  0.021  0.044 - 
19 IRC Cong.(CGR)  0.003  0.002  0.014  0.064  0.073  0.019 

 

5. Results 

We performed several linear regression analyses to assess the effect of the congruence 
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measures on the resolution time of modification requests. As discussed in section 4, two different 
methods, FCT and CGRAPH, were used to identifying technical dependencies which resulted in 
two sets of congruence measures. We first discuss the results of the analyses done using the 
congruence measures based on the FCT method. Table 3 shows the results from the OLS 
regressions. Model I is a baseline regression model which only considers the control factors. 
Consistent with previous empirical work in software engineering, factors such as the size of the 
modification to the code, familiarity with the software components, and general programming 
experience are significant elements that affect resolution time of MRs [20, 28]. Task-specific 
characteristics such as temporal dependencies with other modification requests and the priority 
of the task are associated with an increase in development time. As it has been reported in 
previous research [20, 28], the results also show that when developers are geographically 
distributed, the amount of time required to resolve modification requests is likely to increase. 
The coefficients from model I also suggest that time, captured by the variable Release, had no 
statistically significant effect. Since the Release measure is in fact a categorical variable, we also 
examined its impact using two dichotomous variables to represent the four possible values. The 
results were identical to defining Release as an integer from 1 to 4 to represent the four releases 
of the product. 

Table 3: Effects on Resolution Time (FCT method) 
 

 Model  
I 

Model  
II 

Model  
III 

(Intercept)  4.81**  4.63**  4.48** 
Temporal Dependency  0.59**  0.59**  0.59** 
Priority -0.40** -0.41** -0.40** 
Re-assignment  0.01  0.01  0.01 
Customer MR  0.09  0.10  0.09 
Release -0.02 -0.02 -0.03 
Change Size (log)  0.31**  0.31**  0.31** 
Team Load -0.01 -0.01 -0.01 
Multiple Locations  0.13**  0.13**  0.13** 
Programming Experience -0.17** -0.17** -0.17** 
Tenure -0.01+ -0.01+ -0.01+ 
Component Experience (log) -0.07** -0.07** -0.07** 
Structural Congruence  -0.18* -0.14* 
Geographical Congruence  -0.02* -0.04* 
MR Congruence  -0.06* -0.05* 
IRC Congruence  -0.21* -0.21* 
Multiple Locations X MR Congruence    0.13 
Multiple Locations X IRC Congruence   -0.27* 
N 2375 2375 2375 
Adjusted R2 0.718 0.819 0.831 
(+ p < 0.10, * p < 0.05, ** p < 0.01) 

 

Model II introduces the measures of congruence in the analysis. The results show statistically 
significant effects on all the congruence measures computed using the FCT method.  The 
estimated coefficients of the congruence measures have negative values which are associated 
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with a reduction in resolution time. The results highlight the important role of congruence on 
task performance as well as the complementary nature of all communication paths. Structural 
congruence is associated with shorter development times suggesting that when coordination 
requirements are contained within a formal team and appropriate communication paths exists, 
task performance increases. Geographical congruence had a positive effect on resolution time, 
consistent with past research that argued distance has detrimental effects on communication (see 
[28] and [38] for reviews). Communication congruence based on the interactions amongst 
engineers through the MR reports as well as IRC were also statistically significant suggesting the 
usefulness of these tools in facilitating coordination among individuals that belong to different 
teams and could potentially be geographically distributed.  

Finally, model III includes several interaction factors to assess whether the role of congruence 
changes when the groups involved in a particular MR are geographically distributed. The results 
show a statistically significance impact only for the Multiple Locations X IRC term. The 
negative coefficient suggests that when developers are geographically distributed the impact of 
IRC congruence on resolution time is higher above and beyond the direct effect. 

Table 4: Effects on Resolution Time (CGRAPH method) 
 

 Model  
I 

Model 
IV 

Model 
V 

(Intercept)  4.81**  4.88**  4.81** 
Temporal Dependency  0.59**  0.59**  0.59** 
Priority -0.40** -0.40** -0.40** 
Re-assignment  0.01  0.03  0.01 
Customer MR  0.09  0.19  0.09 
Release -0.02 -0.02 -0.02 
Change Size (log)  0.31**  0.31**  0.31** 
Team Load -0.01 -0.01 -0.01 
Multiple Locations  0.13**  0.12**  0.13** 
Programming Experience -0.17** -0.17** -0.17** 
Tenure -0.01+ -0.01+ -0.01+ 
Component Experience (log) -0.07** -0.07** -0.07** 
Structural Congruence  -0.21+ -0.23+ 
Geographical Congruence  -0.11* -0.03* 
MR Congruence   0.41  0.48 
IRC Congruence  -0.01 -0.02 
Multiple Locations X MR Congruence    0.05 
Multiple Locations X IRC Congruence   -0.41 
N 2375 2375 2375 
Adjusted R2 0.718 0.731 0.722 
(+ p < 0.10, * p < 0.05, ** p < 0.01) 

 

Table 4 shows the results of our analysis obtained when the congruence measures are computed 
using the CGRAPH method for identifying technical dependencies. Model I is the same model 
reported in table 3. We observe in model IV that only geographical congruence is statistically 
significant and its coefficient is negative indicating a reduction in the resolution time as 



 
 

 15

congruence increases. Structural congruence was marginally significant. Finally, Model V shows 
that interaction terms were not statistically significant. In sum, these results suggest that the two 
dependency identification methods, FCT and CGRAPH, are capturing different sets of technical 
dependencies that impact the development tasks differently.  

 

6. Discussion 

This study has significant contributions to the software engineering and management of product 
development organizations literatures. First, the empirical evaluation of the congruence 
framework showed the importance of understanding the dynamic nature of software 
development. Identifying the “right” set of product dependencies that determine the relevant 
work dependencies and coordinating accordingly has significant impact on reducing the 
resolution time of modification requests. The analyses showed traditional software dependencies, 
such as syntactic relationships, tend to capture a relatively stable view of product dependencies 
that is not representative of the dynamism in product dependencies that emerges as software 
systems are implemented. On the other hand, logical dependencies provide a more accurate 
representation of the most relevant product dependencies in software development projects. The 
statistical analyses showed that when developers’ coordination patterns are congruent with their 
coordination needs, the resolution time of modification requests was, on average, reduced by 
32% when considering the collective effect of all four measures of congruence. Generalizing, the 
empirical examination of the congruence framework and coordination patterns showed the tight 
relationship between team design, coordination and performance providing an important 
contribution to the organizational literature. 

The view of coordination presented in this paper extends traditional conceptualizations of 
coordination by taking a fine-grain level of analysis to better examine the mismatches between 
dependencies and coordination activities. Those gaps could have major implications for the 
productivity and the quality of the output of product development organizations [15, 20, 28, 42] 
and for non-routine intellectual work more generally. Our empirical results suggest that our 
measure of socio-technical congruence represents a useful framework to examine how 
coordination needs that are not satisfied impact software development productivity. When the 
developers coordinate their task with the relevant set of workers, productivity increases. 
Individuals have difficulties identifying task interdependencies that are not obvious or explicit 
[42] and the developers’ ability to recognize dependencies diminish as coordination requirements 
change over time [27]. For these reasons, volatility in the coordination requirements represents 
an important obstacle for product development organizations, particularly, when work groups are 
geographically distributed. Collaborative tools and managerial techniques that utilize the 
congruence framework could play an important role in reducing the gap between recognized and 
actual interdependencies. 

It is also important to highlight some of the limitations of the work reported in this paper. First, 
the measures proposed as part of the congruence framework are contingent on assumptions about 
the software development processes used in the development organization as well as usage 
patterns of tools that assist the development effort such as defect tracking and version control 
systems. One key assumption is the possibility to identify (1) the set of source code files that 
were changed as part of a modification request and (2) the developers that made those changes. 
For instance, a policy of source code file ownership by particular developers could potentially 
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bias the congruence measures. Developers that own a particular source code might appear as 
participants in the development effort associated with a modification request, however, that 
might not be the case. In other cases, such as open source projects, the nature of the work in 
certain project is such that the information about which files changed together as part of a 
modification request is not easily reconstructible in a reliable way. The alternative approach of 
computing coordination requirements based on syntactic relationships also has its limitations. 
The method relies on tools that can reliably extract the dependency information among software 
modules for a specific programming language. More importantly, projects that use multiple 
programming languages will represent a challenge, particularly, in terms of determining 
syntactic dependencies that involve modules written in different programming languages.  

Another limitation of the work presented in this paper is a potential concern for external validity. 
Our analysis examined only one system with particular technical properties that might be 
conducive to support the results found by the analysis. However, the processes and tools used by 
the development organization are commonplace in the software industry. Moreover, the general 
technical characteristics of the system are similar to other types of distributed systems developed 
into products in the software industry. Hence, we think the results are generalizable, particularly, 
in the context of development organizations responsible for delivering complex software 
systems. 

6.1 Future Work 
6.1.1 Enhancing coordination needs awareness  
Collaboration, coordination, and task awareness tools are a natural application for the 
coordination requirements measure presented in this paper. Part of the research effort of the 
CSCW community has been on improving traditional tools, such as email and instant messaging, 
which have become an integral part of work in the vast majority of organizations [3, 45]. For 
instance, the coordination requirements measure could provide a way of identifying the email 
exchanges that are more relevant given the task interdependencies among individuals. This 
information would enable tools to present an enhanced task management experience by, for 
instance, prioritizing to-do-lists and generating reminders to respond to task-specific emails 
based on the coordination requirements. This email sorting approach could be thought as a task-
specific alternative to other social-based sorting techniques such as the one proposed by Fisher 
and colleagues [21]. A more recent set of tools, such as sidebars [7] and productivity assistants 
[24], would also benefit from the congruence framework. These types of tools focus on activity-
centric collaboration and, as argued by Geyer and colleagues [24], the majority of the tools 
assume user intervention in terms of deciding what type of information to make part of the 
sidebar. The congruence framework would provide an automatic mechanism to identify people 
of interest giving a particular set of task dependencies among the workers. 
In the context of large software development projects, identifying the appropriate person to 
interact with and coordinate interdependent activities is not a straightforward task. In fact, it is 
well established that software developers have serious difficulties identifying the right set of 
individuals to coordinate with [17, 25]. The coordination requirement measure provides a 
mechanism to augment awareness tools that provide real-time information regarding the likely 
set of workers that a particular individual might need to communicate with. For instance, 
integrated development environments, such as Eclipse [18] or Jazz [32], could use the 
coordination requirement information to recommend a dynamic “coordination buddy list” every 
time particular parts of the software are modified. In this way, the developer becomes aware of 
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the set of engineers that modified parts of the system that are interdependent with the one the 
developer is working on. The concept of the “buddy list” in communication and collaboration 
tools is not a new idea. However, the novel contribution is to construct the “buddy list” from 
accurate estimates of the set of individuals more likely to be relevant to a particular developer in 
relations to the work dependencies, information which is captured by the coordination 
requirements measure. 
6.1.2 Identification of coordination requirements in early stages of software projects 
The empirical examination of the congruence framework showed the relevance of matching 
coordination activity with the fine-grained coordination needs that emerge in the development of 
software systems. However, the measure of congruence, as computed in the study, relies on 
archival data to capture the information about product dependencies, task assignments as well as 
coordination activity carried out by the development organization. Our promising results 
highlight the importance of identifying potential coordination needs as early as possible in the 
development process in order to provide the development organization with the appropriate 
communication and coordination mechanisms. Certainly such a task is a challenging one. 
In early stages of a project, only architectural or high level design specifications of a system are 
available. Those documents by definition abstract a significant portion of the technical details of 
software systems in order to understand the overall attributes and relationships among the main 
components of a system. A higher level of abstraction could potentially hinder the identification 
of relevant technical dependencies and consequently, important coordination requirements. 
However, the use of standardized design and modeling languages, such as UML, might represent 
a way of overcoming these challenges. Researchers have proposed standard graphical 
representations of software architectures that capture different technical aspects of a software 
system [12]. Examples of those graphical representations are the module view and the 
components-and-connectors view. Then, one approach would be to construct a coordination 
view of the architectures that combines the product’s technical dependencies with relationships 
among the organizational units responsible for carrying out the development work. In order to 
generate such representations, methods of identifying relevant dependencies from the technically 
focused views of the architecture are to be devised. One potentially promising approach is to 
synthesize the dependencies represented in the various types of UML diagrams (e.g. class 
diagrams, sequence diagrams, collaboration diagrams, etc) into a single set of technical 
relationships among modules. Such a method could be able to identify logical relationships 
among parts of the systems which, as shown in this paper, are an important factor driving the 
work dependencies in software development organizations. 
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