

Socio-Technical Congruence: A Framework for Assessing the Impact

of Technical and Work Dependencies on Software Development

Marcelo Cataldo1, James D. Herbsleb2, Kathleen M. Carley2

March 2008
CMU-ISR-08-104

1 Research and Technology Center, Robert Bosch LLC, Pittsburgh, PA, USA
2 Institute for Software Research, Carnegie Mellon University, Pittsburgh, PA, USA

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The identification and management of work dependencies is a fundamental challenge in software
development organizations. This paper argues that modularization, the traditional technique intended to
reduce interdependencies among components of a system, is not a sufficient representation of work
dependencies in the context of software development. We build on the idea of congruence proposed by
Cataldo et al [10] to examine the relationship between the structure of technical and work dependencies
and their impact on software development productivity. Our empirical evaluation of the congruence
framework showed that when developers’ coordination patterns are congruent with their coordination
needs, the resolution time of modification requests was, on average, reduced by 32%. Those findings
highlight the importance of identifying the “right” set of product dependencies that drive the coordination
requirements among software developers.

Keywords: collaborative software development, coordination, software dependencies.

The research reported in this paper was supported by the National Science Foundation under Grant No. IIS-
0414698, Grant No. IIS-0534656 and Grant No. IGERT 9972762, by the U.S. Army Research Laboratory under
Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011, by the Office of Naval
Research (ONR N00014-06-1-0921) and by the Air Force Research Lab with Charles River Analytics SC060701.

 2

1. Introduction

A growing body of work on coordination in software development suggests that the
identification and management of work dependencies is a fundamental challenge in software
development organizations, particularly in those that are geographically distributed (some
examples are: [11][16][25][28]). The modular product design literature has extensively examined
issues associated with dependencies, for instance, the work on design structure matrices to find
alternative structures that reduce dependencies among the various components of the system [19,
43]. Those research streams could inform the design of software development organizations so
they are better able to identify and manage work dependencies. However, we first need to
understand the assumptions of the different theoretical views and how those assumptions relate
to the characteristics of software development tasks.
This study argues that modularization is a necessary but not a sufficient mechanism for handling
the work dependencies that emerge in the process of developing software systems. We build on
the concept of congruence introduced by Cataldo et al [10] to examine how different types of
technical dependencies related to work dependencies among software developers and, ultimately,
how those work dependencies impact development productivity. Our empirical evaluation of the
congruence framework illustrated the importance of understanding the dynamic nature of
software development. Identifying the “right” set of product1 dependencies that determine the
relevant work dependencies and coordinating accordingly has significant impact on reducing the
resolution time of software modification requests. The analyses showed traditional software
dependencies, such as syntactic relationships, tend to capture a relatively stable view of product
dependencies that is not representative of the dynamism in product dependencies that emerges as
software systems are implemented. On the other hand, logical dependencies provide a more
accurate representation of the most relevant product dependencies affecting the development
effort. The rest of this paper is organized as follows. We first discuss the theoretical background
related to the relationship between technical and work dependencies in software development
projects. Next, we present the socio-technical congruence framework followed by a description
of data, measures and models used in the empirical analysis. Finally, we discuss the results, their
implications and future work.

2. The Nature of Software Development and Modular Design

The idea of dividing a complex task into smaller manageable units is consistent with the
reductionist view [41, 44] which is well developed in the product development literature [19].
Projects, typically, have a general description of the system’s components and their relationships
or a more detailed report such as architectural or high-level design document. Managers use the
information in those documents to divide the development effort into work items that are
assigned to specific development teams minimizing the interdependencies among those teams
[13, 19, 43]. In the system design literature, it has long been speculated that the structure of a
product inevitably resembles the structure of the organization that designs it [13]. In Conway’s
original formulation, he reasoned that coordinating product design decisions requires
communication among the engineers making those decisions. If everyone needs to talk to
everyone, the communication overhead does not scale well for projects of any size. Therefore,

1 The terms “technical dependency” and “product dependency” are used interchangeably through out this paper.

 3

products must be split into components, with limited technical dependencies among them, and
each component assigned to a single team. Conway [13] proposed that the component structure
and organizational structure stand in a homomorphic relation, in that more than one component
can be assigned to a team, but a component must be assigned to a single team.

A similar argument has been proposed in the strategic management literature. Baldwin and Clark
[2] argued that modularization makes complexity manageable, enables parallel work and
tolerates uncertainty. The design decisions are hidden within the modules which communicate
through standard interfaces, then, modularization adds value by allowing independent
experimentation of modules and substitution [2]. Moreover, Baldwin and Clark [2] argued that a
modular design structure leads to an equivalent modular task structure. Then, their view aligns
with Conway’s idea that one or more modules can be assigned to one organizational unit and
work can be conducted almost independently of others. In the context of software engineering, a
similar approach was first articulated by Parnas [39] as modular software design. Parnas [39]
argued that modules ought to be considered work items instead of just a collection of
subprograms. Then, development work can continue independently and in parallel across
different modules. Parnas’ views also coincide with the theoretical arguments from product
design and strategic management literatures.

All three theoretical views rely on two interrelated assumptions. The authors assumed a simple
and obvious relationship between product modularization and task modularization. Hence,
reducing the technical interdependencies among the modules of a system, the modularization
theories argued, task interdependencies are reduced, which consequently, reduces the need for
communication among work groups. Unfortunately, there are several problems with these
assumptions when applied in the context of software development. First, existing software
modularization approaches only use a subset of the technical dependencies, typically syntactic
relationships, of a software system [23]. Then, potentially relevant work dependencies might be
ignored. Secondly, recent empirical evidence indicates that the relationship between product
structure and task structure is not as simple as previously assumed. Moreover, the theorized
similarity between product and task structures diminishes over time [10].

Thirdly, promoting minimal communication between teams responsible for interdependent
modules is problematic. Recent studies suggest that minimal communication between teams,
collocated or distributed, is detrimental to the success of projects. The product development
literature argues that information hiding, which leads to minimal communication between teams,
is an inevitable antecedent of variability in the evolution of projects resulting, typically, in
integration problems [46]. In context of software development, de Souza and colleagues [17]
found that information hiding led development teams to be unaware of others teams’ work
resulting in coordination problems. Grinter and colleagues [25] reported similar findings for
geographically distributed software development projects. The authors highlighted that the main
consequence of reducing the teams’ need to communicate was the increased costs because
problems were discovered too late in the development process. Those findings do not suggest
that modularization is not useful. They highlight the need to supplement it with coordination
mechanisms to allow developers to deal correctly with the assumptions that are not captured in
the specification of the dependencies.

Finally, another important problem associated with the assumptions of modular design is the role
of change which can be characterized along three interrelated dimensions: the evolution of
requirements, the stability of the interfaces between software modules and the dynamic nature of

 4

technical dependencies that arise as design and implementation decisions are made. First, it is
widely accepted among software engineering researchers and practitioners that the requirements
of the system become known over time or those requirements change as time progresses [35]. In
some cases, the changes in the requirements result in minor alterations of specific development
tasks. In other instances, new features have to be added or features under development are
eliminated. These events introduce a certain level of dynamism in software development that
challenges the determinism and stability assumptions of the modularization approach.

The second dimension of change in software development is the nature and stability of the
interfaces between software modules. The interfaces between software modules might differ in
complexity and little is known about its impact on coordination among development teams.
However, recent research has started to examine those issues. Cataldo et al [11] presented case
studies where even simple interfaces between modules developed by remote teams create
coordination breakdown and integration problems. The authors reported that semantic
dependencies were even more problematic and they argued that the developers’ ability to
identify and manage dependencies was hindered by several inter-related factors such as
development processes, organizational attributes (e.g. structure, management style) and
uncertainty of the interfaces. In relation to the stability of interfaces, de Souza [16] encountered,
in a field study of a large software project, that interfaces tended to change often and their design
details tended to be incomplete, increasing the likelihood of future changes to them and leading
to serious integration problems. This lack of stability represents a constant challenge for software
development organizations in terms of coordination and, ultimately, productivity and quality.

Finally, the third dimension of change is the dynamic nature of finer-grain dependencies that
arise as part of the development of a piece of code. The act of developing a software system
consists of a collection of design decisions, either at the architectural level or at the
implementation level. Those design decisions introduce constraints that might establish new
dependencies among the various parts of the system, modify existing ones or even eliminate
dependencies. The changes in dependencies can generate new coordination requirements that are
quite difficult to identify a priori, particularly when they are not obvious, or as a project matures
over time [27, 42]. Failure to discover the changes in coordination needs might have a profound
impact on the quality of the product [15], on productivity [28] and even on the projects’ overall
design [4]. In addition, little is known about the specific impact of the various types of
dependencies that arise among parts of a software system such as explicit versus implicit
dependencies or syntactic versus logical dependencies.

The previous paragraphs highlight the limitations of the product modularization approach which
does not necessarily yield an equivalent task modularization structure. The nature of software
development such as the attributes and stability of interfaces among modules and the dynamics
of technical dependencies, are a constant challenge for software development organizations,
particularly, for those geographically distributed. Mechanisms to complement the modular
design approach are required to maintain appropriate levels of coordination among development
groups. This leads us to the following research questions:

RQ1: How relevant task dependencies can be identified from technical dependencies?

RQ2: What is the impact of those task dependencies on development productivity?

 5

3. Socio-Technical Congruence

Product development endeavors involve two fundamental elements: a technical and a social
component. The technical properties of the product to develop, the processes, the tasks, and the
technology employed in the development effort constitute the technical component. The second
element is composed by the organization and the individuals involved in the development
process, their attitudes and behaviors. In other words, a product development project can be
thought of a socio-technical system where the two components, the technical and the social
elements, need to be aligned in order to have a successful project. Then, a key issue is to
understand how we can examine the relationship between those two, the technical and the social,
dimensions. Two lines of work are particularly relevant in this context. First, the idea of “fit”
from the organizational theory literature provides the conceptual framework. Fit is defined as the
match between a particular organizational design and the organization’s ability to carry out a task
[6]. This line of research has, traditionally, focused on two factors: the temporal dependencies
among tasks that are assigned to organizational groups and the formal organizational structure as
a means of communication and coordination [9, 36]. The second relevant line of work is the
research on dynamic analysis of social networks which provides an innovative approach, called
the meta-matrix, to examine the dynamic co-evolution of relationships among multiple types of
entities such as resources, tasks, and individuals [8, 33]. Building on those two streams of
research, we define socio-technical congruence as the match between the coordination
requirements established by the dependencies among tasks and the actual coordination activities
carried out by the engineers. In other words, the concept of congruence has two components.
First, the coordination needs determined by the technical dimension of the socio-technical
system and, secondly, the coordination activities carried out by the organization representing the
social dimension. The following paragraphs discuss in detail the mathematical framework to
measure the two components of congruence originally introduced by Cataldo and colleagues
[10].

3.1 Identification of Coordination Requirements
In order to identify which set of individuals should be coordinating their activities, we need to
represent two sets of relationships. One set is given by which individuals are working on which
tasks. The relationships or dependencies among tasks represent the second element. In the
framework proposed in this section, assignments of individuals to particular work items is be
represented by a people by task matrix where a one in cell ij indicates that worker i is assigned to
task j. We will refer to this matrix as Task Assignments (TA). Following the same approach, the
set of dependencies among tasks can be represented as a square matrix where a cell ij (or cell ji)
indicates that task i and task j are interdependent. We will refer to this matrix as Task
Dependencies (TD). Now, if the Task Assignment and Task Dependencies matrices are
multiplied, a people by task matrix is obtained that represents the set of tasks a particular worker
should be aware of, given the work items the person is responsible for and the dependencies of
those work items with other tasks. Finally, a representation of the coordination requirements
among the different workers is obtained by multiplying the product of the Task Assignment and
Task Dependencies matrices by the transpose of the Task Assignment matrix. This product results
in a people by people matrix where a cell ij (or cell ji) indicates the extent to which person i
works on tasks that share dependencies with the tasks worked on by person j. In other words, the
resulting matrix represents the Coordination Requirements or the extent to which each pair of

 6

people needs to coordinate their work. Formally, the Coordination Requirements matrix is
determined by the following product:

CR = TA * TD * TA
T (Eq. 1)

where, TA is the Task Assignments matrix, TD is the Task Dependencies matrix and TA
T is the

transpose of the Task Assignments matrix. This framework provides alternatives ways of
thinking about coordination requirements among workers depending on what type of data is used
to populate the Task Dependencies matrix. Past work had focused on temporal relationships
between tasks, for instance, task A needs to be done before task B (e.g. [36]). In the context of
software development, such way of thinking about task dependencies is quite common.
Alternative views could be based on high level roles in the development organizations (e.g.
integration and testing depends on development) or task dependencies based on product
dependencies in the actual software code (e.g. function calls between modules). The focus on
this paper is on the work dependencies structure-product dependency structure relationship
because, as discussed earlier, the difficulty of identifying and managing certain types of product
dependencies is a critical factor in coordination success and ultimately in productivity and
quality.

3.2 Computing Congruence
Given a particular Coordination Requirements matrix constructed from relating product
dependencies to work dependencies, we can compare it to an Actual Coordination (CA) matrix
that represents the interactions workers engaged in through different means of coordination.
Then, given a particular set of dependencies among tasks, congruence is the proportion of
coordination activities that actually occurred (given by the Actual Coordination matrix) relative
to the total number of coordination activities that should have taken place (given by the
Coordination Requirements matrix). For example, if the Coordination Requirements matrix
shows that 10 pairs should coordinate, and of these, 5 show Actual Coordination interactions,
then the congruence is 0.5. Formally, we define congruence as follows:

Diff (CR, CA) = card { diffij | crij > 0 & caij > 0 }

|CR| = card { crij > 0 }

Then, we have:

Congruence (CR, CA) = Diff (CR, CA) / |CR| (Eq. 2)

In sum, the value of congruence belongs to the [0,1] interval that represents the proportion of
coordination requirements that were satisfied through some type of coordination activity or
mechanism. The measure of socio-technical congruence proposed here provides a new way of
thinking about coordination, particularly, by providing a fine-grain level of analysis of different
types of product dependencies and allowing us to examine how coordination needs are impacted
by them.

3.3 Two Approaches to Identify Technical Dependencies in Software Systems
The measure of congruence presented in the previous section relies on a representation of
dependency that drives the engineers’ coordination needs. In this section, we discuss two
approaches to identify technical dependencies from a software system.

 7

The traditional view of software dependency has its origins in compiler optimizations and they
focus on control and dataflow relationships [30]. This approach extracts relational information
between specific units of analysis such as statements, functions or methods, as well as modules,
typically, from the source code of a system or from an intermediate representation of the
software code such as bytecodes or abstract syntax trees. These relationships can represent either
a data-related dependency (e.g. a particular data structure modified by a function and used in
another function) or a functional dependency (e.g. method A calls method B). This type of
dependency analysis techniques has been widely used in a research context to examine the
relationship between coupling and quality of a software system (see for instance [31, 40]).
Syntactic dependency analyses are also used by software developers to improve their
understanding of programs and the linkages among the various parts of those programs [37].

One characteristic of these relational structures such as a call-graph, and for that matter other
graphs such as inheritance and data dependencies graphs, is that they provide a particular view of
the system-wide structure. Moreover, the accuracy of the information represented in these graphs
depends on the ability of the tool used to identify all the appropriate types of syntactic
relationships allowed by the underlying programming language [37].

An alternative mechanism of identifying dependencies consists of examining the set of source
code files that are modified together as part of a modification request. This approach is
equivalent to the approach proposed by Gall and colleagues [22] in the software evolution
literature to identify logical dependencies between modules. A source code file can be viewed as
representing a “bundle” of technical decisions. If a modification request can be implemented by
changing only one file, it provides no evidence of any dependencies among files. However,
when a modification request requires changes to more than one file, it can be assumed that
decisions about the change to one file in a modification request depend in some way on the
decisions made about changes to the other files involved in implementing the modification
request. Dependencies could range from syntactic, for instance a function call between files, to
more complex semantic dependencies where the computations done in one files affects the
behavior of another files. This approach would represent a better estimate for semantic
dependencies relative to call graphs or data graphs because it does not rely on language
constructs to establish the dependency relationship between source code files. The remainder of
this paper refers to this approach to identify dependencies as the “Files Changed Together”
(FCT) method. We will refer to the method to identify dependencies based on syntactic
functional and data relationships described earlier as the CGRAPH method.

4. Method

4.1 Description of the Data
We collected data from a software development project of a large distributed system produced by
a company that operates in the data storage industry. The data covered a period of 39 months of
development activity and the first four releases of the product. The company had one hundred
and fourteen developers grouped into eight development teams distributed across three
development locations. All the developers worked full time on the project during the time period
covered by the data. Software developers communicated and coordinated using various means.
Opportunities for interaction existed when the developers worked in the same formal team or
when they were located in the same development site. Developers also used tools such as

 8

Internet Relay Chat (IRC) and a modification request (MR) tracking system to interact and
coordinate their work. For instance, the MR tracking system kept track of the progress of the
task, comments and observations made by developers as well as additional material used in the
development process. We collected communication and coordination information from those two
systems. Finally, we also collected demographic data about the developers such as their
programming and domain experience and level of formal education.

The unit of analysis is the modification request which corresponds to a development work item
associated with a defect or a new feature. A total of 2375 multi-team modification requests were
identified. Those modification requests belonged to the first four releases of the product and
involved more than one software development team. The decision to focus on such modification
requests is based on a growing body of research which shows that difficulties in communication
and coordination breakdowns are recurring problems in software development [15, 28, 34],
particularly when the work items are geographically distributed [28] and the task involves more
than one organizational team [15, 20, 34].

4.2 Descriptions of Measures
The literature has identified a number of factors that affect development time and, consequently,
the resolution of modification requests. Some of those factors are related to characteristics of the
task such as the amount of code to be written and the priority of the task, whereas other factors
capture relevant attributes of the individual developers and the teams that participate in the
development task. In the following paragraphs, we first describe our dependent variable,
resolution time of modification requests. Secondly, the procedures used to construct the
measures of congruence are described. Finally, we describe a number of control measures that
were also included in the statistical models.

Productivity Measure: Our measure of productivity is Resolution Time which captures the time
it took to resolve a particular modification request, and it accounts for all the time that the MR
was assigned to developers. The modification requests reports contain records of when the MR
was opened and resolved as well as every time the MR was assigned to a particular developer.
Given this information, we can compute the amount of time that developers were actually
working on the task.

Congruence Measures: The data for building the Coordination Requirements matrix (equation
1) was extracted from several data sources such as the modification request reports, the version
control system as well as the software code itself. A modification request provides the
“developer i modified file j” relationship that constitutes our Task Assignment matrix. Since, two
different methods for identifying dependencies were used, FCT and CGRAPH, we constructed
two different Task Dependency matrices. In the case of the FCT method, the cell cij of the Task
Dependency matrix represents the number of times a particular pair of source code files changed
together as part of the work associated with a modification request. A moving window of 19
months was used to capture a representative set of logical dependencies among the software
modules. The resolution date of the modification request was paired with the end of the time
window used to collect the task dependency information. In the case of the CGRAPH method,
the cell cij of the Task Dependency matrix represents the number of data/function/method
references from file i into file j. The syntactic relationships were extracted from the system’s
source code using the C-REX tool [26]. We constructed quarterly call-graphs of the entire
system. The data from the quarter associated with the resolution date of the modification request
was used to collect the task dependency information. Given the Task Assignments and Task

 9

Dependencies matrices just described, we computed as described in equation 1, two
Coordination Requirement matrices, one based on the FCT and a second based on the CGRAPH
method.

In order to compute a measure of congruence, we also need to build the Actual Coordination
matrix which represents the coordination activities that took place during the work associated
with a modification request. These activities could take numerous forms and the communication
and information exchanges could occurs over different means. Hence, four coordination paths
were used to construct the Actual Coordination matrices. First, Structural Congruence captures
the potential paths of communication and coordination that members of a formal team have
through various mechanisms such as team meetings and other work-related activities. We built
the actual coordination matrix where a coordination activity between engineers i and j exists if
they belong to the same formal team. Geographical congruence, similarly to the case of
organization structure, is built around the idea of potential paths of communication and
coordination that exist when individuals work in the same physical location [1, 38]. Then, in
terms of the matrix of coordination activities, engineers i and j have a linkage if they work in the
same location. Higher levels of congruence would mean that the geographic location of people
matches their coordination needs so that relatively little coordination is required across sites. MR
communication congruence considers an exchange of technical information between engineers i
and j only when both i and j explicitly commented in the modification request report. Multiple
modification requests might refer to the same problem and later be marked as duplicates of a
particular modification request. All duplicates of the focal MR were also used to capture the
interactions among developers. Finally, IRC communication congruence was computed based
on interaction between developers from the IRC logs. Three raters, blind to the research
questions, examined the IRC logs corresponding to the period of time associated with each MR
and established an interaction between engineers i and j if they made reference to the bug ID or
to the task or problem represented by the MR in their conversations. In order to assess the
reliability of the raters’ work, 10% of the MRs where coded by all raters. Comparisons of the
obtained networks showed that 98.2% of the networks had the same set of nodes and edges. All
four Actual Coordination matrices were symmetric.

Control Measures: Past research has proposed several additional factors that impact
development time [20, 28, 34]. We collected a number of control variables that capture attributes
of the task, the individuals and the teams associated with the development work. Several task-
specific factors such as the temporal dependency among MRs, task priority and task re-
assignments could have an important effect on development time. Temporal Dependency was
measured as the number of modification requests that the focal MR depends on in order for the
task to be performed. Management prioritized the activities of the developer by using a scale
from 1 to 5 in the modification request report where level 5 as the highest priority and level 1 as
the lowest priority. This rating constituted our measure of priority of the MR. Task re-
assignment was measured as the number of times an MR was re-assigned to a different engineer
or team. Re-assignment impacts resolution time because each new developer needs to build up
contextual information about the task. In addition, MRs opened by customers could represent
work items with higher importance consequently affecting the resolution time. A dummy
variable was used to indicate if the MR is associated with the service request from a customer.
Multiple Locations is a binary variable that indicates whether the all the developers that worked
on a particular MR were in the same geographical location (a value of 0) or were distributed
across the development labs (a value of 1). Finally, the release variable identifies the release of

 10

the product that the modification request is associated with. This variable could also be
considered as a proxy for time to control for efficiencies that might develop over time and,
consequently, affect the resolution time of the modification requests.

The amount of code written or changed is a proxy for the actual amount of development work
done. The change size was computed as the number of files that were modified as part of the
change for the focal MR. Prior research [20] has used lines of code changed as a measure of the
size of the modification; however, a comparative analysis of both measures showed equivalent
results in the statistical model used in this study. Therefore, the results presented in this chapter
are based on the measure computed from the number of files modified. The change size measure
was highly skewed so a log transformation was applied to satisfy the normality requirements of
the regression model used in our analysis.

An experienced software engineer familiar with tools and programming languages can be
substantially more productive than an inexperienced developer [5, 14, 15]. Furthermore,
experience with the domain area and the technical characteristics of the application being
developed help accelerate development time [15]. We used archival information as well as data
from the software repositories to compute several individual level measures of experience. First,
programming experience was computed as the average number of years of programming
experience prior to joining the company of all the engineers involved in the modification request.
Tenure was measured as the average number of months in the company of all the engineers that
worked in the modification request at the time the work associated with the MR was
completed. Component experience was computed as the average number of times that the
engineers responsible for the modification request have worked on the same files affected by the
focal modification request. This measure was also log-transformed to satisfy normality
requirements. Finally, Team load is a measure of the average work load of the teams responsible
for the components associated with the modification request. This control variable was computed
as the ratio of the average number of modification requests in open or assigned state over the
total number of engineers in the groups involved in the focal modification request during the
period of time the MR was in assigned state.

4.3 Description of the Model
Past research has found that linear [20, 29] and hierarchical linear [20, 34] models are
appropriate techniques for examining the effects of different factors on development
productivity. In this study, we examined the effect of congruence on resolution time using the
following linear regression model:

∑ +

+∑=

j
jiableControlVarj

i
iMeasureCongruenceieolutionTim

εδ

β

*

*Res

An examination of descriptive statistics and Q-Q plot indicated that several of the variables
(Resolution Time, Chang Size and Component Experience) were highly skewed to the left. The
log transformation provided the best approximation to a normal distribution. Table 1a
summarizes the descriptive statistics of the dependent and control variables included in our
model. Table 1b summarizes the descriptive statistics of the congruence measures computed
using the FCT method. Table 1c presents the descriptive statistics for the congruence measures
computed using the CGRAPH method. The analysis of the pair-wise correlations amongst the

 11

variables in the model (Table 2) suggested no relevant collinearity problems. Only a small set of
correlations were statistically significant but their levels did not exceed +/- 0.343.

The measures of structural and geographical congruence could be affected by personnel turnover
and mobility across teams. We examined archival data collected from the company and we
determined a yearly turnover rate of only 3% and an inter-group mobility rate of less than 1%.
The modification requests that involved individuals that left the company or changed group
membership were eliminated from the analysis. However, an analysis including those
modification requests showed results consistent with those reported in section 5.

Table 1a: Descriptive Statistics for Dependent and Control Variables

 Mean SD Min Max Skew Kurtosis
Resolution Time (log) 3.260 1.236 0 6.490 -0.809 3.127
Temporal Dependency 0.834 1.721 0 7 2.144 6.759
Priority 3.388 1.111 1 5 0.115 1.694
Re-assignment 1.457 1.599 0 6 0.481 1.605
Customer MR 0.483 0.499 0 1 0.067 1.004
Release 2.323 1.093 1 4 0.269 1.769
Change Size (log) 1.163 1.781 0 4.741 0.302 4.005
Team Load 9.104 2.938 1.016 58.800 -0.361 2.342
Multiple Locations 0.779 0.414 0 1 -1.346 2.814
Programming Exp. 4.429 3.654 2 22 1.074 4.462
Tenure 23.921 17.107 0 76 0.175 1.685
Component Exp. (log) 3.051 0.958 0 5.601 -0.015 2.145

Table 1b: Descriptive Statistics for Congruence Measures (FCT method)

 Mean SD Min Max Skew Kurtosis
Structural Cong. 0.663 0.217 0.156 0.995 -0.931 3.754
Geographical Cong. 0.684 0.237 0.142 0.993 -0.863 3.201
MR Cong. 0.567 0.283 0.070 0.982 -0.319 1.965
IRC Cong. 0.599 0.274 0.079 0.982 -0.506 2.233

Table 1c: Descriptive Statistics for Congruence Measures (CGRAPH method)

 Mean SD Min Max Skew Kurtosis
Structural Cong. 0.544 0.273 0.111 0.614 -0.322 1.849
Geographical Cong. 0.571 0.266 0.193 0.967 -0.062 2.048
MR Cong. 0.093 0.086 0.002 0.348 1.434 4.114
IRC Cong. 0.133 0.142 0.001 0.313 1.324 3.448

 12

Table 2: Pair-wise Correlations (N=2375, bold values are significant at p < 0.05).

 1 2 3 4 5 6
1 Temporal Dependency -
2 Priority 0.341 -
3 Re-assignment -0.013 0.029 -
4 Customer MR 0.012 -0.031 -0.224 -
5 Release 0.004 0.001 0.025 -0.019 -
6 Change Size 0.113 0.332 0.031 -0.046 0.003 -
7 Team Load -0.001 -0.029 -0.329 0.103 -0.008 -0.044
8 Programming Exp. 0.314 0.343 0.033 -0.021 -0.015 0.218
9 Tenure 0.243 0.023 0.009 0.001 -0.026 -0.216
10 Component Exp. -0.043 -0.013 0.016 -0.001 -0.002 -0.122
11 Multiple Locations -0.160 -0.013 -0.006 0.002 0.037 0.014
12 Struct. Cong. (FCT) -0.030 0.022 -0.031 0.032 -0.015 0.049
13 Geo. Cong. (FCT) -0.097 -0.035 0.008 -0.013 0.024 -0.008
14 MR Cong. (FCT) 0.007 -0.014 -0.003 -0.032 -0.013 -0.001
15 IRC Cong. (FCT) -0.019 -0.006 0.079 -0.129 -0.016 -0.021
16 Struct. Cong. (CGR) -0.024 -0.001 0.124 -0.196 0.035 0.055
17 Geo. Cong. (CGR) 0.004 -0.034 0.094 -0.064 0.002 -0.045
18 MR Cong. (CGR) 0.007 -0.014 -0.003 -0.032 -0.012 -0.001
19 IRC Cong. (CGR) -0.063 0.010 0.058 -0.051 0.039 0.013

 7 8 9 10 11 12
7 Team Load -
8 Programming Exp. -0.012 -
9 Tenure 0.011 0.266 -
10 Component Exp. 0.018 0.161 0.245 -
11 One Location 0.010 0.012 -0.022 0.041 -
12 Struct. Cong. (FCT) 0.031 -0.021 -0.052 -0.038 0.049 -
13 Geo. Cong. (FCT) -0.009 -0.005 0.003 -0.003 0.087 0.127
14 MR Cong. (FCT) -0.062 -0.004 -0.009 0.007 -0.040 0.033
15 IRC Cong. (FCT) -0.044 -0.003 -0.022 -0.011 -0.003 0.028
16 Struct. Cong.(CGR) -0.062 -0.021 -0.053 -0.003 0.059 0.041
17 Geo. Cong. (CGR) -0.085 -0.004 -0.016 -0.010 0.072 0.015
18 MR Cong.(CGR) -0.051 -0.014 -0.093 -0.039 -0.021 0.032
19 IRC Cong.(CGR) -0.029 -0.008 0.002 0.001 -0.008 0.021

 13 14 15 16 17 18
13 Geo. Cong. (FCT) -
14 MR Cong. (FCT) 0.017 -
15 IRC Cong. (FCT) 0.005 0.009 -
16 Struct. Cong.(CGR) 0.009 0.009 0.027 -
17 Geo. Cong. (CGR) 0.035 0.004 0.041 0.188 -
18 MR Cong.(CGR) 0.032 0.039 0.001 0.021 0.044 -
19 IRC Cong.(CGR) 0.003 0.002 0.014 0.064 0.073 0.019

5. Results

We performed several linear regression analyses to assess the effect of the congruence

 13

measures on the resolution time of modification requests. As discussed in section 4, two different
methods, FCT and CGRAPH, were used to identifying technical dependencies which resulted in
two sets of congruence measures. We first discuss the results of the analyses done using the
congruence measures based on the FCT method. Table 3 shows the results from the OLS
regressions. Model I is a baseline regression model which only considers the control factors.
Consistent with previous empirical work in software engineering, factors such as the size of the
modification to the code, familiarity with the software components, and general programming
experience are significant elements that affect resolution time of MRs [20, 28]. Task-specific
characteristics such as temporal dependencies with other modification requests and the priority
of the task are associated with an increase in development time. As it has been reported in
previous research [20, 28], the results also show that when developers are geographically
distributed, the amount of time required to resolve modification requests is likely to increase.
The coefficients from model I also suggest that time, captured by the variable Release, had no
statistically significant effect. Since the Release measure is in fact a categorical variable, we also
examined its impact using two dichotomous variables to represent the four possible values. The
results were identical to defining Release as an integer from 1 to 4 to represent the four releases
of the product.

Table 3: Effects on Resolution Time (FCT method)

 Model
I

Model
II

Model
III

(Intercept) 4.81** 4.63** 4.48**
Temporal Dependency 0.59** 0.59** 0.59**
Priority -0.40** -0.41** -0.40**
Re-assignment 0.01 0.01 0.01
Customer MR 0.09 0.10 0.09
Release -0.02 -0.02 -0.03
Change Size (log) 0.31** 0.31** 0.31**
Team Load -0.01 -0.01 -0.01
Multiple Locations 0.13** 0.13** 0.13**
Programming Experience -0.17** -0.17** -0.17**
Tenure -0.01+ -0.01+ -0.01+
Component Experience (log) -0.07** -0.07** -0.07**
Structural Congruence -0.18* -0.14*
Geographical Congruence -0.02* -0.04*
MR Congruence -0.06* -0.05*
IRC Congruence -0.21* -0.21*
Multiple Locations X MR Congruence 0.13
Multiple Locations X IRC Congruence -0.27*
N 2375 2375 2375
Adjusted R2 0.718 0.819 0.831
(+ p < 0.10, * p < 0.05, ** p < 0.01)

Model II introduces the measures of congruence in the analysis. The results show statistically
significant effects on all the congruence measures computed using the FCT method. The
estimated coefficients of the congruence measures have negative values which are associated

 14

with a reduction in resolution time. The results highlight the important role of congruence on
task performance as well as the complementary nature of all communication paths. Structural
congruence is associated with shorter development times suggesting that when coordination
requirements are contained within a formal team and appropriate communication paths exists,
task performance increases. Geographical congruence had a positive effect on resolution time,
consistent with past research that argued distance has detrimental effects on communication (see
[28] and [38] for reviews). Communication congruence based on the interactions amongst
engineers through the MR reports as well as IRC were also statistically significant suggesting the
usefulness of these tools in facilitating coordination among individuals that belong to different
teams and could potentially be geographically distributed.

Finally, model III includes several interaction factors to assess whether the role of congruence
changes when the groups involved in a particular MR are geographically distributed. The results
show a statistically significance impact only for the Multiple Locations X IRC term. The
negative coefficient suggests that when developers are geographically distributed the impact of
IRC congruence on resolution time is higher above and beyond the direct effect.

Table 4: Effects on Resolution Time (CGRAPH method)

 Model
I

Model
IV

Model
V

(Intercept) 4.81** 4.88** 4.81**
Temporal Dependency 0.59** 0.59** 0.59**
Priority -0.40** -0.40** -0.40**
Re-assignment 0.01 0.03 0.01
Customer MR 0.09 0.19 0.09
Release -0.02 -0.02 -0.02
Change Size (log) 0.31** 0.31** 0.31**
Team Load -0.01 -0.01 -0.01
Multiple Locations 0.13** 0.12** 0.13**
Programming Experience -0.17** -0.17** -0.17**
Tenure -0.01+ -0.01+ -0.01+
Component Experience (log) -0.07** -0.07** -0.07**
Structural Congruence -0.21+ -0.23+
Geographical Congruence -0.11* -0.03*
MR Congruence 0.41 0.48
IRC Congruence -0.01 -0.02
Multiple Locations X MR Congruence 0.05
Multiple Locations X IRC Congruence -0.41
N 2375 2375 2375
Adjusted R2 0.718 0.731 0.722
(+ p < 0.10, * p < 0.05, ** p < 0.01)

Table 4 shows the results of our analysis obtained when the congruence measures are computed
using the CGRAPH method for identifying technical dependencies. Model I is the same model
reported in table 3. We observe in model IV that only geographical congruence is statistically
significant and its coefficient is negative indicating a reduction in the resolution time as

 15

congruence increases. Structural congruence was marginally significant. Finally, Model V shows
that interaction terms were not statistically significant. In sum, these results suggest that the two
dependency identification methods, FCT and CGRAPH, are capturing different sets of technical
dependencies that impact the development tasks differently.

6. Discussion

This study has significant contributions to the software engineering and management of product
development organizations literatures. First, the empirical evaluation of the congruence
framework showed the importance of understanding the dynamic nature of software
development. Identifying the “right” set of product dependencies that determine the relevant
work dependencies and coordinating accordingly has significant impact on reducing the
resolution time of modification requests. The analyses showed traditional software dependencies,
such as syntactic relationships, tend to capture a relatively stable view of product dependencies
that is not representative of the dynamism in product dependencies that emerges as software
systems are implemented. On the other hand, logical dependencies provide a more accurate
representation of the most relevant product dependencies in software development projects. The
statistical analyses showed that when developers’ coordination patterns are congruent with their
coordination needs, the resolution time of modification requests was, on average, reduced by
32% when considering the collective effect of all four measures of congruence. Generalizing, the
empirical examination of the congruence framework and coordination patterns showed the tight
relationship between team design, coordination and performance providing an important
contribution to the organizational literature.

The view of coordination presented in this paper extends traditional conceptualizations of
coordination by taking a fine-grain level of analysis to better examine the mismatches between
dependencies and coordination activities. Those gaps could have major implications for the
productivity and the quality of the output of product development organizations [15, 20, 28, 42]
and for non-routine intellectual work more generally. Our empirical results suggest that our
measure of socio-technical congruence represents a useful framework to examine how
coordination needs that are not satisfied impact software development productivity. When the
developers coordinate their task with the relevant set of workers, productivity increases.
Individuals have difficulties identifying task interdependencies that are not obvious or explicit
[42] and the developers’ ability to recognize dependencies diminish as coordination requirements
change over time [27]. For these reasons, volatility in the coordination requirements represents
an important obstacle for product development organizations, particularly, when work groups are
geographically distributed. Collaborative tools and managerial techniques that utilize the
congruence framework could play an important role in reducing the gap between recognized and
actual interdependencies.

It is also important to highlight some of the limitations of the work reported in this paper. First,
the measures proposed as part of the congruence framework are contingent on assumptions about
the software development processes used in the development organization as well as usage
patterns of tools that assist the development effort such as defect tracking and version control
systems. One key assumption is the possibility to identify (1) the set of source code files that
were changed as part of a modification request and (2) the developers that made those changes.
For instance, a policy of source code file ownership by particular developers could potentially

 16

bias the congruence measures. Developers that own a particular source code might appear as
participants in the development effort associated with a modification request, however, that
might not be the case. In other cases, such as open source projects, the nature of the work in
certain project is such that the information about which files changed together as part of a
modification request is not easily reconstructible in a reliable way. The alternative approach of
computing coordination requirements based on syntactic relationships also has its limitations.
The method relies on tools that can reliably extract the dependency information among software
modules for a specific programming language. More importantly, projects that use multiple
programming languages will represent a challenge, particularly, in terms of determining
syntactic dependencies that involve modules written in different programming languages.

Another limitation of the work presented in this paper is a potential concern for external validity.
Our analysis examined only one system with particular technical properties that might be
conducive to support the results found by the analysis. However, the processes and tools used by
the development organization are commonplace in the software industry. Moreover, the general
technical characteristics of the system are similar to other types of distributed systems developed
into products in the software industry. Hence, we think the results are generalizable, particularly,
in the context of development organizations responsible for delivering complex software
systems.

6.1 Future Work
6.1.1 Enhancing coordination needs awareness
Collaboration, coordination, and task awareness tools are a natural application for the
coordination requirements measure presented in this paper. Part of the research effort of the
CSCW community has been on improving traditional tools, such as email and instant messaging,
which have become an integral part of work in the vast majority of organizations [3, 45]. For
instance, the coordination requirements measure could provide a way of identifying the email
exchanges that are more relevant given the task interdependencies among individuals. This
information would enable tools to present an enhanced task management experience by, for
instance, prioritizing to-do-lists and generating reminders to respond to task-specific emails
based on the coordination requirements. This email sorting approach could be thought as a task-
specific alternative to other social-based sorting techniques such as the one proposed by Fisher
and colleagues [21]. A more recent set of tools, such as sidebars [7] and productivity assistants
[24], would also benefit from the congruence framework. These types of tools focus on activity-
centric collaboration and, as argued by Geyer and colleagues [24], the majority of the tools
assume user intervention in terms of deciding what type of information to make part of the
sidebar. The congruence framework would provide an automatic mechanism to identify people
of interest giving a particular set of task dependencies among the workers.
In the context of large software development projects, identifying the appropriate person to
interact with and coordinate interdependent activities is not a straightforward task. In fact, it is
well established that software developers have serious difficulties identifying the right set of
individuals to coordinate with [17, 25]. The coordination requirement measure provides a
mechanism to augment awareness tools that provide real-time information regarding the likely
set of workers that a particular individual might need to communicate with. For instance,
integrated development environments, such as Eclipse [18] or Jazz [32], could use the
coordination requirement information to recommend a dynamic “coordination buddy list” every
time particular parts of the software are modified. In this way, the developer becomes aware of

 17

the set of engineers that modified parts of the system that are interdependent with the one the
developer is working on. The concept of the “buddy list” in communication and collaboration
tools is not a new idea. However, the novel contribution is to construct the “buddy list” from
accurate estimates of the set of individuals more likely to be relevant to a particular developer in
relations to the work dependencies, information which is captured by the coordination
requirements measure.
6.1.2 Identification of coordination requirements in early stages of software projects
The empirical examination of the congruence framework showed the relevance of matching
coordination activity with the fine-grained coordination needs that emerge in the development of
software systems. However, the measure of congruence, as computed in the study, relies on
archival data to capture the information about product dependencies, task assignments as well as
coordination activity carried out by the development organization. Our promising results
highlight the importance of identifying potential coordination needs as early as possible in the
development process in order to provide the development organization with the appropriate
communication and coordination mechanisms. Certainly such a task is a challenging one.
In early stages of a project, only architectural or high level design specifications of a system are
available. Those documents by definition abstract a significant portion of the technical details of
software systems in order to understand the overall attributes and relationships among the main
components of a system. A higher level of abstraction could potentially hinder the identification
of relevant technical dependencies and consequently, important coordination requirements.
However, the use of standardized design and modeling languages, such as UML, might represent
a way of overcoming these challenges. Researchers have proposed standard graphical
representations of software architectures that capture different technical aspects of a software
system [12]. Examples of those graphical representations are the module view and the
components-and-connectors view. Then, one approach would be to construct a coordination
view of the architectures that combines the product’s technical dependencies with relationships
among the organizational units responsible for carrying out the development work. In order to
generate such representations, methods of identifying relevant dependencies from the technically
focused views of the architecture are to be devised. One potentially promising approach is to
synthesize the dependencies represented in the various types of UML diagrams (e.g. class
diagrams, sequence diagrams, collaboration diagrams, etc) into a single set of technical
relationships among modules. Such a method could be able to identify logical relationships
among parts of the systems which, as shown in this paper, are an important factor driving the
work dependencies in software development organizations.

7. References

[1] Allen, T.J. (1977). Managing the Flow of Technology. MIT Press.
[2] Baldwin, C.Y. and Clark, K.B. (2000). Design Rules: The Power of Modularity. MIT Press.
[3] Bellotti, V., Ducheneaut, N., Howard, M., Smith, I. (2003). Taking email to task: the design

and evaluation of a task management centered email tool. In Proceedings International
Conference on Human Factors in Computing Systems (CHI’03), Ft. Lauderdale, FL.

[4] Bass, M., Bass, L., Herbsleb, J.D. and Cataldo, M (2006). Architectural Misalignment: an
Experience Report. To appear in the Proceedings of the 6th International Conference on
Software Architectures (WICSA ’07).

 18

[5] Brooks, F. (1995). The Mythical Man-Month: Essays on Software Engineering (Anniversary
Edition). Addison Wesley.

[6] Burton, R.M. and Obel, B. Strategic Organizational Diagnosis and Design. Kluwer
Academic Publishers, Norwell, MA, 1998.

[7] Cadiz, J.J., Venolia, G.D., Jancke, G., Gupta, A. (2002). Designing and deploying an
information awareness interface. In Proceedings of the Conference on Computer Supported
Cooperative Work (CSCW’02), New York, NY.

[8] Carley, K.M. (2002). Smart Agents and Organizations of the Future. In Handbook of New
Media. Edited by Lievrouw, L. and Livingstone, S., Sage, Thousand Oaks, CA.

[9] Carley, K.M and Ren, Y. Tradeoffs between Performance and Adaptability for C3I
Architectures. In Proceedings of the 6th International Command and Control Research and
Technology Symposium, Annapolis, Maryland, 2001.

[10] Cataldo, M., Wagstrom, P, Herbsleb, J.D. and Carley, K.M (2006). Identification of
Coordination Requirements: Implications for the Design of Collaboration and Awareness
Tools. In Proceedings of the Conference on Computer Supported Cooperative Work
(CSCW’06), Banff, Alberta, Canada.

[11] Cataldo, M., Bass, M, Herbsleb, J.D. and Bass, L (2007). On Coordination Mechanism in
Global Software Development. In Proceedings of the International Conference on Global
Software Engineering, Munich, Germany.

[12] Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. and Sttaford, J.
(2002). Documenting Software Architectures: Views and Beyond. Addison-Wesley, New
York, NY.

[13] Conway, M.E. (1968). How do committees invent? Datamation, Vol. 14, No. 5, 28-31.
[14] Curtis, B. (1981). Human Factors in Software Development. Ed. by Curtis, B., IEEE

Computer Society.
[15] Curtis, B., Kransner, H. and Iscoe, N. (1988). A field study of software design process for

large systems. Communications of ACM, Vol. 31, No. 11, pp. 1268-1287.
[16] de Souza, C.R.B. (2005). On the Relationship between Software Dependencies and

Coordination: Field Studies and Tool Support. Ph.D. dissertation, Donald Bren School of
Information and Computer Sciences, University of California, Irvine.

[17] de Souza, C.R.B., Redmiles, D., Cheng, L., Millen, D. and Patterson, J. (2004). How a Good
Software Practice Thwarts Collaboration – The multiple roles of APIs in Software
Development. In Proceedings of the 12th Conference on Foundations of Software
Engineering (FSE ’04), Newport Beach, CA, 221-230.

[18] Eclipse Project (2008). http://www.eclipse.org. URL accessed on February 28th, 2008.
[19] Eppinger, S.D., Whitney, D.E., Smith, R.P. and Gebala, D.A. (1994). A Model-Based

Method for Organizing Tasks in Product Development. Research in Engineering Design,
Vol. 6, pp. 1-13.

[20] Espinosa, J.A. (2002). Shared Mental Models and Coordination in Large-Scale, Distributed
Software Development. Unpublished Ph.D. Dissertation, Graduate School of Industrial
Administration, Carnegie Mellon University.

 19

[21] Fisher, D., Brush, A.J., Gleave, E. and Smith M.A. (2006). Revisiting Whittaker and Sidner’s
“Email Overload”: Ten Years Later. In Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW’06), Banff, Alberta, Canada.

[22] Gall, H. Hajek, K. and Jazayeri, M. (1998). Detection of Logical Coupling Based on Product
Release History. In Proceedings of the International Conference on Software Maintenance
(ICSM ‘98), Bethesda, Maryland.

[23] Garcia, A., et al. (2007). Assessment of Contemporary Modularization Techniques,
ACOM’07 Workshop Report. ACM SIGSOFT Software Engineering Notes, Vol. 35, No. 5,
pp. 31-37.

[24] Geyer, W., Brownholtz, B., Muller, M., Dugan, C., Wilcox, E. and Millen, D.R. (2007).
Malibu Personal Productivity Assistant. In Proceedings International Conference on Human
Factors in Computing Systems (CHI’07) – Work in Progress Section, San Jose, CA.

[25] Grinter, R.E., Herbsleb, J.D. and Perry, D.E. (1999). The Geography of Coordination
Dealing with Distance in R&D Work. In Proceedings of the Conference on Supporting
Group Work (GROUP’99), Phoenix, Arizona.

[26] Hassan, A.E. and Holt, R.C. (2004). C-REX: An Evolutionary Code Extractor for C. CSER
Meeting. Canada, 2004

[27] Henderson, R.M. and Clarck, K.B. (1990). Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms. Administrative Science
Quarterly, Vol. 35, pp. 9-30.

[28] Herbsleb, J.D. and Mockus, A. (2003). An Empirical Study of Speed and Communication in
Globally Distributed Software Development. IEEE Transactions on Software Engineering,
Vol. 29, No. 6, pp.

[29] Herbsleb, J.D., Mockus, A. and Roberts, J.A. 2006. Collaboration in Software Engineering
Projects: A Theory of Coordination. In Proceedings of the International Conference on
Information Systems (Milwaukee, Wisconsin). ICIS’06.

[30] Horwitz, S., Reps, T., and Binkley, D. (1990). Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, 26-60.

[31] Hutchens, D.H. and Basili, V.R. (1985). System Structure Analysis: Clustering with Data
Bindings. IEEE Transactions on Software Engineering, Vol. 11, No. 8, pp. 749-757.

[32] Jazz Project (2008). http://jazz.net/pub/index.jsp. URL accessed on February 28th, 2008.
[33] Krackhardt, D. and Carley, K.M. (1998). A PCANS Model of Structure in Organization. In

Proceedings of the 1998 International Symposium on Command and Control Research and
Technology, pp.113-119.

[34] Kraut, R.E. and Streeter, L.A. (1995). Coordination in Software Development.
Communications of ACM, Vol. 38, No. 3, pp. 69-81.

[35] Leffingwell, D. and Widrig, D. (2003). Managing Software Requirements: A Use Case
Approach, 2nd Edition. Addison-Wesley.

[36] Levchuk, G.M. et al. (2004). Normative Design of Project-Based Organizations – Part III:
Modeling Congruent, Robust and Adaptive Organizations. IEEE Trans. on Systems, Man &
Cybernetics, Vol. 34, No. 3, pp. 337-350.

 20

[37] Murphy, G.C., Notkin, D., Griswold, W.G. and Lan, E.S. (1998). An empirical study of call
graph extractors. ACM Transactions on Software Engineering Methodology, Vol. 7, No. 2,
pp. 158-191.

[38] Olson, G.M. and Olson, J.S. (2000). Distance Matters. Human-Computer Interaction, Vol.
15, No. 2 & 3, pp. 139-178,

[39] Parnas, D.L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of ACM, Vol. 15, No. 12, 1053-1058.

[40] Selby, R.W. and Basili, V.R. (1991). Analyzing Error-Prone System Structure. IEEE
Transactions on Software Engineering, Vol. 17, No. 2, pp. 141-152.

[41] Simon, H.A. (1962). The Architecture of Complexity. In Proceedings of the American
Philosophical Society, Vol. 106, No. 6, pp. 467-482.

[42] Sosa, M.E., Eppinger, S.D., and Rowles, C.M. (2004). The Misalignment of Product
Architecture and Organizational Structure in Complex Product Development. Management
Science, Vol. 50, No. 12, pp. 1674-1689

[43] Sullivan, K.J., Griswold, W.G., Cai, Y, and Hallen, B. (2001). The Structure and Value of
Modularity in Software Design. In Proceedings of the International Conference on
Foundations of Software Engineering (FSE ’01), Vienna, Austria, 99-108

[44] von Hippel, E. (1990). Task Partitioning: An Innovation Process Variable. Research Policy,
Vol. 19, pp. 407-418.

[45] Wattenberg, M., Rohall, S., Gruen, D. and Kerr, B. (2005). E-Mail Research: Targeting the
Enterprise. Journal of Human-Computer Interaction, Vol. 20, pp. 139-162.

[46] Yassine, A., Joglekar, N., Braha, D., Eppinger, S. And Whitney, D. (2003). Information
Hiding in Product Development: The Design Churn Effect. Research in Engineering Design,
Vol. 14, pp. 145-161

