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Abstract 

 

Software created by end users often lacks key quality attributes that professional programmers try to en-

sure through the use of abstraction.  Yet to date, large-scale studies of end users have not examined end 

user software usage at a level which is sufficiently fine-grained to determine the extent to which they create 

abstractions. 

To address this, we deployed an online survey to Information Week subscribers to ask about not only soft-

ware usage but also feature usage related to abstraction creation.  Most respondents did create 

abstractions.  Moreover, through factor analysis, we found that features fell into three clusters–when users 

had a propensity to use one feature, then they also had a propensity to use other features in the same clus-

ter.  These clusters corresponded to macro features, linked data structure features, and imperative features.   

For each of the three factors, we created a scale and used it to categorize users into two bins—those with a 

high propensity to use features associated with that scale, and those with a low propensity. Compared to 

users with a low propensity to use imperative features, users with a high propensity to use imperative fea-

tures were more likely to report testing and documenting.  Propensity to use linked structure features was 

less strongly related to these practices.  These findings represent a step toward a more complete map of 

end users’ skills. 
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0325273), by the National Science Foundation under Grant CCF-0438929, by the Sloan Software Industry 
Center at Carnegie Mellon, and by the High Dependability Computing Program from NASA Ames coop-
erative agreement NCC-2-1298. Any opinions, findings, and conclusions or recommendations expressed in 
this material are those of the authors and do not necessarily reflect the views of the sponsors. 
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1. Introduction 
Producing software with high reliability, maintainability, composability, and other quality attributes is a 
challenge for both professional programmers and end user programmers.  To help ensure these quality at-
tributes, professional programmers have developed a number of techniques, chief among them creating, 
testing, and documenting abstractions [3] [18].   

Since these practices have proven invaluable to professional programmers, it is natural to ask whether end 

user programmers engage in similar practices. Therefore, we surveyed readers of Information Week to an-
swer two questions: 

• To what extent do end user programmers create abstractions? 

• Are end user programmers who create abstractions more likely to test and document their work, com-
pared to end user programmers who do not create abstractions?  

To address these two high-level questions, we asked respondents about usage of specific application fea-
tures related to creation of abstractions within a wide range of end user programming environments: web 
browsers, web server scripting engines, databases, spreadsheets, and other desktop applications.  We asked 
about 23 abstraction-related features, including JavaScript functions, reusable server-side “include” files, 
database tables, and macros.  For example, to learn whether end users create reusable computational ab-
stractions in a browser environment, we asked whether respondents whether they created JavaScript 
functions. 

With respect to the first bulleted question above, we found that not all abstraction-related features are heav-
ily used, even by this computer-savvy population of Information Week readers.  For example, only 16% of 
respondents reported using server-side “include” files (which are useful for defining headers, footers, and 
other chunks of HTML that are the same for all pages in a web site).  But near the other end of the spec-
trum, 89% of respondents reported using functions (like “sum”) to link cells of spreadsheets. 

To characterize the structure of feature usage by end user programmers, we applied factor analysis, which 
revealed that features fell into three clusters.  For each cluster, people with a propensity to use one feature 
in that cluster tended to have a higher propensity to use other features in the same cluster.  The three clus-
ters were propensity to create macros, propensity to design linked structures, and propensity to write 
imperative code.  For example, people with a propensity for using one imperative feature (such as 
JavaScript functions) also had a propensity for using other imperative features (such as stored procedures). 

In addition, as noted in the second bullet above, we wanted to learn whether end users who created abstrac-
tions were more likely to test and document their work, compared to end user programmers who do not 
create abstractions.  In preparation for answering this question, we constructed a scale for each of the three 
clusters above to measure relative propensity to use features within that cluster.  We then classified each 
respondent as “above average” or “below average” on each scale. 

ANOVA tests revealed that people with an above average propensity to create imperative abstractions were 
more likely to test and document their work (compared to people with a below average propensity to create 
imperative abstractions).  In addition, they reported more knowledge of programming terms like “loop”  
(P ≤ 0.02 for all these results). 

When we divided respondents into above average and below average groups based on their propensity to 
create linked structures, the differences between above-average and below-average groups were not as stark 
as the differences that we saw when we divided users based on usage of imperative abstractions.  Specifi-
cally, people with an above average propensity to create linked structures were more likely to document 
their work but only marginally more likely to test their work (compared to people with a below average 
propensity to create linked structures).  They also reported more knowledge of programming terms  
(P ≤ 0.03 for all these results). 

Finally, when we divided respondents into above average and below average groups based on their propen-
sity to create macros, we saw no statistically significant differences between these two groups, in terms of 
their propensity to test or document their work (at P = 0.05).  There was no statistically significant differ-
ence in their knowledge of programming terms, either (at P = 0.05). 
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In short, these analyses have revealed substantial structure within the feature-usage patterns of end user 
programmers.  Further studies will be required in order to evaluate possible causes for this structure and to 
assess how creating, testing, and documenting abstractions affects software quality attributes in the case of 
end user programming. 

2. Related Work 
There have been many studies of abstraction use by end users, but the majority of them have addressed 
abstraction usage and adoption in a single type of application or domain in the short time span of a user 
study. For example, several of the abstractions in the Forms/3 spreadsheet language have been studied from 
an adoption perspective, to assess what factors might influence adoption and continued use of the new ab-
stractions [26][27]. This has led to a design strategy called “surprise-explain-reward” in which systems 
attempt to (1) surprise users by identifying some knowledge gap, (2) explain the knowledge gap to users, 
and finally (3) reward users when they use a new abstraction successfully. There have been several other 
attempts to design abstractions for particular populations of end users or particular types of data. The 
HANDS environment was designed for programming by children [16] by studying patterns in the language 
that children used to describe solutions to programming problems. This led to a programming language that 
children could quickly learn and use to create interactive simulations. The abstractions in the Lapis envi-
ronment were designed specifically for manipulating textual information [13], simplifying many common 
end user tasks such as search and replace. The Pursuit environment [14] offered graphical abstractions for 
writing file management scripts.  Although systems have been built for a variety of tasks and data, there 
have been few studies of the systems’ long-term usage or the use of other abstractions in tandem. 

Many end-user programming systems have been informed by Blackwell's "Attention Investment" theory 
[2], which argues that feature adoption is a factor of users' perceived cost and reward of an unfamiliar ab-
straction. Of course, many factors can influence these perceptions, including gender and self-efficacy [1], 
co-workers’ knowledge of software applications, and the degree to which abstractions can support each 
other between applications. Many of these factors were detailed in Nardi’s ethnographic work investigating 
the use of spreadsheets and other tools in various workplaces [15]. For example, she identified one type end 
user programmer that she calls “tinkerers,” which often play the role of introducing less experienced co-
workers to unfamiliar abstractions. Because Nardi used semi-structured interviews, the range and preva-
lence of the trends that she observed are unknown. 

Studies of people using abstractions outside of lab contexts have largely focused on a single domain of end-
user programming at a time. For example, Rode et. al. have conducted interviews with end users in the 
home to learn what abstractions are supported by home appliances [20], finding two types of widely used 
categories of abstractions, named “ahead of time” and “repeats easy.”  Fisher and Rothermel [4] have stud-
ied public Excel spreadsheets available on the web in order to assess the prevalence of macro and formula 
use, finding that very few spreadsheets use formulas, and if they do, they use relatively simple mathemati-
cal operators and functions. While the corpus is quite helpful for analyzing the usage of specific 
abstractions in spreadsheets, the corpus has no data about the individuals responsible for the spreadsheets, 
or what other abstractions they may also use as part of their work activity. Rosson et. al. have focused on 
the use of web-programming environments by end users, investigating the motivations and goals behind 
their use of HTML and other languages [21]. They found that many web programmers became web pro-
grammers out of circumstance rather than explicit choice (for example, taking over the management of a 
web site for a friend). Although they were able to collect more personal information in their surveys, they 
did not study their respondents’ use of particular abstractions in web applications, such as links and server-
side includes.   

To our knowledge, the only other wide-scale studies that inform this work are secondary analyses of US 
Bureau of Labor Statistics studies of application use [25], which indicate that over 45 million people used 
spreadsheets and/or databases at American workplaces in 2001, and this number is expected to climb to 55 
million by 2012. The aim of the survey we present in this paper is to begin to characterize and cluster these 
individuals as well as other end user programmers, providing additional details about the features and ab-
stractions that they use. 
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3. Survey 
This section discusses the questions that we presented to Information Week readers, and it discusses the 
demographic characteristics of the respondents, particularly the fact that many work in IT departments and 
have substantial programming skills.  This section also notes a low response rate (under 1%) and some 
small non-response skew in demographic characteristics.  All these factors may limit the generalizability of 
our results.  Thus, we anticipate needing to deploy follow-up studies, as outlined in Section 6. 

3.1 Motivation and Context 
Existing characterizations of end user populations based on software usage provide only minimal guidance 
on how to help end user programmers practice better software engineering. A coarse-grained categorization 
based on software usage is inadequate for guiding programming tool designers:  it tells what tools people 
use but not what portions of those tools receive heavy use.  It glosses over communities of end users with 
special needs or capabilities, and it fails to highlight concerns spanning multiple types of environments. 

Hence, in this survey, we wanted to go deeper than software usage and also ask about feature usage.  In 
particular, we have chosen to ask about usage of features that might be reasonably construed to relate to 
programming.  While definitions of “programming” vary (see [23] for a summary), features of interest cer-
tainly include those related to creation of JavaScript functions, hyperlinks, stored procedures, database 
tables, and spreadsheet macros. 

Moreover, we chose to focus on programming features related to the representation of abstractions.  We 
were led to this focus by a realization that abstraction is one of the principal techniques that professional 
programmers have developed in order to support the creation of high quality code.  For example, high nota-
tion viscosity (the difficulty of making local changes) can damage software maintainability, but it is known 
that “viscosity can be reduced by increasing the number of abstractions” [6]  This maintainability-
enhancing design principle first appeared in the software engineering literature over thirty years ago [19]; 
likewise, researchers realized long ago that comprehensive testing requires modular code [3] [18].  How-
ever, abstractions had also been identified as difficult to learn [5] [17], so many end user programming 
environments seek to reduce the need for end users to be consciously aware of using abstractions [10] [16]. 

When designing the study, the three main abstractions we had sought to study were variables, functions, 
and data structures.  Researchers have provided support for these abstraction representations in a variety of 
end user programming environments (as we have discussed in [24]), so there seems to be an instinctive 
recognition among researchers that these are important features.  We doubt that end users are likely to 
make heavy use of more advanced abstraction representations like abstract data types and inheritance hier-
archies of classes, and we have seen nothing in the results of this survey to make us suspect otherwise.  
(Although we saw feature-usage clusters related to functions and data structures as anticipated, we did not 
find a variable-specific cluster.  Instead, we found a macro-related cluster.  These findings are discussed in 
more detail by Section 4.) 

In order to evaluate how abstraction usage spans multiple environments, we have asked about comparable 
features across a variety of software environments, hoping to detect clusters of logically related features 
that end users have a propensity to use.  As described in Section 4, we did indeed observe such clusters 
suggesting that certain feature usage propensities do co-occur.  This finding could be caused by a variety of 
underlying phenomena ranging from users’ understanding to business processes.  Thus, we anticipate need-
ing to follow these surveys with interviews, tests, or other studies to better understand why clusters exist. 

To conclude, our survey represents an enhanced method of characterizing the end user population, based on 
categorizing end users according to the ways they represent abstractions. Since the use of abstraction can 
facilitate key software engineering goals (such as improving reusability and maintainability), this categori-
zation promises an improved ability to highlight niches of end users with special software engineering 
capabilities or struggles. 

3.2 Survey Instrument 
Our survey contained four parts, the first of which asked users whether they or their subordinates had used 
each of six pieces of software in the past three months.  The main five classes of interest were databases, 
web page editors, web server scripting languages, spreadsheets, and word processors / slide presentation 
editors.  (The sixth class, business intelligence software, was used by only 22% of respondents and will not 
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be discussed further in this report.)  If the respondent indicated usage of a piece of software, then we asked 
about feature usage within that software during the past three months.  These feature questions were de-
signed to help evaluate whether the respondent or subordinates were engaging in programming-like 
activities.  For example, if the respondent indicated usage of web page editing software, then we asked if 
the respondent or any subordinates created JavaScript functions. 

In the second part of our survey, we asked about the relationship between the respondent’s work and soft-
ware usage.  In this report, we focus on six questions wherein we asked the respondent to consider how 
useful the web was during the previous year.  Specifically, we asked about the usefulness of the web as a 
source of examples, documentation, and numerical data, and also as a destination for publishing examples, 
documentation, and numerical data. 

The third part of our survey asked about familiarity with certain programming terms: variables, subrou-
tines, conditionals, and loops.  For each programming term, we provided a brief definition and, if 
appropriate, a short list of synonyms that the user might be more familiar with.  If the respondent indicated 
familiarity with the programming term, then we asked if he or she had personally used the corresponding 
construct in the past year.  For the “subroutines” term, we asked two usage questions rather than just one, in 
order to distinguish between creation of subroutines and usage of subroutines created by other people. 

Finally, the fourth part asked a number of questions concerning the respondent’s firm and individual back-
ground, with a particular emphasis on education and training.  In retrospect, we would have liked to include 
a number of additional questions, particularly gender and age, which we will include in any future surveys 
(see Section 6).1 

3.3 Survey Delivery 
In late 2004 and early 2005, we partnered with Information Week magazine to develop our online survey of 
technology-savvy individuals at American firms.  As discussed in Section 3.2, the questions of this survey 
primarily focused on usage of software features by respondents and their subordinates.  In this section, we 
describe the process by which we designed and deployed the survey, and how we cleaned the data. 

The over-arching consideration in designing the survey was our desire to eventually discover whether ab-
straction might help end users produce better software—and if so, then what kinds of abstraction might 
show the most promise.  One key precondition for this, however, is to understand whether end users can 
use abstractions at all.  Hence, the primary goal of the current survey is to begin documenting the extent 
and variety of end user abstraction within existing popular tools. 

The other consideration in designing our survey was to evaluate questions and analysis techniques that 
might prove useful in a later survey of a targeted sample.  Consequently, in designing the current survey, 
we chose questions that covered the “lowest common denominator” for a wide variety of workers.  We also 
included some questions, such as those dealing with business intelligence systems, that Information Week 
wished to deploy for their own purposes.2 

We tested the survey by presenting it to three marketing professionals.  We delivered the questions to two 
of these people via a simple web implementation that also provided a “scratch pad” where they could enter 
comments concerning the questions; we presented the questions to the third person verbally, which allowed 
us to perceive facial expressions and discuss the questions if they were unclear.  These practice runs raised 
a number of issues that provoked some question rewording.  For the most part, we simply needed to add 
clarifying parenthetical comments; for instance, in the question about whether respondents used spread-
sheet functions when typing in cells, we added a parenthetical comment explaining that “sum” exemplified 
the sort of function we were asking about.  Finally, Information Week implemented the survey using the 
Inquisite web-based online survey system [8] and tested it several more times using members of their staff, 
which provoked a few final layout changes. 

                                                           

1 For the text of our 96 questions, refer to Appendix A.   

2 Information Week’s report, which is based on the subset of 378 respondents who Information Week classi-
fied as business technology professionals, is available at 
http://www.informationweek.com/story/showArticle.jhtml?articleID=163102092 
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Information Week announced the survey by sending 125,000 emails to subscribers who had previously in-
dicated their interest in receiving such announcements.  As an incentive for participating, respondents were 
entered into a drawing for one first prize of $500 and five second prizes of $100 each.  Within two months, 
831 people completed the survey.   

Information Week also published a link to the survey on their web site.  Although they did not instrument 
the survey URL to record whether respondents found the survey via the emails or via the main web site, 
virtually all respondents took the survey soon after the emails went out.  (Over 95% took the survey within 
one week of the emails, even though the survey was deployed for approximately two months.)  Conse-
quently, it is safe to assume that the sample frame generally corresponded to the Information Week database 
from which the email addresses were selected.  To assess non-response bias, we compare our sample to that 
database in Section 3.4. 

We received the data from Information Week in comma-separated-value format and imported it into SAS 
9.1.3.  Skipped questions were flagged as missing, as were “I Don’t Know” answers.  Since the survey was 
deployed via the web, and since most of our questions were multiple choice, very few items contained un-
intelligible entries.   

The main exception was the question about how many subordinates the respondents had.  Due to the im-
plementation of the survey, respondents were able to enter arbitrary text into this item (such as “varies”).  
Moreover, some answers were ambiguous as to how many subordinates the respondent had (if any).  Un-
fortunately, we also found that respondents with a large number of subordinates tended to report extremely 
high levels of feature usage in essentially every category; consequently, after viewing various plots of fea-
ture usage versus subordinate count, we decided to discard data from respondents with 1000 or more 
subordinates, as well as any respondents for which we could not interpret the subordinate count.  Of our 
original 831 respondents, this left 816.  

We developed a coding system for the handful of demographic open response variables used in Section 5.2, 
such as college major and industry.  In general, these were relatively unambiguous to code, so we did not 
implement any inter-rater checks; moreover, none of these variables showed any hint of being related to 
any of our statistically significant results.  Consequently, although this survey has provided good guidance 
for converting these questions into multiple choice in any future surveys, we may consider omitting these 
questions altogether.3 

Finally, during our data cleaning process, we took the opportunity to perform cross-checks between related 
items.  For example, we included two copies of a question about creation of web forms (once in the context 
of web page editors, and once in the context of web server scripting).  If the user answered “No” to one of 
these items but “Don’t Know” or skipped the other, then we set both answers to “No” (and analogously for 
the situation involving “Yes” and “Don’t Know”).  Lastly, if the user answered “Yes” to one but “No” to 
the other, then we changed both to “Don’t Know.”  These modifications affected less than a dozen respon-
dents. 

3.4 Sample Characteristics 
In general, the people who responded to our survey reported a great deal of technical knowledge.  This was 
not surprising, since the sample frame of respondents in the database that Information Week cultivates also 
tended to be technically savvy, as many of them worked in Information Technology (IT) departments.  Due 
to non-response, our respondents tended to be slightly more likely to be consultants and somewhat more 
likely to work for small firms.  Yet, as described in Section 5.2, our results do not appear to be strongly 
dependent on these demographic variables, so this survey’s results may generalize to the entire sample 
frame.  Of course, in order to generalize to a larger section of the American workforce, the results of this 
survey would require confirmation through a follow-up survey with a more controlled sample, as discussed 
in Section 6 

                                                           

3 We did, however, implement a more robust coding process for certain open-response variables, particu-
larly those related to usage of help systems by respondents.  These items are not central to the present 
report and may be discussed at a later date. 



 

 - 6 - 

3.4.1 Characterization of Respondents 
We found that respondents generally reported significant technical background.  Most respondents pos-
sessed an educational background that would be expected to give them strong technical skills.  All 
respondents had at least a high school education, and 79% had at least a Bachelor’s degree.  Moreover, 
26% of all respondents had a computer-centric major such as computer science, information technology, or 
e-commerce; an additional 40% of all respondents had a math-heavy major, such as mathematics, engineer-
ing, science, or accounting. 

Given this educational background, it is not surprising that respondents generally were familiar with several 
programming concepts: variables, subroutines, conditionals, and loops.  In fact, 79% of respondents were 
familiar with all four terms.  Moreover, respondents generally reported actually using the corresponding 
programming constructs.  In the past year, approximately 35% of all respondents created variables, used 
co-workers’ subroutines, created new subroutines, coded conditionals, and coded loops.  With such high 
programming knowledge among respondents, it is not surprising that most features related to abstraction-
creation were used by many of the respondents, as shown in Table 1.   

Table 1: We found that most (but not all) features were used by many respondents (N=816).  The top 

ten feature rates are bolded below. 

Software 

Category 

Software Us-

age (% of all 

users) 

Feature 

Variable 
Theme of Feature Variable 

Feature Us-

age (% of all 

users) 

svr_include1 Using Web server-side static includes 16.3 

svr_include2 Referencing PHP/Perl libraries 27.9 

svr_new Using PHP/Perl “new” function 25.4 

Server-Side 
Code 

52.3 

svr_func Creating web server script functions 40.9 

web_link Creating hyperlinks 65.2 

web_form Creating web forms 52.2 

web_new Using JavaScript “new” function 23.3 

web_func Creating JavaScript functions 34.3 

Web Pages 68.6 

web_behav Creating web page behavior scripts 42.9 

db_link Referencing records by key 74.0 

db_table Creating tables 71.7 

db_func Creating stored procedures 49.5 
Databases 79.3 

db_view Creating database views 68.1 

ss_chart Creating charts in spreadsheets 80.1 

ss_func Using functions (“sum”) linking cells 89.3 

ss_tmpl Creating spreadsheet templates 50.4 

ss_macro1 Recording spreadsheet macros 42.3 

ss_macro2 Creating/editing spreadsheet macros 38.6 

Spread-
sheets 

93.1 

ss_link Creating inter-spreadsheet references 66.2 

dsk_tmpl Creating document templates 73.3 

dsk_link Making inter-document hyperlinks 53.7 

dsk_macro1 Recording desktop editor macros 33.3 

Other 
Desktop 
Software 

96.1 

dsk_macro2 Creating/editing desktop editor macros 30.8 

 

Although the respondents were almost uniformly quite technically savvy, they did vary somewhat in their 
actual job function.  Approximately 23% were IT or networking staff, 26% were IT or networking man-
agement, 17% were consultants or freelancers, and the remaining 35% were business staff or management.  
Moreover, respondents varied widely in their number of subordinates.  Approximately 24% had no subor-
dinates, another 29% had 1, 2, or 3 subordinates, another 28% had 4 to 10 subordinates (inclusive), and the 
remaining 19% had 11 or more subordinates.4 

                                                           

4 Our survey pre-testers consistently interpreted the term “subordinate” to include the entire subtree of peo-
ple beneath them, rather than just people who directly reported to them. 
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Just as our respondents varied widely in their job title and number of subordinates, they worked for firms 
that varied in total employee count and revenue.  Specifically, approximately 44% of respondents worked 
for small firms with fewer than 100 workers, another 35% worked for medium firms numbering 100 to 
4999 workers, and the remaining 21% worked for large firms numbering at least 5000 workers.  Approxi-
mately 49% of firms had revenue under $50 million, another 40% had revenue of more than $50 million, 
and the remaining 11% chose not to report their company revenue. 

Finally, although 10% of firms were IT vendors or related, the remainder were spread out over a wide vari-
ety of other industries.  The most common was Consulting and Business Services at 17%, and the other top 
three after IT Vendors were Education (9%), Government (7%), and Non-Computer Industrial Manufactur-
ing (7%).  In short, the stereotypical respondent would probably be a member of the IT staff at a firm where 
IT does not comprise the firm’s primary product or service. 

3.4.2 Potential Non-Response Effects 
Information Week had collected certain demographic variables in December 2004 to characterize the data-
base from which they randomly selected the sample.  In particular, we could compare our data set to the 
sample frame on firm industry, total employee count, and annual revenue.  We found some differences be-
tween the two, particularly a relatively higher response rate by consultants and other non-managers, as well 
as people at small firms. 

After survey collection had begun, we were disappointed to learn that the answer wording did not precisely 
match perfectly between the Information Week database demographic questions and the corresponding 
questions in our survey.  Hence, most comparisons between the sample frame and the respondents must be 
done on a slightly qualitative basis. 

Compared to members of the sample frame, our respondents were more likely to be in the Consulting and 
Business Services industry, as shown in Table 2.  However, it appears that no single industry was very un-
der-represented in our database compared to the sample frame.  In particular, our sample contained about 
the same fraction of respondents in the IT industry as did the sample frame. 

Table 2: We found that Consultants and Business Services workers were slightly over-represented in 

our sample, compared to the sample frame.  The most five common industries in our sample are 

shown below (N=816). 

Industry Our Sample Sample Frame 

Consulting and Business Services 17% 7% 

IT Vendors 10% 10% 

Education 9% 7% 

Government 7% 9% 

Non-Computer Manufacturing 7% 10% 

 

Compared to members of the sample frame, our respondents were somewhat more likely to work for small 
firms, as shown in Table 3.  Fortunately, as noted in Section 5.2, firm size did not turn out to be a strong 
predictor of propensity to use features, so these differences in firm size caused by non-response are not 
likely to cause major problems in our analysis.   

Table 3: We found that small companies were slightly over-represented in our sample, compared to 

the sample frame.  The relative proportions of small, medium, and large businesses are shown below 

(N=816). 

Total Employee Count Our Sample Sample Frame 

Fewer than 100 workers 44% 31% 

100 to 4999 workers 35% 33% 

5000 or more workers 21% 35% 

 

Compared to members of the sample frame, our respondents were more evenly divided between IT and 
non-IT jobs, and between management and non-management, as shown in Table 4.  These differences 
might stem from wording differences between items in our survey and the Information Week database; spe-
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cifically, whereas we refer to “IT or networking,” the Information Week database refers to “Information 
Systems.”  However, it seems more likely that the managers who were contacted  relatively less likely to 
have time or interest in answering our survey, resulting in a relatively lower response rate from manage-
ment.  Note also that Information Week intentionally cultivates their database in order to skew it toward 
managers and other “decision makers,” so it is possible that this differential non-response fortuitously may 
have made our respondents more representative of a random American workplace, though it is difficult to 
know this for certain. 

Table 4: We found that our sample was more evenly divided between IT and non-IT in our sample, 

compared to the sample frame.  The relative proportions of four occupational groups are shown be-

low (N=816). 

Total Employee Count Our Sample Sample Frame 

IT or networking staff 23% 10% 

IT or networking management 26% 54% 

Consultant or freelancer 17% 7% 

Business staff, management, and other 35% 28% 

4. Result 1: Identification of Three User Categories 
In this section, we review the factor analysis statistical technique and then describe how we applied it using 
SAS 9.1 to our data.  This analysis identified three factors underlying the covariance among users’ propen-
sity to use various programming-related features.  These scales correspond to Macro, Linked-Structure, and 
Imperative programming. 

As discussed below, the “best” set of factors is not uniquely defined—there are an infinite number of “rota-
tions” of the factors in a multi-dimensional space that are equally valid ways of representing sources of 
covariance among data items.  One way to verify that our factors are reasonable is to repeat the factor 
analysis with different settings and then to verify that the same qualitative factor structure results.  We have 
performed this verification, as discussed in Section 4.4, and have found that our qualitative factor structure 
do not vary significantly as we vary our settings.  Of course, these settings do produce slightly different 
quantitative factor loadings.  It is the qualitative structure of the factors that proves robust under such a 
verification process; therefore, in Section 4, we largely focus on the qualitative structure (though for refer-
ence, we present the quantitative results of various factor analysis settings in Table 6 and Table 7). 

Another way to check the quality of each factor generated by factor analysis is to use the factor’s qualita-
tive structure to guide the creation of a traditional scale whose Cronbach alpha can be calculated in the 
usual manner, as we discuss in Section 5.1. 

4.1 Review of Factor Analysis 
In this section, we briefly review the goals and assumptions implicit in factor analysis.  For further details, 
consult the introductory work [12] or the slightly more advanced [9] and [11]. 

4.1.1 Overview 
A “factor” corresponds to an underlying variable that has not been measured but which is presumed to rep-
resent a construct responsible for causing covariant relationships among observed variables.  That is, factor 
analysis aims to identify the reasons that observed variables “go together.”  Each factor loading is a vector 
each of whose cells reflects the correlation of that factor with one observed variable; thus, if a factor con-
tains large values in two cells, then the corresponding two data variables each have a high correlation with 
the factor (and with each other).  

Because factor analysis tends to highlight co-occurrence among data items, it is useful for guiding the crea-
tion of traditional scales.  Creating a scale usually involves averaging together variables that measure a 
certain phenomenon or characteristic but do so with slightly varying emphases.  Averaging the various 
variables helps to give a fuller picture of the underlying characteristic by “smoothing over” any bias in each 
particular variable. 

For example, ethnography might record the amount of time that programmers spend in sixty different ac-
tivities, ranging from typing code to talking on the phone.  Factor analysis could potentially reveal 
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underlying factors that cause certain activities to co-occur.  For instance, it might (hypothetically) reveal a 
“collaborative-ness” factor showing that people who often talk on the phone are also likely to perform other 
collaboration activities, such as writing emails and attending meetings.  If researchers had previously theo-
rized that such an underlying factor should exist, then the factor analysis lends credence to the theory, and 
the researchers would then be more justified in combining these items together into a scale representing the 
theorized “collaborative-ness” construct.   

Note that detecting factors’ underlying covariance is just the first step toward the ultimate goal of providing 
better tools.  The next step is to understand why those factors exist; in the example above, for example, the 
collaborative-ness could correspond to an extroverted, communicative personality type or it could corre-
spond to a business process requiring several collaborative activities.  Our current survey and analysis aims 
at the first step, detecting factors that underlie co-occurrence, and in our future work, we will attempt to 
ferret out the reasons why these factors exist. 

When performing factor analysis, it is important to avoid trying to extract more factors than the data will 
support.  Each factor’s loading vector is an eigenvector of the data’s covariance matrix, and one commonly 
practiced threshold for accepting a factor is whether the corresponding eigenvalue exceeds 1.0.  Moreover, 
there should usually be at least three observed variables for every factor to be extracted, so in the example 
of sixty activity measurements per respondent above, it would make no sense to try extracting more than 
twenty underlying factors. 

In addition, exploratory factor analysis attempts to uncover factors explaining covariance among observed 
variables.  If a variable lacks significant communality with the rest of the variables, then the outlier should 
not be included in the factor analysis, since doing so may lead to the appearance of spurious factor solu-
tions.  Moreover, writers emphasize the importance of having a theory or at least a conceptual framework, 
such as that described in Section 3, to guide the selection of variables to include in factor analysis. 

4.1.2 Comparison to Principal Component Analysis 
Factor analysis attempts to reveal a few underlying variables that explain aspects of many observed vari-
ables, and in this sense it resembles principal component analysis.  However, these two techniques differ 
slightly in philosophy and assumptions.  Principal component analysis attempts to represent a large number 
of observed variables as strict linear combinations of unmeasured underlying variables; it attempts to di-
rectly model observed variable values.  In contrast, factor analysis does not attempt to predict variable 
values, but rather variable covariance.  (In a sense, factor analysis is like a primary component analysis on 
the data’s correlation matrix, rather than on the data itself.) 

Consequently, principal component analysis assumes that observed variables can be completely modeled 
by these underlying variables, and if any variance remains unexplained, that this is simply because not all 
of the underlying variables have been identified as yet.  In contrast, while factor analysis looks for “com-
mon” factors that explain covariance among multiple observed variables, it also recognizes that each 
observed variable may also have individual character, as well, and that each variable’s variance is therefore 
the result of “unique” factors as well as “common” factors. 

Because we seek to reveal co-occurrence patterns among feature usage propensities, we have selected fac-
tor analysis.  As discussed in the following sections, this allows us to test our hypotheses about which 
features should “go together,” and then to build scales representing those constructs. 

4.2 Data Preparation & Adjusted Feature Propensity Items (AFPIs) 
As described in Section 3.2, our survey asked about software usage by respondents and their subordinates.  
For each piece of software used, we asked about usage of features related to programming.  We then per-
formed the three steps described below to prepare the feature data for factor analysis. 

First, we numerically coded each response as follows: “No” = 0, “Yes” = 1, “Don’t Know” or 
skipped/missing = .U (which is a special symbol used by SAS to denote data that should not be included in 
analyses).  Note that if the respondent did not report usage of the corresponding piece of software, then the 
feature variable was recorded as skipped/missing. 

Second, we recognized that not every “Yes” is equally “resounding” or significant.  For example, 66% of 
all respondents reported usage of web page editors and also creation of hyperlinks (item web_link), 
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whereas only 16% of all respondents reported usage of web server scripting and also coding of static 
server-side includes (item svr_include1).  Consequently, we wanted to rescale answers so that a “Yes” for a 
more commonly used feature corresponded to less than 1.0, while a “Yes” for a less commonly used feature 
corresponded to more than 1.0.  SAS includes the “proc standard” command precisely for this purpose, 
which standardized each variable to a mean of 0.0 and standard deviation of 1.0. 

Finally, in preparation for revealing feature usage propensities, we needed to remove the effect that bun-
dling has on feature usage.   Obviously, feature usage tends to co-occur a great deal within the same tool: 
creation of hyperlinks, for example, is highly correlated with creation of web forms; such an effect has 
nothing to do with abstraction, but rather with the environment itself.  To remove the effect of feature bun-
dling within each tool, for each feature, we subtracted off the average feature usage by that respondent for 
that tool.  For example, we adjusted each of the four database feature items for each respondent with equa-
tions like those shown in Table 5. 

Table 5: As exemplified by the database items below, we subtracted the average feature usage within 

the tool so that feature usage items better represent relative propensities.  

Variable Question Theme 
Remove Tool Bundling Effect by Replacing the Variable’s 

Value with the Value Shown Below 

db_table Creating tables db_table – sum(db_table,db_view,db_func,db_link)/4 

db_view Creating views db_view – sum(db_table,db_view,db_func,db_link)/4 

db_func Creating stored procedures db_func – sum(db_table,db_view,db_func,db_link)/4 

db_link Referencing records by key db_link  – sum(db_table,db_view,db_func,db_link)/4 

 
By subtracting a baseline feature usage for each tool for each respondent, our adjustments reveal latent fea-
ture propensities that do not stem from the tool itself.  The side-effect is that for each tool for each 
respondent, the adjusted feature propensity items must now total zero (e.g.: db_table + db_view + db_func 
+ db_link now equals 0 in the example above).  As a result, for each tool for each respondent, some of the 
adjusted feature propensity items will be positive, and some will be negative (or they will all be zero!), re-
flecting high or low feature usage propensities, respectively.  We call the resulting 23 items “adjusted 
feature propensity items” (AFPIs) in the sections that follow.  (See Table 6 for a list of the AFPIs.) 

4.3 Characterization of User Categories 
Given the adjusted feature propensity items (AFPIs) described in Section 4.2, we now turn to the question 
of which AFPIs are correlated with other AFPIs—which feature propensities co-occur?  To answer this 
question, we applied factor analysis. 

4.3.1 Factor analysis procedure 
Unfortunately, applying factor analysis is not quite as straightforward as simply dumping the data into the 
SAS “proc factor” routine, which runs an exploratory factor analysis.  As noted in Section 4.1, factor analy-
sis relies on the assumption that a handful of common factors underlie the covariance among multiple 
observed variables.  In conformance with this assumption, we had to ensure that we did not try to extract 
more factors than the data supported, and that we did not try to explain covariance between variables that 
did not share any covariance with the majority of the variables.  Thus, the first few steps of factor analysis 
involve identifying and removing variables that do not share significant covariance with the remaining vari-
ables. 

We started by running “proc factor” on all 23 AFPIs shown in Table 6 to see how many factors the data 
would support.  Only three eigenvalues exceeded 1.0, so we reran the analysis with the restriction that SAS 
should attempt to model the covariance matrix using only three factors.  (Retaining a fourth produced a 
relatively weakly loaded factor with little readily interpretable semantic content, which was not surprising 
since our first three factors together already explained 71% of the total variance.) 

We then checked how much commonality the AFPIs shared with one another and found that 4 AFPIs had 
very low commonality with the other 19 AFPIs. Specifically, the sum of each AFPI’s squared factor load-
ings was under 0.1, whereas the commonality for the other 19 AFPIs exceeded 0.1 and averaged over 0.4.  
We thus eliminated the following 4 AFPIs from further factor analysis:  
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• Creation of behaviors in web page editors (web_behav) 

• Creation of functions/procedures in web server script (svr_func) 

• Creation of data reference links between spreadsheets (ss_link) 

• Creation of database views (db_view) 

(Variables with low commonality such as 0.1 generally do not have large factor loadings, anyway, so re-
taining or omitting these variables does not change the results substantively.) 

Once we removed variables that lacked significant covariance with the main body of variables, we ran our 
factor analysis with the remaining 19 AFPIs, yielding the three factor loadings shown in Table 6.  These 
factors dealt with macros, linked structures, and imperative coding.  The SAS command “proc factor 
method=p priors=max rotate=varimax”, though running the analysis with other settings resulted in a similar 
qualitative pattern.  Section 4.4 discusses the meaning of these parameters, and the effects of varying them. 

Table 6: Factor analysis of our data yielded the factor loadings shown below (N=168).  Bolded cell 

values are somewhat large versus other items in that column; unbolded out numbers are relatively 

small.  As discussed in the text, the four items at the bottom were omitted from our final factor load-

ings due to poor commonality. 

AFPI 

Variable 
Question Theme 

Factor1 

Macros 

Factor2 

LinkStruct 

Factor3 

Imperative 

web_link Creating hyperlinks -0.05 0.06 -0.62 

web_form Creating web forms 0.15 0.18 -0.50 

web_new Using JavaScript “new” function -0.03 -0.07 0.64 

web_func Creating JavaScript functions -0.04 -0.09 0.50 

svr_include1 Using Web server-side static includes -0.09 0.25 -0.26 

svr_include2 Referencing PHP/Perl libraries -0.06 -0.41 -0.06 

svr_new Using PHP/Perl “new” function 0.07 0.01 0.42 

ss_chart Creating charts in spreadsheets -0.40 0.27 0.14 

ss_func Using functions (“sum”) linking cells -0.21 0.37 -0.10 

ss_tmpl Creating spreadsheet templates -0.24 -0.19 0.12 

ss_macro1 Recording spreadsheet macros 0.60 -0.35 -0.13 

ss_macro2 Creating/editing spreadsheet macros 0.68 -0.18 0.02 

dsk_tmpl Creating document templates -0.59 -0.02 -0.17 

dsk_link Making inter-document hyperlinks -0.63 -0.04 0.07 

dsk_macro1 Recording desktop editor macros 0.86 0.03 0.07 

dsk_macro2 Creating/editing desktop editor macros 0.87 0.07 0.09 

db_link Referencing records by key -0.02 0.68 -0.06 

db_table Creating tables -0.01 0.54 -0.21 

db_func Creating stored procedures 0.04 -0.72 0.22 

web_behav Creating web page behavior scripts OMITTED OMITTED OMITTED 

svr_func Creating web server script functions OMITTED OMITTED OMITTED 

ss_link Creating inter-spreadsheet references OMITTED OMITTED OMITTED 

db_view Creating database views OMITTED OMITTED OMITTED 

 

We used 168 respondent records in this factor analysis, rather than the full set of 816, due to limitations in 
the factor analysis technique, which cannot handle missing values.  If respondents indicated that they and 
their respondents did not use a software tool, then our skip logic bypassed the questions corresponding to 
features within that tool.  As a result, unless respondents indicated usage of all five software tools, we were 
missing answers for some or all feature questions, so we could not construct corresponding AFPIs.  Thus, 
we only included 168 respondents in our initial factor analysis. 

This is a serious limitation.  It implies that the results of the factor analysis apply to only respondents who 
used every feature.  To deal with this limitation, we will focus on factors’ qualitative structure in Sections 
4.3.2 and 4.4, then use that structure in Section 5 to guide the creation of traditional scales, which apply to 
all respondent records and checked using traditional measures such as Cronbach alpha. 
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4.3.2 Qualitative factor structure 
By inspecting which AFPIs were most strongly correlated with each factor (the factor loadings in Table 6), 
we associated an apparent meaning with each factor.   

The first factor corresponded to a cluster of features related to macros.  Specifically, it correlated most posi-
tively with recording of spreadsheet macros (ss_macro1), textual editing of spreadsheet macros 
(ss_macro2), recording of macros in word processors and slide presentation editors (dsk_macro1), and tex-
tual editing of macros in word processors and slide presentation editors (dsk_macro2).  In addition, the first 
factor demonstrated a negative correlation with the creation of inter-document hyperlinks (web_link), and 
also with document templates in word processing and slide presentation editors (dsk_tmpl).  In other words, 
this “Macros” factor represents the fact that when people demonstrate a propensity toward one macro fea-
ture, they demonstrate strong positive propensity toward other macro features.  (These users also 
demonstrated a somewhat weaker dis-propensity toward creating templates and hyperlinks, perhaps simply 
because of the normalization described in Section 4.2, or perhaps because users who know how to use mac-
ros have an inclination to use macros in situations where other users might use templates).  For this reason, 
we have termed this factor the “Macro” factor. 

The second factor corresponded to a cluster of features related to creating and linking data structures.  Spe-
cifically, it correlated most positively with the AFPIs for creating and linking database tables via keys 
(db_table and db_link).  It also loaded somewhat on the creation of other structured objects: web forms 
(web_form) and charts (ss_chart), which puzzled us until we realized that charts usually depict lists of X 
and Y values—namely, data structures called “tuples”.  The factor also loaded positively on linking web 
pages through “static includes” (svr_include1) and linking spreadsheet cells using simple functions like 
“sum” (ss_func).  It negatively correlated with creation of database stored procedures (db_func), which was 
instead part of the third factor’s cluster.  Because the factor correlated so strongly with this cluster of fea-
tures related to creating and linking structures, we have termed it the “LinkStruct” factor. 

The third factor corresponded to a cluster of features related to imperative coding.  Specifically, the third 
factor loaded most heavily on usage of the “new” command in Perl and PHP in web server scripting 
(svr_new), usage of the “new” command in JavaScript (web_new), the creation of functions in JavaScript 
(web_func), and creation of stored procedure functions in databases (db_func).  It was negatively correlated 
with creation of hyperlinks (web_link) and web forms (web_form).  Because the third factor correlated 
with this cluster of features related to imperative programming, we have termed it the “Imperative” factor. 

To understand the significance of these results, let us focus for a moment on just one feature.  For example, 
consider creation of database stored procedures (db_func).  This feature was not part of the second factor’s 
cluster of features, which included creation of database tables (db_table) and database keys (db_link).  In-
stead, this second factor demonstrated a very strong negative correlation with creating database stored 
procedures.  Thus, the adjustment procedure discussed in Section 4.2 did not tend to produce all zeroes for 
these three database AFPIs, but rather produced an “odd-man-out” effect.  The fact that stored procedure 
creation was the “odd man out” suggests that the propensity to create stored procedures may come from a 
different underlying factor than does the propensity to create database tables and link them together. 

Moreover, the people with a propensity to create stored procedures also had a tendency to create JavaScript 
functions, to use the JavaScript “new” command, and to use the Perl or PHP “new” command.  In other 
words, stored procedure creation tended to co-occur with usage of other features in the “Imperative” clus-
ter. 

Thus, the analysis above uncovered an interesting result: People with a propensity to use imperative coding 
techniques in JavaScript, Perl, and PHP are more likely to use stored procedures in databases. 

To summarize, feature propensities demonstrated a clear clustering effect.  Section 4.4 reviews the robust-
ness of our results and Section 5 describes differences among the “Macro,” “LinkStruct,” and “Imperative” 
users in terms of their programming practices. 
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4.4 Robustness of Qualitative Factor Structure 
For any given data set, there exists an infinite number of alternate factor loadings which describe the corre-
lation structure equally well.  These represent linear combinations corresponding to rotations in a multi-
dimensional space and signify equally valid ways of interpreting the data.  The exact quantitative factor 
loadings will differ, but if running a factor analysis under a variety of reasonable settings continually pro-
duces the same qualitative structure, then this implies that the observed qualitative structure is a sensible 
way to represent the factors that underlie correlations within the data set. 

To explore some alternate factor loadings, we took advantage of alternate algorithms supported by SAS for 
extracting factors.  We found that these approaches generally generated “Macros,” “LinkedStruct,” and 
“Imperative” factors, though the exact loading coefficients varied somewhat. 

4.4.1 Robustness under alternate extraction methods 
Our initial analysis used the Principal Factor Analysis algorithm (specified with the METHOD=P setting).  
This algorithm resembles running a principal component analysis on the correlation matrix, except that 
each row’s 1.0 entries on the correlation matrix diagonal are replaced with an estimate of that item’s com-
monality.  After principal component analysis runs, extracting a set of factors, SAS re-estimates these 
commonalities, re-populates the diagonal entries and re-runs the analysis.  This repeats until commonalities 
cease to change much.  Our initial estimate of the commonalities used the maximum value from each row 
to populate each diagonal entry of the correlation matrix (specified with the PRIORS=MAX setting). 

We tried out two other factor analysis methods, ALPHA and ULS, revealing roughly the same qualitative 
structure as that described in Section 4.3.  Whereas Principal Factor Analysis attempts to explain as much 
variance as possible within the correlation matrix, the ALPHA and ULS use different goals to guide their 
factor extraction.  For example, the ALPHA method attempts to maximize a widely used measure of scale 
reliability, Cronbach alpha, for each of the generated factor-item loadings.  Thus, it was encouraging to see 
these alternate algorithms generate the same qualitative structure as did our initial analysis. 

4.4.2 Robustness under alternate rotation 
After extracting the factors, they are linearly re-combined by SAS in a way that helps to make them more 
interpretable.  One way to visualize this is as a rotation of the factors (as vectors) through a multi-
dimensional space so that they are more parallel to item axes (while still remaining consistent with the 
data).  The factors start out orthogonal to one another, meaning that they exhibit zero covariance.  The 
VARIMAX rotation that we used in our initial analysis preserved this factor orthogonality. 

An alternate approach, termed PROMAX, follows the VARIMAX rotation with a selective stretching of 
the vector space so that factor vectors lie even more parallel with item axes.  This means that factors lose 
their orthogonality, so they become correlated with one another (and consequently, factor loadings no 
longer precisely equal correlations between factors and items).  In exchange, the factors become more in-
terpretable as a result.  Applying PROMAX to our factors still generated the same qualitative structure, in 
terms of where the factor loads fell most heavily. 

4.4.3 Robustness upon exclusion of managers 
In feature questions, we asked whether the respondent or any subordinates had used the features in the past 
three months.  We wondered whether the same factors would appear if we repeated our initial analysis us-
ing only the 43 respondents who had no subordinates and who had no missing values in relevant questions. 

As shown in Table 7, the overall qualitative structure of the factors remained the same as in our initial 
analysis: the first factor loaded on macro AFPIs, the second loaded on structure and linkage, and the third 
loaded on imperative programming.  While the qualitative structure remained the same, some loadings 
strengthened slightly while others slightly weakened.  Specifically, relative to our initial analysis, the most 
significant changes were increased loading by the third factor on referencing of PHP/Perl libraries 
(svr_include2) and using the PHP/Perl “new” function (svr_new), both of which are related to imperative 
web server scripting and are therefore consistent with the “Imperative” label we associated with the third 
factor in our initial analysis.  
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Table 7: Factor analysis of data from respondents with no subordinates yielded the factor loadings 

shown below (N=43).  Bolded cell values are somewhat large compared to other items in that column; 

unbolded numbers are relatively small. 

AFPI 

Variable 
Question Theme 

Factor1 

Macros 

Factor2 

LinkStruct 

Factor3 

Imperative 

web_link Creating hyperlinks 0.03 0.03 -0.48 

web_form Creating web forms 0.37 0.22 -0.23 

web_new Using JavaScript “new” function -0.19 -0.05 0.45 

web_func Creating JavaScript functions 0.05 -0.22 0.17 

svr_include1 Using Web server-side static includes -0.07 0.12 -0.59 

svr_include2 Referencing PHP/Perl libraries -0.16 -0.10 0.53 

svr_new Using PHP/Perl “new” function 0.14 -0.12 0.36 

ss_chart Creating charts in spreadsheets -0.47 0.08 0.06 

ss_func Using functions (“sum”) linking cells 0.10 0.36 -0.12 

ss_tmpl Creating spreadsheet templates -0.14 -0.18 0.43 

ss_macro1 Recording spreadsheet macros 0.56 -0.16 -0.07 

ss_macro2 Creating/editing spreadsheet macros 0.61 -0.03 -0.07 

dsk_tmpl Creating document templates -0.66 -0.15 -0.38 

dsk_link Making inter-document hyperlinks -0.53 -0.06 0.48 

dsk_macro1 Recording desktop editor macros 0.80 0.18 -0.02 

dsk_macro2 Creating/editing desktop editor macros 0.86 0.10 -0.08 

db_link Referencing records by key -0.07 0.97 -0.08 

db_table Creating tables -0.07 0.97 -0.08 

db_func Creating stored procedures -0.12 -0.79 0.16 

web_behav Creating web page behavior scripts OMITTED OMITTED OMITTED 

svr_func Creating web server script functions OMITTED OMITTED OMITTED 

ss_link Creating inter-spreadsheet references OMITTED OMITTED OMITTED 

db_view Creating database views OMITTED OMITTED OMITTED 

5. Result 2: Links between Abstraction, Testing, and Documentation 
Guided by the qualitative structure discovered through our factor analysis, we proceeded to construct scales 
representing the “Macro,” “LinkedStruct,” and “Imperative” propensities of respondents.  ANOVA tests 
revealed that high propensity to use Imperative features was associated with a tendency to test and docu-
ment, while high propensity to use LinkStruct features was only weakly associated with these practices.  

5.1 Definition of Factor-like Scales 
As noted in Section 4.3.1, SAS omits records with missing values in factor analysis.  Consequently, guided 
by the factor loadings shown in Table 6, we wish to create traditional scales that can be applied to all re-
spondents.  

We were guided for two reasons by the qualitative factor structure shown in Table 6, rather than the par-
ticular correlation coefficients listed.  First, the exact numbers varied somewhat depending on which factor 
analysis algorithm we ran, as discussed in Section 4.4.  Second, we wanted to include only the most signifi-
cant items in each factor, rather than “throwing in the kitchen sink,” in order to keep the semantics of each 
factor as interpretable as possible.  Thus, for each of the three factors, we chose to sort the items according 
to absolute value of correlation coefficient, and then include in each scale only the five or six items with the 
largest absolute value of correlation coefficient. 

For example, as shown in Table 6, the “Macros” factor had a large positive correlation with four items and 
a large negative correlation with two items.  Specifically, it correlated positively with the recording of 
spreadsheet macros (ss_macro1), the textual editing of spreadsheet macros (ss_macro2), the recording of 
macros in word processors and slide presentation editors (dsk_macro1), and the textual editing of macros in 
word processors and slide presentation editors (dsk_macro2).  The factor also had a strong correlation, but 
with a negative coefficient, with the creation of templates in word processors and slide presentation editors 
(dsk_tmpl) and the creation of links among documents created in word processors and slide presentation 



 

 - 15 - 

editors (dsk_link).  (Negative values are a side-effect of the AFPI adjustment procedure outlined in Section 
4.2, and negative coefficients simply result from negative correlations.)  Hence, we include these six vari-
ables (ss_macro1, ss_macro2, dsk_macro1, dsk_macro2, dsk_tmpl, and dsk_link) in our “Macros” scale.  
Note that the last two of these will be multiplied by a coefficient of -1 because they were negatively corre-
lated with the “Macros” factor. 

Based on the factor loadings’ qualitative structure, we defined the following scales, which had standardized 
Cronbach alpha values of 0.82, 0.62, and 0.64, respectively: 

• PX_MACROS  = (ss_macro1 + ss_macro2 + dsk_macro1 + dsk_macro2 – dsk_tmpl – dsk_link)/6.0; 

• PX_LINKSTRUCT = (web_form + svr_include1 + db_link + db_table – db_func)/5.0; 

• PX_IMPERATIVE = (web_new + web_func + svr_new – web_link – web_form)/5.0; 

In the case of missing values, we omitted the corresponding adjusted feature propensity item (AFPI) from 
the formulas above, and adjusted the divisor accordingly.  After applying these scales to each respondent, 
we standardized each scale using “proc standard” to a mean of 0 and standard deviation of 1.  The resulting 
scales were not normally distributed (failing a Kolmogorov-Smirnov test at P=0.01, N=816), but they were 
essentially skewed unimodal with no floor or ceiling effects. 

5.2 Comparisons among User Categories 
In order to assess differences among categories of users, we created several scales (shown in Table 8) rep-
resenting concepts related to programming and general computing skills.  Missing variables in scales were 
replaced with 0 (“No” or “Never Useful”), then variables were standardized and averaged to generate the 
scale. (There was no effect on the ANOVA test results discussed below if we omitted records with missing 
values, rather than replacing with zero, or if we omitted respondents with subordinates.)  

After we had defined the three factor-like scales discussed in Section 5.1, as well as the scales shown in 
Table 8, we could determine whether our factor-like scales gave any “predictive power” with respect to the 
other scales.  To make this assessment, we divided the respondents into two categories—those who scored 
above average on the Macro scale, and those that scored below average on the Macro scale—and then used 
a standard ANOVA test to see whether respondents in each category differed on a scale of interest, such as 
knowledge of programming terms.  We repeated this analysis likewise for the LinkStruct and Imperative 
scales. 

As shown in Table 9, our factor-like scales did yield significant predictive power for many scales of inter-
est.  For example, respondents with greater-than-average propensity to use Imperative features had a higher 
knowledge of programming terms than did respondents with lower-than-average propensity to use Impera-
tive features.  In fact, people with higher propensity to use Imperative features showed higher 
sophistication on every “good programming practices” scale, including testing and documenting.  Com-
pared to people with a low propensity to use Imperative features, people with high propensity to use 
Imperative features reported more knowledge of programming terms, more usage of programming con-
structs, more web page testing, more spreadsheet testing, more propensity to create documentation, and 
higher perceived usefulness of the web.  (P ≤ 0.02 for these results. Non-empty cells in Table 9 show statis-
tically significant Type I ANOVA tests of the row’s specified scale based on the column’s specified 
categorization; all indicated cells were also significant under Tukey’s test.  The three categorizations were 
tested independently with df=1, N=816.  No other cells were significant at the P=0.05 level.   The shown P 
values are conservative, in that they incorporate Bonferroni’s correction to help control Type I error.) 

Likewise, people with higher-than-average propensity to use LinkStruct features were somewhat more so-
phisticated than people with lower-than-average propensity to use LinkStruct features.  Specifically, they 
reported more knowledge of programming terms, more usage of programming constructs, and more web 
page testing.  (P ≤ 0.03 for these results.) 

Finally, people with higher-than-average propensity to use Macro features were more likely to report usage 
of programming constructs than were people with lower-than-average propensity to use Macro features.   
(P ≤ 0.02 for these results.) 
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Table 8: We defined the scales shown below to assess differences among categories of users  (N=816).  

Scale Variable Question Theme 

know_variable            Personal familiarity with variables 

know_subroutine                  Personal familiarity with subroutines 

know_conditional         Personal familiarity with conditionals 

Knowledge of programming terms 
Cronbach alpha = 0.84 
 

know_loop                Personal familiarity with loops 

know_variable_more           Personal usage of variables 

know_subroutine_more1        Personal usage of others’ subroutines 

know_subroutine_more2        Personal creation of subroutines 

know_conditional_more        Personal usage of conditionals 

Usage of programming constructs 
Cronbach alpha = 0.89 

know_loop_more               Personal usage of loops 

Web page testing (single item) web_test Testing web pages in many browsers 

Spreadsheet testing (single item) ss_test Testing spreadsheets for accuracy 

ss_doc  Creates documentation accompany-
ing spreadsheets 

db_doc          Creating documentation accompany-
ing databases 

www_dest_ex            Perceived usefulness of web as a 
place to publish examples 

www_dest_doc           Perceived usefulness of web as a 
place to publish documentation 

Propensity to create documentation 
Cronbach alpha = 0.71 

www_dest_data          Perceived usefulness of web as a 
place to publish numerical data 

www_src_ex             Perceived usefulness of web as a 
source of examples 

www_src_doc            Perceived usefulness of web as a 
source of documentation 

www_src_data           Perceived usefulness of web as a 
source of numerical data 

www_dest_ex            Perceived usefulness of web as a 
place to publish examples 

www_dest_doc           Perceived usefulness of web as a 
place to publish documentation 

Perceived usefulness of the web 
Cronbach alpha = 0.82 

www_dest_data          Perceived usefulness of web as a 
place to publish numerical data 

demo_train_job_prog        Training in programming 

demo_train_job_web         Training in creating web pages 

demo_train_job_ss           Training in creating spreadsheets 

On-the-job training 
Mean of non-missing variables 
Cronbach alpha = 0.76 

demo_train_job_db           Training in creating databases 

On-the-job training in programming 
(single item) 

demo_train_job_prog Training on-the-job in programming 

High school training (single item) demo_train_hs High school training in programming 

Education (single item) demo_education Highest level of education 

Job function (single item) demo_job Job function: IT Staff / IT Mgmt / 
Consultant / Other 

College major (single item) demo_major1 Major: Computer-centric / Math-
related (e.g.: sciences) / Other 

Firm Industry (single item) demo_industry Industry: IT Vendor / Other 

Firm Revenue (single item) demo_revenue Firm yearly revenue 

Firm Size (single item) demo_empcount Firm total employee count 
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Table 9: As shown below, we found a number of statistically significant differences among categories 

of users.   (df=1, N=816.) 

Scale 
Categorize based 

On Macros 

Categorize based 

On LinkStruct 

Categorize based 

On Imperative 

Knowledge of programming terms  P = 0.03; F = 4.82 P < 0.01; F = 11.52 

Usage of programming constructs P < 0.01; F =7.25 P < 0.01; F = 8.27 P < 0.01; F = 16.17 

Web page testing  P < 0.01; F = 16.34 P < 0.01; F = 87.76 

Spreadsheet testing   P = 0.02; F = 5.14 

Propensity to create documentation   P < 0.01; F = 81.49 

Perceived usefulness of the web   P < 0.01; F = 56.47 

On-the-job training    

On-the-job training in programming    

High school training programming    

Education    

Job function P = 0.02; F =5.27  P < 0.01; F = 7.44 

College major    

Firm Industry   P < 0.01; F = 7.79 

Firm Revenue    

Firm Size    

 

Looking at the results in Table 9 from a qualitative standpoint, it is clear that a person’s propensity to use 
Imperative features is strongly related to what we might expect from a “good” programmer—knowledge of 
terminology, testing, and documentation.  This statement is true to a lesser extent about propensity to use 
LinkStruct features, which was associated with knowledge of terminology and some testing practice, but 
not associated with documentation.  Finally, of the three factor-like scales, propensity to use Macros seems 
to be least strongly associated with “good” programming. 

As shown in Table 9, the respondents in each category generally did not differ significantly with respect to 
demographics.  Regardless of which factor-like scale is used to categorize users, categories did not differ 
statistically on most demographic items.  In particular, training, education, and firm size did not differ 
markedly from one category of user to the other. 

The main exception is that people with a strong propensity to use Imperative features were more likely to 
have IT jobs and to work in the IT industry.  This is not surprising, considering the heavy use of imperative 
languages by professional programmers in the IT industry. The data also weakly suggest that people with a 
stronger propensity to use Macros were more likely to have IT jobs.   

An analysis like this yields correlative results but not causative conclusions: several hypotheses might ex-
plain these patterns.  For example, Imperative features might be so difficult to use that learning 
terminology, testing, and documentation is a necessary precondition; LinkStruct and Macros features sim-
ply might be easier to use.  Alternatively, perhaps people who use Imperative features work in 
environments where testing and documentation are demanded by management or the corporate culture.  
Perhaps the true cause is a mix of these, or a third cause altogether.  Further study will be required to ferret 
out the motivations, background, and skills of people who use each class of features. 

In short, although our factor-like scales are strongly related to the “good programming” scales discussed 
earlier, our factor-like scales are generally not as strongly related to demographic variables. 
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6. Conclusion and Future Work 
Our survey of Information Week readers has revealed significant clustering of propensities to use features 
related to the creation of abstractions.  We have developed three scales representing these clusters, corre-
sponding to the use of Macro features, Linked Structure features, and Imperative features.  Moreover, we 
have found that respondents higher on these scales tend to be more likely to report testing and document-
ing, and this effect is most pronounced along the Imperative scale. 

These three scales essentially represent dimensions spanning the space of end user programming in tech-
savvy workplaces, and surveys such as ours reveal patterns within this space.  However, there are limita-
tions to what can be accomplished with a survey. 

For example, this survey is limited in the generalizability of its results.  It is not clear that end users in 
home or school contexts would demonstrate the same patterns of feature use.  Indeed, our earlier secondary 
analysis of government data suggests that end users in these other contexts have significantly different ap-
plication usage than users in the workplace context [25], and previous ethnographies suggest that the menu 
of abstractions available to end users in the home context also differ from that of the workplace context 
[20].  Thus, mapping out the space end user programming outside the workplace would require additional 
surveys. 

In addition, although surveys can reveal patterns and trends within a population, they often offer limited 
insight into why those patterns and trends exist.  In our case, it is not yet clear why feature usage propensi-
ties demonstrate the clustering that we observed, and possible hypotheses abound.  Addressing this issue 
further would require a more interactive study that spans multiple types of user and multiple application 
environments.  For example, we might wish to perform a contextual inquiry of users from several occupa-
tions and observe how they go about using features in different applications to create abstractions.   

We are particularly interested in understanding use of features related to Linked Structure abstractions.  It is 
clear that Imperative programming strongly resembles the work of a professional programmer, so it is not 
too surprising that respondents with a propensity for using Imperative features would demonstrate various 
good programming practices such as testing and documenting (particularly since our sample included a 
significant number of users in IT-related jobs or industries).   

But in this modern world of relational databases and object-oriented programming, we might also suppose 
that Linked Structure programming also resembles the work of a professional programmer.  Why, then, 
was the propensity to create Linked Structures only weakly related to testing and documenting (compared 
to propensity to use Imperative features)?  Does the difference a property of the users themselves?  Does 
the difference stem from the business processes surrounding the creation of those abstractions?  Or is it just 
easier to perform testing and documenting of Imperative programs? 

We intend to focus on these questions and others in our future work as we continue to identify and study 
different categories of end users, guided by the hints from this survey. 

7. Acknowledgements 
We gratefully acknowledge Rusty Weston and Lisa Smith at Information Week for their hard work suggest-
ing refinements for the survey, publishing it on the web, advertising it to their subscribers, and sharing the 
data thus collected.  We thank the subscribers of Information Week magazine for participating in this study.  
Finally, we extend our gratitude to James Herbsleb, Irina Shklovski, and Sara Kiesler for their input on 
various aspects of this study: how to develop a model, how to clean and analyze data, and how to design a 
survey, respectively. 

This work has been funded in part by the EUSES Consortium via the National Science Foundation (ITR-
0325273), by the National Science Foundation under Grant CCF-0438929, by the Sloan Software Industry 
Center at Carnegie Mellon, and by the High Dependability Computing Program from NASA Ames coop-
erative agreement NCC-2-1298. Any opinions, findings, and conclusions or recommendations expressed in 
this material are those of the authors and do not necessarily reflect the views of the sponsors.   



 

 - 19 - 

8. References 
[1] L. Beckwith, M. Burnett, S. Wiedenbeck, and C. Cook. Effectiveness of End-User Debugging 

Software Features: Are There Gender Issues?. CHI '05: Proceedings of the SIGCHI Conference on 

Human Factors in Computing Systems, ACM Press, 2005, pp. 869-878. 

[2] A. Blackwell. First Steps in Programming: A Rationale for Attention Investment Models. HCC 

'02: Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Envi-

ronments, IEEE Computer Society, 2002, pp. 2-10.  

[3] N. Edwards. The Effect of Certain Modular Design Principles on Testability. Proceedings of the 

International Conference on Reliable Software, 1975, pp. 401-410. 

[4] M. Fisher II and G. Rothermel. The EUSES Spreadsheet Corpus: A Shared Resource for Support-
ing Experimentation with Spreadsheet Dependability Mechanisms. Technical Report 04-12-03, 
University of Nebraska-Lincoln, Lincoln, NE, December 2004. 

[5] T. Green and A. Blackwell. Ironies of Abstraction. Proceedings of the 3rd International Confer-

ence on Thinking, British Psychological Society, 1996. 

[6] T. Green and M. Petre. Usability Analysis of Visual Programming Environments: A Cognitive 
Dimensions Framework. Journal of Visual Languages and Computing, Vol. 7, No. 2, June 1996, 
pp. 131-174. 

[7] J. Hintze and M. Masuch. Designing a 3D Authoring Tool for Children. C5 '04: Proceedings of 

the Second International Conference on Creating, Connecting and Collaborating Through Com-

puting, IEEE Computer Society, 2004, pp. 78-85.  

[8] Inquisite web survey system.  http://www.inquisite.com 

[9] R. Johnson and D. Wichern.  Applied Multivariate Statistical Analysis, Prentice Hall, Englewood 
Cliffs, NJ, 1988. 

[10] K. Kahn. Drawings on Napkins, Video-Game Animation, and Other Ways To Program Com-
puters. Communications of ACM, Vol. 39, No. 8, 1996, pp. 49-59.  

[11] J. Kim and C. Mueller.  Factor Analysis: Statistical Methods and Practical Issues, Sage Publica-
tions, Beverly Hills, CA, 1978. 

[12] J. Kim and C. Mueller.  Introduction to Factor Analysis: What It Is and How to Do It, Sage Publi-
cations, Beverly Hills, CA, 1978. 

[13] R. Miller and B. Myers. Multiple Selections in Smart Text Editing. IUI '02: Proceedings of the 7th 

International Conference on Intelligent User Interfaces, ACM Press, 2002, pp. 103-110. 

[14] F. Modugno, A. Corbett, and B. Myers. Evaluating Program Representation in a Demonstrational 
Visual Shell. CHI '95: Conference Companion on Human Factors in Computing Systems, ACM 
Press, 1995, pp. 234-235. 

[15] B. Nardi. A Small Matter of Programming: Perspectives on End User Computing, The MIT Press, 
Cambridge, MA, 1993. 

[16] J. Pane, B. Myers, and L. Miller. Using HCI Techniques to Design a More Usable Programming 
System. HCC '02: Proceedings of the IEEE 2002 Symposia on Human Centric Computing Lan-

guages and Environments, IEEE Computer Society, 2002, pp. 198-206. 

[17] J. Pane and B. Myers. Usability issues in the design of novice programming systems. Technical 
Report CMU-CS-96-132, School of Computer Science, Carnegie Mellon University, Pittsburgh, 
PA, August 1996. 

[18] D. Parnas. The Influence of Software Structure on Reliability. In Proceedings of the International 

Conference on Reliable Software, 1975, pp. 358-362. 

[19] D. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules. Communications of 

the ACM, 15, 12 (Dec. 1972), 1053-1058. 

[20] J. Rode, E. Toye, and A. Blackwell. The Fuzzy Felt Ethnography—Understanding the Program-
ming Patterns of Domestic Appliances. In Proceedings of the 2nd International Conference on 

Appliance Design., Vol. 8, No. 3-4, 2004, pp. 161-176. 



 

 - 20 - 

[21] M. Rosson, J. Ballin, and J. Rode. Who, What, and How: A Survey of Informal and Professional 
Web Developers, VL/HCC’05: Proceedings of the 2005 IEEE Symposium on Visual Languages 

and Human-Centric Computing, 2005, pp. 199-206. 

[22] J. Ruthruff, E. Creswick, M. Burnett, and C. Cook. End-User Software Visualizations for Fault 
Localization. SoftVis '03: Proceedings of the 2003 ACM Symposium on Software Visualization, 
ACM Press, 2003, pp. 123-132. 

[23] C. Scaffidi, M. Shaw, and B. Myers. The "55M End-User Programmers" Estimate Revisited. 
Technical Report CMU-ISRI-05-100/CMU-HCII-05-100, Institute for Software Research Interna-
tional, Carnegie Mellon University, Pittsburgh, PA, 2005. 

[24] C. Scaffidi, M. Shaw, and B. Myers. An Approach for Categorizing End User Programmers to 
Guide Software Engineering Research. WEUSE I: Proceedings of the First Workshop on End-

User Software Engineering, ACM Press, 2005, pp. 1-5.  

[25] C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users and End User Pro-
grammers.  VL/HCC’05: Proceedings of the 2005 IEEE Symposium on Visual Languages and 

Human-Centric Computing, pp. 207-214, 2005. 

[26] C. Wallace, C. Cook, J. Summet, and M. Burnett. Assertions in End-User Software Engineering: 
A Think-Aloud Study. HCC '02: Proceedings of the IEEE 2002 Symposia on Human Centric 
Computing Languages and Environments, IEEE Computer Society, 2002, pp. 63.  

[27] A. Wilson, et. al. Harnessing Curiosity to Increase Correctness in End-User Programming, Pro-

ceedings of CHI’2003, pp. 305-312. 



 

 - 21 - 

Appendix A 
This Appendix shows the wording of the questions in the survey that we deployed with Information Week.  
To facilitate cross-referencing between these questions and our discussion in Sections 1 through 6, above, 
we have enclosed variable names in double angle brackets, below, for example:  <<demo_empcount>> 

Note that some questions were skipped.  The skip logic is shown in italics and square brackets below, for 
example: [Only ask this question if <<web>> = Yes] 

Finally, some questions were asked together on the same screen.  For example, after asking about software 
usage, if the respondent reported usage of that piece of software, then the next screen listed a series of fea-
tures and asked the respondent about usage of those features.  To highlight the fact that these questions 
were asked all on one screen, we have enclosed them in boxes, below. 

This is a study by Carnegie Mellon University that looks at the soft-

ware that you use, and considers how software features help you do your 

job.  Your answers will help guide research aimed at improving software 

flexibility.  Your completed survey makes you eligible for a chance to 

win a grand prize check for $500 and one of five $100 checks from 

InformationWeek, part of CMP Media. Completing this survey also enti-

tles you to a free report detailing the study results. 

Please be assured that your responses will remain confidential. Answers 

will only be reported in aggregate and nothing will be attributed to 

you or your company. Study results will appear in an upcoming story in 

print and on www.informationweek.com in May. 

Thank you again for participating in this voluntary survey. 

 

 

 

Section 1 of 4 

This first section asks about the software that you and your subordi-

nates use at work. 

 

<<web>> In the past 3 months, have you or your subordinates created 

or edited web pages (for example, using FrontPage, QuarkXPress, Photo-

shop, or DreamWeaver)? 

o Yes 

o No 

 

[Only ask this question if <<web>> = Yes] 

In the past 3 months, have you or your subordinates done any of the 

following?  

 

<<web_link>>Created hyperlinks from one web page 

to another 
Yes No Don’t know 

<<web_form>>Created web forms to collect informa-

tion 
Yes No Don’t know 

<<web_new>>Used the "new" command to create 

JavaScript or ActionScript objects 
Yes No Don’t know 

<<web_behavior>>Used "behaviors" (such as mouse 

rollovers) to make web pages interactive 
Yes No Don’t know 

<<web_func>>Created JavaScript or ActionScript 

functions that accept parameters 
Yes No Don’t know 

<<web_test>>Created web pages and tested them in 

multiple different browsers 
Yes No Don’t know 
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<<svr>> In the past 3 months, have you or your subordinates created 

or edited web server scripts (such as PHP, VBScript/ASP, or Perl)? 

o Yes 

o No 

 

 

[Only ask this question if <<svr>> = Yes] 

In the past 3 months, have you or your subordinates done any of the 

following? 

 

<<svr_include1>>Used the "require" command in PHP 

or Perl pages to include other pages 
Yes No Don’t know 

<<svr_include2>>Used the "include" command in 

VBScript or shtml pages to include other pages 
Yes No Don’t know 

<<svr_form>>Created web forms to collect informa-

tion 
Yes No Don’t know 

<<svr_new>>Used the "new" command to create PHP 

or Perl objects, or the "CreateObject" command to 

create VBScript objects 

Yes No Don’t know 

<<svr_func>>Created web server script functions 

or subroutines that accept parameters 
Yes No Don’t know 

<<svr_test>>Created web pages and tested them in 

multiple different browsers 
Yes No Don’t know 

<<svr_doc>>Inserted comments into web server 

scripts, such as PHP, Perl, or VBScript 
Yes No Don’t know 

 

<<ss>> In the past 3 months, have you or your subordinates created 

or edited spreadsheets (for example, using Excel or Lotus 1-2-3)? 

o Yes 

o No 

 

[Only ask this question if <<ss>> = Yes] 

In the past 3 months, have you or your subordinates done any of the 

following?  

 

<<ss_doc>>Created documents to accompany a 

spreadsheet, explaining how to use the spread-

sheet file 

Yes No Don’t know 

<<ss_chart>>Used data in spreadsheet cells to 

create charts or graphs 
Yes No Don’t know 

<<ss_func>>Used spreadsheet functions (such as 

"sum") when typing into cells 
Yes No Don’t know 

<<ss_link>>Created data references to automati-

cally incorporate data from one spreadsheet or 

workbook into another 

Yes No Don’t know 

<<ss_test>>Tested spreadsheets for accuracy Yes No Don’t know 

<<ss_tmpl>>Created spreadsheet templates Yes No Don’t know 

<<ss_macro1>>Recorded macros Yes No Don’t know 

<<ss_macro2>>Created or edited macros using the 

macro editor 
Yes No Don’t know 
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<<dsk>> In the past 3 months, have you or your subordinates created 

or edited word processing or slide presentation documents (for example, 

using WordPerfect, PowerPoint, or Microsoft Word)? 

o Yes 

o No 

 

 

[Only ask this question if <<dsk>> = Yes] 

In the past 3 months, have you or your subordinates done any of the 

following?  

 

<<dsk_tmpl>>Created word processing or slide pres-

entation document templates 
Yes No Don’t know 

<<dsk_link>>Created hyperlinks to link one word 

processing or slide presentation document to an-

other 

Yes No Don’t know 

<<dsk_macro1>>Recorded macros Yes No Don’t know 

<<dsk_macro2>>Created or edited macros using the 

macro editor 
Yes No Don’t know 

 

<<db>> In the past 3 months, have you or your subordinates created 

or edited data in a database (for example, in FileMaker, Oracle, Sy-

base, SQL Server, or Access)? 

o Yes 

o No 

 

[Only ask this question if <<db>> = Yes] 

In the past 3 months, have you or your subordinates done any of the 

following?  

 

<<db_link>>Referenced database records using a 

key field (such as social security number or 

other identifier) 

Yes No Don’t know 

<<db_table>>Created a new database table, or 

added columns to an existing database table 
Yes No Don’t know 

<<db_view>>Created a new database view, or added 

columns to an existing database view 
Yes No Don’t know 

<<db_func>>Created database stored procedures Yes No Don’t know 

<<db_doc>>Created documents to accompany a data-

base, explaining how to use the database 
Yes No Don’t know 

 

<<bi>> In the past 3 months, have you or your subordinates created 

or edited custom business intelligence reports (for example, using Mi-

crosoft Analysis Services, Hyperion/Brio, Cognos/Adaytum, or Business 

Objects/Crystal)? 

o Yes 

o No 
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[Only ask this question if <<bi>> = Yes] 

In the past 3 months, have you or your subordinates done any of the 

following?  

 

<<bi_subrep>>Incorporated subreports into a larger 

business intelligence report 
Yes No Don’t know 

<<bi_link>>Joined database tables or views via key 

fields (such as social security number or other 

identifier) while constructing a business intelli-

gence report 

Yes No Don’t know 

<<bi_chart>>Used data in databases to create 

charts or graphs in a business intelligence report 
Yes No Don’t know 

<<bi_olap>>Helped design the dimensions of an OLAP 

repository 
Yes No Don’t know 

<<bi_sql>>Specified an SQL query to retrieve data 

from a database for use in a business intelligence 

report 

Yes No Don’t know 

<<bi_filter>>Created a business intelligence re-

port which allowed the person viewing the report 

to filter (hide / show) portions of the report 

Yes No Don’t know 

<<bi_sort>>Created business intelligence reports 

which allowed the person viewing the report to 

change the sort order of information in the report 

Yes No Don’t know 

<<bi_drill>>Created business intelligence reports 

which allowed the person viewing the report to 

"drill down" into more detailed report data 

Yes No Don’t know 

<<bi_doc>>Created documents to accompany a busi-

ness intelligence report, explaining how to 

interpret the report 

Yes No Don’t know 

 

<<backups>>In the past 3 months, have you or your subordinates backed 

up files by making extra copies, or having IS/IT staff do so? 

o Yes 

o No 

o I don't know 

 

 

Section 2 of 4 

The next few questions ask about the relationship between your work and 

the software you use.  Note that these questions ask about the past 1 

year. 

 

<<sw1>> <<sw2>> <<sw3>>List the three software applications that you or 

your subordinates have used the most in the past year.   

 

<<sw_help>>How has this software helped get work done in the past year?   

 

<<sw_hinder>>In what ways has this software "gotten in the way" of do-

ing work in the past year? 

 

<<sw_custom>> In the past year, have you or your subordinates cus-

tomized this software?  If so, how? 
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<<sw_useless>>In the past year, have you or your subordinates purchased 

software for work but then used it less than anticipated? 

o Yes 

o No 

 

[Only ask this question if <<sw_useless>> = Yes] 

<<sw_useless_more>>Why did you use this software less than anticipated? 

 

[Only ask this question if <<web>> = Yes OR <<svr>> = Yes] 

 

<<copy_web>>In the past year, when you or your subordinates created a 

new web page, did you get started by copying an existing web page? 

o Usually 

o Sometimes 

o Rarely 

o Never 

 

[Only ask this question if <<ss>> = Yes] 

<<copy_ss>>In the past year, when you or your subordinates created a 

new spreadsheet, did you get started by copying an existing spread-

sheet? 

o Usually 

o Sometimes 

o Rarely 

o Never 

 

[Only ask this question if <<bi>> = Yes] 

<<copy_bi>>In the past year, when you or your subordinates created a 

new business intelligence report, did you get started by copying an ex-

isting report? 

o Usually 

o Sometimes 

o Rarely 

o Never 
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<<www_src_ex>>Consider how you or your subordinates used the web when 

you created or edited business intelligence reports, spreadsheets, web 

pages, and other documents.   

In the past year, how useful has the web been for your work as a source 

of examples of reports, spreadsheets, web pages, or other documents? 

o Usually useful 

o Sometimes useful 

o Rarely useful 

o Never useful 

 

<<www_src_doc>> In the past year, how useful has the web been for your 

work as a source of documentation? 

o Usually useful 

o Sometimes useful 

o Rarely useful 

o Never useful 

 

<<www_src_data>> In the past year, how useful has the web been for your 

work as a source of numerical data? 

o Usually useful 

o Sometimes useful 

o Rarely useful 

o Never useful 

 

<<www_dest_ex>> In the past year, how useful has the web been for your 

work as a place to publish documents (reports, spreadsheets, web pages, 

or documents)? 

o Usually useful 

o Sometimes useful 

o Rarely useful 

o Never useful 

 

<<www_dest_doc>> In the past year, how useful has the web been for your 

work as a place to publish documentation (telling how to use or inter-

pret your reports, spreadsheets, web pages, or documents)? 

o Usually useful 

o Sometimes useful 

o Rarely useful 

o Never useful 

 

<<www_dest_data>> In the past year, how useful has the web been for 

your work as a place to publish numerical data? 

o Usually useful 

o Sometimes useful 

o Rarely useful 

o Never useful 

 

 

<<help>>When you or your subordinates have trouble creating web pages, 

spreadsheets, reports, or other documents, what is your main source of 

help? 

 

<<help_more>>Why is this help preferable to other sources of help? 
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Section 3 of 4 

The next few questions ask about your programming knowledge and prac-

tice.  Note that these questions ask about you personally, rather than 

about your subordinates. 

 

<<know_variable>>Are you personally familiar with the concept of a 

"variable"--a named memory location where programs can store intermedi-

ate results and/or read them back? 

o Yes 

o No 

 

[Only ask this question if <<know_variable>> = Yes] 

<<know_variable_more>>When creating programs in the past year, have you 

personally defined and referenced variables? 

o Yes 

o No 

 

<<know_subroutine>>Are you personally familiar with the concept of a 

"subroutine"--a piece of code that can be called from multiple places 

in a program (also known as a "procedure", "function", or "method")? 

o Yes 

o No 

 

[Only ask this question if <<know_subroutine>> = Yes] 

<<know_subroutine_more1>> When creating programs in the past year, have 

you personally called a subroutine that another person in your organi-

zation already created? 

o Yes 

o No 

 

[Only ask this question if <<know_subroutine>> = Yes] 

<<know_subroutine_more2>> When creating programs in the past year, have 

you personally created a new subroutine? 

o Yes 

o No 

 

<<know_conditional>>Are you personally familiar with the concept of a 

"conditional"--a command that prevents code from running unless a cer-

tain condition is met (also known as "if/then", "if/else", or "unless" 

commands)? 

o Yes 

o No 

 

[Only ask this question if <<know_conditional>> = Yes] 

<<know_conditional_more>> When creating programs in the past year, have 

you personally coded conditional statements? 

o Yes 

o No 

 

<<know_loop>>Are you personally familiar with the concept of a "loop"--

a sequence of instructions that the computer repeats, either until some 

condition is met, or indefinitely (also known as a "for/next", 

"while/do", or "repeat/until" command sequence)? 

o Yes 

o No 
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[Only ask this question if <<know_loop>> = Yes] 

<<know_loop_more>> When creating programs in the past year, have you 

personally coded loops? 

o Yes 

o No 

 

[Only ask this question if <<know_variable>> = Yes OR 

<<know_subroutine>> = Yes OR <<know_conditional>> = Yes OR 

<<know_loop>> = Yes] 

<<comments>> <<comments_more>>Do you insert comments into your code?  

If so, what information do you write in your comments? 

 

[Only ask this question if <<know_variable>> = Yes OR 

<<know_subroutine>> = Yes OR <<know_conditional>> = Yes OR 

<<know_loop>> = Yes] 

<<documents>> <<documents_more>>Do you create separate documentation 

describing your code?  If so, what information do you write in your 

documentation? 
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Section 4 of 4 

The last few questions ask about your background. 

 

<<demo_job>>Which of the following best describes your current job 

function? 

o IT or networking staff 

o IT or networking management 

o Business unit staff 

o Business management 

o Student  

o Consultant 

o Retired  

o Other <<demo_job_more>> 

 

 

<<demo_revenue>>For research classification purposes only, what's the 

annual revenue (or operating budget) of your entire organization?  

o Less than $6 million  

o $6 million to $49.9 million 

o $50 million to $99.9 million 

o $100 million to $499.9 million 

o $500 million to $999.9 million 

o $1 billion to $4.9 billion 

o $5 billion or more 

 

<<demo_empcount>> How many employees are in your company?  

o Less than 50 

o 50-99 

o 100-499 

o 500-999 

o 1,000-4,999 

o 5,000-9,999 

o 10,000 or more 

 

<<demo_subcount>> How many subordinates do you have? 

 

<<demo_industry>> What is your organization's primary industry?  

o Biotech/Biomedical/Pharmaceutical 

o Consulting and Business Services 

o Chemicals 

o Consumer goods 

o Construction/Engineering 

o Distributor 

o Education 

o Electronics 

o E-marketplace (portals, auction, vert.) 

o Energy 

o Financial services/Banking 

o Financial services/Insurance 

o Financial services/Securities and Investments 

o Financial services/Other   

o Food/Beverage 

o Government 

o Healthcare/HMOs 

o Hospitality/Travel 

o IT Vendors 

o Logistics/Transportation 
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o Manufacturing/Industrial (non-computer) 

o Media/Entertainment 

o Metals & Natural Resources 

o Non-profit 

o Retail/E-commerce 

o Real Estate 

o Telecommunications/ISPs 

o Utilities 

o Other (please specify) _________________ <<demo_industry_more>> 

 

<<demo_education>> What is your highest level of education? 

o 8th Grade or lower 

o 9th Grade 

o 10th Grade 

o 11th Grade 

o 12th Grade, without diploma 

o High school diploma, or equivalent (e.g.: GED) 

o Some college but no degree 

o Associate degree 

o Bachelor's degree (e.g.: BA, AB, BS) 

o Master's degree (e.g.: MA, MS, MEng, Med, MSW) 

o Professional school degree (e.g.: MD, DDS, DVM) 

o Doctoral degree (e.g.: PhD, EdD) 

 

[Only ask this question if <<demo_education>> >= 9th grade] 

<<demo_train_hs>>Have you received training through a high school 

course in programming? 

o Yes 

o No 

 

[Only ask this question if <<demo_education>> >= Some college but no 

degree] 

<<demo_train_univ>>Have you received training through a college or uni-

versity course in programming? 

o Yes 

o No 

 

[Only ask this question if <<demo_education>> >= Some college but no 

degree] 

<<demo_major1>>What was your major or primary area of study in college? 

 

[Only ask this question if <<demo_education>> >= Master's degree] 

<<demo_major2>>What was your primary area of post-graduate study? 

 

<<demo_train_job_prog>>Have you received on-the-job training in pro-

gramming (for example, having another person explain to you how to 

program)? 

o Yes 

o No 

 

<<demo_train_job_web>>Have you received on-the-job training in web page 

creation (for example, having another person explain to you how to cre-

ate web pages)? 

o Yes 

o No 
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<<demo_train_job_ss>>Have you received on-the-job training in spread-

sheets (for example, having another person explain to you how to create 

spreadsheets)? 

o Yes 

o No 

 

<<demo_train_job_db>>Have you received on-the-job training in databases 

(for example, having another person explain to you how to create data-

bases)? 

o Yes 

o No 

 

<<demo_train_job_bi>>Have you received on-the-job training in business 

intelligence reporting (for example, having another person explain to 

you how to create business intelligence reports)? 

o Yes 

o No 

 

<<demo_education_more>>How does your education and training compare or 

contrast with that of your subordinates? 

 

<<demo_subscriber>>Are you an Information Week subscriber? 

o Yes, I am a current subscriber 

o I used to subscribe but do not now 

o I have never subscribed 

 

 

In order for us to contact you if you've won the grand prize of 

$500 or one of the five $100 checks to be awarded by CMP Media Inc. 

and your free report detailing the results of the study please be 

sure to enter your contact information below: 

Name_____________________________________ 

Title: _____________________________________ 

Company__________________________________ 

Phone_____________________________________ 

Email_____________________________________ 

 

Without compromising the confidentiality of your responses, would 

you be willing to speak to an InformationWeek editor for an upcom-

ing story about these issues? 

[] Yes 

[] No 

 

Thank you for participating in this survey! 

 


