

Identifying Categories of End Users

Based on the Abstractions That They Create

Christopher Scaffidi, Andrew Ko, Brad Myers, Mary Shaw
December 2005

CMU-ISRI-05-110
CMU-HCII-05-101

Institute for Software Research, International, Carnegie Mellon University
Human-Computer Interaction Institute, Carnegie Mellon University

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Software created by end users often lacks key quality attributes that professional programmers try to en-

sure through the use of abstraction. Yet to date, large-scale studies of end users have not examined end

user software usage at a level which is sufficiently fine-grained to determine the extent to which they create

abstractions.

To address this, we deployed an online survey to Information Week subscribers to ask about not only soft-

ware usage but also feature usage related to abstraction creation. Most respondents did create

abstractions. Moreover, through factor analysis, we found that features fell into three clusters–when users

had a propensity to use one feature, then they also had a propensity to use other features in the same clus-

ter. These clusters corresponded to macro features, linked data structure features, and imperative features.

For each of the three factors, we created a scale and used it to categorize users into two bins—those with a

high propensity to use features associated with that scale, and those with a low propensity. Compared to

users with a low propensity to use imperative features, users with a high propensity to use imperative fea-

tures were more likely to report testing and documenting. Propensity to use linked structure features was

less strongly related to these practices. These findings represent a step toward a more complete map of

end users’ skills.

This work has been funded in part by the EUSES Consortium via the National Science Foundation (ITR-
0325273), by the National Science Foundation under Grant CCF-0438929, by the Sloan Software Industry
Center at Carnegie Mellon, and by the High Dependability Computing Program from NASA Ames coop-
erative agreement NCC-2-1298. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the sponsors.

Keywords: end user programming, end user software engineering, end users, adoption, abstraction

 - 1 -

1. Introduction
Producing software with high reliability, maintainability, composability, and other quality attributes is a
challenge for both professional programmers and end user programmers. To help ensure these quality at-
tributes, professional programmers have developed a number of techniques, chief among them creating,
testing, and documenting abstractions [3] [18].

Since these practices have proven invaluable to professional programmers, it is natural to ask whether end

user programmers engage in similar practices. Therefore, we surveyed readers of Information Week to an-
swer two questions:

• To what extent do end user programmers create abstractions?

• Are end user programmers who create abstractions more likely to test and document their work, com-
pared to end user programmers who do not create abstractions?

To address these two high-level questions, we asked respondents about usage of specific application fea-
tures related to creation of abstractions within a wide range of end user programming environments: web
browsers, web server scripting engines, databases, spreadsheets, and other desktop applications. We asked
about 23 abstraction-related features, including JavaScript functions, reusable server-side “include” files,
database tables, and macros. For example, to learn whether end users create reusable computational ab-
stractions in a browser environment, we asked whether respondents whether they created JavaScript
functions.

With respect to the first bulleted question above, we found that not all abstraction-related features are heav-
ily used, even by this computer-savvy population of Information Week readers. For example, only 16% of
respondents reported using server-side “include” files (which are useful for defining headers, footers, and
other chunks of HTML that are the same for all pages in a web site). But near the other end of the spec-
trum, 89% of respondents reported using functions (like “sum”) to link cells of spreadsheets.

To characterize the structure of feature usage by end user programmers, we applied factor analysis, which
revealed that features fell into three clusters. For each cluster, people with a propensity to use one feature
in that cluster tended to have a higher propensity to use other features in the same cluster. The three clus-
ters were propensity to create macros, propensity to design linked structures, and propensity to write
imperative code. For example, people with a propensity for using one imperative feature (such as
JavaScript functions) also had a propensity for using other imperative features (such as stored procedures).

In addition, as noted in the second bullet above, we wanted to learn whether end users who created abstrac-
tions were more likely to test and document their work, compared to end user programmers who do not
create abstractions. In preparation for answering this question, we constructed a scale for each of the three
clusters above to measure relative propensity to use features within that cluster. We then classified each
respondent as “above average” or “below average” on each scale.

ANOVA tests revealed that people with an above average propensity to create imperative abstractions were
more likely to test and document their work (compared to people with a below average propensity to create
imperative abstractions). In addition, they reported more knowledge of programming terms like “loop”
(P ≤ 0.02 for all these results).

When we divided respondents into above average and below average groups based on their propensity to
create linked structures, the differences between above-average and below-average groups were not as stark
as the differences that we saw when we divided users based on usage of imperative abstractions. Specifi-
cally, people with an above average propensity to create linked structures were more likely to document
their work but only marginally more likely to test their work (compared to people with a below average
propensity to create linked structures). They also reported more knowledge of programming terms
(P ≤ 0.03 for all these results).

Finally, when we divided respondents into above average and below average groups based on their propen-
sity to create macros, we saw no statistically significant differences between these two groups, in terms of
their propensity to test or document their work (at P = 0.05). There was no statistically significant differ-
ence in their knowledge of programming terms, either (at P = 0.05).

 - 2 -

In short, these analyses have revealed substantial structure within the feature-usage patterns of end user
programmers. Further studies will be required in order to evaluate possible causes for this structure and to
assess how creating, testing, and documenting abstractions affects software quality attributes in the case of
end user programming.

2. Related Work
There have been many studies of abstraction use by end users, but the majority of them have addressed
abstraction usage and adoption in a single type of application or domain in the short time span of a user
study. For example, several of the abstractions in the Forms/3 spreadsheet language have been studied from
an adoption perspective, to assess what factors might influence adoption and continued use of the new ab-
stractions [26][27]. This has led to a design strategy called “surprise-explain-reward” in which systems
attempt to (1) surprise users by identifying some knowledge gap, (2) explain the knowledge gap to users,
and finally (3) reward users when they use a new abstraction successfully. There have been several other
attempts to design abstractions for particular populations of end users or particular types of data. The
HANDS environment was designed for programming by children [16] by studying patterns in the language
that children used to describe solutions to programming problems. This led to a programming language that
children could quickly learn and use to create interactive simulations. The abstractions in the Lapis envi-
ronment were designed specifically for manipulating textual information [13], simplifying many common
end user tasks such as search and replace. The Pursuit environment [14] offered graphical abstractions for
writing file management scripts. Although systems have been built for a variety of tasks and data, there
have been few studies of the systems’ long-term usage or the use of other abstractions in tandem.

Many end-user programming systems have been informed by Blackwell's "Attention Investment" theory
[2], which argues that feature adoption is a factor of users' perceived cost and reward of an unfamiliar ab-
straction. Of course, many factors can influence these perceptions, including gender and self-efficacy [1],
co-workers’ knowledge of software applications, and the degree to which abstractions can support each
other between applications. Many of these factors were detailed in Nardi’s ethnographic work investigating
the use of spreadsheets and other tools in various workplaces [15]. For example, she identified one type end
user programmer that she calls “tinkerers,” which often play the role of introducing less experienced co-
workers to unfamiliar abstractions. Because Nardi used semi-structured interviews, the range and preva-
lence of the trends that she observed are unknown.

Studies of people using abstractions outside of lab contexts have largely focused on a single domain of end-
user programming at a time. For example, Rode et. al. have conducted interviews with end users in the
home to learn what abstractions are supported by home appliances [20], finding two types of widely used
categories of abstractions, named “ahead of time” and “repeats easy.” Fisher and Rothermel [4] have stud-
ied public Excel spreadsheets available on the web in order to assess the prevalence of macro and formula
use, finding that very few spreadsheets use formulas, and if they do, they use relatively simple mathemati-
cal operators and functions. While the corpus is quite helpful for analyzing the usage of specific
abstractions in spreadsheets, the corpus has no data about the individuals responsible for the spreadsheets,
or what other abstractions they may also use as part of their work activity. Rosson et. al. have focused on
the use of web-programming environments by end users, investigating the motivations and goals behind
their use of HTML and other languages [21]. They found that many web programmers became web pro-
grammers out of circumstance rather than explicit choice (for example, taking over the management of a
web site for a friend). Although they were able to collect more personal information in their surveys, they
did not study their respondents’ use of particular abstractions in web applications, such as links and server-
side includes.

To our knowledge, the only other wide-scale studies that inform this work are secondary analyses of US
Bureau of Labor Statistics studies of application use [25], which indicate that over 45 million people used
spreadsheets and/or databases at American workplaces in 2001, and this number is expected to climb to 55
million by 2012. The aim of the survey we present in this paper is to begin to characterize and cluster these
individuals as well as other end user programmers, providing additional details about the features and ab-
stractions that they use.

 - 3 -

3. Survey
This section discusses the questions that we presented to Information Week readers, and it discusses the
demographic characteristics of the respondents, particularly the fact that many work in IT departments and
have substantial programming skills. This section also notes a low response rate (under 1%) and some
small non-response skew in demographic characteristics. All these factors may limit the generalizability of
our results. Thus, we anticipate needing to deploy follow-up studies, as outlined in Section 6.

3.1 Motivation and Context
Existing characterizations of end user populations based on software usage provide only minimal guidance
on how to help end user programmers practice better software engineering. A coarse-grained categorization
based on software usage is inadequate for guiding programming tool designers: it tells what tools people
use but not what portions of those tools receive heavy use. It glosses over communities of end users with
special needs or capabilities, and it fails to highlight concerns spanning multiple types of environments.

Hence, in this survey, we wanted to go deeper than software usage and also ask about feature usage. In
particular, we have chosen to ask about usage of features that might be reasonably construed to relate to
programming. While definitions of “programming” vary (see [23] for a summary), features of interest cer-
tainly include those related to creation of JavaScript functions, hyperlinks, stored procedures, database
tables, and spreadsheet macros.

Moreover, we chose to focus on programming features related to the representation of abstractions. We
were led to this focus by a realization that abstraction is one of the principal techniques that professional
programmers have developed in order to support the creation of high quality code. For example, high nota-
tion viscosity (the difficulty of making local changes) can damage software maintainability, but it is known
that “viscosity can be reduced by increasing the number of abstractions” [6] This maintainability-
enhancing design principle first appeared in the software engineering literature over thirty years ago [19];
likewise, researchers realized long ago that comprehensive testing requires modular code [3] [18]. How-
ever, abstractions had also been identified as difficult to learn [5] [17], so many end user programming
environments seek to reduce the need for end users to be consciously aware of using abstractions [10] [16].

When designing the study, the three main abstractions we had sought to study were variables, functions,
and data structures. Researchers have provided support for these abstraction representations in a variety of
end user programming environments (as we have discussed in [24]), so there seems to be an instinctive
recognition among researchers that these are important features. We doubt that end users are likely to
make heavy use of more advanced abstraction representations like abstract data types and inheritance hier-
archies of classes, and we have seen nothing in the results of this survey to make us suspect otherwise.
(Although we saw feature-usage clusters related to functions and data structures as anticipated, we did not
find a variable-specific cluster. Instead, we found a macro-related cluster. These findings are discussed in
more detail by Section 4.)

In order to evaluate how abstraction usage spans multiple environments, we have asked about comparable
features across a variety of software environments, hoping to detect clusters of logically related features
that end users have a propensity to use. As described in Section 4, we did indeed observe such clusters
suggesting that certain feature usage propensities do co-occur. This finding could be caused by a variety of
underlying phenomena ranging from users’ understanding to business processes. Thus, we anticipate need-
ing to follow these surveys with interviews, tests, or other studies to better understand why clusters exist.

To conclude, our survey represents an enhanced method of characterizing the end user population, based on
categorizing end users according to the ways they represent abstractions. Since the use of abstraction can
facilitate key software engineering goals (such as improving reusability and maintainability), this categori-
zation promises an improved ability to highlight niches of end users with special software engineering
capabilities or struggles.

3.2 Survey Instrument
Our survey contained four parts, the first of which asked users whether they or their subordinates had used
each of six pieces of software in the past three months. The main five classes of interest were databases,
web page editors, web server scripting languages, spreadsheets, and word processors / slide presentation
editors. (The sixth class, business intelligence software, was used by only 22% of respondents and will not

 - 4 -

be discussed further in this report.) If the respondent indicated usage of a piece of software, then we asked
about feature usage within that software during the past three months. These feature questions were de-
signed to help evaluate whether the respondent or subordinates were engaging in programming-like
activities. For example, if the respondent indicated usage of web page editing software, then we asked if
the respondent or any subordinates created JavaScript functions.

In the second part of our survey, we asked about the relationship between the respondent’s work and soft-
ware usage. In this report, we focus on six questions wherein we asked the respondent to consider how
useful the web was during the previous year. Specifically, we asked about the usefulness of the web as a
source of examples, documentation, and numerical data, and also as a destination for publishing examples,
documentation, and numerical data.

The third part of our survey asked about familiarity with certain programming terms: variables, subrou-
tines, conditionals, and loops. For each programming term, we provided a brief definition and, if
appropriate, a short list of synonyms that the user might be more familiar with. If the respondent indicated
familiarity with the programming term, then we asked if he or she had personally used the corresponding
construct in the past year. For the “subroutines” term, we asked two usage questions rather than just one, in
order to distinguish between creation of subroutines and usage of subroutines created by other people.

Finally, the fourth part asked a number of questions concerning the respondent’s firm and individual back-
ground, with a particular emphasis on education and training. In retrospect, we would have liked to include
a number of additional questions, particularly gender and age, which we will include in any future surveys
(see Section 6).1

3.3 Survey Delivery
In late 2004 and early 2005, we partnered with Information Week magazine to develop our online survey of
technology-savvy individuals at American firms. As discussed in Section 3.2, the questions of this survey
primarily focused on usage of software features by respondents and their subordinates. In this section, we
describe the process by which we designed and deployed the survey, and how we cleaned the data.

The over-arching consideration in designing the survey was our desire to eventually discover whether ab-
straction might help end users produce better software—and if so, then what kinds of abstraction might
show the most promise. One key precondition for this, however, is to understand whether end users can
use abstractions at all. Hence, the primary goal of the current survey is to begin documenting the extent
and variety of end user abstraction within existing popular tools.

The other consideration in designing our survey was to evaluate questions and analysis techniques that
might prove useful in a later survey of a targeted sample. Consequently, in designing the current survey,
we chose questions that covered the “lowest common denominator” for a wide variety of workers. We also
included some questions, such as those dealing with business intelligence systems, that Information Week
wished to deploy for their own purposes.2

We tested the survey by presenting it to three marketing professionals. We delivered the questions to two
of these people via a simple web implementation that also provided a “scratch pad” where they could enter
comments concerning the questions; we presented the questions to the third person verbally, which allowed
us to perceive facial expressions and discuss the questions if they were unclear. These practice runs raised
a number of issues that provoked some question rewording. For the most part, we simply needed to add
clarifying parenthetical comments; for instance, in the question about whether respondents used spread-
sheet functions when typing in cells, we added a parenthetical comment explaining that “sum” exemplified
the sort of function we were asking about. Finally, Information Week implemented the survey using the
Inquisite web-based online survey system [8] and tested it several more times using members of their staff,
which provoked a few final layout changes.

1 For the text of our 96 questions, refer to Appendix A.

2 Information Week’s report, which is based on the subset of 378 respondents who Information Week classi-
fied as business technology professionals, is available at
http://www.informationweek.com/story/showArticle.jhtml?articleID=163102092

 - 5 -

Information Week announced the survey by sending 125,000 emails to subscribers who had previously in-
dicated their interest in receiving such announcements. As an incentive for participating, respondents were
entered into a drawing for one first prize of $500 and five second prizes of $100 each. Within two months,
831 people completed the survey.

Information Week also published a link to the survey on their web site. Although they did not instrument
the survey URL to record whether respondents found the survey via the emails or via the main web site,
virtually all respondents took the survey soon after the emails went out. (Over 95% took the survey within
one week of the emails, even though the survey was deployed for approximately two months.) Conse-
quently, it is safe to assume that the sample frame generally corresponded to the Information Week database
from which the email addresses were selected. To assess non-response bias, we compare our sample to that
database in Section 3.4.

We received the data from Information Week in comma-separated-value format and imported it into SAS
9.1.3. Skipped questions were flagged as missing, as were “I Don’t Know” answers. Since the survey was
deployed via the web, and since most of our questions were multiple choice, very few items contained un-
intelligible entries.

The main exception was the question about how many subordinates the respondents had. Due to the im-
plementation of the survey, respondents were able to enter arbitrary text into this item (such as “varies”).
Moreover, some answers were ambiguous as to how many subordinates the respondent had (if any). Un-
fortunately, we also found that respondents with a large number of subordinates tended to report extremely
high levels of feature usage in essentially every category; consequently, after viewing various plots of fea-
ture usage versus subordinate count, we decided to discard data from respondents with 1000 or more
subordinates, as well as any respondents for which we could not interpret the subordinate count. Of our
original 831 respondents, this left 816.

We developed a coding system for the handful of demographic open response variables used in Section 5.2,
such as college major and industry. In general, these were relatively unambiguous to code, so we did not
implement any inter-rater checks; moreover, none of these variables showed any hint of being related to
any of our statistically significant results. Consequently, although this survey has provided good guidance
for converting these questions into multiple choice in any future surveys, we may consider omitting these
questions altogether.3

Finally, during our data cleaning process, we took the opportunity to perform cross-checks between related
items. For example, we included two copies of a question about creation of web forms (once in the context
of web page editors, and once in the context of web server scripting). If the user answered “No” to one of
these items but “Don’t Know” or skipped the other, then we set both answers to “No” (and analogously for
the situation involving “Yes” and “Don’t Know”). Lastly, if the user answered “Yes” to one but “No” to
the other, then we changed both to “Don’t Know.” These modifications affected less than a dozen respon-
dents.

3.4 Sample Characteristics
In general, the people who responded to our survey reported a great deal of technical knowledge. This was
not surprising, since the sample frame of respondents in the database that Information Week cultivates also
tended to be technically savvy, as many of them worked in Information Technology (IT) departments. Due
to non-response, our respondents tended to be slightly more likely to be consultants and somewhat more
likely to work for small firms. Yet, as described in Section 5.2, our results do not appear to be strongly
dependent on these demographic variables, so this survey’s results may generalize to the entire sample
frame. Of course, in order to generalize to a larger section of the American workforce, the results of this
survey would require confirmation through a follow-up survey with a more controlled sample, as discussed
in Section 6

3 We did, however, implement a more robust coding process for certain open-response variables, particu-
larly those related to usage of help systems by respondents. These items are not central to the present
report and may be discussed at a later date.

 - 6 -

3.4.1 Characterization of Respondents
We found that respondents generally reported significant technical background. Most respondents pos-
sessed an educational background that would be expected to give them strong technical skills. All
respondents had at least a high school education, and 79% had at least a Bachelor’s degree. Moreover,
26% of all respondents had a computer-centric major such as computer science, information technology, or
e-commerce; an additional 40% of all respondents had a math-heavy major, such as mathematics, engineer-
ing, science, or accounting.

Given this educational background, it is not surprising that respondents generally were familiar with several
programming concepts: variables, subroutines, conditionals, and loops. In fact, 79% of respondents were
familiar with all four terms. Moreover, respondents generally reported actually using the corresponding
programming constructs. In the past year, approximately 35% of all respondents created variables, used
co-workers’ subroutines, created new subroutines, coded conditionals, and coded loops. With such high
programming knowledge among respondents, it is not surprising that most features related to abstraction-
creation were used by many of the respondents, as shown in Table 1.

Table 1: We found that most (but not all) features were used by many respondents (N=816). The top

ten feature rates are bolded below.

Software

Category

Software Us-

age (% of all

users)

Feature

Variable
Theme of Feature Variable

Feature Us-

age (% of all

users)

svr_include1 Using Web server-side static includes 16.3

svr_include2 Referencing PHP/Perl libraries 27.9

svr_new Using PHP/Perl “new” function 25.4

Server-Side
Code

52.3

svr_func Creating web server script functions 40.9

web_link Creating hyperlinks 65.2

web_form Creating web forms 52.2

web_new Using JavaScript “new” function 23.3

web_func Creating JavaScript functions 34.3

Web Pages 68.6

web_behav Creating web page behavior scripts 42.9

db_link Referencing records by key 74.0

db_table Creating tables 71.7

db_func Creating stored procedures 49.5
Databases 79.3

db_view Creating database views 68.1

ss_chart Creating charts in spreadsheets 80.1

ss_func Using functions (“sum”) linking cells 89.3

ss_tmpl Creating spreadsheet templates 50.4

ss_macro1 Recording spreadsheet macros 42.3

ss_macro2 Creating/editing spreadsheet macros 38.6

Spread-
sheets

93.1

ss_link Creating inter-spreadsheet references 66.2

dsk_tmpl Creating document templates 73.3

dsk_link Making inter-document hyperlinks 53.7

dsk_macro1 Recording desktop editor macros 33.3

Other
Desktop
Software

96.1

dsk_macro2 Creating/editing desktop editor macros 30.8

Although the respondents were almost uniformly quite technically savvy, they did vary somewhat in their
actual job function. Approximately 23% were IT or networking staff, 26% were IT or networking man-
agement, 17% were consultants or freelancers, and the remaining 35% were business staff or management.
Moreover, respondents varied widely in their number of subordinates. Approximately 24% had no subor-
dinates, another 29% had 1, 2, or 3 subordinates, another 28% had 4 to 10 subordinates (inclusive), and the
remaining 19% had 11 or more subordinates.4

4 Our survey pre-testers consistently interpreted the term “subordinate” to include the entire subtree of peo-
ple beneath them, rather than just people who directly reported to them.

 - 7 -

Just as our respondents varied widely in their job title and number of subordinates, they worked for firms
that varied in total employee count and revenue. Specifically, approximately 44% of respondents worked
for small firms with fewer than 100 workers, another 35% worked for medium firms numbering 100 to
4999 workers, and the remaining 21% worked for large firms numbering at least 5000 workers. Approxi-
mately 49% of firms had revenue under $50 million, another 40% had revenue of more than $50 million,
and the remaining 11% chose not to report their company revenue.

Finally, although 10% of firms were IT vendors or related, the remainder were spread out over a wide vari-
ety of other industries. The most common was Consulting and Business Services at 17%, and the other top
three after IT Vendors were Education (9%), Government (7%), and Non-Computer Industrial Manufactur-
ing (7%). In short, the stereotypical respondent would probably be a member of the IT staff at a firm where
IT does not comprise the firm’s primary product or service.

3.4.2 Potential Non-Response Effects
Information Week had collected certain demographic variables in December 2004 to characterize the data-
base from which they randomly selected the sample. In particular, we could compare our data set to the
sample frame on firm industry, total employee count, and annual revenue. We found some differences be-
tween the two, particularly a relatively higher response rate by consultants and other non-managers, as well
as people at small firms.

After survey collection had begun, we were disappointed to learn that the answer wording did not precisely
match perfectly between the Information Week database demographic questions and the corresponding
questions in our survey. Hence, most comparisons between the sample frame and the respondents must be
done on a slightly qualitative basis.

Compared to members of the sample frame, our respondents were more likely to be in the Consulting and
Business Services industry, as shown in Table 2. However, it appears that no single industry was very un-
der-represented in our database compared to the sample frame. In particular, our sample contained about
the same fraction of respondents in the IT industry as did the sample frame.

Table 2: We found that Consultants and Business Services workers were slightly over-represented in

our sample, compared to the sample frame. The most five common industries in our sample are

shown below (N=816).

Industry Our Sample Sample Frame

Consulting and Business Services 17% 7%

IT Vendors 10% 10%

Education 9% 7%

Government 7% 9%

Non-Computer Manufacturing 7% 10%

Compared to members of the sample frame, our respondents were somewhat more likely to work for small
firms, as shown in Table 3. Fortunately, as noted in Section 5.2, firm size did not turn out to be a strong
predictor of propensity to use features, so these differences in firm size caused by non-response are not
likely to cause major problems in our analysis.

Table 3: We found that small companies were slightly over-represented in our sample, compared to

the sample frame. The relative proportions of small, medium, and large businesses are shown below

(N=816).

Total Employee Count Our Sample Sample Frame

Fewer than 100 workers 44% 31%

100 to 4999 workers 35% 33%

5000 or more workers 21% 35%

Compared to members of the sample frame, our respondents were more evenly divided between IT and
non-IT jobs, and between management and non-management, as shown in Table 4. These differences
might stem from wording differences between items in our survey and the Information Week database; spe-

 - 8 -

cifically, whereas we refer to “IT or networking,” the Information Week database refers to “Information
Systems.” However, it seems more likely that the managers who were contacted relatively less likely to
have time or interest in answering our survey, resulting in a relatively lower response rate from manage-
ment. Note also that Information Week intentionally cultivates their database in order to skew it toward
managers and other “decision makers,” so it is possible that this differential non-response fortuitously may
have made our respondents more representative of a random American workplace, though it is difficult to
know this for certain.

Table 4: We found that our sample was more evenly divided between IT and non-IT in our sample,

compared to the sample frame. The relative proportions of four occupational groups are shown be-

low (N=816).

Total Employee Count Our Sample Sample Frame

IT or networking staff 23% 10%

IT or networking management 26% 54%

Consultant or freelancer 17% 7%

Business staff, management, and other 35% 28%

4. Result 1: Identification of Three User Categories
In this section, we review the factor analysis statistical technique and then describe how we applied it using
SAS 9.1 to our data. This analysis identified three factors underlying the covariance among users’ propen-
sity to use various programming-related features. These scales correspond to Macro, Linked-Structure, and
Imperative programming.

As discussed below, the “best” set of factors is not uniquely defined—there are an infinite number of “rota-
tions” of the factors in a multi-dimensional space that are equally valid ways of representing sources of
covariance among data items. One way to verify that our factors are reasonable is to repeat the factor
analysis with different settings and then to verify that the same qualitative factor structure results. We have
performed this verification, as discussed in Section 4.4, and have found that our qualitative factor structure
do not vary significantly as we vary our settings. Of course, these settings do produce slightly different
quantitative factor loadings. It is the qualitative structure of the factors that proves robust under such a
verification process; therefore, in Section 4, we largely focus on the qualitative structure (though for refer-
ence, we present the quantitative results of various factor analysis settings in Table 6 and Table 7).

Another way to check the quality of each factor generated by factor analysis is to use the factor’s qualita-
tive structure to guide the creation of a traditional scale whose Cronbach alpha can be calculated in the
usual manner, as we discuss in Section 5.1.

4.1 Review of Factor Analysis
In this section, we briefly review the goals and assumptions implicit in factor analysis. For further details,
consult the introductory work [12] or the slightly more advanced [9] and [11].

4.1.1 Overview
A “factor” corresponds to an underlying variable that has not been measured but which is presumed to rep-
resent a construct responsible for causing covariant relationships among observed variables. That is, factor
analysis aims to identify the reasons that observed variables “go together.” Each factor loading is a vector
each of whose cells reflects the correlation of that factor with one observed variable; thus, if a factor con-
tains large values in two cells, then the corresponding two data variables each have a high correlation with
the factor (and with each other).

Because factor analysis tends to highlight co-occurrence among data items, it is useful for guiding the crea-
tion of traditional scales. Creating a scale usually involves averaging together variables that measure a
certain phenomenon or characteristic but do so with slightly varying emphases. Averaging the various
variables helps to give a fuller picture of the underlying characteristic by “smoothing over” any bias in each
particular variable.

For example, ethnography might record the amount of time that programmers spend in sixty different ac-
tivities, ranging from typing code to talking on the phone. Factor analysis could potentially reveal

 - 9 -

underlying factors that cause certain activities to co-occur. For instance, it might (hypothetically) reveal a
“collaborative-ness” factor showing that people who often talk on the phone are also likely to perform other
collaboration activities, such as writing emails and attending meetings. If researchers had previously theo-
rized that such an underlying factor should exist, then the factor analysis lends credence to the theory, and
the researchers would then be more justified in combining these items together into a scale representing the
theorized “collaborative-ness” construct.

Note that detecting factors’ underlying covariance is just the first step toward the ultimate goal of providing
better tools. The next step is to understand why those factors exist; in the example above, for example, the
collaborative-ness could correspond to an extroverted, communicative personality type or it could corre-
spond to a business process requiring several collaborative activities. Our current survey and analysis aims
at the first step, detecting factors that underlie co-occurrence, and in our future work, we will attempt to
ferret out the reasons why these factors exist.

When performing factor analysis, it is important to avoid trying to extract more factors than the data will
support. Each factor’s loading vector is an eigenvector of the data’s covariance matrix, and one commonly
practiced threshold for accepting a factor is whether the corresponding eigenvalue exceeds 1.0. Moreover,
there should usually be at least three observed variables for every factor to be extracted, so in the example
of sixty activity measurements per respondent above, it would make no sense to try extracting more than
twenty underlying factors.

In addition, exploratory factor analysis attempts to uncover factors explaining covariance among observed
variables. If a variable lacks significant communality with the rest of the variables, then the outlier should
not be included in the factor analysis, since doing so may lead to the appearance of spurious factor solu-
tions. Moreover, writers emphasize the importance of having a theory or at least a conceptual framework,
such as that described in Section 3, to guide the selection of variables to include in factor analysis.

4.1.2 Comparison to Principal Component Analysis
Factor analysis attempts to reveal a few underlying variables that explain aspects of many observed vari-
ables, and in this sense it resembles principal component analysis. However, these two techniques differ
slightly in philosophy and assumptions. Principal component analysis attempts to represent a large number
of observed variables as strict linear combinations of unmeasured underlying variables; it attempts to di-
rectly model observed variable values. In contrast, factor analysis does not attempt to predict variable
values, but rather variable covariance. (In a sense, factor analysis is like a primary component analysis on
the data’s correlation matrix, rather than on the data itself.)

Consequently, principal component analysis assumes that observed variables can be completely modeled
by these underlying variables, and if any variance remains unexplained, that this is simply because not all
of the underlying variables have been identified as yet. In contrast, while factor analysis looks for “com-
mon” factors that explain covariance among multiple observed variables, it also recognizes that each
observed variable may also have individual character, as well, and that each variable’s variance is therefore
the result of “unique” factors as well as “common” factors.

Because we seek to reveal co-occurrence patterns among feature usage propensities, we have selected fac-
tor analysis. As discussed in the following sections, this allows us to test our hypotheses about which
features should “go together,” and then to build scales representing those constructs.

4.2 Data Preparation & Adjusted Feature Propensity Items (AFPIs)
As described in Section 3.2, our survey asked about software usage by respondents and their subordinates.
For each piece of software used, we asked about usage of features related to programming. We then per-
formed the three steps described below to prepare the feature data for factor analysis.

First, we numerically coded each response as follows: “No” = 0, “Yes” = 1, “Don’t Know” or
skipped/missing = .U (which is a special symbol used by SAS to denote data that should not be included in
analyses). Note that if the respondent did not report usage of the corresponding piece of software, then the
feature variable was recorded as skipped/missing.

Second, we recognized that not every “Yes” is equally “resounding” or significant. For example, 66% of
all respondents reported usage of web page editors and also creation of hyperlinks (item web_link),

 - 10 -

whereas only 16% of all respondents reported usage of web server scripting and also coding of static
server-side includes (item svr_include1). Consequently, we wanted to rescale answers so that a “Yes” for a
more commonly used feature corresponded to less than 1.0, while a “Yes” for a less commonly used feature
corresponded to more than 1.0. SAS includes the “proc standard” command precisely for this purpose,
which standardized each variable to a mean of 0.0 and standard deviation of 1.0.

Finally, in preparation for revealing feature usage propensities, we needed to remove the effect that bun-
dling has on feature usage. Obviously, feature usage tends to co-occur a great deal within the same tool:
creation of hyperlinks, for example, is highly correlated with creation of web forms; such an effect has
nothing to do with abstraction, but rather with the environment itself. To remove the effect of feature bun-
dling within each tool, for each feature, we subtracted off the average feature usage by that respondent for
that tool. For example, we adjusted each of the four database feature items for each respondent with equa-
tions like those shown in Table 5.

Table 5: As exemplified by the database items below, we subtracted the average feature usage within

the tool so that feature usage items better represent relative propensities.

Variable Question Theme
Remove Tool Bundling Effect by Replacing the Variable’s

Value with the Value Shown Below

db_table Creating tables db_table – sum(db_table,db_view,db_func,db_link)/4

db_view Creating views db_view – sum(db_table,db_view,db_func,db_link)/4

db_func Creating stored procedures db_func – sum(db_table,db_view,db_func,db_link)/4

db_link Referencing records by key db_link – sum(db_table,db_view,db_func,db_link)/4

By subtracting a baseline feature usage for each tool for each respondent, our adjustments reveal latent fea-
ture propensities that do not stem from the tool itself. The side-effect is that for each tool for each
respondent, the adjusted feature propensity items must now total zero (e.g.: db_table + db_view + db_func
+ db_link now equals 0 in the example above). As a result, for each tool for each respondent, some of the
adjusted feature propensity items will be positive, and some will be negative (or they will all be zero!), re-
flecting high or low feature usage propensities, respectively. We call the resulting 23 items “adjusted
feature propensity items” (AFPIs) in the sections that follow. (See Table 6 for a list of the AFPIs.)

4.3 Characterization of User Categories
Given the adjusted feature propensity items (AFPIs) described in Section 4.2, we now turn to the question
of which AFPIs are correlated with other AFPIs—which feature propensities co-occur? To answer this
question, we applied factor analysis.

4.3.1 Factor analysis procedure
Unfortunately, applying factor analysis is not quite as straightforward as simply dumping the data into the
SAS “proc factor” routine, which runs an exploratory factor analysis. As noted in Section 4.1, factor analy-
sis relies on the assumption that a handful of common factors underlie the covariance among multiple
observed variables. In conformance with this assumption, we had to ensure that we did not try to extract
more factors than the data supported, and that we did not try to explain covariance between variables that
did not share any covariance with the majority of the variables. Thus, the first few steps of factor analysis
involve identifying and removing variables that do not share significant covariance with the remaining vari-
ables.

We started by running “proc factor” on all 23 AFPIs shown in Table 6 to see how many factors the data
would support. Only three eigenvalues exceeded 1.0, so we reran the analysis with the restriction that SAS
should attempt to model the covariance matrix using only three factors. (Retaining a fourth produced a
relatively weakly loaded factor with little readily interpretable semantic content, which was not surprising
since our first three factors together already explained 71% of the total variance.)

We then checked how much commonality the AFPIs shared with one another and found that 4 AFPIs had
very low commonality with the other 19 AFPIs. Specifically, the sum of each AFPI’s squared factor load-
ings was under 0.1, whereas the commonality for the other 19 AFPIs exceeded 0.1 and averaged over 0.4.
We thus eliminated the following 4 AFPIs from further factor analysis:

 - 11 -

• Creation of behaviors in web page editors (web_behav)

• Creation of functions/procedures in web server script (svr_func)

• Creation of data reference links between spreadsheets (ss_link)

• Creation of database views (db_view)

(Variables with low commonality such as 0.1 generally do not have large factor loadings, anyway, so re-
taining or omitting these variables does not change the results substantively.)

Once we removed variables that lacked significant covariance with the main body of variables, we ran our
factor analysis with the remaining 19 AFPIs, yielding the three factor loadings shown in Table 6. These
factors dealt with macros, linked structures, and imperative coding. The SAS command “proc factor
method=p priors=max rotate=varimax”, though running the analysis with other settings resulted in a similar
qualitative pattern. Section 4.4 discusses the meaning of these parameters, and the effects of varying them.

Table 6: Factor analysis of our data yielded the factor loadings shown below (N=168). Bolded cell

values are somewhat large versus other items in that column; unbolded out numbers are relatively

small. As discussed in the text, the four items at the bottom were omitted from our final factor load-

ings due to poor commonality.

AFPI

Variable
Question Theme

Factor1

Macros

Factor2

LinkStruct

Factor3

Imperative

web_link Creating hyperlinks -0.05 0.06 -0.62

web_form Creating web forms 0.15 0.18 -0.50

web_new Using JavaScript “new” function -0.03 -0.07 0.64

web_func Creating JavaScript functions -0.04 -0.09 0.50

svr_include1 Using Web server-side static includes -0.09 0.25 -0.26

svr_include2 Referencing PHP/Perl libraries -0.06 -0.41 -0.06

svr_new Using PHP/Perl “new” function 0.07 0.01 0.42

ss_chart Creating charts in spreadsheets -0.40 0.27 0.14

ss_func Using functions (“sum”) linking cells -0.21 0.37 -0.10

ss_tmpl Creating spreadsheet templates -0.24 -0.19 0.12

ss_macro1 Recording spreadsheet macros 0.60 -0.35 -0.13

ss_macro2 Creating/editing spreadsheet macros 0.68 -0.18 0.02

dsk_tmpl Creating document templates -0.59 -0.02 -0.17

dsk_link Making inter-document hyperlinks -0.63 -0.04 0.07

dsk_macro1 Recording desktop editor macros 0.86 0.03 0.07

dsk_macro2 Creating/editing desktop editor macros 0.87 0.07 0.09

db_link Referencing records by key -0.02 0.68 -0.06

db_table Creating tables -0.01 0.54 -0.21

db_func Creating stored procedures 0.04 -0.72 0.22

web_behav Creating web page behavior scripts OMITTED OMITTED OMITTED

svr_func Creating web server script functions OMITTED OMITTED OMITTED

ss_link Creating inter-spreadsheet references OMITTED OMITTED OMITTED

db_view Creating database views OMITTED OMITTED OMITTED

We used 168 respondent records in this factor analysis, rather than the full set of 816, due to limitations in
the factor analysis technique, which cannot handle missing values. If respondents indicated that they and
their respondents did not use a software tool, then our skip logic bypassed the questions corresponding to
features within that tool. As a result, unless respondents indicated usage of all five software tools, we were
missing answers for some or all feature questions, so we could not construct corresponding AFPIs. Thus,
we only included 168 respondents in our initial factor analysis.

This is a serious limitation. It implies that the results of the factor analysis apply to only respondents who
used every feature. To deal with this limitation, we will focus on factors’ qualitative structure in Sections
4.3.2 and 4.4, then use that structure in Section 5 to guide the creation of traditional scales, which apply to
all respondent records and checked using traditional measures such as Cronbach alpha.

 - 12 -

4.3.2 Qualitative factor structure
By inspecting which AFPIs were most strongly correlated with each factor (the factor loadings in Table 6),
we associated an apparent meaning with each factor.

The first factor corresponded to a cluster of features related to macros. Specifically, it correlated most posi-
tively with recording of spreadsheet macros (ss_macro1), textual editing of spreadsheet macros
(ss_macro2), recording of macros in word processors and slide presentation editors (dsk_macro1), and tex-
tual editing of macros in word processors and slide presentation editors (dsk_macro2). In addition, the first
factor demonstrated a negative correlation with the creation of inter-document hyperlinks (web_link), and
also with document templates in word processing and slide presentation editors (dsk_tmpl). In other words,
this “Macros” factor represents the fact that when people demonstrate a propensity toward one macro fea-
ture, they demonstrate strong positive propensity toward other macro features. (These users also
demonstrated a somewhat weaker dis-propensity toward creating templates and hyperlinks, perhaps simply
because of the normalization described in Section 4.2, or perhaps because users who know how to use mac-
ros have an inclination to use macros in situations where other users might use templates). For this reason,
we have termed this factor the “Macro” factor.

The second factor corresponded to a cluster of features related to creating and linking data structures. Spe-
cifically, it correlated most positively with the AFPIs for creating and linking database tables via keys
(db_table and db_link). It also loaded somewhat on the creation of other structured objects: web forms
(web_form) and charts (ss_chart), which puzzled us until we realized that charts usually depict lists of X
and Y values—namely, data structures called “tuples”. The factor also loaded positively on linking web
pages through “static includes” (svr_include1) and linking spreadsheet cells using simple functions like
“sum” (ss_func). It negatively correlated with creation of database stored procedures (db_func), which was
instead part of the third factor’s cluster. Because the factor correlated so strongly with this cluster of fea-
tures related to creating and linking structures, we have termed it the “LinkStruct” factor.

The third factor corresponded to a cluster of features related to imperative coding. Specifically, the third
factor loaded most heavily on usage of the “new” command in Perl and PHP in web server scripting
(svr_new), usage of the “new” command in JavaScript (web_new), the creation of functions in JavaScript
(web_func), and creation of stored procedure functions in databases (db_func). It was negatively correlated
with creation of hyperlinks (web_link) and web forms (web_form). Because the third factor correlated
with this cluster of features related to imperative programming, we have termed it the “Imperative” factor.

To understand the significance of these results, let us focus for a moment on just one feature. For example,
consider creation of database stored procedures (db_func). This feature was not part of the second factor’s
cluster of features, which included creation of database tables (db_table) and database keys (db_link). In-
stead, this second factor demonstrated a very strong negative correlation with creating database stored
procedures. Thus, the adjustment procedure discussed in Section 4.2 did not tend to produce all zeroes for
these three database AFPIs, but rather produced an “odd-man-out” effect. The fact that stored procedure
creation was the “odd man out” suggests that the propensity to create stored procedures may come from a
different underlying factor than does the propensity to create database tables and link them together.

Moreover, the people with a propensity to create stored procedures also had a tendency to create JavaScript
functions, to use the JavaScript “new” command, and to use the Perl or PHP “new” command. In other
words, stored procedure creation tended to co-occur with usage of other features in the “Imperative” clus-
ter.

Thus, the analysis above uncovered an interesting result: People with a propensity to use imperative coding
techniques in JavaScript, Perl, and PHP are more likely to use stored procedures in databases.

To summarize, feature propensities demonstrated a clear clustering effect. Section 4.4 reviews the robust-
ness of our results and Section 5 describes differences among the “Macro,” “LinkStruct,” and “Imperative”
users in terms of their programming practices.

 - 13 -

4.4 Robustness of Qualitative Factor Structure
For any given data set, there exists an infinite number of alternate factor loadings which describe the corre-
lation structure equally well. These represent linear combinations corresponding to rotations in a multi-
dimensional space and signify equally valid ways of interpreting the data. The exact quantitative factor
loadings will differ, but if running a factor analysis under a variety of reasonable settings continually pro-
duces the same qualitative structure, then this implies that the observed qualitative structure is a sensible
way to represent the factors that underlie correlations within the data set.

To explore some alternate factor loadings, we took advantage of alternate algorithms supported by SAS for
extracting factors. We found that these approaches generally generated “Macros,” “LinkedStruct,” and
“Imperative” factors, though the exact loading coefficients varied somewhat.

4.4.1 Robustness under alternate extraction methods
Our initial analysis used the Principal Factor Analysis algorithm (specified with the METHOD=P setting).
This algorithm resembles running a principal component analysis on the correlation matrix, except that
each row’s 1.0 entries on the correlation matrix diagonal are replaced with an estimate of that item’s com-
monality. After principal component analysis runs, extracting a set of factors, SAS re-estimates these
commonalities, re-populates the diagonal entries and re-runs the analysis. This repeats until commonalities
cease to change much. Our initial estimate of the commonalities used the maximum value from each row
to populate each diagonal entry of the correlation matrix (specified with the PRIORS=MAX setting).

We tried out two other factor analysis methods, ALPHA and ULS, revealing roughly the same qualitative
structure as that described in Section 4.3. Whereas Principal Factor Analysis attempts to explain as much
variance as possible within the correlation matrix, the ALPHA and ULS use different goals to guide their
factor extraction. For example, the ALPHA method attempts to maximize a widely used measure of scale
reliability, Cronbach alpha, for each of the generated factor-item loadings. Thus, it was encouraging to see
these alternate algorithms generate the same qualitative structure as did our initial analysis.

4.4.2 Robustness under alternate rotation
After extracting the factors, they are linearly re-combined by SAS in a way that helps to make them more
interpretable. One way to visualize this is as a rotation of the factors (as vectors) through a multi-
dimensional space so that they are more parallel to item axes (while still remaining consistent with the
data). The factors start out orthogonal to one another, meaning that they exhibit zero covariance. The
VARIMAX rotation that we used in our initial analysis preserved this factor orthogonality.

An alternate approach, termed PROMAX, follows the VARIMAX rotation with a selective stretching of
the vector space so that factor vectors lie even more parallel with item axes. This means that factors lose
their orthogonality, so they become correlated with one another (and consequently, factor loadings no
longer precisely equal correlations between factors and items). In exchange, the factors become more in-
terpretable as a result. Applying PROMAX to our factors still generated the same qualitative structure, in
terms of where the factor loads fell most heavily.

4.4.3 Robustness upon exclusion of managers
In feature questions, we asked whether the respondent or any subordinates had used the features in the past
three months. We wondered whether the same factors would appear if we repeated our initial analysis us-
ing only the 43 respondents who had no subordinates and who had no missing values in relevant questions.

As shown in Table 7, the overall qualitative structure of the factors remained the same as in our initial
analysis: the first factor loaded on macro AFPIs, the second loaded on structure and linkage, and the third
loaded on imperative programming. While the qualitative structure remained the same, some loadings
strengthened slightly while others slightly weakened. Specifically, relative to our initial analysis, the most
significant changes were increased loading by the third factor on referencing of PHP/Perl libraries
(svr_include2) and using the PHP/Perl “new” function (svr_new), both of which are related to imperative
web server scripting and are therefore consistent with the “Imperative” label we associated with the third
factor in our initial analysis.

 - 14 -

Table 7: Factor analysis of data from respondents with no subordinates yielded the factor loadings

shown below (N=43). Bolded cell values are somewhat large compared to other items in that column;

unbolded numbers are relatively small.

AFPI

Variable
Question Theme

Factor1

Macros

Factor2

LinkStruct

Factor3

Imperative

web_link Creating hyperlinks 0.03 0.03 -0.48

web_form Creating web forms 0.37 0.22 -0.23

web_new Using JavaScript “new” function -0.19 -0.05 0.45

web_func Creating JavaScript functions 0.05 -0.22 0.17

svr_include1 Using Web server-side static includes -0.07 0.12 -0.59

svr_include2 Referencing PHP/Perl libraries -0.16 -0.10 0.53

svr_new Using PHP/Perl “new” function 0.14 -0.12 0.36

ss_chart Creating charts in spreadsheets -0.47 0.08 0.06

ss_func Using functions (“sum”) linking cells 0.10 0.36 -0.12

ss_tmpl Creating spreadsheet templates -0.14 -0.18 0.43

ss_macro1 Recording spreadsheet macros 0.56 -0.16 -0.07

ss_macro2 Creating/editing spreadsheet macros 0.61 -0.03 -0.07

dsk_tmpl Creating document templates -0.66 -0.15 -0.38

dsk_link Making inter-document hyperlinks -0.53 -0.06 0.48

dsk_macro1 Recording desktop editor macros 0.80 0.18 -0.02

dsk_macro2 Creating/editing desktop editor macros 0.86 0.10 -0.08

db_link Referencing records by key -0.07 0.97 -0.08

db_table Creating tables -0.07 0.97 -0.08

db_func Creating stored procedures -0.12 -0.79 0.16

web_behav Creating web page behavior scripts OMITTED OMITTED OMITTED

svr_func Creating web server script functions OMITTED OMITTED OMITTED

ss_link Creating inter-spreadsheet references OMITTED OMITTED OMITTED

db_view Creating database views OMITTED OMITTED OMITTED

5. Result 2: Links between Abstraction, Testing, and Documentation
Guided by the qualitative structure discovered through our factor analysis, we proceeded to construct scales
representing the “Macro,” “LinkedStruct,” and “Imperative” propensities of respondents. ANOVA tests
revealed that high propensity to use Imperative features was associated with a tendency to test and docu-
ment, while high propensity to use LinkStruct features was only weakly associated with these practices.

5.1 Definition of Factor-like Scales
As noted in Section 4.3.1, SAS omits records with missing values in factor analysis. Consequently, guided
by the factor loadings shown in Table 6, we wish to create traditional scales that can be applied to all re-
spondents.

We were guided for two reasons by the qualitative factor structure shown in Table 6, rather than the par-
ticular correlation coefficients listed. First, the exact numbers varied somewhat depending on which factor
analysis algorithm we ran, as discussed in Section 4.4. Second, we wanted to include only the most signifi-
cant items in each factor, rather than “throwing in the kitchen sink,” in order to keep the semantics of each
factor as interpretable as possible. Thus, for each of the three factors, we chose to sort the items according
to absolute value of correlation coefficient, and then include in each scale only the five or six items with the
largest absolute value of correlation coefficient.

For example, as shown in Table 6, the “Macros” factor had a large positive correlation with four items and
a large negative correlation with two items. Specifically, it correlated positively with the recording of
spreadsheet macros (ss_macro1), the textual editing of spreadsheet macros (ss_macro2), the recording of
macros in word processors and slide presentation editors (dsk_macro1), and the textual editing of macros in
word processors and slide presentation editors (dsk_macro2). The factor also had a strong correlation, but
with a negative coefficient, with the creation of templates in word processors and slide presentation editors
(dsk_tmpl) and the creation of links among documents created in word processors and slide presentation

 - 15 -

editors (dsk_link). (Negative values are a side-effect of the AFPI adjustment procedure outlined in Section
4.2, and negative coefficients simply result from negative correlations.) Hence, we include these six vari-
ables (ss_macro1, ss_macro2, dsk_macro1, dsk_macro2, dsk_tmpl, and dsk_link) in our “Macros” scale.
Note that the last two of these will be multiplied by a coefficient of -1 because they were negatively corre-
lated with the “Macros” factor.

Based on the factor loadings’ qualitative structure, we defined the following scales, which had standardized
Cronbach alpha values of 0.82, 0.62, and 0.64, respectively:

• PX_MACROS = (ss_macro1 + ss_macro2 + dsk_macro1 + dsk_macro2 – dsk_tmpl – dsk_link)/6.0;

• PX_LINKSTRUCT = (web_form + svr_include1 + db_link + db_table – db_func)/5.0;

• PX_IMPERATIVE = (web_new + web_func + svr_new – web_link – web_form)/5.0;

In the case of missing values, we omitted the corresponding adjusted feature propensity item (AFPI) from
the formulas above, and adjusted the divisor accordingly. After applying these scales to each respondent,
we standardized each scale using “proc standard” to a mean of 0 and standard deviation of 1. The resulting
scales were not normally distributed (failing a Kolmogorov-Smirnov test at P=0.01, N=816), but they were
essentially skewed unimodal with no floor or ceiling effects.

5.2 Comparisons among User Categories
In order to assess differences among categories of users, we created several scales (shown in Table 8) rep-
resenting concepts related to programming and general computing skills. Missing variables in scales were
replaced with 0 (“No” or “Never Useful”), then variables were standardized and averaged to generate the
scale. (There was no effect on the ANOVA test results discussed below if we omitted records with missing
values, rather than replacing with zero, or if we omitted respondents with subordinates.)

After we had defined the three factor-like scales discussed in Section 5.1, as well as the scales shown in
Table 8, we could determine whether our factor-like scales gave any “predictive power” with respect to the
other scales. To make this assessment, we divided the respondents into two categories—those who scored
above average on the Macro scale, and those that scored below average on the Macro scale—and then used
a standard ANOVA test to see whether respondents in each category differed on a scale of interest, such as
knowledge of programming terms. We repeated this analysis likewise for the LinkStruct and Imperative
scales.

As shown in Table 9, our factor-like scales did yield significant predictive power for many scales of inter-
est. For example, respondents with greater-than-average propensity to use Imperative features had a higher
knowledge of programming terms than did respondents with lower-than-average propensity to use Impera-
tive features. In fact, people with higher propensity to use Imperative features showed higher
sophistication on every “good programming practices” scale, including testing and documenting. Com-
pared to people with a low propensity to use Imperative features, people with high propensity to use
Imperative features reported more knowledge of programming terms, more usage of programming con-
structs, more web page testing, more spreadsheet testing, more propensity to create documentation, and
higher perceived usefulness of the web. (P ≤ 0.02 for these results. Non-empty cells in Table 9 show statis-
tically significant Type I ANOVA tests of the row’s specified scale based on the column’s specified
categorization; all indicated cells were also significant under Tukey’s test. The three categorizations were
tested independently with df=1, N=816. No other cells were significant at the P=0.05 level. The shown P
values are conservative, in that they incorporate Bonferroni’s correction to help control Type I error.)

Likewise, people with higher-than-average propensity to use LinkStruct features were somewhat more so-
phisticated than people with lower-than-average propensity to use LinkStruct features. Specifically, they
reported more knowledge of programming terms, more usage of programming constructs, and more web
page testing. (P ≤ 0.03 for these results.)

Finally, people with higher-than-average propensity to use Macro features were more likely to report usage
of programming constructs than were people with lower-than-average propensity to use Macro features.
(P ≤ 0.02 for these results.)

 - 16 -

Table 8: We defined the scales shown below to assess differences among categories of users (N=816).

Scale Variable Question Theme

know_variable Personal familiarity with variables

know_subroutine Personal familiarity with subroutines

know_conditional Personal familiarity with conditionals

Knowledge of programming terms
Cronbach alpha = 0.84

know_loop Personal familiarity with loops

know_variable_more Personal usage of variables

know_subroutine_more1 Personal usage of others’ subroutines

know_subroutine_more2 Personal creation of subroutines

know_conditional_more Personal usage of conditionals

Usage of programming constructs
Cronbach alpha = 0.89

know_loop_more Personal usage of loops

Web page testing (single item) web_test Testing web pages in many browsers

Spreadsheet testing (single item) ss_test Testing spreadsheets for accuracy

ss_doc Creates documentation accompany-
ing spreadsheets

db_doc Creating documentation accompany-
ing databases

www_dest_ex Perceived usefulness of web as a
place to publish examples

www_dest_doc Perceived usefulness of web as a
place to publish documentation

Propensity to create documentation
Cronbach alpha = 0.71

www_dest_data Perceived usefulness of web as a
place to publish numerical data

www_src_ex Perceived usefulness of web as a
source of examples

www_src_doc Perceived usefulness of web as a
source of documentation

www_src_data Perceived usefulness of web as a
source of numerical data

www_dest_ex Perceived usefulness of web as a
place to publish examples

www_dest_doc Perceived usefulness of web as a
place to publish documentation

Perceived usefulness of the web
Cronbach alpha = 0.82

www_dest_data Perceived usefulness of web as a
place to publish numerical data

demo_train_job_prog Training in programming

demo_train_job_web Training in creating web pages

demo_train_job_ss Training in creating spreadsheets

On-the-job training
Mean of non-missing variables
Cronbach alpha = 0.76

demo_train_job_db Training in creating databases

On-the-job training in programming
(single item)

demo_train_job_prog Training on-the-job in programming

High school training (single item) demo_train_hs High school training in programming

Education (single item) demo_education Highest level of education

Job function (single item) demo_job Job function: IT Staff / IT Mgmt /
Consultant / Other

College major (single item) demo_major1 Major: Computer-centric / Math-
related (e.g.: sciences) / Other

Firm Industry (single item) demo_industry Industry: IT Vendor / Other

Firm Revenue (single item) demo_revenue Firm yearly revenue

Firm Size (single item) demo_empcount Firm total employee count

 - 17 -

Table 9: As shown below, we found a number of statistically significant differences among categories

of users. (df=1, N=816.)

Scale
Categorize based

On Macros

Categorize based

On LinkStruct

Categorize based

On Imperative

Knowledge of programming terms P = 0.03; F = 4.82 P < 0.01; F = 11.52

Usage of programming constructs P < 0.01; F =7.25 P < 0.01; F = 8.27 P < 0.01; F = 16.17

Web page testing P < 0.01; F = 16.34 P < 0.01; F = 87.76

Spreadsheet testing P = 0.02; F = 5.14

Propensity to create documentation P < 0.01; F = 81.49

Perceived usefulness of the web P < 0.01; F = 56.47

On-the-job training

On-the-job training in programming

High school training programming

Education

Job function P = 0.02; F =5.27 P < 0.01; F = 7.44

College major

Firm Industry P < 0.01; F = 7.79

Firm Revenue

Firm Size

Looking at the results in Table 9 from a qualitative standpoint, it is clear that a person’s propensity to use
Imperative features is strongly related to what we might expect from a “good” programmer—knowledge of
terminology, testing, and documentation. This statement is true to a lesser extent about propensity to use
LinkStruct features, which was associated with knowledge of terminology and some testing practice, but
not associated with documentation. Finally, of the three factor-like scales, propensity to use Macros seems
to be least strongly associated with “good” programming.

As shown in Table 9, the respondents in each category generally did not differ significantly with respect to
demographics. Regardless of which factor-like scale is used to categorize users, categories did not differ
statistically on most demographic items. In particular, training, education, and firm size did not differ
markedly from one category of user to the other.

The main exception is that people with a strong propensity to use Imperative features were more likely to
have IT jobs and to work in the IT industry. This is not surprising, considering the heavy use of imperative
languages by professional programmers in the IT industry. The data also weakly suggest that people with a
stronger propensity to use Macros were more likely to have IT jobs.

An analysis like this yields correlative results but not causative conclusions: several hypotheses might ex-
plain these patterns. For example, Imperative features might be so difficult to use that learning
terminology, testing, and documentation is a necessary precondition; LinkStruct and Macros features sim-
ply might be easier to use. Alternatively, perhaps people who use Imperative features work in
environments where testing and documentation are demanded by management or the corporate culture.
Perhaps the true cause is a mix of these, or a third cause altogether. Further study will be required to ferret
out the motivations, background, and skills of people who use each class of features.

In short, although our factor-like scales are strongly related to the “good programming” scales discussed
earlier, our factor-like scales are generally not as strongly related to demographic variables.

 - 18 -

6. Conclusion and Future Work
Our survey of Information Week readers has revealed significant clustering of propensities to use features
related to the creation of abstractions. We have developed three scales representing these clusters, corre-
sponding to the use of Macro features, Linked Structure features, and Imperative features. Moreover, we
have found that respondents higher on these scales tend to be more likely to report testing and document-
ing, and this effect is most pronounced along the Imperative scale.

These three scales essentially represent dimensions spanning the space of end user programming in tech-
savvy workplaces, and surveys such as ours reveal patterns within this space. However, there are limita-
tions to what can be accomplished with a survey.

For example, this survey is limited in the generalizability of its results. It is not clear that end users in
home or school contexts would demonstrate the same patterns of feature use. Indeed, our earlier secondary
analysis of government data suggests that end users in these other contexts have significantly different ap-
plication usage than users in the workplace context [25], and previous ethnographies suggest that the menu
of abstractions available to end users in the home context also differ from that of the workplace context
[20]. Thus, mapping out the space end user programming outside the workplace would require additional
surveys.

In addition, although surveys can reveal patterns and trends within a population, they often offer limited
insight into why those patterns and trends exist. In our case, it is not yet clear why feature usage propensi-
ties demonstrate the clustering that we observed, and possible hypotheses abound. Addressing this issue
further would require a more interactive study that spans multiple types of user and multiple application
environments. For example, we might wish to perform a contextual inquiry of users from several occupa-
tions and observe how they go about using features in different applications to create abstractions.

We are particularly interested in understanding use of features related to Linked Structure abstractions. It is
clear that Imperative programming strongly resembles the work of a professional programmer, so it is not
too surprising that respondents with a propensity for using Imperative features would demonstrate various
good programming practices such as testing and documenting (particularly since our sample included a
significant number of users in IT-related jobs or industries).

But in this modern world of relational databases and object-oriented programming, we might also suppose
that Linked Structure programming also resembles the work of a professional programmer. Why, then,
was the propensity to create Linked Structures only weakly related to testing and documenting (compared
to propensity to use Imperative features)? Does the difference a property of the users themselves? Does
the difference stem from the business processes surrounding the creation of those abstractions? Or is it just
easier to perform testing and documenting of Imperative programs?

We intend to focus on these questions and others in our future work as we continue to identify and study
different categories of end users, guided by the hints from this survey.

7. Acknowledgements
We gratefully acknowledge Rusty Weston and Lisa Smith at Information Week for their hard work suggest-
ing refinements for the survey, publishing it on the web, advertising it to their subscribers, and sharing the
data thus collected. We thank the subscribers of Information Week magazine for participating in this study.
Finally, we extend our gratitude to James Herbsleb, Irina Shklovski, and Sara Kiesler for their input on
various aspects of this study: how to develop a model, how to clean and analyze data, and how to design a
survey, respectively.

This work has been funded in part by the EUSES Consortium via the National Science Foundation (ITR-
0325273), by the National Science Foundation under Grant CCF-0438929, by the Sloan Software Industry
Center at Carnegie Mellon, and by the High Dependability Computing Program from NASA Ames coop-
erative agreement NCC-2-1298. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the sponsors.

 - 19 -

8. References
[1] L. Beckwith, M. Burnett, S. Wiedenbeck, and C. Cook. Effectiveness of End-User Debugging

Software Features: Are There Gender Issues?. CHI '05: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, ACM Press, 2005, pp. 869-878.

[2] A. Blackwell. First Steps in Programming: A Rationale for Attention Investment Models. HCC

'02: Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Envi-

ronments, IEEE Computer Society, 2002, pp. 2-10.

[3] N. Edwards. The Effect of Certain Modular Design Principles on Testability. Proceedings of the

International Conference on Reliable Software, 1975, pp. 401-410.

[4] M. Fisher II and G. Rothermel. The EUSES Spreadsheet Corpus: A Shared Resource for Support-
ing Experimentation with Spreadsheet Dependability Mechanisms. Technical Report 04-12-03,
University of Nebraska-Lincoln, Lincoln, NE, December 2004.

[5] T. Green and A. Blackwell. Ironies of Abstraction. Proceedings of the 3rd International Confer-

ence on Thinking, British Psychological Society, 1996.

[6] T. Green and M. Petre. Usability Analysis of Visual Programming Environments: A Cognitive
Dimensions Framework. Journal of Visual Languages and Computing, Vol. 7, No. 2, June 1996,
pp. 131-174.

[7] J. Hintze and M. Masuch. Designing a 3D Authoring Tool for Children. C5 '04: Proceedings of

the Second International Conference on Creating, Connecting and Collaborating Through Com-

puting, IEEE Computer Society, 2004, pp. 78-85.

[8] Inquisite web survey system. http://www.inquisite.com

[9] R. Johnson and D. Wichern. Applied Multivariate Statistical Analysis, Prentice Hall, Englewood
Cliffs, NJ, 1988.

[10] K. Kahn. Drawings on Napkins, Video-Game Animation, and Other Ways To Program Com-
puters. Communications of ACM, Vol. 39, No. 8, 1996, pp. 49-59.

[11] J. Kim and C. Mueller. Factor Analysis: Statistical Methods and Practical Issues, Sage Publica-
tions, Beverly Hills, CA, 1978.

[12] J. Kim and C. Mueller. Introduction to Factor Analysis: What It Is and How to Do It, Sage Publi-
cations, Beverly Hills, CA, 1978.

[13] R. Miller and B. Myers. Multiple Selections in Smart Text Editing. IUI '02: Proceedings of the 7th

International Conference on Intelligent User Interfaces, ACM Press, 2002, pp. 103-110.

[14] F. Modugno, A. Corbett, and B. Myers. Evaluating Program Representation in a Demonstrational
Visual Shell. CHI '95: Conference Companion on Human Factors in Computing Systems, ACM
Press, 1995, pp. 234-235.

[15] B. Nardi. A Small Matter of Programming: Perspectives on End User Computing, The MIT Press,
Cambridge, MA, 1993.

[16] J. Pane, B. Myers, and L. Miller. Using HCI Techniques to Design a More Usable Programming
System. HCC '02: Proceedings of the IEEE 2002 Symposia on Human Centric Computing Lan-

guages and Environments, IEEE Computer Society, 2002, pp. 198-206.

[17] J. Pane and B. Myers. Usability issues in the design of novice programming systems. Technical
Report CMU-CS-96-132, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, August 1996.

[18] D. Parnas. The Influence of Software Structure on Reliability. In Proceedings of the International

Conference on Reliable Software, 1975, pp. 358-362.

[19] D. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules. Communications of

the ACM, 15, 12 (Dec. 1972), 1053-1058.

[20] J. Rode, E. Toye, and A. Blackwell. The Fuzzy Felt Ethnography—Understanding the Program-
ming Patterns of Domestic Appliances. In Proceedings of the 2nd International Conference on

Appliance Design., Vol. 8, No. 3-4, 2004, pp. 161-176.

 - 20 -

[21] M. Rosson, J. Ballin, and J. Rode. Who, What, and How: A Survey of Informal and Professional
Web Developers, VL/HCC’05: Proceedings of the 2005 IEEE Symposium on Visual Languages

and Human-Centric Computing, 2005, pp. 199-206.

[22] J. Ruthruff, E. Creswick, M. Burnett, and C. Cook. End-User Software Visualizations for Fault
Localization. SoftVis '03: Proceedings of the 2003 ACM Symposium on Software Visualization,
ACM Press, 2003, pp. 123-132.

[23] C. Scaffidi, M. Shaw, and B. Myers. The "55M End-User Programmers" Estimate Revisited.
Technical Report CMU-ISRI-05-100/CMU-HCII-05-100, Institute for Software Research Interna-
tional, Carnegie Mellon University, Pittsburgh, PA, 2005.

[24] C. Scaffidi, M. Shaw, and B. Myers. An Approach for Categorizing End User Programmers to
Guide Software Engineering Research. WEUSE I: Proceedings of the First Workshop on End-

User Software Engineering, ACM Press, 2005, pp. 1-5.

[25] C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users and End User Pro-
grammers. VL/HCC’05: Proceedings of the 2005 IEEE Symposium on Visual Languages and

Human-Centric Computing, pp. 207-214, 2005.

[26] C. Wallace, C. Cook, J. Summet, and M. Burnett. Assertions in End-User Software Engineering:
A Think-Aloud Study. HCC '02: Proceedings of the IEEE 2002 Symposia on Human Centric
Computing Languages and Environments, IEEE Computer Society, 2002, pp. 63.

[27] A. Wilson, et. al. Harnessing Curiosity to Increase Correctness in End-User Programming, Pro-

ceedings of CHI’2003, pp. 305-312.

 - 21 -

Appendix A
This Appendix shows the wording of the questions in the survey that we deployed with Information Week.
To facilitate cross-referencing between these questions and our discussion in Sections 1 through 6, above,
we have enclosed variable names in double angle brackets, below, for example: <<demo_empcount>>

Note that some questions were skipped. The skip logic is shown in italics and square brackets below, for
example: [Only ask this question if <<web>> = Yes]

Finally, some questions were asked together on the same screen. For example, after asking about software
usage, if the respondent reported usage of that piece of software, then the next screen listed a series of fea-
tures and asked the respondent about usage of those features. To highlight the fact that these questions
were asked all on one screen, we have enclosed them in boxes, below.

This is a study by Carnegie Mellon University that looks at the soft-

ware that you use, and considers how software features help you do your

job. Your answers will help guide research aimed at improving software

flexibility. Your completed survey makes you eligible for a chance to

win a grand prize check for $500 and one of five $100 checks from

InformationWeek, part of CMP Media. Completing this survey also enti-

tles you to a free report detailing the study results.

Please be assured that your responses will remain confidential. Answers

will only be reported in aggregate and nothing will be attributed to

you or your company. Study results will appear in an upcoming story in

print and on www.informationweek.com in May.

Thank you again for participating in this voluntary survey.

Section 1 of 4

This first section asks about the software that you and your subordi-

nates use at work.

<<web>> In the past 3 months, have you or your subordinates created

or edited web pages (for example, using FrontPage, QuarkXPress, Photo-

shop, or DreamWeaver)?

o Yes

o No

[Only ask this question if <<web>> = Yes]

In the past 3 months, have you or your subordinates done any of the

following?

<<web_link>>Created hyperlinks from one web page

to another
Yes No Don’t know

<<web_form>>Created web forms to collect informa-

tion
Yes No Don’t know

<<web_new>>Used the "new" command to create

JavaScript or ActionScript objects
Yes No Don’t know

<<web_behavior>>Used "behaviors" (such as mouse

rollovers) to make web pages interactive
Yes No Don’t know

<<web_func>>Created JavaScript or ActionScript

functions that accept parameters
Yes No Don’t know

<<web_test>>Created web pages and tested them in

multiple different browsers
Yes No Don’t know

 - 22 -

<<svr>> In the past 3 months, have you or your subordinates created

or edited web server scripts (such as PHP, VBScript/ASP, or Perl)?

o Yes

o No

[Only ask this question if <<svr>> = Yes]

In the past 3 months, have you or your subordinates done any of the

following?

<<svr_include1>>Used the "require" command in PHP

or Perl pages to include other pages
Yes No Don’t know

<<svr_include2>>Used the "include" command in

VBScript or shtml pages to include other pages
Yes No Don’t know

<<svr_form>>Created web forms to collect informa-

tion
Yes No Don’t know

<<svr_new>>Used the "new" command to create PHP

or Perl objects, or the "CreateObject" command to

create VBScript objects

Yes No Don’t know

<<svr_func>>Created web server script functions

or subroutines that accept parameters
Yes No Don’t know

<<svr_test>>Created web pages and tested them in

multiple different browsers
Yes No Don’t know

<<svr_doc>>Inserted comments into web server

scripts, such as PHP, Perl, or VBScript
Yes No Don’t know

<<ss>> In the past 3 months, have you or your subordinates created

or edited spreadsheets (for example, using Excel or Lotus 1-2-3)?

o Yes

o No

[Only ask this question if <<ss>> = Yes]

In the past 3 months, have you or your subordinates done any of the

following?

<<ss_doc>>Created documents to accompany a

spreadsheet, explaining how to use the spread-

sheet file

Yes No Don’t know

<<ss_chart>>Used data in spreadsheet cells to

create charts or graphs
Yes No Don’t know

<<ss_func>>Used spreadsheet functions (such as

"sum") when typing into cells
Yes No Don’t know

<<ss_link>>Created data references to automati-

cally incorporate data from one spreadsheet or

workbook into another

Yes No Don’t know

<<ss_test>>Tested spreadsheets for accuracy Yes No Don’t know

<<ss_tmpl>>Created spreadsheet templates Yes No Don’t know

<<ss_macro1>>Recorded macros Yes No Don’t know

<<ss_macro2>>Created or edited macros using the

macro editor
Yes No Don’t know

 - 23 -

<<dsk>> In the past 3 months, have you or your subordinates created

or edited word processing or slide presentation documents (for example,

using WordPerfect, PowerPoint, or Microsoft Word)?

o Yes

o No

[Only ask this question if <<dsk>> = Yes]

In the past 3 months, have you or your subordinates done any of the

following?

<<dsk_tmpl>>Created word processing or slide pres-

entation document templates
Yes No Don’t know

<<dsk_link>>Created hyperlinks to link one word

processing or slide presentation document to an-

other

Yes No Don’t know

<<dsk_macro1>>Recorded macros Yes No Don’t know

<<dsk_macro2>>Created or edited macros using the

macro editor
Yes No Don’t know

<<db>> In the past 3 months, have you or your subordinates created

or edited data in a database (for example, in FileMaker, Oracle, Sy-

base, SQL Server, or Access)?

o Yes

o No

[Only ask this question if <<db>> = Yes]

In the past 3 months, have you or your subordinates done any of the

following?

<<db_link>>Referenced database records using a

key field (such as social security number or

other identifier)

Yes No Don’t know

<<db_table>>Created a new database table, or

added columns to an existing database table
Yes No Don’t know

<<db_view>>Created a new database view, or added

columns to an existing database view
Yes No Don’t know

<<db_func>>Created database stored procedures Yes No Don’t know

<<db_doc>>Created documents to accompany a data-

base, explaining how to use the database
Yes No Don’t know

<<bi>> In the past 3 months, have you or your subordinates created

or edited custom business intelligence reports (for example, using Mi-

crosoft Analysis Services, Hyperion/Brio, Cognos/Adaytum, or Business

Objects/Crystal)?

o Yes

o No

 - 24 -

[Only ask this question if <<bi>> = Yes]

In the past 3 months, have you or your subordinates done any of the

following?

<<bi_subrep>>Incorporated subreports into a larger

business intelligence report
Yes No Don’t know

<<bi_link>>Joined database tables or views via key

fields (such as social security number or other

identifier) while constructing a business intelli-

gence report

Yes No Don’t know

<<bi_chart>>Used data in databases to create

charts or graphs in a business intelligence report
Yes No Don’t know

<<bi_olap>>Helped design the dimensions of an OLAP

repository
Yes No Don’t know

<<bi_sql>>Specified an SQL query to retrieve data

from a database for use in a business intelligence

report

Yes No Don’t know

<<bi_filter>>Created a business intelligence re-

port which allowed the person viewing the report

to filter (hide / show) portions of the report

Yes No Don’t know

<<bi_sort>>Created business intelligence reports

which allowed the person viewing the report to

change the sort order of information in the report

Yes No Don’t know

<<bi_drill>>Created business intelligence reports

which allowed the person viewing the report to

"drill down" into more detailed report data

Yes No Don’t know

<<bi_doc>>Created documents to accompany a busi-

ness intelligence report, explaining how to

interpret the report

Yes No Don’t know

<<backups>>In the past 3 months, have you or your subordinates backed

up files by making extra copies, or having IS/IT staff do so?

o Yes

o No

o I don't know

Section 2 of 4

The next few questions ask about the relationship between your work and

the software you use. Note that these questions ask about the past 1

year.

<<sw1>> <<sw2>> <<sw3>>List the three software applications that you or

your subordinates have used the most in the past year.

<<sw_help>>How has this software helped get work done in the past year?

<<sw_hinder>>In what ways has this software "gotten in the way" of do-

ing work in the past year?

<<sw_custom>> In the past year, have you or your subordinates cus-

tomized this software? If so, how?

 - 25 -

<<sw_useless>>In the past year, have you or your subordinates purchased

software for work but then used it less than anticipated?

o Yes

o No

[Only ask this question if <<sw_useless>> = Yes]

<<sw_useless_more>>Why did you use this software less than anticipated?

[Only ask this question if <<web>> = Yes OR <<svr>> = Yes]

<<copy_web>>In the past year, when you or your subordinates created a

new web page, did you get started by copying an existing web page?

o Usually

o Sometimes

o Rarely

o Never

[Only ask this question if <<ss>> = Yes]

<<copy_ss>>In the past year, when you or your subordinates created a

new spreadsheet, did you get started by copying an existing spread-

sheet?

o Usually

o Sometimes

o Rarely

o Never

[Only ask this question if <<bi>> = Yes]

<<copy_bi>>In the past year, when you or your subordinates created a

new business intelligence report, did you get started by copying an ex-

isting report?

o Usually

o Sometimes

o Rarely

o Never

 - 26 -

<<www_src_ex>>Consider how you or your subordinates used the web when

you created or edited business intelligence reports, spreadsheets, web

pages, and other documents.

In the past year, how useful has the web been for your work as a source

of examples of reports, spreadsheets, web pages, or other documents?

o Usually useful

o Sometimes useful

o Rarely useful

o Never useful

<<www_src_doc>> In the past year, how useful has the web been for your

work as a source of documentation?

o Usually useful

o Sometimes useful

o Rarely useful

o Never useful

<<www_src_data>> In the past year, how useful has the web been for your

work as a source of numerical data?

o Usually useful

o Sometimes useful

o Rarely useful

o Never useful

<<www_dest_ex>> In the past year, how useful has the web been for your

work as a place to publish documents (reports, spreadsheets, web pages,

or documents)?

o Usually useful

o Sometimes useful

o Rarely useful

o Never useful

<<www_dest_doc>> In the past year, how useful has the web been for your

work as a place to publish documentation (telling how to use or inter-

pret your reports, spreadsheets, web pages, or documents)?

o Usually useful

o Sometimes useful

o Rarely useful

o Never useful

<<www_dest_data>> In the past year, how useful has the web been for

your work as a place to publish numerical data?

o Usually useful

o Sometimes useful

o Rarely useful

o Never useful

<<help>>When you or your subordinates have trouble creating web pages,

spreadsheets, reports, or other documents, what is your main source of

help?

<<help_more>>Why is this help preferable to other sources of help?

 - 27 -

Section 3 of 4

The next few questions ask about your programming knowledge and prac-

tice. Note that these questions ask about you personally, rather than

about your subordinates.

<<know_variable>>Are you personally familiar with the concept of a

"variable"--a named memory location where programs can store intermedi-

ate results and/or read them back?

o Yes

o No

[Only ask this question if <<know_variable>> = Yes]

<<know_variable_more>>When creating programs in the past year, have you

personally defined and referenced variables?

o Yes

o No

<<know_subroutine>>Are you personally familiar with the concept of a

"subroutine"--a piece of code that can be called from multiple places

in a program (also known as a "procedure", "function", or "method")?

o Yes

o No

[Only ask this question if <<know_subroutine>> = Yes]

<<know_subroutine_more1>> When creating programs in the past year, have

you personally called a subroutine that another person in your organi-

zation already created?

o Yes

o No

[Only ask this question if <<know_subroutine>> = Yes]

<<know_subroutine_more2>> When creating programs in the past year, have

you personally created a new subroutine?

o Yes

o No

<<know_conditional>>Are you personally familiar with the concept of a

"conditional"--a command that prevents code from running unless a cer-

tain condition is met (also known as "if/then", "if/else", or "unless"

commands)?

o Yes

o No

[Only ask this question if <<know_conditional>> = Yes]

<<know_conditional_more>> When creating programs in the past year, have

you personally coded conditional statements?

o Yes

o No

<<know_loop>>Are you personally familiar with the concept of a "loop"--

a sequence of instructions that the computer repeats, either until some

condition is met, or indefinitely (also known as a "for/next",

"while/do", or "repeat/until" command sequence)?

o Yes

o No

 - 28 -

[Only ask this question if <<know_loop>> = Yes]

<<know_loop_more>> When creating programs in the past year, have you

personally coded loops?

o Yes

o No

[Only ask this question if <<know_variable>> = Yes OR

<<know_subroutine>> = Yes OR <<know_conditional>> = Yes OR

<<know_loop>> = Yes]

<<comments>> <<comments_more>>Do you insert comments into your code?

If so, what information do you write in your comments?

[Only ask this question if <<know_variable>> = Yes OR

<<know_subroutine>> = Yes OR <<know_conditional>> = Yes OR

<<know_loop>> = Yes]

<<documents>> <<documents_more>>Do you create separate documentation

describing your code? If so, what information do you write in your

documentation?

 - 29 -

Section 4 of 4

The last few questions ask about your background.

<<demo_job>>Which of the following best describes your current job

function?

o IT or networking staff

o IT or networking management

o Business unit staff

o Business management

o Student

o Consultant

o Retired

o Other <<demo_job_more>>

<<demo_revenue>>For research classification purposes only, what's the

annual revenue (or operating budget) of your entire organization?

o Less than $6 million

o $6 million to $49.9 million

o $50 million to $99.9 million

o $100 million to $499.9 million

o $500 million to $999.9 million

o $1 billion to $4.9 billion

o $5 billion or more

<<demo_empcount>> How many employees are in your company?

o Less than 50

o 50-99

o 100-499

o 500-999

o 1,000-4,999

o 5,000-9,999

o 10,000 or more

<<demo_subcount>> How many subordinates do you have?

<<demo_industry>> What is your organization's primary industry?

o Biotech/Biomedical/Pharmaceutical

o Consulting and Business Services

o Chemicals

o Consumer goods

o Construction/Engineering

o Distributor

o Education

o Electronics

o E-marketplace (portals, auction, vert.)

o Energy

o Financial services/Banking

o Financial services/Insurance

o Financial services/Securities and Investments

o Financial services/Other

o Food/Beverage

o Government

o Healthcare/HMOs

o Hospitality/Travel

o IT Vendors

o Logistics/Transportation

 - 30 -

o Manufacturing/Industrial (non-computer)

o Media/Entertainment

o Metals & Natural Resources

o Non-profit

o Retail/E-commerce

o Real Estate

o Telecommunications/ISPs

o Utilities

o Other (please specify) _________________ <<demo_industry_more>>

<<demo_education>> What is your highest level of education?

o 8th Grade or lower

o 9th Grade

o 10th Grade

o 11th Grade

o 12th Grade, without diploma

o High school diploma, or equivalent (e.g.: GED)

o Some college but no degree

o Associate degree

o Bachelor's degree (e.g.: BA, AB, BS)

o Master's degree (e.g.: MA, MS, MEng, Med, MSW)

o Professional school degree (e.g.: MD, DDS, DVM)

o Doctoral degree (e.g.: PhD, EdD)

[Only ask this question if <<demo_education>> >= 9th grade]

<<demo_train_hs>>Have you received training through a high school

course in programming?

o Yes

o No

[Only ask this question if <<demo_education>> >= Some college but no

degree]

<<demo_train_univ>>Have you received training through a college or uni-

versity course in programming?

o Yes

o No

[Only ask this question if <<demo_education>> >= Some college but no

degree]

<<demo_major1>>What was your major or primary area of study in college?

[Only ask this question if <<demo_education>> >= Master's degree]

<<demo_major2>>What was your primary area of post-graduate study?

<<demo_train_job_prog>>Have you received on-the-job training in pro-

gramming (for example, having another person explain to you how to

program)?

o Yes

o No

<<demo_train_job_web>>Have you received on-the-job training in web page

creation (for example, having another person explain to you how to cre-

ate web pages)?

o Yes

o No

 - 31 -

<<demo_train_job_ss>>Have you received on-the-job training in spread-

sheets (for example, having another person explain to you how to create

spreadsheets)?

o Yes

o No

<<demo_train_job_db>>Have you received on-the-job training in databases

(for example, having another person explain to you how to create data-

bases)?

o Yes

o No

<<demo_train_job_bi>>Have you received on-the-job training in business

intelligence reporting (for example, having another person explain to

you how to create business intelligence reports)?

o Yes

o No

<<demo_education_more>>How does your education and training compare or

contrast with that of your subordinates?

<<demo_subscriber>>Are you an Information Week subscriber?

o Yes, I am a current subscriber

o I used to subscribe but do not now

o I have never subscribed

In order for us to contact you if you've won the grand prize of

$500 or one of the five $100 checks to be awarded by CMP Media Inc.

and your free report detailing the results of the study please be

sure to enter your contact information below:

Name_____________________________________

Title: _____________________________________

Company__________________________________

Phone_____________________________________

Email_____________________________________

Without compromising the confidentiality of your responses, would

you be willing to speak to an InformationWeek editor for an upcom-

ing story about these issues?

[] Yes

[] No

Thank you for participating in this survey!

