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Abstract
The last two decades have introduced several experimental methods for studying

three-dimensional chromosome structure, opening up a new dimension of genomics.
Studies of these new data types have shown great promise in explaining some of the
open questions in gene regulation, but the experiments are indirect and imperfect
measurements of the underlying structure, requiring rigorous computational meth-
ods. We can now study the 3D relationships between all pairs of chromosome seg-
ments across the genome, but questions such as the variability of this structure be-
tween cell and tissue types, the predictors of structural similarity, the dynamics of
this complex system, and a complete definition of the observed substructures remain
unclear. This dissertation presents several approaches to improve our understanding
of human genomic spatial architecture. We present a new method to quantify the
variability of chromosomal substructures, called topologically-associating domains
(TADs) between any pair of samples. This algorithm efficiently identifies all regions
with statistically significantly similar TAD structures between the two samples. Us-
ing this method, we quantify the structural similarity within each chromosome and
between chromosomes, and between cell types. We show that cancer cell lines are
structurally disrupted at pan-cancer genes, but not globally. We perform extensive
data analysis using this method and others to assess the consistency of TADs across a
range of biological and technical conditions. This large scale study of chromosomal
structural variability emphasizes the differences between chromosome structures be-
tween cell and tissue types, in contrast to the belief that genome structure is highly
conserved. We quantify the influence of genetic difference and similarity, as well
as technical confounders, on chromosome structural similarity in a systematic study
of over 100 samples. We also apply a biophysics model to predict the dynamics of
chromosomes from static data. Our predictions correlate well with several different
experimental measures and known substructures. We predict the existence of long
range dynamic couplings involved in gene regulation that have not been found with-
out a dynamic model. Finally, we develop a generalized TAD-finding algorithm that
can be guided towards selecting TADs for any desired property. Defining several
functions around common evaluation criteria for TADs, we explore the relationships
between various biological TAD properties and the computational definitions used
to identify TADs. The algorithms and analysis we have developed enable rigorous
study of the basic properties of this new dimension of genomics, and can continue
to inform the study of TADs as more experimental data becomes available.
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Chapter 1

Introduction

The human genome is made up of about 2 meters of DNA, tightly packed into a nucleus approxi-

mately 6 micrometers in diameter [4]. The three-dimensional structure of these DNA strands was

first studied with fluorescent imaging techniques [87], and more recently with sequencing-based

methods [31, 39, 69, 117]. These experimental techniques have shown that 3D genomic archi-

tecture is associated with several regulatory systems, including replicating timing [35, 74, 92]

and gene regulation [8, 23, 29, 40, 58, 65], and its misalignment is associated with diverse hu-

man diseases and disorders [48, 54, 71, 75, 78]. Chromosome structure is therefore implicated

in many of the cell’s most important processes.

One of the most fundamental questions in biology remains how cells determine which genes

to express and when to express them. Recent work has shown that three-dimensional chromo-

some structure can account for a large proportion of overall gene expression levels [101]. Many

human diseases and disorders, including cancers [48, 54, 75, 78], neurological disorders [123],

limb malformations [71], and more [119], are tied to genomic architecture, making this question

clinically important as well as a question of basic biology. A full understanding of these regula-

tory disorders, along with new therapies, must come from a deeper understanding of their causes

on a genomic level. However, the complexity of the system and many experimental biases make

it very challenging to accurately describe this underlying 3D structure. Principled computational
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methods are needed to identify meaningful signal from this imperfect description of an extremely

complicated system.

1.1 Measurements of chromosome conformation

The first high-throughput sequencing technique for measuring chromosome structure is com-

monly referred to as 3C, for chromosome conformation capture [31]. This technique introduced

the basis for all subsequent sequencing experiments that measure the 3D chromosome shape:

cells are first fixed and subjected to cross-linking, which causes physically close segments of

the genome to be stuck to each other. Restriction enzymes are then used to cut the genome up

into pieces, the ends of which are ligated and then sequenced. Several variants, all based on this

same basic set of steps, have since been developed for capturing different aspects or resolutions

of chromosome structure.

• 3C: The original protocol requires prior knowledge of two interacting regions. All inter-

actions between these two loci of interest are quantified by the 3C experiment [31].

• 4C: This protocol uses inverse PCR to capture the interactions between one genomic locus

of interest and the rest of the genome [117].

• 5C: All interactions within a given region, generally at most a megabase, are quanti-

fied [39]. This is a high resolution method to study a very specific region of interest,

but has relatively low coverage and cannot be expanded to study larger genomic regions

because of its reliance on primers.

• Hi-C: Using paired-end sequencing, Hi-C captures all interactions between all loci of the

genome [69]. It does not require prior knowledge of any regions of interest, but is much

lower resolution than the other methods.

All of these protocols are population-based, so they rely on aggregating results from a large

number of cells. Some single-cell techniques have also been developed to study chromosome

2



structure, which will be discussed later.

Outside of these proximity ligation-based techniques, a few other genome-wide measure-

ments of chromosome structure have been developed recently (review: [62]). Genome archi-

tecture mapping (GAM) combines randomized ultrathin cryosectioning and DNA sequencing to

measure 3D distances between pairs of loci in a nucleus [14]. The matrices generated by GAM

are highly correlated with Hi-C matrices, but GAM is able to capture multi-loci interactions in

addition to pairwise contacts, making it well-suited to study hubs or clusters of chromosome

segments. GAM requires fewer cells than Hi-C, but is a more complex and expensive experi-

ment performed by fewer labs, leading to even less publicly available GAM data than Hi-C data.

SPRITE is another sequencing-based assay that avoids proximity ligation by using a split-pool

strategy, identifying genome-wide DNA interactions including those around nuclear speckles

and the nucleolus [94]. This data largely recapitulates the structures identified with Hi-C, but

additionally sheds light on organization relative to nuclear bodies.

1.1.1 Hi-C: capturing the 3D structure of the full genome

In the interest of understanding the overall structure of the entire human genome, we focus on

Hi-C data. For the Hi-C protocol, after cross linking, enzyme digestion, and ligation, genomic

pieces are aligned back to a reference genome to determine where in the genome the two ligated

segments originated. Each time two reads from different regions of the genome are found ligated

together counts as one interaction between these segments. These interaction counts are reported

in Hi-C matrices, where each row and column corresponds to a segment of the genome. The

length of that segment is known as the resolution of the data, and generally ranges from 1 kilobase

(kb) to 1 megabase (Mb), depending on the sequencing depth. Each entry in the Hi-C matrix

equals the number of interactions, or cross-linking events, found between the corresponding

segments of the genome. Hi-C matrices can represent all interactions between segments on

the same chromosome (intra-chromosomal) or interactions between two different chromosomes
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(inter-chromosomal). Inter-chromosomal matrices tend to be very sparse, and while there are

some notable exceptions [17], chromosomes tend to occupy their own spatial territories [29]. An

example of an intra-chromosomal Hi-C matrix is given in Figure 1.1.

Hi-C data presents many challenges for analysis, from the size of the data to experimental

biases and lack of true validation experiments. Depending on the resolution of the data, intra-

chromosomal matrices vary in size from hundreds of thousands of rows and columns to a few

thousand rows and columns. Most segments of the chromosome are only close to a limited num-

ber of other segments so Hi-C matrices are fairly sparse, which makes true interactions difficult

to separate from any false contacts induced by the experiment. Beyond the data size, the de-

pendence on a population of cells adds complication to the analysis. A Hi-C matrix does not

truly describe the structure of any individual cell, but rather describes a sort of average structure

across the population. Hi-C matrices therefore do not describe a specific 3D structure nor can

they be easily interpreted as 3D distances, because they do not satisfy basic distance properties

such as the triangle inequality. The cross-linking procedure is also likely to induce many false

interactions as well as omitting many true interactions, adding errors to the difficulty of inter-

preting a population-averaged structure. On top of all of these challenges with the data itself,

there is no independent method for validating genome-wide three-dimensional structures. There

is no ground truth to compare with and identify errors or test methods against. Imaging tech-

niques such as fluorescent in-situ hybridization (FISH) can be used to test a specific prediction

about a limited number of known genomic loci, but cannot validate any genome-wide structural

predictions.

While there are many complexities of Hi-C data that cannot be directly addressed, several

normalization methods exist to correct for known biases in the data such as varying numbers of

restriction enzyme sites within each Hi-C bin. One of the first such normalization techniques is

called vanilla coverage (VC) normalization, which simply divides each entry in the Hi-C matrix

by the average contact probability across the genome for locus pairs the same distance apart [69].
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Figure 1.1: Example of a Hi-C matrix from chromosome 1 of human ES cells at 100kb, from

http://homer.ucsd.edu/homer/interactions/HiCmatrices.html, accessed

on 09/04/2020. The color intensity represents the number of interactions identified between

the two genomic regions corresponding to the row and column of the matrix entry, with zero

interactions showing as white.
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Another common technique is called Knight-Ruiz (KR) normalization, which balances symmet-

ric matrices such that each row and column sums to one [63]. Iterative correction and eigenvec-

tor decomposition (ICE) normalization corrects for bias under the assumption that all loci have

equal visibility, thereby implicitly correcting for biases such as restriction site density and DNA

sequencing bias [59]. These three methods are the most commonly used for Hi-C data, but other

techniques have been developed as well [56, 73, 120].

1.2 Topologically associating domains (TADs)

The first analyses of Hi-C data showed evidence of organization by substructures made up of rela-

tively large chromosomal segments. The largest of these structures were called “compartments”,

which are multi-megabase-sized regions of the genome corresponding to two main classes re-

ferred to as “A” compartments and “B” compartments [69]. Genomic segments in A compart-

ments generally contain active chromatin; these sections contain more genes, more highly ex-

pressed genes, and fewer repressive histone markers. In contrast, B compartments contain less

accessible DNA, fewer genes, and more repressive histone marks. These two broad classes of

compartments have since been subdivided further into five sub-compartments, two of which are

active and three of which are inactive, each displaying distinct epigenomic signatures [98].

Further analysis of Hi-C data revealed smaller (generally less than 1 Mb) block structures

along the diagonal of the Hi-C matrix, which were termed “topologically associating domains”

(TADs) [36]. TAD structures are imprecisely defined as contiguous sections of DNA that exhibit

higher contact frequencies within themselves than with outside segments. They seem to mostly

cover the genome, suggesting a globular 3D chromosome structure based on these building block

regions. The exact scale of TADs is unclear: they have been shown to exist at various resolu-

tions, with a hierarchical nesting structure. Smaller contact domains have been referred to as

subTADs, though a formal definition of subTADs requires additional conditions beyond a size

cutoff [13]. A precise definition of TADs, perhaps including sub-classifications, is a matter of
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ongoing discussion in the community [13].

While a formal definition is still debated and there is no gold standard or ground truth for

TAD sets, there are several properties TADs possess that are used for evaluating the accuracy of

TAD sets. It is clear that TAD boundaries are enriched for the insulator protein CCCTC-binding

factor (CTCF), as well as proteins RAD21 and SMC3 which are components of the structural

cohesin complex [36, 52, 98]. There is some debate about the mechanisms by which cohesin and

CTCF relate to TAD structure [72, 86], but they are clearly critical to the formation or stability of

TAD structures. Additionally, TAD boundaries are expected to follow patterns of enrichment or

repression of specific histone markers and can even be inferred through a supervised method from

this data alone [98, 112]. We also expect TADs to be fairly consistent between replicate samples.

For more technical evaluations, TAD finding tools are often measured on their robustness to

subsampling and different resolutions of the same Hi-C sample. Some have tried to use manual

annotations, although it is also not straightforward to identify TAD boundaries by eye [30].

There have also been several methods proposed to simulate Hi-C data but identifying TADs

or simulating realistic TADs in this context has also proven challenging [137].

1.2.1 Computational approaches to TAD identification

While TADs are visually apparent as block structures along the diagonal of a Hi-C matrix, it

is not straightforward to define and identify them computationally. Many methods have been

developed leading to conflicting results (see reviews: [30, 44, 139]). Without a ground truth to

compare with, it is generally difficult to validate the accuracy of TAD sets. Evaluation therefore

depends on quantifying desired TAD properties, such as the enrichment of certain factors such as

CTCF, RAD21, and SMC3 at TAD boundaries or the difference between distributions of contacts

within a TAD versus between TADs. Broadly speaking, these computational approaches all

optimize for a definitive TAD trait such as highly insulated boundaries [28, 116], dense intra-

TAD contacts [42], or strong block-like structures [67].
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1.2.2 Models of genome organization

Outside of TADs, Hi-C data has been shown to follow power-law scaling in which contact fre-

quency decreases as a function of linear distance along the chromosome [69]. For length scales

up to around 10Mb, a fractal globule model based on polymer simulations with physical con-

straints has been suggested to explain the genomic organization [77], though multiplexed FISH

imaging studies suggest it does not seem to hold at longer length scales [128]. The emerging

model for TAD organization and formation is known as loop extrusion. The loop extrusion

model has not yet been conclusively observed in human cells, but predictions made from this

model recapitulate the observations from several structural perturbation studies. The proposed

mechanism involves a loop extruding factor (suspected to be cohesin in humans) actively pulling

loops of chromatin through itself until it hits a barrier element (CTCF) and drops off the chro-

mosome, leaving a TAD structure behind [49]. Simulations of loop extrusion match patterns

observed in Hi-C, and predict the effects of both cohesin and CTCF depletion on chromosome

structure [86].

1.2.3 Chromosome structures in single cells

A full understanding of genome architecture and its role in cellular functioning relies on not only

a population average measurement, but also on the ability to measure this structure in individual

cells. Single cell Hi-C (scHi-C) was developed for this purpose [80] and has been used to quantify

the structures of thousands of single cells [82, 97, 121]. scHi-C data has been used to study the

dynamics of chromosome structures throughout the cell cycle [82], and to confirm the existence

TAD-like structures at the single cell level [121]. scHi-C data suffers from many of the same

challenges induced by cross-linking as bulk Hi-C data, including false contacts and omissions of

true contacts, but the matrices are much sparser. This additional sparsity makes reliable signal

detection very difficult, but scHi-C data has nonetheless shown single cell TADs that are highly

variable between individual cells, with higher probability of boundaries at the same locations of
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TAD boundaries identified with bulk Hi-C data [82, 121].

Recently there have been significant advances in imaging technology for measuring single

cell chromosome structure. A super-resolution chromatin tracing method was used on single

cells to confirm the observation of variable TAD-like structures in individual cells [19]. This

study also demonstrated that cohesin depletion, which is known to remove TAD structures in bulk

Hi-C data, does not cause the disappearance of the block-like structures in individual cells, but

rather leads to randomized boundary locations. Another very recent study from the same group

expanded their multiplexed imaging platform to provide the first chromosome- and genome-scale

imaging study of chromosome structure [122]. Because imaging does not require destroying the

genome as is necessary for Hi-C, this study was also able to simultaneously measure transcrip-

tional activity and nuclear landmarks in single cells. This type of work is critical to understanding

the relationship between chromosome structure and gene regulation, and imaging experiments

will become the gold standard for structural measurements in the future.

1.2.4 Functional relationships of chromosome structure

Initially, TADs were suggested to be regulatory domains bringing enhancers and promoters closer

in 3D space to the genes they regulate. This is in part influenced by the existence of insulator pro-

teins at TAD boundaries, suggesting that regulatory interactions are more likely to occur within

a TAD than across TAD boundaries. The loci within TADs have more highly correlated histone

modifications than loci of similar genomic separation in different TADs [98]. Chromosome ac-

cessibility is also strongly related to genome architecture, as demonstrated by strong associations

between Hi-C data and accessibility measurements such as DNase-seq [110]. Consistent with the

idea that chromosome structure has regulatory implications, eQTLs are closer in 3D space to the

genes they regulate than expected by chance [40]. Several studies additionally linked chromo-

some structure with replication timing [35, 74, 92], even showing that TADs display a one-to-one

relationship with replication timing domains [92], suggesting an important role in multiple cel-
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lular processes.

Three-dimensional genome structure has been associated with gene transcription in multi-

ple studies [45, 58, 101]. Co-regulated genes are often found within the same TAD [83], and

co-expressed genes tend to cluster together in 3D space [136]. One study demonstrated that a

significant proportion of gene expression can be attributed to positional factors and predicted

enhancer-promoter interactions from expression data alone [101]. Further evidence for the gene

regulatory role of chromosome structure comes from its association with a variety of human

diseases and disorders (review: [71]). One striking example involves the SOX9 gene: three sim-

ilar genetic duplications near SOX9 can lead to either Cooks syndrome (a limb malformation),

female to male sex reversal, or no phenotypic change at all. The wildly different results of

similar structural variants has been attributed to their different impacts on the local TAD bound-

aries [33]. TAD structures have also been implicated in many neurological disorders [123] and

cancers [48, 54, 75, 78]. One study demonstrated that the simple removal of a nearby insulating

TAD boundary is sufficient to activate proto-oncogenes [54].

Despite this strong evidence for the role of TADs and the overall chromosome architecture

in gene regulation, several other studies have suggested little to no relationship between the

two [1, 33, 50, 84, 99, 100, 111]. In particular, genome-wide CTCF depletion has been shown

to result in widespread loss of most TAD structures, but does not drastically alter transcrip-

tion [33, 84]. In a study performed with Drosophila, extensive genomic rearrangements causing

significant disruption to TADs and other 3D structures generally did not alter gene expression for

the majority of genes [50]. Similarly, deletion of a protein required for loading of cohesin onto

chromatin results in genome-wide disappearance of TADs, even in regions with no change in

gene expression [111]. In cancer specifically, where many TAD disruptions have been observed

across cancer types, one study showed that while structural variants can significantly impact TAD

structures, only a small percentage (14%) of the boundary deletions resulted in a large difference

in expression levels [1]. These results prove that the true role of chromosome structure in gene
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regulation is likely much more complicated than previously suggested.

The functional role of chromosome structure is tightly linked to its level of variability; if

chromosome structure does not vary across cell types or even species, it cannot be tightly linked

to changes in gene expression, which does vary across these conditions. Quantification of the

variability of TAD structures was previously limited to Venn diagrams [36, 98], and compared to

a null model of random TAD placement [109]. There was a clear need for more precise methods

to study TAD similarity across conditions, and analysis of this variability across a broad range

of Hi-C data. Significant questions remain about the dynamics of chromosome structures within

cell populations, which can be difficult to answer because of the nature of the Hi-C experiment,

which cannot be performed in live cells, nor without disassembling the original genome structure.

We therefore are limited to a static measurement of a dynamic system. Computational methods

to predict these dynamics from the static Hi-C matrix could provide valuable insights without

requiring additional expensive experimental methods.

A full understanding of TADs and their relationship with underlying biology requires teas-

ing out the relationships between our computational descriptions of TADs and the biological

properties we expect them to display. In order to answer the open questions related to TAD func-

tionality, we need to unify computational and biological TAD properties under one framework.

Currently, the differences in TAD finder results and their tradeoffs in matching desired biological

properties point to a disconnect between computational TADs and their biological features.

1.3 Contributions

This dissertation combines method development and data analysis to study the variability, dy-

namics, and complexity of chromosome structure in the human genome.

• Quantification of the structural similarity of TAD decompositions (Chapter 2). We

developed the first method to measure TAD similarity between any two sets of TADs. This

method, which we call TADsim, identifies statistically significantly structurally similar

11



regions of TAD decompositions using the Variation of Information (VI) metric. We present

this method with an initial analysis of 23 cell types, comparing the TAD structures of

normal and cancer cell lines. We do not observe genome-wide structural disruption among

the cancer cell lines, but we do find that there is less structural conservation among cancer

cell lines at the locations of highly mutated pan-cancer genes.

• Analysis of the variability of TADs (Chapter 3). Using the method described in Chapter

2 along with two other measures, we performed the first large-scale comparison of TAD

structures with 137 human Hi-C samples from a range of biological and experimental

conditions. We quantify the influence of both technical and biological variation on TAD

structures. We explore the variability of TADs between replicates, between cell types

and tissues, across families, between protocol variants, and across different labs. We find

support for a disordered or dynamic TAD structure, and note significant room for variation

between cell types. The results are shown to be robust across resolutions and parameter

choices.

• Study of chromosome dynamics (Chapter 4). Hi-C data is often studied as if it represents

a static conformation, despite its known dynamic nature. We adapted the Gaussian Net-

work Model (GNM) to study chromosomal dynamics and capture relationships between

distant genomic regions that display dynamic coupling. The GNM is a biophysics model

designed for studying protein dynamics, which uses protein contact maps similar to the

information reflected in Hi-C matrices. We tailored this model to study dynamic coupling

between both contiguous and distant chromosome regions, comparing the contiguous con-

structs to known structural elements and identifying new functional relationships between

the long range couplings. The ability to study such distant interactions across the entire

chromosome represents a significant step forward in understanding the link between struc-

ture and function, as we are no longer limited to analysis within a restricted distance range.

• Comparing computational and biological TAD properties (Chapter 5). Computational
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TAD finders frequently disagree on the locations of TADs on the same data, generally pre-

senting tradeoffs in a variety of biological properties they are assessed on. To break down

this relationship between computational TAD definitions and data-driven TAD properties,

we developed a flexible TAD finder with several tunable parameters, and optimized the pa-

rameters for a variety of data-driven objectives. We study the variability of resulting TAD

sets within 12 different cell types, and assess the similarities between TADs optimized

for different properties. While some cell types show significant consistency in TAD sets

regardless of objective, others result in highly varying TAD sets. We generally find that

optimizing for CTCF binding sites, CTCF ChIP-seq, and H3K36me3 ChIP-seq peaks at

TAD boundaries all result in relatively similar TAD sets, while RAD21, a protein of the

cohesin complex, results in inconsistent predictions. Selecting TAD finding parameters

for reproducibility gives highly variable results across cell types, and directly optimizing

for the difference between inter- and intra-TAD contacts gives high variable results within

most cell types, often disagreeing most strongly with TADs optimized for CTCF binding

sites at their boundaries. This study reveals relationships between computational TAD

definitions and biological TAD properties, as well as correlations between the properties

themselves.

Together, these contributions significantly advance our understanding of the variability and

dynamics of chromosome structure, and provide new algorithms to facilitate continuing study in

this exciting field.
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Chapter 2

Quantifying TAD variability

A central question to understanding chromosome structure is the degree to which TADs are con-

served or vary between conditions. This question cannot be answered without a principled way to

quantify TAD variability, so we present in this chapter the first method to quantify resemblance

and identify structurally similar regions between any two sets of TADs. We present an initial

analysis of 23 human Hi-C samples representing various tissue types in normal and cancer cell

lines. We quantify global and chromosome-level structural similarity, and compare the relative

similarity between cancer and non-cancer cells. We find that cancer cells show higher struc-

tural variability around commonly mutated pan-cancer genes than normal cells at these same

locations.

A version of this chapter was published in Bioinformatics and presented as a proceedings talk

at the Intelligent Systems for Molecular Biology (ISMB) conference in 2018 and is joint work

with Carl Kingsford [106]. In a subsequent publication [108] we described minor modifications

to this method that are reflected in this chapter, therefore it differs slightly from the original

publication. TADsim source code and analysis scripts are available at https://github.

com/Kingsford-Group/localtadsim.
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2.1 Background

Three-dimensional chromosome structure has been shown to be an influential factor in diverse

aspects of cellular functioning. Since the introduction of chromosome conformation capture [31]

and its many variants including a high-throughput experiment permitting genome-wide structural

measurements termed Hi-C [69], there have been many studies associating chromosome structure

with numerous cellular processes. Among these include several studies linking chromosome

structure to gene expression and regulation [23, 29, 40, 65, 107], and more specifically changes

in structure have been associated with various human diseases and disabilities, including several

cancers [48, 54, 75, 78], as well as deformation or malformation of limbs during development

[71]. On the mechanistic side, structural components have been implicated in replication timing

[7, 79, 92, 104] and associated with DNA accessibility and nuclear organization [96].

Although studies of chromosome structure have provided meaningful biological insights such

as those mentioned above, many questions remain about the precise role and variability of the

chromosomal architecture. In particular, one key question is the extent to which chromosome

structure is conserved between cell types, or how much it differs between normal and diseased

tissue, e.g., cancer tissue. A deeper understanding of the level of structural similarity across

cell types would reveal mechanistic insights into the role of three-dimensional folding of the

chromosomes and demonstrate the relative cell-type specificity of the arrangement, yet very

limited work has been devoted to this question. We address this question through quantifying

structural similarity in pairwise comparisons, and apply this method to compare chromosome

structure across many cell types, as well as between cancer and normal cells.

Chromosome structure is described in terms of several different scales of components, from

multi-megabase compartments to sub-megabase topologically-associating domains (TADs) and

subTADs [20]. Compartments divide chromosomes into two broad categories: loosely packed,

gene-rich areas termed A compartments and densely packed inactive areas termed B compart-

ments. They can be identified in a straightforward way from the correlation matrix of the Hi-C
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map [69]. TADs, visually identifiable as squares along the diagonal of the Hi-C contact map with

enriched contact density, represent smaller regions that interact significantly more with other loci

within the same TAD than with those outside of it [36]. Although TADs are somewhat visible in

Hi-C maps, it has proven challenging to definitively classify them computationally.

TADs have been shown to correlate with several epigenetic features, including histone mark-

ers and CCCTC-binding factor (CTCF) [88]. Histone modifications have proved very tightly

linked to Hi-C data, leading to several methods for identifying TADs or predicting Hi-C maps

based on ChIP-seq data from a range of histone marks [15, 34, 57, 112]. Beyond epigenet-

ics, TADs seem to be involved in several other cellular functions. TAD boundaries correlate

well with replication timing domains and thus are involved in cell reproduction [35]. Lamina-

associated domains (LADs), regions near the nuclear lamina associated with gene repression,

also frequently coincide with TAD domains [127]. Interruption of TADs has also been shown to

alter enhancer/promoter interactions [70], further implicating TAD structure in gene regulatory

mechanisms.

Many methods have been developed to identify TADs, first through an HMM-based method

[36], and later through optimization of various scoring functions such as InsulationScore [28] and

Armatus [42]. It is not yet clear how to evaluate TAD finder accuracy with no settled ground truth,

but two recent benchmarking studies evaluated the performance of 7 different TAD callers, 6 of

which overlapped between the two studies, and found no clear consensus on optimal performance

[30, 44].

Though there is some preliminary evidence that TAD structure is conserved across cell types

[98] and possibly even species [36], this previous work has not attempted to identify the locations

of structural similarity, nor which genomic features or disease states may correlate with con-

served structures. Hi-C data itself is highly variable and likely full of false contacts and missing

true contacts, and it is impacted significantly by the choice of data processing and normalization

techniques, making it difficult to compare Hi-C maps directly [132]. Spurious differences like
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coverage variance can have a strong effect on the apparent similarity of two Hi-C maps, even if

the underlying structures are similar. The variability within and between chromosomes is also

large, which could mask intrinsic similarity in a global metric. For these reasons, we choose to

compare TAD structure rather than Hi-C measurements directly, and we seek regions of locally

similar structures rather than one global measure of similarity.

We present a method to identify statistically significantly structurally similar regions of TAD

structures, in two main steps. First, we use the information theoretic variation of information (VI)

metric [76] to measure the similarity of all subsets of the two TAD structures, using a dynamic

programming algorithm that we designed to efficiently compute this metric. We then select the

statistically significant chromosomal regions among those with a locally optimal VI measure

through a rigorous null model, and eliminate redundancies from this set. We apply this method

to evaluate the similarity of chromosome structure across all pairwise combinations of 23 human

samples, across both cancer and non-cancer conditions. The following large-scale comparison of

structural concordance and variability across cell types, both globally and on the chromosomal

level, identifies biologically meaningful cell type pairs with high structural similarity, and a trend

of low structural similarity among cancer cells can be seen at the locations of commonly mutated

pan-cancer genes.

This work is the first large-scale study of human chromosomal structural similarity, providing

a framework method for future work in this domain. Our comparison of cancer and normal cells

reveals insight into the three-dimensional disruptions that occur in cancer genomics, correspond-

ing to the known changes in genome sequence from mutations and structural variants.

2.2 Methods

We introduce a method which, given two lists of TADs from different samples on one chromo-

some, identifies the sub-intervals in which the two TAD lists are significantly similar. This is

done by optimizing a distance metric, selecting the statistically significant optima, and removing
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redundant intervals with a heuristic.

2.2.1 Data

For the analysis in this chapter, Hi-C data were taken from four different studies [36, 69, 98, 125]

that were published over seven years, representing 21 unique human cell types across healthy and

diseased states, with 23 Hi-C samples in total, as summarized in Table 2.1. The samples were

chosen to be publicly available and represent a wide array of cell types and conditions.

All data were downloaded as raw read (.fastq) files, and processed through the same Hi-C

Pro (version 2.8.0) [113] pipeline into Hi-C maps, using iterative correction and eigenvector de-

composition normalization [59]. All Hi-C maps were generated at 100kb resolution, the highest

shared by all four studies, meaning that each point in the Hi-C matrix corresponds to the number

of contacts between two chromosomal intervals of 100kb each. We call each of these 100kb

segments a genomic bin. This resolution is relatively low because only the more recent studies

were sequenced deeply enough for significantly higher resolution. This may affect our results

in that we can only capture relatively large-scale regions of structural similarity, but these larger

regions are likely to be the most robust. The TAD sets were calculated using version 2.1 of

the Armatus software [42], a principled method that is extremely efficient and has performed

favorably in recent benchmarking studies [30, 44]. Armatus requires one parameter, γ, which

varies the resolution of TADs that are predicted, biasing the algorithm towards choosing larger

or smaller domains. There is no direct relationship between the γ value and the domain sizes,

so in order to ensure that all TAD sets have the same approximate median TAD size, the γ value

was chosen individually for each Hi-C map and chromosome. The γ value which returned TADs

at the expected median size of 880kb reported in Bonev and Cavalli [20] was used in each case.
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Cell type Description Study Resolution

GM06990 blood lymphocyte [69] 100kb

K562 chronic myeloid leukemia [69] 100kb

IMR90 lung fibroblast [36] 40kb

hESC embryonic stem cell [36] 40kb

IMR90 lung fibroblast [98] 5kb

GM12878 blood lymphocyte [98] 1kb

HMEC mammary epithelial [98] 5kb

HUVEC umbilical vein endothelial [98] 5kb

K562 chronic myeloid leukemia [98] 5kb

KBM7 chronic myeloid leukemia [98] 5kb

NHEK epidermal keratinocyte [98] 5kb

A549 adenocarcinomic alveolar basal epithelial ENCODE (2016) 20kb

Caki2 clear cell renal carcinoma (epithelial) ENCODE (2016) 20kb

G401 rhabdoid tumor kidney epithelial ENCODE (2016) 20kb

LNCaP-FGC prostate carcinoma epithelial-like ENCODE (2016) 20kb

NCI-H460 large cell lung cancer ENCODE (2016) 20kb

Panc1 pancreas ductal adenocarcinoma ENCODE (2016) 20kb

RPMI-7951 malignant melanoma ENCODE (2016) 20kb

SJCRH30 rhabdomyosarcoma fibroblast ENCODE (2016) 20kb

SKMEL5 malignant melanoma ENCODE (2016) 20kb

SKNDZ neuroblastoma ENCODE (2016) 20kb

SKNMC neuroepithelioma ENCODE (2016) 20kb

T47D ductal carcinoma ENCODE (2016) 20kb

Table 2.1: Hi-C samples used for pairwise comparisons. Cell types listed in italics are non-cancer

cell lines.
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2.2.2 Overview of the approach

To compare two samples we quantify the similarity between their TAD boundary locations. A

TAD is a genomic interval, consisting of a range of bins. A TAD set is then a collection of these

intervals identified by a TAD caller. A TAD set can be thought of as a one-dimensional clustering

for all of the genomic bins along a chromosome, where the bins within each TAD form a cluster.

A natural way to compare clusterings is using a distance metric on these clusterings, and two

highly similar clusterings, (i.e., TAD sets, in our case) will be identifiable by a low distance. To

identify structurally similar regions, we compute the distances for all possible regions (e.g., all

sub-intervals of the chromosome) and then select the regions with statistically significantly low

distance. More specifically, we compute VI between the TADs in [i, j] in one sample to the TADs

in [i, j] in another sample, for all relevant [i, j].

The distances between all sub-intervals on the chromosome can be represented in an n × n

matrix, where n is the length of the chromosome in bins, and every entry (i, j) represents the

distance of the TAD structures in the region between genomic bins i and j. In this full matrix,

the elements that are candidates for representing the most similar regions will appear as local

minima in the sense that they are smaller than all eight surrounding values. These are intervals

that are more similar than any neighboring interval. To determine which are significant we

compute p-values for each of these local minima with a strict null model (Section 2.4). Once

the statistically significant intervals have been identified, we further select only those which are

dominating in the sense that every sub-interval within them has a higher distance measure. These

intervals are then called significant structurally similar regions. An overview of the method is

seen in Figure 2.1.

As a distance measure, we use the well-established VI metric, which evaluates the level of

agreement between two clusterings based on information theoretic quantities [76]. The VI of two

clusterings C and C ′ can be computed as the normalized sum of the two conditional entropies,
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C’

VI(C(27,86), C’(27,86))
= 0.2184

VI(C(123,149), C’(123,149))
= 0.0858

Figure 2.1: Overview of major steps to identify structurally similar intervals.

where n is the number of elements (genomic bins, in our case) in C and C ′, as shown below.

V I(C,C ′) =
H(C | C ′) +H(C ′ | C)

log(n)
(2.1)

where the conditional entropy is defined as

H(C|C ′) =
k∑
i=1

k′∑
j=1

P (i, j) log
P (j)

P (i, j)
(2.2)

and C and C ′ contain k and k′ clusters, respectively, and P (i) = |Ci|
n

, P (i, j) =
|Ci∩C′

j |
n

. This

metric was also used by Fillipova et al. [42] to compare their TAD calls with previous methods.

In practice, rather than calculating the entire matrix of VI values for every possible chro-

mosomal sub-interval, we only compute sub-intervals that begin and end at TAD boundaries.

Although it seems intuitive that the minimum VI distance would occur exclusively at cluster

boundaries, this is not strictly true, as the VI formulation holds no such theoretical guarantees.

However, in 10 randomized empirical tests, we observed 100% of local minima occur at bound-

ary points. Biologically, outside of TAD boundaries we have little understanding of fine-scale
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chromosome structure, and therefore it is difficult to interpret the meaning of structural similarity

away from these demarcations. We therefore calculate VI values only at TAD boundaries, and

analyze this much smaller set of sub-intervals.

While some TAD callers return a partition of the chromosome with no gaps between TADs,

Armatus does not explicitly require each bin to be within a TAD. This results in occasional gaps,

or non-TAD domains, though they are rare; on average across all cell types and parameter values,

TADs cover 92.02% of the genome. Our method does not distinguish between these non-TADs

and TADs; we consider all domains in the same way. The result of this is that we are practically

measuring the partition of the chromosome induced by the TAD set, rather than the exact TADs

themselves, but this remains a measurement of structural similarity.

2.2.3 Dynamic programming to compute multiple VI distances

In order to further improve efficiency, we use a dynamic programming algorithm to compute VI

for every pair of boundaries. The algorithm is initialized by calculating the VI for every single-

TAD interval in both TAD sets. We then proceed by adding the subsequent TAD to each of these

intervals, computing the VI of the new interval as a function of the VI values of the smaller two

intervals composing it. After computing VI values for every interval of two TADs in each TAD

set, we continue increasing the intervals by one TAD until all sub-intervals have been covered.

After initialization, at each step we have the VI of both sub-intervals to be combined into a

larger interval. Let the sub-interval (i, j) be covered by TAD sets or clusterings C and C ′, and

the sub-interval (j + 1, k) be covered by D and D′. We then define the sets CD and C ′D′ as the

concatenation of C and D, and C ′ and D′, respectively, which cover (i, k). In order to compute

V I(CD,C ′D′), there are two cases to consider, illustrated in Figure 2.2. In the simpler case,

there is no TAD in either TAD set that crosses the boundary at j, and the new VI is simply a

rescaled sum of the previously calculated VIs.

V I(CD,C ′D′) =
j − i+ 1

k − i+ 1
V I(C,C ′) +

k − j
k − i+ 1

V I(D,D′) (2.3)
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In the case of a TAD that overlaps the boundary between the two sub-intervals, one conditional

entropy term can simply be rescaled as before, but we must adjust the entropy term conditioned

on the TAD set including the overlapping boundary. If there is a TAD in C ′D′ which begins at

s ≤ j and ends at e > j which we refer to as C ′D′se (made up of C ′k, the last TAD in C ′ and D′1,

the first TAD in D′), the new conditional entropies are given below.

H(C ′D′|CD) =
j − i+ 1

k − i+ 1
H(C ′|C) +

k − j
k − i+ 1

H(D′|D) (2.4)

H(CD|C ′D′) =
j − i+ 1

k − i+ 1
H(C|C ′) +

k − j
k − i+ 1

H(D|D′) (2.5)

− 1

k − i+ 1

∑
a

|Ca ∩ C ′k| log
|C ′k|

|Cj ∩ C ′k|
(2.6)

− 1

k − i+ 1

∑
a

|Da ∩D′1| log
|D′1|

|Dj ∩D′1|
(2.7)

+
e− s+ 1

k − i+ 1
H(CD | C ′D′se) (2.8)

We only compute VI at locations with a boundary in one of the two TAD sets, so we do not

encounter the case in which there is an overlapping TAD in both TAD sets. The algorithm ensures

that for each VI calculation, at least one TAD set will have a boundary at the point joining the

two sub-intervals. In a timing test on ten randomly chosen cell type pairs and chromosomes,

the dynamic programming algorithm reduced the time to compute VI at all boundary points by

58.24% (from 3.384s to 1.413s). When computing similar intervals and using a permutation

test for significance (Section 2.4) between all cell types using all chromosomes, this savings is

significant.

2.2.4 Identifying statistically significant sub-intervals

Once the VI values for all candidate sub-intervals have been calculated, we select the statistically

significant regions through an adapted permutation test. For each sub-interval, we fix each TAD

set and randomly shuffle the TADs from the other set n times, calculating the VI at each reshuf-

fling. The p-value is then the average of the two fractions of shuffles in which a lower VI was
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Case 1: Case 2:

Figure 2.2: The two possible cases for dynamic programming algorithm. Case 1 shows the

combination of TAD sets where both have a boundary at j, while case 2 illustrates a TAD in one

set which overlaps the boundary at j.

found than the original. The number of permutations n is chosen adaptively, where we continue

randomly shuffling until the p-value converges. We define convergence as the point at which the

p-values for 5 consecutive iterations are equal up to at least 5 decimal places. The strictness of

this null model comes from looking at each interval separately rather than shuffling the TADs

across the entire chromosome at once, as well as keeping the TAD lengths fixed in the shuffling.

For each interval, we are therefore calculating the likelihood of achieving a more closely matched

TAD set while keeping the exact same number of TADs and their lengths. After computing this

probability, we control the false discovery rate at a level of 0.05 through the Benjamini-Hochberg

procedure [16], keeping only the intervals for which we cannot reject the null hypothesis at this

level.

2.2.5 Dominating intervals

The set of statistically significant intervals still includes many nested intervals, so to remove

redundant results we introduce the notion of dominating intervals. An interval is defined as

dominating through three tests. First, it must have a p-value that passes the statistical significance

tests described above. Next, we keep only the intervals that do not contain any sub-intervals

with a lower VI value. Finally, if there are still intervals among this set that begin or end at

the same point, we keep only the longest. Our method therefore outputs statistically significant

intervals that are optimal in the sense that there is no significant sub-interval that represents a
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higher similarity score. These significant, dominating intervals are the final result of the method,

representing chromosomal intervals with significantly similar TAD structures.

2.2.6 Hanging TADs

One of the common artifacts of this method is a portion of an additional TAD included in the

reported interval, where this full TAD at the end of the interval does not match well with its

counterpart in the other TAD set. This happens because the intervals considered may fall within a

TAD, creating a false TAD boundary at the start of end of the interval, and the algorithm is unable

to distinguish between true TAD boundaries and those imposed by the genome segmentation. We

therefore define a “hanging TAD” as a TAD at the edge of an interval that has been truncated to

less than 50% of its original length. Hanging TADs can appear to be a perfect match to a true

TAD and will therefore be included in the interval identified by the method (an example of this

can be seen in Figure 2.3, where the hanging TADs have been circled).

Figure 2.3: TADsim example. TAD sets from chromosome 18 are represented by triangles span-

ning each TAD, with TADs from A549 in green and from KBM7 in blue. The red brackets outline

the significant, dominating intervals (regions of the genome covered by similar TAD structures)

identified by the original TADsim method. Hanging TADs are shown by gray circles.

In order to avoid this, a preprocessing step was added to the algorithm. Sub-intervals that

include hanging TADs (as defined above) are removed from consideration before testing for

statistical significance, guaranteeing that they will not be included in the output. Figure 2.4
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shows the output for the same input set as Figure 2.3, after removing hanging TADs. Though

there are fewer total intervals identified after this modification, the area covered by both outputs

is essentially the same.

2.2.7 Parallelism, concurrency, and memory optimization

The original algorithm, especially the statistical testing of intervals, is fairly computationally

expensive and could take up to several hours depending on the number of TADs in the input

sets. To mitigate this difficulty, we modified the implementation to make it both concurrent and

memory optimized. Each execution can spawn one or more processes with each process having

1 or more threads. The independence of each permutation in the p-value calculation sub-routine

allows for high concurrency that is maximized when each process has only one thread. The

speedup is then directly proportional to the number of processing cores. However, once the

process count becomes more than the number of cores there is only a minor improvement in the

speedup which may be attributed to processor saturation. Tests were run on a 24-core/48-thread

2.6 GHz Intel Xeon E5-2690 machine. These improvements, along with the hanging TAD fix,

were made with Akshat Singhal, who was a summer intern at the time.

2.3 Results

2.3.1 Comparison of TAD similarity across 253 pairs of cell types

The method described above was run on all pairwise combinations of the 23 Hi-C maps (253 pairs

total), on all 22 autosomal chromosomes, resulting in an average of 5.908 significant intervals

per pairwise comparison per chromosome. The average length of a region of structural similarity

across all 253 pairwise comparisons is 15.25Mb, with the longest spanning almost the entirety

of chromosome 2 at 219.7Mb, between NHEK and GM12878, and the shortest of length 1.4Mb,

on chromosome 9 between A549 and NCI-H460. An example of the output intervals can be seen
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in Figure 2.4.

Figure 2.4: A sample output of our method, from chromosome 18 of A549 (green) and KBM7

(blue), with the significant, dominating intervals marked by red brackets. The blank space with

no TADs in either set corresponds to the centromere, where no reads can be mapped in the Hi-C

data.

We can compare the relative conservation and variability of chromosomal regions by looking

at the results at the chromosome level. We say that a genomic bin is structurally conserved in

one pairwise comparison if it is contained within one of the significant, dominating intervals. On

average, each 100kb genomic bin is structurally conserved in 115.02 out of 253 possible pairwise

comparisons, though this varies significantly by location. Figure 2.5 shows, at each genomic bin,

the number of cell type pairs in which the bin was contained in a significant structurally similar

interval, across two representative chromosomes. We expect the centromere to be conserved in

all cell types, and it does appear as a highly conserved element though not in every pairwise com-

parison. The reason for this is our significance test, which ensures that no single-TAD interval

will be considered significant. There must therefore be enough structural similarity in the regions

flanking the centromere to deem any interval spanning the centromere significant. Outside of the

centromere, overall variability of this bin-level similarity measure is fairly high. There appear

to be chromosomal regions that are extremely similar across most cell types, while others share

almost no similarity between any of the pairs we studied.
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Chromosome 7

Chromosome 12

Figure 2.5: Structural conservation by genomic location for several chromosomes. The height

at each genomic bin represents the number of cell type pairs in which the bin was contained

in a significant structurally similar interval. The red lines show the approximate location of

the centromere, where reads cannot be mapped and therefore almost all Hi-C maps should be

empty in this region, resulting in the appearance of a highly conserved structural element. The

significance threshold enforces a minimum number of TADs that must be included in a significant

interval, so there are some cell type pairs which differ enough in structure around the centromere

that it does not appear as a conserved element in these comparisons.
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Figure 2.6: Heat map of the genome-wide percent similarity between all pairs of cell types

studied. Rows are ordered by highest to lowest average pairwise % similarity, calculated by

summing the values across each row, dividing by the number of rows, and sorting by this average.

2.3.2 Quantifying genome-wide and chromosome-level similarity

The identified structurally similar regions can be further used to measure the genome-wide and

chromosome-level similarity. The percent similarity between two genomes (or two chromo-

somes) was defined as the percentage of the genome (or chromosome) covered by a significant,

dominating interval between each pair of cell types. The full set of pairwise percent similarity

values is presented as a heat map in Figure 2.6. The top ten pairs in terms of percent similarity

are shown in Table 2.2.

The two IMR90 samples rank somewhat highly (52.41%, ranked 35 out of 253) in terms of

percent similarity, but the two K562 samples are very dissimilar (32.14%, ranked 246 out of 253).

This could be explained by the markedly low average similarity of both [69] cell types (K562 and

GM06990) with all other cell types; both rank in the bottom four of average similarity. This is
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Cell type pair Cell type 1 Cell type 2 % similar

description description

GM12878, NHEK blood lymphocyte epidermal keratinocyte 66.02

G401, GM12878 rhabdoid tumor kidney epithelial blood lymphocyte 64.64

IMR90 (R), HMEC lung fibroblast mammary epithelial 63.24

GM12878, K562(R) blood lymphocyte chronic myeloid leukemia 62.56

K562(R), NHEK chronic myeloid leukemia epidermal keratinocyte 62.33

GM12878, HUVEC blood lymphocyte umbilical vein endothelial 62.30

IMR90 (R), HUVEC lung fibroblast umbilical vein endothelial 62.13

HMEC, KBM7 mammary epithelial chronic myeloid leukemia 60.84

GM12878, HMEC blood lymphocyte mammary epithelial 60.15

A549, GM12878 adenocarcinomic alveolar basal epithelial blood lymphocyte 59.22

Table 2.2: Top 10 cell type pairs in percent similarity. For the cell types which could come from

two different samples, the initial of the first author of the data source is in parentheses.

the oldest data set we use, so the data may contain more errors or stronger batch effects than the

more recently generated samples. If we instead compare the K562 data from the Rao et al. [98]

study to KBM7, which comes from the same cancer type (chronic myeloid leukemia), we see a

similarity of 57.26%, which ranks them 12 out of 253 pairs. There is some biological similarity

and functional connection between the cell type pairs near the top of the structural similarity

measure. The fourth most similar pair (GM12878 and K562) consists of a blood lymphocyte

cell line and a chronic myeloid leukemia cell line of lymphoblast morphology, so these come

from the same tissue and cell lineage. However, many of the most similar pairs have no apparent

biological justification.

Though there are no previous methods quantifying structural similarity to which we can

compare, two previous studies counted the number of TAD boundaries (computed using different

methods) that they considered overlapping between certain pairs of cell types. Dixon et al.
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[36], using their method referred to as DomainCaller, reported data indicating a Jaccard index

(similarity score between 0 and 1) of 0.52165 between their IMR90 and hESC cell types. Our

method reports a comparable similarity score of 0.4902 (fraction similarity across the genome,

also between 0 and 1), despite using different methods for data normalization and TAD calling.

Rao et al. [98] similarly reported the number of shared TAD boundaries between pairs of cell

types including GM12878, which was sequenced much more deeply than the others. Using

their own TAD calling method, they identified significantly more TADs in GM12878 than any

other cell type because of the higher resolution of the data, so overall their data gave Jaccard

indices ranging from 0.2129 to 0.3033 for comparisons of GM12878 to each of IMR90, HMEC,

HUVEC, K562, KBM7, and NHEK. However, because there are more GM12878 TADs than

any other cell type, this comparison is somewhat skewed. Simply looking at the fraction of each

cell type’s shared TAD boundaries with GM12878 to its own overall number of TAD boundaries

gives similar TAD boundary fractions in the 0.499 to 0.6688 range. In our analysis, these same

cell type pairs ranged in percent genomic similarity levels from 0.5552 to 0.6603. Again, this is

using yet another TAD caller and data normalization method, but the level of similarity measured

seems to be fairly robust to all of these differences.

At the chromosomal level, these percent similarities and even the ranking of pairwise simi-

larity can vary significantly. Similarity levels averaged over all pairwise comparisons per chro-

mosome vary from 33.70% on chromosome 1 to 69.05% on chromosome 22. For an individual

pair, similarity can cover an entire chromosome as in the case of the Caki2 and HMEC which

are 100% similar on chromosome 1. In contrast, some pairs have almost no similarity on a chro-

mosome, such as SKMEL5 and the IMR90 sample from [36], which have 0.963% similarity on

chromosome 1. Box plots of the distribution of overall similarity among all normal-normal and

cancer-cancer cell type pairs are shown in Figure 2.7, where several chromosomes, such as 3 and

20, stand out as being particularly more structurally similar among normal cell type pairs than

cancer cell type pairs.
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Normal-normal cell type pairs Cancer-cancer cell type pairs

Figure 2.7: Box plots showing the distributions of similarity measures across chromosomes, in

pairs of cancer cell types and normal cell types. The distribution is over all genomic bins of

the given chromosome, and the value at each genomic bin is the fraction of (cancer-cancer or

normal-normal) pairs for which the bin is contained in a significant dominating interval.

2.3.3 Comparing structural conservation between cancer and non-cancer

cell type pairs

Several studies have shown that chromosome structure can be disrupted in a broad range of

cancer types [48, 54, 75, 78], and the comparison method above can give a genome-wide view

of structural similarity among cell type pairs of all combinations of normal and cancer cell types.

Among the 21 unique cell types in our data set, 14 come from cancer cell lines and the other

7 are non-cancerous (see Table 3.1). Including the two duplicate cell types, this gives 28 pairs

of two normal cell types, and 105 pairs of two cancer cell types. Globally, the normal-normal

pairs show slightly higher average structural conservation, but the difference is not significant:

44.17% average similarity among cancer-cancer pairs, and 49.02% similarity among normal-

normal pairs.

However, we find that there is more structural conservation at the regions around established

pan-cancer genes in normal-normal cell type pairs than in cancer-cancer pairs, which may point
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to the structural disruption that occurs in conjunction with cancer mutations. Looking at the

top 10 most commonly mutated pan-cancer genes from a large-scale study of data from The

Cancer Genome Atlas [61], we can see that the structure around most of these genes is more

conserved among normal cell type pairs than cancer pairs (Figures 2.8 and 2.9). Figure 2.8

shows the distributions for each chromosome of the percent similarity among cancer-cancer pairs

subtracted from normal-normal pairs. A value above zero indicates higher structural similarity

among normal-normal cell type pairs. Despite 10 out of 22 chromosomes having lower than zero

average difference, 9/10 cancer genes are located on chromosomes with a positive average value.

In addition, we note that three of these genes are located on chromosome 3, which has the highest

average difference between structural similarity in normal-normal pairs compared to cancer-

cancer pairs. The prevalence of mutations in cancer cells on genes located on chromosome 3 and

the disruption caused by the mutations may result in variable structural changes in cancer cells.

Looking more closely at these ten gene locations, we note that normal-normal pairs are more

structurally similar at nine of these ten gene locations (Figure 2.9). Over all human gene loci,

57.77% show a higher fraction of structurally similar normal-normal pairs than cancer-cancer

pairs, which gives a probability of 0.03441 (using the hypergeometric test) of pulling at least 9/10

random genes with higher normal-normal structural conservation, suggesting that the pattern of

Figure 2.9 is statistically significant. If we further restrict the null model to the probability of

finding at least 9/10 genes from the same chromosomes as our pan-cancer genes, the p-value

increases to 0.1425, which is expected based on the distributions shown in Figure 2.8. Though

this value is above the traditional 0.05 p-value cutoff, the combination of results suggests a role

for 3D structure disruption around mutated genes in cancer cell types. In order to validate and

confirm this conclusion, we would need more Hi-C samples.
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Figure 2.8: Box plot showing the chromosome-level distributions of differences between level of

structural similarity at all genes in normal cell type pairs and cancer cell type pairs. The red stars

represent the differences observed at the ten most commonly mutated pan-cancer genes from

[61].
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Figure 2.9: Relative conservation of cancer-cancer and normal-normal cell type pairs at ten

prominent pan-cancer gene locations. For the cases in which the gene spans multiple bins, the

bin for the gene location was chosen as the bin containing the gene’s midpoint.
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2.4 Discussion and Conclusions

We have presented the first method to quantify local chromosomal structural similarity and have

used it to perform a large-scale comparison of TAD structure across 23 human samples from both

cancer and noncancerous conditions. We note the variability among structural components both

globally and by chromosome, as well as between cancer and normal cell types. This led to the

new observation that pan-cancer gene locations show more structural variability among cancer

cells than among normal cells.

Though the analysis was performed using only TADs from the Armatus software at one

individually-optimized parameter setting, our results are in line with the levels of structural sim-

ilarity reported by other studies using other TAD finders and pre-processing pipelines. Further

study in this area will involve testing the robustness of these results to the choice of TAD caller,

as well as the Hi-C data resolution and normalization. Another tunable aspect of this method is

the choice of distance metric, for which we used VI. Though VI is a well-established and gen-

eral metric for calculating clustering similarity, there are many other metrics which fit the same

criteria.

Beyond the methodological choices, our results are somewhat dictated by the available Hi-

C samples. Hi-C is a fairly expensive and time-consuming protocol, so the amount of data

available is much smaller than other genomic data types such as RNA-seq. We selected samples

from prominent studies in the field, but without more data it is difficult to determine whether

chromosome structure can be tissue-specific or cancer type-specific, or any number of other

possibilities. As more data becomes available, the robustness of the results of such a structural

comparison will significantly increase.

Given the set of samples we used, it is difficult to determine the level of batch effects or

other protocol-specific differences influencing our results. The extremely low similarity values

for both samples from the Lieberman-Aiden et al. [69] study seem to suggest some batch effects

or protocol-specific variations, but otherwise the similarity clustering did not simply group cell
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types from the same studies. This concern could be further studied or mitigated with more Hi-C

samples.

Another concern with the data is specific to the cancer samples, which are likely to be highly

mutated and contain genomic structural variants. Despite this, we still map them to the refer-

ence (non-cancer) genome. Some of the areas where we see structural differences across cancer

cells may simply be due to an inability to map reads with high mutation levels, rather than a

variation in three-dimensional structure. Through further advances in long-read technology and

genome mapping and assembly, it may become easier to avoid these concerns and study three-

dimensional structure more directly. Some work has begun in this area, combining structural

variant detection with Hi-C data [24].

Our method and analysis represents a first step towards understanding the conservation and

changes in chromosome structure across human cell types and disease states. We provide the

first genome-wide structural comparison of cancer and non-cancer genes, as well as a systematic

pairwise analysis of similarity across 23 human cell types. As Hi-C data becomes more widely

available and reliable, the ability to compare and identify structurally similar or variable regions

may provide even more insight into the mechanisms and influence of chromosome architecture

on gene regulation and cellular functioning.
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Chapter 3

Analysis of TAD variability

In this chapter, we analyze 137 Hi-C samples from 9 studies under 3 measures (including TAD-

sim, introduced in Chapter 2) to quantify the effects of various sources of biological and ex-

perimental variation in TAD sets. We observe significant variation in TAD sets between both

non-replicate and replicate samples, and provide initial evidence that this variability does not

come from genetic sequence differences. The effects of experimental protocol differences are

also measured, demonstrating that samples can have protocol-specific structural changes, but that

TADs are generally robust to lab-specific differences. This study represents a systematic quantifi-

cation of key factors influencing comparisons of chromosome structure, suggesting significant

variability and the potential for cell-type-specific structural features, which has previously not

been systematically explored. The lack of observed influence of heredity and genetic differences

on chromosome structure suggests that factors other than the genetic sequence are driving this

structure, which plays an important role in human disease and cellular functioning.

A version of this chapter appeared in NAR Genomics and Bioinformatics and is joint work

with Akshat Singhal and Carl Kingsford [108]. The scripts to reproduce the analyses presented

here are available at https://github.com/Kingsford-Group/localtadsim/tree/

master/analysis.
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3.1 Introduction

While it is recognized that the three-dimensional structure of the chromosome is an integral part

of many key genomic functions, we lack a full understanding of the variability of this struc-

ture across biological sources or experimental conditions. Changes in chromosome structure

at specific genomic regions and under certain conditions have been implicated in a variety of

human diseases and disabilities, including many cancers [48, 54, 75, 78], deformation or mal-

formation of limbs during development [71], and severe brain anomalies [119]. In healthy

cells, genome shape is heavily linked to key processes such as gene regulation and expres-

sion [23, 29, 40, 65, 101], replication timing [7, 79, 92, 104], and DNA accessibility and nuclear

organization [27, 96, 131]. Despite the clear importance of these structures, there has been no

systematic study of the expected variation of topologically associated domains (TADs) genome-

wide.

Features of genome-wide, three-dimensional chromosome structure can be measured by Hi-

C [69], a high-throughput variant of the chromosome conformation capture protocol [31]. The

experiment involves cross-linking and ligating spatially close genomic segments, then aligning

them back to the genome to find their genomic positions. The output of this experiment is a

matrix in which the rows and columns represent segments of the genome along a chromosome,

and each matrix entry records the pairwise interaction frequency of the genome fragments of

the associated row and column. These values reflect 3D proximity, quantifying the frequency of

contact between every pair of genomic segments.

A hierarchical architecture has emerged from these Hi-C matrices, in which chromosome

structure is composed of several different scales of components, from multi-megabase compart-

ments to sub-megabase TADs and sub-TADs [20, 42]. TADs represent chromosomal regions

with significantly higher interaction frequency among segments within the TAD than with those

outside of it [36]. TADs are considered to be a primary structural building block of chromo-

some architecture [38], and several methods have been developed to computationally identify
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them [28, 36, 42, 85, 98, 129].

One challenge in the interpretation of TADs is that we have little understanding of the vari-

ability of TAD structures under different conditions. While some work has compared aspects of

Hi-C data quality, TADs in particular were not considered [133]. No other Hi-C study has used

more than 23 samples of different conditions, and even large data repositories such as ENCODE

and the 4D Nucleome contain no more than 30 human Hi-C samples on their own. As more

Hi-C data has become available recently, it is now possible to perform a substantial analysis of

the relative consistency or variability of TADs across a variety of human cell conditions, by com-

bining Hi-C samples from many studies and resources. Previous work has suggested that TADs

are largely conserved across human cell types and possibly even species, however the degree of

this conservation is unclear and has been tested in only small sets of samples [36, 98].

An initial method to compare TADs between cell types was previously applied to compare

normal versus cancer human cell types [106], but that study did not investigate other potential

sources of TAD variability and only compared 23 different cell or tissue types. We instead

systematically quantify several sources of variability that have not been previously studied, using

over three times as many different cell conditions, and three metrics.

We quantify the influence of both technical and biological variation on TAD structures across

several experimental and biological conditions in the first study of over 100 Hi-C experiments.

We observe that 10–70% of combined TAD boundaries differ between replicates, regardless of

sequencing depth or contact coverage, pointing to a potentially dynamic or disordered arrange-

ment. Across 69 samples of different cell lines and tissue types, we observe ∼20–80% unshared

TAD boundaries, suggesting that there can be fairly large differences in TAD sets across biolog-

ical conditions, in contrast to previous claims of extensive TAD conservation [36, 98, 109]. We

find that samples of the same cell or tissue type have elevated structural similarities, suggesting

that biological function is a key driver of structural similarity. Though it is commonly believed

that TADs do not vary much across cell types and possibly even species, we observe signifi-
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cant TAD variation across human cell and tissue types. By analyzing the structural similarity

of sets of parents and their children, as well as tissue samples taken from different individuals,

we observe that the genetic sequence differences between individuals and the genetic sequence

similarities between parents and their children have little impact on TAD structural similarity.

Of the possible sources of technical variation considered in this work, the choice of in situ (in

nucleus) ligation versus dilution (in solution) ligation protocols has the greatest influence on Hi-

C and TAD structures. In contrast, we demonstrate that Hi-C measurements and corresponding

TAD calls are robust to other technical differences such as the choice of restriction enzyme and

lab-specific variations.

3.2 Materials and methods

3.2.1 Data

A total of 76 human Hi-C samples were processed from sequencing reads (.fastq files) down-

loaded from various publicly available sources (Sequence Read Archive (SRA) [66], ENCODE [125],

Gene Expression Omnibus (GEO) [12], or 4DN portal [32]). Normalized Hi-C matrices were

computed from the reads through the HiC-Pro pipeline [113], and each sample was tested for

quality at 100kb resolution. Using the criteria suggested by Ay and Noble [6] and Rao et al. [98]

(at least 80% of all bins must contain more than 1000 contacts), we found 7 experiments which

could not be analyzed at 100kb resolution or less (Table 3.2), leaving 69 human Hi-C data sets

(137 including all replicate samples) representing 52 unique cell types or biological sources

from 9 studies. The details of these experiments, including accession numbers, are found in Ta-

ble 3.1. All samples were normalized using iterative correction and eigenvector decomposition

(ICE) [59], and all analyses presented here were performed at 100kb resolution, unless otherwise

noted. For analyses that do not explicitly compare replicates, all aligned reads from each repli-

cate of a sample were merged and processed into a single combined Hi-C matrix for optimal data
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quality.

From the Hi-C matrices, TADs were computed using Armatus [42], a commonly used method

for identifying TADs efficiently. Armatus takes one parameter γ, which controls the expected

TAD size. For every sample and chromosome, Armatus was run with γ values ranging from

0 to 1 at intervals of 0.1, and the γ value was chosen to ensure a distribution of TADs with

median as close as possible to the expected median TAD size of 880kb [20] on each sample and

chromosome.

3.2.2 Comparison measures

In order to comprehensively compare chromosome structures, we use three different measures:

HiCRep [132], Jaccard Index (JI), and TADsim [106]. HiCRep measures similarity between Hi-

C matrices directly, and both JI and TADsim compare similarity of predicted TADs. All three

measures were computed on all 2346 pairs of non-replicate samples, in addition to all 83 replicate

pairs.

HiCRep was designed to assess the reproducibility of replicates or the similarity of two Hi-

C matrices. This measure uses a stratum-adjusted correlation coefficient to reliably compute a

statistical similarity score between two Hi-C matrices, explicitly accounting for both the strong

distance dependence found in Hi-C and the known domain structure [132]. This method returns

a value that represents the overall similarity of the full Hi-C matrix, and distinguishes between

replicate and non-replicate samples significantly better than simple correlation coefficients. We

ran HiCRep on all intra-chromosomal matrices of our samples and averaged over all chromo-

somes to get a single value per cell type pair. HiCRep requires a smoothing parameter h, which

was selected for each comparison according to the heuristic optimization procedure provided by

the software, which chooses the minimum h value at which the score begins to converge. We al-

low a range of 0 to 3, which is expanded from the 0 to 2 range shown in HiCRep’s documentation

example, to allow more options while maintaining computational efficiency.
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The Jaccard Index (JI), a simple set similarity metric, is defined as the size of the intersection

of two sets A and B divided by the size of the union of the sets: JI(A,B) = |A ∩ B|/|A ∪ B|.

When comparing TADs, the two sets A and B represent the two lists of TAD boundaries, as used

in Forcato et al. [44]. The resulting JI value is an easily interpretable number representing the

fraction of shared boundaries between the two TAD sets.

While JI is an effective way to compare boundary locations, it does not take into account the

total overlap between TAD interiors. We therefore also adopted a measure from Sauerwald and

Kingsford [106], which presented a method to identify structurally similar regions between two

TAD sets. The measure used here, which we will call “TADsim,” is the fraction of the genome

covered by structurally similar regions identified by the method described in Chapter 3.

3.2.3 Statistical comparisons

Distributions of similarity values under all three measures were checked for statistical signifi-

cance through the Mann-Whitney U test, also called the Mann-Whitney-Wilcoxon (MWW) test.

This nonparametric statistical test assesses the null hypothesis that a randomly selected value

from one sample is equally likely to be less than or greater than a randomly selected value from

the other sample. The alternative hypothesis can then be formulated as a randomly selected value

from one distribution being likely to be greater than (or less than) a randomly selected value from

the other distribution.

Without knowing the underlying distribution of structural similarity values, a nonparametric

statistical test is required for all of our comparisons. The Kolmogorov-Smirnov two-sample test

(KS test) is another commonly used nonparametric test, but it does not include any assessment

of which distribution is greater than the other. The KS test is additionally sensitive not only

to differences in the median or mean between two distributions, but any differences in their

shapes, dispersion, or skewness as well. We therefore chose the MWW test for these analyses,

given that we specifically are testing for the difference in relative magnitudes of the values in the
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distributions, rather than differences their overall shapes.

3.3 Results

3.3.1 Structural similarity of replicate samples

By quantifying the similarity of all 83 replicate pairs in our data, we find that the TAD sets of

replicate pairs are significantly more similar than those of non-replicate pairs (Figure 3.1a–c,

p < 10−20 for all comparison measures), in contrast to previous work that suggested much lower

TAD reproducibility between replicates [44]. We note that this discrepancy can be explained by

the fact that Forcato et al. [44] used a different pre-processing method which results in many

fewer aligned reads than HiC-Pro and therefore significantly fewer Hi-C contacts, decreasing

the reproducibility they observe. Using the same data analyzed by Forcato et al at the same

resolution and the same Armatus parameters they used, but processed instead with HiC-Pro,

gives JI values consistent with those we found on the larger data set analyzed for this work.

Among the samples studied in this work, replicates share an average of 62.77% of their

TAD boundaries, which is consistent with other previous studies on different data using different

methods (Dixon et al. [36]: 62.28%, 73.73% and Rao et al. [98]: 61.88%). This leaves almost

40% of TAD boundaries that vary across replicates. Between non-replicate pairs, almost 60%

TAD boundaries are not shared on average, which contradicts the common notion that TADs are

highly conserved between human cell types. These levels of variability also hold at a higher

resolution of 40kb (Figure 3.1d–f), though the sample size is much smaller due to the limited

number of samples with replicates sequenced deeply enough to be analyzed independently at

40kb. The variability we observe could not be explained by limitations of sequencing depth, as

we found that reproducibility is only weakly correlated with sequencing coverage (see Figure

3.2). If these relatively low similarity values for replicates reflect the true level of variability

rather than the uncertainty of TAD identification, this points to a dynamic or disordered structure,

44



as suggested by a recent imaging study [89], and a much higher level of TAD variation than

previously thought.

3.3.2 Variability across tissues and individuals

The chromosome structure of tissue samples has not been as widely studied as that of cell lines,

but these structures may provide valuable insight into tissue-specific genome spatial organization.

Among our set of 69 Hi-C experiments, 13 different human tissues are represented, and there are

16 pairs of the same tissue type taken from different donor individuals. The similarity values of

the chromosome structures of these pairs are statistically indistinguishable from those of replicate

samples (Figure 3.3a–c; HiCRep: p = 0.4792, JI: p = 0.1300, TADsim: p = 0.09559). There

is much less variation across individuals than across tissue types (Figure 3.3a–c; HiCRep: p =

1.5577 × 10−6, JI: p = 3.876 × 10−6, TADsim: p = 1.017 × 10−7), suggesting that individual

genetic differences have less influence on chromosome structure than the biological function of

the sample.

Our analysis suggests that around 40% of TAD boundaries are shared between different tissue

types, consistent with the findings of Schmitt et al. [109]. While this is significantly more than

expected given random TAD boundary locations, it leaves room for large differences in the TAD

sets of different tissue samples. In order to determine whether TAD structure is more similar

across tissues than across cell lines, we compared the similarities between tissue types to the

background distribution consisting of all non-replicate pairs with at least one cell line. Two of

our three measures suggest that there is elevated conservation between tissues compared with

cell lines, but the two TADsim distributions are statistically similar (Figure 3.3a–c, HiCRep:

p = 2.120×10−19, JI: p = 0.004806, TADsim: p = 0.4235). The average JI value between tissue

samples of 41.6% implies that while there is a significant level of similarity among chromosome

structures of different tissue types, close to 60% of TAD boundaries vary between different tissue

samples. This level of variability between tissue types may indicate the existence of tissue-
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Figure 3.1: Hi-C and TAD reproducibility. The violin plots show distributions of HiCRep

(a,d), Jaccard Index (b,e), and TADsim (c,f) values on pairs of either replicates or non-replicates,

at 100kb (a,b,c) and 40kb resolution (d,e,f). All of these plots show a statistically significant

(p < 10−9) elevation of similarity among replicate pairs, demonstrating that both Hi-C matrices

and TADs are reproducible. Only 15 samples had replicates which passed the criteria for analysis

at 40kb, resulting in a much smaller sample size for these comparisons.
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a b

c

Figure 3.2: Reproducibility versus Hi-C coverage. Reproducibility is quantified by the similar-

ity value of each replicate pair. We compute a contact count for each replicate sample by adding

all non-normalized contacts on all intra-chromosomal matrices, and Hi-C coverage is defined as

the smaller of the two contact counts for the replicate samples being compared. Across all three

measures, especially the two quantifying TAD reproducibility, there is a low correlation with

coverage though very high coverage experiments tend to have high reproducibility. a HiCRep;

Spearman ρ = 0.6378 b JI; Spearman ρ = 0.2407 c TADsim; Spearman ρ = 0.2310.
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specific structural features, rather than significant conservation of TADs between tissue types.

Figure 3.3: Biological sources of TAD variation. a,b,c: Comparisons between and within tissue

samples using a HiCRep, b JI and c TADsim. Each figure shows four violin plots representing

distributions of similarity values of the background (non-replicate pairs), replicates, pairs from

the same tissue type but different donor individuals, and pairs from different tissue types. d,e,f:

Comparisons with three trio samples of blood lymphocyte cells using d HiCRep, e JI and f TAD-

sim. The background distribution consists of all non-replicate pairs, and the blood lymphocyte

pair distribution shows all similarity values of two blood lymphocyte samples outside of the trios.

The trio replicates refer to the similarity values of the replicate pairs from within each individual

of the trio samples. The scattered points on the right side of each figure represent all within-trio

comparisons, colored by family relationship.

3.3.3 Family relationships do not seem to influence TAD similarity

Hi-C measurements from blood lymphocyte cells of three parent-parent-child triplets (trios) per-

mit a glimpse into the heritability of chromosome structure. We find that unrelated individuals

(parents) share just as much structural similarity as each parent and their child (Figures 3.3d–f).

We therefore see no evidence that chromosome structure is determined by genetic similarity, at

least in blood lymphocyte cells. The similarity values within trios are generally much higher

than the background of non-replicate comparisons, however they are similar to the distribution

of pairs of blood lymphocytes, so this is likely a result of the shared cell type rather than genetic

similarity. As with the tissue data, the biological source (cell or tissue type) seems to be a much

stronger driver of structural similarity than genetic similarity.

3.3.4 Variations across Hi-C protocols

In order to investigate technical sources of variation, we compare several common variations in

the Hi-C protocol, and test whether they affect the similarity of the TADs that are identified.
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There are two main protocol variants that differ in the cross-linkage step. In situ Hi-C [98]

(also termed “in nucleus Hi-C” [81]) involves cross-linking the DNA within the nucleus, while

dilution Hi-C (or “in solution Hi-C”) performs cross-linking in a dilute solution. Each protocol

also requires the choice of a restriction enzyme, which could be any of four common options:

HindIII, MboI, NcoI, and DpnII. While there has been some study of the differences in Hi-C data

resulting from in situ and dilution protocols [81, 98], the influence on TAD sets and the effect of

the restriction enzyme had not been systematically studied previously.

In situ and dilution Hi-C reproducibility

Across all replicate pairs (12 in situ, 71 dilution), the intra-chromosomal Hi-C matrices of in situ

replicates are statistically significantly more similar than dilution replicates (Figure 3.4a, p =

1.180 × 10−5). However, the TAD sets of in situ replicates only show statistically significantly

higher similarity than those of dilution replicates under the JI measure (Figures 3.4b,c; JI: p =

0.02703, TADsim: p = 0.1547). TADs capture only relatively short-range interactions, and it

therefore appears that the difference between in situ and dilution Hi-C is not as significant a

factor in TAD reproducibility as in overall Hi-C matrix reproducibility. It has been previously

shown that in situ Hi-C matrices are more reproducible than dilution Hi-C matrices [81, 98],

specifically with respect to long-range and inter-chromosomal contacts.

Comparing in situ and dilution samples

In order to study whether both in situ and dilution protocols result in the same structures, we

compared samples across protocols. Among pairs of the same cell type, mixed protocol pairs,

where one sample came from in situ and one from dilution, were consistently statistically sig-

nificantly less similar than the single protocol pairs, in which both samples came from the same

protocol (Figures 3.4d,e,f, HiCRep: p = 0.0003423, JI: p = 0.03967, TADsim: p = 0.02002).

The chromosomal structures identified from these two protocol variants are therefore not en-

50



Figure 3.4: Comparing Hi-C samples generated from the in situ and dilution protocols. a:

HiCRep shows that in situ Hi-C matrices are more reproducible than dilution matrices (p <

0.0005). b,c: TAD set reproducibility according to JI (p = 0.02703) and TADsim (p = 0.1547)

shows that protocol choice has less of an impact on reproducibility of TAD sets than full Hi-

C matrices. d,e,f: Comparisons of same cell type pairs generated by the same and different

protocols. The background distribution is all comparisons of different cell types. Under all

measures, there is a clear and statistically significant (p < 0.05) drop in similarity values of

samples generated by different protocols compared to samples generated by the same protocol.
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tirely consistent, although pairs from the same cell type still showed more similarity than pairs

of different cell types, even among mixed protocol pairs (HiCRep: p = 3.436 × 10−15, JI:

p = 1.2645×10−9, TADsim: p = 0.006010). We observe a similar trend across all non-replicate

pairs as well. Overall, we observe some structural differences induced by the protocol variations,

but not enough to obscure the general similarities expected from samples of the same cell type.

Restriction enzyme choice has minimal impact on TAD sets

By comparing samples from the same lab of the same cell type, generated with a different re-

striction enzyme, we see no significant variation in similarity measures induced by restriction

enzymes, as shown in Figure 3.5. As expected, the pairs of the same cell type with a different

restriction enzyme tend to be more structurally similar than the background distribution, which

includes all 2333 other pairwise comparisons. The choice of restriction enzyme does not appear

to be a significant source of technical variation in measurements of chromosome structure, as

both Hi-C matrices and TAD sets appear robust to this experimental variable.

3.3.5 TAD variation induced by lab-specific differences

Across all of our data, we see no pattern of elevated structural similarity among samples from

the same lab (Figure 3.6a, JI and TADsim heat maps can be seen in Figures 3.7 and 3.8). A

comparison of pairs of the same cell type from different labs shows that these pairs are generally

more similar than non-replicate pairs, with similarity values near those of replicate pairs (Fig-

ures 3.6b,c,d). Consistent with the protocol-driven variation described above, the three lowest

pairwise scores for IMR90 in both JI and TADsim are the three mixed protocol comparisons; all

other points represent pairs generated by the same protocol. Chromosome structure seems to be

robust to the variability across experimental labs.
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Figure 3.5: Measurements of structural similarity across the use of different restriction

enzymes. The scattered points represent the similarity of a pair of samples of the same cell type

(grey is hESC, red is HFF-hTERT), generated by using different restriction enzymes. The violin

plot shows the distribution of all other non-replicate comparisons. As expected, the points that

differ only in restriction enzyme are largely more similar than the background, suggesting that

this choice is not a significant source of technical variability.
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Figure 3.6: Quantifying variation across samples from different labs. a Summary of all 2346

pairwise sample comparisons as a heatmap of HiCRep scores. The dotted lines outline groups

of samples from the same study. b,c,d: The effects of lab-specific variation on chromosome

structure measurements. The points represent similarity scores of the same cell type (red for

IMR90, grey for hESC) from different studies. These can be compared to the distribution of

non-replicate pairs and that of replicate pairs, showing that samples from different labs achieve

similarity values near those of replicate pairs.

3.3.6 Robustness to TAD size

While the exact similarity values differ somewhat, all trends observed in this work are consistent

across TAD sets selected for median TAD sizes of 500kb, 700kb, 880kb, and 1Mb. The true

expected size of TADs is fairly unclear, and likely to span a wide range due to their hierarchical

nature [20, 42]. Though Armatus does not optimize for a specific TAD length, its resolution

parameter γ adjusts a preference for larger or smaller TADs. Throughout this work the γ value

was selected by choosing the set with median TAD length closest to 880kb. In order to assess

robustness to this parameter, we additionally ran all analyses for TAD sets with median lengths

of 500kb, 700kb, and 1Mb. Because HiCRep is performed on the full Hi-C matrix rather than

TADs, only JI and TADsim were compared for robustness here. While the similarity values are

generally lower for TADs of larger size (Figure 3.9), the trends across conditions compared here

were robust (Figures 3.10, 3.11, 3.12, and 3.13).

3.4 Discussion

We have demonstrated that cell or tissue type, rather than individual or genetic difference, ap-

pears to be the greatest driver of biological variation in TAD structures and Hi-C matrices, con-

firming and quantifying the likely biological importance of TADs. However, between replicates,

55



Figure 3.7: Summary of all 2346 pairwise sample comparisons as a heatmap of JI values. Dotted

lines mark the samples that came from the same study. We see no systematic elevation in similar-

ity values of intra-lab comparisons. This suggests that lab-specific variations do not significantly

impact the similarities of TAD sets.

TAD structures are shown to share only 60% of their boundaries, suggesting that chromosome

structure is not a static feature, but remains variable even in identical cell populations. Contrary

to previous claims that TADs are highly conserved, we note significant TAD variability across

human samples. We observe elevated similarities between samples of the same cell type, sug-
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Figure 3.8: Summary of all 2346 pairwise sample comparisons as a heatmap of TADsim values.

Dotted lines mark the samples that came from the same study. We see no systematic elevation

in similarity values of intra-lab comparisons. This suggests that lab-specific variations do not

significantly impact the similarities of TAD sets.

gesting that TAD structures are likely correlated with cellular function, rather than individual

genetics. The largest differences due to technical variations appeared in comparing structures

generated through in situ or dilution protocols, while lab-specific differences and restriction en-

zyme choices had a smaller impact on the resulting similarities of Hi-C measurements.
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Figure 3.9: Measuring robustness to TAD size parameter. Boxplots, with midline representing

the median, represent the distributions of JI (a) and TADsim (b) values for TAD sets selected for

median TAD sizes of 500kb, 700kb, 880kb, and 1Mb. The 880kb distributions are also shown in

Figure 3.1, and are included here for comparison.

In order to maximize the number of samples analyzed in this work, all comparisons were per-

formed at a fairly low resolution of 100kb, so structural features that would be clearer at higher

resolution may have been overlooked. A few observations noted in this work are consistent

with previous smaller-scale studies of higher-resolution matrices. In particular, the similarities

between replicates that we observed were consistent with those found in Dixon et al. [36] and

Rao et al. [98], though much higher than those reported in Forcato et al. [44] due to the dif-

ferent pre-processing methods used in each study. The higher-than-random similarity between

pairs of different tissue types was also found by Schmitt et al. [109], but our quantification of

this similarity suggests significant variability rather than extensive conservation between tissue

types.

There are still relatively few available Hi-C data sets compared with other genomic analyses,

and many of the observations made here would be strengthened with more samples or with

confirmation through single-cell Hi-C. In particular, more trios from other cell types would help

to confirm whether there is truly no elevated similarity in genetically related individuals, or
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Figure 3.10: Robustness on tissue samples and parent-parent-child trios. These boxplots repre-

sent the distributions of JI (a, c) and TADsim (b, d) values for various median TAD sizes (500kb,

700kb, 880kb, and 1Mb). The 880kb distributions are also shown in Figure 3.3, and are included

here for comparison. (a,b) The “Background” represents all pairs from our data with at least

one cell line (as opposed to a tissue sample), and “Replicates” distributions are the values from

all replicate pairs. The “Same tissue, different donor” values come from pairs of samples of the

same tissue type collected from different individuals, and “Different tissue” represents all pairs of

tissue comparisons from two different tissue types. (c,d) The “Background” distributions include

all pairs with at least one non-blood lymphocyte sample. “Blood lymphocyte pairs” include all

comparisons of two different blood lymphocyte samples that do not come from the trio data.

“Trio replicates” are the replicate comparisons from each of the trio samples (n = 9). “Within

trio pairs” represent comparisons of samples from the same trio (either two parents, or a parent

and their child, n = 9).
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Figure 3.11: Robustness on comparing in situ and dilution Hi-C. These boxplots represent the

distributions of JI (a, c) and TADsim (b, d) values for various median TAD sizes. The 880kb

distributions are also shown in Figure 3.4, and are included here for comparison. (a,b) “In situ

replicates” represents all replicate comparisons of samples collected by an in situ protocol, and

“Dilution replicates” shows all replicate comparisons collected with a dilution protocol. (c,d)

“Different cell types” represents all comparisons where the two samples compared are not of the

same cell or tissue type. “Same cell type, different protocol” shows the similarity values of pairs

in which both samples are the same cell type but one was generated with an in situ protocol, and

one came from a dilution protocol. “Same cell type, same protocol” shows the similarities of

pairs in which both samples come from the same cell type and both were generated by the same

protocol (either both in situ or both dilution).
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Figure 3.12: Robustness across restriction enzymes. The boxes outline the first to third quartiles

of data, the midline represents the median, and outliers are shown as diamonds. These boxplots

represent the distributions of JI (a) and TADsim (b) values for various median TAD sizes. The

880kb distributions are also shown in Figure 3.5, and are included here for comparison. The

“Same cell type, different restriction enzyme” values represent similarities of pairs of samples

from the same cell line (either HFF-hTERT or hESC), where different restriction enzymes were

used during the Hi-C protocol (n = 13). The “Background” here represents all other non-

replicate pairs.
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Figure 3.13: Robustness on lab-specific variation. The boxes outline the first to third quartiles

of data, the midline represents the median, and outliers are shown as diamonds. These boxplots

represent the distributions of JI (a) and TADsim (b) values for various median TAD sizes. The

880kb distributions are also shown in Figure 3.6, and are included here for comparison.“Same

cell type, different study” distributions show the similarities of pairs of samples of the same cell

line (either IMR90 or hESC), which came from different studies (n = 16). “All replicates” dis-

tributions show the values from all replicate pairs in the data collected, and “All non-replicates”

shows all non-replicate pairs which are not in the “Same cell type, different study” category.
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whether this conclusion was specific to the blood lymphocyte samples studied in this work.

As more single-cell Hi-C data becomes available through studies such as Flyamer et al. [43],

Nagano et al. [80], Stevens et al. [121] and analysis methods improve, cell-to-cell variations in

chromosome structure will be easier to assess, and we will be able to determine whether these

population trends hold within individual cells.

All samples studied here were processed from sequencing reads to Hi-C matrices through the

same pre-processing pipeline, and all TADs were computed using Armatus [42]. These choices

may have influenced the trends we observed in this work, because different pre-processors, Hi-C

normalization methods, or TAD callers could result in different patterns in the resulting structural

measurements. All TAD sets represent some amount of uncertainty given the limited power of

TAD callers, and our conclusions on TADs are only as strong as the reliability of the TAD sets

they are based on. The consistencies with previous work using different methods for each of

these steps suggests that they did not have a major effect, but more study is needed to assess the

overall robustness of Hi-C measurements to these processing choices. Additionally, there may

be other possible comparison methods for Hi-C matrices and TAD sets, which may or may not

agree with the three measures used here.

Further study of the structural differences across cell types may lead to insights into the mecha-

nisms of chromosome structure. These comparison techniques could also be used to determine

the differences between chromosome structures in healthy and diseased cells and could point to

the locations of structural changes that are present across diseased cells. There is already signifi-

cant evidence of structural abnormalities in many diseases (review, [71]). Additional systematic,

genome-wide analyses of TAD structures could increase our understanding of a range of human

diseases. Here, we have taken the first step towards systematically quantifying, at a large scale,

the extent of TAD structure variability.

This work compares Hi-C data and TAD structures from nine studies using three different mea-

sures, in order to identify trends in the variables controlling chromosomal structural similarity.
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We observe that even replicates display a certain amount of variability in chromosome struc-

ture. Chromosome structure appears most conserved within cell types and tissue types and not

influenced more strongly by genetic similarity or differences across individuals. Differences in

the cross-linkage step of the Hi-C protocol can induce variation in the resulting Hi-C and TAD

measurements, but they seem robust to both lab-specific differences and choice of restriction

enzyme.
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Cell type Description Replicates Res frag Protocol Accession(s) Citation
IMR90 lung fibroblast 2 MboI in situ SRR1658672, SRR1658673, SRR1658674, SRR1658675, [98]

SRR1658676, SRR1658677, SRR1658678
GM12878 blood lymphocyte 2 MboI in situ SRR1658570, SRR1658571, SRR1658572, SRR1658573, [98]

SRR1658574, SRR1658575, SRR1658576, SRR1658577,
SRR1658578, SRR1658579, SRR1658580, SRR1658581,
SRR1658582, SRR1658583, SRR1658584, SRR1658585,
SRR1658586, SRR1658587, SRR1658588, SRR1658589,
SRR1658590, SRR1658591, SRR1658592, SRR1658593,
SRR1658594, SRR1658595, SRR1658596, SRR1658597,
SRR1658598, SRR1658599, SRR1658600, SRR1658601,
SRR1658602, SRR1658603

HMEC mammary epithelial 2 MboI in situ SRR1658680, SRR1658681, SRR1658682, SRR1658683, [98]
SRR1658684, SRR1658685

HUVEC umbilical vein endothelial 1 MboI in situ SRR1658709, SRR1658710, SRR1658711, SRR1658712, [98]
SRR1658713, SRR1658714

K562 chronic myeloid leukemia 2 MboI in situ SRR1658693, SRR1658694, SRR1658695, SRR1658696, [98]
SRR1658697, SRR1658698, SRR1658699, SRR1658700,
SRR1658701, SRR1658702

KBM7 chronic myeloid leukemia 2 MboI in situ SRR1658703, SRR1658704, SRR1658705, SRR1658706, [98]
SRR1658707, SRR1658708

NHEK epidermal keratinocyte 1 MboI in situ SRR1658689, SRR1658690, SRR1658691 [98]
A549 adenocarcinomic alveolar basal epithelial 2 HindIII dilution ENCLB571HTP, ENCLB222WYT [125]
Caki2 clear cell renal cell carcinoma (epithelial) 2 HindIII dilution ENCLB555CZE, ENCLB858SVS [125]
G401 rhabdoid tumor kidney epithelial 2 HindIII dilution ENCLB506SDM, ENCLB589RBY [125]
LNCaP-FGC prostate carcinoma epithelial-like 2 HindIII dilution ENCLB191OGC, ENCLB473XWD [125]
NCI-H460 large cell lung cancer 2 HindIII dilution ENCLB118KAE, ENCLB104ZTM [125]
Panc1 pancreas ductal adenocarcinoma 2 HindIII dilution ENCLB951HSJ, ENCLB134IVX [125]
RPMI-7951 malignant melanoma 2 HindIII dilution ENCLB210AAY, ENCLB016TGU [125]
SKMEL5 malignant melanoma 2 HindIII dilution ENCLB296ZFT, ENCLB462TWE [125]
SKNDZ neuroblastoma 2 HindIII dilution ENCLB524GGK, ENCLB952BSP [125]
SKNMC neuroepithelioma 2 HindIII dilution ENCLB215KZO, ENCLB914GYK [125]
T47D ductal carcinoma 2 HindIII dilution ENCLB758KFU, ENCLB183QHG [125]
IMR90 lung fibroblast 2 HindIII dilution SRX116345, SRX128222 [36]
hESC human embryonic stem cell 2 HindIII dilution SRX116344, SRX128221 [36]
H1-hESC human embryonic stem cell 1 NcoI in situ 4DNES4DGHDMX [32]
H1-hESC human embryonic stem cell 3 DpnII in situ 4DNESRJ8KV4Q [32]
H1-hESC human embryonic stem cell 1 HindIII dilution 4DNES78Y8Y5K [32]
H1-hESC human embryonic stem cell 2 DpnII in situ 4DNES2M5JIGV [32]
HFF-hTERT foreskin fibroblast 4 HindIII dilution 4DNES9L4AK6Q [32]
HFF-hTERT foreskin fibroblast 2 DpnII in situ 4DNESVUMGLG2 [32]
HFF-hTERT foreskin fibroblast 1 NcoI in situ 4DNESY859VLG [32]
HFF-hTERT foreskin fibroblast 2 HindIII in situ 4DNESB6MNCFE [32]
HFF-hTERT foreskin fibroblast 1 HindIII in situ 4DNES8J78WV2 [32]
HFF-hTERT foreskin fibroblast 1 MboI in situ 4DNESAPF27TG [32]
HFFc6 subclone of HFF-hTERT 2 DpnII in situ 4DNES2R6PUEK [32]
HG00733 blood lymphocyte 2 HindIII dilution 4DNESTAPSPUC [32]
HG00732 blood lymphocyte 2 HindIII dilution 4DNESI2UKI7P [32]
HG00731 blood lymphocyte 2 HindIII dilution 4DNESJ1VX52C [32]
HG00514 blood lymphocyte 2 HindIII dilution 4DNESE3ICNE1 [32]
HG00513 blood lymphocyte 2 HindIII dilution 4DNESJIYRA44 [32]
HG00512 blood lymphocyte 2 HindIII dilution 4DNES4GSP9S4 [32]
GM19238 blood lymphocyte 2 HindIII dilution 4DNESYUYFD6H [32]
GM19239 blood lymphocyte 2 HindIII dilution 4DNESVKLYDOH [32]
GM19240 blood lymphocyte 2 HindIII dilution 4DNESHGL976U [32]
hESC human embryonic stem cell 1 HindIII dilution SRR639047, SRR639048, SRR639049 [60]
IMR90 lung fibroblast 6 HindIII dilution SRX212172, SRX212173, SRX294948, SRX294949, [60]

SRX294950, SRX294951
IMR90 lung fibroblast 6 HindIII dilution SRX212174, SRX212175, SRX294952, SRX294953, [60]

SRX294954, SRX294955
IMR90 lung fibroblast 1 HindIII dilution SRR639045, SRR639046 [60]
hESC human embryonic stem cell 2 HindIII dilution SRX378271, SRX378272 [37]
GM20431 blood lymphocyte 3 HindIII dilution ENCLB097VEW, ENCLB167NGL, ENCLB938LSX [125]
skeletal muscle tissue gastrocnemius medialis, 4 donors 4 MboI in situ ENCLB925XYW, ENCLB361HQM, ENCLB966EDS, ENCLB645GUM [125]
transverse colon from 4 donors 4 MboI in situ ENCLB584CUK, ENCLB920LTI, ENCLB724QSQ, ENCLB527HSP [125]
brain microvascular endotheilial 2 HindIII dilution SRX3322341, SRX3322340 [125]
astrocyte cerebellum 2 HindIII dilution ENCLB672PAB, ENCLB174TEA [125]
astrocyte spinal cord 2 HindIII dilution SRX3322978, SRX3322979 [125]
DLD1 colon adenocarcinoma epithelial 2 HindIII dilution SRX3321987, SRX3321988 [125]
pericyte brain 2 HindIII dilution SRX3322286, SRX3322287 [125]
HEMEC endometrial microvascular endothelial 2 HindIII dilution SRX3322599, SRX3322600 [125]
hepatic sinusoid endothelial 2 HindIII dilution ENCLB284TIY, ENCLB618NVM [125]
ACHN renal cell adenocarcinoma epithelial 2 HindIII dilution SRX3322373, SRX3322374 [125]
IMR90 lung fibroblast 2 HindIII dilution GSM2595584, GSM2595585 [138]
hESC (H9) human embryonic stem cell 1 HindIII dilution GSM2309023 [47]
adrenal gland tissue 1 HindIII dilution SRX2179246 [109]
bladder tissue 2 HindIII dilution SRX2179247, SRX2179248 [109]
DPC dorsolateral prefrontal cortex tissue 1 HindIII dilution SRX2179249 [109]
hippocampus tissue 1 HindIII dilution SRX2179250 [109]
lung tissue from 2 donors 2 HindIII dilution SRX2179252, SRX2179251 [109]
ovary tissue 1 HindIII dilution SRX2179253 [109]
pancreas tissue from 2 donors 2 HindIII dilution SRX2179254, SRX2179255, SRX2179256, SRX2179257 [109]
psoas muscle tissue from 2 donors 2 HindIII dilution SRX2179260, SRX2179258, SRX2179259 [109]
right ventricle tissue 1 HindIII dilution SRX2179261 [109]
small bowel tissue 1 HindIII dilution SRX2179262 [109]
spleen tissue from 2 donors 2 HindIII dilution SRX2179264, SRX2179263 [109]

Table 3.1: All Hi-C data used in this study
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Cell type Description Replicates Res frag Protocol Accession(s) Citation

SJCRH30 rhabdomyosarcoma fibroblast 2 HindIII dilution ENCLB379VAF, ENCLB821TDJ [125]

GM06990 blood lymphocyte 1 HindIII dilution SRR027956, SRR027957, SRR027958, SRR027959 [69]

K562 chronic myeloid leukemia 1 HindIII dilution SRR027962, SRR027963 [69]

HeLa-S3 cervix adenocarcinoma epithelial 2 HindIII dilution ENCLB693EVR, ENCLB696DUT [125]

HepG2 hepatocellular carcinoma epithelial 2 HindIII dilution ENCLB022KPF, ENCLB625TGE [125]

hESC human embryonic stem cell 2 HindIII in situ GSE70181 [81]

hESC human embryonic stem cell 2 HindIII dilution GSE70181 [81]

Table 3.2: Hi-C samples that could not be analyzed at 100kb resolution
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Chapter 4

Chromosome dynamics revealed by an

elastic network model

Hi-C technology has permitted the study of 3D genome organization, but provides only a static

picture of a dynamic system, and we still lack an understanding of the structural dynamics of

chromosomes. The dynamic couplings between regions separated by large genomic distances

(> 50 megabases) have yet to be characterized. This chapter describes an adaptation of a well-

established protein-modeling framework, the Gaussian Network Model (GNM), to model chro-

matin dynamics using Hi-C data. We show that the GNM can identify spatial couplings at mul-

tiple scales: it can quantify the correlated fluctuations in the positions of gene loci, find large

genomic compartments and smaller topologically-associating domains (TADs) that undergo en-

bloc movements, and identify dynamically coupled distal regions along the chromosomes. We

show that the predictions of the GNM correlate well with genome-wide experimental measure-

ments. We use the GNM to identify novel cross-correlated distal domains (CCDDs) representing

pairs of regions distinguished by their long-range dynamic coupling and show that CCDDs are

associated with increased gene co-expression. Together, these results show that GNM provides a

mathematically well-founded unified framework for modeling chromatin dynamics and assessing

the structural basis of genome-wide observations.
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A version of this chapter was published in Nucleic Acids Research and is joint work with She

Zhang (co-first author), Carl Kingsford, and Ivet Bahar [107].

4.1 Background

The spatial arrangement of chromosomes within the nucleus plays a crucial role in gene regu-

lation, cell replication and mutations [18, 23, 46, 55, 114]. Recent experimental methods such

as Hi-C [69] derived from chromosome conformation capture (3C) [31] have made it possible to

characterize the physical contacts between gene loci on a genome-wide scale. These studies re-

vealed hierarchical levels of organization, from large (so called “A” and “B”) compartments cor-

responding to active and inactive chromatin respectively [69], to smaller compact regions called

topologically associated domains (TADs) [36]. Hi-C-measured spatial relationships have been

related to chromosomal alterations in cancer [48] and TADs have been pointed out to contain

clusters of genes that are co-regulated [83]. Interactions between sequentially (but not neces-

sarily spatially) distant genes along the DNA 1-dimensional (1D) structure, termed long-range

interactions, have been implicated in gene regulation – for example, distal expression quantita-

tive trait loci (eQTLs) tend to be much closer in 3D space [40] to their target genes than expected

by chance.

Several computational methods have contributed to these and other characterizations of chromo-

somal architecture [36, 42, 67, 98, 102, 115, 129, 134]. However, chromosome structure is dy-

namic and complex, and its exact nature and influence on gene expression and regulation remain

unclear. The scale, complexity, and noise inherent in the available data make it challenging to de-

termine exact spatial relationships and underlying chromatin architecture, and its structure-based

dynamics. In particular, long-range spatial interactions have proven difficult to characterize with

Hi-C data, and most computational analyses attempt to identify a static chromosomal architecture

despite its known dynamic nature. There have also been efforts to mathematically characterize

the dynamics of the genome separate from its structure, particularly through describing the emer-
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gence of cell types during development as bifurcations from a stable equilibrium [95].

Chromatin structure is often described in terms of TADs, whose identification is a 1D problem:

it involves searching for sequentially contiguous groups of highly interconnected loci along the

diagonal of the Hi-C matrix of intra-chromosomal contacts. Spatial couplings between sequen-

tially distant genomic regions, on the other hand, represent a new dimension to search and the

identification of such long-range couplings is a more challenging problem. Several methods have

sought to identify long-range interactions from 3C-based data [60, 98, 103, 105, 130], but the

scale of these interactions is still small compared to that of the full chromosome. Most meth-

ods detect interactions within 1-2 Mbp, or up to 10Mbp [7], so extending the span of predicted

long-range couplings to the order of tens of millions of base pairs may yield further insights

into regulatory actions. Such long-range correlations may originate from physical proximity in

space, or other indirect effects similar to those in allosteric structures. Assessment of such long-

range correlations is important for gaining a better understanding of the physical basis of gene

expression and regulation.

We adopt here the Gaussian Network Model (GNM), a highly robust and widely tested frame-

work developed for modeling the intrinsic dynamics of biomolecular systems [9, 11, 51], and

we adapt it to the topology-based modeling of chromosomal dynamics. Chromosomal dynamics

refers to the coupled spatial movements of loci under equilibrium conditions, as uniquely defined

by the topology of an elastic network representative of the chromosome architecture. The only

input GNM requires is a map of 3D contacts. Here, this information is provided by Hi-C data,

which gives contact frequencies between genomic loci. The Hi-C matrix is used for construct-

ing the Kirchhoff (or Laplacian) matrix Γ which uniquely defines the equilibrium dynamics of

the network nodes (genomic loci) as well as their spatial cross-correlations. Notably, the use

of Laplacian-based graph segmentation has been recently shown to help identify topological do-

mains from Hi-C data [25, 26]. Our approach differs in the method of construction of the network

topology embodied in Γ, the inclusion of the complete spectrum of motions, and the application
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to a broad range of observables. We show, and verify upon comparison with an array of exper-

imental data and genome-wide statistical analyses, that the GNM provides a robust description

of accessibility to the nuclear environment as well as co-expression patterns between gene-loci

pairs separated by tens of megabases. The analysis is mathematically rigorous, efficient, and

extensible, and may serve as a framework for drawing inferences from Hi-C and other advanced

genome-wide studies toward establishing the structural and dynamic bases of regulation.

4.2 Materials and methods

4.2.1 Extension of the Gaussian Network Model to modeling chromatin

dynamics

The GNM has proven to be a powerful tool for efficiently predicting the equilibrium dynamics

of almost all proteins and their complexes/assemblies which can be accessed in the Protein Data

Bank (PDB) [68], and has been incorporated into widely used molecular simulation tools such

as CHARMM [21]. It is particularly adept at predicting topology-dependent dynamics and iden-

tifying long-range correlations – the type of modeling that has been a challenge in chromatin

3D modeling studies. Hi-C matrices, in which each entry represents the frequency of contacts

between pairs of genomic loci, can be interpreted as chromosomal contact maps similar to those

between residues adopted in the GNM representation of proteins.

There are several differences between the Hi-C and GNM Γ matrices. The first is the size: human

chromosomes range from ≈ 50 to 250 million base pairs. When binned at 5kb resolution, this

leads to 10, 000 − 50, 000 bins per chromosome. GNM provides a scalable framework, where

the collective dynamics of supramolecular systems represented by 104-105 nodes (such as the

ribosome or viruses) can be efficiently characterized. GNM may therefore be readily used for

analyzing intrachromosomal contact maps at high resolution. The second is the precision of the

data. Experimental methods for resolving biomolecular structures such as X-ray crystallography,
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NMR, and even cryo-electron microscopy yield structural data at a much higher resolution than

current genome-wide studies. The Hi-C method is population-based (derived from hundreds of

thousands to millions of cells) and noisy. Hi-C matrices furthermore contain unmapped regions.

However, the GNM results are usually robust to variations in the precision/resolution of the data

on a local scale, and require information on only the overall contact topology rather than detailed

spatial coordinates, which supports the utility of Hi-C data and applicability of the GNM. Third,

the chromatin is likely to be less “structured” than the structures at the molecular level, and it is

likely to sample an ensemble of conformations that may be cell- or context-dependent. Single-

cell Hi-C experiments have indicated cell-cell variability in chromosome structure on a global

scale, though the domain organization at the megabase scale is largely conserved [80]. Therefore,

structure-based dynamic features may be assessed at best at a probabilistic level. With these

approximations in mind, we now proceed to the extension of GNM to characterize chromosomal

dynamics (see Figure 4.1).

The GNM describes the structure as a network of beads/nodes connected by elastic springs. The

network topology is defined by the Kirchhoff matrix Γ, whose elements are

Γij =


−γij for rij < rcut

0 otherwise,
(4.1)

Γii = −
∑
j,j 6=i

γij.

Here γij represents the strength or stiffness of interaction between beads i and j (or the force con-

stant associated with the spring that connects them), rij is their separation in the 3D structure,

and rcut is the distance limit for making contacts (or for being connected by a spring). In the

application to proteins, the beads represent the individual amino acids (n of them), their posi-

tions are identified with those of the α-carbons, and a uniform force-constant γij = γ is adopted

for all pairs (1 ≤ i, j ≤ n), with a cutoff distance of rcut ≈ 7Å. In the extension to human

chromosomes, we redefine the network nodes and springs such that beads represent genomic
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Figure 4.1: Schematic description of GNM methodology applied to Hi-C data. The inter-loci

contact data represented by the Hi-C map (upper left, for n genomic bins (loci)) is used to con-

struct the GNM Kirchhoff matrix, Γ (top, middle). Eigenvalue decomposition of Γ yields a series

of eigenmodes which are used for computing the covariance matrix (lower, right), the diagonal

elements of which reflect the mobility profile of the loci (bottom, left), and the off-diagonal ele-

ments provide information on locus-locus spatial cross-correlations. ~uk, kth eigenvector; γk, kth

eigenvalue; m, number of nonzero modes, starting from the lowest-frequency mode, included

in the GNM analysis (m ≤ n − 1). In the present application to the chromosomes, n varies in

the range 10, 248 ≤ n ≤ 49, 850, the lower and upper limits corresponding respectively to the

respective chromosomes 22 and 1.

72



loci consistent with the resolution of the Hi-C data. We set γij equal to γzij where zij is the

Hi-C contact counts reported for the pair of genomic bins i and j after normalization by vanilla

coverage (VC) method [98], and γ is taken as unity. The element Γij is thus taken to be directly

proportional to the actual number of physical contacts between the loci i and j, which permits us

to directly incorporate the strength of interactions in the network model. The parameter γ uni-

formly scales all elements, physically representing the strength (or spring constant) of individual

contacts. A recent study normalized the diagonal elements of the Laplacian matrix (constructed

using Hi-C contact counts, similarly to Γ) after construction [25, 26], but we choose not to, be-

cause it removes the information on packing density of nodes, renders the calculation of square

fluctuations meaningless, and disables the comparison with chromatin accessibility.

The cross-correlation between the spatial displacements of loci i and j is obtained from the

pseudoinverse of Γ, as

< ∆ri ·∆rj >≈ [Γ−1]ij =
n−1∑
k=1

1

λk
[~uk~u

T
k ]ij, (4.2)

where the summation is performed over all modes of motion intrinsically accessible to the net-

work, obtained by eigenvalue decomposition of Γ. The respective frequencies and shapes of

these modes are given by the n − 1 non-zero eigenvalues (λk) and corresponding eigenvectors

(~uk) of Γ, and [~uk~u
T
k ]ij designates the ijth element of the matrix enclosed in square brackets.

The eigenvector ~uk is an n-dimensional vector representing the normalized displacements of

the n loci along the kth mode axis, and 1/λk rescales the amplitude of the motion along this

mode. Lower frequency modes (smaller λk) make higher contributions to observed fluctuations

and correlations; they usually embody large substructures, if not the entire structure, hence their

designation as global modes. In contrast, high frequency modes are highly localized, and often

filtered out to better visualize cooperative events represented by global modes.

Cross-correlations are organized in the nn covariance matrix, C (and displayed by an n×nmap).

The ith diagonal element of C, 〈(∆ri)2〉, is the predicted mean-square fluctuation (MSF) in the

positions of the ith loci under physiological conditions; and 〈(∆ri)2〉 plotted as a function of
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locus index i is called the mobility profile. The MSFs are inversely proportional to the elastic

spring constant γ. While their absolute values uniformly depend on this parameter, their relative

magnitudes do not; the MSF profiles thus provide a measure of the relative size of motions of

the different gene loci (irrespective of γ), exclusively defined by the particular loci-loci contact

topology. They represent ensemble averages over all accessible motions to a given locus.

4.2.2 Removal of unmapped regions

In the Hi-C map there are regions where no cross-linked DNA fragments can be mapped. These

unmapped regions are isolated from the system, and their existence may lead to multiple zero-

eigenvalue modes. These unmapped regions are not constrained by other loci, so they may cause

large fluctuations that obscure the signal from other regions. These extra zero-eigenvalue modes

and unphysically large fluctuations were removed by discarding the unmapped regions. The

removal of the unmapped regions will not cause disconnections because the chromosomes are

highly compact, so the loci next to the unmapped regions remained connected to the loci located

at the other end of the region.

4.2.3 Data

We used high-resolution Hi-C data from Rao et al. [98] (GEO accession GSE63525), pre-

processed using vanilla coverage (VC) normalization [98]. We used Hi-C data at 5 kb reso-

lution unless otherwise noted. DNase-seq data were collected as part of the ENCODE project

(ENCFF000SKV for GM12878 cells, ENCFF740JVK for IMR90 cells) [93]. The ATAC-

seq measurements [22] were also obtained for GM12878 and IMR90 cells (GEO accessions

GSM1155959 and GSM1418975, respectively). For both of these experimental datasets, bed-

formatted peak files were downloaded from the study authors and the data was binned to the

same resolution as the Hi-C data by adding all peak values within each bin. The binned data

were then smoothed using moving average with a window size of 200kb. The long-range inter-
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actions from ChIA-PET were from ENCODE (ENCFF002EMO) [53]. We used a two-sample

t-test assuming unequal variances to quantify the difference between the covariance distributions

of ChIA-PET and background interactions.

4.2.4 Hi-C data normalization

We tested three types of normalization methods applied to the Hi-C contact map: Vanilla-

Coverage normalization (referred to as VCnorm), square-root Vanilla-Coverage normalization

(referred to as sqrtVC) [69] and Knight-Ruiz normalization (referred to as KRnorm) [63]. All

three methods aim to eliminate the so-called “one-dimension bias” [98]. We found that the GNM

performed best on Hi-C maps normalized by VCnorm when benchmarked against experimental

data (Figure 4.2). Not only are the correlations with the chromatin accessibility lower, but also

the square fluctuations become flatter and flatter by adding more modes in the calculation when

KRnorm or sqrtVC has been applied on the contact map. In the extreme case, when all the

modes are used, the square fluctuations become almost completely flat along the chromosome

using KRnorm. This is because KRnorm ensures that every row and column sums to 1. As

a consequence, all loci become almost equally constrained and the differences in their square

fluctuations are suppressed. In addition, computations with the three normalization methods

were repeated at different resolutions, and VCnorm yielded the most robust agreement between

theoretically predicted MSFs and experimentally observed accessibilities across all resolutions.

Both KRnorm and sqrtVC showed poor correlations at high resolution (5kb) (Figure 4.3). Fur-

thermore, VCnorm showed the expected improvement in correlation using increasing number of

modes included in the analysis, while KRnorm or sqrtVC led to inconsistent results, even at 50kb

resolution (Figure 4.3). Due to the better performance across resolutions and numbers of modes,

shown by agreement with experimental data, we chose VC normalized contact maps to perform

further analyses.

75



Figure 4.2: Comparison of the MSFs obtained from different number of GNM modes (rows), and

three different normalization methods (columns): Vanilla Coverage normalization (left), Knight-

Ruiz normalization (middle), and square root Vanilla Coverage normalization (right). MSFs in

this figure are calculated from Hi-C data at 50kb resolution for GM1287 chromosome 17.
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Figure 4.3: The scanning of correlations between chromatin accessibility data from experiments

and square fluctuations from theory calculated as a function of the number of modes included in

the GNM analysis. The rows compare the correlations at different resolutions, and the columns

compare those computed from three different normalization methods. Note the poor performance

of KRnorm and SQRTVCnorm.
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4.2.5 GNM domain identification

GNM domain boundaries for a given mode k are identified by plotting the elements of ~uk as a

function of loci index, and identifying the crossover region (also referred to as hinge regions),

from positive to negative direction motion (or vice versa), along the mode axis. To reduce minor

fluctuations in the eigenvectors that could lead to spurious small domains, we first smoothed the

eigenvectors with local regression using weighted linear least squares and a first-degree poly-

nomial model. The smoothing window was chosen to be the smallest value that minimizes the

number of domains of length one, where a domain of length one is defined as a domain that

begins and ends in the same bin. In general, the size of the domains decreases with increasing

mode number. The domains resulting from the superposition of multiple modes were delimited

by the union of hinge sites.

4.2.6 Variation of Information metric

As a quantitative measure of agreement between GNM-predicted domains, TADs, and compart-

ments, the variation of information (VI) metric was used. This metric is based in information

theory, and measures the difference in information contained in two clusterings, or partitions, of

a data set. If we consider each domain to be a cluster of nodes/points, this type of comparison

becomes very natural. Formally, for two sets of clusters C and C ′, VI is defined as follows:

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′),

where H(C) represents the entropy of a set of clusters C, and I(C,C ′) is the mutual information

between the two partitions, given by

H(C) = −
K∑
k=1

P (k) logP (k),

I(C,C ′) = −
K∑
k=1

K′∑
k′=1

P (k, k′) log
P (k, k′)

P (k)P (k′)
,
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where the probability of picking a node in cluster Ck, P (k), is simply the number of points in

that cluster divided by the total number of points in the data set. In this work, a “cluster” is the

set of loci placed into the same domain or compartment. This is a true metric on the space of

clusterings; VI is commutative, satisfies the triangle inequality, and is always non-negative and

equal to zero if and only if the two clusterings are identical. More intuitively, VI is a measure

of the amount of information that is lost and gained by changing from one clustering to another,

without any assumptions placed on the clusterings themselves or how they were generated. More

information can be found in Meilă [76].

4.2.7 Co-expression calculation

In order to calculate co-expression values for genes in this cell type, we downloaded every pub-

licly available RNA-seq experiment on GM12878 cells from the Sequence Read Archive [64],

which gave 212 data sets. These raw read data were quantified using Salmon [90], resulting

in 212 transcripts per kilobase million (TPM) values for every gene. Quantification was per-

formed with and without bias correction, with qualitatively similar results. Co-expression was

then measured as the Pearson correlation of the two vectors of TPM values for a given gene pair.

4.3 Results

4.3.1 Loci dynamics correlate well with experimental measures of chro-

matin accessibility

We first evaluated the mobility profiles of the chromosomes for GM12878 cells, a human

lympho-blastoid cell line with relatively normal karyotype, and IMR90 cells, a human lung fi-

broblast cell line. Figures 4.4 and 4.5 illustrate the MSFs obtained with the GNM (blue curves)

for the loci on three chromosomes (1, 15 and 17, in respective panels A, B and C) of the two

different cell lines. GNM application to H/D exchange data has shown that the MSFs of network
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nodes can be directly related to the accessibility of the corresponding sites: exposed sites enjoy

higher mobility, and those buried have suppressed mobilities [10]. The entropic cost of exposure

to the environment for a given site can be shown to be inversely proportional to its MSFs based

on simple thermodynamic arguments applied to macromolecules subject to Gaussian fluctuations

(such as those represented by the GNM) [10]. We examined whether GNM-predicted mobility

profiles were also consistent with data from chromatin accessibility experiments. We compared

our predictions with two measures of chromatin accessibility, DNase-seq [118] and ATAC-seq

[22], shown respectively by the yellow and red curves in Figures 4.4 A-C and 4.5 A-C.

Figures 4.4 and 4.5 show that the MSFs of chromosomal loci, predicted by the GNM, are in very

good agreement with the accessibility of loci as measured by DNase-seq. For GM12878, the

corresponding Spearman correlations for the three chromosomes illustrated in panels A-C vary

in the range 0.78-0.85 (see inset), and the computations for all 23 chromosomes (panel D, yellow

bars) yield an average Spearman correlation of 0.800 (standard deviation of 0.044). The average

Spearman correlation between GNM MSFs and ATAC-seq data is somewhat lower: 0.552 ±

0.112. Interestingly, the average Spearman correlation between the two sets of experimental data

was 0.741 ± 0.089, suggesting that the accuracy of computational predictions is comparable to

that of experiments, and that the DNase-seq provides data more consistent with computational

predictions. ATAC-seq maps not only the open chromatin, but also transcription factors and nu-

cleosome occupancy [126], which may help explain the observed difference. The same analysis

on IMR90 cells demonstrated even better agreement with experiments (Figure 4.5). The Spear-

man correlation between the computed MSFs and experimental ATAC-seq data averaged over all

chromosomes was 0.63 ± 0.08 IMR90 cells, and that between MSFs and DNase-seq data was

0.82 ± 0.03. Consistently, the two sets of experiments also exhibit a higher correlation (0.81 ±

0.06) in this case.
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Figure 4.4: GNM-predicted mobilities of chromosomal loci in GM12878 show good agreement

with data from chromatin accessibility experiments. (A) – (C) Mobility profiles (MSFs of loci)

obtained from GNM analysis of the equilibrium dynamics of chromosomes 1, 17, and X, respec-

tively, shown in blue, are compared to the DNA accessibilities probed by ATAC-seq (yellow)

and DNA-seq (red) experiments. GNM results are based on 500 slowest modes. r1 is the Spear-

man correlations between GNM predictions and DNase-seq experiments; and r2 is that between

GNM and ATAC-seq. (D) Spearman correlations between theory and experiments for all chro-

mosomes (red and yellow bars, as labeled). The Spearman correlation between the computed

MSFs and experimental ATAC-seq data averaged over all chromosomes is 0.55± 0.11, and that

between MSFs and DNase-seq data is 0.80 ± 0.04. For comparison, we also display the Spear-

man correlation between the two sets of experimental data (brown bars); the average in this case

is 0.70± 0.08.
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Figure 4.5: GNM-predicted mobilities of chromosomal loci in IMR90 similarly show good

agreement with data from chromatin accessibility experiments. (A) – (C) Mobility profiles

(MSFs of loci) obtained from GNM analysis of the equilibrium dynamics of chromosomes 1, 17,

and X, respectively, shown in blue, are compared to the DNA accessibilities probed by ATAC-

seq (yellow) and DNA-seq (red) experiments. GNM results are based on 500 slowest modes. r1

is the Spearman correlations between GNM predictions and DNase-seq experiments; and r2 is

that between GNM and ATAC-seq. (D) Spearman correlations between theory and experiments

for all chromosomes (red and yellow bars, as labeled). The Spearman correlation between the

computed MSFs and experimental ATAC-seq data averaged over all chromosomes is 0.63±0.08,

and that between MSFs and DNase-seq data is 0.82± 0.03. For comparison, we also display the

Spearman correlation between the two sets of experimental data (brown bars); the average in this

case is 0.81± 0.06.
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4.3.2 GNM results are robust to changes in the resolution of Hi-C data and

can be efficiently reproduced with a representative subset of global

modes

These results for two different types of cell lines show that the mobility profiles predicted by the

GNM for the 23 chromosomes accurately capture the accessibility of gene loci. The agreement

with experimental data lends support to the applicability and utility of the GNM for making pre-

dictions on chromatin dynamics. The current results were obtained by using subsets of m = 500

GNM modes for each chromosome, which essentially yield the same profiles and the same level

of agreement with experiments as those obtained with all modes (see Figure 4.6). The use of

a subset of modes at the low frequency end of the spectrum improves the efficiency of compu-

tations, without compromising the accuracy of the results. Computations repeated for different

levels of resolution (from 5kb to 50kb per bin) also showed that the results are insensitive to the

level of coarse-graining (Figure 4.6) which further supports the robustness of GNM results. All

results are obtained by adopting the VC normalization for Hi-C data. Computations repeated

with two alternative normalization schema, square-root VC [69] and Knight-Ruiz [63] normal-

ization, showed a significant decrease in the level of agreement with experimental data regardless

of the number of modes included in the GNM computations (Figures 4.2 and 4.3), and the un-

derperformance of these schema became particularly pronounced in the case of high resolution

data (Figure 4.3), in support of the VC normalization adopted here.

4.3.3 Domains identified by GNM at different granularities correlate with

known structural features

Compartments, first identified by Lieberman-Aiden et al. [69], are multi-megabase-sized regions

in the genome that correspond to known genomic features such as gene presence, levels of gene

expression, chromatin accessibility, and histone markers. Hi-C experiments have revealed two
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Figure 4.6: GNM computations of mobility profiles using different subsets of modes show the

robust convergence of results with a small subset of modes. Results are presented here for

GM12878 chromosome 17, at 5kb resolution. (A) – (C) Comparisons between experimental

data and computed MSF profiles obtained using 10, 100, and 500 GNM modes. (D) Spear-

man correlations between experimental and computationally predicted fluctuation/accessibility

profiles obtained with different numbers of modes. (E) Spearman correlations between MSFs

computed from slowest i modes and i + 1 modes. The abscissa is in logarithmic scale in panels

D and E. The correlation levels off at around a few hundreds of modes, showing that the addition

of higher modes does not practically change the predicted MSF profile, and a small subset of

< 500 modes can be efficiently used for evaluating the MSFs.
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broad classes of compartments: “A” compartments generally associated with active chromatin,

containing more genes, fewer repressive histone markers, and more highly expressed genes; and

“B” compartments, for less accessible DNA, sparser genes, and higher occurrence of repressive

histone marks. TADs [36] are finer resolution groupings of chromatin distinguished by denser

self-interactions and associated with characteristic patterns of histone markers and CTCF binding

sites near their boundaries. The multiscale nature of GNM spectral analysis allows hierarchical

levels of organization to be identified computationally, and it is of interest to examine to what

extent these two levels can be detected. As presented above, the GNM low frequency modes

reflect the global dynamics of the 3D structure, and increasingly more localized motions are

represented by higher frequency modes. We identified domains from subsets of GNM modes

that group regions of similar dynamics (see Methods). In order to verify whether these dynam-

ical domains correspond to TADs at various resolutions, we used the TAD-finder Armatus [42],

varying its γ parameter that controls resolution. We refer to this latter parameter as the Armatus

γ, to distinguish it from the force constant in the GNM. We measure the agreement between

GNM domains and TADs using the variation of information (VI) distance, which computes the

agreement between two partitions, and where a lower value indicates greater agreement [76].

For each choice k of number of modes, the Armatus γk that minimizes the VI distance between

the GNM domains and the Armatus domains was selected. This resulted in a mean VI value for

optimal parameters of 1.251, significantly lower than the VI distance of 1.946 obtained when

the GNM domains were randomly re-ordered along the chromosome and compared back to the

original TADs (empirical p-value < 0.01 for all chromosomes). Figures 4.7A and 4.8 show

the comparisons for each chromosome between the VI value for the optimally matched TAD

boundaries with the GNM domains and the distribution of VI values from the randomly shuf-

fled domains. As the number of included GNM modes is increased, γk monotonically increases

as well, showing that the number of GNM modes is a good proxy for the scale of chromatin

structures sought. Furthermore, GNM predicts large-scale global motions using a relatively low
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number of modes, so we compared these to larger-scale compartments. We found that the first 5-

20 non-zero modes correspond fairly well to compartments. For each chromosome, we selected

the number of modes that produced the smallest VI distance between Lieberman-Aiden compart-

ments and GNM domains. This yielded a mean optimal VI distance of 1.771 (using an average

of 13 modes). This is significantly lower than the mean optimal VI distance of 2.088 when

the locations of Lieberman-Aiden compartments are randomly shuffled along the chromosome,

though the difference is only statistically significant for 16 of the 23 chromosomes, with p-value

equal to 0.05. The comparisons of GNM domains with compartments for each chromosome in

GM1287 cells can be seen in Figure 4.7B. The same calculations were performed on IMR90

cells, with qualitatively similar results. For the comparisons with randomly shuffled domains on

IMR90 cells, only 1 chromosome for TADs and 3 for compartments were statistically insignif-

icant (see Figure 4.8). The ability of GNM to recapitulate both TADs and compartments – two

organizational levels of wildly different scales – shows the flexibility and generality of the GNM

approach. A TAD-finding method using only the second eigenpair (Fiedler value/vector) of the

Laplacian has also been developed [26] and tested on 100kb resolution data. By including more

eigenvectors, we are able to identify TADs closer to Armatus on all chromosomes (as measured

by lower VI) at 5kb and for 18/23 chromosomes at 100kb resolution (see Figure 4.9A and C).

Though the Fiedler vector-based method identifies compartments better at low resolution, that

method performs poorly at finer resolution, while GNM remains robust to resolution changes.

We are also able to identify compartment sets with lower VI on all chromosomes at 5kb (Fig-

ure 4.9B and D). Further corroborating the benefit of using multiple modes, it has been shown

in early studies that spectral clustering by using more eigenvectors can outperform partitioning

methods which only use one eigenvector [2, 3].
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Figure 4.7: Comparison of GNM domains with TADs and Compartments in GM12878.

Variation of information (VI) measures for comparing GNM domains with (A) TADs and (B)

compartments (lower VI indicates greater agreement). Box plots show the distribution of VI

values obtained by randomly shuffling GNM domains and comparing to original TAD and com-

partment boundaries. Blue dots represent the VI value of the true GNM domains with TADs and

compartments, respectively.
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Figure 4.8: Comparison of GNM domains with TADs and Compartments in IMR90. Vari-

ation of information (VI) measures for comparing GNM domains with (A) TADs and (B) com-

partments (lower VI indicates greater agreement). Box plots show the distribution of VI values

obtained by randomly shuffling GNM domains and comparing to original TAD and compart-

ment boundaries. Blue dots represent the VI value of the true GNM domains with TADs and

compartments, respectively.
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Figure 4.9: Comparison of GNM-based method for finding TADs and compartments to the spec-

tral method from [26] for GM12878. In all panels, blue bars represent the results from the GNM

method and red bars, those from the spectral method. A lower variation of information (VI) value

demonstrates better agreement. Compartments were calculated based on the method described

in [69]. TADs were computed using Armatus, which requires a resolution parameter γ. The VI

value shown for every comparison with TADs represents the lowest VI from comparing to TAD

sets obtained from γ ranging from 0 to either 0.5 (for 5kb resolution) or 1 (for 100kb resolution),

with a step size of 0.05. (A) Comparison to TADs at 5kb resolution. (B) Comparison to com-

partments at 5kb resolution. (C) Comparison to TADs at 100kb resolution. (D) Comparison to

compartments at 100kb resolution.
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4.3.4 Loci pairs separated by similar 1D distance exhibit differential levels

of dynamic coupling, consistent with ChIA-PET data

Figure 4.10 displays the covariance map generated for the coupled movements of the loci on

chromosome 17 (of GM12878 cells), based on Hi-C data at 5 kb resolution. Panel A displays

the cross-correlations (see equation 2) between all loci-pairs as a heat map. Diagonal elements

are the MSFs (presented in Figures 4.4C and 4.5). The curve along the upper abscissa in Figure

4.10A shows the average cross-correlation of each locus with respect to all others; the peaks

indicate the regions tightly coupled to all others, probably occupying central positions in the 3D

architecture. The covariance map is highly robust and insensitive to the resolution of the Hi-C

data. The results in Figure 4.10A were obtained using all the m = 15, 218 nonzero modes corre-

sponding to 5kb resolution representation of chromosome 17. Calculations repeated with lower

resolution data (50kb) and fewer modes (500 modes) yielded covariance maps that maintained

the same features. Owing to their genomic sequence proximity, the entries near the main diagonal

of the covariance map tend to show relatively high covariance values (colored yellow-to-brown;

Figure 4.10A). Even the close vicinity of the diagonals (e.g. loci intervals of ≥ 200) represents

(at 5 kb resolution) genomic loci separated by more than 1 megabase. The covariance map clearly

shows that there are strong couplings between loci separated by a few megabases. We show an

example of such regions in Figure 4.10B. While the loci pairs located in the dark red band along

the diagonal appear all to exhibit strong couplings, a closer examination reveals differential lev-

els of cross-correlations that are in good agreement with the data from Chromatin Interaction

Analysis by Paired-End Tag Sequencing (ChIA-PET) experiments [135]. The ‘long-range’ inter-

actions identified by ChIA-PET [53] are indicated in panel B by red dots (close to the diagonal).

These are interacting loci separated by several hundreds of kb. We selected background pairs

separated by the same 1D distance, on both sides of the ChIA-PET pair, and compared the cross-

correlations predicted for the two sets along each chromosome (Figure 4.10C). The background

pairs (blue bars) show weaker GNM cross-correlations compared to the ChIA-PET pairs (red
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bars) although they are separated by the same genomic distance along the chromosome. Similar

statistical analysis repeated for all 23 chromosomes showed that the cross-correlations of ChIA-

PET pairs were greater than those of background pairs of the same genomic distance on every

chromosome, with all p-values less than 10−19 (two-sided t-test).
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Figure 4.10: Covariance map computed for chromosome 17 and comparison with ChIA-

PET data and contacts from Hi-C experiments in GM12878. (A) Covariance matrix com-

puted for chromosome 17, color-coded by the strength and type of cross-correlation between

loci pairs ranged from 5th to 95th percentile of all cross-correlation values (see the color bar on

the left). The curve on the upper abscissa shows the average overall off-diagonal elements in

each column, which provides a metric of the coupling of individual loci to all others. The blocks

along the diagonal indicate loci clusters of different sizes that form strongly coupled clusters.

The red dashed boxes indicate the pairs of regions exhibiting weak correlations despite genomic

distances of several megabases. The blue bands correspond to the centromere, where there are

no mapped interactions. (B) Close-up view of a region along the diagonal. Red dots near the di-

agonal indicate pairs (separated by≈100 kb) identified by ChIA-PET to interact with each other;

nearby blue points are control/background pairs. (C) Stronger cross-correlations of ChIA-PET

pairs compared to the background pairs. (D) Dependence of cross-correlations on the number of

contacts observed in Hi-C experiments. A broad distribution is observed, indicating the effect

of the overall network topology (beyond local contacts) on the observed cross-correlations. (E)

Loci pairs exhibiting anti-correlated (same direction, opposite sense) movements usually have

fewer contacts, compared to those exhibiting correlated (same direction, same sense) pairs of the

same strength.

4.3.5 Cross-correlations between loci motions are global properties that

result from the overall chromosomal network topology

In general, loci-loci cross-correlations become weaker with increasing distance along the chro-

mosome, and some pairs show anticorrelations (i.e. move in opposite directions; see scale bar in

Figure 4.10A). Yet, we can distinguish distal regions that exhibit notable cross-correlations in the

spatial movements (off-diagonal lighter-colored blocks). The levels of cross-correlations do not

necessarily need to scale with the interaction strengths between the correlated loci (or number of
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contacts detected by Hi-C). On the contrary, a broad range of cross-correlations is observed for a

given number of contacts, indicating that the observed correlations are global properties defined

by the entire network topology and reflect the collective behavior of the entire structure. Figure

4.10D displays the computed cross-correlations as a function the number of contacts, showing

that some pairs of loci display much stronger correlations revealed by the GNM than others that

make more Hi-C contacts. Figure 4.10E shows that the anticorrelated pairs of loci (blue) usually

have fewer contacts than those (red) exhibiting positive cross-correlations of the same strength.

4.3.6 Distal regions that are predicted to be strongly correlated in their

spatial dynamics exhibit higher co-expression

The GNM covariance map further shows correlations between farther apart (> 10 Mbp) regions.

In contrast to the main diagonal, the majority of the off-diagonal space typically shows signif-

icantly weaker correlations. Regions in this space with higher than expected covariance values

represent dynamically linked windows along the chromosome, which may represent long-range

interactions. We call these pairs of windows cross-correlated distal domains (CCDDs). To iden-

tify CCDDs, we set a threshold for each covariance matrix equal to the absolute value of the

minimum covariance. Treating the remaining adjacent pairs as edges in a graph, we then locate

connected components beyond the widest section of the main diagonal and above the threshold

that contain more than one bin pair, and find the maximal-area rectangle contained within each

connected region of high covariance values (see Figure 4.11). These CCDDs are therefore pairs

of regions distant along the chromosome, composed each of highly interconnected loci, which

also exhibit relatively high cross-correlations compared to other regions of similar genomic sep-

aration. Previous methods for identifying long-range chromatin interactions [98, 105, 130, 135]

have focused on locating individual points of interaction within 1-2 Mbp apart, while CCDDs

tend to be on the order of tens of Mbp apart and supported by groups of interacting loci.

The covariance matrix results from the overall coupling of the complete network of loci upon
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Figure 4.11: Identification of cross-correlated distal domains (CCDDs). CCDDs are found by

searching for connected components outside of the widest point of the main diagonal. The CCDD

is then the rectangle of maximal area contained entirely within the connected component.

inversion of the connectivity/Kirchhoff matrix for the entire chromosomes. As such, it permits to

capture, or better discriminate, the long-range correlations resulting from the complex topology

of loci-loci contacts, as opposed to the raw data on local loci-loci contacts described by Hi-

C maps. The covariance data also permit the identification of an appropriate threshold value

for defining the significant CCDDs, consistent with the cooperative couplings within the entire

structure, including distal correlations. There is no correspondingly clear threshold value for raw

Hi-C data, which makes identifying these regions difficult without covariance matrices. Highly

distant gene pairs within CCDDs show greater co-expression values than gene pairs outside these

regions (p-value< 10−7 using the background defined below). For each CCDD, we identified the

genes contained within the region and measured the co-expression of each gene pair from distant

chromosomal segments. The background gene pairs were gathered from outside the CCDDs

but with similar genomic separation as the CCDD gene pairs. We computed gene expression

correlations from 212 experiments (see Section 4.2.7). As seen in Figure 4.12, the CCDDs

containing specifically gene pairs that are between 50 and 100 Mbp apart are much more highly

co-expressed than background gene pairs at the same genomic distance (p-value < 10−19, see
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Section 4.2.7 for details). This indicates that the dynamic coupling of these genes, as revealed

by GNM, may often be biologically important. CCDDs at smaller genomic distance (< 50 Mbp)

exhibit similar co-expression distributions to the background gene pairs, likely due to the effect

of shorter genomic distances including more co-regulated genes within the background. Beyond

distances of 100 Mbp, there are not sufficient gene pairs within CCDDs to draw any meaningful

conclusions. Dynamically coupled regions that are very distant sequentially but biologically

linked through gene expression are therefore identifiable using the GNM covariance matrix.

4.4 Discussion

This work represents the first analysis of chromosome dynamics using an elastic network model,

GNM, which has found wide applications in molecular structural biology. Though other models

[25, 26] have examined genome structure through graph theoretical methods, the inclusion of the

complete spectrum of motions in the analysis provides a more realistic picture of chromosomal

dynamics in accord with a wealth of experimental data. The approach brings three key advan-

tages. First, this is a mathematically rigorous, based on first physical principles, with intuitive

interpretations and well-established theoretical and physical underpinnings. Second, it enables

us to evaluate, compare and consolidate with the help of a unified model a broad range of bio-

logically significant genome-wide properties. These include the evaluation of loci MSFs at 5kb

resolution, the discrimination of short-range regulatory interactions among close-neighboring

loci, and the identification of TADs and compartments. These respective predictions were shown

to satisfactorily compare with data from chromatin accessibility (DNase-seq and ATAC-seq) and

ChIA-PET experiments, and predictions from previous computational methods. The agreement

with experiments not only validates the applicability of the GNM, but also provides a new set

of independent data, which consolidate those from experiments, especially when the experimen-

tal data themselves exhibit some differences (see Figure 4.4). The application to two different

cell types also showed that GNM data comply with cell-cell variability. This unifying frame-
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Figure 4.12: Co-expression is significantly enriched in distant CCDDs in GM12878 cells. In

each histogram, the yellow distribution represents gene pairs from CCDDs and the blue distribu-

tion represents background gene pairs. All are showing the normalized number of gene pairs with

a particular Pearson expression correlation for gene pairs within a distance of (A) 0-25 million

base pairs, (B) 25-50 million base pairs, (C) 50-75 million base pairs, and (D) 75-100 million

base pairs. The more distant pairs (50-100 million base pairs apart) within the CCDDs show

enriched expression correlations as compared to the background pairs. There were not enough

gene pairs within CCDDs more than 100M base pairs apart to draw significant conclusions.
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work further led to the discovery of biologically significant, dynamically coupled regions, termed

CCDDs. No existing method has located spatially coupled co-expressed regions of the genome

which are so distant (over 50 Mbp apart) along the chromosomes, and this information cannot be

found from gene expression or other experimental data alone.

Future GNM analyses of chromatin dynamics could focus on the nature of the long-range cou-

plings, analysis of their biological significance, or the meaning of genomic regions that exhibit

high covariances. GNM also predicts a measure of overall coupling of each genomic locus to

others (see the curve along the upper abscissa in Figure 4.10A), the significance of which re-

quires further investigation. The GNM was shown to capture several biological properties of

chromosomes, but further insights on cooperative events, including the interchromosomal (trans)

interactions is within reach by focusing on the softest (lowest frequency) modes of motion pre-

dicted by the GNM. Finally, advances in 3D embeddings of Hi-C data may open the way to

adopting the Anisotropic Network Model (ANM) [5, 41, 124] for efficient modeling and visual-

ization of the whole chromatin dynamics.
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Chapter 5

Relationships between computational and

biological TAD properties

One of the major challenges for the computational TAD-finding field is the fact that there is sig-

nificant disagreement between the TADs identified by different methods. Beyond this disagree-

ment, it is unclear which method is “best” because they tend to perform well in certain evaluation

metrics but not others, as documented by several recent reviews. We study the relationships be-

tween computational TAD definitions and biological TAD properties through a combination of

algorithm development and analysis. We design a flexible TAD finder based on several computa-

tional TAD definitions, with parameters that can be optimized for any desired property. We then

explore the space of computational TAD sets by optimizing for various biological properties, and

analyze the relationships between the resulting TAD sets.

5.1 Background

Since the introduction of a sequencing technique to study the genome-wide three-dimensional

structure of chromosomes [69], many studies have shown a connection between this architecture

and regulatory mechanisms. Genome structure plays a role in gene regulation [58], cell cycle
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regulation [35], and many human diseases and disorders (see [119] for review). This structure

has been described by topologically associating domains (TADs), the building blocks of genome

architecture that are regions of the chromosome interacting more highly within themselves than

outside [36]. TADs in particular have been suggested to bring together target genes with their

intended regulatory elements and insulate them from interactions with other nearby enhancers

and promoters, though their exact role and even definition remains an area of active study [13].

One of the main challenges in describing and identifying TADs is a lack of consensus on how to

define these structures, with many different potentially defining features used by different anal-

yses. Computationally, we expect TADs to have dense intra-TAD contacts, sparse inter-TAD

contacts, and show a strong shift in contact direction at TAD boundaries, among other features

[13, 36]. TADs are generally identified through optimization of one of these computational

properties. One TAD finder, Armatus [42], finds the TAD set with the greatest sum of TAD den-

sities, where TAD density is a scaled sum of the Hi-C contact counts within each TAD. TopDom

[116] and Insulation Score [28], both successful TAD finders, instead set TAD boundaries at the

minima of a function adding up the contacts within a window centered on each bin, thereby iden-

tifying TADs as the regions in between highly insulated bins. The first computational method for

TAD finding, called Domain Caller [36], was based on quantifying the direction of contact bias,

or whether a bin preferentially interacted with other bins upstream of it or downstream, and used

a Hidden Markov Model to define TADs where this directionality index switched from upstream

to downstream. These concepts are all related and have all been successful in TAD identification,

though no one method performs best across all evaluation metrics [30, 44, 139].

Without a gold standard or ground truth TAD set to which we can compare computational predic-

tions, we assess TAD sets based on various properties we expect from them. Biologically, TADs

should show increased binding of CTCF, certain histone markers, and cohesin at their bound-

aries, and remain fairly consistent across replicates [36, 42, 108]. CTCF is a critical structural

protein for TAD boundaries, and we therefore expect to see an enrichment of CTCF binding
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at these boundary locations [36]. Similarly, the histone marker H3K36me3 has been shown to

be enriched at TAD boundaries, to the extent that it can be combined with other histone mark-

ers to predict TAD locations [42, 112]. Because of the significant involvement of cohesin in

TAD formation, two of its proteins, RAD21 and SMC3, have also been shown to peak around

TAD boundaries [116]. While TADs have been shown to vary between single cells [128], on the

population level they should remain fairly consistent between replicates [108]. On a fundamen-

tal level, TADs are defined by increased contact frequency within their interiors and somewhat

depleted contact frequency between different TADs. This can be quantified by looking at the

distributions of inter-TAD contacts and intra-TAD contacts, with the expectation that the distri-

bution of intra-TAD contacts is generally higher than that of inter-TAD contacts.

Several reviews have assessed the performance of TAD finders on their ability to fit these biolog-

ical properties, always finding that no one method captures every one equally well, and there is

a significant amount of disagreement in the TADs output by the different methods [30, 44, 139].

It is unclear why these different computational TAD definitions lead to such different TAD sets,

and why some perform better on certain metrics than others. For example, while Armatus TADs

are fairly reproducible [44] and show higher intra-TAD contacts than inter-TAD contacts [30],

the boundaries do not contain as many CTCF, RAD21, or SMC3 peaks as other tools [139]. On

the other hand, Domain Caller TADs have very different inter-TAD and intra-TAD contact distri-

butions [30], align extremely well with CTCF, RAD21, and SMC3, but do not have particularly

impressive histone marker measures [139], and have very low reproducibility [44]. TopDom and

Insulation Score seem to occupy a space of doing fairly well across all metrics and generally

agreeing well with other TAD finding results, but rarely coming out as the best TAD finder in

any particular measure.

The relationship between the computational definitions each of these methods implements and

the resulting TAD sets remains unclear, and it is still an open question whether there exists an

algorithm to identify TADs which would be superlative across assessment metrics, or whether

100



there are inherent tradeoffs between these evaluation criteria. To study these questions and the

variability of computational TAD predictions, we have developed a general TAD finder with

several tunable parameters to reflect the space of potential TAD sets. This allows exploration

of the computational definitions of TADs, and the ability to combine computational components

rather than relying on a single TAD definition.

Parameters of the model can be chosen to guide TAD selection towards any desired property, pro-

vided the relevant data. This connects the computational definitions with the biological properties

we use to assess TAD sets, identifying TADs that fit a combination of computational definitions

and optimize a specific biological property such as high CTCF occupancy at boundaries. We

choose parameter sets to optimize six different desirable TAD properties: (1) many CTCF bind-

ing sites at boundaries, high occupancy (measured by ChIP-seq data) of (2) CTCF, (3) RAD21,

or (4) H3K36me3 at TAD boundaries, (5) reproducibility, and (6) large difference in inter- and

intra-TAD contact frequency. We compare the resulting TAD sets across 12 different cell and tis-

sue types to quantify variability and study the computational and biological properties that lead

to similar TAD outputs. We find that some cell types show extremely high variability in TAD

sets, while others are much more consistent, and analyze which properties lead to each of these

outcomes.

5.2 Methods

To reflect the space of potential computationally-defined TAD sets, we developed a general al-

gorithm for TAD identification. This algorithm, called FrankenTAD, optimizes a linear com-

bination of three computational TAD properties that have been used in successful TAD finders.

Tuning the parameters of this algorithm can lead to very different TAD sets, so we can use various

desired properties to select parameters that will guide the resulting TAD set towards the given

property. Parameters are optimized for one of several possible objective functions, reflecting

various biological and technical TAD properties discussed below.
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Figure 5.1: Illustration of the three TAD features optimized by FrankenTAD.

5.2.1 TAD-finding algorithm

To explore the space of TADs generated through computational TAD definitions, we developed

a flexible algorithm called FrankenTAD based on several features previously used to identify

TADs. FrankenTAD optimizes a linear combination of three TAD features: density within TADs,

insulation between TADs, and a change in contact bias around TAD boundaries (Figure 5.1).

Varying the model parameters leads to different TAD sets that emphasize different computational

and definitional aspects of TADs.

Below, D represents a set of TADs on a given chromosome, the N ×N matrix A is the normal-

ized Hi-C matrix with N bins, each bin representing a segment of k bases where k is the data

resolution, Ai,j is the normalized Hi-C value between bin i, and bin j, and an individual TAD

can be represented by [a, b].

The core of FrankenTAD is the following objective function, combining three different TAD

definitions, where λ = 〈λ1, λ2, λ3〉:

F (D, λ, γ, α) = λ1fGD(D, γ) + λ2fBI(D, α) + λ3fBD(D). (5.1)

The three components of this function, fGD, fBI , and fBD will be explained in detail below. Each

scores a different aspect of a TAD set: dense intra-TAD contacts, insulation between TADs, or a

shift in bias direction at TAD boundaries.
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Graph density component

The first property included in FrankenTAD is inspired by Armatus [42], in which TADs are

chosen to maximize the sum of scaled subgraph densities of each TAD. Computationally, this

defines a TAD as a high density subgraph of the graph induced by the Hi-C matrix. The following

objective function fGD(D, γ) is used by FrankenTAD and Armatus:

fGD(D, γ) =
∑

[k,l]∈D

[s(k, l, γ)− µs(l − k)] (5.2)

s(k, l, γ) =

∑b
g=a

∑b
h=g Agh

(b− a)γ
(5.3)

where γ is a parameter to be optimized, and µs(l − k) is the mean value of s(k, l, γ) for all

possible TADs of length l − k. For details on this function, see Fillipova et al. [42].

Boundary insulation component

The next component of FrankenTAD is inspired by TopDom [116], in which TADs are defined by

the strength of their boundaries rather than the density of their contacts. A sliding window is used

to quantify the insulation from other nearby regions, and boundaries are identified by finding the

local minima of this function. The function quantifying the average contact frequency for each

bin is

binsignal(i) =
1

w2

i∑
l=i−w−1

i+w∑
m=i+1

Al,m, (5.4)

where the parameter w controls the window size. The expectation is for this binsignal(i) to

be high if i is near the center of a TAD, and low if i is at or near a TAD boundary. Details

on this function can be found at Shin et al. [116]. The following function should be maximum

when TAD boundaries are at the local minima of the binsignal(i) function. We therefore score

a TAD set based on the distance from its boundaries to the nearest local minima in the binsignal
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function, and the average slope of binsignal around the boundary:

fBI(B, α) =
∑
i∈B

[−dist(i) + α · slope(i)] (5.5)

slope(i) =
1

3

i−1∑
x=i−3

[binsignal(x)− binsignal(x+ 1)] +
1

4

i+3∑
x=i

binsignal(x+ 1)− binsignal(x)

(5.6)

The set B contains all TAD boundaries, dist(i) is the number of bins from i to the nearest

local minimum, slope(i) is the average slope of binsignal around i, and α is a parameter to

be optimized. This should prioritize TAD boundaries not only at local minima, but those with

especially high differences in insulation around the boundary.

Bias direction component

The third component of FrankenTAD comes from the Domain Caller TAD finder [36], which is

based on the insight that TADs and their boundaries will display particular contact patterns, with

bins near the start of a TAD displaying a strong bias towards contacts downstream, while bins

near the end of a TAD will show a strong bias towards upstream contacts. At TAD boundaries,

we therefore expect to see a switch from downstream to upstream bias. This notion of contact

bias was quantified in the following way in Dixon et al. [36]:

C(i) =
i−1∑

g=i−wd

Agi (5.7)

B(i) =

i+wd∑
g=i+1

Aig (5.8)

E(i) = (A(i) +B(i))/2 (5.9)

DI(i) =

(
B(i)− C(i)

|B(i)− C(i)|

)(
(C(i)− E(i))2

E(i)
+

(B(i)− E(i))2

E(i)

)
. (5.10)

In this formula, C(i) represents the number of upstream contacts of bin i, B(i) represents the

downstream contacts, E(i) is the expected number of contacts, and wd is a window size param-

eter computed based on the resolution to consider contacts within 2Mb up or downstream of

104



the bin of interest. We expect DI(i) to be strongly positive at the start of a TAD and strongly

negative at the end of a TAD, leading to the following scoring function:

fBD(D) =
∑

[a,b]∈D

w∑
g=0

[DI(a+ g)−DI(b− g)]. (5.11)

Dynamic program to optimize multi-feature TAD definition

Ideally, TADs should fit all of these definitions: high density within a TAD, strong insulation at

boundaries, a strong downstream contact bias near the start, and a strong upstream contact bias

near the end of the TAD. A linear combination of these properties provides a flexible framework

for identifying TAD sets based on these computational features.

We identify TADs by maximizing Equation 5.1, which can be done efficiently through a dynamic

program. For any position b on the chromosome, the optimal TAD set over the interval [0, b] is

given by:

OPT (b) = max
a<b

(
OPT (a− 1) + F ([a, b], λ, γ, α)

)
(5.12)

Efficiency is achieved through significant precomputation of the elements of each subfunction,

as well as the above dynamic program.

5.2.2 Data-driven objective functions

We define six different data-driven objective functions to select parameters for FrankenTAD,

thereby guiding the TAD sets we find towards these properties. Each of these has properties has

been used to assess the quality of TAD sets, with existing TAD finders showing clear tradeoffs

between them. We formulate each property as an objective function, and parameters are chosen

to find TAD sets that optimize this objective function. These objective functions are computation-

ally expensive to evaluate because they involve running FrankenTAD with the test parameter set

to find TAD sets, and then assessing the objective on those TADs. We use Bayesian optimization

[91] to select parameters according to each of these properties.
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CTCF binding sites

While its exact role is unclear, the structural protein CTCF is widely understood to be critical

to TAD architecture. Peaks in the number of CTCF binding sites at TAD boundaries have been

used to validate the quality of the TADs [42]. While less descriptive than ChIP-seq data, binding

site locations are not cell-type specific and are relatively easy to identify. Binding site locations

are the best way to optimize for protein locations in the absence of ChIP-seq data which may not

exist for a given species, cell, or tissue type. To optimize for CTCF binding sites, we maximize a

function that counts the number of binding sites at each TAD boundary in a candidate TAD set.

Let nsite(i) be the number of CTCF binding sites within bin i, and recall that B is the set of all

TAD boundaries. Then

OBJbind =
∑
i∈B

nsite(i). (5.13)

The parameters of FrankenTAD are chosen to identify TAD sets that maximize OBJbind.

ChIP-seq peaks: CTCF, RAD21, and H3K36me3

While binding site locations are informative of where proteins could bind, ChIP-seq data reveals

the true locations of bound proteins in a specific cell or tissue type. We therefore use a similar

objective function to maximize the number of peaks of bound proteins at TAD boundaries for

three different structurally associated proteins. RAD21 is a protein component of the cohesin

complex, which has been implicated as a key structure in TAD formation, along with CTCF.

H3K36me3 is a histone marker that has also been associated with TAD structures [42, 112]

and is expected to be enriched at TAD boundaries. We therefore use ChIP-seq peaks of CTCF,

RAD21, and H3K36me3 to select parameters that will identify TAD sets with boundaries at the

locations of binding peaks, with nbound(i) as a function that counts the number of ChIP-seq peaks

with midpoints within the bin i:

OBJchip =
∑
i∈B

nbound(i). (5.14)
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Highlighting the weakness of relying on ChIP-seq data, only 6 of 12 total cell and tissue types

studied here had publicly available RAD21 ChIP-seq data, so the analysis of cohesin is more

limited than the others.

Reproducibility

There can be significant variability between single cells of the same population [19, 82, 121],

but on a population level we broadly expect replicates to show similar TAD sets [108]. The

Jaccard Index, JI(D1,D2), a distance metric quantifying the overlap between two sets, is used

to quantify the similarity between replicate TAD sets. In this case, Di represents a TAD set,

and the Jaccard Index is computed as the ratio of the intersection of the TAD sets to their union.

Parameters are chosen here to identify TAD sets on each replicate with maximal Jaccard Index

between them:

OBJrep = JI(D1,D2) (5.15)

In this work we use two replicates for each cell type, but if more replicates are available this

objective could be expanded as the sum of all pairs of replicate JI values.

Inter- versus intra-TAD contact frequency

Perhaps the most fundamental property of TADs is that there are more interactions within TADs

than between them, which can be quantified by comparing the inter-TAD contact frequency

with the intra-TAD contact frequency. This property is the closest to the computational features

optimized by FrankenTAD, compared to the biological properties reflected by ChIP-seq data.

Intra-TAD contact frequency is computed as the mean of all Hi-C values within TADs in the

given TAD set (Equation 5.16), where n is the total number of intra-TAD matrix entries. Inter-

TAD contact frequency is computed as the mean of all Hi-C values with bins in adjacent TADs.

If we describe the tth TAD along the chromosome as [at, bt] (it begins at bin at and ends at

bin bt), the next TAD along the chromosome can be described as [at+1, bt+1]. The inter-TAD
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contact mean is given by Equation 5.17, where m is the total number of inter-TAD matrix entries

considered. To identify TADs with the greatest change in these two values, we maximize their

difference with OBJint:

INTRA(D) =
1

n

∑
[a,b]∈D

b∑
i=a

b∑
j=i

Aij (5.16)

INTER(D) =
1

m

∑
[at,bt]∈D

bt∑
i=at

bt+1∑
j=at+1

Aij (5.17)

OBJint = INTRA(D)− INTER(D). (5.18)

5.2.3 Data

Parameters optimizing each relevant objective function were used to predict TADs on all autoso-

mal chromosomes of 12 different cell types from a variety of studies (see Supplementary Table

5.1) at 40kb resolution. The testing data was chosen to represent a range of biological conditions

(e.g. cancerous and healthy), cell and tissue types, sequencing depths, and availability of relevant

ChIP-seq data. All Hi-C data was uniformly processed from sequence data to ICE-normalized

Hi-C matrices using HiC-Pro [113] (accession numbers available in Table 5.1). All ChIP-seq

data was processed into peak formats (accession numbers available in Table 5.2).

5.3 Results

Each parameter-choice was used to run FrankenTAD on each cell type for which the necessary

data was available, thereby guiding TAD identification towards each desirable property. We use

the Jaccard Index (JI) to quantify similarity between the TAD sets within each cell type and

study the variability of TAD sets under various objectives. One cell type (NHEK) did not have

replicate data, so we were unable to optimize it for reproducibility, and six of the cell types did

not have publicly available RAD21 ChIP-seq data, so they could not be optimized for cohesin
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Cell type Description Replicates Accession(s) Citation

IMR90 lung fibroblast 2 SRR1658672, SRR1658673, SRR1658674, SRR1658675, SRR1658676, [98]

SRR1658677, SRR1658678

GM12878 blood lymphocyte 2 SRR1658570, SRR1658571, SRR1658572, SRR1658573, SRR1658574, [98]

SRR1658575, SRR1658576, SRR1658577, SRR1658578, SRR1658579,

SRR1658580, SRR1658581, SRR1658582, SRR1658583, SRR1658584,

SRR1658585, SRR1658586, SRR1658587, SRR1658588, SRR1658589,

SRR1658590, SRR1658591, SRR1658592, SRR1658593, SRR1658594,

SRR1658595, SRR1658596, SRR1658597, SRR1658598, SRR1658599,

SRR1658600, SRR1658601, SRR1658602, SRR1658603

K562 chronic myeloid leukemia 2 SRR1658693, SRR1658694, SRR1658695, SRR1658696, SRR1658697, [98]

SRR1658698, SRR1658699, SRR1658700, SRR1658701, SRR1658702

NHEK epidermal keratinocyte 1 SRR1658689, SRR1658690, SRR1658691 [98]

A549 adenocarcinomic alveolar basal epithelial 2 ENCLB571HTP, ENCLB222WYT [125]

LNCaP-FGC prostate carcinoma epithelial-like 2 ENCLB191OGC, ENCLB473XWD [125]

T47D ductal carcinoma 2 ENCLB758KFU, ENCLB183QHG [125]

hESC human embryonic stem cell 2 SRX116344, SRX128221 [36]

pancreas tissue from 2 donors 2 SRX2179254, SRX2179255, SRX2179256, SRX2179257 [109]

spleen tissue from 2 donors 2 SRX2179264, SRX2179263 [109]

skeletal muscle gastrocnemius medialis tissue, 4 donors 4 ENCLB925XYW, ENCLB361HQM, ENCLB966EDS, ENCLB645GUM [125]

HFFc6 subclone of HFF-hTERT 2 4DNES2R6PUEK [32]

Table 5.1: Hi-C data used to generate all results in this chapter.
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Cell/tissue type CTCF RAD21 H3K36me3

IMR90 GSM935404 GSM935624 GSM1055820

GM12878 GSM935611 GSM935332 ENCFF479XLN

K562 GSM1817654 GSM935319 ENCFF676RWX

NHEK GSM822271 – ENCFF253CMF

A549 ENCFF543VGD ENCFF958VNQ GSM1003494

LNCaP-FGC GSM2827202 – GSM875814

T47D ENCFF903ZMF GSM3415550 GSM1541451

hESC GSM822297 GSM935379 GSM450268

pancreas GSM2827540 – ENCFF928PAZ

spleen ENCFF459AHK – GSM2700497

skeletal muscle GSM733762 – GSM733717

HFFc6 GSM1022644 – GSM817238

Table 5.2: Accessions for all ChIP-seq data used in this chapter.
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Figure 5.2: Normalized histogram of JI values across all 12 cell types and 6 objective functions.

occupancy. We find that the JI values follow a roughly bimodal distribution (Figure 5.2) with

many high values indicating significant agreement between TAD sets, and another cluster of

very low values, indicating significantly different TAD sets.

5.3.1 Variability within cell types

The level of variability we observe in TAD sets is highly dependent on the cell type: while several

showed consistency, others displayed high levels of variation. Four cell types in particular, A549,

HFF-c6, NHEK, and Skeletal Muscle, showed little difference across their TAD sets (Figure 5.3).

In each of these cell types, only one JI value lies below 0.5: between the TADs optimized for a

large inter- versus intra-TAD difference, and either the TADs optimized for CTCF binding sites

(A549, HFF-c6, and NHEK) or for the CTCF ChIP-seq data (Skeletal Muscle). On the other

hand, several cell types resulted in much lower JI values across their TAD sets, with IMR90 and

LNCaP averaging below 0.5, and hESC and Spleen averaging at or below 0.55 (Figure 5.4).
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(a) (b)

(c) (d)

Figure 5.3: Low TAD set variability for various objective functions. Cell types: (a) A549 (b)

NHEK (c) HFF-c6 (d) Skeletal Muscle tissue.
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(a) (b)

(c) (d)

Figure 5.4: High TAD set variability for various objective functions. Cell types: (a) hESC (b)

IMR90 (c) LNCaP-FGC (d) Spleen tissue.

113



Figure 5.5: Variability of TAD sets identified with ChIP-seq or binding site data.

5.3.2 Relationships between protein-based objective functions

Optimizing for TADs with high peaks of CTCF or H3K36me3 generally leads to very similar

TAD sets, but the relationship is muddled for RAD21, the cohesin subunit protein. For all but

two cell types (T47D and LNCaP-FGC), the CTCF binding sites appear to be a good proxy for

CTCF ChIP-seq data: TAD sets optimized for each tend to be very similar (Figure 5.5). Similarly,

choosing parameters with CTCF ChIP-seq and H3K36me3 ChIP-seq result is generally similar

TAD sets, with the exception of the Pancreas cells. Though CTCF and cohesin are believed to

work together in TAD formation [49], the relationship between TADs identified by CTCF ChIP-

seq and RAD21 ChIP-seq is much less clear. While two cell types (A549 and T47D) show very

high similarity between TAD sets, the other four cell types have similarity values below 0.6. One

possible explanation comes from the loop extrusion model, which suggests that cohesin binds to

DNA to create TADs, but falls off when it hits barrier elements, believed to be CTCF. Under this

hypothesis, we would not expect CTCF and cohesin to be frequently bound at the same genomic

locations.
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5.3.3 High variability in TADs from some objective functions

Looking at the variation across cell types of each objective function, we often see more vari-

ability than within a single cell type. Comparing TAD sets obtained by optimizing parameters

for reproducibility, for example, shows completely different distributions in similarity values for

each cell type (Figure 5.6). In some cell types (GM12878, K562, HFF-c6, and Skeletal Mus-

cle), TAD sets optimized for reproducibility are generally similar to those optimized for other

biological properties, reflected in the higher JI value distributions. In contrast, hESC, IMR90,

and Spleen cells produce low JI values between TADs selected by optimizing for reproducibil-

ity and those optimized for other objectives, suggesting that sometimes these objectives are not

maximized by the same or even similar TAD sets. While the JI values vary significantly between

cell types, in most cases the agreement between TADs identified for high reproducibility and

those selected for high inter- versus intra-TAD difference is fairly high (green points in Figure

5.6), suggesting that these two objectives, reproducibility and high inter- versus intra-TAD differ-

ence, are generally compatible. On the other hand, the TAD sets given by parameters optimized

for high reproducibility seem fairly incompatible with those given by parameters optimized for

H3K36me3 peaks, shown by the lower values of the orange points in Figure 5.6.

The range of similarity values between TAD sets optimized for inter- and intra-TAD frequency

difference versus other objective functions also reflects significant variability. For most cell

types, there was very little overlap in TADs produced by optimizing for CTCF binding sites and

optimizing for inter- vs intra-TAD interaction differences (blue points in Figure 5.7). Despite

poor agreement with CTCF binding sites, the agreement with CTCF ChIP-seq peaks tends to be

much higher, possibly suggesting that binding sites are insufficient to capture both true CTCF

occupancy and expected contact distribution in TAD sets.
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Figure 5.6: Similarity values between TAD sets optimized for reproducibility and all 5 other

objective functions across cell types.

Figure 5.7: Similarity values between TAD sets optimized for high inter- and intra-TAD contact

difference and all 5 other objective functions across cell types.
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5.4 Discussion

We study the space of computational TAD predictions, and the relationships of TAD properties

with each other, by tuning the parameters of a flexible TAD finder model according to a variety

of data-driven properties. By choosing TADs specifically to optimize a desired outcome, and

comparing them with TADs chosen to optimize other outcomes, we gain insight into the trade-

offs inherent in computational TAD finders. These tradeoffs seem to vary by cell type, with some

cell types showing little difference in TAD sets selected for various properties while others show

extreme differences. We find that optimizing the most basic TAD property, higher interaction

counts within TADs than between TADs, tends to return very different TADs than optimizing

for any of the associated biological properties such as high CTCF or RAD21 occupancy at TAD

boundaries. This suggests an inherent tradeoff between TAD properties defined solely by the

Hi-C data, and those associated with other data types. These results may also suggest different

families of TADs based on different properties, rather than a single TAD definition accommodat-

ing all expected biological and computational TAD properties at once.
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Chapter 6

Discussion and Conclusions

The work presented here has advanced our understanding and ability to study the variability

and complexity of three-dimensional chromosome structure through the development of new

algorithms, the application of algorithms from other fields, and extensive data analysis.

We opened up the ability to perform rigorous analyses of TAD structure differences between

samples by developing the first algorithm to quantify similarity of any two TAD sets, as described

in Chapter 2. This method called TADsim not only gives a measure of overall similarity between

samples, but identifies regions of significantly similar TAD structures. Unlike general metrics

such as the Jaccard Index, TADsim measures TAD similarity by looking at the size of the overlap

between TADs, rather than focusing only on boundary locations. We therefore provide a more

meaningful measurement of TAD similarity based on the full TADs, as well as finding where in

the genome these similar regions exist. Using TADsim, we showed how much TAD structures

can vary both within and across chromosomes, and explored more closely the nature of TAD

disruption in cancer cell lines. Our results suggest that cancer cell lines do not show widespread

TAD structure disruption, but rather localized differences near highly mutated cancer genes.

Further study of this result looking at the TAD structures around regions known to be highly

mutated, possibly with FISH experiments to validate these predictions, would be necessary to

confirm this hypothesis.
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In Chapter 3, we applied TADsim, along with another measure of TAD similarity and one of

Hi-C similarity, to perform the largest study of chromosomal structural variability across Hi-C

samples to date. We showed that despite the claim that TADs are high conserved across cell

types and tissues [36, 98, 109], there is in fact significant variability between samples, and even

some variability between replicates. This high level of variability has since been supported by

single cell studies [19, 122] showing that TADs are not consistent, fixed structures, but vary even

within a cell population. We were able to compare TAD sets from tissue samples drawn from

different donors, as well as TADs from family members to show that the genetic differences

across individuals, and the genetic similarities between parents and children, do not impact the

similarities of the resulting TAD sets. Our results suggest that TADs are more similar based on

biological function rather than underlying genetics. We also studied some sources of technical

variation in Hi-C data and determined that the choice of protocol - in situ or dilution Hi-C - seems

to have an effect on the resulting TAD sets, so one should be careful comparing samples from

differing protocols. On the other hand, lab of origin and restriction enzyme do not seem to induce

significant technical variation in TAD sets. All results were shown to be robust to resolution and

expected TAD size, though only the Armatus TAD finder was used so it is still unclear whether

they hold for all TAD finding tools.

In addition to developing and applying our own algorithms, we also adapted a method from bio-

physics to study chromosome dynamics in Chapter 4. The Gaussian Network Model (GNM) is

a widely used method for inferring protein dynamics from contact maps. Applying the GNM to

Hi-C data, we demonstrated that the dynamics predicted by this model correlate highly with two

experimental techniques for measuring chromatin accessibility, robust to the data resolution. Dy-

namic domains identified by GNM additionally matched up well with TADs and compartments.

ChIA-PET data, which measures long distance interactions between pairs of loci, also validated

high interaction counts between loci predicted by GNM to have high cross-correlation values.

GNM additionally permitted us to identify extremely long range dynamically coupled regions
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that had not been seen directly from Hi-C matrices. We showed that these regions contain gene

pairs with higher co-expression values than expected for gene pairs of similar genomic separa-

tion distance, suggesting that the dynamic coupling of these regions could play a regulatory role

for the genes they contain.

Finally, using a combination of method development and analysis, we study the variability of

computationally-derived TAD sets optimized for various data-driven properties in Chapter 5.

We designed an algorithm to be a flexible computational TAD finder combining the primary

ideas behind several successful TAD finders to cover much of the space of computational TAD

finding. We then tune the parameters to this model according to several properties used to assess

the quality of TAD sets, quantifing the variability they induce and compare the resulting TADs.

Consistent with the loop extrusion model which suggests that cohesin falls off the DNA strand

after TAD formation, using RAD21, a component of the cohesin complex, to optimize TADs

leads to very different results than CTCF. We see significant variability of TAD sets within some

cell types and across different objective functions, supporting the tradeoffs observed in TAD

assessment from various TAD finding methods.

Many of the limitations of this work have been touched on in earlier chapters, but they are im-

portant to reiterate. All of the Hi-C data used for this dissertation is bulk Hi-C, meaning it is an

aggregation of a large population of cells. Recent work has shown significant TAD variability

within cell populations [19, 82, 121], so all of our conclusions hold only on population averages,

not individual cells. Because of the relative cost and complexity of the Hi-C experiment, we were

restricted to a limited amount of publicly available data. The amount of available data limited

the types of methods we could use as well as the types of questions we could ask. For example,

in comparing the TAD structures of cancer cell lines to normal cell lines, we did not have enough

samples from the same cancer types to be able to identify cancer-specific structural disruptions,

but instead had to focus on pan-cancer genes and treat all cancer samples as one group. We

also focus largely on TADs here, despite some ongoing debate in the community about their
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meaning and importance [13]. TADs are certainly not the only meaningful structural component

of chromosomes: compartments, loops, lamina-associating domains (LADs), subTADs, and nu-

clear speckles have all additionally been shown to play important roles in genomic architecture

and its contribution to gene regulation, and there are very likely other important structures both

known and unknown.

Perhaps the greatest limitation to all work in the Hi-C field currently is the challenge of valida-

tion. Hi-C is based on an indirect measure (proximity ligation counts) of an extremely complex

system, and any hypothesis drawn from this data is difficult to independently confirm. The

first study to image chromosome structure across the full genome was just published in August

2020 [122], but there is currently no gold standard TAD set to compare a TAD finders’ results, or

even a clear consensus biological or computational definition of a TAD. We therefore rely on in-

direct validation measures such as comparisons with other genomic data (ATAC-seq, DNase-seq,

ChIP-seq, etc), or quantifying properties we expect to see from TADs, such as higher interaction

frequencies within TADs than between them. All of these validation measures are far from per-

fect, but as experimental techniques for studying chromosome structure improve and diversify, it

will become easier to test these computational predictions.

The recent advances in imaging technology are paving the way for exciting new computational

methods combining existing Hi-C and scHi-C with imaging data to greatly expand our under-

standing of chromosome structure. With imaging and Hi-C data from the same cells, models

can be trained to infer accurate 3D distances from scHi-C data, and to deconvolve bulk Hi-C

into reasonable sub-populations of single cell structures. Imaging data can provide gold standard

TAD sets on which to evaluate Hi-C based TAD finding, and perhaps suggest better features to

optimize or even provide a more concrete definition of a TAD. While imaging data is a more di-

rect, accurate measure of chromosome structure, it is extremely expensive and much less widely

available than Hi-C. Until this changes, Hi-C will still be a critical component in the study of

chromosome structure, but we should be able to leverage the strengths of both data types to
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develop a greater understanding of this complex system.

Many open questions remain in this field; we have so far only scratched the surface of chro-

mosome structure study. With the development of more experimental techniques for measuring

genomic architecture, computational techniques for integrating these results to provide a more

complete picture of chromosome structure will need to be developed. We will need new methods

to handle the combination of increased sparsity and increased numbers of single cell measure-

ments. Methods, both experimental and computational, will need to be developed to understand

the changes over time of TAD structures, which could clarify their role in gene and cell cycle

regulation.

As single cell techniques improve and data becomes more widely available, the meaning of the

TAD-like structures identified in single cells and their variability will be an important topic to

study. Are TAD structures highly variable across the population because their exact locations are

not very important to cellular processes, or are they variable precisely because they are important

and therefore must be responsive to the exact state of the cell? Integrating this data with bulk

Hi-C could lead to better deconvolution methods, allowing inferred subpopulations from bulk

Hi-C data to augment the existing single cell data and improve predictive power.

It is critical to reconcile the seemingly contradictory results from studies that show little to no

changes in transcription from structural disruptions and those that show dramatic phenotypic

changes from relatively minor structural changes. Whether the explanation is that certain ge-

nomic regions are less robust than others to these disruptions, or that there is a confounding

factor we have yet to consider, it is impossible to understand the true role chromosome structure

plays in gene regulation without understanding why it sometimes appears necessary and other

times meaningless. This understanding is likely to come from a combination of statistical meth-

ods to uncover the underlying patterns of changes that disrupt transcription and those that do not,

and experiments to test these computational predictions.

The methods, techniques, and ideas presented in this dissertation will inform the study of chro-
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mosome structure as data availability and quality improves. The information we can draw from

comparing samples, along with the statistical power to trust this information, is greatly enhanced

with larger numbers. The dynamics of chromosome structures will continue to be studied with

methods drawn from other fields and new experiments. A more complete TAD definition pro-

vides a framework for understanding and studying these structures as our statistical power im-

proves. In order to see the full picture of the genomic architecture and the processes it influences,

we will need to continue using all of the approaches mentioned here: new method development,

rigorous data analysis, adaptation of existing methods, and careful, quantifiable definitions of the

objects of study.
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